
1

Distributed Python 
at NERSC

NERSC Data Day
2024-02-21

Daniel Margala
 danielmargala@lbl.gov



2

Distributed Python at NERSC?

+ 💻
🤔😃
+
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● MPI (Message Passing Interface) is the 
predominant distributed memory 
programming model in HPC

● Hybrid approach “MPI+X” is commonly 
used with MPI for scaling out across 
nodes and “X” for parallelization within a 
node.

● Python applications can follow this 
pattern… 
but there are other options too!  🎉

Distributed Python at NERSC
mpi4py + numpy/cupy
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Distributed Python at NERSC*

DragonHPC

cuNumeric (legate)

mpi4py

*not a complete list

^ not discussed in this talk
Developers are interested in 
working with users to 
integrate these into their 
work. 

HPC 💪 ❤ ’s pydata stack

��
��
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mpi4py

● mpi4py provides MPI bindings for Python applications
● MPI defines a standard set of functions that facilitate 

communication between processes:
○ point-to-point
○ collectives
○ non-blocking
○ one-sided
○ and more…

● References:
○ https://mpi4py.readthedocs.io/en/stable
○ https://docs.nersc.gov/development/languages/python/parallel-python/#mpi4py

https://mpi4py.readthedocs.io/en/stable/
https://docs.nersc.gov/development/languages/python/parallel-python/#mpi4py
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mpi4py at NERSC
from mpi4py import MPI

import numpy as np

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

    data = np.arange(100, dtype='i')

else:

    data = np.empty(100, dtype='i')

comm.Bcast(data, root=0)

for i in range(100):

    assert data[i] == i

module load conda
conda activate $ENV_PATH
srun -n 4 python example.py

module load conda
conda create -p $ENV_PATH python numpy
conda activate $ENV_PATH
MPICC="cc -shared" pip install --force \
 --no-cache-dir --no-binary=mpi4py mpi4py

setup:

run:

code:
Install with PrgEnv compiler 
wrappers to link with cray-mpich
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MPI + X: Python edition

● mp4py + X examples:
○ multiprocessing

■ use MPI to run independent workloads on 
different nodes 

○ numpy
■ numpy BLAS backends such as OpenBLAS 

or MKL may use multiple threads
○ cupy

■ CuPy for GPU-accelerated NumPy / SciPy
○ mpi4py

■ MPI for parallelization within a node as well
■ e.g. 1 rank per core or GPU, will vary by 

application

example exploration of perf 
tradeoff of MPI tasks vs threads 
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dask

● dask is a Python library for parallel and distributed computing
● APIs:

○ Array: subset of NumPy ndarray API
○ DataFrame: parallelized pandas
○ Futures: extends Python’s concurrent.futures
○ Bag: map, filter, fold, groupby, …

● References:
○ https://docs.dask.org/en/stable/
○ https://examples.dask.org/
○ https://docs.nersc.gov/analytics/dask/
○ https://gitlab.com/NERSC/nersc-notebooks/-/tree/main/perlmutter/dask

https://docs.dask.org/en/stable/
https://examples.dask.org/
https://docs.nersc.gov/analytics/dask/
https://gitlab.com/NERSC/nersc-notebooks/-/tree/main/perlmutter/dask
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dask at NERSC
module load conda
conda activate daskenv

scheduler_file=$SCRATCH/scheduler_file.json
rm -f $scheduler_file

# launch scheduler
dask-scheduler --scheduler-file $scheduler_file \

--interface hsn0 &

dask_pid=$!
sleep 5
until [ -f $scheduler_file ]
do
     sleep 5
done

# launch workers
srun dask-worker --scheduler-file $scheduler_file \
    --interface hsn0 --nworkers 1 

import os
import dask
from dask.distributed import Client

scheduler_file = os.path.join(
os.environ["SCRATCH"],
"scheduler_file.json"

)

client = Client(scheduler_file=scheduler_file)

Launch scheduler and workers: Connect a client to scheduler:

Full example is here: 
https://gitlab.com/NERSC/nersc-notebooks/-/t
ree/main/perlmutter/dask
Checkout upcoming dask training:
     TBD

https://gitlab.com/NERSC/nersc-notebooks/-/tree/main/perlmutter/dask
https://gitlab.com/NERSC/nersc-notebooks/-/tree/main/perlmutter/dask
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cuNumeric (legate)

● cuNumeric aims to provide a distributed and accelerated drop-in 
replacement for the NumPy API

○ implicit data distribution and parallelization through Legate 
○ similar APIs on top of Legate are in the works (legate.pandas, legate.sparse, …)
○ profiling support with NVIDIA Nsight Systems
○ dataflow diagrams for debugging
○

● “One program for any scale machine”
● References:

○ https://developer.nvidia.com/blog/accelerating-python-applications-with-cunumeric-and-
legate/

○ https://github.com/nv-legate/legate.core
○ https://github.com/nv-legate/cunumeric

https://developer.nvidia.com/blog/accelerating-python-applications-with-cunumeric-and-legate/
https://developer.nvidia.com/blog/accelerating-python-applications-with-cunumeric-and-legate/
https://github.com/nv-legate/legate.core
https://github.com/nv-legate/cunumeric
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cuNumeric at NERSC (setup)
export ACCOUNT=m1234
export PREFIX=$SCRATCH/legate
mkdir -p $PREFIX
cd $PREFIX

git clone https://github.com/nv-legate/quickstart.git
git clone https://github.com/nv-legate/legate.core.git
git clone https://github.com/nv-legate/cunumeric.git

# build on an interactive gpu node
salloc -A $ACCOUNT -C gpu -N 1 -q interactive -t 30

# Create conda environment w/ dependencies
module load conda
export CONDA_PKGS_DIRS=$(mktemp -d)
export CONDA_PREFIX=$PREFIX/env
conda env create -p $PREFIX \

-f environment-test-linux-py3.11-cuda12.2.2.yaml
conda activate $CONDA_PREFIX

# Install Legate packages
module load cray-pmi
module unload cray-libsci
conda uninstall pkg-config

cd legate.core
../quickstart/build.sh
cd ..
cd cunumeric
../quickstart/build.sh

The quickstart repo has useful helper 
scripts and configurations for various HPC 
platforms including perlmutter
https://github.com/nv-legate/quickstart

https://github.com/nv-legate/quickstart
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library elapsed time (ms) speedup rel. 
numpy

numpy 424112.53 1x

cupy 4885.96 87x

cunumeric 430.90 984x

cuNumeric at NERSC (run)

export ACCOUNT=m1234
export PREFIX=$SCRATCH/legate
export CONDA_PREFIX=$PREFIX/env

cd $PREFIX/cunumeric

module load conda
conda activate $CONDA_PREFIX

../quickstart/run.sh 2 examples/stencil.py

import cunumeric as np

def initialize(N):
    grid = np.zeros((N + 2, N + 2))
    grid[:, 0] = -273.15
    grid[:, -1] = -273.15
    grid[-1, :] = -273.15
    grid[0, :] = 40.0
    return grid

def run_stencil(N, I):
    grid = initialize(N)

    center = grid[1:-1, 1:-1]
    north = grid[0:-2, 1:-1]
    east = grid[1:-1, 2:]
    west = grid[1:-1, 0:-2]
    south = grid[2:, 1:-1]

    for i in range(I):
        average = center + north + east + west + south
        work = 0.2 * average
        center[:] = work

run_stencil(20000, 100)

Multi-node launch using quickstart helper:

Many more examples in the cuNumeric repo:
https://github.com/nv-legate/cunumeric

multi-gpu + multi-node

https://github.com/nv-legate/cunumeric
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DragonHPC

● Dragon is a distributed run-time for HPC 
applications and workflows
○ Python multiprocessing program across nodes
○ Interface and adapters for workflows
○ Distributed key-value store
○ Telemetry / introspection
○ Scalable data loaders

● References:
○ http://dragonhpc.org/
○ https://github.com/DragonHPC/dragon

http://dragonhpc.org/
https://github.com/DragonHPC/dragon
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DragonHPC at NERSC

mkdir -p $SCRATCH/dragonhpc

git clone https://github.com/DragonHPC/dragon.git
cd dragon

# edit “hack/clean_build”:
# remove "-c src/constraints.txt"

# edit “src/lmod/dragon-dev.lua”:
# change rome -> milan
# change cray-python -> cray-python/3.9

# build on an interactive cpu node
salloc -C cpu -N 1 -t 30 -q interactive -A m1234

# create venv and build from source
source hack/clean_build

setup*:
salloc -C cpu -N 2 -t 30 -q interactive -A m1234

source hack/setup

dragon example.py

import dragon
import multiprocessing as mp
…
if __name__ == "__main__":
    mp.set_start_method("dragon")
    cpu_count = mp.cpu_count()
    with mp.Pool(cpu_count) as pool:
        result = pool.map(...)
…

*A prebuilt wheel is also available from 
the github repo release page

run:

code:

Many more examples in the DragonHPC repo:
https://github.com/DragonHPC/dragon

https://github.com/DragonHPC/dragon


15

Summary
Framework 🙂 🤔
mpi4py ● HPC Stalwart

● High speed network
● Learning curve for Python users not 

familiar with HPC

dask ● Interoperable with PyData ecosystem
● Many APIs
● Fun dashboard

● May seem a bit clunky on HPC
● Does not leverage high speed network 

(no libfabric support currently)

cunumeric (legate) ● One program for any scale machine
● Built-in support for GPUs
● High speed network
● Developers interested in engaging with users

● NumPy API coverage is WIP
● May be challenging to compose with 

non-legate libraries
● May be challenging to debug issues / 

performance  

dragon ● Distributed multiprocessing
● Workflow adapters and lower level core
● Developers interested in engaging with users 

● Not sure about support for high speed 
network (?)

● May be challenging to debug issues / 
performance  

Please reach out if you have questions about distributed Python:
 danielmargala@lbl.gov

mailto:danielmargala@lbl.gov


Thank you

 danielmargala@lbl.gov
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HPC Python housekeeping

● python startup can be file system intensive
○ python needs to access lots of tiny files. typically, way more than a traditional HPC 

program compiled to a binary executable
○ best practice is to use a container or /global/common/software/<project> for 

software environments (esp. Python!)
● composing multiple methods parallelism can lead to 

“oversubscription”. 
○ For example, NumPy BLAS backend and multiprocessing.cpu_count() both default 

to MAX_THREADS.
● distributed Python frameworks will need to work with (or around) the 

scheduler (Slurm).


