
Madan Timalsina
NERSC/NESAP Postdoc 

Data & AI Services

Checkpointing and 
Restarting Jobs 

with DMTCP Inside 
the Container

NERSC Data Day
Feb 21-22 2024

1



Outline

● Introduction

● DMTCP (Distributed MultiThreaded CheckPointing) 

Overview 

● Checkpointing and Restarting Jobs using DMTCP 

within Containers on Perlmutter

● Conclusion

2



Introduction



 Checkpointing and Restarting (C/R)

● Checkpointing involves preserving the current state of a 
running process (jobs) by creating a checkpoint image file.

○ This includes capturing the memory, executing instructions, I/O status, and related 
data of the running process into a file.

● Restarting the process is possible using the checkpoint file.
○ This enables the process to resume its execution from where it was saved (rather 

than from the beginning), either on the same or a different computer, seamlessly 
continuing its operation.

It's a crucial capability in High-Performance Computing (HPC) due to complex 
and time-consuming computations. It can reduce startup times in applications 
and facilitates batch scheduler optimizations, including preemption.

4



C/R: Benefits

NERSC Perspective
● Enhanced Job Prioritization: Potential 

preempting of less critical jobs for more 
urgent or time-sensitive tasks.

● Optimized Node Utilization: Efficient 
backfilling, maximizing node usage, 
especially for large reservations.

● Uninterrupted Operations: Run 
checkpointing jobs until system 
maintenance, ensuring minimal disruption.

● Enhanced Reliability: Potentially 
checkpointing all jobs before unexpected 
power outages for system stability and job 
recovery.

User Perspective
● Extended Runtime: Allow jobs to exceed 

walltime limits by resuming from checkpoints.
● Increased Throughput: Leveraging gaps in 

the Slurm schedule to optimize job 
processing.

● Extended Interactivity: Save and resume 
interactive sessions seamlessly (if it’s time to 
go home to dinner, then checkpoint and 
restart the next day!)

● Efficient Debugging: Pause, identify errors, 
and restart jobs from specific checkpoints for 
iterative debugging.

5



Challenges in C/R

● Complexity for User Transparency: Requires extensive effort 
to create a seamless experience for users during checkpointing 
and restarting processes.

● MPI Support Challenges: Particularly intricate due to the 
combination of various MPI implementations (e.g., MPICH, 
OpenMPI) and networks (e.g., ethernet, Cray Aries), resulting in 
the need for multiple versions (MxN problem).

● DMTCP serves as a solution for overcoming these challenges.
● For more details, refer to the NERSC documentation

6

https://docs.nersc.gov/development/checkpoint-restart/dmtcp/


DMTCP: Distributed 
MultiThreaded CheckPointing

NERSC documentation, DMTCP website, DMTCP github
The DMTCP project is partially supported by grants from Intel Corporation, and from the 
National Science Foundation under grants OCI-0960978, ACI-1440788, and OAC-1740218.

https://docs.nersc.gov/development/checkpoint-restart/dmtcp/
http://dmtcp.sourceforge.net/index.html
https://github.com/dmtcp/dmtcp/blob/master/QUICK-START.md


DMTCP: Simplifying Checkpoint-Restart

An open-source tool offering seamless checkpoint and restart functionalities for 
distributed applications across clusters, grids, cloud environments etc.

Preserves Application State Seamlessly
● No Code or Kernel Modifications: Stores complex threaded or distributed 

applications without altering their code or the Linux kernel.
● Accessible to Users: Doesn't require special system privileges, allowing operation 

without root access.

User-Friendly Checkpointing
● Seamless User-Space Operation: Performs checkpoints without changing user 

code or system settings.
● Versatile Application Support: Works with diverse applications like MPI, OpenMP, 

MATLAB, Python, C/C++/Fortran, shell scripts, and resource managers (e.g., Slurm).
8



How does DMTCP Work?

DMTCP Coordinator to Computation Ratio: One DMTCP coordinator 
manages one checkpointable DMTCP computation.
Multiple Checkpointable Computations: Multiple coordinators can 
handle separate computations, each independently checkpointable.
Checkpoint Thread vs. User Thread: Only one of the DMTCP 
checkpoint thread or user thread can be active at any given time, not 
both concurrently.
Fault Tolerance without Single Point of Failure: No single point of 
failure if checkpoint image files are backed up. Even if the coordinator 
fails, the system can restart from the last checkpoint.
Preservation of Runtime Libraries: Runtime libraries are saved as part 
of the memory image. Applications continue using the same library API.
Inclusion of Linux Environment Variables: Linux environment 
variables are part of the memory image. Special DMTCP plugin needed 
to modify saved environment variables during checkpoint.
User-Space Functionality: Entire process operates in user-space; no 
need for administrative privileges for its functioning.
RESTART: same as ckpt, but in opposite order

DMTCP Architecture: 
Coordinated Checkpointing

Source: 
Journal of Physics: Conference Series, 
523(1):012015, june 2014 

socket
connection

9



Checkpoint/Restart (C/R) Integration Using DMTCP

● Conducted different tests across multiple versions of Geant4 (10.5, 10.7, and 
11.0) for a variety of simulations.

● Geant4 is a crucial tool for High Energy Physics (HEP) research, has been 
thoroughly tested and has passed the assessments.

● Performed tests using Shifter and Podman-HPC container images.

● Planning to extend our research into additional fields such as material 
science, with ongoing tests using CP2K.

10



Checkpoint/Restart (C/R) Jobs 
inside Container using DMTCP: 
Perlmutter



Requirements:
● DMTCP cannot be checkpointed from outside the containers. It must be included 

within the container when it is build.

● The simulation package can be built in many ways:
○ During the container's build process.
○ After the container has been built, by linking the source code from elsewhere.
○ Extend the functionality by building on top of an existing container, enabling quick 

experimentation with minimal modifications.

All methods have been tested and verified.

● In the context of Geant4, various versions can be directly sourced from the CernVM 
File System (CVMFS), facilitating easy access to multiple versions for testing and 
deployment.

FROM my_application_container:latest

RUN git clone 
https://github.com/dmtcp/dmtcp.git  \
   && cd dmtcp \
   && ./configure  && make -j16 \
   && make install

12



● Users submit their job scripts, incorporating DMTCP within containers, along with 
necessary software packages like Geant4, CP2K.

● A tailored script is used to manage checkpoint-restart tasks, which isn't directly 
feasible within the container environment.

● The script initiates checkpointing via restart_job function including a start_coordinator 
to initiate jobs and executes using dmtcp_launch, ensuring efficient job lifecycle 
management.

● Upon receiving termination signals (SIGTERM), the setup facilitates checkpointing, 
ensuring continuous job execution and effective resource utilization.

● This method ensures efficient handling of Checkpoint/Restart processes, aligning with 
the specific needs of HPC environments, leading to the successful completion of jobs.

How Does Automatic Resubmission of Jobs Work?

13



C/R Jobs with DMTCP within Container: Perlmutter
#!/bin/bash

# Slurm directives for job properties
#SBATCH -J test-g4-cr      # Job name
#SBATCH -q regular         # Queue
#SBATCH -N 1               # Number of nodes
#SBATCH -C cpu             # CPU architecture
#SBATCH -t 01:00:00        # Wall clock time
#SBATCH -e %x-%j.err       # Error file
#SBATCH -o %x-%j.out       # Output file

#SBATCH --time-min=00:45:00    # Minimum time allocation
#SBATCH --comment=01:05:00     # Comment
#SBATCH --signal=SIGTERM@60    # Signal handling for termination
#SBATCH --requeue              # Requeue job if terminated
#SBATCH --open-mode=append     # Append mode for output files

## Additional directives...
#SBATCH --module=cvmfs                            # Load module
#SBATCH --image=mtimalsina/geant4_dmtcp:Dec2023   # Container image

# Set the DMTCP_COORD_HOST variable
export DMTCP_COORD_HOST =$(hostname )

# Requeue function to resubmit the job on SIGTERM
function  requeue () {
   echo "Got Signal. Going to requeue"
   scontrol  requeue ${SLURM_JOB_ID }
}

# Trap SIGTERM to trigger requeue function
trap requeue SIGTERM

# Launch the job within the Shifter container
shifter --module=cvmfs  --image=mtimalsina/geant4_dmtcp:Dec2023  
/bin/bash  ./test-auto.sh  &

wait

Basic slurm directives

New for C/R jobs with DMTCP 
automatic resubmission

--comment sbatch flag is used to specify the 
desired walltime and to track the remaining 
walltime for the job after pre-termination

Export hostname 
to restart the job

Requeue function 
to resubmit the job

Trap signal (SIGTERM) to 
trigger requeue function

Launch the job within the 
Shifter container

 To run:

sbatch run.sh

14



#!/bin/bash

export DMTCP_COORD_HOST=$(hostname)
source my_env_setup.sh

# Function to restart or initiate the job
function restart_job() {
   start_coordinator -i 300

   if [[ $(restart_count) == 0 ]]; then
       # Initial job launch
       dmtcp_launch --join-coordinator --i 300 ./my_g4.sh
       echo "Initial launch successful."
   elif [[ $(restart_count) > 0 ]] && [[ -e $PWD/dmtcp_restart_script.sh ]]; then
       # Restart the job
       echo "Restarting the job..."
       echo "Executing: $PWD/dmtcp_restart_script.sh"
       $PWD/dmtcp_restart_script.sh &
       echo "Restart initiated."

   else
       echo "Failed to restart the job, exiting."; exit
   fi

   # Set up trap for checkpointing on termination signal
   trap ckpt_dmtcp SIGTERM
}

# Execute the function to restart the job
restart_job

# Wait for the job to complete or terminate
wait

C/R Jobs with DMTCP within Container: Perlmutter

This script provides functions for managing and 
monitoring SLURM jobs, including time tracking, signal 
trapping, job requeuing, and integration with DMTCP 
for checkpoint/restart functionality. It converts time to 
human-readable format, calculates remaining time for 
job scheduling, updates job comments accordingly, and 
manages job requeuing based on the remaining time.

This function sets up and manages a job using 
DMTCP for checkpointing. It starts the job if it's the 
initial run. Or restarts it from a checkpoint if it's a 
subsequent run. Additionally, it configures a trap to 
automatically checkpoint the job when a termination 
signal is received.

Your simulation code 
(sample code is in backup slide)

test-auto.sh

15

Users can choose the checkpoint interval with the  -i  option.



#!/bin/bash

# Ensure the checkpoint directory exists and has the correct permissions

chmod 755 /podman-hpc

export DMTCP_COORD_HOST=$(hostname)
source my_env_setup.sh

# Function to restart or initiate the job
function restart_job() {
   start_coordinator -i 300

   if [[ $(restart_count) == 0 ]]; then
       # Initial job launch
       dmtcp_launch --join-coordinator --i 300 ./my_g4.sh
       echo "Initial launch successful."
   elif [[ $(restart_count) > 0 ]] && [[ -e $PWD/dmtcp_restart_script.sh ]]; then
       # Restart the job
       echo "Restarting the job..."
       echo "Executing: $PWD/dmtcp_restart_script.sh"
       $PWD/dmtcp_restart_script.sh &
       echo "Restart initiated."

   else
       echo "Failed to restart the job, exiting."; exit
   fi

   # Set up trap for checkpointing on termination signal
   trap ckpt_dmtcp SIGTERM
}

# Execute the function to restart the job
restart_job

# Wait for the job to complete or terminate
wait

C/R Jobs with DMTCP within Container: Perlmutter
#!/bin/bash

# Slurm directives for job properties
#SBATCH -J test-g4-cr-podman            # Job name
#SBATCH -q regular           # Queue
#SBATCH -N 1              # Number of nodes
#SBATCH -C cpu             # CPU architecture
#SBATCH -t 01:00:00       # Wall clock time
#SBATCH -e %x-%j.err      # Error file
#SBATCH -o %x-%j.out      # Output file
#SBATCH --time-min=00:45:00   # Minimum time allocation
#SBATCH --comment=01:05:00     # Comment
##SBATCH --signal=B:USR1@60    # Signal (previously used)
#SBATCH --signal=SIGTERM@60    # Signal handling for termination
#SBATCH --requeue              # Requeue job if terminated
#SBATCH --open-mode=append     # Append mode for output files
## Additional directives...
#SBATCH --module=cvmfs           # Load module
#SBATCH --image=mtimalsina/geant4_dmtcp:Dec2023   # Container image

# Set the DMTCP_COORD_HOST variable
export DMTCP_COORD_HOST=$(hostname)

# Requeue function to resubmit the job on SIGTERM
function requeue () {
   echo "Got Signal. Going to requeue"
   scontrol requeue ${SLURM_JOB_ID}
}
# Trap SIGTERM to trigger requeue function
trap requeue SIGTERM
#requeue_job func_trap USR1

# Launch the job within the Shifter container
podman-hpc run --userns keep-id --rm -it --mpi \
   -e SLURM_JOBID=${SLURM_JOB_ID} \
   -v /cvmfs:/cvmfs \
   -v $(pwd):/podman-hpc \
   -w /podman-hpc \
   mtimalsina/geant4_dmtcp:Dec2023 \
   /bin/bash ./test-auto.sh &

wait Significant modifications have been implemented in the 
shifter image script to ensure compatibility with podman-hpc

16



Conclusion:

● The study showcases the effectiveness of checkpoint-restart techniques using DMTCP 
in High-Performance Computing environments.

● Demonstrated utility across HPC platforms including container technologies like Shifter 
and Podman-HPC .

● This method is particularly valuable in complex, lengthy HPC computations, significantly 
reducing time and cost associated with process restarts.

● Implementation in diverse simulations including HEP, medical science, and material 
science (test ongoing), showcasing versatility.

● Highlights a critical advancement in efficient and reliable computational methodologies.
● Confirms the effectiveness of the technique and opens new opportunities in 

computational science. 17



Thank You

Thanks: N. Tyler, L. Gerhardt, J. Blaschke, and W. Arndt



Here's my version of my_g4.sh, a simulation code

C/R Jobs with DMTCP within Container: Perlmutter

#!/bin/bash

# Navigate to the specific build directory containing the simulation environment.

cd /global/cfs/cdirs/nstaff/madan12/checkpointR/Checkpoint_G4/G4_LZcont_Nsim/build

# Execute the simulation command with the specified macro configuration file.

./He3 -m my_hist_Cf252_0p1_0p66MT.mac

Case II: Compile the simulation code 
inside the container after it's been built

Case I: Compile the simulation code 
while building the container

#!/bin/bash
source export_geant4_data.sh
export G4BENCH_INSTALL=/usr/local
export app=ecal
export NEVENTS=10000000
export log=checkpoint

#Job User settings
"$G4BENCH_INSTALL/$app/$app-mt" -n 256 -j 
"$NEVENTS" -p "PERLMUTTER" -b "$log" 
>>"$log-n256.log"
:

 Added colon at end to counts as a noop 
command because dmtcp fails to recognize 
when the process has naturally ended

19



Some DMTCP Commands

dmtcp_coordinator -- coordinates checkpoints between multiple processes.
Example: -i, --interval: Time interval between automatic checkpoints (sec).

--exit-on-last: Auto-exits when the last client disconnects.

dmtcp_launch -- Start a process under DMTCP control.
Example: -i, --interval: Time interval between automatic checkpoints (sec).

-j, --join-coordinator:  Join an existing coordinator, raise error if one doesn't already exist 

dmtcp_restart -- Restart processes from a checkpoint image.
Example: -h, --coord-host: Specifies the hostname where dmtcp_coordinator is running

-i, --interval: Time interval between automatic checkpoints (sec).

dmtcp_command -- Send a command to the dmtcp_coordinator remotely.
Example: -s --status: Prints status message

-k --kill: Kills all nodes

-q --quit: Kills all nodes and quits

For more details, refer to the DMTCP website, NERSC documentation
20

http://dmtcp.sourceforge.net/index.html
https://docs.nersc.gov/development/checkpoint-restart/dmtcp/


A tailored script
● Provides bash functions for managing Checkpoint/Restart (C/R) jobs

Starting the Coordinator
● Use the start_coordinator bash function, part of the tailored script.
● It executes the dmtcp_launch command with specific settings.
● Generates a dmtcp_command.<jobid> file in the run directory for job communication.

Coordinator Command Details
● Command: dmtcp_coordinator --daemon --exit-on-last -p 0 --port-file $fname $@ 1>/dev/null 2>&1
● Sets environment variables: (export DMTCP_COORD_HOST=$h and export DMTCP_COORD_PORT=$p)

Checkpoint Interval Selection
● Users can choose the checkpoint interval with the -i option.
● Options include periodic checkpoints or a single checkpoint before job termination.
● The checkpoint process overhead should be minimized, ideally less than the time to dump the node's full 

memory to disk.

C/R Jobs with DMTCP inside the Container

21



Impact on total runtimes and memory footprint (Preliminary)

C/R Jobs with DMTCP within Container: Perlmutter

Thanks: Dhruva Kulkarni

22


