
Helen He, NERSC!
!
NERSC User Group Meeting!
March 23, 2016

Advanced
OpenMP and
CESM Case Study

Outline

•  Background	
•  What’s	New	in	OpenMP	4.0	and	4.5	
•  Nested	OpenMP	
•  CESM	MG2	Kernel	Case	Study	

-	2	-	

Hybrid MPI/OpenMP: Big Picture

•  Next	NERSC	system	Cori	is	an	Intel	Xeon	Phi	KNL	many-core	

system	architecture.		
•  ApplicaMon	is	very	likely	to	run	on	KNL	with	simple	porMng,	but	

high	performance	is	harder	to	achieve.		
•  Many	applicaMons	will	not	fit	into	the	memory	of	a	KNL	node	

using	pure	MPI	across	all	HW	cores	and	threads	because	of	the	
memory	overhead	for	each	MPI	task.	

•  ApplicaMons	need	to	explore	more	on-node	parallelism	with	
thread	scaling	and	vectorizaMon,	also	to	uMlize	HBM	and	burst	
buffer	opMons.		

•  Hybrid	MPI/OpenMP	is	a	recommended	programming	model	for	
Cori.	It	is	also	a	portable	programing	model	(recommended	over	
OpenACC)	for	running	across	various	large	DOE	systems,	whether	
many-core	system	architecture,	or	hybrid	CPU/GPU	system.	

•  OpMmizaMon	on	current	NERSC	systems	will	help	to	prepare	for	
Cori	Phase	2	KNL.	

	
-	3	-	

Cori Phase 1 Compute Nodes

-	4	-	

•  Cori	Phase	1:	NERSC	Cray	XC40,	1,630	nodes,	52,160	cores.	
•  Each	node	has	2	Intel	Xeon	16-core	Haswell	processors.		
•  2	NUMA	domains	per	node,	16	cores	per	NUMA	domain.																	

2	hardware	threads	per	core.	
•  Memory	bandwidth	is	non-homogeneous	among	NUMA	domains.	

To	obtain	processor	info:	
	
Get	on	a	compute	node:	
%	salloc	–N	1	
	
Then:	
%	cat	/proc/cpuinfo	
or	
%	hwloc-ls	

Babbage MIC Card

-	5	-	

Babbage:	NERSC	Intel	Xeon	Phi	testbed,	45	nodes.	2	MIC	cards	per	node.	
Recommend	to	use	the	“naMve”	mode.	
•  1	NUMA	domain	per	MIC	card:	60		physical	cores,	240	logical	cores.	OpenMP	

threading	potenMal	to	240-way.	Recommend	to	use	at	least	2	threads	per	core	
to	hide	latency	of	in-order	execuMon.		

•  KMP_AFFINITY,	KMP_PLACE_THREADS,	OMP_PLACES,	OMP_PROC_BIND	for	
thread	affinity	control	

•  I_MPI_PIN_DOMAIN	for	MPI/OpenMP	process	and	thread	affinity	control.	

Adding OpenMP to Your Program

•  On	Cori/Edison,	under	Cray	programming	environment,	Cray	Reveal	

tool	helps	to	perform	scope	analysis,	and	suggests	OpenMP	
compiler	direcMves	to	a	pure	MPI	or	serial	code.	
–  Based	on	CrayPat	performance	analysis	
–  UFlizes	Cray	compiler	source	code	analysis	and	opFmizaFon	informaFon	

	
	
	
	

•  On	Babbage,	Intel	Advisor	tool	helps	to	guide	threading	design	
opMons.		
	

-	6	-	

0	

10	

20	

30	

40	

Pure	MPI	 1	thread	 3	threads	 6	threads	

Ru
n	
Ti
m
e	
(s
ec
)	

poisson_mpi_omp,	4	MPI	
tasks,	N=1200,	on	Edison	

New in OpenMP 4.0 and 4.5

-	7	-	

New Features in OpenMP 4.0

•  OpenMP	4.0	was	released	in	July	2013	
•  Device	constructs	for	accelerators	
•  SIMD	constructs	for	vectorizaMon	
•  Task	groups	and	dependencies		
•  Thread	affinity	control	
•  User	defined	reducMons	
•  CancellaMon	construct	
•  IniMal	support	for	Fortran	2003	
•  OMP_DISPLAY_ENV	for	all	internal	variables	

-	8	-	

device Constructs for Accelerators

•  Use	target	direcMve	to	offload	a	region	to	device.	Host	and	
device	share	memory	via	mapping:	to,	from,	tofrom.	

-	9	-	

C/C++:
#pragma omp target map(to:B,C), map (tofrom: sum)
#pragma omp parallel for reduction(+,sum)
for (int i=0; i<N; i++) {
 sum += B[i] + C[i];
}

C/C++:
#pragma omp target teams distribute parallel for \
map (to:B,C), map (tofrom:sum) reduction(+:sum)
for (int i=0; i<N; i++) {
 sum += B[i] + C[i];
}

•  Use	teams	clause	to	create	mulMple	master	threads	that	can	execute	
in	parallel	on	mulMple	processors	on	device.			

•  Use	“distribute”	clause	to	spread	iteraMons	of	a	parallel	loop	across	
teams.		

“OMP target device” Works on Babbage

-	10	-	

program	test		
use	omp_lib		
write(*,*)	'cpu	max	threads:',omp_get_max_threads()		
!$omp	target	device(0)		
write(*,*)	'mic	max	threads:',omp_get_max_threads()		
!$omp	parallel		
!$omp	master		
write(*,*)	'mic	nbr	threads:',omp_get_num_threads()		
!$omp	end	master		
!$omp	end	parallel		
!$omp	end	target		
	
!$omp	target	device(0)		
!$omp	teams	num_teams(1)		
write(*,*)	'team',	omp_get_team_num(),	'	mic	max	
threads:',omp_get_max_threads()		
!$omp	parallel		
!$omp	master		
write(*,*)	'team',omp_get_team_num(),'	mic	nbr	
threads:',omp_get_num_threads()		
!$omp	end	master		
!$omp	end	parallel		
!$omp	end	teams		
!$omp	end	target		
end	program	test		

export	KMP_AFFINITY=balanced		
export	OMP_NUM_THREADS=1		
export	MIC_ENV_PREFIX=MIC		
export	MIC_OMP_NUM_THREADS=60		

%	cat	myjob.host.2680.out		
cpu	max	threads:	1		
mic	max	threads:	60		
mic	nbr	threads:	60		
team	0	mic	max	threads:	60		
team	0	mic	nbr	threads:	236		

Not	recommended	for	preparing	for	
Cori	KNL,	but	it	is	good	to	know	that	
it	works	and	it	is	portable	J	
	
Code	should	default	to	run	on	Cori	
(host),	but	fails	due	to	“device	not	
found”.	Compiler	bug	filed.	

Asynchronous Offloading with Tasking

-	11	-	

#pragma	omp	parallel	
#pragma	omp	single	
{	
#pragma	omp	task	
				{	
#pragma	omp	target	map(to:input[:N])	map(from:result[:N])	
#pragma	omp	parallel	for	
								for	(i=0;	i<N;	i++)	{	
												result[i]	=	some_computaMon(input[i],	i);	
								}	

			}	
#pragma	omp	task	
				{	
								do_something_important_on_host();	
				}	
}					//	implicit	taskwait	at	barrier	

Useful	for	people	who	need	to	write	portable	codes	across	DOE	centers.	

OpenMP Vectorization Support

•  More	architectures	support	longer	vector	length	
•  VectorizaMon:	execute	a	single	instrucMon	on	mulMple	

data	objects	in	parallel	within	a	single	CPU	core	
•  Auto-vectorizaMon	can	be	hard	for	compilers	

(dependencies)	
•  Many	compilers	support	SIMD	direcMves	to	aid	

vectorizaMon	of	loops	
•  OpenMP	4.0	provides	a	standardizaMon	for	SIMD	
	

-	12	-	

OpenMP4 SIMD

•  Parallelize	and	Vectorize:	

–  Fortran:	!$OMP	do	simd	[clauses]	
–  The	loop	is	first	divided	across	a	thread	team,	then	subdivide	loop	

chunks	to	fit	in	a	SIMD	vector	register.	
•  SIMD	FuncMons:	

	
	

	
–  Compilers	may	not	be	able	to	vectorize	and	inline	funcFon	calls	easily.	
–  Compilers	#pramga	declare	simd	tells	compiler	to	generate	SIMD	

funcFon	
–  Useful	to	use	“declare	simd”	for	elemental	funcFons	that	are	called	

from	within	a	loop,	so	compilers	can	vectorize	the	funcFon. 		
•  Using	OpenMP4	SIMD	bypasses	the	compiler	analysis	

–  Incorrect	results	and	poor	performance	possible!			

-	13	-	

C/C++:
#pragma omp declare simd
float min (float a, float b) {
 return a<b ? a:b;
}

Clauses for simd Directive

•  safelen(length):	defines	the	max	number	of	
iteraMons	can	run	concurrently	without	breaking	
dependence.	

•  linear:	lists	variables	with	a	linear	relaMonship	to	
the	iteraMon	number.	

•  aligned:	specifies	byte	alignment	of	the	list	items	
•  all	regular	clauses	….	

-	14	-	

linear(ref) Clause is Important

•  In	C,	compiler	places	consecuFve	argument	values	in	a	vector	

register	
•  But	Fortran	passes	arguments	by	reference	

•  By	default	compiler	places	consecuFve	addresses	in	a	vector	
register.	Leads	to	a	gather	of	the	4	addresses		(slow)	

•  LINEAR(REF(X))	tells	the	compiler	that	the	addresses	are	
consecuFve;	only	need	to	dereference	once	and	copy	
consecuFve	values	to	vector	register	

•  New	in	compiler	version	16.0.1	
•  Same	method	could	be	used	for	C	arguments	passed	by	reference	

	

3/25/16	 15	

Approximate	speed-up	for	double	precision	array	of	1M	elements	

No	DECLARE	SIMD	 1.0	

DECLARE	SIMD	but	no	LINEAR(REF)	 0.9	

DECLARE	SIMD	with	LINEAR(REF)	clause	 3.6	
The	results	above	were	obtained	on		an	Intel®	Xeon®	E7-4850	v3	system,	frequency	2.2	GHz,		running	Red	Hat*	
Enterprise	Linux*	version	7.1	and	using		the	Intel®	Fortran	Compiler	version	16.0.1.	

courtesy	of	Intel	

subrouFne	test_linear(x,	y)	
!$omp	declare	simd	
(test_linear)	linear(ref(x,	y))	
				real(8),intent(in)		::	x	
				real(8),intent(out)	::	y			
				y	=	1.	+	sin(x)**3	
end	subrouFne	test_linear	
…	
Interface		
…	
do	j	=	1,n	
					call	test_linear(a(j),	b(j))	
enddo	

taskgroup Directive

•  OpenMP	4.0	extends	the	tasking	support.	
•  The	taskgroup	direcMve	waits	for	all	descendant	
tasks	to	complete	as	compared	to	taskwait	which	
only	waits	for	direct	children.	

-	16	-	

Task Dependencies

-	17	-	

#pragma omp task depend (out:a)
{ ….}
#pragma omp task depend (out:b)
{…}
#pragma omp task depend (in:a,b)
{...}

•  The	first	two	tasks	can	execute	in	parallel	
•  The	third	task	can	only	start	ater	both	of	the	first	two	

are	complete.		

Better Thread Affinity Control

•  OpenMP	3.1	only	has	OMP_PROC_BIND,	either	TRUE	or	FALSE.	
•  OpenMP	4.0	sMll	allows	the	above.	Can	now	provide	a	list.	

–  spread:	Bind	threads	as	evenly	distributed	(spreaded)	as	possible	
–  close:	Bind	threads	close	to	the	master	thread	
–  master:	Bind	threads	the	same	place	as	the	master	thread	

•  Added	OMP_PLACES	environment	variable:	a	list	of	places	that	threads	can	be	
pinned	on	

–  threads:	Each	place	corresponds	to	a	single	hardware	thread	on	the	target	machine.		
–  cores:	Each	place	corresponds	to	a	single	core	(having	one	or	more	hardware	

threads)	on	the	target	machine.		
–  sockets:	Each	place	corresponds	to	a	single	socket	(consisFng	of	one	or	more	cores)	

on	the	target	machine.		
–  A	list	with	explicit	place	values,	such	as:		

•  "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}”		
•  “{0:4},{4:4},{8:4},{12:4}”	

•  Examples:	
–  export	OMP_PLACES=threads	
–  export	OMP_PROC_BIND=“spread,	close”	(for	nested	levels)	

-	18	-	

User Defined Reductions

-	19	-	

#pragma omp declare reduction (merge: std::vector<int>

 : omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

•  OpenMP	3.1	can	not	do	reducMons	on	objects	or	
structures.	

•  OpenMP	4.0	can	now	define	own	reducMon	operaMons	
with	declare	reducMon	direcMve.		

•  “merge”	is	now	a	reducMon	operator.	

Construct Cancellation

-	20	-	

FORTRAN:
!$OMP PARALLEL DO PRIVATE (sample)

do i = 1, n
 sample = testing(i,…)

!$OMP CANCEL PARALLEL IF (sample)
 enddo
!$OMP END PARALLEL DO

•  cancel	/	cancellaMon	point	is	a	clean	way	of	early	
terminaMon	of	an	OpenMP	construct.		

•  First	thread	exits	when	TRUE.	Other	threads	exit	when	
reaching	the	cancel	direcMve.		

OMP_DISPLAY_ENV

•  export	OMP_DISPLAY_ENV=true	
•  Displays	the	OpenMP	version	number	
•  Displays	the	value	of	ICVs	associated	with	ENV	
•  Useful	for	users	to	find	out	default	seungs	

-	21	-	

OPENMP	DISPLAY	ENVIRONMENT	BEGIN	
			_OPENMP='201307'	
		[host]	OMP_CANCELLATION='FALSE'	
		[host]	OMP_DISPLAY_ENV='TRUE'	
		[host]	OMP_DYNAMIC='FALSE'	
		[host]	OMP_MAX_ACTIVE_LEVELS='2147483647'	
		[host]	OMP_NESTED='FALSE'	
		[host]	OMP_NUM_THREADS='8'	
		[host]	OMP_PLACES:	value	is	not	defined	
		[host]	OMP_PROC_BIND='false'	
		[host]	OMP_SCHEDULE='staMc'	
		[host]	OMP_STACKSIZE='4M'	
		[host]	OMP_THREAD_LIMIT='2147483647'	
		[host]	OMP_WAIT_POLICY='PASSIVE'	
OPENMP	DISPLAY	ENVIRONMENT	END	

New Features in OpenMP 4.5

•  OpenMP	4.5	was	released	in	November	2015	
•  Significantly	improved	support	for	devices	
•  Support	for	doacross	loops	
•  New	taskloop	construct	
•  ReducMons	for	C/C++	arrays	
•  New	hint	mechanisms	
•  Thread	affinity	support	
•  Improved	support	for	Fortran	2003	
•  SIMD	extensions	
•  New	linear	clause	for	loop	construct	
•  Support	for	if	clause	on	combined/composite	constructs	
•  AddiMon	of	schedule	modifiers	

-	22	-	

OpenMP 4.5 Focused on Device Support

•  OpenMP	now	provides:	
–  Unstructured	data	mapping,		
–  Asynchronous	execuFon	
–  RunFme	rouFnes	for	device	memory	management:	allocate,	copy,	

and	free.	

•  More	similar	features/capabiliMes	as	in	OpenACC	
–  Scalar	variables	are	firstprivate	by	default	
–  Improvements	for	C/C++	array	secFons	
–  Clauses	to	support	device	pointers	
–  Ability	to	map	structure	elements	
–  New	combined	constructs	
–  New	way	to	map	global	variables:	omp	declare	target	
	

-	23	-	

doacross Loops

•  A	natural	mechanism	to	parallelize	loops	with	well-
structured	dependences	is	provided.	

•  The	source	and	sink	dependence	types	were	added	
to	the	depend	clause	to	support	doacross	loop	
nests.	

	

-	24	-	

taskloop Constructs

•  Support	to	divide	loops	into	tasks,	avoiding	the	

requirement	that	all	threads	execute	the	loop.	

•  Parallelize	a	loop	using	OpenMP	tasks	
–  Cut	loop	into	chunks		
–  Create	a	task	for	each	loop	chunk	

•  Syntax	(C/C++)	
#pragma omp taskloop [simd] [clause[[,] clause],…]
for-loops

•  Syntax	(Fortran)	
!$omp taskloop[simd] [clause[[,] clause],…]
do-loops
[!$omp end taskloop [simd]]	
	

-	25	-	

Reductions for C/C++ Arrays

•  SemanMcs	for	reducMons	on	C/C++	array	secMons	
were	added	and	restricMons	on	the	use	of	arrays	
and	pointers	in	reducMons	were	removed.	

-	26	-	

New Hint Mechanisms

•  Hint	mechanisms	can	provide	guidance	on	the	relaMve	
priority	of	tasks	and	on	preferred	synchronizaMon	
implementaMons.	

•  The	priority	clause	was	added	to	the	task	construct	to	
support	hints	that	specify	the	relaMve	execuMon	priority	
of	explicit	tasks.		

•  The	hint	clause	for	omp	lock	was	added	to	the	criMcal	
construct		
	

	

-	27	-	

Thread Affinity Support

•  It	is	now	possible	to	use	runMme	funcMons	to	determine	
the	effect	of	thread	affinity	clauses.	

•  Query	funcMons	for	OpenMP	thread	affinity	were	added		
–  omp_get_num_places		
–  omp_get_place_num_procs		
–  omp_get_place_proc_ids		
–  omp_get_place_num		
–  omp_get_parMMon_num_places		
–  omp_get_parMMon_place_nums		

-	28	-	

SIMD Extensions

•  The	simdlen	clause	was	added	to	the	simd	construct	to	
support	specificaMon	of	the	exact	number	of	iteraMons	
desired	per	SIMD	chunk.		

•  These	extensions	include	the	ability	to	specify	exact	
SIMD	width	and	addiMonal	data-sharing	a|ributes.	

	

-	29	-	

New linear Clause for Loop Construct

•  Syntax	(C/C++)	
#pragma omp for [clause[[,] clause],…]
[linear(list[: linear-step])

 for-loops

•  Syntax	(Fortran)	

!$omp do [clause[[,] clause],…] [linear(list[:
linear-step])
do-loops
[!$omp end do [nowait]]

•  Other	usual	clauses	include:	private,	firstprivate,	
lastprivate,	reducMon,	schedule,	collapse,	ordered,	
nowait	(C/C++	only).	

-	30	-	

schedule Modifiers

•  Schedule	clause	can	be:	staMc,	dynamic,	guided,	
auto,	runMme.	

•  New	schedule	modifiers	are	added:		
–  monotonic:	each	thread	executes	its	assigned	chunks	in	
increasing	logical	iteraFon	order.	

–  nonmonotonic:	chunks	are	assigned	to	threads	in	any	
order	

–  Simd:	when	a	loop	is	associated	with	SIMD,	the	new	chunk	
size	becomes	[chunk_size/simd_width]	*	simd_width.	

-	31	-	

OpenMP 4.0/4.5 Support in Compilers

•  GNU	compiler	
–  From	gcc/4.9.0	for	C/C++;	OpenMP	4.0	
–  From	gcc/4.9.1	for	Fortran:	OpenMP	4.0	
–  From	gcc/6.0:	most	OpenMP	4.5	features	
–  From	gcc/6.1:	full	OpenMP	4.5	for	C/C++	(not	Fortran)	

•  Intel	compiler	
–  From	intel/15.0:	most	OpenMP	4.0	features	
–  From	Intel/16.0:	full	OpenMP	4.0	
–  From	intel/16.0	Update	2:	some	OpenMP4.5	SIMD	features	

•  Cray	compiler	
–  From	cce/8.4.0:	full	OpenMP	4.0	

	
-	32	-	

Major OpenMP 5.0 Topics

•  Support	for	event	loops:	Major	tasking	advances?	
•  Memory	locality,	affinity	and	working	with	complex	
memory	hierarchies	

•  Performance	and	debugging	tools	support	
•  Updates	to	support	latest	C/C++	standards,	
compleMon	of	Fortran	2003	

•  ConMnued	improvements	to	device	support	and	
tasking	

•  Interoperability	and	composability	
•  Many	other	potenMal	smaller	topics	

-	33	-	

Nested OpenMP

Sample Nested OpenMP Program

#include	<omp.h>	
#include	<stdio.h>	
void	report_num_threads(int	level)	
{	
				#pragma	omp	single	{	
									prin�("Level	%d:	number	of	threads	in	the	
team:	%d\n",	level,	omp_get_num_threads());	
								}	
}	
int	main()	
{	
				omp_set_dynamic(0);	
				#pragma	omp	parallel	num_threads(2)	{	
								report_num_threads(1);	
								#pragma	omp	parallel	num_threads(2)	{	
												report_num_threads(2);	
												#pragma	omp	parallel	num_threads(2)	{	
																report_num_threads(3);	
												}	
								}	
				}	
				return(0);	
}	

-	35	-	

%	a.out				
Level	1:	number	of	threads	in	the	team:	2	
Level	2:	number	of	threads	in	the	team:	1	
Level	3:	number	of	threads	in	the	team:	1	
Level	2:	number	of	threads	in	the	team:	1	
Level	3:	number	of	threads	in	the	team:	1	

%	setenv	OMP_NESTED	TRUE								
%	a.out	
Level	1:	number	of	threads	in	the	team:	2	
Level	2:	number	of	threads	in	the	team:	2	
Level	2:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	

Level	0:	P0	
Level	1:	P0	P1	
Level	2:	P0	P2;	P1	P3	
Level	3:	P0	P4;	P2	P5;	P1	P6;	P3	P7	

When to Use Nested OpenMP

•  Beneficial	to	use	nested	OpenMP	to	allow	more	fine-grained	
thread	parallelism.		

•  Some	applicaMon	teams	are	exploring	with	nested	
OpenMP	to	allow	more	fine-grained	thread	parallelism.	
–  Hybrid	MPI/OpenMP	not	using	node	fully	packed	
–  Top	level	OpenMP	loop	does	not	use	all	available	threads	
–  MulFple	levels	of	OpenMP	loops	are	not	easily	collapsed	
–  Certain	computaFonal	intensive	kernels	could	use	more	threads	
–  MKL	can	use	extra	cores	with	nested	OpenMP	

-	36	-	

Process and Thread Affinity in Nested OpenMP

•  Achieving	best	process	and	thread	affinity	is	crucial	in	geung	
good	performance	with	nested	OpenMP,	yet	it	is	not	
straigh�orward	to	do	so.		

•  A	combinaMon	of	OpenMP	environment	variables	and	run	Mme	
flags	are	needed	for	different	compilers	and	different	batch	
schedulers	on	different	systems.		

	
•  Use	num_threads	clause	in	source	codes	to	set	threads	for	nested	

regions.	For	most	other	non-nested	regions,	use	
OMP_NUM_THREADS	env	for	simplicity	and	flexibility.	

-	37	-	

Example:	Use	Intel	compiler	with	SLURM	on	Edison:	
setenv	OMP_NESTED	true	
setenv		OMP_NUM_THREADS	4,3	
setenv	OMP_PROC_BIND	spread,close	
srun	-n	2	-c	12	./nested.intel.edison			

Nested OpenMP Thread Affinity Illustration

-	38	-	

setenv	OMP_PLACES	threads	
Setenv	OMP_NUM_THREADS	4,4	
setenv	OMP_PROC_BIND	spread,close	

		Spread		

close	

Edison/Cori/Babbage: Run Time Environment
Variables

•  setenv	OMP_NESTED	true	
–  Default	is	false	for	most	compilers	

•  setenv	OMP_MAX_ACTIVE_LEVELS	2	
–  The	default	was	1	for	CCE	prior	to	cce/8.4.0	

•  setenv	OMP_NUM_THREADS	4,3	
•  setenv	OMP_PROC_BIND	spread,close	
•  setenv	KMP_HOT_TEAMS	1	

–  Intel	only	env.	Default	is	false	
•  setenv	KMP_HOT_TEAMS_MAX_LEVELS	2	

–  Intel	only	env.		Allow	nested	level	OpenMP	threads	to	stay	alive	instead	of	being	destroyed	
and	created	again	to	reduce	thread	creaFon	overhead.	

•  Edison/Cori:	
–  srun	-n	2	-c	12	./nested.intel.edison	
–  Use	-c	for	total	number	of	threads	(products	of	num_threads	from	all	levels).		

•  Babbage:	
–  Set	I_MPI_PIN_DOMAIN=auto	to	get	basic	MPI	process	affinity		
–  Do	not	set	KMP_AFFINITY,	otherwise	OMP_PROC_BIND	will	be	ignored.	
–  mpirun.mic	-n	2	-host	bc1109-mic0	./xthi-nested.mic	|sort	

-	39	-	

Use Multiple Threads in MKL

•  By	Default,	in	OpenMP	parallel	regions,	only	1	thread	will	be	
used	for	MKL	calls.		
–  MKL_DYNAMICS	is	true	by	default	

•  Nested	OpenMP	can	be	used	to	enable	mulMple	threads	for	
MKL	calls.		Treat	MKL	as	a	nested	inner	OpenMP	region.	

•  Sample	seungs	

-	40	-	

export	OMP_NESTED=true	
export	OMP_PLACES=cores	
export	OMP_PROC_BIND=close	
export	OMP_NUM_THREADS=6,4	
export	MKL_DYNAMICS=false			
export	KMP_HOT_TEAMS=1	
export	KMP_HOT_TEAMS_MAX_LEVELS=2	

FFT3D on KNC, Ng=643

-	41	-	

Courtesy	of	Jeongnim	Kim,		Intel		

CESM MG2 Kernel Case Study

-	42	-	

NESAP	CESM	Team:	
NCAR	CESM	developers:	John	Dennis	(PI),	Christopher	Kerr,		Sean	Santos		
Intel	engineers:	Nadezhda	Plotnikova,	Martyn	Corden		
Cray	Center	of	Excellence:	Marcus	Wagner	
NERSC	Liaison:	Helen	He	

MG2 Kernel

•  MG2	is	a	kernel	for	CESM	that	represents	version	2	of	the	

Morrison-Ge|leman	micro-physics	package.	Typically	consumes	
about	10%	of	CESM	run	Mme.	
–  Brought	to	Dungeon	Session	in	March	2015	

•  Kernel	is	core	bound	
–  Not	bandwidth	limited	at	all	
–  Shows	very	li|le	vectorizaFon	

•  Some	loop	bounds	are	short	(e.g.	10)	
•  Dependent	sequence	of	instrucFons	

–  Heavy	use	of	math	instrinsics	that	do	not	vectorize	
•  pow(),	gamma(),	log10().		
•  Intel	intrinsic	gamma()	is	2.6x	slower	than	MG2	internal	funcFon	

•  Kernel	has	long	complex	loops	with	interleaved	condiMonals	and	
elemental	funcMon	calls.	
–  Mixed	condiFonals	and	non-inlined	funcFons	inhibit	vectorizaFon	
–  Some	send	array	secFons	to	elemental	funcFons	

-	43	-	

MG2 Vectorization Prototype

•  Use	compiler	report	to	check	and	make	sure	key	funcMons	are	

vectorized	(and	all	funcMons	on	the	call	stack	are	vectorized	too)	
–  Elemental	funcFons	need	to	be	inlined	
–  “-qopt-report=5”	reports	highest	level	of	details.	
–  “-ipo”	is	needed	if	funcFons	are	in	different	source	codes.	

•  Add	!$OMP	DECLARE	SIMD	and	!DIR$	ATTRIBUTE	FORCEINLINE	
when	needed.	

-	44	-	

Recommendations from Dungeon Session

•  Divide	major	loops	when	possible	and	localize	
vectorizaMon:	work	to	be	done	by	MG2	developers.		

•  Implement	inlining	as	close	to	hotspot	as	possible;	
or	use	vector	funcMons	on	the	low	level	

•  Follow	up	with	MKL	team	on	Gamma	funcMon	
vectorizaMon.		

•  Work	with	compiler	team	for	a	flag	to	replace	
FORCEINLINE,	and	portable	opMons	for	other	
compilers.	

Changes Made to Improve Performance (1)

--	RouMnes	with	‘elemental’	a|ribute	don’t	inline	
--	Without	‘elemental’	a|ribute	rouMnes	sMll	don’t	inline!	
•  Remove	‘elemental’	a|ribute	and	move	the	‘mgncol’	loop	inside	rouMne	

-	46	-	

Before	change:	
	
elemental function
wv_sat_svp_to_qsat(es, p)
result(qs)

 real(r8), intent(in) :: es !
SVP
 real(r8), intent(in) :: p
real(r8) :: qs

 ! If pressure is less than SVP,
set qs to maximum of 1.
 if ((p - es) <= 0._r8) then
 qs = 1.0_r8
 else
 qs = epsilo*es / (p -
omeps*es)
 end if

end function wv_sat_svp_to_qsat

Ater	change:	
	
function wv_sat_svp_to_qsat(es, p,
mgncol) result(qs)
 integer,
intent(in) :: mgncol
 real(r8), dimension(mgncol),
intent(in) :: es ! SVP
 real(r8), dimension(mgncol),
intent(in) :: p
 real(r8), dimension(mgncol) :: qs
 integer :: i
 do i = 1, mgncol
 if ((p(i) - es(i)) <= 0._r8) then
 qs(i) = 1.0_r8
 else
 qs(i) = epsilo*es(i) / (p(i) -
omeps*es(i))
 end if
 enddo
end function wv_sat_svp_to_qsat
	

Impact of Code Changes for Elemental Functions

•  No	changes	to	algorithm	
•  Algorithm	gives	same	answers	
•  Code	readability	not	effected	
•  Revised	code	looks	almost	idenMcal	to	original	
•  Provide	scalar	and	vector	version	of	funcMons		
•  Overload	funcMon	names	to	maintain	single	naming	
convenMon	

	

-	47	-	

Changes Made to Improve Performance (2)

•  Structure	rouMne:	don’t	use	assumed-shaped	
arrays:	

-	48	-	

Before change:
subroutine size_dist_param_liq(qcic, …,)
 real, intent(in) :: qcic(:)

 do i = 1, SIZE(qcic)

After change:
subroutine size_dist_param_liq(qcic, …, mgncol)
 real, dimension(mgncol), intent(in) :: qcic

 do I = 1, mgncol

Changes Made to Improve Performance (3)

•  Divide	loop	blocks	into	manageable	sizes.	Allows	
compiler	to	vectorize	loops.	Can	fuse	loops	during	
opMmizaMon	step.	

•  Remove	array	syntax:	plev(:,:)	and	replace	with	
loops	

•  Replace	divides:	1.0/plev(i,k)	with	*plev_inv(i,k)	
•  Remove	iniMalizaMon	of	variables	that	are	over	
wri|en	

-	49	-	

Changes Made to Improve Performance (4)

•  Use	more	aggressive	compiler	opMons	
–  -O3 -xAVX -fp-model fast=2 -no-prec-div -no-prec-

sqrt -ip -fimf-precision=low -override-limits -qopt-
report=5 -no-inline-max-total-size -inline-
factor=200

•  Use	Profile-guided	OpMmizaMon	(PGO)	to	improve	code	
performance	

•  Compare	performance	of	code	with	different	vendors	
compilers	

-	50	-	

•  Rearrange	loop	order	to	allow	for	data	alignment	

	
Before change:
do i=1,mgncol

 do k=1,nlev
 plev(i,k) = …

After change:
Do k=1,nlev

 do i=1,mgncol
 plev(i,k) = …

Changes Made to Improve Performance (5)

•  Align	data	on	specific	byte	boundaries;	direcMve	based	
approach	with	OMP	direcMve:	
–  Portable	soluFon:	

 !$OMP SIMD ALIGNED
 (qc,qcn,nc,ncn,qi,qin,ni,nin,qr,qrn,nr,nrn,qs,qsn,ns,nsn)
•  Tells the compiler that the arrays are aligned
•  Asserts	that	there	are	no	dependencies	
•  Requires	to	use	PRIVATE	or	REDUCTION	clauses	to	ensure	correctness	
•  Forces	the	compiler	to	vectorize,	whether	or	not	it	thinks	if	it	is	a	good	idea	or	not

–  As compared to:
 !DIR$ VECTOR ALIGNED
•  Tells the compiler that the arrays are aligned
•  Intel compiler specific, not portable

•  !$OMP	SIMD	ALIGNED	is	independent	of	vendor,	however	it	
can	be	overly	intrusive	in	code.	

-	51	-	

OMP SIMD ALIGNED

•  Using	the	“ALIGNED”	a|ribute	achieved	8%	performance	gain	

when	the	list	is	explicitly	provided.	
•  However,	the	process	is	tedious	and	error-prone,	and	oten	Mmes	

impossible	in	large	real	applicaMons.	
–  !$OMP	SIMD	ALIGNED	added	in	48	loops	in	MG2	kernel	(by	Christopher	

Kerr),	many	with	list	of	10+	variables	

!$OMP	
SIMD	
ALIGNED	

!$OMP	
SIMD	

!dir$	
VECTOR	
ALIGNED	
	

-align	
array64byt
e	

-openmp	 Time	per	
iteraMon	
(usec)	on	
Edison	

			x	 x	 x	 444	

			x	 		 		 x	 446	

		 x	 		 x	 x	 484	

x	 		 		 x	 482	

		 x	 x		 		 452	

x	 		 456	

		 		 473	

OMP SIMD ALIGNED

•  How	can	compilers	know	be|er	which	arrays	are	aligned	so	
users	do	not	have	to	specify?	
–  A	variable	can	be	declared	as	aligned		
–  A	variable	can	be	set	to	aligned	with	a	compiler	flag		
–  When	in	scope,	hopefully	complier	should	know	

•  Inquired	with	Fortran	Standard:	
–  Equivalent	of	“!$DIR	ATTRIBUTES	ALIGNED:	64	::	A”	

•  C/C++	standard:	float	A[1000]	__a|ribute__((aligned(64)));	
•  Not	in	Fortran	standard	yet	

–  Equivalent	of	the	“-align	array64byte”	compiler	flag	
•  Exist	in	Intel	(Fortran	only)	and	Cray	compilers	
•  What	about	other	compilers?	

MG2 Optimization Steps

-	54	-	

OpMmizaMon	Steps	
Version	1	
•  Simplify	expressions	to	minimize	#operaFons	
•  Use	internal	GAMMA	funcFon	
Version	2	
•  Remove	“elemental”	a|ribute,	move	loop	inside.		
•  Inline	subrouFnes.	Divide,	fuse,	exchange	loops.	
•  Replace	assumed	shaped	arrays	with	loops	
•  Replace	division	with	inversion	of	mulFplicaFon	
•  Remove	iniFalizaFon	of	loops	to	be	overwri|en	later	
•  Use	more	aggressive	compiler	flags	
•  Use	profile-guided	opFmizaFon	(PGO)	
	Version	3	(Intel	compiler	only)	
•  Use	!$OMP	SIMD	ALIGNED	to	force	vectorizaFon	

OpMmizaMon	Steps	
Version	1	
•  Simplify	expressions	to	minimize	#operaFons	
•  Use	internal	GAMMA	funcFon	
Version	2	
•  Remove	“elemental”	a|ribute,	move	loop	inside.		
•  Inline	subrouFnes.	Divide,	fuse,	exchange	loops.	
•  Replace	assumed	shaped	arrays	with	loops	
•  Replace	division	with	inversion	of	mulFplicaFon	
•  Remove	iniFalizaFon	of	loops	to	be	overwri|en	later	
•  Use	more	aggressive	compiler	flags	
•  Use	profile-guided	opFmizaFon	(PGO)	
	Version	3	(Intel	compiler	only)	
•  Use	!$OMP	SIMD	ALIGNED	to	force	vectorizaFon	

OpMmizaMon	Steps	
Version	1	
•  Simplify	expressions	to	minimize	#operaFons	
•  Use	internal	GAMMA	funcFon	
Version	2	
•  Remove	“elemental”	a|ribute,	move	loop	inside.		
•  Inline	subrouFnes.	Divide,	fuse,	exchange	loops.	
•  Replace	assumed	shaped	arrays	with	loops	
•  Replace	division	with	inversion	of	mulFplicaFon	
•  Remove	iniFalizaFon	of	loops	to	be	overwri|en	later	
•  Use	more	aggressive	compiler	flags	
•  Use	profile-guided	opFmizaFon	(PGO)	
	Version	3	(Intel	compiler	only)	
•  Use	!$OMP	SIMD	ALIGNED	to	force	vectorizaFon	

Version	1	
•  Simplify	expressions	to	minimize	#operaMons	
•  Use	internal	GAMMA	funcMon	
Version	2	
•  Remove	“elemental”	a|ribute,	move	loop	inside.		
•  Inline	subrouMnes.	Divide,	fuse,	exchange	loops.	
•  Replace	assumed	shaped	arrays	with	loops	
•  Replace	division	with	inversion	of	mulMplicaMon	
•  Remove	iniMalizaMon	of	loops	to	be	overwri|en	

later	
•  Use	more	aggressive	compiler	flags.	Try	different	

compilers.		
•  Use	profile-guided	opMmizaMon	(PGO)	
Version	3	(Intel	compiler	only)	
•  Use	!$OMP	SIMD	ALIGNED	to	force	vectorizaMon	

0

200

400

600

800

1000

1200

Original Ver1 Ver2 Ver3

Ti
m

e
pe

r i
te

ra
tio

n
(u

se
c)

 SandyBridge/Intel

IvyBridge/Intel

IvyBridge/CCE

MG2 Summary

•  DirecMves	and	flags	can	be	helpful,	however	not	a	replacement	for	

programmers’	work	on	code	modificaMons.	
•  Break	up	loops	and	push	loops	into	funcMons	where	vectorizaMon	

can	be	dealt	with	directly	and	can	expose	logic	to	compiler.	
•  Incremental	improvements	not	necessary	a	BIG	win	from	any	one	

thing.	AccumulaMve	results	ma|er.	
•  Performance	and	portability	is	a	major	goal:	use	!$OMP	SIMD	

proves	to	be	beneficial	but	very	hard	to	use	regarding	the	need	of	
providing	the	aligned	list.	

•  Requested	opMonal	alignment	declaraMon	in	Fortran	Language	
Standard.		

•  See	case	study	at	h|ps://www.nersc.gov/users/computaMonal-
systems/cori/applicaMon-porMng-and-performance/applicaMon-
case-studies/cesm-case-study/	

-	55	-	

Thank you.

-	56	-	

