

Imaging the earth's interior with seismic waves, supercomputers, and PGAS

Scott French^{1*} and Barbara Romanowicz^{1,2}

¹ Berkeley Seismological Laboratory, UC Berkeley, Berkeley, CA, USA

² Institut de Physique du Globe de Paris, Paris, France

* Now at: Google Inc.

Motivation: Why seismic imaging?

- **Short answer**: Because we can't just dig a big hole
- Surface and space-based observations provide our only window into the evolution and interior dynamics of Earth
 - Geophysical observations (bathymetry, geoid, heat flow, etc.)
 - Geochemical analysis (meteorites, lavas, xenoliths, etc.)
 - Geodesy (GPS, interferometry, etc.)
- But how can we actually see inside of Earth's mantle?
 - Seismic waves are unique among surface observables: They carry the signature of the structures through which they have propagated
 - Seismic imaging techniques (e.g. tomography) leverage this and enable us to look within

Whole-mantle waveform tomography

- **Objective**: 3D model of material properties (elastic wave speed) throughout the earth's entire mantle (the outer 2890 km)
- **Observations**: Seismograms of natural earthquakes (hundreds)
- Predictions: Numerical simulations of seismic wave propagation

Reconciling observation and prediction

- Defines a nonlinear inverse problem
- Prediction (numerical simulation) is expensive: 500K – 1M CPU hours
- Too costly for stochastic methods
- Must be solved iteratively

Left: Earlier waveform tomographic model SEMum2 covered only the upper ~ 800 km of the mantle (*French et al., 2013, Science*)

Waveform tomography in practice

Key components:

- Data representation
- Misfit function
- Theoretical treatment of wave propagation
- **Optimization scheme**
- Starting model

- Wavefield simulation (SEM)
- Hessian and gradient computation (NACT)
- Assembly and solution of the update system

 $\mathbf{G}_{ii} = \partial \mathbf{g}_i(\mathbf{m}) / \partial \mathbf{m}_i$

Step I: Wavefield simulation

Method of choice: Spectral Element Method

- Cheap time integration (M diagonal)
- Very low numerical dispersion
- Natural b.c. treatment (free surface)
- Straight-forward meshing and parallel decomposition

Coupled-SEM implementation

- Fortran 90 + MPI (+ OpenMP work-in-progress)
- Coupled to an analytical solution in the core (DtN operator)
- Anisotropic homogenization of thin layers: improved time stability, fewer integration steps (shorter simulations)
- Mortar method for non-conforming mesh refinement

Step II: Parallel Hessian assembly

Nonlinear Asymptotic Coupling Theory (NACT)

- Calculates $\mathbf{G}_{ii} = \partial \mathbf{g}_i(\mathbf{m}) / \partial \mathbf{m}_i$
 - Used in computing Hessian estimate $\mathbf{G}^T \mathbf{G}$ and gradient $-\mathbf{G}^T [\mathbf{d} - \mathbf{g}(\mathbf{m})]$
- **Data parallelism**: Each seismogram yields an independent strided row-panel of **G**

Above: Example NACT partial derivatives at arbitrary times during S_{diff} and ScS_2 arrivals

- G is non-sparse (10% nz) and unwieldy (~13 TiB in our recent work)
 - Instead, we directly form G^TG (~180 GiB)
 using a custom PGAS distributed matrix
 abstraction
 - Implemented mainly in C, along with C++ (UPC++), OpenMP, and MPI-IO

Step II: Parallel Hessian assembly (continued)

Partitioned Global Address Space (PGAS) model

- Logically partitioned globally "shared" address space supporting one-sided access
- Excellent fit for distributed data structures + irregular access patterns

Distributed matrix abstraction (*French et al., IPDPS'15*)

- Based on UPC++: A set of PGAS extensions to C++ (*Zheng, et al. IPDPS'14*)
 - Modeled primarily on UPC, but adds: Dynamic remote memory management and asynchronous remote tasks
 - Key to implementing one-sided updates optimized for our use case (+= only, assume associative / commutative, can progress asynchronously)
- Distributed matrices use block-cyclic PBLAS-compatible format
 - ScaLAPACK used to solve the Gauss-Newton model update equation
- Performs significantly better than solutions based on MPI_Accumulate

Putting it all together at NERSC

- **SEM simulations**: Hopper
 - 500 1000 runs per iteration
 - 12 24 nodes, aggregated
 - ~ 90% of our allocation
- Hessian estimation and Gauss-Newton updates: Edison
 - 10 20 runs per iteration
 - 128 512 nodes, standalone
- Three iterations, plus an additional round of simulations (training and validation)
 - \circ ~ 3.1M raw core hours

Above: An overview of the iterative waveform inversion procedure deployed at NERSC.

Scientific results: A whole-mantle model

(especially low shear-velocity structures)

Above: 3D rendering of shearvelocity structure beneath the Hawaii hotspot.

Scientific results: A whole-mantle model

- Unambiguous detection of columnar low-velocity anomalies beneath major hotspots (plumes)
- Plumes are unusually broad in the lower mantle (deeper than 1000 km) and clearly deflect at that depth
- Independently corroborated by isotope signatures, localized seismic observations, regional high-resolution models,

geodynamic modeling efforts

Left: Broad plumes in the earth's lower mantle, including those beneath Pitcairn, Samoa, Cape Verde, and other hotspots.

Conclusion

Scientific contributions

- First-ever whole-mantle seismic model based on numerical wavefield simulations
 - **Unambiguous detection** of "plumes" beneath major hotspots
- **Impact**: New constraints on future geodynamic models, present-day mantle circulation, Earth's heat budget
- **Future directions (ongoing)**: Starting condition for high-resolution regional imaging, inversion for global anelastic structure

Made possible thanks to

- **NERSC resources**: Without access to NERSC resources, and the ease of scientific productivity thereon, this study would not have been possible
- **Powerful PGAS programming systems**: Access to UPC++ and discussions with the DEGAS group enabled us to extend our imaging to whole-mantle scale

Thank you

This work was supported by an NSF Graduate Research Fellowship to SWF, NSF grant EAR-1417229, and ERC Advanced Grant WAVETOMO. Computations were performed at the National Energy Research Scientific Computing Center, supported by the US Department of Energy Office of Science (contract DE-AC02-05CH11231).

Extra slides

Distributed matrix abstraction

Eventually on all UPC++ processes ...

```
GtG.commit(); // barrier
// fetch local pointer
float *mat = GtG.get_local_data();
// ScaLAPACK
// MPI-IO collective write
```


Strong scaling (Hessian estimation)

- Near complete overlap of computation and communication
 - Largest overhead growth at higher concurrency is binning
 - Readily scales to next-generation problem size
 - NERSC Edison (Cray XC30)
 - 5,576 2x 12-core Intel IVB
 - 64 GB DDR3 per node
 - Cray Aries interconnect
 - GNU Compilers 4.8.2 (-O3)
 - GASNet-1.22 / UPC++ master
 - Up to 12,288 cores

Setup

• Matrix size: 50GB – 2.5TB

Weak scaling vs. MPI (Hessian estimation)

- Distributed matrix size fixed (180 GB)
- Dataset size scaled w/ concurrency
 - 64 updates per MPI or UPC++ task
 - + thread team (NUMA domain)

•	NERSC Edison (Cray XC30)
	ONUL Operation (0.00) (0.00)

- GNU Compilers 4.8.2 (-O3)
- Cray MPICH 7.0.3

etu

- Up to 12,288 cores
- Matrix size: 180GB

Scientific results: Independent studies

GEOPHYSICS

Viscosity jump in Earth's mid-mantle

Maxwell L. Rudolph,^{1*} Vedran Lekić,² Carolina Lithgow-Bertelloni³

Probabilistic inversion of Earth's non-hydrostatic geoid (gravitational equipotential surface), combined with geodynamic modeling

Left: Inferred viscosity step superimposed on shear-velocity variation in our seismic model (**top**); Geodynamic model of mantle convection with the implied viscosity contrast (**bottom**).

Rudolph, M., V. Lekic, and C. Lithgow-Bertelloni (2015), Viscosity jump in the Earth's mid mantle, Science, 360 (6266), 1349-1352

Scientific results: A whole-mantle model

