
1

Crash Course in Supercomputing

Computing Sciences Summer Student
Program & NERSC/ALCF/OLCF

Supercomputing User Training 2024

Rebecca Hartman-Baker, PhD

User Engagement Group Lead

Charles Lively III, PhD

Science Engagement Engineer

Helen He, PhD

User Engagement Group 

June 28, 2024

2

Today’s Pipeline Continued…
Afternoon Session Overview (after Lunch)

• Introduction to OpenMP - 01:00 p.m. PDT

• Understanding OpenMP + Hybrid OpenMP Concepts

• BREAK - 02:45 p.m. - 03:00 p.m. PDT

• Interactive Hands-On Exercises &&|| Q&A

Please refer to Event Web Page for Specific Times

Introduction to OpenMP

4

Outline

I. About OpenMP

II. OpenMP Directives

III.Data Scope

IV.Runtime Library Routines and Environment Variables

V. Using OpenMP

VI.Hybrid Programming

5

I. ABOUT OPENMP

6

About OpenMP

● Industry-standard shared memory programming model

● Developed in 1997

● OpenMP Architecture Review Board (ARB) determines

additions and updates to standard

● Current standard: 5.2 (November 2021)

● Standard includes GPU offloading (since 4.0), not

discussed today

7

Advantages to OpenMP

● Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

● Can express simple or complex algorithms

● Code size grows only modestly

● Expression of parallelism flows clearly, so code is easy to

read

● Single source code for OpenMP and non-OpenMP – non-

OpenMP compilers simply ignore OMP directives

8

OpenMP Programming Model

● Application Programmer Interface (API) is combination of

○ Directives

○ Runtime library routines

○ Environment variables

● API falls into three categories

○ Expression of parallelism (flow control)

○ Data sharing among threads (communication)

○ Synchronization (coordination or interaction)

9

Parallelism

● Shared memory, thread-based parallelism

● Explicit parallelism (parallel regions)

● Fork/join model

Source: https://hpc-tutorials.llnl.gov/openmp/

https://hpc-tutorials.llnl.gov/openmp/

10

II. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

11

II. OpenMP Directives

● Syntax overview

● Parallel

● Worksharing Loop

● Schedule

● Synchronization

● Reduction

● Loop

12

Syntax Overview: C/C++
● Basic format

○ #pragma omp directive-name [clause] newline

● All directives followed by newline

● Uses pragma construct (pragma = Greek for “thing done”)

● Case sensitive

● Directives follow standard rules for C/C++ compiler

directives

● Use curly braces (not on pragma line) to denote scope of

directive

● Long directive lines can be continued by escaping newline

character with \

13

Syntax Overview: Fortran
● Basic format:

○ sentinel directive-name [clause]

● Three accepted sentinels: !$omp *$omp c$omp

● Some directives paired with end clause

● Fixed-form code:

○ Any of three sentinels  
beginning at column 1

○ Initial directive line has  
space/zero in column 6

○ Continuation directive line has  
non-space/zero in column 6

○ Standard rules for fixed-form  
line length, spaces, etc. apply

● Free-form code:

○ !$omp only accepted sentinel

○ Sentinel can be in any column, but

must be preceded by only white
space and followed by a space

○ Line to be continued must end in &
and following line begins with sentinel

○ Standard rules for free-form line
length, spaces, etc. apply

14

OpenMP Directives: Parallel
● A block of code executed by multiple threads

● Syntax:

#pragma omp parallel private(list) shared(list)

{

 /* parallel section */

}

!$omp parallel private(list) &

!$omp shared(list)

! Parallel section

!$omp end parallel

15

Simple Example (C/C++)
#include <stdio.h>

#include <omp.h>

int main (int argc, char *argv[]) {

	 int tid;

	 printf(“Hello world from threads:\n”);

	 #pragma omp parallel private(tid)

	 {

	 	 tid = omp_get_thread_num();

	 	 printf(“<%d>\n”, tid);

	 }

	 printf(“I am sequential now\n”);

	 return 0;

}

16

Simple Example (Fortran)
 program hello

 integer tid, omp_get_thread_num

 write(*,*) ‘Hello world from threads:’

 !$omp parallel private(tid)

 tid = omp_get_thread_num()

 write(*,*) ‘<‘, tid, ‘>’

 !$omp end parallel

 write(*,*) ‘I am sequential now’

 end

17

Simple Example: Output
Output 1

Hello world from threads:

<0>

<1>

<2>

<3>

<4>

I am sequential now

Output 2

Hello world from threads:

<1>

<2>

<0>

<4>

<3>

I am sequential now

17

Simple Example: Output
Output 1

Hello world from threads:

<0>

<1>

<2>

<3>

<4>

I am sequential now

Output 2

Hello world from threads:

<1>

<2>

<0>

<4>

<3>

I am sequential now

Order of execution is scheduled by OS!!!

18

OpenMP Directives: Worksharing Loop

● Iterations of the loop following the directive are executed
in parallel

● Syntax (C):

#pragma omp for schedule(type [,chunk]) private(list)\
shared(list) nowait

 {

 /* for loop */

 }

19

OpenMP Directives: Worksharing Loop

● Syntax (Fortran):

!$omp do schedule (type [,chunk]) &

!omp private(list) shared(list)

C do loop goes here

!$omp end do nowait

● type = {static, dynamic, guided, runtime}

● If nowait specified, threads do not synchronize at end of

loop

20

OpenMP Directives: Scheduling
● Default scheduling determined by implementation

● Static

○ ID of thread performing particular iteration is function of iteration
number and number of threads

○ Statically assigned at beginning of loop

○ Best for known, predictable amount of work per iteration

○ Low overhead

● Dynamic

○ Assignment of threads determined at runtime (round robin)

○ Each thread gets more work after completing current work

○ Load balance is possible for variable work per iteration

○ Introduces extra overhead

21

OpenMP Directives: Scheduling

Type Chunks
?

Chunk
Size

Chunks Overhead Description

static N N/P P Lowest Simple Static
static Y C N/C Low Interleaved
dynamic N N/P P Medium Simple dynamic
dynamic Y C N/C High Dynamic
guided N/A ≤ N/P ≤ N/C Highest Dynamic optimized
runtime Varies Varies Varies Varies Set by environment

variable

Note: N = size of loop, P = number of threads, C = chunk size

22

Which Loops are Parallelizable?
Parallelizable

● Number of iterations known

upon entry, and does not
change

● Each iteration independent of
all others

● No data dependence

Not Parallelizable

● Conditional loops (many while

loops)

● Iterator loops (e.g., iterating

over std:: list<…> in C++)

● Iterations dependent upon

each other

● Data dependence

Trick: If a loop can be run backwards and get the same results,
then it is almost always parallelizable!

23

Example: Parallelizable?
/* Gaussian Elimination (no pivoting): x = A\b */

for (int i = 0; i < N-1; i++) {

 for (int j = i; j < N; j++) {

 double ratio = A[j][i]/A[i][i];

 for (int k = i; k < N; k++) {

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

}

24

Example: Parallelizable?

25

Example: Parallelizable?

● Outermost Loop (i):

○ N-1 iterations

○ Iterations depend upon each other (values computed at step
i-1 used in step i)

● Inner loop (j):

○ N-i iterations (constant for given i)

○ Iterations can be performed in any order

● Innermost loop (k):

○ N-i iterations (constant for given i)

○ Iterations can be performed in any order

26

Example: Parallelizable?
/* Gaussian Elimination (no pivoting): x = A\b */

for (int i = 0; i < N-1; i++) {

#pragma omp parallel for

 for (int j = i; j < N; j++) {

 double ratio = A[j][i]/A[i][i];

 for (int k = i; k < N; k++) {

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

}

Note: can combine parallel and
for into single pragma

27

OpenMP Directives: Synchronization

● Sometimes, need to make sure threads execute regions
of code in proper order

○ Maybe one part depends on another part being completed

○ Maybe only one thread need execute a section of code

● Synchronization directives

○ Critical

○ Barrier

○ Single

28

OpenMP Directives: Synchronization

● Critical

○ Specifies section of code that must be executed by only one

thread at a time

○ Syntax: C/C++	

#pragma omp critical (name)

○ Fortran

!$omp critical (name)

!$omp end critical

○ Names are global identifiers – critical regions with same name
are treated as same region

29

OpenMP Directives: Synchronization

● Single

○ Enclosed code is to be executed by only one thread

○ Useful for thread-unsafe sections of code (e.g., I/O)

○ Syntax: C/C++	 	 	 	 	 Fortran

#pragma omp single	 	 !$omp single

	 	 	 	 	 	 	 	 	
!$omp end single

30

OpenMP Directives: Synchronization

● Barrier

○ Synchronizes all threads: thread reaches barrier and waits until

all other threads have reached barrier, then resumes executing
code following barrier

○ Syntax: C/C++	 	 	 	 	 Fortran

#pragma omp barrier	 	 !$OMP barrier

○ Sequence of work-sharing and barrier regions encountered must
be the same for every thread

31

OpenMP Directives: Reduction

● Reduces list of variables into one, using operator (e.g.,
max, sum, product, etc.)

● Syntax

#pragma omp reduction(op : list)

!$omp reduction(op : list)

○ where list is list of variables and op is one of following:

■ C/C++: +, -, *, &, ^, |, &&, ||, max, min

■ Fortran: +, -, *, .and., .or., .eqv., .neqv., max,

min, iand, ior, ieor

32

OpenMP Directives: Loop

● Iterations of the loop following the directive are executed
in parallel

● omp loop gives an OpenMP implementation the freedom
to choose the best parallelization scheme

● Syntax (C):

#pragma omp loop private(list)\ shared(list) nowait

 {

 /* for loop */

 }

33

OpenMP Directives: Loop

● Syntax (Fortran):

!$omp loop &

!omp private(list) shared(list)

! do loop goes here

!$omp end loop nowait

● omp loop gives an OpenMP implementation the freedom
to choose the best parallelization scheme

● If nowait specified, threads do not synchronize at end of
loop

34

III. VARIABLE SCOPE

“M119A2 Scope” by Georgia National Guard, source: http://www.flickr.com/photos/ganatlguard/
5934238668/sizes/l/in/photostream/

http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/
http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/

35

III. Variable Scope

● About variable scope

● Scoping clauses

● Common mistakes

36

About Variable Scope

● Variables can be shared or private within a parallel region

● Shared: one copy, shared between all threads

○ Single common memory location, accessible by all threads

● Private: each thread makes its own copy

○ Private variables exist only in parallel region

37

About Variable Scope

● By default, all variables shared except

○ Index values of parallel region loop – private by default

○ Local variables and value parameters within subroutines called

within parallel region – private

○ Variables declared within lexical extent of parallel region –

private

● Variable scope is the most common source of errors in

OpenMP codes

○ Correctly determining variable scope is key to correctness and

performance of your code

38

Variable Scoping Clauses: Shared

● Shared variables: shared (list)

○ By default, all variables shared unless otherwise specified

○ All threads access this variable in same location in memory

○ Race conditions can occur if access is not carefully controlled

39

Variable Scoping Clauses: Private

● Private: private (list)

○ Variable exists only within parallel region

○ Value undefined at start and after end of parallel region

● Private starting with defined values: firstprivate
(list)

○ Private variables initialized to be the value held immediately

before entry into parallel region

● Private ending with defined value: lastprivate(list)

○ At end of loop, set variable to value set by final iteration of loop

40

Common Mistakes

● A variable that should be private is public

○ Something unexpectedly gets overwritten

○ Solution: explicitly declare all variable scope

● Nondeterministic execution

○ Different results from different executions

● Race condition

○ Sometimes you get the wrong answer

○ Solutions:

■ Look for overwriting of shared variable

■ Use a tool such as Cray Reveal or Codee to rescope your loop

41

Find the Mistake(s)!
/* Gaussian Elimination (no pivoting): x = A\b */

int i, j, k;

double ratio;

for (i = 0; i < N-1; i++) {

#pragma omp parallel for

 for (j = i; j < N; j++) {

 ratio = A[j][i]/A[i][i];

 for (k = i; k < N; k++) {

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

}

41

Find the Mistake(s)!
/* Gaussian Elimination (no pivoting): x = A\b */

int i, j, k;

double ratio;

for (i = 0; i < N-1; i++) {

#pragma omp parallel for

 for (j = i; j < N; j++) {

 ratio = A[j][i]/A[i][i];

 for (k = i; k < N; k++) {

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

}

k & ratio are shared
variables by default.
Depending on compiler, k
may be optimized out &
therefore not impact
correctness, but ratio will
always lead to errors!
Depending how loop is
scheduled, you will see
different answers.

42

Fix the Mistake(s)!
/* Gaussian Elimination (no pivoting): x = A\b */

int i, j, k;

double ratio;

for (i = 0; i < N-1; i++) {

#pragma omp parallel for private (j,k,ratio) \

shared (i,A,b,N) default (none)

 for (j = i; j < N; j++) {

 ratio = A[j][i]/A[i][i];

 for (k = i; k < N; k++) {

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

}

42

Fix the Mistake(s)!
/* Gaussian Elimination (no pivoting): x = A\b */

int i, j, k;

double ratio;

for (i = 0; i < N-1; i++) {

#pragma omp parallel for private (j,k,ratio) \

shared (i,A,b,N) default (none)

 for (j = i; j < N; j++) {

 ratio = A[j][i]/A[i][i];

 for (k = i; k < N; k++) {

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

}

By setting  
default (none),
compiler will catch any
variables not explicitly
scoped

43

IV. RUNTIME LIBRARY ROUTINES &
ENVIRONMENT VARIABLES

Panorama with snow-capped Mt. McKinley in Denali National Park, Alaska, USA, May 2011, by Rebecca Hartman-Baker.

44

OpenMP Runtime Library Routines

● void omp_set_num_threads(int num_threads)

○ Sets number of threads used in next parallel region

○ Must be called from serial portion of code

● int omp_get_num_threads()

○ Returns number of threads currently in team executing parallel

region from which it is called

● int omp_get_thread_num()

○ Returns rank of thread

○ 0 ≤ omp_get_thread_num() < omp_get_num_threads()

45

OpenMP Environment Variables

● Set environment variables to control execution of parallel
code

● OMP_SCHEDULE

○ Determines how iterations of loops are scheduled

○ E.g., export OMP_SCHEDULE=”dynamic, 4”

● OMP_NUM_THREADS

○ Sets maximum number of threads

○ E.g., export OMP_NUM_THREADS=4

46

Various Methods to Set Number of Threads

● Precedence: 1) > 2) > 3) > 4)

● You may get fewer threads than you requested, check with

omp_get_num_threads()

 1) Use num_threads clause 
 #pragma omp parallel num_threads (4) 
 {

 int ID = omp_get_thread_num(); 
 pooh(ID,A); 
 }

 2) Call omp_set_num_threads API  
 omp_set_num_threads(4); 
 #pragma omp parallel 
 { 
 int ID = omp_get_thread_num(); 
 pooh(ID,A); 
 }

 4) Do none of the three above

 Code will use an implementation

 dependent default number of threads

 defined by the compiler.

 3) Set runtime environment variable

 export OMP_NUM_THREADS=4  
 #pragma omp parallel 
 { 
 int ID = omp_get_thread_num(); 
 pooh(ID,A); 
 }

47

V. USING OPENMP

48

Conditional Compilation

● Can write single source code for use with or without
OpenMP

○ Pragmas are ignored if OpenMP disabled

● What about OpenMP runtime library routines?

○ _OPENMP macro is defined if OpenMP available: can use this to

conditionally include omp.h header file, else redefine runtime
library routines

49

Conditional Compilation
#ifdef _OPENMP

 #include <omp.h>

#else

 #define omp_get_thread_num() 0

#endif

…

int me = omp_get_thread_num();

…

50

Enabling OpenMP

● Most standard compilers support OpenMP directives

● Enable using compiler flags

Compiler Intel GNU PGI/Nvidia Cray
Flag -qopenmp -fopenmp -mp -fopenmp

51

Running Programs with OpenMP Directives

● Set OpenMP environment variables in batch scripts (e.g.,
include definition of OMP_NUM_THREADS in script)

● Example: to run a code with 8 MPI processes and 4
threads/MPI process on Perlmutter CPU:

○ export OMP_NUM_THREADS=4

○ export OMP_PLACES=threads

○ export OMP_PROC_BIND=spread

○ srun -n 8 -c 64 --cpu_bind=cores ./myprog

● Use the NERSC jobscript generator for best results:
https://my.nersc.gov/script_generator.php

https://my.nersc.gov/script_generator.php

52

INTERLUDE 3: COMPUTING PI WITH
OPENMP

“Happy Pi Day (to the 69th digit)!” by Mykl Roventine from http://www.flickr.com/photos/myklroventine/
3355106480/sizes/l/in/photostream/

http://www.flickr.com/photos/myklroventine/3355106480/sizes/l/in/photostream/
http://www.flickr.com/photos/myklroventine/3355106480/sizes/l/in/photostream/

53

Interlude 3: Computing 𝝅 with OpenMP

● Think about the original darts program you downloaded
(darts.c/lcgenerator.h or darts.f90)

● How could we exploit shared-memory parallelism to
compute 𝝅 with the method of darts?

● What possible pitfalls could we encounter?

● Your assignment: parallelize the original darts program

using OpenMP

● Rename it darts-omp.c or darts-omp.f90

OpenMP + Hybrid Parallel Programming

55

VI. HYBRID PROGRAMMING

56

VI. Hybrid Programming

● Motivation

● Considerations

● MPI threading support

● Designing hybrid algorithms

● Examples

57

Motivation

● Multicore architectures are here to stay

○ Macro scale: distributed memory architecture, suitable for MPI

○ Micro scale: each node contains multiple cores and shared

memory, suitable for OpenMP

● Obvious solution: use MPI between nodes, and OpenMP

within nodes

● Hybrid programming model

58

Considerations

● Sounds great, Rebecca, but is hybrid programming
always better?

○ No, not always

○ Especially if poorly programmed 😅

○ Depends also on suitability of architecture

● Think of accelerator model

○ in omp parallel region, use power of multicores; in serial region,

use only 1 processor

○ If your code can exploit threaded parallelism “a lot”, then try

hybrid programming

59

Considerations

● Hybrid parallel programming model

○ Are communication and computation discrete phases of

algorithm?

○ Can/do communication and computation overlap?

● Communication between threads

○ Communicate only outside of parallel regions

○ Assign a manager thread responsible for inter-process

communication

○ Let some threads perform inter-process communication

○ Let all threads communicate with other processes

60

MPI Threading Support

● MPI-2 standard defines four threading support levels

○ (0) MPI_THREAD_SINGLE only one thread allowed

○ (1) MPI_THREAD_FUNNELED master thread is only thread

permitted to make MPI calls

○ (2) MPI_THREAD_SERIALIZED all threads can make MPI calls,

but only one at a time

○ (3) MPI_THREAD_MULTIPLE no restrictions

○ (0.5) MPI calls not permitted inside parallel regions (returns

MPI_THREAD_SINGLE) – this is MPI-1

61

What Threading Model Does My Machine Support?
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

int provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

printf("Supports level %d of %d %d %d %d\n", provided,

 MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,

 MPI_THREAD_SERIALIZED, MPI_THREAD_MULTIPLE);

MPI_Finalize();

return 0;

}

62

What Threading Model Does My Machine Support?

rjhb@perlmutter> cc -o threadmodel threadmodel.c

rjhb@perlmutter> salloc -C cpu -q interactive

salloc: Granted job allocation 10504403

salloc: Waiting for resource configuration

salloc: Nodes nid005664 are ready for job

rjhb@nid005664:~/test> srun -n 1 ./threadmodel

Supports level 3 of 0 1 2 3

63

MPI_Init_thread

● MPI_Init_thread(int required, int
*supported)

○ Use this instead of MPI_Init(…)

○ required: the level of thread support you want

○ supported: the level of thread support provided by implementation

(ideally = required, but if not available, returns  
lowest level > required; failing that, largest level < required)

○ Using MPI_Init(…) is equivalent to required =
MPI_THREAD_SINGLE

● MPI_Finalize() should be called by same thread that
called MPI_Init_thread(…)

64

Other Useful MPI Functions

● MPI_Is_thread_main(int *flag)

○ Thread calls this to determine whether it is main thread

● MPI_Query_thread(int *provided)

○ Thread calls to query level of thread support

65

Supported Threading Models: Single
● Use single pragma

#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp single

 {

 MPI_Xyz(…);

 }

 #pragma omp barrier

}

66

Supported Threading Models: Funneled
● Cray & Intel MPI implementations support funneling

● Use master pragma

#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp master

 {

 MPI_Xyz(…);

 }

 #pragma omp barrier

}

67

Supported Threading Models: Serialized
● Cray & Intel MPI implementations support serialized

● Use single pragma

#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp single

 {

 MPI_Xyz(…);

 }

 //Don't need omp barrier

}

68

Supported Threading Models: Multiple
● Intel MPI implementation supports multiple!

○ (Cray MPI can turn on multiple support with env variables, but
performance is sub-optimal)

● No need for pragmas to protect MPI calls

● Constraints:

○ Ordering of MPI calls maintained within each thread but not
across MPI process -- user is responsible for preventing race
conditions

○ Blocking MPI calls block only the calling thread

● Multiple is rarely required; most algorithms can be written

without it

69

Which Threading Model Should I Use?

Depends on the application!

Model Advantages Disadvantages
Single Portable: every MPI

implementation supports this
Limited flexibility

Funneled Simpler to program Manager thread could get
overloaded

Serial Freedom to communicate Risk of too much cross-
communication

Multiple Completely thread safe Limited availability; sub-optimal
performance

70

Designing Hybrid Algorithms

● Just because you can communicate thread-to-thread,
doesn’t mean you should

● Tradeoff between lumping messages together and
sending individual messages

○ Lumping messages together: one big message, one overhead

○ Sending individual messages: less wait time (?)

● Programmability: performance will be great, when you
finally get it working!

71

Example: Mesh Partitioning

● Regular mesh of finite elements

● When we partition mesh, need to communicate

information about (domain) adjacent cells to
(computationally) remote neighbors

72

Example: Mesh Partitioning

73

Example: Mesh Partitioning

74

INTERLUDE 4: COMPUTING PI WITH
HYBRID PROGRAMMING

“pi” by Travis Morgan from http://www.flickr.com/photos/morgantj/5575500301/sizes/l/in/photostream/

http://www.flickr.com/photos/morgantj/5575500301/sizes/l/in/photostream/

75

Interlude 4: Computing π with Hybrid Programming

● Putting it all together:

○ How can we combine inter-node and intra-node parallelism to

create a hybrid program that computes π using the method of
darts?

○ What potential pitfalls do you see?

● Your assignment: create a code, darts-hybrid.c or

darts-hybrid.f90, developed from darts-
collective.c/darts-collective.f90 and darts-
omp.c/darts-omp.f90, that uses OpenMP to exploit
parallelism within the node, and MPI for parallelism between
nodes

76

Bibliography/Resources: OpenMP

● Mattson, Timothy, Yun (Helen) He, Alice Koniges (2019) The OpenMP
Common Core, Cambridge, MA: MIT Press

● Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas. (2008) Using
OpenMP, Cambridge, MA: MIT Press.

● LLNL OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/

● Mattson, Tim, and Larry Meadows (2008) SC08 OpenMP “Hands-On”

Tutorial, https://www.openmp.org/wp-content/uploads/omp-hands-on-
SC08.pdf

● Bull, Mark (2018) OpenMP Tips, Tricks and Gotchas, http://
www.archer.ac.uk/training/course-material/2018/09/openmp-imp/Slides/
L10-TipsTricksGotchas.pdf

https://computing.llnl.gov/tutorials/openMP/
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

77

Bibliography/Resources: OpenMP

● Logan, Tom, The OpenMP Crash Course (How to Parallelize
your Code with Ease and Inefficiency), http://
ffden-2.phys.uaf.edu/608_lectures/OmpCrash.pdf

● OpenMP.org: https://www.openmp.org/

● OpenMP Standard: https://www.openmp.org/specifications/

○ 5.2 Specification: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-2.pdf

○ 5.2 code examples: https://www.openmp.org/wp-content/uploads/
openmp-examples-5-2.pdf

http://ffden-2.phys.uaf.edu/608_lectures/OmpCrash.pdf
http://ffden-2.phys.uaf.edu/608_lectures/OmpCrash.pdf
https://www.openmp.org/
https://www.openmp.org/specifications/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5-2.pdf

78

Bibliography/Resources: Hybrid Programming

● Cuma, Martin (2015) Hybrid MPI/OpenMP Programming,
https://www.chpc.utah.edu/presentations/images-and-pdfs/
MPI-OMP15.pdf

● INTERTWinE (2017) Best Practice Guide to Hybrid MPI +
OpenMP Programming, http://www.intertwine-project.eu/sites/
default/files/images/
INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.1.pdf

● Rabenseifner, Rolf, Georg Hager, Gabriele Jost (2013) SC13
Hybrid MPI and OpenMP Parallel Programming Tutorial,
https://openmp.org/wp-content/uploads/HybridPP_Slides.pdf

https://www.chpc.utah.edu/presentations/images-and-pdfs/MPI-OMP15.pdf
https://www.chpc.utah.edu/presentations/images-and-pdfs/MPI-OMP15.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI+OpenMP_1.1.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI+OpenMP_1.1.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI+OpenMP_1.1.pdf
https://openmp.org/wp-content/uploads/HybridPP_Slides.pdf

79

APPENDIX 1: COMPUTING PI

“Pi” by Gregory Bastien, from http://www.flickr.com/photos/gregory_bastien/
2741729411/sizes/z/in/photostream/

http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/
http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/
http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/

80

Computing 𝝅
● Method of Darts is a TERRIBLE way to compute 𝝅

○ Accuracy proportional to square root of number of darts

○ For one decimal point increase in accuracy, need 100 times more

darts!

● Instead,

○ Look it up on the internet, e.g., http://www.geom.uiuc.edu/~huberty/
math5337/groupe/digits.html

○ Compute using BBP (Bailey-Borwein-Plouffe) formula:

○ For less accurate computations, try your programming language’s
constant, or quadrature or power series expansions

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

81

APPENDIX 2: ABOUT RANDOM NUMBER
GENERATION

“Random Number Generator insides” by mercuryvapour, from http://www.flickr.com/photos/
mercuryvapour/2743393057/sizes/l/in/photostream/

http://www.flickr.com/photos/mercuryvapour/2743393057/sizes/l/in/photostream/
http://www.flickr.com/photos/mercuryvapour/2743393057/sizes/l/in/photostream/

82

About Random Number Generation

● No such thing as random number generation – proper
term is pseudorandom number generator (PRNG)

● Generate long sequence of numbers that seems
“random”

● Properties of good PRNG:

○ Very long period

○ Uniformly distributed

○ Reproducible

○ Quick and easy to compute

83

Pseudorandom Number Generator

Correlation of RANDU LCG (source: http://
upload.wikimedia.org/wikipedia/commons/
3/38/Randu.png)

● Generator from
lcgenerator.h is a Linear
Congruential Generator (LCG)

○ Short period (= PMOD, 714025)

○ Not uniformly distributed –

known to have correlations

○ Reproducible

○ Quick and easy to compute

○ Poor quality (don’t do this at

home)

http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png
http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png
http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png
http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png

84

Good PRNGs

● For serial codes

○ Mersenne twister

○ GSL (GNU Scientific Library), many generators available

(including Mersenne twister) http://www.gnu.org/software/gsl/

○ Also available in Intel MKL

● For parallel codes

○ SPRNG, regarded as leading parallel pseudorandom number

generator http://sprng.cs.fsu.edu/

http://www.gnu.org/software/gsl/
http://sprng.cs.fsu.edu/

85

Interlude 4: Computing π with Hybrid Programming

● Putting it all together:

○ How can we combine inter-node and intra-node parallelism to

create a hybrid program that computes π using the method of
darts?

○ What potential pitfalls do you see?

● Your assignment: create a code, darts-hybrid.c or

darts-hybrid.f90, developed from darts-
collective.c/darts-collective.f90 and darts-
omp.c/darts-omp.f90, that uses OpenMP to exploit
parallelism within the node, and MPI for parallelism between
nodes

86

Bibliography/Resources: OpenMP

● Mattson, Timothy, Yun (Helen) He, Alice Koniges (2019) The OpenMP
Common Core, Cambridge, MA: MIT Press

● Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas. (2008) Using
OpenMP, Cambridge, MA: MIT Press.

● LLNL OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/

● Mattson, Tim, and Larry Meadows (2008) SC08 OpenMP “Hands-On”

Tutorial, https://www.openmp.org/wp-content/uploads/omp-hands-on-
SC08.pdf

● Bull, Mark (2018) OpenMP Tips, Tricks and Gotchas, http://
www.archer.ac.uk/training/course-material/2018/09/openmp-imp/Slides/
L10-TipsTricksGotchas.pdf

https://computing.llnl.gov/tutorials/openMP/
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

