TEXAS ADVANCED COMPUTING CENTER

e & TEXAS
The University of Texas at Austin

WWW.TACC.UTEXAS.EDU

IXPUG-ISC16 Workshop

PRESENTED BY:

Open M P Kent Milfeld
Afﬁ N |ty —.on milfeld@tacc.utexas.edu
KNL

6/22/16 1

Affinity
Why do we need it?

« Some Apps run better with fewer threads than HW-threads.
Execution with only 1, 2, or 3 threads per core.

Execution with only a few threads per tile.
Execution with fewer cores per quadrant (e.g. avoid #6)
Allow threads to float on cores.

What are the OpenMP tools?

 distribution policy (close/spread ...)
« syntax for expressing H\W-threads (places) to run on

-

6/22/16 ‘ 2

Affinity (thread-id assignment)

In a parallel region threads are
assigned to HW-threads.

We will now show occupation:
assigned thread-ids on the
HW-thread “grid”.

Thread Occupation

Core#i—> O 1 2 - 63

#
#- # # = thread-id
#
| Y J
Processor Not occupied

Layout is for a 64-core system

Affinity (distribution)

Distributions (fewer threads than the total 64 cores):

close (keeps threads together)

Coreg—> 0O 1 2 3 31| 32 33 34 35 62 63

OMP_NUM THREADS=32
OMP_PROC_BIND=close

Processor (Thread ID)

spread (spreads threads out across cores)

Core #—> {31 32 33 34 35 - 62 63

0 1 2 3

OMP_NUM THREADS=32
OMP_PROC BIND=spread

Processor (Thread ID)

Affinity (distribution)

Distributions (greater number of threads than the total 64 cores):
Occupying 1, 2, 3 and 4 OpenMP threads per core:

export OMP PROC BIND=spread

1 thread/core 2 threads/core 3 threads/core 4 threads/core
OMP_NUM_THREADS OMP NUM THREADS OMP NUM THREADS OMP NUM THREADS
64 128 192 "~ 256
Core#>| 0 | 1] 2 |63 o 12|63 o[22 |63 o[22 e3

Processor (Thread ID) Processor (Thread ID) Processor (Thread ID) Processor (Thread ID)

Sequential threads are on the same core.
Try this affinity setting when increasing the threads per core.

Tacc

6/22/16 5

Core #—>

Affinity (distribution)

Distributions (greater number of threads than the total 64 cores):
Occupying 1, 2, 3 and 4 of the quadrants:

export OMP PROC BIND=close

Quadrant 1

Quadrants 1-2

Quadrants 1-3

Quadrants 1-4

OMP_NUM THREADS OMP_NUM THREADS OMP NUM THREADS OMP NUM THREADS

64 128 192 256
0 1 15 63 0 1 - 31+~ 63 0 1 .47 - 63 0 1 63

Tacc

Processor (Thread ID)

Processor (Thread ID)

Processor (Thread ID)

Processor (Thread ID)

6/22/16 6

Affinity (places)

A PLACE is a list of HW-threads.

Comma separated list

 Basic place syntax:

{}:length
{}:length : stride

e.g. {0h{1}{2}.{3}.{4}

{ lower-bound } : length : stride

e.g. {035 = {05,{1}1,{2}{3}14}
e.g. {0132 ={0}{2}{4}

e.g. export OMP_NUM THREADS=128 OMP PLACES="{0}:128"

TaceC

6/22/16 7

Affinity (HW-thread maps, floating threads)

A 256-bit mask specifies where a thread may execute.

OMP PLACES=“{0}” [0 - OO0 - OO0 -+ OO -+ [mask
OMP PLACES="“{64}” I - (I - O - O -~ O
OMP PLACES="“{128}” I - OO - OO - OO - O
OMP PLACES="“{192}” O - OO - OO - (OO - O
OMP_PLACES= [T - [T - [-+ [EEEEEEE - O
“{0,64,128,192}"

How can | get this mask (for the 1st core)?

A list within a place is a mask (where a thread can “float”).

TACC |

6/22/16 8

Affinity (list inside a place)

*A list inside a place creates a mask:

Comma separated list eg. {0,1,2,3,4,5}

 Basic list syntax: { lower-bound : length : stride }
{Ib:length } e.g. {0:4} ={0, 1, 2, 3}
{ Ib : length : stride } e.g. {0:3:2} =0, 2, 4}

TACC |

6/22/16

Hardware Threads

(®) (®) O o

o o o O O (®) O o O
HW-thread # [0 [20 A5 [161(17128 (... 131 [321/331/34 [...[47 | (4814950 [...163 "
HW-thread # [0 R i e eont [[es i [Tos [[ey [l [a2
HW-thread # [0 00 [0 2] [Taaan [[0 fasen (Mo [[[s [Tz [[fasn
HW-thread # [E [0 00 [207 [F2081 [(223 224 [0 [[(230 (12400 0 [2880

core O
core 1
core 2
ore 34
ore 47
ore 48
ore 49
ore 50

ore 15
ore 16
ore 17
ore 18
ore 31
ore 32
ore 33
ore 63

Layout is for a 64-core system

6/22/16 10

Affinity (cores)

List in a place allows a thread to float on any HW-thread (in a core here).

threads threads threads threads

64 128 192 256
OMP_PLACES=

"{0,64,128,192}:64"

Core#t> 0 1 2 | 63 0 1 2 | 63 0 1 2 - 63 0 1 2 - 63

6/22/16 11

Summary

When using all KNL HW-threads, just set the number
of threads needed- that may work fine.

Try using OMP_PROC_BIND=spread for sequential
thread ids on a core (for 1, 2, 3 and 4 threads per core).

Use OMP_PLACES for complex layouts of threads
OMP_PLACES={lower bound*}:length:stride
syntax is a compact form for building HW-thread lists.

*{Ib} can be expanded as {lb:length:stride}

The End

See me after the workshop for questions.

6/22/16

13

Affinity (core summary)

+ Affinity settings to assign 1, 2, 3 and 4 threads on a core.
 Threads in a core can execute on any HW-thread.
« Thread numbering is sequential on core.

OMP_ OMP_PLACES Cores 0-15
NUM_

THREADS

64 {0,64,128,192}:64 1 thread/core
128 {0,64,128,192}:64 2 threads/core
192 {0,64,128,192}:64 3 thread/core
256 {0,64,128,192}:64 4 threads/core

OMP_PROC_BIND does not need to be set.
e.g. export OMP_NUM_THREADS=128 OMP PLACES="{ 0,04,128,192}:64"

Affinity (working with cores)

« Multiple locations can be included in a place.

* The list syntax is the same as the place syntax:
{ lower_bound : size : stride }

e.g. {0:4:2)

{0:4:2},{1:4,2}

* Place lists can be replicated

{0,04,128,192}:04

{0,064,128,192}:32:2

{0:2,04:2,128:2,192:2}:32:2

= {0121416}
= {0121416}1{1:315/7}

64 places of cores
{0,064,128,192},{1,65,129,193}, ..

32 places of every other core
{0,064,128,192},{2,66,130,194}, ..

32 places of tiles
{0,1,64,65,128,129,192,193},
{2,3,66,67,130,131,194,195}, ..

Default Affinity (distribution)

Occupying 1, 2, 3 and 4 HW threads per core:
(Default: thread ID # - HW-thread id)

1 thread/core 2 threads/core 3 threads/core 4 threads/core
OMP_NUM_THREADS OMP NUM THREADS OMP NUM THREADS OMP NUM THREADS
64 128 ~ 192 ~ 256
Corett>| O 1 2 - 63 0 1 2 - 63 0 1 2 - 63 0 1 2 - 63

Processor (Thread ID)

Processor (Thread ID)

Processor (Thread ID)

Processor (Thread ID)

This is OK for some applications, but:
1.) Putting sequential threads on the same core may be more cache friendly,

2.) Allowing core threads to “float” in the core may be more balance friendly.

Tacc

6/22/16 16

Affinity (cores)

List in a place allows a thread to float on any HW-thread (in a core here).

threads threads threads threads

64 128 192 256
OMP_PLACES=

"{0,64,128,192}:64"

Core#t> 0 | 1] 2 |63 012 63 012 63 0o 1] 2] e3
OMP_PLACES=

"{0,64,128,192}:16" "{0,64,128,192}:32" "{0,64,128,192}:48" "{0,64,128, 192}'64"
Core#> 0 |1 15~ 63 | 0| 1 .31+ 63 |0 1 .47+ 63 0 1 .

quad'rant 0 quadra'nts 0,1 quadrants 0,1,2 quadran’cs 0,1,2.3

6/22/16 17

