Deep Learning at Scale on Perlmutter

NERSC Data Day
Feb 21st, 2024

Peter Harrington
Data & AI Services Group
NERSC
The Deep Learning revolution

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

2M pixels, 60 frames per second, one minute long!
The Deep Learning revolution

How?

✅ Deep Learning

✅ Scale! (Model, Data, Compute)
The need for HPC

Growing computational cost of training AI models
- bigger datasets + models, more complexity

Researchers need large scale resources
- Rapid iteration, reduce time to discovery

Deep Learning

Large Language Models

https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
DL is transforming science

Embraced by the DOE and other funding agencies

Applied to many domains
- Analyzing data better, faster
- Accelerating expensive simulations
- Control + design of complex systems

Increasingly large-scale
- Pushing limits of HPC+AI systems/tools
Need for AI at scale

Training time on single device

ML@NERSC 2022 Survey

Large problems

On how many devices do you train a model?

Large scale training

Types of distributed training

Data parallelism

Model parallelism

Not needed

Hybrid parallelism

Pipeline parallelism

ML@NERSC 2022 Survey
DL at Scale on Perlmutter

- Deep learning stack at NERSC (crash course)
- Distributed deep learning
  - Optimization & performance
  - Data parallelism
  - Model/hybrid parallelism
- Additional resources
Perlmutter deep learning software stack overview

General strategy:

- Provide functional, performant installations of the most popular frameworks and libraries
- Enable flexibility for users to customize and deploy their own solutions

Frameworks:

- PyTorch
- TensorFlow
- Keras

Flexibility:

- Available via pre-installed modules, custom conda/pip installations, or container builds

https://docs.nersc.gov/machinelearning/
Distributed Training Tools

**Framework built-in**
- PyTorch DistributedDataParallel (DDP)
- TensorFlow Distribution Strategies

**Other popular libraries**
- **Horovod**: MPI+NCCL, easy to use, [examples](#)
- **Lightning**: DDP + convenient features
- **DeepSpeed**: ZeRO optimizations, 3D parallelism
- **Ray**: DDP + HPO
- **LBANN**: multi-level parallelism, ensemble learning, etc., [docs](#)

**Communication backends**
- NCCL is the backend of choice for GPU nodes on Perlmutter
- The NCCL OFI plugin (from AWS) enables RDMA performance on the libfabric-based Perlmutter Slingshot network (see our docs)
Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial
General guidelines for distributed DL

Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance
- Using performance analysis tools
- Tuning and optimizing the data pipeline
- Make effective use of the hardware (e.g. mixed precision)

Distribute the training across multiple processors
- Multi-GPU, multi-node training: data and/or model parallel
- Use best practices for large scale training and convergence
- Use best optimized libraries for communication, tune settings

Advanced parallelism
- Model/hybrid parallelism design considerations
- Implementation & analysis
Performance profiling
Using NVIDIA Nsight Systems

Profiling is an essential step in optimizing any code.

Nsight Systems timeline provides a high-level view of your workload and helps you identify bottlenecks:

- I/O, data input pipeline
- Compute
- Scheduling (e.g. unexpected synchronization)

Can use NVTX ranges to annotate profiles.

To generate a profile:

```
nsys profile -o myprofile python train.py

nsys profile -o myprofile -t cuda,nvtx python train.py
```

credit: Josh Romero, Thorsten Kurth (NVIDIA)
Optimizing GPU performance

Data loading
- Frequent cause of performance loss for users
- Parallelize your I/O
- Consider NVIDIA DALI

Mixed precision (FP32 + FP16)
- Can speed up training, leverage tensor cores, reduce memory
- Frameworks provide capabilities for automatically using FP16 where appropriate and for scaling gradients to prevent numerical underflow

JIT compilation, APEX fused operators, CUDA Graphs
- Fuses kernels (+launches) together to increase GPU utilization

Other tricks
- Check out our tutorial for more

Full set of optimizations in tutorial => 5x speedup!
Parallel training strategies

Data Parallelism
- Distribute input samples
- Model replicated across devices
- Most common

Model Parallelism
- Distribute network structure, within or across layers
- Needed for massive models that don’t fit in device memory
- Becoming more common
Parallel training strategies

Data Parallelism
- Distribute input samples
- Model replicated across devices
- Most common

The go-to for distributed DL:
- Conceptually simple
- Easy implementation
  - PyTorch, TensorFlow have built-in functionality
- Some additional considerations
  - Data loading at scale
  - Modified hyperparameters
Synchronous data parallel scaling

Weak scaling (fixed local batch size)
- Global batch size grows with number of workers
- Computation grows with communication; good scalability
- Large batch sizes can negatively affect convergence

Strong scaling (fixed global batch size)
- Local batch size decreases with number of workers
- Convergence behavior unaffected
- Communication can become a bottleneck

Local batch-size = \( B \)
Global batch-size = \( N \times B \)
How do we accelerate learning?

Recall batched stochastic gradient descent:

$$w_{t+1} \leftarrow w_t - \frac{\eta}{B} \sum_{i=1}^{B} \nabla L(x_i, w_t)$$

- $B$ is batch-size
- $\eta$ is learning rate

We can converge faster by taking fewer, bigger, faster steps

- i.e., larger batch sizes, larger learning rates, more processors
- *Not a free lunch!* 
Learning rate scaling

Some rules of thumb may work for you

- Linear learning rate scaling:
  \[ \eta \rightarrow N \times \eta \]
- Square-root learning rate scaling:
  \[ \eta \rightarrow \sqrt{N} \times \eta \]

Optimal learning rate can be more complex

- See OpenAI, Google studies on batchsize & learning rate co-dependence

Large learning rates unstable in early training

- You may need a gradual LR “warm up”
Sharded data parallel

- Standard data parallelism fully replicates model weights and optimizer states
- We can reduce memory footprint by **sharding or offloading** these to CPU
  - Communicate parameters only when needed

**Levels of sharding**

- ZeRO-1: partition optimizer states
- ZeRO-2: partition gradients
- FSDP/ZeRO-3: partition weights, optionally offload to CPU

Can enable trillion parameter models without model-parallelism!

https://engineering.fb.com/2021/07/15/open-source/fsdp/

Beyond data parallelism

● What to do when model footprint exceeds GPU memory?
  ○ Data parallelism alone not enough
    ■ LLMs: huge models with billions of weights
    ■ High-res/3D/4D data: model activations dominate
  ○ Sharding/offloading as in ZeRO
  ○ Activation checkpointing

● Otherwise, **model parallelism**
  ○ Several tools offer various implementations

![Diagram](image-url)
Model parallelism

- DL models are just a series of **weights** and **activations**, represented as multidimensional tensors
- Tensor dimensions determined by model architecture, input data, e.g.:
  - B: Batch size
  - D: Model depth
  - M, N: MLP weight matrices
  - L: Token sequence length (transformers)
  - E: Embedding or Feature dimension
- Picking a parallel strategy: choose which model (tensor) dimensions to partition
  - **Data parallel:** Shard batch dim B
  - **Pipeline parallel:** Shard depth D
  - **Tensor or Operator parallel:** Shard other model dims (M,N,E)
Pipeline parallelism

1. Shard “depth” dimension across workers (different layers on different GPUs)

2. Break data batch into “microbatch” and overlap computation

Considerations:
- Idle bubbles still impact overall utilization
- Can be more straightforward than other model parallelism

https://www.deepspeed.ai/tutorials/pipeline/
Tensor/Operator parallelism

- Shard other tensor dimensions across workers

- Full flexibility, choices are model/data-dependent, e.g.:
  - Transformers – parallelize MLP matrix multiplies row-wise or col-wise
  - CNNs – spatial parallelism (domain decomposition)

- Communication in forward/backward pass depends on what is sharded and how

- Addresses some of the challenges of pipelining (idle slots, load imbalance); more involved to implement
  - Custom forward/backward pass implementations for different communication patterns
  - Ref. SC23 material for advanced use-cases
Hybrid parallelism

- Data + Model parallel at the same time!
  - Need multiple communicator groups
  - Prioritize high-bandwidth (NVLink) for ops that do the most frequent/largest communication

- Used by most SOTA extreme-scale DL models, e.g. NVIDIA MegatronLM implementation of GPT3:
  - 8-way tensor parallelism on node
  - 16-way pipeline parallelism
  - Data parallelism up to thousands of GPUs
Outreach & additional resources
Outreach & additional resources

NESAP engagements
- A major way of engaging on advanced AI use-cases
- Science team partners with NERSC staff
- Forward-looking, e.g. towards N10 workflows
- CFP likely at the end of FY24

The Deep Learning at Scale Tutorial
- Jointly organized with NVIDIA (+ previously Cray, ORNL)
- Presented at SC18-23, ECP Annual 2019, ISC19
- Detailed lectures + hands-on material
- Runs on Perlmutter!

NVIDIA AI for Science Bootcamp
- More methods-focused, but relevant to scientific computing
- 2022 event, 2023 event
Questions?
Collaboration? Want help?

Peter Harrington
pharrington@lbl.gov

Deep-learning@NERSC:
https://docs.nersc.gov/machinelearning/

Join the NERSC Users Slack