
Preparing NERSC science applications for Cori 

NERSC Exascale Science Application Program (NESAP) 

NWChem: Computational Chemistry Codes 
Developed by Center for Computational Sciences and Engineering at LBNL        

NESAP PI: Ann Almgren (LBNL) NERSC Postdoc: Brian Friesen 

BoxLib: Block-structured AMR Framework  

Developed at LBNL/UCB. Used as “prototype” for App Readiness at NERSC.  
NESAP PI: Jack Deslippe (NERSC) 

BerkeleyGW: Materials Science Applications EMGeo: Geophysical Imaging Applications 

CESM: Community Earth System Model 
NESAP PI: John Dennis (NCAR).  NERSC Liaison: Helen He 

Application Readiness for NERSC Cori 

1) National Energy Scientific Computing Center at Lawrence Berkeley National Laboratory 
2) Lawrence Berkeley National Laboratory 

Zhengji Zhao1, Scott French1, Jack Deslippe1, Mathias Jacquelin2, Brian Friesen1, and Helen He1 

EMGeo (EM imaging and Seismic imaging) 
dominated by Krylov solver (> 90% of wallclock) 
•  Different solver methods (QMR vs. IDR), but similar motifs 

Fig. 1: Preliminary thread scaling on KNC (NERSC Babbage) 

Developed by researchers at LBL Earth Science Division 

Estimating impact of HBM 
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Fig. 3 (Right): Estimating the impact of 
allocation in “fast” and “slow” memory using a 
recent two-socket Haswell system.  

•  Designed for numerical solution of PDEs on distributed, structured grids 
•  Hybrid MPI+OpenMP parallelism 

Traditional threading model 
 

•  Domain decomposed into N boxes, distributed among M MPI tasks, each with m threads 
•  Each thread operates on ~(N / (M*m)) boxes 
•  Leads to load imbalance with large #s of threads (>20), esp. in AMR where box distribution among MPI tasks 

is uneven 

Tiling threading model 
 

•  Iteration space within each box is divided into 
smaller “tiles,” which are distributed among 
threads 

•  Tile size specified by user; contiguous in unit-
stride dimension for optimal caching 

•  Tile-level threading reduces “surface area-to-
volume” ratio of memory halo to FP data for 
distributed workloads 

Preliminary performance results 
 

•  Tiling implementation strong scales efficiently up to 
~120 threads on Babbage (KNC testbed at NERSC) 

•  Saturates memory bandwidth at ~2 HW threads/core  
•  Strong scales more efficiently than non-tiled version 

up to memory BW saturation point 
•  Even with only 1 thread, performance with tiling is 

still faster due to improved data locality within tiled 
loop iteration space 

Project PI: Gregory Newman (ESD); NESAP Liaison: Scott French (NERSC) NERSC’s next supercomputer, Cori, will begin to 
transition our workload to more energy efficient 
architectures 
 

•  Cray XC system with over 9300 Intel Knights Landing 
compute nodes 

•  Focus: increased on-node parallelism (72cores/node); 
Larger vector units (512 bits)  

•  On-package high-bandwidth memory 

NERSC Exascale Science Application Program 
 

•  20 application code teams were selected to work with Cray, 
Intel and NERSC staff (August, 2014) 

•  Resources available to application teams: Access to 
vendor resources and staff including “dungeon sessions” 
with Intel and Cray Center of Excellence, early access to 
KNL “whitebox” systems, early access and time on Cori 

•  Funding available for 8 NESAP Post-doctoral Fellows to 
work directly with application teams 

•  Many KNL-focused optimization strategies have been 
explored, and here we will highlight our efforts and 
achievements with a few selected NESAP codes 

Above: Breakdown of the NERSC workload (2013 MPP 
hours), highlighting the NESAP codes and code proxies 

Additional NESAP readiness and 
support efforts 
•  NERSC hosts and/or organizes various training 

events for users and developers, e.g., OpenMP, 
Vectorization, MPI-3, Intel and Cray profiling and 
optimization tools, Intel and Cray compiler 
optimizations 

•  Hosting code optimizations hackathons for 
NERSC users and application developers 

•  Intensive participation in the Intel Xeon Phi User 
Group (IXPUG) 

•  Involved in the OpenMP committee System named after Gerty Cori, Biochemist and the first 
American woman to receive the Nobel prize in science. 

Refactor to have 3 Loop Structure: 
Add 
OpenMP 

Ensure 
Vectorization 

Optimization steps: 
1. Target more on-node parallelism. (MPI model already failing users) 
2. Ensure key loops/kernels can be vectorized.  

ncouls typically in 
1000s - 10,000s. Good 
for vectorization.  

Attempt to save work 
breaks vectorization and 
makes code slower. 

!$OMP DO reduction(+:achtemp) 
  do my_igp = 1, ngpown 
    ... 
    do iw=1,3 
 
      scht=0D0 
      wxt = wx_array(iw) 
 
      do ig = 1, ncouls 
 
        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. 
TOL) cycle 
 
        wdiff = wxt - wtilde_array(ig,my_igp) 
        delw = wtilde_array(ig,my_igp) / wdiff 
        ... 
        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp) 
        scht = scht + scha(ig) 
 
      enddo ! loop over g 
      sch_array(iw) = sch_array(iw) + 0.5D0*scht 
 
    enddo    
 
    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp) 
 
  enddo 

Outer:   MPI 
Middle: OpenMP 
Inner:   Vectorization 

Significant Bottleneck is large matrix 
reduction like operations. 

Project PI: Wibe De Jong (LBNL), and Eric Bylasca (PNNL)  NERSC Liaison: Zhengji Zhao 

Original inner 
loop. Too small to 
vectorize! 

ngpown typically in 
100’s to 1000s. Good 
for many threads. 

September 28 - October 2, 2015 
Berkeley, CA Cori P1 has arrived! 
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Fig. 1: Box 1 is at level 0, Box2 and 3 are at level 1, and Box 4 and 5 are at level 2. A 
number of boxes are assigned to a NUMA node, then each box is subdivide into tiles 
by TiDA.  

Sigma Summation Optimization Process 

                         
Plane wave Lagrange multiplier 

•  Many matrix multiplication of complex numbers 
•  Smaller matrix products 

-  Typical ne = 100, ngrid = 10,000 

•  Threading only with MKL not satisfactory 
-  FFM does not scale with threads 

Product Type Size Flops 

FFM Inner Ne x Ng x Ne 200 MFlop 

MMM Square Ne x Ne x Ne 2 MFlop 

FMF Tall-skinny Ng x Ne x Ne 200 MFlop 

FFM 

FMF 

•  “Reduce” algorithm  
-  Distribute work on A and B 

along the k dimension 
-  A thread puts its contribution 

in a buffer of size m x n 
-  Buffers reduced to produce C 
-  OMP teams of threads 

•  Better for smaller inner dimensions, i.e. for FFMs 

T1 T3 T2 T1 
T2 

T3 

T3 

T2 

T1 

# CPU 18 1 

# Threads 1 18 

Total Lagrange Multiplier 5.7 ms 9.5 ms 

FFM 4.3 ms 8.7 ms 

FMF 0.5 ms 0.6 ms 
MKL 

1 MPI – 240 threads Best Reduce 
10 MPI – 6 teams of 4 threads 

Xeon E7-8890v3 (Haswell,18 cores)  

•  Multiple FFMs can be 
done in concurrently in 
different thread pools 

 

Coupled cluster Triples algorithm 

•  Double terms usually dominate in (T) term 
•  Other terms become new performance 

bottleneck on many-core architectures - 
Amdahl’s Law 

 

•  Optimizations lead to significant performance improvements 
-  Threading enables us to use all 240 hardware threads 
-  Optimized code performs 2.5X better than baseline 
-  Up to 65X better compared to 1 MPI rank 

Fig 2: Time to solution / thread scaling to assess the impact of 
KNL focused optimizations on other architectures, also Haswell. 
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Impact of KNL optimizations (Haswell) 

Original 

Winner 

~ 8% faster than original 
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Thread scaling on Knights Corner 

Sample Code Dependencies and Vectorization 
Prototype from Dungeon Session  

Optimization Steps 
Version 1 
•  Simplify expressions to minimize #operations 
•  Use internal GAMMA function 
Version 2 
•  Remove “elemental” attribute, move loop inside.  
•  Inline subroutines. Divide, fuse, exchange loops. 
•  Replace assumed shaped arrays with loops 
•  Replace division with inversion of multiplication 
•  Remove initialization of loops to be overwritten later 
•  Use more aggressive compiler flags 
•  Use profile-guided optimization (PGO) 
 Version 3 (Intel compiler only) 
•  Use !$OMP SIMD ALIGNED to force vectorization 

MG2: CESM kernel for radiation transfer 
workload  
•  Typically takes 10% of CESM time 
•  Compute bound 
•  Very little vectorization: pipeline dependencies, 

heavy use of math intrinsics 

Summary 
•  Directives and flags are helpful. Not a replacement for code modifications.    
•  Break up loops and push loops into functions where vectorization can be 

dealt with directly.  Try different compilers. 
•  Incremental improvements not necessary a BIG win from any one thing. 

Accumulative results matter. 
•  Performance and portability: use !$OMP SIMD is beneficial but very hard 

to use: need to provide the aligned list manually. 
•  Requested optional alignment declaration in Fortran language standard.  

Before: 
 
elemental function wv_sat_svp_to_qsat(es, p) 
result(qs)

if ((p-es) <= 0._r8 ) then
     qs = 1.0_r8
  else
     qs = epsilo*es / (p - omeps*es)
  end if

end function wv_sat_svp_to_qsat
 
 
After: 
 
function wv_sat_svp_to_qsat(es, p, mgncol) 
result(qs)

integer,intent(in) :: mgncol
integer :: i

  do i=1,mgncol
  if ((p(i)-es(i)) <= 0._r8 ) then
     qs(i) = 1.0_r8
  else
     qs(i) = epsilo*es(i)/(p(i) - 
omeps*es(i))
  end if
  enddo

end function wv_sat_svp_to_qsat
 

OMP SIMD with Intel Compiler  
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SandyBridge/Intel 

IvyBrdige/Intel 

IvyBrdige/CCE 

Optimization Steps: 
 

•  Adding OpenMP to solvers (starting with IDR) 
-  Overall thread scaling is good on Knights Corner Xeon Phi 

(Fig. 1) 
•  Understanding memory bandwidth saturation 
-  Solvers dominated by SpMV, STREAM-like triads, etc. 

•  Focusing initial architectural optimization experiments 
on complex*16 ELLPACK SpMV 
-  Many potential optimizations techniques for KNL  
-  Alignment tweaks; Loop reordering, unrolling; Memory layout 

optimizations; Fortran “SIMD-ization” 
•  Developed SpMV kernel variants  
     that span the space of likely  
     optimizations (Fig. 2) 
-  Ready for profiling when we have  
    KNL access 

•  Identify the candidate for HBM 
-  Using NUMA affinity to simulate  
     HBM on a dual socket system 


