Directions in Data at NERSC

Wahid Bhimji Data Day 2024

Why are we here? Science

Data Acquisition; Availability; Access; Analysis; AI; Archiving

Science data presents challenges

BERKELEY LAB

Data Acquisition; Availability; Access; Analysis; AI; Archiving

SCIENCE Inadequate Limited user Inefficient Filtering Irreproducible Insensitive LOST data transfer interfaces Storage capacity science analysis Poor data Unproductive limitations Poor data techniques management software Bad data quality preservation tools I/O Bottlenecks Human steering

NERSC has rich data systems to help these challanges

NERSC provides a rich data ecosystem

Data ecosystem impacts entire workflow

Data Directions: NERSC-10 - integrated scientific workflows

U.S. DEPARTMENT OF

BERKELEY LAB

m

Office of

Science

Data Directions: NERSC-10 workflows extend beyond system

- Quality of Service computation, storage and networking designed to emphasize response-time plus throughput/utilization.
- **Seamlessness** tight integration of system components to enable high performance across workflow steps.
- **Portability** Modular workflow execution across heterogeneous HPC, edge and cloud.
- **Programmability** APIs to manage data, execute distributed code, and interact with system resources.
- **Orchestration** coordinate resource management across different resource domains.

BERKELEY LAB

 Security – authentication, authorization and auditing (e.g., identify proofing, access/privacy control, records of transactions).

Data Directions: IRI workflows extend beyond system

DOE's Integrated Research Infrastructure (IRI) Vision:

To empower researchers to meld DOE's world-class research tools, infrastructure, and user facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation

SC

Data Directions: Saving the science

Future circular collider. CERN

Commercial fusion reactor, UKAEA

BERKELEY LAB

Secrets of the universe

42+/-6

Data Acquisition; Availability; Access; Analysis; AI; Archiving

SCIENCE **FNABLFD**

Extremely low latency data transfer and access and/or compute workflow across edge and HPC

Compose reusable, resilient automated services and workflows

Office of

Granular, automatically discoverable, data

Experiment with seamless, smart, human rich science computing interfaces

Leverage reusable, fast Al-inference with models and uncertainties

Curate with re-interpretation and smart archiving

Data Directions at NERSC - example projects

Directions in data services

Compose services and compute seamlessly across distributed facilities

Experiment with and apply performant, productive analytics at scale

Leverage large AI models, fine-tune to new problems, apply to new data pipelines

Office of

Curate and re-use data through FAIR management services

BERKELEY LAB

Directions in data services

Compose services and compute seamlessly across distributed facilities

Experiment with and apply performant, productive analytics at scale

Leverage large AI models, fine-tune to new problems, apply to new data pipelines

Curate and re-use data through FAIR management services

Day 1

ew °ate	Time (PDT)	Торіс	Presenters
	9:00 - 9:10 a.m.	Introduction/Welcome	
	9:10 - 9:30 a.m.	Directions in Data at NERSC	<u>Wahid Bhimji</u>
	9:30 - 10:00 a.m.	HPC Containers, Podman-HPC, Shifter	Adam Lavely
	10:00 - 10:20 a.m.	Science Applications: Checkpoint/Restart in Containers	<u>Madan Timalsina</u>
	10:20 - 10:30 a.m.	Break	
	10:30 - 11:00 a.m.	Choosing the right storage for your data	<u>Steve Leak, Ravi</u> <u>Cheema</u>
	11:00 - 11:30 a.m.	Distributed Python at NERSC	Daniel Margala
	11:30 - 12:00 a.m.	Julia	Johannes Blaschke
5	12:00 - 1:30 p.m.	Lunch	
	1:30 - 2:00 p.m.	Deep Learning at Scale	Shashank Subramanian
	2:00 - 2:30 p.m.	Science Applications in Al	Jared Willard
	2:30 - 3:00 p.m.	Nvidia Triton Demo: Incorporating Al inference into workflows	Andrew Naylor

Day 2

Time (PDT)	Торіс	Presenters
9:00 - 9:30 a.m.	Integrated Research Infrastructure and N10	Debbie Bard
9:30 - 10:00 a.m.	Superfacility API	Bjoern Enders
10:00 - 10:30 a.m.	Science Applications: Data Streaming to NCEM	<u>Sam Welborn, Peter</u> <u>Ercius</u>
10:30 - 11:00 a.m.	Science Applications: EJFAT/JIRIAF	Vardan Gyuriyan, Jeng- Yuan Tsai
11:00 - 11:30 a.m.	Science Applications: JAWS	Daniela Cassol
11:30 - 12 p.m.	Data Transfers and the Globus	Nick Tyler

Questions? Collaboration?

Wahid Bhimji wbhimji@lbl.gov https://docs.nersc.gov/analytics/analytics/ https://docs.nersc.gov/machinelearning/ https://docs.nersc.gov/services/

And questions for you:

BERKELEY LAB

What are you hoping to get out of this data day?

What would you have liked to have on the agenda that you don't see?

Questions

What are you hoping to get out of this data day?

What would you have liked to have on the agenda that you don't see?

