Advanced
OpenMP and
CESM Case Study

'NERSCA Helen He, NERSC

YEARS

at the
FOREFRONT

NERSC User Group Meeting
March 23, 2016 .

« U.S. DEPARTMENT OF Office of rfrj}‘ o
N

% ENERGY Science




- ) | YEARS
Outline  ove

* Background

What’s New in OpenMP 4.0 and 4.5
* Nested OpenMP

CESM MG2 Kernel Case Study

Office of
Science




Hybrid MPI/OpenMP: Big Picture EZ) (e

 Next NERSC system Cori is an Intel Xeon Phi KNL many-core
system architecture.

* Application is very likely to run on KNL with simple porting, but
high performance is harder to achieve.

* Many applications will not fit into the memory of a KNL node
using pure MPI across all HW cores and threads because of the
memory overhead for each MPI task.

* Applications need to explore more on-node parallelism with
thread scaling and vectorization, also to utilize HBM and burst
buffer options.

* Hybrid MPI/OpenMP is a recommended programming model for
Cori. It is also a portable programing model (recommended over
OpenACC) for running across various large DOE systems, whether
many-core system architecture, or hybrid CPU/GPU system.

* Optimization on current NERSC systems will help to prepare for
Cori Phase 2 KNL.

Office of

AERD, U.S. DEPARTMENT OF /_\I
@ ENERGY s: 3
R clience BERKELEY LAB

N
A
rrrrrrr ""|




o
P 3 e
£ ®
R &
s

Cori Phase 1 Compute Nodes RS/ [ Te

at the
FOREFRONT

Cori Phasel Compute Node

" e I I P RPN P Y e e e e e e e To obtain processor info:
§§ 818|8|8|8|8|8]|8]|8|8|s|s|s|s]s]s Get on a compute node:
. . % salloc—N 1
- 0 [+)) (=] — ~ m 3 wn 0 ~ 0 N = —_ o~ m Then:
H HHHHHHHHHHHEHEHH IR EEE TS
sl13|38|s)|sls|s|s|sls]|sls|s]|s]ls]|s]s or
g 2 2 '§= % hwloc-Is
e Cori Phase 1: NERSC Cray XC40, 1,630 nodes, 52,160 cores.
e Each node has 2 Intel Xeon 16-core Haswell processors.
e 2 NUMA domains per node, 16 cores per NUMA domain.
2 hardware threads per core.
[ J

Memory bandwidth is non-homogeneous among NUMA domains.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -4 -

BERKELEY LAB



Babbage MIC Card (e

Babbage MIC Card

un wn
o o 2 o
o o () [}
a [a) a a
©
(22]
N S
© 7)) o))
~ = ] %]
- ) N N
i L | < o0
< o — < ™M ™M
%) ~ RS ! ~ ~
) ~ i 0 { {
IS IS [ Y G I © L ao 125
o "o o2 o T o o o ~ ~
- - ol ol= o bt - s v [
O = O « O =« O i (e] (<] o se 38
OQojJoojJu ojJuolou Q o oo lo 56
=0 =0 =0 |=90 |= —_ — S S
[ - o © © © (1] (1] T“ ‘_v
L oo oY oo o O 2 2 Oow®m|loT®
g=2l2=12=21221%2 9 Q2 3 9 l's o
a0 Y Yy %) = -
L olso]lso]lso | < s E%o E%o
a J ja a a a o o a. a. o 5 o 5

Babbage: NERSC Intel Xeon Phi testbed, 45 nodes. 2 MIC cards per node.
Recommend to use the “native” mode.

* 1 NUMA domain per MIC card: 60 physical cores, 240 logical cores. OpenMP

threading potential to 240-way. Recommend to use at least 2 threads per core
to hide latency of in-order execution.

« KMP_AFFINITY, KMP_PLACE_THREADS, OMP_PLACES, OMP_PROC_BIND for
thread affinity control

I_MPI_PIN_DOMAIN for MPI/OpenMP process and thread affinity control.




Adding OpenMP to Your Program ] (e

e On Cori/Edison, under Cray programming environment, Cray Reveal
tool helps to perform scope analysis, and suggests OpenMP
compiler directives to a pure MPI or serial code.

— Based on CrayPat performance analysis
— Utilizes Cray compiler source code analysis and optimization information

Reve.
File Edit View Help
 poisson_mpip @

Vavigatio Source - _mpi. . .
S - puo|$o)Boe)2 poisson_mpi_omp 4 MPI
I~ poisson_mpi.c @ 159 myn=0; ~ X/ Reveal OpenMP Scoping — — ’
- allocate_arrays 160 ——
0.0055 Loop@252 = Scope Loops | Scoping Results [
00055 Loop@258 12 R I EE LT tas s’ N=1200’ on E Ison
v Jacobi
9459 Loop@325 rLsr4 163 for (=1 § <= N ) ame TV 1Scon S Nt 40
94094 Loop@327 164 { my_change Scalar nown for variable that s live on exit
00479 Loop@343 165 if ( u_new[INDEX(i,j)] 1= 0.0 ) H my, Scalal FAIL: Last defining teration not known for variable thatis live on exit
00370 Loop@354 166 { 800 e [3)
v main @ 167 ny_change = my_change et n—— ‘\M p:n lr‘ettlve
irective inserted by Cray Reveal. May be incomplete
335342 Loop@148 168 + fabs (1.0 - u[INDEX(i,j)] / u_new[INDEX(i, )] ); #pragma omp parallelfor defaultinone) %O
169 unresalved (my_change.my_) \ LA
235289 Loop@163 @ 170 my_n =myn+1; i shared (my_rank N.i_max.u_new.u) \
- make_domains il ) N firstprivate () Q
0.0000 Loop@404 L 172 ) | max ao 7 B 7 |
- make_source L 7} . rand
00056 Loop@495 - s—
II 174 MWPI_Allreduce ( &my_change, &change, 1, MPI_DOUBLE, MPI_SUM, [
timestamp
175 MPT_COMM_WORLD );
176
II 177 MPI_Allreduce ( &my_n, &n, 1, MPI_INT, MPI_SUM, MPI_COMM WORLD ); 0 | I
178 o
79 if (n1=0) { Copy Directive X close
- | 0
J:’Z}:n‘zev:zs‘nmveuonzed because a recurrence was found between "u_new" and "my_change" atline 167. I |
Insert Directive | | Show Directive Close Pure MPI 1 thread 3 threads 6 threads
| E—T— >
poisson_mpi.pl loaded. poisson_mpi+pat+1119130-3263t ap2 loaded. i ” o

 On Babbage, Intel Advisor tool helps to guide threading design
options.

-
. AY
U.S. DEPARTMENT OF Offlce Of rTr_r}‘ '"l

ENERGY Science "6- BERKELEY LAB




YEARS

at the
FOREFRONT

1974-2014

~

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science "7




New Features in OpenMP 4.0 L&

* OpenMP 4.0 was released in July 2013

* Device constructs for accelerators

* SIMD constructs for vectorization

* Task groups and dependencies

* Thread affinity control

* User defined reductions

e Cancellation construct

* Initial support for Fortran 2003

* OMP_DISPLAY_ENV for all internal variables

Office of
Science

AT

I &

2\ w 5/
Lo o



NEsRO Ly YEARS

device Gonstructs for Accelerators e

C/C++:
#pragma omp target map(to:B,C), map (tofrom: sum)
#pragma omp parallel for reduction(+,sum)
for (int i=0; i<N; i++) {
sum += B[i] + C[i];
}

* Use target directive to offload a region to device. Host and
device share memory via mapping: to, from, tofrom.

C/C++:
#pragma omp target teams distribute parallel for \
map (to:B,C), map (tofrom:sum) reduction(+:sum)
for (int i=0; i<N; i++) {

sum += B[i] + C[i];
}

* Use teams clause to create multiple master threads that can execute
in parallel on multiple processors on device.

* Use “distribute” clause to spread iterations of a parallel loop across
teams.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "9- BERKELEY LAB

T
CERD
N
R &
s




“OMP target device” Works on Babbage T

program test

write(*,*) 'cpu max threads:',omp_get _max_threads() export oM P NUM_TH READS=1
somp target device(0) export MIC_ENV_PREFIX=MIC

write(*,*) 'mic max threads:',omp_get_max_threads()
ISomp parallel
ISomp master

write(*,*) 'mic nbr threads:',omp_get num_threads() 9% cat myjob.host.2680.out

ISomp end master
ISomp end parallel cpu max threads: 1

ISomp end target mic max threads: 60

mic nbr threads: 60
[ i .
T ET o] team 0 mic max threads: 60
ISomp teams num_teams(1) ) .
write(*,*) 'team’, omp_get_team_num(), ' mic max team O mic nbr threads: 236

threads:',omp_get_max_threads()

| o
Seiie geiali Not recommended for preparing for
ISomp master

T, ) S G e e Gt ) ol e Cori KNL, but it is good to know that

threads:',omp_get_num_threads() it works and it is portable ©
ISomp end master

! d parallel i
Somp end paralle Code should default to run on Cori
ISomp end teams

ISomp end target (host), but fails due to “device not
i(i{:nd program test found”. Compiler bug filed.

export MIC_OMP_NUM_THREADS=60

EEEvVEEER.Ww = DUITIHIVT




Asynchronous Offloading with Tasking E e

Useful for people who need to write portable codes across DOE centers.

#pragma omp parallel
#pragma omp single
{
#pragma omp task
{

#pragma omp target map(to:input[:N]) map(from:result[:N])
#pragma omp parallel for

for (i=0; i<N; i++) {

result[i] = some_computation(input[i], i);

}
}

H#pragma omp task

{

do_something_important_on_host();

}

} // implicit taskwait at barrier

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -11- ‘ l

BERKELEY LAB

RENTOr S
4 >
£ 5\
% @ 4
), &
S i




OpenMP Vectorization Support

LT
5/ &
B 2
1\ @ 5
RS

More architectures support longer vector length

Vectorization: execute a single instruction on multiple
data objects in parallel within a single CPU core
Auto-vectorization can be hard for compilers
(dependencies)

Many compilers support SIMD directives to aid
vectorization of loops

OpenMP 4.0 provides a standardization for SIMD

Office of

Science -12-

YEARS

ttttt
FFFFFFFFF




OpenMP4 SIMD E] (e

 Parallelize and Vectorize:
— Fortran: ISOMP do simd [clauses]

— The loop is first divided across a thread team, then subdivide loop
chunks to fit in a SIMD vector register.

e SIMD Functions:
C/C++:
#pragma omp declare simd
float min (float a, float b) {
return a<b ? a:b;

}

— Compilers may not be able to vectorize and inline function calls easily.

— Compilers #pramga declare simd tells compiler to generate SIMD
function
— Useful to use “declare simd” for elemental functions that are called
from within a loop, so compilers can vectorize the function.
* Using OpenMP4 SIMD bypasses the compiler analysis
— Incorrect results and poor performance possible!

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -13- BERKELEY LAB

ST O
LB
£ 0\
B 2
b.‘,m\m#



Clauses for simd Directive iinse/

e safelen(length): defines the max number of
iterations can run concurrently without breaking
dependence.

* linear: lists variables with a linear relationship to
the iteration number.

* aligned: specifies byte alighment of the list items
 all regular clauses ....

Office of

‘__w*'-‘i*% U.S. DEPARTMENT OF
A (%) 2 Y : -14 -
ENERG Science




linear(ref) Clause is Important E) (o

In C, compiler places consecutive argument values in a vector
register

subroutine test_linear(x, y)
ISomp declare simd

But Fortran passes arguments by reference (test_linear) linear(ref(x, y))
real(8),intent(in) :: x
real(8),intent(out) :: y

y =1. +sin(x)**3

* By default compiler places consecutive addresses in a vector
register. Leads to a gather of the 4 addresses (slow)

* LINEAR(REF(X)) tells the compiler that the addresses are end subroutine test_linear
consecutive; only need to dereference once and copy .
consecutive values to vector register Interface

* New in compiler version 16.0.1
doj=1,n

Same method could be used for C arguments passed by reference _ -
call test_linear(a(j), b(j))

Approximate speed-up for double precision array of 1M elements enddo
No DECLARE SIMD 1.0
DECLARE SIMD but no LINEAR(REF) 0.9
DECLARE SIMD with LINEAR(REF) clause 3.6

The results above were obtained on an Intel® Xeon® E7-4850 v3 system, frequency 2.2 GHz, running Red Hat*
Enterprise Linux* version 7.1 and using the Intel® Fortran Compiler version 16.0.1.

U.S. DEPARTMENT OF Ofﬂce Of

A
ENERGY B derric 15 courtesy of Intel EERKE/;L‘AB

S,
7 A
% @ D
3\ %
SO i




taskgroup Directive L <

* OpenMP 4.0 extends the tasking support.

* The taskgroup directive waits for all descendant
tasks to complete as compared to taskwait which

only waits for direct children.

Office of

Science -16-

T
&7 0\
£ 2
B 2
o\ @ 5/
RS



Task Dependencies s/ [

#pragma omp task depend (out:a)

#blflagma omp task depend (out:b)

{..}
#pragma omp task depend (in:a,b)

Lo}

* The first two tasks can execute in parallel

* The third task can only start after both of the first two
are complete.

Office of

Science -17-




Better Thread Affinity Control E.Z

e OpenMP 3.1 only has OMP_PROC_BIND, either TRUE or FALSE.

*  OpenMP 4.0 still allows the above. Can now provide a list.
— spread: Bind threads as evenly distributed (spreaded) as possible
— close: Bind threads close to the master thread
— master: Bind threads the same place as the master thread
* Added OMP_PLACES environment variable: a list of places that threads can be
pinned on
— threads: Each place corresponds to a single hardware thread on the target machine.

— cores: Each place corresponds to a single core (having one or more hardware
threads) on the target machine.

— sockets: Each place corresponds to a single socket (consisting of one or more cores)
on the target machine.

— A list with explicit place values, such as:
« "0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"
o “{0:4},{4:4},{8:4},{12:4}"
 Examples:
— export OMP_PLACES=threads
— export OMP_PROC_BIND=“spread, close” (for nested levels)

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -18- E.;Eﬂ\‘%“?

T
£ 0\
B 2
% @ 5
», 4
S5 iy



User Defined Reductions iinse/

#pragma omp declare reduction (merge: std::vector<int>
: omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

e OpenMP 3.1 can not do reductions on objects or
structures.

e OpenMP 4.0 can now define own reduction operations
with declare reduction directive.

* “merge” is now a reduction operator.

Office of

Science -19-




Construct Cancellation iinse/

FORTRAN:
I$SOMP PARALLEL DO PRIVATE (sample)
doi=1,n
sample = testing(i,...)
I$SOMP CANCEL PARALLEL IF (sample)
enddo
I$OMP END PARALLEL DO

» cancel / cancellation point is a clean way of early
termination of an OpenMP construct.

* First thread exits when TRUE. Other threads exit when
reaching the cancel directive.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -20-

<
A
rrrrrrr "“l

T
g \
i @ ;
7 g
% /5
2 %
S5 i

BERKELEY LAB



OMP_DISPLAY_ENV

* export OMP_DISPLAY_ENV=true

* Displays the OpenMP version number

* Displays the value of ICVs associated with ENV
e Useful for users to find out default settings

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP="'201307"
[host] OMP_CANCELLATION="FALSE'
[host] OMP_DISPLAY_ENV='TRUE'
[host] OMP_DYNAMIC="FALSE'
[host] OMP_MAX_ACTIVE_LEVELS='2147483647'
[host] OMP_NESTED='FALSE'
[host] OMP_NUM_THREADS='8'
[host] OMP_PLACES: value is not defined
[host] OMP_PROC_BIND='false'
[host] OMP_SCHEDULE='static'
[host] OMP_STACKSIZE='4M'
[host] OMP_THREAD_LIMIT='2147483647'
[host] OMP_WAIT_POLICY='PASSIVE'
OPENMP DISPLAY ENVIRONMENT END

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -21-

ST

/57 %)

% w 5
‘-‘un\m >

YEARS

at the
FOREFRONT

BERKELEY LAB



New Features in OpenMP 4.5 L&

* OpenMP 4.5 was released in November 2015
* Significantly improved support for devices

* Support for doacross loops

* New taskloop construct

* Reductions for C/C++ arrays

* New hint mechanisms

* Thread affinity support

* Improved support for Fortran 2003

* SIMD extensions

* New linear clause for loop construct

* Support for if clause on combined/composite constructs
* Addition of schedule modifiers

Office of

Science -22-

LT
(4 0
B 2
1\ @ 5
L‘”An\m >




OpenMP 4.5 Focused on Device Support L <

* OpenMP now provides:
— Unstructured data mapping,
— Asynchronous execution
— Runtime routines for device memory management: allocate, copy,
and free.
* More similar features/capabilities as in OpenACC
— Scalar variables are firstprivate by default
— Improvements for C/C++ array sections
— Clauses to support device pointers
— Ability to map structure elements
— New combined constructs
— New way to map global variables: omp declare target

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "23- WD&B

N
A
rrrrrrr "“l

ey
£ %)
i @ ;
7 g
2 /7
2 4
=g



doacross Loops L.

* A natural mechanism to parallelize loops with well-
structured dependences is provided.

* The source and sink dependence types were added
to the depend clause to support doacross loop
nests.

N U.S. DEPARTMENT OF Ofﬂce Of

a ENERGY Science " 24- a;;ma

N
A
rrrrrrr ""|




taskloop Constructs L <

e Support to divide loops into tasks, avoiding the
requirement that all threads execute the loop.

* Parallelize a loop using OpenMP tasks
— Cut loop into chunks
— Create a task for each loop chunk

* Syntax (C/C++)
#pragma omp taskloop [simd] [clause[[,] clause],..]
for-loops

e Syntax (Fortran)
'Somp taskloop[simd] [clause[[,] clause],..]
do-loops
[!Somp end taskloop [simd]]

Office of

Science -25-




Reductions for G/G++ Arrays e

* Semantics for reductions on C/C++ array sections
were added and restrictions on the use of arrays
and pointers in reductions were removed.

Office of e I i
Science e BERKELEY LAB




New Hint Mechanisms iinse/

* Hint mechanisms can provide guidance on the relative
priority of tasks and on preferred synchronization
implementations.

* The priority clause was added to the task construct to
support hints that specify the relative execution priority
of explicit tasks.

* The hint clause for omp lock was added to the critical
construct

Office of

Science -27-




Thread Affinity Support L&

* Itis now possible to use runtime functions to determine
the effect of thread affinity clauses.

* Query functions for OpenMP thread affinity were added
— omp_get_num_places
— omp_get_place_num_procs
— omp_get _place_proc_ids
— omp_get _place_num
— omp_get_partition_num_places
— omp_get_partition_place_nums

Office of

Science -28-

LT
(4 0
B 2
1\ @ 5
L‘”An\m >



SIMD Extensions iR=c/

* The simdlen clause was added to the simd construct to
support specification of the exact number of iterations
desired per SIMD chunk.

* These extensions include the ability to specify exact
SIMD width and additional data-sharing attributes.

Office of

Science -29-




New linear Clause for Loop Construct E.<

* Syntax (C/C++)

#pragma omp for [clause[[,] clause],..]
[linear (list[ : linear-step])

for-loops

e Syntax (Fortran)

'Somp do [clause[[,] clause],..] [linear(list[ :
linear-step])

do-loops
[!Somp end do [nowait]]

* Other usual clauses include: private, firstprivate,

lastprivate, reduction, schedule, collapse, ordered,
nowait (C/C++ only).

Office of
Science -30-

FFFFFFFFF




schedule Modifiers ‘" s

* Schedule clause can be: static, dynamic, guided,
auto, runtime.

* New schedule modifiers are added:
— monotonic: each thread executes its assigned chunks in
increasing logical iteration order.
— nonmonotonic: chunks are assigned to threads in any
order

— Simd: when a loop is associated with SIMD, the new chunk
size becomes [chunk_size/simd_width] * simd_width.

Office of N e i
Science I BERKELEY LAB




OpenMP 4.0/4.5 Support in Compilers

* GNU compiler

From gcc/4.9.0 for C/C++; OpenMP 4.0

From gcc/4.9.1 for Fortran: OpenMP 4.0

From gcc/6.0: most OpenMP 4.5 features

From gcc/6.1: full OpenMP 4.5 for C/C++ (not Fortran)

* Intel compiler

From intel/15.0: most OpenMP 4.0 features
From Intel/16.0: full OpenMP 4.0
From intel/16.0 Update 2: some OpenMP4.5 SIMD features

* Cray compiler

From cce/8.4.0: full OpenMP 4.0

Office of

Science -32-

a
FFFFFFFFF




NP-% =

Major OpenMP 5.0 Topics .

o
PR,
17 &
? % 5

&
Lo o

Support for event loops: Major tasking advances?

Memory locality, affinity and working with complex
memory hierarchies

Performance and debugging tools support

Updates to support latest C/C++ standards,
completion of Fortran 2003

Continued improvements to device support and
tasking

Interoperability and composability
Many other potential smaller topics

Office of
Science

-33-



Nested OpenMP

NP -1 =

at the
FOREFRONT

~

U.S. DEPARTMENT OF H A
Office of r/r_\‘ '

WENERGY  science —"

rcs Barkaey Natons Labrstory




Sample Nested OpenMP Program

.

YEARS

at the

; FOREFRONT

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)
{
#pragma omp single {
printf("Level %d: number of threads in the
team: %d\n", level, omp_get_num_threads());

}
}
int main()
{
omp_set_dynamic(0);
#pragma omp parallel num_threads(2) {
report_num_threads(1);
#pragma omp parallel num_threads(2) {
report_num_threads(2);
#pragma omp parallel num_threads(2) {
report_num_threads(3);

}
}
}

return(0);

}

U.S. DEPARTMENT OF Ofﬂce Of

& ENERGY  sconce

% a.out

Level 1: number of threads in the team:
Level 2: number of threads in the team:
Level 3: number of threads in the team:
Level 2: number of threads in the team:
Level 3: number of threads in the team:

% setenv OMP_NESTED TRUE
% a.out

Level 1: number of threads in the team:
Level 2: number of threads in the team:
Level 2: number of threads in the team:
Level 3: number of threads in the team:
Level 3: number of threads in the team:
Level 3: number of threads in the team:
Level 3: number of threads in the team:

Level O: PO

Level 1: PO P1

Level 2: PO P2; P1 P3

Level 3: PO P4; P2 P5; P1 P6; P3 P7

-35-

R R R RN

N NDNDNDNDNDN




When to Use Nested OpenMP E) (e

* Beneficial to use nested OpenMP to allow more fine-grained
thread parallelism.
 Some application teams are exploring with nested
OpenMP to allow more fine-grained thread parallelism.
— Hybrid MPI/OpenMP not using node fully packed
— Top level OpenMP loop does not use all available threads
— Multiple levels of OpenMP loops are not easily collapsed
— Certain computational intensive kernels could use more threads
— MKL can use extra cores with nested OpenMP

Office of N e i
Science e BERKELEY LAB




Process and Thread Affinity in Nested OpenMPm

* Achieving best process and thread affinity is crucial in getting
good performance with nested OpenMP, yet it is not
straightforward to do so.

* A combination of OpenMP environment variables and run time
flags are needed for different compilers and different batch
schedulers on different systems.

Example: Use Intel compiler with SLURM on Edison:
setenv OMP_NESTED true

setenv OMP_NUM_THREADS 4,3

setenv OMP_PROC_BIND spread,close

srun -n 2 -c 12 ./nested.intel.edison

 Use num_threads clause in source codes to set threads for nested
regions. For most other non-nested regions, use
OMP_NUM_THREADS env for simplicity and flexibility.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -37- a;a\ltsma

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
‘-‘un\m >



NERSG/ YEARS

Nested OpenMP Thread Affinity lllustration s U Kow

setenv OMP_PLACES threads
Setenv OMP_NUM_THREADS 4,4

Spread

setenv OMP_PROC_BIND spread,close
p0 p1 p2 p2 | pa 05 p6
0000
n0 \ p1 n2 p3 na N p5 n6 \ p7

p7
000 m m m M m m
00010000) 0000 00001000010000; 0000
00010000 000 0000]1°000100001°00010000

close

Office of

SR U.S. DEPARTMENT OF ; 0
7 A\ S, i
3 ) o - -

/ EN ERG Y Science BERKELEY LAB




Edlsqn/CorllBabbage: Run Time Environment ensc) (g W
Variables

setenv OMP_NESTED true
— Default is false for most compilers
* setenv OMP_MAX_ACTIVE_LEVELS 2
— The default was 1 for CCE prior to cce/8.4.0

* setenvOMP_NUM_THREADS 4,3
 setenv OMP_PROC_BIND spread,close

* setenv KMP_HOT_TEAMS 1
— Intel only env. Default is false

+ setenv KMP_HOT_TEAMS_MAX_LEVELS 2

— Intel only env. Allow nested level OpenMP threads to stay alive instead of being destroyed
and created again to reduce thread creation overhead.

* Edison/Cori:

— srun-n2-c12 ./nested.intel.edison

— Use -c for total number of threads (products of num_threads from all levels).
 Babbage:

— Set|_MPI_PIN_DOMAIN=auto to get basic MPI process affinity

— Do not set KMP_AFFINITY, otherwise OMP_PROC_BIND will be ignored.
— mpirun.mic -n 2 -host bc1109-mic0 ./xthi-nested.mic |sort

o“‘"‘“""fa,‘ U.S. DEPARTMENT OF Ofﬂce Of

3 ENERGY science "39 5;5\‘%3

N
A
rrrrrrr "“l




Use Multiple Threads in MKL L.

* By Default, in OpenMP parallel regions, only 1 thread will be
used for MKL calls.

— MKL_DYNAMICS is true by default

* Nested OpenMP can be used to enable multiple threads for
MKL calls. Treat MKL as a nested inner OpenMP region.

* Sample settings

export OMP_NESTED=true

export OMP_PLACES=cores

export OMP_PROC_BIND=close

export OMP_NUM_THREADS=6,4

export MKL_DYNAMICS=false

export KMP_HOT_TEAMS=1

export KMP_HOT_TEAMS_MAX_LEVELS=2

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -40- a;a\ltsma

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
‘-‘un\m >



FFT3D on KNG, Ng=64° ) e

Throughputs (# of FFTs/sec)

4|1

OMP ®1 ®m2 =4
NMKL == 240/(NMPI * OMP)

2500

2000

1500

1000

500

0

MPI task

Courtesy of Jeongnim Kim, Intel

""\“"f: U.S. DEPARTMENT OF Ofﬁce Of

) ) ENERGY Science e




“ - 5 >
N\
YEARS
at the
FOREFRONT

1974-2014

A8
2

2\ /i

5{«, U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science

NESAP CESM Team:

NCAR CESM developers: John Dennis (Pl), Christopher Kerr, Sean Santos
Intel engineers: Nadezhda Plotnikova, Martyn Corden

Cray Center of Excellence: Marcus Wagner

NERSC Liaison: Helen He

~

A
frreeerer o

-42 -




MG2 Kernel iR=c/

* MG2 is a kernel for CESM that represents version 2 of the
Morrison-Gettleman micro-physics package. Typically consumes
about 10% of CESM run time.

— Brought to Dungeon Session in March 2015

e Kernelis core bound
— Not bandwidth limited at all

— Shows very little vectorization
* Some loop bounds are short (e.g. 10)
* Dependent sequence of instructions

— Heavy use of math instrinsics that do not vectorize
* pow(), gamma(), log10().
* Intel intrinsic gamma() is 2.6x slower than MG2 internal function
* Kernel has long complex loops with interleaved conditionals and
elemental function calls.
— Mixed conditionals and non-inlined functions inhibit vectorization
— Some send array sections to elemental functions

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science “43- a;a\ltsma

ST

/57 %)

% w 5
‘-‘un\m >



MG2 Vectorization Prototype E (e

* Use compiler report to check and make sure key functions are
vectorized (and all functions on the call stack are vectorized too)

— Elemental functions need to be inlined
— “-qopt-report=5" reports highest level of details.
— “-ipo” is needed if functions are in different source codes.

« Add !SOMP DECLARE SIMD and IDIRS ATTRIBUTE FORCEINLINE
when needed.

Example call stack for vectorization and inlining
IDIR$ SIMD

do k=1,nlev
call funcA(a(:,k), b(:,k), ...)

1 | |

funcB pow p— IDIRS ATTRBUTE FORCEINLINE funcC
elemental subroutine funcA (3, b ...,) l
ISOMP DECLARE SIMD funcA funcD

PAENT O

£ D)
& \
o (7]

)

U.S. DEPARTMENT OF Offlce Of

ENERGY Science “44- WE&B

<
A
rrrrrrr ""|

Q2
SO



Recommendations from Dungeon Session

LT

I B

o\ w 5/
RS

Divide major loops when possible and localize

vectorization: work to be done by MG2 developers.

Implement inlining as close to hotspot as possible;
or use vector functions on the low level

Follow up with MKL team on Gamma function
vectorization.

Work with compiler team for a flag to replace
FORCEINLINE, and portable options for other
compilers.

Office of
Science

ttttt
FFFFFFFFF




N | -
m : A YEARS

Changes Made to Improve Performance (1) S5

-- Routines with ‘elemental’ attribute don’t inline
-- Without ‘elemental’ attribute routines still don’t inline!
* Remove ‘elemental’ attribute and move the ‘mgncol’ loop inside routine

Before change:

elemental function
wv_sat svp to _gsat(es, p)

result(qs)

real (r8), intent(in) :: es !
SVpP

real(r8), intent(in) :: p
real (r8) :: gs

! If pressure is less than SVP,

set gs to maximum of 1.
if ( (p - es) <= 0._r8 ) then

gqgs = 1.0_r8
else
gs = epsilo*es / (p -
omeps*es)
end if

end function wv_sat svp to_gsat

"fa,-‘,‘ U.S. DEPARTMENT OF Ofﬂce Of

‘ ENERGY science

After change:

function wv sat _svp_to qsat(es, P,
mgncol) result(qgs)

integer,
intent(in) :: mgncol

real (r8), dimension (mgncol),
intent(in) :: es ! SVP

real (r8), dimension (mgncol),
intent(in) :: p

real (r8), dimension(mgncol) :: gs

integer :: 1

do i = 1, mgncol

if ( (p(i) - es(i)) <= 0. r8 ) then
gs(i) = 1.0_r8
else
gs (i) = epsilo*es(i) / (p(i) -
omeps*es (i))
end if
enddo
end function wv_sat svp to gsat

BERKELEY LAB



Impact of Code Changes for Elemental Function%:@ o

* No changes to algorithm

* Algorithm gives same answers

* Code readability not effected

* Revised code looks almost identical to original
* Provide scalar and vector version of functions

* Overload function names to maintain single naming
convention

Office of

Science -47-




Changes Made to Improve Performance (2) L.

e Structure routine: don’t use assumed-shaped
arrays:

Before change:
subroutine size dist param lig(gcic, ..,)
real, intent(in) :: gcic(:)
do 1 = 1, SIZE(gcic)

After change:
subroutine size dist param lig(gcic, .., mgncol)

real, dimension (mgncol), intent(in) :: gcic
do I = 1, mgncol

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -48 -

ST
P 3 A
3 \
B 2
% @ 7
) Z
S5 i

<
A
rrrrrrr ""|

BERKELEY LAB



Changes Made to Improve Performance (3) L.

* Divide loop blocks into manageable sizes. Allows
compiler to vectorize loops. Can fuse loops during
optimization step.

 Remove array syntax: plev(:,:) and replace with
loops

* Replace divides: 1.0/plev(i,k) with *plev_inv(i,k)

e Remove initialization of variables that are over
written

Office of

Science -49-




Changes Made to Improve Performance (4) L.

* Rearrange loop order to allow for data alignment

Before change: After change:
do i1i=1,mgncol Do k=1,nlev
do k=1,nlev do i=1,mgncol
plev(i,k) = .. plev(i,k) = ..

* Use more aggressive compiler options

— -03 -xAVX -fp-model fast=2 -no-prec-div -no-prec-
sgrt —-ip —-fimf-precision=low -override-limits —-gopt-
report=5 -no-inline-max-total-size -inline-
factor=200

* Use Profile-guided Optimization (PGO) to improve code
performance

 Compare performance of code with different vendors
compilers

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -30- BERKELEY LAB

ST O
LB
£ 0\
B 2
b.‘,m\m#



Changes Made to Improve Performance (5) L.

* Align data on specific byte boundaries; directive based
approach with OMP directive:

— Portable solution:
ISOMP SIMD ALIGNED
(gc,gcn,nc,ncn,qi,gin,ni,nin,qr,qrn,nr,nrn,qs,gsn,ns,nsn)
Tells the compiler that the arrays are aligned
Asserts that there are no dependencies

Requires to use PRIVATE or REDUCTION clauses to ensure correctness
Forces the compiler to vectorize, whether or not it thinks if it is a good idea or not

— As compared to:
IDIR$ VECTOR ALIGNED

» Tells the compiler that the arrays are aligned
 Intel compiler specific, not portable

e ISOMP SIMD ALIGNED is independent of vendor, however it
can be overly intrusive in code.

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -o1- BERKELEY LAB

)"hmm“‘\“



OMP SIMD ALIGNED E (e

e Using the “ALIGNED” attribute achieved 8% performance gain
when the list is explicitly provided.

 However, the process is tedious and error-prone, and often times
impossible in large real applications.

— ISOMP SIMD ALIGNED added in 48 loops in MG2 kernel (by Christopher
Kerr), many with list of 10+ variables

ISOMP IdirS$ -align -openmp | Time per
SIMD VECTOR array64byt iteration
ALIGNED ALIGNED e (usec) on
Edison
X X X 444
X X 446
X X X 484
X X 482
X X 452
X 456
473 n
,,,,,,, ‘iﬁ|

End, U.S. DEPARTMERN
17 A S orrice or

NERGY Science




OMP SIMD ALIGNED E.Z e

* How can compilers know better which arrays are aligned so
users do not have to specify?
— A variable can be declared as aligned
— A variable can be set to aligned with a compiler flag
— When in scope, hopefully complier should know

* Inquired with Fortran Standard:

— Equivalent of “ISDIR ATTRIBUTES ALIGNED: 64 :: A”
* C/C++ standard: float A[1000] __ attribute__ ((aligned(64)));
* Not in Fortran standard yet

— Equivalent of the “-align array64byte” compiler flag
e Existin Intel (Fortran only) and Cray compilers
* What about other compilers?

"
U.S. DEPARTMENT OF H A
Officeof ‘"1

ENERGY Science BERKELEY LAB

T
CERD
)
R &
s



MG2 Optimization Steps E (e

Version 1

* Simplify expressions to minimize #operations

* Use internal GAMMA function

Version 2 1200

* Remove “elemental” attribute, move loop inside. ., | = SandyBridge/lntel
L] . . L] o
* Inline subroutines. Divide, fuse, exchange loops. & = lvyBridge/intel
. ~ 800 -
* Replace assumed shaped arrays with loops 5 IvyBridge/CCE
©
* Replace division with inversion of multiplication g °®
 Remove initialization of loops to be overwritten § 400
later £
ate ] _ ] = 200
* Use more aggressive compiler flags. Try different
: 0
compllers. Original Ver1 Ver2 Ver3

* Use profile-guided optimization (PGO)
Version 3 (Intel compiler only)
* Use ISOMP SIMD ALIGNED to force vectorization

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science "o4- E.;Eﬂ\‘%“?

ST
LB
£ A
R &
SHrGi




MG2 Summary L.

* Directives and flags can be helpful, however not a replacement for
programmers’ work on code modifications.

 Break up loops and push loops into functions where vectorization
can be dealt with directly and can expose logic to compiler.

* Incremental improvements not necessary a BIG win from any one
thing. Accumulative results matter.

* Performance and portability is a major goal: use !SOMP SIMD
proves to be beneficial but very hard to use regarding the need of
providing the aligned list.

* Requested optional alignment declaration in Fortran Language
Standard.

* See case study at https://www.nersc.gov/users/computational-
systems/cori/application-porting-and-performance/application-
case-studies/cesm-case-study/

AER>, U.S. DEPARTMENT OF Office of

ENERGY science B E_;a\lLE.,Y.H\B

N
A
rrrrrrr ""|




YEARS

at the
FOREFRONT

Thank you.

FA‘ U.S. DEPARTMENT OF Office of
(&)

ENERGY Science -56-




