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2M pixels, 60
frames per
second, one
minute long!

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and
@ OpenAI animated city signage. She wears a black leather jacket, a long red dress, and black boots,
and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and
casually. The street is damp and reflective, creating a mirror effect of the colorful lights.
Many pedestrians walk about.

https://openai.com/sora



https://docs.google.com/file/d/1QzqQcc9z36KBfcIVdJJce2bOju1BGzA-/preview
https://openai.com/sora

The Deep Learning revolution
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https://openai.com/sora

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days
e n e e O r blog.openai.com/ai-and-compute/
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Growing computational
cost of training Al models
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https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

DL is transforming science

Embraced by the DOE and other funding

National Artificial

agencies Intelligence Research

Institutes

Applied to many domains

e Analyzing data better, faster
e Accelerating expensive simulations
e Control + design of complex systems

Increasingly large-scale
o Pushing limits of HPC+Al systems/tools ... %

A\ph aFold2
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Size of training dataset

ML@NERSC 2022 Survey

Need for Al at scale

Training time on single device

60

100 ML@NERSC 2022 Survey 50
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40 0

20 10

1GBorless Upto10GB 10s of GB 100s of GB 10s of TB >100TB
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Types of distributed training

On how many devices do you train a model?

100 Data parallelism
Large scale
80 . . Model parallelism
training

60 Not needed

40 Hybrid parallelism

20

Pipeline parallelism ML@NERSC 2022 Survey
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DL at Scale on Perlmutter

* Deep learning stack at NERSC (crash course)

* Distributed deep learning
o Optimization & performance
o Data parallelism
o Model/hybrid parallelism

» Additional resources

NERsC =~ BERKELEY LAB ENERGY | Sienee




Perlmutter deep learning software stack overview

General strategy:

e Provide functional, performant installations of the most
popular frameworks and libraries

e Enable flexibility for users to customize and deploy their Frameworks
own solutions it arn
TensorFlow 2
Frameworks: e ——
pyTore Lghtning
O PyTorch “F TensorFlow [ Keras .
LBANN
FleXi bl I |ty é:;lf: ML@NERSC 2022 Survey
« Available via pre-installed modules, custom conda/pip 0 » @ e & 10

installations, or container builds

.) https://docs.nersc.gov/machinelearning/

Lmod .5
:
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https://docs.nersc.gov/machinelearning/

DIStrlbUted Tralnlng TOOlS Distributed training libraries

F rrrrrrr k bullt4“_

Framework built-in —

Horovod

e PyTorch DistributedDataParallel (DDP) -
e TensorFlow Distribution Strategies

Other popular libraries Deepsp:
e Horovod: MPI+NCCL, easy to use, examples e MLzNERS;m:OWSO
e Lightning: DDP + convenient features
e DeepSpeed: ZeRO optimizations, 3D parallelism el —= it
e Ray: DDP + HPO ‘
e LBANN: multi-level parallelism, ensemble learning, etc., docs ‘H X H
Communication backends
e NCCL is the backend of choice for GPU nodes on Perimutter | T e
e The NCCL OFI plugin (from AWS) enables RDMA performance on the
libfabric-based Perlmutter Slingshot network (see our docs)
NE 9 2 BERKELEY LAB & ENERGY  oren
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https://github.com/horovod/horovod/tree/master/examples
https://lbann.readthedocs.io/en/latest/index.html

Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial

~>1| BERKELEY LAB ENERGY | e



https://github.com/NERSC/sc23-dl-tutorial

General guidelines for distributed DL

Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance
e Using performance analysis tools
e Tuning and optimizing the data pipeline

e Make effective use of the hardware (e.g. mixed precision) ,:" /%_
Distribute the training across multiple processors ant
e Multi-GPU, multi-node training: data and/or model parallel i il
e Use best practices for large scale training and convergence — ﬁ}
e Use best optimized libraries for communication, tune settings B0

Advanced parallelism
e Model/hybrid parallelism design considerations -y
e Implementation & analysis [[ (g Y &

ZER>, U.S. DEPARTMENT OF Office of

'Z / ENERGY Science
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Performance profiling

Using NVIDIA Nsight Systems «uw
- . . . v Processes (3)
Profiling is an essential step in - ® 11873 python
optimizing any code v Thresds (10

PrmIzIng any eoce | e E— E— —
NSlght SyStemS t|mel|ne prOV|deS a WX step 17 [95.831 ms] | data load [89.096 ms] | step 18 [46.883 ms] | step 19 [105.785 ms]

H - 1 j E] data copy in [55.989 ms] ]
high-level view .of your workload and s L — - .
helps you identify bottlenecks: profiler overhead

. L v/ 120661 python - A AN
* 1/O, data input pipeline S —
~ V' [2049] python ~ : :
© Compute CUDA API
7 threads hidden... — . i _ . . .
° SChedUIing (eg UneXpeCted ~ CUDAHW (0000:07:00.0 ="y~ 1 - T A -
izati ~ 92.3% Kernels L e = = A RS ST @MII, M
SynChronlzatlon) » 26.7% wgrad_algl_nd_fl — 1 @8 “'"I. — 1 @88 |:,lll.. |
» 25.0% convolveNd_dgra
Can_ use NVTX ranges to annotate + nsvectorooomg MO TET T THR) | T CI ET T T T T
prOf"eS 11 kernel groups h =—
» 7.7% Memory . | 1L . 1 |} . I
- step 17 [95.774 ms] ) ( step 18 [96.393 ms] step 1..
] CaCa

a

»

To generate a profile:

nsys profile -o myprofile python train.py

. . . credit: Josh Romero, Thorsten Kurth (NVIDIA)
nsys profile -o myprofile -t cuda,nvtx python train.py

U.S. DEPARTMENT OF Offlce of
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2.3X

Optimizing GPU performance T8
Data loading .
e Frequent cause of performance loss for users -
e Parallelize your /O §
e Consider NVIDIA DALI
PyTorch PyTorch PyTorch DALI
Mixed precision (FP32 + FP16) ik TG (nmemory) O

. Cosmo U-Net
e Can speed up training, leverage tensor cores, reduce memory

e Frameworks provide capabilities for automatically using FP16 where appropriate and
for scaling gradients to prevent numerical underflow

JIT compilation, APEX fused operators, CUDA Graphs
e Fuses kernels (+launches) together to increase GPU utilization
Other tricks

 Check out our tutorial for more Full set of optimizations in tutorial => 5x speedup!
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https://github.com/NERSC/sc23-dl-tutorial
https://docs.google.com/presentation/d/17c5Pav3WdaT64DmJ-LKLbkL2eUtOTlHw/edit?usp=drive_link&rtpof=true&sd=true

Parallel training strategies

ek

ALY

BIre [} T PThar

At L® P1 P2 P3

Data Parallelism Model Parallelism
e Distribute input e Distribute network structure,
samples within or across layers
e Model replicated e Needed for massive models that
across devices don’t fit in device memory
e Most common e Becoming more common

EEEEEEEEEEEE Offlce of

BERKELEY LAB ENERGY Science
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Parallel training strategies

P B Pelbar
P2Ifp DS The go-to for distributed DL:
_ Conceptually simple
P3| b ‘E>Gc>(% Easy implementation
e PyTorch, TensorFlow have built-in functionality
Data Parallelism /1. Some additional considerations

e Data loading at scale

o Distribute Input e Modified hyperpameters

samples
e Model replicated
across devices
e Most common

Office of
Science

gall] BERKELEY LAB

e Solutions to the World
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Synchronous data parallel scaling

Weak scaling (fixed local batch size) —

o Global batch size grows with number 2 — | P1 % y' o
of workers T — P2 @ 59
e Computation grows with — T~ (3 _—
communication; good scalability - E’
e Large batch sizes can negatively _ < \
affect convergence /
Strong scaling (fixed global batch size) —> PN PN

e Local batch size decreases with
number of workers Local batch-size = B
e Convergence behavior unaffected
e Communication can become a
bottleneck

i 16 2 BERKELEY LAB
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Global batch-size =N * B
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How do we accelerate learning?

o~

Recall batched stochastic gradient descent: |
N B 17N
Wil <~ we — 5 2o VLO(@i,we) -

B is batch-size

n is |earning rate " ————— <

We can converge faster by taking fewer, bigger, faster steps

e i.e., larger batch sizes, larger learning rates, more processors
e Not a free lunch!

Office of

a 7‘ ENERGY Science
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Learning rate scaling

Some rules of thumb may work for you
3 SGD steps vs. 1 SGD

e Linear learning rate scaling: step with 3x learning rate

n—N*n
e Square-root learning rate scaling:
n — sqrt(N) * n

SVHN (SGD) - Optimal Learning Rate

—o— Best Learning Rate

=== Best Fit

Optimal learning rate can be more complex

e See OpenAl, Google studies on batchsize &
learning rate co-dependence

102 4

Optimal Learning Rate

Large learning rates unstable in early training

100 10! 102 103

e You may need a gradual LR “warm up” Baich Sise

U.S. DEPARTMENT OF Offlce Of

. ® 4 ENERGY science
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http://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1811.03600

Sharded data parallel

e Standard data parallelism fully replicates model weights and optimizer states

e \We can reduce memory footprint by sharding or offloading these to CPU
o Communicate parameters only when needed

Offload grads to
CPU if CPU

Load shard
i FromCPUf

- CPU Offloaded offload is enabled
1

; Levels of sharding
- U - ® /ZeRO-1: partition optimizer states

FSDP instance 1: N layers FSDP instance 1: N layers FSDP instance N: M layers
A A A
1 1 .

ALL-
GATHER

BACKWARD
(LOCAL)

ALL-
GATHER

FORWARD
(LOCAL)

| ® ZeRO-2: partition gradients

F w e ® FSDP/ZeRO-3: partition weights,
; 5 optionally offload to CPU

i
' v
-0 g .
: * Can enable trillion parameter

LOAD-

BACKWARD
(LOCAL)

FORWARD
(LOCAL)

i 'SDP instance 1: N layers instance 1: N layers 1 FSDP instance N: M layers - -
; i FepFnsmes ey —— S models without model-parallelism!
CPU Offfoaded erioadis enamie https://arxiv.org/abs/1910.02054
https://pytorch.ora/blog/introducing-pytorch-fully-sharded-data-parallel-api/ https://engineering.fb.com/2021/07/15/open-source/fsdp/
- A U.S. DEPARTMENT OF Ofﬁce of
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https://arxiv.org/abs/1910.02054
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://engineering.fb.com/2021/07/15/open-source/fsdp/

Beyond data parallelism

e \What to do when model footprint exceeds GPU memory?
o Data parallelism alone not enough
m LLMs: huge models with billions of weights
m High-res/3D/4D data: model activations dominate
o Sharding/offloading as in ZeRO
o Activation checkpointing “7/ DeepSpeed
~ Hugging Face
e Otherwise, model parallelism
o Several tools offer various implementations @ colossal-A1

P3

P1 P2
' 20

™ ‘\« oooooooooooooo Office of
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Model parallelism

* DL models are just a series of weights /
and activations, represented as
multidimensional tensors

+ Tensor dimensions determined by model M Ll __ X Depth
architecture, input data, e.qg.:

» B: Batch size —N’ Iy

* D:Model depth Weights: M x N x ... E
* M, N: MLP weight matrices

Activations: BxLxEx ... )
» L: Token sequence length (transformers)

+ E: Embedding or Feature dimension
« Picking a parallel strategy: choose which
model (tensor) dimensions to partition

Data parallel: Pipeline parallel: Tensor or Operator parallel:
Shard batch dim B Shard depth D Shard other model dims
(M,N,E)

U.S. DEPARTMENT OF offlce Of
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Pipeline parallelism

1. Shard “depth” dimension across workers
(different layers on different GPUSs)

2. Break data batch into “microbatch” and
overlap computation

Considerations:
e Idle bubbles still impact overall
utilization
e (Can be more straightforward than
other model parallelism

s
* = =

) [N -

E Time ‘ B

Fso | Fss | Faz | Fas| Bss | Baz | Bas | Bao Update

Fao| Far | Faz | Fas Bos | Baa | Bt | Bao Update

Fio | Fus | Fiz | Fus | Bus | Buz | Bu | Buo Update

Foo | For | Foz | Fos | Ehkiey Bos | Boz | Bos | Boo | Update

net = nn.Sequential(
nn.Linear(in_features, hidden_dim),
nn.ReLU(inplace=True),
nn.LinearChidden_dim, out_features)

D)
from deepspeed.pipe import PipelineModule

net = PipelineModule(layers=net, num_stages=2)

https://www.deepspeed.ai/tutorials/pipeline/

U.S. DEPARTMENT OF
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https://www.deepspeed.ai/tutorials/pipeline/

Tensor/Operator parallelism

Shard other tensor dimensions across workers

Full flexibility, choices are model/data-dependent, e.qg.:
o Transformers — parallelize MLP matrix multiplies
row-wise or col-wise
o CNNs — spatial parallelism (domain
decomposition)

Communication in forward/backward pass depends on
what is sharded and how

Addresses some of the challenges of pipelining (idle
slots, load imbalance); more involved to implement
o Custom forward/backward pass implementations
for different communication patterns
o Ref. SC23 material for advanced use-cases

La 23
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https://github.com/NERSC/sc23-dl-tutorial/tree/main

Hybrid parallelism

Data parallel comms: interconnect across nodes

e Data + Model parallel at the same time!
o Need multiple communicator groups

o Prioritize high-bandiwdth (NVLink) for ops that Model parale!
do the most frequent/largest communication within a node

1000

L
e Used by most SOTA extreme-scale DL models, e.g E ool / ’
NVIDIA MegatronLM implementation of GPT3: L I S
. g /g" 75
o 8-way tensor parallelism on node E /e
o 16-way pipeline parallelism 5 ¢ ﬁ"‘ {58
o  Data parallelism up to thousands of GPUs s 0 e
S 01 ¢
= ELMo
(94m)
0.01
2018 2019 2020 2021 2022
o~ N U.S. DEPARTMENT OF Ofﬁce of
L‘ > I 24 ,}”n\l BERKELEY LAB EN ERGY Science
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Outreach & additional resources
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Outreach & additional resources

NESAP engagements v
e A major way of engaging on advanced Al use-cases e
e Science team partners with NERSC staff ’
e Forward-looking, e.g. towards N10 workflows
e CFP likely at the end of FY24

The Deep Learning at Scale Tutorial
e Jointly organized with NVIDIA (+ previously Cray, ORNL)
e Presented at SC18-23, ECP Annual 2019, ISC19
e Detailed lectures + hands-on material
e Runs on Perimutter!

NVIDIA Al for Science Bootcamp
e More methods-focused, but relevant to scientific computing
o 2022 event, 2023 event

Office of
Science
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https://www.nersc.gov/users/training/events/2022/nersc-ai-for-science-bootcamp-august-25-26-2022/
https://www.nersc.gov/users/training/events/2023/ai-for-scientific-computing-oct-2023/

Questions?
Collaboration? Want help?

Peter Harrington
pharrington@Ibl.gov

Deep-learning@NERSC:
https://docs.nersc.gov/machinelearning/

Join the NERSC Users Slack
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https://docs.nersc.gov/machinelearning/
https://www.nersc.gov/users/NUG/nersc-users-slack/

