Debugging Tools on Perlmutter

NERSC New User Training Sept 08, 2023 Justin Cook User Engagement Group

Outline

- Debug programs graphically with DDT and TotalView full-fledged debuggers
- CUDA-gdb and Compute Sanitizer (aka CUDA-memcheck) are non-MPI CUDA debuggers provided by NVIDIA
- Can debug parallel programs with gdb4hpc, another text-based GDB-like tool
- Find memory-related bugs with valgrind4hpc and sanitizers4hpc
- Debug crashed or deadlocked programs with STAT and ATP
- <u>https://docs.nersc.gov/tools/debug/</u>

Before we start debugging

- Setup a remote desktop connection
- Compile your program
- Setup your environment
- Allocate compute resources

Setup a remote desktop connection

- NoMachine (<u>https://docs.nersc.gov/connect/nx/</u>)
- Better performance than traditional x11 forwarding over ssh
- DDT and TotalView have their own remote connections that can also be used

Compile your program

- Generate debugging data and disable compiler optimizations
- C
 - cc -g -O0 -o program program.c
- Fortran
 - ftn -g -O0 -o program program.f90
- CUDA
 - nvcc -g -O0 -G -o program program.cu

Setup your environment

- Allow creation of core files
 - ulimit -c unlimited
- Abort and create core file on error
 - export MPICH_ABORT_ON_ERROR=1
 - export CUDA_ENABLE_COREDUMP_ON_EXCEPTION=1
- Use cray-cti module for HPE / Cray tools
 - module load cray-cti
 - export CTI_WLM_IMPL=slurm
 - <u>https://github.com/common-tools-interface/cti</u>

Allocating nodes for debugging

• CPU

- salloc [options] -q interactive -C cpu
- GPU
 - salloc [options] -q interactive -C gpu
- https://docs.nersc.gov/jobs/policy/#qos-limits-and-charges

Distributed Debugging Tool (DDT)

Debugging programs with DDT

- Supports MPI, OpenMP, OpenACC, CUDA, Python
- Developed by Linaro (previously Allinea, ARM)
- Remote client
 - <u>https://docs.nersc.gov/tools/debug/ddt/#reverse-connect-using-remote-client</u>
- module load forge
- ddt [options] ./program
- https://docs.nersc.gov/tools/debug/ddt/

Tutorials arm.com	• •	X Arm DDT - Arm Forge 21.0.2
FORGE RUN Run and debug a program. RUN Run and debug a program. ATTACH Attach to an already running program. OPEN CORE Open a core file from a previous run. MANUAL LAUNCH (ADVANCED) Manually launch the backend yourself. OPTIONS Remote Launch: Off QUIT	File Edit View Control Too	ols <u>W</u> indow <u>H</u> elp
ATTACH Attach to an already running program. OPEN CORE Open a core file from a previous run. MANUAL LAUNCH (ADVANCED) Manually launch the backend yourself. OPTIONS Remote Launch: Off QUIT		
Manually launch the backend yourself. OPTIONS Remote Launch: Off QUIT Licence Serial: 10734		ATTACH Attach to an already running program. OPEN CORE
Tutorials arm.com Licence Serial: 10734 ?		Manually launch the backend yourself. OPTIONS Remote Launch: Off
Arm Forge 21.0.2	Tutorials arm.com	
		Arm Forge 21.0.2

	/pscratch/sd/e/elvis	s/debugging/jacobi_mpi	Details
Application:	/pscratch/sd/e/elv	vis/debugging/jacobi_mpi	-
Arguments:			
std <u>in</u> file:			-
Working Dire	ctory:		-
✓ MPI: 24 p	rocesses, SLURM	(generic)	Details
Number of Pr	ocesses: 24	\$	
-	s per Node		
and a second second second	on: SLURM (gener	ic) Change	
srun argumer	its		
OpenMP			
OpenMP CUDA			
CUDA	Debugging		
CUDA	Debugging		
CUDA Memory Submit t	Debugging		

• • •		Arm DDT - Arm Forge 21.0.3		
▶ II • [] (]	{ F } 💠 📑	🚹 🚽 😫 ! 😋 🤅		
Current Group: All 😌 Focu	us on current: 🧿 Group 🕥	Process O Thread Step Threads Toge	ther	
All 0 1	2 3			
Create Group				
CUDA Threads (Process 0,vecAdd)	Block 0 0 00 00 Th	nread 32 🗘 🔅 🔅 Go Grid size: 98	x1x1 Block size: 1024x1x1	
8 @ Project Files	wecAdd	wecAddWrapperCXX	Locals	ent Li Current GPU De.
Search (#K)	2 #include <st< td=""><td></td><td>00</td><td>Current Line(s)</td></st<>		00	Current Line(s)
	3 #include <ma< td=""><td>th.h></td><td>Name</td><td>Value</td></ma<>	th.h>	Name	Value
 Application Code / Sources m vecAdd.cxx vecAddWrapperCXX.cu vecAdd(float * a, float * 	5 // CUDA kern 6 ~ _global_ v 7 { 8 // Get o 9 int id = 10	<pre>el. Each thread takes care of one el oid vecAdd(float *a, float *b, float ur global thread ID blockIdx.x*blockDim.x+threadIdx.x; sure we do not go out of bounds</pre>		
e vecAdd_wrapper(int ra External Code	a 13 c(id 14) 15 16 void vecAdd 1 17 (18 // Size 19 int n = 20 21 int num 22 cudaGetD 23 int gpu	<pre>i] = a[id] + b[id]; wrapper(int rank, int nprocs) of vectors 100000;</pre>		
		Tracepoint O Logb 80	Evaluate	
80	Stacks	Name Value		
Processes Threads CUDA Thr 4 4 0 4 4 401408 4 4 401408 4 8 0	ead Function > main (vecAdd.cxx:13) vecAdd (vecAddWrag vecAdd (vecAddWrag > ??	pperCXX.cu:7)		

Bringing Science Solutions to the World

Office of

Science

30	Threads	CUDA Three	Stacks ad Function
Processes	0.0000000000	(contraction of the second second	
4	4	0	> main (vecAdd.cxx:13)
4	4	401408	vecAdd (vecAddWrapperCXX.cu:7)
4	4	401408	vecAdd (vecAddWrapperCXX.cu:12) > ??
Input/O B	reak Wat	ch Stac K	ernel Progress Trace Tracepoint O Lo
Input/O B	reak <mark>(</mark> Wat		ernel Progress Trace Tracepoint O Lo rnel Progress View
	reak Wat	Ker	
30	1	Ker	rnel Progress View

80	GPU Device	es
Attribute	Name	Value
Rank R	s 0-3	
~ G	A100GL-A	
	IDs	0
	Compute Capability	sm_80
	Number of SMs	108
	Warps per SM	64
	Lanes per Warp	32
	Registers per Lane	256

Evaluate

Debugging programs with TotalView

- Supports MPI, OpenMP, OpenACC, CUDA
- Developed by Perforce
- Remote client
 - https://docs.nersc.gov/tools/debug/totalview/#remote-display-client
- Remote connection
 - https://docs.nersc.gov/tools/debug/totalview/#remote-connections
- module load totalview
- totalview srun -a [options] ./program
- man totalview
- https://docs.nersc.gov/tools/debug/totalview/
- Review a previous training session
 - <u>https://www.nersc.gov/users/training/events/totalview-tutorial-september-29-</u> 2022/

Group (Control)		
cesses & Th × .ookup File or Fu ×	. * Start Page * _d_debug_state * jacobi_mpi/90 *	Call Stack ×
0 3 =	1 program jacobi_mpi 2	Y
scription # P # T 🌱 Members	3 ! Solve $[(d/dx)2 + (d/dy)2] u(x,y) = f(x,y)$ for $u(x,y)$ in a rectangular 4 ! domain: $0 < x < 1$ and $0 < y < 1$.	(EIX) jacobi_mpi
srun (S3) 1 1 p1	5 6 implicit none	main
▼ R 1 1 p1	7 include 'mpif.h' 8 real, allocatable :: u(:,:), unew(:,:), f(:,:)	_libc_start_main
▼ < 1 4 p1.1-4	9 integer :: ngrid 1 number of grid cells along each axis 10 integer :: n 1 number of cells: n = ngrid - 1	start
1 1 p1.1	11 integer :: maxiter ! max number of Jacobi iterations 12 real :: tol ! convergence tolerance threshold	
1 1 p1.2	13 real :: omega ! relaxation parameter 14 integer i, j, k	
1 1 p1.3	15 real h, utmp, diffnorm 16 integer np, myid	0
1 1 p1.4	17 integer js, je, js1, je1 18 integer nbr_down, nbr_up, status(mpi_status_size), ierr	Function jacobi_mpi
jacobi_mp 12 12 0-11	20 call mpi_init(ierr) 21 call mpi_comm_size(mpi_comm_world.np.ierr)	Source /olobal/cscratch1/sd/wvand/debuoging/iacobi_mpi f5
▼ Br 12 12 0-11	21 call mpi_comm_size(mpi_comm_world,np,ierr) 22 call mpi_comm_rank(mpi_comm_world,myid,ierr) 23	Local Variables ×
▼ ja 12 12 0-11.1	23 4 nbr_down = mpi_proc_null 25 nbr_up = mpi_proc_null	Name Type Value
1 1 0.1	25 nor_up = mpi_proc_null 26 if (myid > 0) nbr_down = myid - 1 27 if (myid < np - 1) nbr_up = myid + 1	ierr INTEGER*4 -1427058742 (0xaaf0cfca)
	29 ! Read in problem and solver parameters.	nbr_up INTEGER*4 0 (0x0000000)
	31 call read_params(ngrid,maxiter,tol,omega)	nbr_down INTEGER*4 1 (0x0000001)
ect process or thread attributes to group by:	33 n = ngrid - 1	je1 INTEGER*4 0 (0x0000000)
Control Group	34 35 ! j-loop start and ending indices	js1 INTEGER*4 0 (0x0000000)
Share Group	37 call get_indices(js,je,js1,je1,n)	je INTEGER*4 0 (0x00000000)
Hostname	38 39 ! Allocate memory for arrays.	js INTEGER*4 0 (0x00000000)
Process State	40	myid INTEGER*4 0 (0x00000000)
↑ つ ↓	Data View * Command Line * Logger *	np INTEGER*4 10922 (0x00002aaa)
	Name Type Thread ID Value	diffnorm REAL*4 0
tion Points × Replay Bookmarks ×	[Add New Expression]	utmp REAL*4 0
D♥ PC File Line	-	h REAL*4 0
		k INTEGER*4 0 (0x0000000)
		j INTEGER*4 10922 (0x00002aaa)
		i INTEGER*4 1 (0x0000001)
		omega REAL*4 0
		tol REAL*4 0
	0	maxiter INTEGER*4 0 (0x00000000)

Office of Science

Process window

CUDA for the GNU Debugger (CUDA-gdb)

Debug cuda programs with cuda-gdb

- An extension to GDB that supports cuda programs
- •Developed by NVIDIA
- cuda-gpu [options] ./program [core-file]
- •(cuda-gdb) help
- •(cuda-gdb) bt
- •(cuda-gdb) list
- •(cuda-gdb) help cuda
- cuda-gdb --help
- •https://docs.nvidia.com/cuda/cuda-gdb/index.html

Compute Sanitizer (aka CUDA-memcheck)

Perform dynamic analysis of cuda programs with compute-sanitizer

- Use several tools to check program correctness at run-time
- Dynamic instrumentation at compile time
- Developed by NVIDIA
- •srun compute-sanitizer --tool=memcheck [options] ./program
- memcheck, Detect memory errors
- racecheck, Detect race conditions
- •initcheck, Detect use of uninitialized variables
- syncheck, Detect sync errors
- •https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html

GNU Debugger for HPC (gdb4hpc)

Debug parallel programs with gdb4hpc

- An extension to GDB that supports parallel programming models
- Does not support GPUs
- Developed by Cray / HPE
- module load gdb4hpc
- •gdb4hpc
- (debug all) launch \$p{N} ./program
- •(debug all) help viewset
- •(debug all) viewset \$p
- •man gdb4hpc
- •<u>https://docs.nersc.gov/tools/debug/gdb4hpc_ccdb/#parallel-debugging-with-gdb4hpc</u>


```
dbg all> launch $p{8} ./pcm
Starting application, please wait...
Creating MRNet communication network...
sbcast: error: No compression library available, compression disabled.
sbcast: error: No compression library available, compression disabled.
Waiting for debug servers to attach to MRNet communications network...
Timeout in 400 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [0]; Timeout Counter: [1]
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [1]; Timeout Counter: [2]
Number of dbgsrvs connected: [8]; Timeout Counter: [0]
Finalizing setup...
Launch complete.
p{0..7}: Initial breakpoint, main at /global/u1/j/jscook/hpe-tools/pi calc mpi.c:25
```

```
dbg all> list
p{0..7}: 25
                  reqSteps = 31415;
                                              /* running about 31 thousand steps */
p{0..7}: 26
                  mySumBuf = 0;
p{0..7}: 27
                  mvSum = 0;
p{0..7}: 28
p{0..7}: 29
                  MPI Init(&argc, &argv);
p{0..7}: 30
                  MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
p{0..7}: 31
                  MPI Comm size(MPI COMM WORLD, &mpiSize);
p{0..7}: 32
p{0..7}: 33
                  if (myRank == 0) {
p{0..7}: 34
```

dbg all> viewset \$p Name Procs p p{0..7}

p{0..7}: Breakpoint 1: file /global/u1/j/jscook/hpe-tools/pi_calc_mpi.c, line 31. dbg all> print \$p::myRank p{0..7}: 0

n{07}: Breakpoi	int 1, main at /global/u1/j/jscook/hpe-tools/pi_calc_mpi.c:31
dbg all> print \$p	
p{0}: 0	
p{1}: 1	
p{2}: 2	
p{3}: 3	
p{4}: 4	
p{5}: 5	
p{6}: 6	
p{7}: 7	
dbg all> list	
p{07}: 31	MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
p{07}: 32	
p{07}: 33	if (myRank == 0) {
p{07}: 34	
p{07}: 35	/* sum my share of the series */
p{07}: 36	mySum = sumFractions(reqSteps, mpiSize, myRank);
p{07}: 37	
p{07}: 38	/* add up sums from all nodes */
p{07}: 39	for (int srcRank = 1; srcRank < mpiSize; srcRank++){
p{07}: 40	MPI_Recv(&mySumBuf, 1, MPI_DOUBLE, srcRank, 0, MPI_COMM_WORLD, &myStatus);

Valgrind for HPC (valgrind4hpc)

Perform dynamic analysis of parallel programs with valgrind4hpc

- Use several tools to check program correctness at run-time
- Dynamic instrumentation at compile time
- Does not support GPUs
- Based on valgrind
- Developed by HPE / Cray
- Aggregated messages/results from all MPI ranks
- Less spurious error messages than valgrind
- module load valgrind4hpc
- •valgrind4hpc -n4 --tool=memcheck [launcher-args] [valgrind-args] ./program
- •Tools: memcheck, helgrind, exp-sgcheck, drd
- •man valgrind4hpc
- •man valgrind
- <u>https://docs.nersc.gov/tools/debug/valgrind/</u>

Sanitizers for HPC (sanitizers4hpc)

Perform dynamic analysis of parallel programs with sanitizers4hpc

- Use several tools to check program correctness at run-time
- Static instrumentation at compile time
- Aggregates report across all processes
- Based on LLVM Sanitizers
- Supports CCE, GCC
- Supports GPUs with cuda-memcheck
- •Developed by HPE / Cray
- module swap PrgEnv-gnu PrgEnv-cray
- module load sanitizers4hpc
- -fsanitize=<sanitizer>
- •Sanitizers: Address, Leak, Thread
- sanitizers4hpc -l "-n4" -- ./program
- man sanitizers4hpc
- <u>https://github.com/google/sanitizers</u>

Stack Trace Analysis Tool (STAT)

Debug deadlocked programs with STAT

- Attach to a job launcher process
- Gathers and merges stack traces for all processes
- Supports MPI, threads, and cuda (using cuda-gdb)
- module load cray-stat
- srun [options] program &
- <program-pid will output>
- stat-cl [options] program-pid
- •stat-view stat-output-file
- •man stat-cl
- man stat-view
- <u>https://docs.nersc.gov/tools/debug/stat_atp/#stat</u>


```
$ ftn -q -o jacobi mpi jacobi mpi.f90
$ salloc -N 1 -t 30:00 -g debug -C knl
. . .
$ srun -n 4 -c 64 --cpu-bind=cores ./jacobi mpi &
[1] 135543
S module load stat
$ stat-cl -i 135543
. . .
Attaching to application...
Attached!
Application already paused... ignoring request to pause
Sampling traces...
Traces sampled!
. . .
Resuming the application ...
Resumed!
Merging traces...
Traces merged!
Detaching from application...
Detached!
Results written to /global/cscratch1/sd/wyang/debugging/stat/stat results/jacobi mpi.0003
$ ls -l stat results/jacobi mpi.0003/*.dot
```

-rw-rw---- 1 wyang wyang 5201 Jun 7 14:55 stat_results/jacobi_mpi.0003/00_jacobi_mpi.0003.3D.dot \$ STATview stat_results/jacobi_mpi.0003/00_jacobi_mpi.0003.3D.dot

Office of

Science

Abnormal Termination Processing (ATP)

Debugging crashed programs with ATP

- •Signal handler processes termination signals
- •Gathers and merges stack traces for all processes
- Selectively produces core files
- Support MPI, threads, and cuda (using cuda-gdb)
- module load cray-stat
- module load atp
- •export ATP_ENABLED=1
- •export ATP_GDB_BINARY=\$(which gdb) # optional
- -fno-backtrace # GNU Fortran
- srun [options] program
- •<termination signal> or <app crashes>
- stat-view dot-file
- •man atp

<u>https://docs.nersc.gov/tools/debug/stat_atp/#atp</u>

Science

Thank You and Welcome to NERSC!

