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The Deep Learning revolution
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AI is transforming science
Across all domains
● Especially those with Big Data

Across many application areas
● Analyzing data better, faster
● Accelerating expensive simulations
● Control + design of complex systems

Embraced by the DOE and other 
funding agencies
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Growing scientific AI workload at NERSC
We track ML software usage
● Instrument user python imports
● DL users >10x from 2017 to 2021

Also track ML trends through 2-yearly survey

https://conference.scipy.org/proceedings/scipy2021/rollin_thomas.html
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Scientific AI users
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The need for HPC

Growing computational 
cost of training AI models
● bigger datasets + models, 

more complexity
Researchers need large 
scale resources
● Rapid iteration, reduce 

time to discovery

blog.openai.com/ai-and-compute/

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 

Deep Learning

Large Language 
Models

https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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Need for AI at scale

Large problems

Large scale 
training
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Deep Learning parallelization strategies

Data Parallelism
Distribute input samples.

Model (tensor) Parallelism
Distribute network structure 
(layers).

Layer Pipelining
Partition by layer.

Fig. credit: arXiv:1802.09941

Hybrid parallelism example: Megatron-Turing NLG 530B

https://arxiv.org/abs/1802.09941
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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Current NERSC AI Strategy

● Deploy optimized hardware and software systems
● Apply AI for science using cutting-edge methods 
● Empower through seminars, workshops, training and schools

Systems w/     
Accelerators

EmpowermentDeployment Methods and Applications 

Software Frameworks and Libraries

Automation Interactivity



Deep Learning on Perlmutter:
Software stack and best practices
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Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most 
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their 
own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● NCCL, MPI

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/
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How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load tensorflow/2.9.0

module load pytorch/2.0.1

Check which software versions are available with:
module spider pytorch

You can install your own packages on top to customize:
pip install --user MY-PACKAGE 

Or, clone a conda environment from our modules:
conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments
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Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: our top500 entry used a container!

To see images currently available: 
shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:
shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nvcr.io/nvidia/pytorch:22.05-py3

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-22.05_v1
#SBATCH –-module=gpu,nccl-2.15
srun shifter python my_python_script.py

Coming soon: Podman!

https://docs.nersc.gov/development/shifter/gpus/
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Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

• Pytorch or TensorFlow+Horovod
• Optimized drivers, CUDA, NCCL, cuDNN, etc
• Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes
● Customization: from inside the container, do pip install --user MY-PACKAGE 

(make sure to set $PYTHONUSERBASE to a custom path for the desired container)

● NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module
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Distributed Training Tools
Framework built-in
● PyTorch DistributedDataParallel (DDP)
● TensorFlow Distribution Strategies

Other popular libraries
● Horovod: MPI+NCCL, easy to use, examples
● Lightning: DDP + convenient features
● DeepSpeed: ZeRO optimizations, 3D parallelism
● Ray: DDP + HPO
● LBANN: multi-level parallelism, ensemble learning, etc., docs

Communication backends
● NCCL is the backend of choice for GPU nodes on Perlmutter
● The NCCL OFI plugin (from AWS) enables RDMA performance on the 

libfabric-based Perlmutter Slingshot network (see our docs)

https://github.com/horovod/horovod/tree/master/examples
https://lbann.readthedocs.io/en/latest/index.html
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General guidelines for deep learning at NERSC
NERSC documentation: https://docs.nersc.gov/analytics/machinelearning/overview/

Use our provided modules/containers if appropriate
● They have the recommended builds and libraries tested for functionality and performance
● We can track usage which informs our software support strategy

For developing and testing your ML workflows
● Use interactive QOS or Jupyter for on-demand compute resources
● Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
● Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
● Data pipeline is the most common source of bottlenecks

○ Use framework-recommended APIs/formats for data loading
○ Use multi-threaded data loaders and stage data if possible

● Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler

https://docs.nersc.gov/analytics/machinelearning/overview/


Deep Learning on Perlmutter:
Workflow tools
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Jupyter for deep learning

JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● using their own custom kernels

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels
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TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing 
and monitoring DL experiments, widely adopted by 
TensorFlow and PyTorch communities.
We recommend running TensorBoard in Jupyter 
using nersc-tensorboard helper module.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:
nersc_tensorboard_helper.tb_address()

https://docs.nersc.gov/analytics/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper
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Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning
● Many methods and libraries exist for tuning your model hyper-parameters
● Usually very computationally expensive because you need to train many models 

=> Good for large HPC resources

Helpers / examples
● W&B template (new)
● Ray cluster helper (new)

Users can use whatever tools work best for them
● Ask us for help if needed!

https://docs.nersc.gov/
machinelearning/hpo/ 

https://github.com/NERSC/nersc-dl-wandb
https://github.com/asnaylor/nersc_cluster_deploy
https://docs.nersc.gov/machinelearning/hpo/
https://docs.nersc.gov/machinelearning/hpo/


Outreach & additional resources
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Training events
The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/) 
● Comprehensive program with lectures, demos, hands-on sessions, posters
● 2019 material (videos, slides, code) online: https://sites.google.com/lbl.gov/dl4sci2019
● 2020 webinar series material: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (+ previously Cray, ORNL)
● Presented at SC18-22, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material covering distributed training, scaling, profiling, and 

optimization on Perlmutter
● See the full SC22 material here
● Accepted for SC23 (w/ more model parallelism)

NVIDIA AI for Science Bootcamp
● 2022 event
● 2023 event (Oct 18, apply now!!)

NERSC Data Seminar Series:
● https://github.com/NERSC/data-seminars 

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc22-dl-tutorial
https://www.nersc.gov/users/training/events/2022/nersc-ai-for-science-bootcamp-august-25-26-2022/
https://www.nersc.gov/users/training/events/2023/ai-for-scientific-computing-oct-2023/
https://github.com/NERSC/data-seminars
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Conclusions
Deep learning for science is here and growing
● Powerful capabilities
● Enthusiastic community
● Increasing HPC workloads

Perlmutter has a productive, performant software stack for deep learning
● Optimized frameworks and solutions for small to large scale DL workloads
● Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Take the ML@NERSC Survey

https://www.nersc.gov/users/NUG/nersc-users-slack/
https://forms.gle/1CJ9x2ndXTfjsYfx9
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Thank You and 
Welcome to 

NERSC!
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Data-parallel training considerations
Weak scaling: converge faster by taking fewer, bigger, faster steps

• i.e., more GPUs, larger batch sizes, larger learning rates

Caveat: for stability & convergence, requires tuning

• Warm-up+scale learning rate, adaptive optimizers, etc
• See our SC21 “Deep Learning at Scale” tutorial for more tips

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * ηw0

w1

w2

w3

w’1

https://docs.google.com/presentation/d/1j_rxcLY6WzVqiDPm-LWnk-UISJiYtRwEHQZZWkZpktI/edit#slide=id.gf80317373c_0_92
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Model parallelism

Why you might try model parallelism
● to fit larger models
● for speedup (results may vary)

Generally, you can combine multiple types of parallelism
● mention some example like nvidia megatron
● https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatr

on-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-g
enerative-language-model/ 

Disclaimer: not much content today
● mention some tools
● mention plans for SC23 tutorial

https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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TensorFlow at NERSC docs: 
https://docs.nersc.gov/analytics/machinelearning/tensorflow/

For distributed training, we recommend using Horovod
● Easy to use and launch with SLURM
● Can use MPI and NCCL as appropriate
● Horovod examples: 

https://github.com/horovod/horovod/tree/master/examples

TensorFlow has some nice built-in profiling capabilities
● TF profiler in TF 2: https://www.tensorflow.org/guide/profiler 

Guidelines - TensorFlow distributed training

https://docs.nersc.gov/analytics/machinelearning/tensorflow/
https://github.com/horovod/horovod/tree/master/examples
https://www.tensorflow.org/guide/profiler
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Guidelines - PyTorch distributed training
PyTorch at NERSC docs: 
https://docs.nersc.gov/analytics/machinelearning/pytorch/

For distributed training, use PyTorch’s DistributedDataParallel 
● Simple model wrapper, native to Pytorch
● Works on CPU and GPU
● Highly optimized for distributed GPU training
● Docs: 

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Distributed backends
● On Perlmutter, use the NCCL backend for optimized GPU 

communication

https://docs.nersc.gov/analytics/machinelearning/pytorch/
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
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What are we working on now?
Inference serving
Platforms / ecosystems for AI workflows and MLOps
Podman-hpc for AI
Large scale distributed training, HPO, inference from Jupyter notebooks
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Deep Learning is transforming science

It can enhance various scientific workflows
● Analysis of large, complex datasets
● Accelerating expensive simulations

Adoption is on the rise in the science communities
● Rapid growth in ML+science conferences
● Recognition of AI achievements: 

2018 Turing Award; 2018, 2020 Gordon Bell prizes
● HPC centers awarding allocations for AI, 

optimizing next-gen systems for AI
The DOE is investing heavily in AI for science
● Funding calls from ASCR (and other funding agencies)
● Popular, enthusiastic AI4Science town hall series, 300 page report

https://www.anl.gov/ai-for-science-report
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Scientific ML: endless possibilities!
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More complex tasks, bigger models, more compute

Models get bigger and more compute 
intensive as they tackle more complex 
tasks

ML@NERSC 2020

Credit: NVIDIA

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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Deep Learning parallelization strategies

Data parallelism is the most common strategy in 
practice, especially for inter-node scaling.

TensorFlow and PyTorch support data and 
intra-node pipeline parallelism natively. Horovod is 
the leading non-native distribution framework. All 
support MPI and/or NCCL backends.


