Babbage: the Intel
Many Core (MIC)

Testbed System at
NERSC

'NERSC/ Helen He
L A | YEARS

NERSC User Services Group

FOREFRONT

July 10, 2014

~

ENTGp . AY
Ry, U.S. DEPARTMENT OF Ofﬁce of reeeeee] M

ENERGY Science

First Message S

 Babbage can help you to prepare for Cori regarding thread
scalability (hybrid MPI/OpenMP implementation) and

vectorization.

* Performance on Babbage will be significantly worse than Cori.
However, using Babbage can expose bottlenecks and
weaknesses in your code for improvement.

Office of
Science

T
£
£ &
B 2
o\ @ 5/
RS

- ; | YEARS
Outline ove

* Knights Corner (KNC) architecture and programming
considerations

e System configurations and programming
environment

* How to compile and run
 Examples of tuning kernels and applications

Office of

AZR, U.S. DEPARTMENT OF /_\I
@ ENERGY . 3
O Science BERKELEY LAB

N
A
rrrrrrr ""|

NP-% =

Basic Terminologies [

T

L4 &

1\ w 5
‘-‘un\m >

MIC: Intel Many Integrated Cores architecture

Xeon: Intel Processors. Various product names include
Nehalem, Westmere, Sandy Bridge (SNB) etc.

Xeon Phi: Intel’s marketing name for MIC architecture.

— Some code names are: Knights Ferry (KNF), Knight Corner
(KNC), Knights Landing (KNL)
Knights Corner (KNC): first generation product of MIC
Xeon Phi implementation
— Co-processors connected to host via PCle
— Validate programming models
— Prepare for next generation production hardware

Office of
Science

y YEARS

Babbage Nodes feaee

* 1login node: bint01

* 45 compute nodes, each has:

— Host node: 2 Intel Xeon
KNC Card

Sandybridge EP processors, 8 cores o | KnCCard
each. 2.6 GHz, AVX 256-bit. Peak intel Xeoneﬁ.ﬁkma‘

performance 166 GB/sec Processor \Sgvarr

— 2 MIC cards (5100P) each has 60
native cores, connected by a high-
speed bidirectional ring, 1053 MHz,
4 hardware threads per core.

— Peak performance 1 TB/sec >= BGB GDDRS memory

— 8 GB GDDR5 memory, peak
memory bandwidth 320 GB/sec

— 512-bit SIMD instructions. Holds 16
SP or 8 DP floating point numbers.

-
ZERY, U-S- DEPARTMENT OF Officeof ""|

(G /_\‘
ENERGY Science "o BERKELEY LAB

Babbage KNG vs. Cori KNL Nensc gL

* Similarities
— Many integrated cores on a node (>60), 4 hardware threads per core
— MPI+OpenMP as main programming language
— 512 bits vector length for SIMD

* Significant improvements in KNL
— Self-hosted architecture (not a co-processor!)
— 3X ssingle thread performance than KNC
— Deeper out-of-order execution
— High bandwidth on-package memory
— Improved vectorization capabilities
— And more ...

Even with these differences, Babbage can still be helpful
preparing applications for Cori. (Note: Edison can be used
as well, future presentation)

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -6-

N
A
rrrrrrr ""|

T
£)

£ 2

B 2
L‘”An\m >

BERKELEY LAB

SP-1-
m : A YEARS

Programming Considerations o

3
PR,
I &
1\ % 5

4
Lo o

Use “native” mode on KNC to mimic KNL, which
means ignore the host, just run completely on KNC
cards.

Encourage single node exploration on KNC cards with
problem sizes that can fit.

Simple to port from multi-core CPU architectures, but
hard to achieve high performance.

Need to explore high loop level parallelism via
threading and SIMD vectorization

Available threading models: OpenMP, pthreads, etc.

Office of
Science

User Friendly Test System E) (e

* Configured with ease-of-use in mind
— All production file systems are mounted

— System SSH configuration allows password-less access to the
host nodes and MIC cards smoothly

— Modules created and loaded by default to initiate Intel compiler
and MPI libraries

— Batch scheduler installed for allocating nodes

— MIC cards having access to system libraries allows multiple
versions of software to co-exist

* No need to copy system libraries or binaries to each MIC card manually
as pre-steps for running jobs

* Created scripts and wrappers to further simplify job launching
commands

— User environment very similar to other production systems

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -8-

N
A
rrrrrrr "“l

T

£k !

B 2
b.‘,m\m >

BERKELEY LAB

NP-% =

Intel Linux Studio XE Package o

LT

I B

o\ w 5/
‘-‘un\m >

Intel C, C++ and Fortran compilers
Intel MKL: math kernel libraries

Intel Integrated Performance Primitive (IPP):
performance libraries

Intel Trace Analyzer and Collector: MPlI communications
profiling and analysis

Intel Vtune Amplifier XE: advanced threading and
performance profiler

Intel Inspector XE: memory and threading debugger
Intel Advisor XE: threading prototyping tool

Intel Threading Building Blocks (TBB) and Intel Cilk Plus:
parallel programming models

Office of
Science

Available Software L) (e

Loaded by default:

-bash-4.1$ module list

Currently Loaded Modulefiles:

1) modules 3) torque/4.2.6 5) intel/14.0.0 7) usg-default-modules/1.1
2) nsg/1.2.0 4) moab/7.2.6 6) impi/4.1.1

Modules Available:
-bash-4.1S$ module avail
<omit system software modules ...>

Jusr/common/usg/Modules/modulefiles

advisor/4.300519 impi/4.1.0 szip/host-2.1
allineatools/4.2.1-36484(default) impi/4.1.1(default) szip/mic-2.1(default)
fftw/3.3.4-host inspector/2013.304368 totalview/8T.12.0-1(default)
fftw/3.3.4-mic(default) intel/13.0.1 usg-default-modules/1.0
hdf5/host-1.8.10-p1 intel/13.1.2 usg-default-modules/1.1(default)
hdf5/host-1.8.13 intel/14.0.0(default) vtune/2013.updatel6(default)
hdf5/mic-1.8.10-p1 intel/14.0.3 zlib/host-1.2.7
hdf5/mic-1.8.13(default) itac/8.1.3 zlib/host-1.2.8
hdf5-parallel/host-1.8.10-p1 netcdf/host-4.1.3 zlib/mic-1.2.7
hdf5-parallel/host-1.8.13 netcdf/host-4.3.2 zlib/mic-1.2.8(default)
hdf5-parallel/mic-1.8.10-p1 netcdf/mic-4.1.3
hdf5-parallel/mic-1.8.13(default) netcdf/mic-4.3.2(default)
LR U.S. DEPARTMENT OF : !
@ ENERGY e el

How to Compile on Babbage J:

* Only Intel compiler and Intel MPI are supported.

 Compile on the login node “bint01” directly to build an executable to run
on the host or on the MIC cards.

* You can also compile on a host node. Do not “ssh bcxxxx” directly from
“bint01”, instead, use “qsub -l -l nodes=1" to get a node allocated to you.

* Use “ifort”, icc” or “icpc” to compile serial Fortran, C, or C++ codes.

»n «u

* Use “mpiifort”, “mpiicc”, or “mpiicpc” to compile parallel Fortran, C, or C+
+ MPI codes. (NOT mpif90, mpicc, or mpiCC)

e Use the “-openmp” flag for OpenMP codes.

 Use the “-mmic” flag to build an executable to run on the MIC cards.

* Example:
Build a binary for host: % mpiicc -openmp -o xthi.host xthi.c
Build a binary for MIC: % mpiicc -mmic -openmp -o xthi.mic xthi.c

AER>, U.S. DEPARTMENT OF Office of

ENERGY Science -1l E_;E\ILEJLH\B

N
A
rrrrrrr ""|

N ' =
m N A YEARS

Spectrum of Programming Models i
Host Only Offload Symmetric
(Host and MIC)
Program foo Program foo Program foo
Xeon (Host) call bar() call bar() call bar() -
End End End
Program foo Program foo
Xeon Phi (MIC) - bar() call bar() call bar()
End End

* Knights Landing (KNL) will be in self-hosted mode, thus
eliminates the host and the need to communicate
between host and MIC.

* We encourage users to focus on optimizing in the

Native mode and explore on-node scaling on a single
KNC card.

U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science -12- WE&B

<
A
rrrrrrr ""l

P
7 e B
@ @)
DN L
SPirs o

How to Run on Host

SP-1-
m : A YEARS

at the
FOREFRONT

e Useful for comparing performance with running
natively on the MIC cards.

bint01% qsub -I -I nodes=2
<wait for a session>
% cd SPBS_O_WORKDIR

% cat SPBS_NODEFILE
bc1012
bc1011

% get_hostfile

% cat hostfile.SPBS_JOBID
bc1012-ib

bc1011-ib

ZERY, U-S. DEPARTMENT OF Office of

EN ERGY Science

% export OMP_NUM_THREADS=4

% mpirun -n 2 -hostfile hostfile.SPBS_JOBID -ppn 1 ./xthi.host
Hello from rank O, thread 0, on bc1012. (core affinity = 0-15)
Hello from rank O, thread 2, on bc1012. (core affinity = 0-15)

Hello from rank 1, thread 3, on bc1011. (core affinity = 0-15)
Hello from rank 1, thread 0, on bc1011. (core affinity = 0-15)

~

A
i

rreeeee

-13-

BERKELEY LAB

How to Run on MIC Cards Natively e

bint01% gsub -I -| nodes=2
<wait for a session>

(0)
%160 5RBSLORWORKDIR % mpirun.mic -n 4 -hostfile micfile.SPBS_JOBID -ppn 1 ./xthi.mic | sort

% cat SPBS_NODEFILE Hello from rank 0, thread 0, on bc1011-micO. (core affinity = 1)
bc1012 Hello from rank O, thread 1, on bc1011-micO. (core affinity = 5)
bc1011 Hello from rank O, thread 10, on bc1011-micO. (core affinity = 41)

% get_micfile Hello from rank O, thread 11, on bc1011-micO. (core affinity = 45)

% cat micfile.5PBS_JOBID Hello from rank 3, thread 6, on bc1010-mic1l. (core affinity = 25)

bc1011-mic0O Hello from rank 3, thread 7, on bc1010-mic1. (core affinity = 29)
bc1011-micl Hello from rank 3, thread 8, on bc1010-mic1l. (core affinity = 33)
bc1010-micO Hello from rank 3, thread 9, on bc1010-micl. (core affinity = 37)
bc1010-micl

% export OMP_NUM_THREADS=12
% export KMP_AFFINITY=balanced

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science -14- BERKELEY LAB

S,
TR
£)
R &
s

Thread Affinity: KMP_AFFINITY .0 s

* none: default option on host
* compact: default option on MIC. Bind threads as close to each other as possible

HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 1 2 3 4 5

* scatter: bind threads as far apart as possible
HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4
Thread 0 3 1 4 2 5

* balanced: only available on MIC. Spread to each core first, then set thread numbers using different
HT of same core close to each other.

HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 1 2 3 4 5

» explicit: example: setenv KMP_AFFINITY “explicit, granularity=fine, proclist=[1:236:1]"
* New env on coprocessors: KMP_PLACE_THREADS, for exact thread placement

~

2 U.S. DEPARTMENT OF H A
D Office of P10

! ENERGY Science “15- E.,E'*“f,}:L‘AB

MPI Process Affinity: I_MPI_PIN_DOMAIN — 0

* Map CPUs into non-overlapping domains
— 1 MPI process per domain ““ ““
— OpenMP threads pinned inside each domain s e

* |_MPI_PIN_DOMAIN=<size>[:<layout>] —~

<size>=omp adjust to OMP_NUM_THREADS
auto #CPUs/ #MPI procs

<n> a number
<layout> = platform according to BIOS numbering
compact close to each other

scatter far away from each other

Office of

Science -16-

MFLops/sec

SP-0 =
m T A YEARS

3D Stencil Diffusion Algorithm .

120000

100000

80000

60000

40000

20000

0

3D Stencil Diffusion Speedup

3D Stencil Diffusion on Host and MIC

500
450

i host i compact
400
mic 350 scatter
S 300 balanced
® 250
)
o
v 200
150
100
I l l 0
0
+
base omp+vect peel tiled base omp+vect peel tiled

-- On host: use 16 threads, KMP_AFFINITY=scatter

-- On MIC: Tested with different number of threads: 60, 120, 180, 236, 240, combined with
various KMP_AFFINITY options.

-- The best speedup on MIC is obtained via 180 threads with scatter affinity.

-- Runs faster on host with base option and OpenMP only option.

-- Faster on MIC when vectorization is introduced with OpenMP.

-- OpenMP and Vectorization both play significant roles on MIC

__ -~ More advanced loop optimization techniques (loop peel and tiling) can improve further. !
R U.§ ‘ml

1l YEARS
STREAM Lo

Stream Triad

180
160
140 — 1
3 120 - ‘ 1 I ~ Mno-vec
(7]
E 100 basic
°
(L; 80 i prefetch
60 i cache-evict
40 “ straming-stores
20 “ opt
0

15 30 60 120 180 240
Number of OpenMP Threads

-- Best rate is 162 GFlops/sec with 60 OpenMP threads on 1 MIC card.

-- 60% improvement with vectorization.

-- Software prefetch helps significantly. (35% improvement)

-- Intel reports best performance of 174 GFlops/sec on Xeon Phi 7100P, 61 core

U.S. DEPARTMENT OF Office of

/ ENERGY Science -18-

Tuning Lessons Learned T

 Some code restructuring and algorithm modifications are needed
to take advantage of the KNC architecture.

 Some applications won't be able to fit into memory with pure MPI
due to the small memory size on KNC cards.

* Itis essential to add OpenMP at as high a level as possible to
explore loop level parallelism, and make sure large, innermost,
computational extensive loops are vectorized.

* Explore the scalability of OpenMP implementation.
* Try various MPI and OpenMP affinity options.

e Special compiler options on KNC also helps.

* Memory alignment is important.

* Optimizations targeted for KNC can help performance for other
architectures: Xeon, KNL.

AER>, U.S. DEPARTMENT OF Office of

ENERGY Science -19- E_;E\ILE.,Y.H\B

N
A
rrrrrrr ""|

N | -
m : A YEARS

Summary L

Performance on Babbage does not represent what will be on
Cori.

Babbage can help you to prepare for Cori regarding thread
scalability (hybrid MPI/OpenMP implementation) and
vectorization.

Please contact consult@nersc.gov for questions.

Office of

Science -20-

Further Information iR=c/

 Babbage web page:
— https://www.nersc.gov/users/computational-systems/testbeds/babbage
* Intel Xeon Phi Coprocessor Developer Zone:
— http://software.intel.com/mic-developer
* Programming and Compiling for Intel MIC Architecture
— http://software.intel.com/en-us/articles/programming-and-compiling-for-
intel-many-integrated-core-architecture
 Optimizing Memory Bandwidth on Stream Triad

— http://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-
stream-triad

* Interoperability with OpenMP API

— http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/
win/Reference Manual/Interoperability with OpenMP.htm

* Intel Cluster Studio XE 2013
— http://software.intel.com/en-us/intel-cluster-studio-xe/

* Intel Xeon Phi Coprocessor High-Performance Programming. Jim
Jeffers and James Reinders, Published by Elsevier Inc. 2013.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -21- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

)"hmm“‘\“

Acknowledgement

 Babbage system support team, especially Nick Cardo, for
configuring the system and solving many mysteries and

issues.

* NERSC Application Readiness Team for testing, providing
ideas, and reporting problems on the system.

Office of

Science -22-

a
FFFFFFFFF

YEARS

at the
FOREFRONT

Thank you.

FA‘ U.S. DEPARTMENT OF Office of
(&)

ENERGY Science -23-

YEARS

at the
FOREFRONT

~

U.S. DEPARTMENT OF 1 y A
Office of ...‘

ENERGY Science -24-

Babbage Compute Nodes nsc/ G

* 45 nodes, etc., bc09xx, bc10xx, bc11xx
 Host node: 2 Intel Xeon Sandybridge ES-2670 processors

— Each processor has 8 cores, with 2 hardware threads (HT not enabled), 2.6 GHz, peak
performance 166.4 GFlops

— 128 GB memory per node
— Memory bandwidth 51.2 GB/sec
— AVX 32 byte aligned: AVX on host, 256-bit SIMD

e« 2 MIC cards (5110P, bc09xx-mic0, bc09xx-micl) each with:

— 60 native cores, connected by a high-speed bidirectional ring, clock speed is 1053 MHz, Error
Correcting Code (ECC) enabled

— 4 hardware threads per core

— 8 GB GDDR5 memory, effective speed 5 GT/s, peak memory bandwidth 320 GB/sec

— L1 cache per core: 32 KB 8-way associative data and instruction cache

— L2 cache per core: 512 KB 8-way associative inclusive cache with hardware prefetcher
— Peak performance 1011 GFlops

— Vector Unit.
* 512-bit SIMD instructions,
* 32 512-bit registers, holds 32 DP and 64 SP ...

~

U.S. DEPARTMENT OF Ofﬂce Of

AY
ENERGY Science -25- /_\‘

BERKELEY LAB

ST O
LT
(4 0\
», &
Q>

Memory Alignment

LT

I B

o\ w 5/
RS

Always align at 64 byte boundaries to ensure data
can be loaded from memory to cache optimally

— 20% performance penalty without memory alignment for
— DGEMM (matrix size 6000x6000)

Fortran: compile with “-align array64byte” option
to align all static array data to 64 memory address
boundaries

C/C++: declare var

— static: float var[100] __ attribute _ ((aligned(64)));
— dynamic: __mm_aligned malloc(buf, 64)

More options with compiler directives

Office of

Science -26-

YEARS

ttttt
FFFFFFFFF

SIMD and Vectorization iinse/

* Vectorization: the process of transforming a scalar instruction
(SISD) into vector instruction (SIMD)

* To tell compiler to ignore potential dependencies and
vectorize anyway:
— Fortran directive: IDIRS SIMD
— C/C++ directive: #pragma simd

 Example: a,b,c, are pointers, compiler does not know they are

independent
Not vectorized: Not vectorized: Vectorized:
for (i=0; i<n; i++) for (i=0; i<n; i++) #pragma simd
ali]=b[i]+ali-1] ali]=b[i]+c[i] for (i=0; i<n; i++)

ali]=b[i]+c[i]

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -27 -

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
RS

BERKELEY LAB

Wrapper Script for mpirun on MIC Cards ==

* In all module files:
— Set SLD_LIBRARY_PATH for libraries needed on host
— Set SMIC_LD_LIBRARY_PATH for libraries needed on MIC card

* % cat mpirun.mic
#!/bin/sh
mpirun -env LD LIBRARY PATH SMIC LD LIBRARY PATH S@

 Sample execution line:
% mpirun.mic -n 4 -hostfile micfile.SPBS_JOBID -ppn 2./xthi.mic

e“‘“"""fa,‘ EEEEEEEEEEEEEE Off ice Of

: ENERGY Science 28

-DMIC Trick for Configure on MIC Card

LT
5/ &
B 2
1\ @ 5
RS

Sometimes when install software libraries on MIC
cards, a test program needs to be run. Due to
cross-compile, the test program will fail.

The trick is to define “-DMIC” for the the compiler
options such as CC, CXX, FC, etc. used in
“configure”: export CC="icc-DMIC”, ...

Replace all “-DMIC” in Makefile with “-mmic”,
then compile and build.

files=S(find ./* -name Makefile)

perl —p —i —e ‘s/-DMIC/-mmic/g’ Sfiles

Office of

Science -29-

ttttt
FFFFFFFFF

Sample Batch Script L.

#PBS -q regular

#PBS -l nodes=2:mics=2
#PBS -l walltime=02:00:00
#PBS -V

cd SPBS_O_WORKDIR
export OMP_NUM_THREADS=60
export KMP_AFFINITY=balanced

mpirun.mic -n 4 —hostfile SPBS_MICFILE -ppn 1 ./myexe.mic (# sometimes the full path to the
executable is needed, otherwise you may see a "no such file or directory" error).

Can use custom hostfile with -host option:
% mpirun.mic —n 4 -host bc1013-mic0,bc1012-micl —ppn 2 ./myexe.mic

Can pass env with —env option:

% mpirun.mic -n 16 -host bc1011-micl -env OMP_NUM_THREADS 2 -env KMP_AFFINITY balanced ./
myexe.mic

~

_.""“"*«,,-% U.S. DEPARTMENT OF Office of

/_\m
ENERGY science -30- ;Rl;i{HB

Thread Affinity: KMP_PLACE_THREADS ES] (e

* New setting on coprocessors only. In addition to
KMP_AFFINITY, can set exact but still generic thread

placement.
* KMP_PLACE_THREADS=<n>Cx<m>T,<0>0
— <n> Cores times <m> Threads with <o> of cores Offset
— e.g. 40Cx3T,10 means using 40 cores, and 3 threads (HT2,3,4) per core

* OSrunson logical proc 0, which lives on physical core 59

— OS procs on core 59: 0,237,238,239.
— Avoid use proc 0, i.e., use max_threads=236 on Babbage.

<
A
rrrrrrr ""|

U.S. DEPARTMENT OF Offlce Of

ENERGY Science -31- WE&B

T
g &
: @ ;
g 3
A 5
2 4
S i

YEARS

at the
FOREFRONT

Synthetic Benchmark Summary (Intel MKL) (5110P)

a Y 4) N
SGEMM DGEMM SMP Linpack STREAM Triad
(GF/s) (GF/s) (GF/s) (GB/s)
Up to 2.7X Up to 2.7X Up to 2.3X Up to 2.1X
2000 | Higheris Better 1000 -| Higher is Better 1000 - Higher is Better 200 - Higher is Better
1,729 e 171

800 800 -

1500 722 150

600 600

1000 100

400 400

500 50

200 200

25 Inted® 1 Inted® Xeon 1 Intel® Xeon
25 Intel® Xeon® 1 Intel® Xeon Phi™ 25 Inted® Xeon® 1 Intel® Xeon Phi™ 25 Intel® Xeon® 1 Intel® Xeon Phi™ Yeon® Phi™ BhI™

\. i VAN L < J A . - VAN " - "' J

Coprocessor results: Benchmark run 100% on coprocessor, no help from Intel® Xeon® processor host (aka native)

Notes
1. Intel® Xeon® Processor ES-2670 used for all SGEMM Malyix = 13824 x 13824 , DGEMM Matrix 7936 x 7936, SMP Linpack Matrix 30720 x 30720
2. Intsd® Xeon Phi™ coprocessor 5110P (ECC on) with “Gold Release Candidate™ SW atack SGEMM Matrix = 11264 x 11264, DGEMM Matrix 7680 x 7630, SMP Linpack Malrix 26872 x 28672

Scftware and workdoads used in pesfmence k=i may heve been opémized for pesfmence only cn infel migoprocessors. Pesformance fesls, such a: SYSmerk and Mobilea, ere meazured wsing speciic compuler systems, components, software, operebons and fundions.

U.S. DEPARTMENT OF Office of

% ENERGY Science "32- BERKEL LAi

STREAM Compiler Options E.Z

* -no-vec:
— -03 -mmic —openmp -no-vec -DSTREAM_ARRAY_SIZE=64000000
* Base
— -03 -mmic -openmp -DSTREAM_ARRAY_SIZE=64000000
* Base plus -opt-prefetch-distance=64,8
— Software Prefetch 64 cachelines ahead for L2 cache
— Software Prefetch 8 cachelines ahead for L1 cache
* Base plus -opt-streaming-cache-evict=0
— Turn off all cache line evicts

* Base plus -opt-streaming-stores always

— Enable generation of streaming stores under the assumption that the
application is memory bound

* Opt:
— Use all above flags (except —no-vec)
 No more huge pages needed since it is now default in MPSS

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -33- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

T
£ 0\
B 2
% @ 5
», 4
S5 iy

YEARS

at the
FOREFRONT

WRF (Weather Research and Forecasting Mode

. novec: -O3 -novec-w -ftz -fno-alias -FR -convert big_endian -openmp -fpp —auto
. base: -mmic -O3 -w -openmp -FR -convert big_endian -align array64byte -vec-report6
precision: -fimf-precision=low -fimf-domain-exclusion=15 -fp-model fast=1 -no-prec-div -no-prec-sqrt
. MIC: -opt-assume-safe-padding -opt-streaming-stores always -opt-streaming-cache-evict=0
-mP20PT_hlo_pref_use_outer_strategy=F
WRF em_real on MIC

250
200
= i novec
,3': 150
) base
£ -
= 100 base+MIC
i base+precision
50 - = B u - &
BRI e
. a
15 30 60 120 180 240

Number of OpenMP Threads

* Best time is 39.26 sec with 180 OpenMP threads.
* 15.1% improvement with all optimization flags compared with base options.

~

A
|

frreeerer

U.S. DEPARTMENT OF Ofﬂce Of

E N E RGY Science BERKELEY LAB

RENTOr S
4 >
£ 5\
% @ 4
), &
S5 i

Steps to Optimize BerkeleyGW m

Courtesy of Jack Deslippe
sigma.cplx.x main kernel performance over time

500 M HoST
B MIC
'_ 375
o ...
s After optimization,
® = 4 early Intel Xeon-
<3}
» £ 250 Phi cards with MPI1/
3 g OpenMP is ~1.5X
pn faster than 32 cores
) 125
= of Intel Sandy
Bridge on test
0 problem.
Original (Rev Refactored OpenMP (Rev. Vectonzed
4770) (Rev. 4896) 5338%) (Rev. 5349)

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPIl, OpenMP and
Vectorization and to improve memory locality.
2. Add OpenMP at as high a level as possible.

3. Make sure large innermost, flop intensive, loops are vectorized
* - eliminate spurious logic, some code restructuring simplification and other optimization

/—\‘ A
ENERGY science BERKELEY LAB

BENTG
oS
R

