
Helen He!
NERSC User Services Group!
July 10, 2014!

Babbage: the Intel
Many Core (MIC)
Testbed System at
NERSC

First Message

•  Babbage	can	help	you	to	prepare	for	Cori	regarding	thread	
scalability	(hybrid	MPI/OpenMP	implementa=on)	and	
vectoriza=on.	

•  Performance	on	Babbage	will	be	significantly	worse	than	Cori.	
However,	using	Babbage	can	expose	boGlenecks	and	
weaknesses	in	your	code	for	improvement.	

	

-	2	-	

Outline

•  Knights	Corner	(KNC)	architecture	and	programming	
considera=ons	

•  System	configura=ons	and	programming	
environment	

•  How	to	compile	and	run		
•  Examples	of	tuning	kernels	and	applica=ons	

-	3	-	

Basic Terminologies

•  MIC:		Intel	Many	Integrated	Cores	architecture	
•  Xeon:	Intel	Processors.	Various	product	names	include	
Nehalem,	Westmere,	Sandy	Bridge	(SNB)	etc.	

•  Xeon	Phi:	Intel’s	markeEng	name	for	MIC	architecture.		
–  Some	code	names	are:	Knights	Ferry	(KNF),	Knight	Corner	
(KNC),	Knights	Landing	(KNL)	

•  Knights	Corner	(KNC):	first	generaEon	product	of	MIC	
Xeon	Phi	implementaEon	
–  Co-processors	connected	to	host	via	PCIe	
–  Validate	programming	models	
–  Prepare	for	next	generaEon	producEon	hardware	

-	4	-	

Babbage Nodes

-	5	-	

•  1	login	node:	bint01	
•  45	compute	nodes,	each	has:	

–  Host	node:	2	Intel	Xeon	
Sandybridge	EP	processors,	8	cores	
each.	2.6	GHz,	AVX	256-bit.	Peak	
performance	166	GB/sec	

–  2	MIC	cards	(5100P)	each	has	60	
naEve	cores,	connected	by	a	high-
speed	bidirecEonal	ring,	1053	MHz,	
4	hardware	threads	per	core.	

–  Peak	performance	1	TB/sec	
–  8	GB	GDDR5	memory,	peak	

memory	bandwidth	320	GB/sec	
–  512-bit	SIMD	instrucEons.	Holds	16	

SP	or	8	DP	floaEng	point	numbers.	

Babbage KNC vs. Cori KNL

•  Similari=es	

–  Many	integrated	cores	on	a	node	(>60),		4	hardware	threads	per	core	
–  MPI+OpenMP	as	main	programming	language	
–  512	bits	vector	length	for	SIMD	
	

•  Significant	improvements	in	KNL	
–  Self-hosted	architecture	(not	a	co-processor!)	
–  3X	single	thread	performance	than	KNC	
–  Deeper	out-of-order	execuEon		
–  High	bandwidth	on-package	memory	
–  Improved	vectorizaEon	capabiliEes	
–  And	more	…	

		
	

-	6	-	

Even	with	these	differences,	Babbage	can	sEll	be	helpful	
preparing	applicaEons	for	Cori.	(Note:	Edison	can	be	used	
as	well,	future	presentaEon)	

Programming Considerations

•  Use	“na=ve”	mode	on	KNC	to	mimic	KNL,	which	
means	ignore	the	host,	just	run	completely	on	KNC	
cards.	

•  Encourage	single	node	explora=on	on	KNC	cards	with	
problem	sizes	that	can	fit.	

•  Simple	to	port	from	mul=-core	CPU	architectures,	but	
hard	to	achieve	high	performance.		

•  Need	to	explore	high	loop	level	parallelism	via	
threading	and	SIMD	vectoriza=on	

•  Available	threading	models:	OpenMP,	pthreads,	etc.	

-	7	-	

User Friendly Test System

	

•  Configured	with	ease-of-use	in	mind	
–  All	producEon	file	systems	are	mounted	
–  System	SSH	configuraEon	allows	password-less	access	to	the	
host	nodes	and	MIC	cards	smoothly	

–  Modules	created	and	loaded	by	default	to	iniEate	Intel	compiler	
and	MPI	libraries	

–  Batch	scheduler	installed	for	allocaEng	nodes	
–  MIC	cards	having	access	to	system	libraries	allows	mulEple	
versions	of	sohware	to	co-exist	
•  No	need	to	copy	system	libraries	or	binaries	to	each	MIC	card	manually	
as	pre-steps	for	running	jobs		

•  Created	scripts	and	wrappers	to	further	simplify	job	launching	
commands	

–  User	environment	very	similar	to	other	producEon	systems	

-	8	-	

Intel Linux Studio XE Package

•  Intel	C,	C++	and	Fortran	compilers	
•  Intel	MKL:	math	kernel	libraries	
•  Intel	Integrated	Performance	Primi=ve	(IPP):		

performance	libraries	
•  Intel	Trace	Analyzer	and	Collector:	MPI	communicaEons	

profiling	and	analysis	
•  Intel	Vtune	Amplifier	XE:	advanced	threading	and	

performance	profiler	
•  Intel	Inspector	XE:	memory	and	threading	debugger	
•  Intel	Advisor	XE:	threading	prototyping	tool	
•  Intel	Threading	Building	Blocks	(TBB)	and	Intel	Cilk	Plus:		

parallel	programming	models	
	
	

-	9	-	

Available Software

Loaded	by	default:	
-bash-4.1$	module	list	
Currently	Loaded	Modulefiles:	
	1)	modules																			3)	torque/4.2.6														5)	intel/14.0.0														7)	usg-default-modules/1.1	
	2)	nsg/1.2.0																	4)	moab/7.2.6																6)	impi/4.1.1	
	
Modules	Available:	
-bash-4.1$	module	avail	
<omit	system	so*ware	modules	…>	
----------------------	/usr/common/usg/Modules/modulefiles	--	
advisor/4.300519																																														impi/4.1.0																																					szip/host-2.1	
allineatools/4.2.1-36484(default)																		impi/4.1.1(default)																						szip/mic-2.1(default)	
nw/3.3.4-host																																																		inspector/2013.304368														totalview/8T.12.0-1(default)	
nw/3.3.4-mic(default)																																				intel/13.0.1																																			usg-default-modules/1.0	
hdf5/host-1.8.10-p1																																									intel/13.1.2																																			usg-default-modules/1.1(default)	
hdf5/host-1.8.13																																															intel/14.0.0(default)																			vtune/2013.update16(default)	
hdf5/mic-1.8.10-p1																																										intel/14.0.3																																			zlib/host-1.2.7	
hdf5/mic-1.8.13(default)																																itac/8.1.3																																							zlib/host-1.2.8	
hdf5-parallel/host-1.8.10-p1																									netcdf/host-4.1.3																									zlib/mic-1.2.7	
hdf5-parallel/host-1.8.13																															netcdf/host-4.3.2																									zlib/mic-1.2.8(default)	
hdf5-parallel/mic-1.8.10-p1																										netcdf/mic-4.1.3	
hdf5-parallel/mic-1.8.13(default)																	netcdf/mic-4.3.2(default)	

-	10	-	

How to Compile on Babbage

•  Only	Intel	compiler	and	Intel	MPI	are	supported.	

•  Compile	on	the	login	node	“bint01”	directly	to	build	an	executable	to	run	
on	the	host	or	on	the	MIC	cards.			

•  You	can	also	compile	on	a	host	node.	Do	not	“ssh	bcxxxx”	directly	from	
“bint01”,	instead,	use	“qsub	-I	-l	nodes=1”	to	get	a	node	allocated	to	you.		

	
•  Use	“ifort”,	icc”	or	“icpc”	to	compile	serial	Fortran,	C,	or	C++	codes.	
	
•  Use	“mpiifort”,	“mpiicc”,	or	“mpiicpc”	to	compile	parallel	Fortran,	C,	or	C+

+	MPI	codes.			(NOT	mpif90,	mpicc,	or	mpiCC)	

•  Use	the	“-openmp”	flag	for	OpenMP	codes.		

•  Use	the	“-mmic”	flag	to	build	an	executable	to	run	on	the	MIC	cards.			

•  Example:	
							Build	a	binary	for	host:			%	mpiicc	-openmp	-o	xthi.host	xthi.c	
							Build	a	binary	for	MIC:				%	mpiicc	-mmic	-openmp	-o	xthi.mic	xthi.c	

-	11	-	

Spectrum of Programming Models

Host	Only	 			Offload	 Symmetric	

(Host	and	MIC)	
Na=ve	(MIC	
only)	

	
Xeon	(Host)	

Program	foo	
			call	bar()	
End	

Program	foo	
			call	bar()	
End	

Program	foo	
			call	bar()	
End	

	
										--	

	
Xeon	Phi	(MIC)	
	

					
										--	
						

					
							bar()	

Program	foo	
			call	bar()	
End	

Program	foo	
			call	bar()	
End	

-	12	-	

•  Knights	Landing	(KNL)	will	be	in	self-hosted	mode,	thus	
eliminates	the	host	and	the	need	to	communicate	
between	host	and	MIC.	

•  We	encourage	users	to	focus	on	op=mizing	in	the	
Na=ve	mode	and	explore	on-node	scaling	on	a	single	
KNC	card.		

How to Run on Host

bint01%	qsub	-I	-l	nodes=2	
<wait	for	a	session>	
%	cd	$PBS_O_WORKDIR	
	
%	cat	$PBS_NODEFILE	
	bc1012	
	bc1011	

%	get_hoshile	
%	cat	hoshile.$PBS_JOBID	
	bc1012-ib	
	bc1011-ib	

-	13	-	

%	export	OMP_NUM_THREADS=4	
	
%	mpirun	-n	2	-hossile	hossile.$PBS_JOBID	-ppn	1	./xthi.host 		
Hello	from	rank	0,	thread	0,	on	bc1012.	(core	affinity	=	0-15)	
Hello	from	rank	0,	thread	2,	on	bc1012.	(core	affinity	=	0-15)	
…	
Hello	from	rank	1,	thread	3,	on	bc1011.	(core	affinity	=	0-15)	
Hello	from	rank	1,	thread	0,	on	bc1011.	(core	affinity	=	0-15)	
	

•  Useful	for	comparing	performance	with	running	
na=vely	on	the	MIC	cards.	

How to Run on MIC Cards Natively

bint01%	qsub	-I	-l	nodes=2	
<wait	for	a	session>	
%	cd	$PBS_O_WORKDIR	
%	cat	$PBS_NODEFILE	
	bc1012	
	bc1011	
%	get_micfile	
%	cat	micfile.$PBS_JOBID	
	bc1011-mic0	
	bc1011-mic1	
	bc1010-mic0	
	bc1010-mic1	
%	export	OMP_NUM_THREADS=12							
%	export	KMP_AFFINITY=balanced	
	

-	14	-	

%	mpirun.mic	-n	4	-hossile	micfile.$PBS_JOBID	-ppn	1	./xthi.mic	|	sort	
Hello	from	rank	0,	thread	0,	on	bc1011-mic0.	(core	affinity	=	1)	
Hello	from	rank	0,	thread	1,	on	bc1011-mic0.	(core	affinity	=	5)	
Hello	from	rank	0,	thread	10,	on	bc1011-mic0.	(core	affinity	=	41)	
Hello	from	rank	0,	thread	11,	on	bc1011-mic0.	(core	affinity	=	45)	
…	
Hello	from	rank	3,	thread	6,	on	bc1010-mic1.	(core	affinity	=	25)	
Hello	from	rank	3,	thread	7,	on	bc1010-mic1.	(core	affinity	=	29)	
Hello	from	rank	3,	thread	8,	on	bc1010-mic1.	(core	affinity	=	33)	
Hello	from	rank	3,	thread	9,	on	bc1010-mic1.	(core	affinity	=	37)	

Thread Affinity: KMP_AFFINITY

•  none:	default	opEon	on	host	
•  compact:	default	opEon	on	MIC.		Bind	threads	as	close	to	each	other	as	possible	
	

•  scaGer:	bind	threads	as	far	apart	as	possible	

	

•  balanced:	only	available	on	MIC.	Spread	to	each	core	first,	then	set	thread	numbers	using	different	
HT	of	same	core	close	to	each	other.	

•  explicit:		example:	setenv	KMP_AFFINITY	“explicit,	granularity=fine,	proclist=[1:236:1]”	
•  New	env	on	coprocessors:	KMP_PLACE_THREADS,	for	exact	thread	placement	

-	15	-	

Node	 											Core	1	 										Core	2	 									Core	3	

HT1	 HT2	 HT3	 HT4	 HT1	 HT2	 HT3	 HT4	 HT1	 HT2	 HT3	 HT4	

Thread	 0	 1	 2	 3	 4	 5	

Node	 											Core	1	 										Core	2	 									Core	3	

HT1	 HT2	 HT3	 HT4	 HT1	 HT2	 HT3	 HT4	 HT1	 HT2	 HT3	 HT4	

Thread	 0	 3	 1	 4	 2	 5	

Node	 											Core	1	 										Core	2	 									Core	3	

HT1	 HT2	 HT3	 HT4	 HT1	 HT2	 HT3	 HT4	 HT1	 HT2	 HT3	 HT4	

Thread	 0	 1	 2	 3	 4	 5	

MPI Process Affinity: I_MPI_PIN_DOMAIN

•  Map	CPUs	into	non-overlapping	domains	
–  1	MPI	process	per	domain	
–  OpenMP	threads	pinned	inside	each	domain	

•  I_MPI_PIN_DOMAIN=<size>[:<layout>]	
					<size>	=	omp								adjust	to	OMP_NUM_THREADS	
																					auto									#CPUs/	#MPI	procs	
																					<n>										a	number						
					<layout>	=	plasorm									according	to	BIOS	numbering	
																									compact									close	to	each	other	
																									sca}er												far	away	from	each	other	

	 		

-	16	-	

3D Stencil Diffusion Algorithm

-	17	-	

--	On	host:	use	16	threads,	KMP_AFFINITY=sca}er	
--	On	MIC:	Tested	with	different	number	of	threads:	60,	120,	180,	236,	240,	combined	with	
various	KMP_AFFINITY	opEons.		
--	The	best	speedup	on	MIC	is	obtained	via	180	threads	with	sca}er	affinity.		
--	Runs	faster	on	host	with	base	opEon	and	OpenMP	only	opEon.		
--	Faster	on	MIC	when	vectorizaEon	is	introduced	with	OpenMP.	
--	OpenMP	and	VectorizaEon	both	play	significant	roles	on	MIC	
--	More	advanced	loop	opEmizaEon	techniques	(loop	peel	and	Eling)	can	improve	further.			
	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

base	 omp	 omp+vect	 peel	 =led	

Sp
ee
du

p	

3D	Stencil	Diffusion	Speedup	

compact	

scaGer	

balanced	

0	

20000	

40000	

60000	

80000	

100000	

120000	

base	 omp	 omp+vect	 peel	 =led	

M
FL
op

s/
se
c	

3D	Stencil	Diffusion	on	Host	and	MIC		

host	

mic	

STREAM

-	18	-	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

15	 30	 60	 120	 180	 240	

G
Fl
op

s/
se
c	

Number	of	OpenMP	Threads	

Stream	Triad	

no-vec	

basic	

prefetch	

cache-evict	

straming-stores	

opt	

--	Best	rate	is	162	GFlops/sec	with	60	OpenMP	threads	on	1	MIC	card.	
--	60%	improvement	with	vectorizaEon.		
--	Sohware	prefetch	helps	significantly.		(35%	improvement)	
--	Intel	reports	best	performance	of	174	GFlops/sec	on	Xeon	Phi	7100P,	61	core	

Tuning Lessons Learned

•  Some	code	restructuring	and	algorithm	modifica=ons	are	needed	

to	take	advantage	of	the	KNC	architecture.	
•  Some	applica=ons	won't	be	able	to	fit	into	memory	with	pure	MPI	

due	to	the	small	memory	size	on	KNC	cards.		
•  It	is	essen=al	to	add	OpenMP	at	as	high	a	level	as	possible	to	

explore	loop	level	parallelism,	and	make	sure	large,	innermost,	
computa=onal	extensive	loops	are	vectorized.		

•  Explore	the	scalability	of	OpenMP	implementa=on.	
•  Try	various	MPI	and	OpenMP	affinity	op=ons.	
•  Special	compiler	op=ons	on	KNC	also	helps.	
•  Memory	alignment	is	important.	
•  Op=miza=ons	targeted	for	KNC	can	help	performance	for	other	

architectures:	Xeon,	KNL.	

	
	

	
	

-	19	-	

Summary

•  Performance	on	Babbage	does	not	represent	what	will	be	on	
Cori.	

	
•  Babbage	can	help	you	to	prepare	for	Cori	regarding	thread	

scalability	(hybrid	MPI/OpenMP	implementa=on)	and	
vectoriza=on.	

	
•  Please	contact	consult@nersc.gov	for	ques=ons.	

-	20	-	

Further Information

•  Babbage	web	page:	

–  h}ps://www.nersc.gov/users/computaEonal-systems/testbeds/babbage	
•  Intel	Xeon	Phi	Coprocessor	Developer	Zone:		

–  h}p://sohware.intel.com/mic-developer	
•  Programming	and	Compiling	for	Intel	MIC	Architecture	

–  h}p://sohware.intel.com/en-us/arEcles/programming-and-compiling-for-
intel-many-integrated-core-architecture	

•  Op=mizing	Memory	Bandwidth	on	Stream	Triad	
–  h}p://sohware.intel.com/en-us/arEcles/opEmizing-memory-bandwidth-on-

stream-triad	
•  Interoperability	with	OpenMP	API	

–  h}p://sohware.intel.com/sites/products/documentaEon/hpc/ics/impi/41/
win/Reference_Manual/Interoperability_with_OpenMP.htm	

•  Intel	Cluster	Studio	XE	2013	
–  h}p://sohware.intel.com/en-us/intel-cluster-studio-xe/	

•  Intel	Xeon	Phi	Coprocessor	High-Performance	Programming.	Jim	
Jeffers	and	James	Reinders,	Published	by	Elsevier	Inc.	2013.	

	
-	21	-	

Acknowledgement

•  Babbage	system	support	team,	especially	Nick	Cardo,	for	

configuring	the	system	and	solving	many	mysteries	and	
issues.	

	
•  NERSC	Applica=on	Readiness	Team	for	tes=ng,	providing	

ideas,	and	repor=ng	problems	on	the	system.	
	
	

	
	

-	22	-	

Thank you.

-	23	-	

Extra Slides

-	24	-	

Babbage Compute Nodes

•  45	nodes,	etc.,	bc09xx,	bc10xx,	bc11xx	
•  Host	node:	2	Intel	Xeon	Sandybridge	ES-2670	processors		

–  Each	processor	has	8	cores,	with	2	hardware	threads	(HT	not	enabled),	2.6	GHz,	peak	
performance	166.4	GFlops	

–  128	GB	memory	per	node	
–  Memory	bandwidth	51.2	GB/sec	
–  AVX	32	byte	aligned:	AVX	on	host,	256-bit	SIMD	

•  2	MIC	cards	(5110P,	bc09xx-mic0,	bc09xx-mic1)	each	with:	
–  60	naEve	cores,	connected	by	a	high-speed	bidirecEonal	ring,	clock	speed	is	1053	MHz,	Error	

CorrecEng	Code	(ECC)	enabled	
–  4	hardware	threads	per	core	
–  8	GB	GDDR5	memory,	effecEve	speed	5	GT/s,	peak	memory	bandwidth	320	GB/sec	
–  L1	cache	per	core:	32	KB	8-way	associaEve	data	and	instrucEon	cache	
–  L2	cache	per	core:	512	KB	8-way	associaEve	inclusive	cache	with	hardware	prefetcher	
–  Peak	performance	1011	GFlops	
–  Vector	Unit.			

•  512-bit	SIMD	instrucEons,		
•  32	512-bit	registers,	holds	32	DP	and	64	SP	…	
	

-	25	-	

Memory Alignment

•  Always	align	at	64	byte	boundaries	to	ensure	data	
can	be	loaded	from	memory	to	cache	op=mally	
–  20%	performance	penalty	without	memory	alignment	for	
–  	DGEMM	(matrix	size	6000x6000)	

•  Fortran:	compile	with	“-align	array64byte”	op=on	
to	align	all	sta=c	array	data	to	64	memory	address	
boundaries	

•  C/C++:	declare	var	
–  staEc:	float	var[100]	__a}ribute__((aligned(64)));	
–  dynamic:	__mm_aligned_malloc(buf,	64)	

•  More	op=ons	with	compiler	direc=ves	

-	26	-	

SIMD and Vectorization

•  Vectoriza=on:	the	process	of	transforming	a	scalar	instrucEon	

(SISD)	into	vector	instrucEon	(SIMD)	
•  To	tell	compiler	to	ignore	poten=al	dependencies	and	

vectorize	anyway:	
–  Fortran	direcEve:	!DIR$	SIMD	
–  C/C++	direcEve:	#pragma	simd	

•  Example:	a,b,c,	are	pointers,	compiler	does	not	know	they	are	
independent	

-	27	-	

Not	vectorized:	
	
for	(i=0;	i<n;	i++)	
				a[i]=b[i]+c[i]	
	

	

Not	vectorized:	
	
for	(i=0;	i<n;	i++)	
				a[i]=b[i]+a[i-1]	

		
	

Vectorized:	
	
#pragma	simd	
for	(i=0;	i<n;	i++)	
				a[i]=b[i]+c[i]	

	

Wrapper Script for mpirun on MIC Cards

•  In	all	module	files:	
–  Set	$LD_LIBRARY_PATH	for	libraries	needed	on	host	
–  Set	$MIC_LD_LIBRARY_PATH	for	libraries	needed	on	MIC	card	

•  %	cat	mpirun.mic	
						#!/bin/sh	
							mpirun	-env	LD_LIBRARY_PATH	$MIC_LD_LIBRARY_PATH	$@	

•  Sample	execu=on	line:	
					%	mpirun.mic	-n	4	-hossile	micfile.$PBS_JOBID	-ppn	2./xthi.mic	

	

-	28	-	

-DMIC Trick for Configure on MIC Card

•  Some=mes	when	install	sovware	libraries	on	MIC	
cards,	a	test	program	needs	to	be	run.		Due	to	
cross-compile,	the	test	program	will	fail.	

•  The	trick	is	to	define	“-DMIC”	for	the	the	compiler	
op=ons	such	as	CC,	CXX,	FC,	etc.	used	in	
“configure”:		export	CC=“icc	–DMIC”,	…	

•  Replace	all	“-DMIC”	in	Makefile	with	“-mmic”,	
then	compile	and	build.	
				files=$(find	./*	-name	Makefile)	
				perl	–p	–i	–e	‘s/-DMIC/-mmic/g’	$files	

	
-	29	-	

Sample Batch Script

#PBS	-q	regular	
#PBS	-l	nodes=2:mics=2	
#PBS	-l	wallEme=02:00:00	
#PBS	-V	

cd	$PBS_O_WORKDIR	
export	OMP_NUM_THREADS=60	
export	KMP_AFFINITY=balanced	
	
mpirun.mic	-n	4	–hossile	$PBS_MICFILE	-ppn	1	./myexe.mic						(#	some5mes	the	full	path	to	the	
executable	is	needed,	otherwise	you	may	see	a	"no	such	file	or	directory"	error).	

#	Can	use	custom	hossile	with	-host	opEon:	
%	mpirun.mic	–n	4	-host	bc1013-mic0,bc1012-mic1	–ppn	2	./myexe.mic	
	
#	Can	pass	env	with	–env	opEon:		
%	mpirun.mic	-n	16	-host	bc1011-mic1	-env	OMP_NUM_THREADS	2	-env	KMP_AFFINITY	balanced	./
myexe.mic	

-	30	-	

Thread Affinity: KMP_PLACE_THREADS

•  New	se�ng	on	coprocessors	only.	In	addiEon	to	
KMP_AFFINITY,	can	set	exact	but	sEll	generic	thread	
placement.	

•  KMP_PLACE_THREADS=<n>Cx<m>T,<o>O		
–  <n>	Cores	Emes	<m>	Threads	with	<o>	of	cores	Offset	
–  e.g.		40Cx3T,1O	means	using	40	cores,	and	3	threads	(HT2,3,4)	per	core	

•  OS	runs	on	logical	proc	0,	which	lives	on	physical	core	59		
–  OS	procs	on	core	59:	0,237,238,239.	
–  Avoid	use	proc	0,	i.e.,	use	max_threads=236	on	Babbage.	

-	31	-	

Synthetic Benchmark Summary (Intel MKL) (5110P)

-	32	-	

STREAM Compiler Options

•  -no-vec:	

–  -O3	-mmic	–openmp	-no-vec	-DSTREAM_ARRAY_SIZE=64000000	
•  Base	

–  -O3	-mmic	-openmp		-DSTREAM_ARRAY_SIZE=64000000	
•  Base	plus	-opt-prefetch-distance=64,8		

–  Sohware	Prefetch	64	cachelines	ahead	for	L2	cache	
–  Sohware	Prefetch	8	cachelines	ahead	for	L1	cache	

•  Base	plus	-opt-streaming-cache-evict=0	
–  Turn	off	all	cache	line	evicts	

•  Base	plus	-opt-streaming-stores	always	
–  Enable	generaEon	of	streaming	stores	under	the	assumpEon	that	the	

applicaEon	is	memory	bound	
•  Opt:		

–  Use	all	above	flags	(except	–no-vec)	
•  No	more	huge	pages	needed	since	it	is	now	default	in	MPSS	

-	33	-	

•  novec:	-O3	-novec-w	-hz	-fno-alias	-FR	-convert	big_endian	-openmp	-fpp	–auto	
•  base:	-mmic	-O3	-w	-openmp	-FR	-convert	big_endian	-align	array64byte	-vec-report6	
•  precision:	-fimf-precision=low	-fimf-domain-exclusion=15	-fp-model	fast=1	-no-prec-div	-no-prec-sqrt		
•  MIC:	-opt-assume-safe-padding	-opt-streaming-stores	always	-opt-streaming-cache-evict=0																																																																		
																				-mP2OPT_hlo_pref_use_outer_strategy=F	

	

WRF (Weather Research and Forecasting Model)

0	

50	

100	

150	

200	

250	

15	 30	 60	 120	 180	 240	

Ti
m
e	
(s
ec
)	

Number	of	OpenMP	Threads	

WRF	em_real	on	MIC		

novec	

base	

base+MIC	

base+precision	

all	

•  Best	Eme	is	39.26	sec	with	180	OpenMP	threads.	
•  15.1%	improvement	with	all	opEmizaEon	flags	compared	with	base	opEons.	

Steps to Optimize BerkeleyGW

Time/Code-Revision	

1.  Refactor	to	create	hierarchical	set	of	loops	to	be	parallelized	via	MPI,	OpenMP	and	
VectorizaEon	and	to	improve	memory	locality.	

2.  Add	OpenMP	at	as	high	a	level	as	possible.	
3.  Make	sure	large	innermost,	flop	intensive,	loops	are	vectorized		

											*	-	eliminate	spurious	logic,	some	code	restructuring	simplificaEon	and	other	opEmizaEon	

Aher	opEmizaEon,	
4	early	Intel	Xeon-
Phi	cards	with	MPI/
OpenMP	is	~1.5X	
faster	than	32	cores	
of	Intel	Sandy	
Bridge	on	test	
problem.	*

Low
er	is	Be}

er	

Courtesy	of	Jack	Deslippe	

