
1

Deep Learning at Scale 
on Perlmutter

NERSC Data Day
Feb 21st, 2024

Peter Harrington
Data & AI Services Group

NERSC



2

The Deep Learning revolution

https://openai.com/sora

2M pixels, 60 
frames per 
second, one 
minute long!

https://docs.google.com/file/d/1QzqQcc9z36KBfcIVdJJce2bOju1BGzA-/preview
https://openai.com/sora


3

The Deep Learning revolution

https://openai.com/sora

✅ Deep Learning

✅ Scale! (Model, Data, Compute)

How?

https://openai.com/sora


4

The need for HPC

Growing computational 
cost of training AI models
● bigger datasets + models, 

more complexity
Researchers need large 
scale resources
● Rapid iteration, reduce 

time to discovery

blog.openai.com/ai-and-compute/

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 

Deep Learning

Large Language 
Models

https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


5

DL is transforming science
Embraced by the DOE and other funding 
agencies

Applied to many domains
● Analyzing data better, faster
● Accelerating expensive simulations
● Control + design of complex systems

Increasingly large-scale
● Pushing limits of HPC+AI systems/tools



6

Need for AI at scale

Large problems

Large scale 
training



DL at Scale on Perlmutter
• Deep learning stack at NERSC (crash course)

• Distributed deep learning

○ Optimization & performance

○ Data parallelism

○ Model/hybrid parallelism

• Additional resources



8

Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most 
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their 
own solutions

Frameworks:

Flexibility:
• Available via pre-installed modules, custom conda/pip 

installations, or container builds

https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/


9

Distributed Training Tools
Framework built-in
● PyTorch DistributedDataParallel (DDP)
● TensorFlow Distribution Strategies

Other popular libraries
● Horovod: MPI+NCCL, easy to use, examples
● Lightning: DDP + convenient features
● DeepSpeed: ZeRO optimizations, 3D parallelism
● Ray: DDP + HPO
● LBANN: multi-level parallelism, ensemble learning, etc., docs

Communication backends
● NCCL is the backend of choice for GPU nodes on Perlmutter
● The NCCL OFI plugin (from AWS) enables RDMA performance on the 

libfabric-based Perlmutter Slingshot network (see our docs)

https://github.com/horovod/horovod/tree/master/examples
https://lbann.readthedocs.io/en/latest/index.html


Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial

https://github.com/NERSC/sc23-dl-tutorial


11

Distribute the training across multiple processors
● Multi-GPU, multi-node training: data and/or model parallel
● Use best practices for large scale training and convergence
● Use best optimized libraries for communication, tune settings

General guidelines for distributed DL
Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance
● Using performance analysis tools
● Tuning and optimizing the data pipeline
● Make effective use of the hardware (e.g. mixed precision)

Advanced parallelism
● Model/hybrid parallelism design considerations
● Implementation & analysis



12

Performance profiling

Profiling is an essential step in 
optimizing any code
Nsight Systems timeline provides a 
high-level view of your workload and 
helps you identify bottlenecks:
• I/O, data input pipeline
• Compute
• Scheduling (e.g. unexpected 

synchronization)
Can use NVTX ranges to annotate 
profiles

To generate a profile: 

Using NVIDIA Nsight Systems

nsys profile –o myprofile python train.py 

nsys profile –o myprofile –t cuda,nvtx python train.py 
credit: Josh Romero, Thorsten Kurth (NVIDIA)



13

Optimizing GPU performance

Data loading
● Frequent cause of performance loss for users
● Parallelize your I/O
● Consider NVIDIA DALI

Mixed precision (FP32 + FP16)
● Can speed up training, leverage tensor cores, reduce memory
● Frameworks provide capabilities for automatically using FP16 where appropriate and 

for scaling gradients to prevent numerical underflow 
JIT compilation, APEX fused operators, CUDA Graphs
● Fuses kernels (+launches) together to increase GPU utilization

Other tricks
● Check out our tutorial for more

PyTorch 
Serial
(disk)

PyTorch 
Parallel
(disk)

PyTorch 
Parallel

(in-memory)

DALI
(disk)

B
as

el
in

e

1.8x
2.1x

2.3x

Full set of optimizations in tutorial => 5x speedup!

Cosmo U-Net

https://github.com/NERSC/sc23-dl-tutorial
https://docs.google.com/presentation/d/17c5Pav3WdaT64DmJ-LKLbkL2eUtOTlHw/edit?usp=drive_link&rtpof=true&sd=true


14

Parallel training strategies

Data Parallelism
● Distribute input 

samples
● Model replicated 

across devices
● Most common

Model Parallelism
● Distribute network structure, 

within or across layers
● Needed for massive models that 

don’t fit in device memory
● Becoming more common



15

Parallel training strategies

Data Parallelism
● Distribute input 

samples
● Model replicated 

across devices
● Most common

The go-to for distributed DL:
✅ Conceptually simple
✅ Easy implementation

● PyTorch, TensorFlow have built-in functionality
⚠ Some additional considerations

● Data loading at scale
● Modified hyperpameters



16

Synchronous data parallel scaling
Weak scaling (fixed local batch size)
● Global batch size grows with number 

of workers
● Computation grows with 

communication; good scalability
● Large batch sizes can negatively 

affect convergence
Strong scaling (fixed global batch size)
● Local batch size decreases with 

number of workers
● Convergence behavior unaffected
● Communication can become a 

bottleneck

Local batch-size = B

Global batch-size = N * B

B

B

B

.

.

.

P1

P2

PN

A
ll-

re
du

ce

gradients
P1

P2

PN

synced

gradients



17

How do we accelerate learning?

Recall batched stochastic gradient descent:

We can converge faster by taking fewer, bigger, faster steps
● i.e., larger batch sizes, larger learning rates, more processors
● Not a free lunch!

B is batch-size
η is learning rate



18

Learning rate scaling

Some rules of thumb may work for you
● Linear learning rate scaling:

η → N * η
● Square-root learning rate scaling:

η → sqrt(N) * η
Optimal learning rate can be more complex
● See OpenAI, Google studies on batchsize & 

learning rate co-dependence
Large learning rates unstable in early training
● You may need a gradual LR “warm up”

3 SGD steps vs. 1 SGD 
step with 3x learning rate

w0

w1

w2

w3

w’1

http://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1811.03600


19

Sharded data parallel
● Standard data parallelism fully replicates model weights and optimizer states
● We can reduce memory footprint by sharding or offloading these to CPU

○ Communicate parameters only when needed

https://arxiv.org/abs/1910.02054 

Levels of sharding
● ZeRO-1: partition optimizer states

● ZeRO-2: partition gradients 

● FSDP/ZeRO-3: partition weights, 
optionally offload to CPU

Can enable trillion parameter 
models without model-parallelism!

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/ https://engineering.fb.com/2021/07/15/open-source/fsdp/ 

https://arxiv.org/abs/1910.02054
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://engineering.fb.com/2021/07/15/open-source/fsdp/


20

● What to do when model footprint exceeds GPU memory?
○ Data parallelism alone not enough

■ LLMs: huge models with billions of weights
■ High-res/3D/4D data: model activations dominate

○ Sharding/offloading as in ZeRO
○ Activation checkpointing

● Otherwise, model parallelism
○ Several tools offer various implementations

Beyond data parallelism



21

Model parallelism

• DL models are just a series of weights 
and activations, represented as 
multidimensional tensors

• Tensor dimensions determined by model 
architecture, input data, e.g.:

• B: Batch size

• D: Model depth

• M, N: MLP weight matrices

• L: Token sequence length (transformers)

• E: Embedding or Feature dimension
• Picking a parallel strategy: choose which 

model (tensor) dimensions to partition
Data parallel:
Shard batch dim B

Tensor or Operator parallel:
Shard other model dims 
(M,N,E)

Pipeline parallel:
Shard depth D

Activations:



22

Pipeline parallelism

1. Shard “depth” dimension across workers 
(different layers on different GPUs)

2. Break data batch into “microbatch” and 
overlap computation

https://www.deepspeed.ai/tutorials/pipeline/

Considerations:
● Idle bubbles still impact overall 

utilization
● Can be more straightforward than 

other model parallelism

https://www.deepspeed.ai/tutorials/pipeline/


23

Tensor/Operator parallelism

● Shard other tensor dimensions across workers

● Full flexibility, choices are model/data-dependent, e.g.:
○ Transformers – parallelize MLP matrix multiplies 

row-wise or col-wise
○ CNNs – spatial parallelism (domain 

decomposition)

● Communication in forward/backward pass depends on 
what is sharded and how

● Addresses some of the challenges of pipelining (idle 
slots, load imbalance); more involved to implement

○ Custom forward/backward pass implementations 
for different communication patterns

○ Ref. SC23 material for advanced use-cases

https://github.com/NERSC/sc23-dl-tutorial/tree/main


24

Hybrid parallelism

● Data + Model parallel at the same time!
○ Need multiple communicator groups
○ Prioritize high-bandiwdth (NVLink) for ops that 

do the most frequent/largest communication
Model parallel 
comms: NVLink 
within a node

Data parallel comms: interconnect across nodes

● Used by most SOTA extreme-scale DL models, e.g 
NVIDIA MegatronLM implementation of GPT3:

○ 8-way tensor parallelism on node
○ 16-way pipeline parallelism
○ Data parallelism up to thousands of GPUs



Outreach & additional resources



26

Outreach & additional resources

NESAP engagements
● A major way of engaging on advanced AI use-cases
● Science team partners with NERSC staff
● Forward-looking, e.g. towards N10 workflows
● CFP likely at the end of FY24

The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (+ previously Cray, ORNL)
● Presented at SC18-23, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material 
● Runs on Perlmutter!

NVIDIA AI for Science Bootcamp
● More methods-focused, but relevant to scientific computing
● 2022 event, 2023 event 

https://www.nersc.gov/users/training/events/2022/nersc-ai-for-science-bootcamp-august-25-26-2022/
https://www.nersc.gov/users/training/events/2023/ai-for-scientific-computing-oct-2023/


Questions?
Collaboration? Want help?

Peter Harrington
pharrington@lbl.gov

Deep-learning@NERSC: 
https://docs.nersc.gov/machinelearning/

Join the NERSC Users Slack

https://docs.nersc.gov/machinelearning/
https://www.nersc.gov/users/NUG/nersc-users-slack/

