Cori Application Readiness Strategy and Early Experiences

March, 2016

Edison (lvy-Bridge):

- 12 Cores Per CPU
- 24 Virtual Cores Per CPU
- 2.4-3.2 GHz
- Can do 4 Double Precision Operations per Cycle (+ multiply/add)
- 2.5 GB of Memory Per Core
- ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):

- Up to 72 Physical Cores Per CPU
- Up to 288 Virtual Cores Per CPU
- Much slower GHz
- Can do 8 Double Precision Operations per Cycle (+ multiply/add)
- < 0.3 GB of Fast Memory Per Core
 < 2 GB of Slow Memory Per Core
- Fast memory has ~ 5x DDR4 bandwidth

NESAP

The NERSC Exascale Science Application Program

Code Coverage

Resources for Code Teams

• Early access to hardware

- Access to Babbage (KNC cluster) and early "white box" test systems expected in 2015
- Early access and significant time on the full Cori system

Technical deep dives

- Access to Cray and Intel staff on-site staff for application optimization and performance analysis
- Multi-day deep dive ('dungeon' session) with Intel staff at Oregon Campus to examine specific optimization issues

• User Training Sessions

- From NERSC, Cray and Intel staff on OpenMP, vectorization, application profiling
- Knights Landing architectural briefings from Intel
- NERSC Staff as Code Team Liaisons (Hands on assistance)
- 8 Postdocs

NESAP Postdocs

Taylor Barnes Quantum ESPRESSO

Mathieu Lobet WARP

Brian Friesen **Boxlib**

Tuomas Koskela XGC1

Andrey Ovsyannikov Chombo-Crunch

Tareq Malas EMGeo

NERSC Staff associated with NESAP

- **Richard Gerber**

Zhengji Zhao

Helen He

Ankit Bhagatwala

Stephen Leak

Katie Antypas

Woo-Sun Yang

Doug Doerfler

Jack Deslippe

Brandon Cook

Thorsten Kurth

Target Application Team Concept

(1 FTE Postdoc +) 0.2 FTE AR Staff

0.25 FTE COE

1.0 FTE User Dev.

1 Dungeon Ses. + 2 Week on site w/ Chip vendor staff

Rebecca Hartman-Baker

Timeline

Timeline

Working With Vendors

NERSC Is uniquely positioned between HPC Vendors and HPC Users and Applications developers.

NESAP provides a power venue for these two groups to interact.

Optimization Strategy

Important Optimization Concepts

- MPI+X (Where X is MPI, OpenMP, PGAS etc)
- Vectorization
- Understanding Memory Bandwidth

If your performance changes, you are at least partially memory bandwidth bound

NERSC YEARS at the FOREFRONT

Measuring Your Memory Bandwidth Usage (VTune)

	💏 Applications Places System 👹 🌺 📶 📓	الله (Thu Oct 2, 1:30:59 PM mic
	cno current project> - Intel VTune Amplifier	_ • ×
		=
	💹 Bandwidth Bandwidth viewpoint (<u>change</u>) 🖸	Intel VTune Amplifier XE 2015
	🖪 🔝 Collection Log 🕘 Analysis Target 🛕 Analysis Type 时 Summary 🔗 Bottom-up	
Maacura mamary	Q ⁰ Q4 Q−Q ⁴ 0.55 15 1.55 25 2.55 35 3.55 45 4.55 55 5.55	65 Ruler Area
	¥ = 41.066	🖉 🗖 Region Ins
	backage_0	y Bandwidth, GB/s
)andwidth usade in	1 package 1 41.066	🗧 🗹 Read Bandwidth
anamaan acago m		Bade Read Band
(Tupo (Novt Talk)		Write Bandwidt
VIUNE. (INEXLIAIN)		🖉 🖓 QPI Bandwidth,
	41.021	E CPU Time
	a package_1	But CPU Time
	Ka	<u>~</u>
`omnaro to Stroam	Hande and Antonia	
		·
	g package_1	=
GB/S.		
		=
90% of stream, you		
· · · · · · · · · · · · · · · · · · ·		
e memory handwidth		
	Grouping: Function / Call Stack	¢ t. Q X
b a u a d	Function / Call Stack CP. ** Instructions Retired CP Rate Module Function (full) Sou	
DOUNO.	YMAIN_SompSparallel_for@400 87.1% 57,7%6.006.694 2.502 Tikernel.new2.x MAIn_SompSparallel_foritke0x4 b kmp wait sleep template 5.6% 7,248.00.872 1.87 libiomo5.so kmp wait sleep template VAIA	
	DMAIN_somp\$parallel_for@549 2.5% 2.754.004,131 1.476 ffkernel.new2.x MAIN_somp\$parallel_for 0x4	1
	P[Outside any known module] 2.3% 556,000,834 6.737 [Outside any known mo] 0 b Imm x86 pause 0.94 3.322,005,043 0.616/librorn5.so 0.94	-
	Comp. Conjunza	
a a su a su a ta a ta su a a d	Priternel 0.3% 196,000,294 2.480 ffkernel ffkernel <t< td=""><td></td></t<>	
ess. more tests need	P_kmp_yreid 0.2% 1.490.002.235 0.239 libi0mp3.50 _kmp_yreid z_1043 MAN _somp5parallel for@251 0.1% 252.000.378 0.770 ffkernel.new2.x MAN _somp5parallel foffke044	
	b_sched_yield 0.0% 90,000,135 0.267 libc-2.12.so _sched_yield 0x3	
to he done	PMAIN_somp\$parallel for@460 0.0% 18,000.027 1.000 (ftkernel.new2.x MAIN_somp\$parallel forftke0x4 ▶ syml load e9 0.0% 8,000.012 0.750 (ftkernel.new2.x syml load e9 0.x4	
	▶func@0xbc80 0.0% 0 0.000 Ibitrotify collector.so func@0xbc80 0xb	
	Selected 1 row(s): 87.0% 57,796.086.694 2.502	
	No filters are applied. Y Process Any Process Any Thread Any Thread Any Module Any Module Any Module Inline Model on V Loop Mode: Functions only	
	🛛 🔤 mic@localhost=~/BGW 📔 [mic] 👔 Votes (~) - gedit 📓 [cno current project> 🙀 [cno current project>]	

a

lf

U.S. DEPARTMENT OF

Office of

Science

If your performance changes, you are at least partially compute bound

What to do?

1. Try to improve memory locality, cache reuse

2. Identify the key arrays leading to high memory bandwidth usage and make sure they are/willbe allocated in HBM on Cori.

Profit by getting ~ 5x more bandwidth GB/s.

What to do?

1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major OpenMP regions.

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization in vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

Things that prevent vectorization in your code

Original

```
real (8), dimension
real(8), dimension
   (5, (col f nvr-1)*(col f nvz-1),
   (col f nvr-1)*(col f nvz-1)) :: Ms
do index ip = 1, mesh Nzml
 do index jp = 1, mesh Nrm1
    index 2dp = index jp+mesh Nrm1*(index ip-1)
    tmp vol = cs2%local center volume(index jp)
    tmp f half v = f half(index jp, index ip) *
   tmp vol
    tmp dfdr v = dfdr(index jp, index ip) *
   tmp vol
    tmp dfdz v = dfdz(index jp, index ip) *
   tmp vol
    tmpr(1:3) = tmpr(1:3) +
   Ms(1:3, index 2dp, index 2D)* tmp f half v
    tmpr(5) = tmpr(5) +
   Ms(4, index 2dp, index 2D)*tmp dfdr v +
```

Optimized

Example From Cray COE Work on XGC1

```
((col f nvr-1), 5, (col f nvz-1),
   (col f nvr-1)*(col f nvz-1)) :: Ms
do index ip = 1, mesh Nzml
  do index jp = 1, mesh Nrm1
    index 2dp = index jp+mesh Nrm1*(index ip-1)
    tmp vol = cs2%local center volume(index jp)
    tmp f half v = f half(index jp, index ip) *
   tmp vol
    tmp dfdr v = dfdr(index jp, index ip) * tmp vol
    tmp dfdz v = dfdz(index jp, index ip) * tmp vol
    tmpr(index_jp,1) = tmpr(index jp,1) +
   Ms(index_jp,1,index_ip,index 2D)*
   tmp f half v
   tmpr(index_jp,2) = tmpr(index_jp,2) +
Ms(index_jp,2,index_ip,index_2D)*
   tmp f half v
    tmpr(index_jp,3) = tmpr(index_jp,3) +
   Ms(index jp, 3, index ip, index 2D)*
   tmp f half v
    tmpr(index jp, 5) = tmpr(index jp, 5) +
   Ms(index_jp,4,index_ip,index_2D)*
                                                 tmp dfdr v
                                                 tmp_dfdz_v
```


Things that prevent vectorization in your code

YEARS at the

NESAP Case Studies (More on Thursday)

WARP/PICSAR

ERKELEY LAI

- Current deposition (particle-to-grid) and Field gather (grid-to-particle) most time consuming subroutines
- Large time spent in memory accesses
- Low vectorization

NESAP Lead Ankit Bhagatwala, Mathieu Lobet

Optimization 1: Tiling (Sep 2015)

Improve memory locality by tiling particle and grid quantities

Former data layout in PICSAR

- Particles randomly distributed on the global process grid
- Poor cache reuse

Tiled layout

- Particles grouped in tiles small enough that local particle/grid arrays fit in cache
- Particles deposit charge/current on local grid array in cache
- Reduction of local charge/current arrays in global array
- Slight extra overhead of reduction

Performance improvement from tiling

- Problem size: 80x80x80 cells
- ~10 particles per cell

Optimization 2: Vectorized current deposition

NESAP Lead Zhengji Zhao

VASP profiling- memory bandwidth boudn?

Estimating the performance impact of HBW memory to VASP code using AutoHBW tool on Edison

Edison, a Cray XC30, with dual-socket Ivy Bridge nodes interconnected with Cray's Aries network, the bandwidths of the near socket memory (simulating MCDRAM) and the far socket memory via QPI (simulating DDR) differ by 33%

VASP+FASTMEM performance on Edison

VASP performance comparison between runs when everything was allocated in the DDR memory (blue/slow), when only a few selected arrays were allocated to HBM (red/mixed), and when everything was allocated to HBM (green/fast). The test case PdO@Pd-slab was used, and the tests were run on a single Edison node.

- Spent a lot of time threading and vectorizing app. Performance still slightly worse on KNC than Haswell
- 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC, but not on Haswell) do my_igp = 1, ngpown (OpenMP)

```
do iw = 1 , 3
```

```
do ig = 1, igmax
```

load wtilde_array(ig,my_igp) 819 MB, 512KB per row load aqsntemp(ig,n1) 256 MB, 512KB per row load I_eps_array(ig,my_igp) 819 MB, 512KB per row do work (including complex divide) depends on ig, iw ...

• 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC but not on Haswell)

```
do my_igp = 1, ngpown (OpenMP)
    do iw = 1, 3
    do ig = 1, igmax
        load wtilde_array(ig,my_igp) 819 MB, 512KB per row
        load aqsntemp(ig,n1) 256 MB, 512KB per row
        load I_eps_array(ig,my_igp) 819 MB, 512KB per row
        do work (including divide)
```

Required Cache size to reuse 3 times:
1536 КВ
L2 on KNC is 256 KB per Hardware Thread L2 on Has. is 256 KB per core
L3 on Has. is 3800 KB per core

• 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC but not on Haswell)

```
do my_igp = 1, ngpown (OpenMP)
  do iw = 1, 3
    do ig = 1, igmax
        load wtilde_array(ig,my_igp) 819 MB, 512KB per row
        load aqsntemp(ig,n1) 256 MB, 512KB per row
        load I_eps_array(ig,my_igp) 819 MB, 512KB per row
        do work (including divide)
```

Required Cache size to reuse 3 times:
1536 КВ
L2 on KNC is 256 KB per Hardware Thread
L2 on Has. is 256 KB per core
L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on KNC and Haswell. But, Haswell has L3 to catch us.

• 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC but not on Haswell)

```
igblk = 2048
do my_igp = 1, ngpown (OpenMP)
do igbeg = 1, igmax, igblk
do iw = 1, 3
do ig = igbeg, min(igbeg + igblk,igmax)
load wtilde_array(ig,my_igp) 819 MB, 512KB per row
load aqsntemp(ig,n1) 256 MB, 512KB per row
load l_eps_array(ig,my_igp) 819 MB, 512KB per row
do work (including divide)
```

Required Cache size to reuse 3 times:
1536 KB
L2 on KNC is 256 KB per Hardware Thread L2 on Has. is 256 KB per core
L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on KNC and Haswell. But, Haswell has L3 to catch us.

Igblk=2048 - to enable reuse of L2 cache on KNC

- Morning: 2S Haswell 27.9s KNC 39.9s
- Afternoon: 2S Haswell 27.5s KNC 29.7s

The loss of L3 on MIC makes locality more important.

Conclusions

1. Optimizing code for Cori is not always straightforward. It is a continual discovery process that involves many sequential and coupled changes.

- 1. Optimizing code for Cori is not always straightforward. It is a continual discovery process that involves many sequential and coupled changes.
- 2. Use profiling tools like VTune and CrayPat on Edison to find and characterize hotspots.
- 3. Understanding bandwidth and compute limitations of hotspots are key to deciding how to improve code.
- 4. NERSC is in a unique position to facilitate the transition of DOE science codes, with application teams and vendors.

