
1

Deep Learning
at NERSC

NERSC New User Training
September 8, 2023

Steven Farrell
Data, AI, and Analytics Services

2

The Deep Learning revolution

3

AI is transforming science
Across all domains
● Especially those with Big Data

Across many application areas
● Analyzing data better, faster
● Accelerating expensive simulations
● Control + design of complex systems

Embraced by the DOE and other
funding agencies

4

Growing scientific AI workload at NERSC
We track ML software usage
● Instrument user python imports
● DL users >10x from 2017 to 2021

Also track ML trends through 2-yearly survey

https://conference.scipy.org/proceedings/scipy2021/rollin_thomas.html

5

Scientific AI users

6

The need for HPC

Growing computational
cost of training AI models
● bigger datasets + models,

more complexity
Researchers need large
scale resources
● Rapid iteration, reduce

time to discovery

blog.openai.com/ai-and-compute/

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Deep Learning

Large Language
Models

https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

7

Need for AI at scale

Large problems

Large scale
training

8

Deep Learning parallelization strategies

Data Parallelism
Distribute input samples.

Model (tensor) Parallelism
Distribute network structure
(layers).

Layer Pipelining
Partition by layer.

Fig. credit: arXiv:1802.09941

Hybrid parallelism example: Megatron-Turing NLG 530B

https://arxiv.org/abs/1802.09941
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

9

Current NERSC AI Strategy

● Deploy optimized hardware and software systems
● Apply AI for science using cutting-edge methods
● Empower through seminars, workshops, training and schools

Systems w/
Accelerators

EmpowermentDeployment Methods and Applications

Software Frameworks and Libraries

Automation Interactivity

Deep Learning on Perlmutter:
Software stack and best practices

11

Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their
own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● NCCL, MPI

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/

12

How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load tensorflow/2.9.0

module load pytorch/2.0.1

Check which software versions are available with:
module spider pytorch

You can install your own packages on top to customize:
pip install --user MY-PACKAGE

Or, clone a conda environment from our modules:
conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments

13

Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: our top500 entry used a container!

To see images currently available:
shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:
shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nvcr.io/nvidia/pytorch:22.05-py3

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-22.05_v1
#SBATCH –-module=gpu,nccl-2.15
srun shifter python my_python_script.py

Coming soon: Podman!

https://docs.nersc.gov/development/shifter/gpus/

14

Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

• Pytorch or TensorFlow+Horovod
• Optimized drivers, CUDA, NCCL, cuDNN, etc
• Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes
● Customization: from inside the container, do pip install --user MY-PACKAGE

(make sure to set $PYTHONUSERBASE to a custom path for the desired container)

● NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

15

Distributed Training Tools
Framework built-in
● PyTorch DistributedDataParallel (DDP)
● TensorFlow Distribution Strategies

Other popular libraries
● Horovod: MPI+NCCL, easy to use, examples
● Lightning: DDP + convenient features
● DeepSpeed: ZeRO optimizations, 3D parallelism
● Ray: DDP + HPO
● LBANN: multi-level parallelism, ensemble learning, etc., docs

Communication backends
● NCCL is the backend of choice for GPU nodes on Perlmutter
● The NCCL OFI plugin (from AWS) enables RDMA performance on the

libfabric-based Perlmutter Slingshot network (see our docs)

https://github.com/horovod/horovod/tree/master/examples
https://lbann.readthedocs.io/en/latest/index.html

16

General guidelines for deep learning at NERSC
NERSC documentation: https://docs.nersc.gov/analytics/machinelearning/overview/

Use our provided modules/containers if appropriate
● They have the recommended builds and libraries tested for functionality and performance
● We can track usage which informs our software support strategy

For developing and testing your ML workflows
● Use interactive QOS or Jupyter for on-demand compute resources
● Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
● Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
● Data pipeline is the most common source of bottlenecks

○ Use framework-recommended APIs/formats for data loading
○ Use multi-threaded data loaders and stage data if possible

● Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler

https://docs.nersc.gov/analytics/machinelearning/overview/

Deep Learning on Perlmutter:
Workflow tools

18

Jupyter for deep learning

JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● using their own custom kernels

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels

19

TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing
and monitoring DL experiments, widely adopted by
TensorFlow and PyTorch communities.
We recommend running TensorBoard in Jupyter
using nersc-tensorboard helper module.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:
nersc_tensorboard_helper.tb_address()

https://docs.nersc.gov/analytics/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper

20

Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning
● Many methods and libraries exist for tuning your model hyper-parameters
● Usually very computationally expensive because you need to train many models

=> Good for large HPC resources

Helpers / examples
● W&B template (new)
● Ray cluster helper (new)

Users can use whatever tools work best for them
● Ask us for help if needed!

https://docs.nersc.gov/
machinelearning/hpo/

https://github.com/NERSC/nersc-dl-wandb
https://github.com/asnaylor/nersc_cluster_deploy
https://docs.nersc.gov/machinelearning/hpo/
https://docs.nersc.gov/machinelearning/hpo/

Outreach & additional resources

22

Training events
The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/)
● Comprehensive program with lectures, demos, hands-on sessions, posters
● 2019 material (videos, slides, code) online: https://sites.google.com/lbl.gov/dl4sci2019
● 2020 webinar series material: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (+ previously Cray, ORNL)
● Presented at SC18-22, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material covering distributed training, scaling, profiling, and

optimization on Perlmutter
● See the full SC22 material here
● Accepted for SC23 (w/ more model parallelism)

NVIDIA AI for Science Bootcamp
● 2022 event
● 2023 event (Oct 18, apply now!!)

NERSC Data Seminar Series:
● https://github.com/NERSC/data-seminars

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc22-dl-tutorial
https://www.nersc.gov/users/training/events/2022/nersc-ai-for-science-bootcamp-august-25-26-2022/
https://www.nersc.gov/users/training/events/2023/ai-for-scientific-computing-oct-2023/
https://github.com/NERSC/data-seminars

23

Conclusions
Deep learning for science is here and growing
● Powerful capabilities
● Enthusiastic community
● Increasing HPC workloads

Perlmutter has a productive, performant software stack for deep learning
● Optimized frameworks and solutions for small to large scale DL workloads
● Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Take the ML@NERSC Survey

https://www.nersc.gov/users/NUG/nersc-users-slack/
https://forms.gle/1CJ9x2ndXTfjsYfx9

24

Thank You and
Welcome to

NERSC!

25

Data-parallel training considerations
Weak scaling: converge faster by taking fewer, bigger, faster steps

• i.e., more GPUs, larger batch sizes, larger learning rates

Caveat: for stability & convergence, requires tuning

• Warm-up+scale learning rate, adaptive optimizers, etc
• See our SC21 “Deep Learning at Scale” tutorial for more tips

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * ηw0

w1

w2

w3

w’1

https://docs.google.com/presentation/d/1j_rxcLY6WzVqiDPm-LWnk-UISJiYtRwEHQZZWkZpktI/edit#slide=id.gf80317373c_0_92

26

Model parallelism

Why you might try model parallelism
● to fit larger models
● for speedup (results may vary)

Generally, you can combine multiple types of parallelism
● mention some example like nvidia megatron
● https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatr

on-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-g
enerative-language-model/

Disclaimer: not much content today
● mention some tools
● mention plans for SC23 tutorial

https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

27

TensorFlow at NERSC docs:
https://docs.nersc.gov/analytics/machinelearning/tensorflow/

For distributed training, we recommend using Horovod
● Easy to use and launch with SLURM
● Can use MPI and NCCL as appropriate
● Horovod examples:

https://github.com/horovod/horovod/tree/master/examples

TensorFlow has some nice built-in profiling capabilities
● TF profiler in TF 2: https://www.tensorflow.org/guide/profiler

Guidelines - TensorFlow distributed training

https://docs.nersc.gov/analytics/machinelearning/tensorflow/
https://github.com/horovod/horovod/tree/master/examples
https://www.tensorflow.org/guide/profiler

28

Guidelines - PyTorch distributed training
PyTorch at NERSC docs:
https://docs.nersc.gov/analytics/machinelearning/pytorch/

For distributed training, use PyTorch’s DistributedDataParallel
● Simple model wrapper, native to Pytorch
● Works on CPU and GPU
● Highly optimized for distributed GPU training
● Docs:

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Distributed backends
● On Perlmutter, use the NCCL backend for optimized GPU

communication

https://docs.nersc.gov/analytics/machinelearning/pytorch/
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

29

What are we working on now?
Inference serving
Platforms / ecosystems for AI workflows and MLOps
Podman-hpc for AI
Large scale distributed training, HPO, inference from Jupyter notebooks

30

Deep Learning is transforming science

It can enhance various scientific workflows
● Analysis of large, complex datasets
● Accelerating expensive simulations

Adoption is on the rise in the science communities
● Rapid growth in ML+science conferences
● Recognition of AI achievements:

2018 Turing Award; 2018, 2020 Gordon Bell prizes
● HPC centers awarding allocations for AI,

optimizing next-gen systems for AI
The DOE is investing heavily in AI for science
● Funding calls from ASCR (and other funding agencies)
● Popular, enthusiastic AI4Science town hall series, 300 page report

https://www.anl.gov/ai-for-science-report

31

Scientific ML: endless possibilities!

32

More complex tasks, bigger models, more compute

Models get bigger and more compute
intensive as they tackle more complex
tasks

ML@NERSC 2020

Credit: NVIDIA

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

33

Deep Learning parallelization strategies

Data parallelism is the most common strategy in
practice, especially for inter-node scaling.

TensorFlow and PyTorch support data and
intra-node pipeline parallelism natively. Horovod is
the leading non-native distribution framework. All
support MPI and/or NCCL backends.

