
1

Crash Course in Supercomputing

Computing Sciences Summer Student
Program & NERSC/ALCF/OLCF

Supercomputing User Training 2024

Rebecca Hartman-Baker, PhD

User Engagement Group Lead

Charles Lively III, PhD

Science Engagement Engineer

Helen He, PhD

User Engagement Group 

June 28, 2024

2

Today’s Pipeline
Morning Session Overview

• Introduction to Parallel Programming Concepts - 09:00 am PDT

• Understanding Supercomputer Architecture

• Basic Parallelism & MPI

• BREAK - 10:30 a.m. - 10:45 a.m. PDT

• MPI Collectives

• Q&A

• LUNCH - 12:00 p.m. -01:00 p.m. PDT

Please refer to Event Web Page for Specific Times

3

Today’s Pipeline
Afternoon Session Preview (after Lunch)

• Introduction to OpenMP: 01:00 p.m. PDT

• Understanding OpenMP + Hybrid OpenMP Concepts

• BREAK : 02:45 p.m. - 03:00 p.m. PDT

• Interactive Exercises & Hands-On Practice

• ADJOURN: 04:00 p.m. PDT

Please refer to Event Web Page for More Detailed Session Times

4

Some Logistics
● In-person attendees please also join Zoom for full participation

● Please change your name in Zoom session

○ to: first_name last_name

○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript

● Session is being recorded

● Users are muted upon joining Zoom

○ Feel free to unmute and ask questions or ask in GDoc below

● GDoc is used for Q&A (instead of Zoom chat)

○ https://tinyurl.com/4fvkzeud

● Please answer a short survey afterward

○ https://tinyurl.com/562bvv62

https://tinyurl.com/4fvkzeud
https://tinyurl.com/562bvv62

5

Some Logistics
● Slides and videos will be available on NERSC Training Event

page and LBNL Computing Sciences Summer Program page

○ https://www.nersc.gov/crash-course-in-supercomputing-jun2024/

○ https://cs.lbl.gov/careers/summer-student-and-faculty-program/2024-csa-

summer-program/summer-program/

● You’re encouraged to register for OpenMP Monthly Training

Series, May-Oct 2024

○ https://www.nersc.gov/openmp-training-series-may-oct-2024

○ Session 3 of 7 on July 8. Can catch up Session 1 and 2 via videos and

exercises

● Introduction to CUDA Programming Training (coming soon)

https://www.nersc.gov/crash-course-in-supercomputing-jun2022/
https://cs.lbl.gov/careers/summer-student-and-faculty-program/2024-csa-summer-program/summer-program/
https://cs.lbl.gov/careers/summer-student-and-faculty-program/2024-csa-summer-program/summer-program/
https://www.nersc.gov/openmp-training-series-may-oct-2024

6

Hands-on Exercises on Perlmutter
ssh <user>@perlmutter.nersc.gov, land on login node:

● % cd $SCRATCH

● % git clone https://github.com/NERSC/crash-

course-supercomputing.git

○ Downloads all exercises (and answers!)

● References

○ Running Jobs: https://docs.nersc.gov/jobs/

○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://github.com/NERSC/crash-course-supercomputing.git
https://github.com/NERSC/crash-course-supercomputing.git
https://github.com/NERSC/crash-course-supercomputing.git
https://github.com/NERSC/crash-course-supercomputing.git
https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/

7

Using Perlmutter Compute Node Reservations
● Existing NERSC users (at time of registration) have been

added to “ntrain3” project

● Apply for a training account if no NERSC account at time of

registration or if MFA for login is not setup yet

○ https://iris.nersc.gov/train, and use the 4-letter code bk8X

○ Training accounts valid until July 10

● Perlmutter node reservations: 10:30 am - 4:30 pm PDT today

○ --reservation=crash_course -A ntrain3 -C

cpu 
for sbatch or salloc sessions

○ No need to use --reservation or -A when outside of the
reservation hours

https://iris.nersc.gov/train

8

NERSC Code of Conduct
As NERSC collaborators, we are all  
bound by the Code of Conduct: 

 Team Science .
 Service .
 Trust .
 Innovation .
 Respect .

 

https://www.nersc.gov/nersc-code-of-conduct or search “NERSC Code of Conduct”

We agree to work together professionally
and productively towards our shared goals
while respecting each other’s differences
and ideas.

We should all feel free to speak up to maintain this
environment and remember there are resources
available to report violations to foster an
inclusive, collaborative environment.
Email nersc-training@lbl.gov for any concerns

https://www.nersc.gov/nersc-code-of-conduct
mailto:nersc-training@lbl.gov

Introduction to Parallel Programming Concepts

10

I. PARALLELISM

“Parallel Worlds” by aloshbennett from http://www.flickr.com/photos/aloshbennett/
3209564747/sizes/l/in/photostream/

http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/
http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

11

I. Parallelism

● Concepts of Parallelization

● Serial vs. Parallel

● Parallelization strategies

12

What is Parallelism?

● Generally Speaking:

○ Parallelism lets us work smarter, not harder, by simultaneously

tackling multiple tasks.

○ How?

■ the concept of dividing a task or problem into smaller subtasks that
can be executed simultaneously.

○ Benefit?

■ Work can get done more efficiently, thus quicker!

13

Parallelization Concepts

This concept applies to both everyday activities like
preparing dinner:

● Imagine preparing a lasagna dinner with multiple tasks

involved.

● Some tasks, such as making the sauce, assembling the

lasagna, and baking it, can be performed independently
and concurrently.

● These tasks do not depend on each other's completion,
allowing for parallel execution.

14

Serial vs. Parallel
● Serial: tasks must be performed in sequence

● Parallel: tasks can be performed independently in any

order

“Unlocking the Power of Parallel Computing in Julia Programming” by Ombar Karacharekar,
from https://omkaracharekar.hashnode.dev/unlocking-the-power-of-parallel-computing-in-
julia-programming

14

Serial vs. Parallel
● Serial: tasks must be performed in sequence

● Parallel: tasks can be performed independently in any

order

“Unlocking the Power of Parallel Computing in Julia Programming” by Ombar Karacharekar,
from https://omkaracharekar.hashnode.dev/unlocking-the-power-of-parallel-computing-in-
julia-programming

14

Serial vs. Parallel
● Serial: tasks must be performed in sequence

● Parallel: tasks can be performed independently in any

order

“Unlocking the Power of Parallel Computing in Julia Programming” by Ombar Karacharekar,
from https://omkaracharekar.hashnode.dev/unlocking-the-power-of-parallel-computing-in-
julia-programming

15

Serial vs. Parallel: Example

● Preparing Lasagna Dinner

15

Serial vs. Parallel: Example

● Preparing Lasagna Dinner

SERIAL TASKS

● Making the sauce

● Assembling the

lasagna

● Baking the lasagna

● Washing lettuce

● Cutting vegetables

● Assembling the salad

15

Serial vs. Parallel: Example

● Preparing Lasagna Dinner

SERIAL TASKS

● Making the sauce

● Assembling the

lasagna

● Baking the lasagna

● Washing lettuce

● Cutting vegetables

● Assembling the salad

PARALLEL TASKS

● Making the lasagna

● Making the salad

● Setting the table

16

Serial vs. Parallel: Graph

17

Serial vs. Parallel: Graph

Synchronization Points

18

Serial vs. Parallel: Graph

19

Serial vs. Parallel: Example

● Could have several chefs,
each performing one parallel
task

● This is concept behind parallel
computing

20

Discussion: Jigsaw Puzzle*

● Suppose we want to do a large, N-
piece jigsaw puzzle (e.g., N =
10,000 pieces)

● Time for one person to complete
puzzle: T hours

● How can we decrease walltime to
completion?

21

Discussion: Jigsaw Puzzle

● Impact of having multiple people at the table

○ Walltime to completion

○ Communication

○ Resource contention

● Let number of people = p

○ Think about what happens when p = 1, 2, 4, … 5000

22

Discussion: Jigsaw Puzzle

Alternate setup: p people, each at separate table with N/p
pieces each

● What is the impact on

○ Walltime to completion

○ Communication

○ Resource contention?

23

Discussion: Jigsaw Puzzle

Alternate setup: divide puzzle by features, each person
works on one, e.g., mountain, sky, stream, tree, meadow, etc.

● What is the impact on

○ Walltime to completion

○ Communication

○ Resource contention?

24

Parallel Algorithm Design: PCAM
● Partition

○ Decompose problem into fine-grained tasks to maximize potential
parallelism

● Communication

○ Determine communication pattern among tasks

● Agglomeration

○ Combine into coarser-grained tasks, if necessary, to reduce

communication requirements or other costs

● Mapping

○ Assign tasks to processors, subject to tradeoff between
communication cost and concurrency

(from Heath: Parallel Numerical Algorithms)

Understanding Supercomputing Architecture

26

II. ARCHITECTURE

“Architecture” by marie-ll, http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

27

II. Supercomputer Architecture
● What is a supercomputer?

● Conceptual overview of architecture

Cray 1
(1976)

IBM Blue
Gene
(2005)

Cray XT5
(2009)

HPE-Cray Shasta
Architecture (2021)

Future HPC Architecture
(2029-???)

28

What Is a Supercomputer?
“The biggest, fastest computer right this minute.” – Henry Neeman

Tips on Identifying a Supercomputer

● Generally, at least 100 times more powerful than PC

● This field of study known as supercomputing, high-performance
computing (HPC), or scientific computing

● Scientists utilize supercomputers to solve complex problems.

● Really hard problems need really LARGE (super)computers

29

Supercomputing Architectures

● Cluster Architecture

o Connects multiple standalone computers to work together

as a single system. Provides a cost-effective solution for
scalable computing power.

● Symmetric Multiprocessing (SMP)

o Involves multiple processors sharing a single memory

space. Suitable for tasks requiring frequent communication
between processors.

● Massively Parallel Processing (MPP)

o Consists of many processors with their own memory.

Effective for tasks that can be divided into independent
subtasks.

30

SMP Architecture

30

SMP Architecture
● SMP stands for Symmetric Multiprocessing architecture

○ commonly used in supercomputers, servers, and high-performance
computing environments.

○ all processors have equal access to memory and input/output
devices.

■ Massive memory, shared by multiple processors

30

SMP Architecture
● SMP stands for Symmetric Multiprocessing architecture

○ commonly used in supercomputers, servers, and high-performance
computing environments.

○ all processors have equal access to memory and input/output
devices.

■ Massive memory, shared by multiple processors

● Any processor can work on any task, no matter its location in
memory

○ Ideal for parallelization of sums, loops, etc.

30

SMP Architecture
● SMP stands for Symmetric Multiprocessing architecture

○ commonly used in supercomputers, servers, and high-performance
computing environments.

○ all processors have equal access to memory and input/output
devices.

■ Massive memory, shared by multiple processors

● Any processor can work on any task, no matter its location in
memory

○ Ideal for parallelization of sums, loops, etc.

● SMP systems and architectures allow for better load balancing
and resource utilization across multiple processors.

31

Cluster Architecture

● CPUs on racks, do computations (fast)

● Communicate through networked connections (slow)

● Want to write programs that divide computations evenly

but minimize communication

32

State-of-the-Art Architectures

● Today: hybrid architectures very common

○ Multiple {16, 24, 32, 64, 68, 128}-core nodes, connected to

other nodes by (slow) interconnect

○ Cores in node share memory (like small SMP machines)

○ Machine appears to follow cluster architecture (with multi-

core nodes rather than single processors)

○ To take advantage of all parallelism, use MPI (cluster) and

OpenMP (SMP) hybrid programming

33

NERSC Systems Ecosystem

100 GB/s

5 GB/s

 edge services
2 x 400 Gb/s

2 x 100 Gb/s

50 GB/s
HPSS Tape Archive ~300 PB

35 PB 
All-Flash

Scratch

>5 TB/s

1.6 TB/s Common File System 130 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Off-Platform Storage

DTNs, Gateways
1,792 GPU-accelerated nodes 
4 NVIDIA A100 GPUs+1 AMD “Milan” CPU 
448 TB (CPU) + 320 TB (GPU) memory

 
3,072 CPU-only nodes 
2 AMD “Milan” CPUs 
1,536 TB CPU memory

HPE Slingshot 11 interconnect

4 NICs/GPU node,  
1 NIC/CPU node

#8, 93.8PF Peak

Ethernet

Science Friendly

Security

Production Monitoring

Power Efficiency

LAN

34

Perlmutter: Optimized for Science

● First phase arrived
2021; second phase in
2022; final acceptance
in 2023

● GPU-accelerated and
CPU-only nodes

● HPE Cray Slingshot
high-performance
network

● 35 PB all-flash scratch
file system

GPU-Accelerated Nodes

● 1,536 GPU-accelerated nodes

● 1 AMD “Milan” CPU + 4 NVIDIA A100 GPUs

per node

● 256 GB CPU memory and 40 GB GPU high

BW memory

CPU-Only Nodes

● 3,072 CPU only nodes

● 2 AMD “Milan” CPUs per node

● 512 GB memory per node

35

HPC Systems: Perlmutter
GPU nodes:

● Immense compute power from

GPUs

● Large jobs using many GPUs

encouraged

● Great for codes that can

exploit GPU compute power

CPU nodes:

● Powerful CPUs (but only 10%

of GPU compute power)

● Equivalent in compute power

to all of Cori (former system)

● More like a traditional cluster

● Great for throughput jobs

36

File Systems
● Global File Systems:

○ Home

○ Community (CFS)

● Local File Systems:

○ Scratch

● Long-term Storage System:

○ HPSS

37

NERSC Architectures Through the Years
● Seaborg (2003-2006): An IBM SP system with 6,656

Power3 processors, each with 375 MHz. It used shared
memory and IBM's high-performance switch (HPS)
interconnect. The system delivered 10 teraflops.

● Jacquard (2004-2007): A Linux cluster with 712 nodes,
each containing dual Intel Xeon processors (3.06 GHz). It
had 4 GB of memory per node and used Myrinet
interconnects, providing 9.2 teraflops.

● Bassi (2005-2009): An IBM Power5+ system with 888
processors (1.9 GHz). It had 8 GB of memory per
processor and used IBM's Federation switch interconnect,
achieving 3.6 teraflops.

38

NERSC Architectures Through the Years
● Seaborg (2003-2006): An IBM SP system with 6,656

Power3 processors, each with 375 MHz. It used shared
memory and IBM's high-performance switch (HPS)
interconnect. The system delivered 10 teraflops.

● Jacquard (2004-2007): A Linux cluster with 712 nodes,
each containing dual Intel Xeon processors (3.06 GHz). It
had 4 GB of memory per node and used Myrinet
interconnects, providing 9.2 teraflops.

● Bassi (2005-2009): An IBM Power5+ system with 888
processors (1.9 GHz). It had 8 GB of memory per
processor and used IBM's Federation switch interconnect,
achieving 3.6 teraflops.

39

NERSC Architectures Through the Years
● Seaborg (2003-2006): An IBM SP system with 6,656

Power3 processors, each with 375 MHz. It used shared
memory and IBM's high-performance switch (HPS)
interconnect. The system delivered 10 teraflops.

● Jacquard (2004-2007): A Linux cluster with 712 nodes,
each containing dual Intel Xeon processors (3.06 GHz). It
had 4 GB of memory per node and used Myrinet
interconnects, providing 9.2 teraflops.

● Bassi (2005-2009): An IBM Power5+ system with 888
processors (1.9 GHz). It had 8 GB of memory per
processor and used IBM's Federation switch interconnect,
achieving 3.6 teraflops.

40

NERSC Architectures Through the Years

● Franklin (2008-2012): A Cray XT4 system with 38,288
AMD Opteron cores (2.3 GHz). It used DDR2 memory and
Cray's SeaStar2+ interconnect, delivering 352 teraflops.

● Hopper (2010-2015): A Cray XE6 system with 153,216
AMD Magny-Cours cores (2.1 GHz). It had 2 GB of
memory per core and used Cray's Gemini interconnect,
providing 1.28 petaflops.

41

NERSC Architectures Through the Years

● Edison (2013-2019): A Cray XC30 system with 133,824
Intel Ivy Bridge cores (2.4 GHz). It used DDR3 memory
and Cray's Aries interconnect, providing 2.57 petaflops.

● Cori (2016-2023): A Cray XC40 system with 622,336
cores, including Intel Haswell and Knights Landing
processors. It features DDR4 memory and Cray's Aries
interconnect, delivering 30 petaflops.

42

State-of-the-Art Architectures

● Hybrid CPU/GPGPU architectures also very common

○ Nodes consist of one (or more) multicore CPU + one (or more)

GPU

○ Heavy computations offloaded to GPGPUs

○ Separate memory for CPU and GPU

○ Complicated programming paradigm, outside the scope of

today’s training

■ Often use CUDA to directly program GPU offload portions of code

■ Alternatives: standards-based directives, OpenACC or OpenMP

offloading; programming environments such as Kokkos or Raja

Introduction to Message Passing Interface (MPI)

44

III. BASIC MPI

“MPI Adventure” by Stefan Jürgensen, from http://www.flickr.com/photos/
94039982@N00/6177616380/sizes/l/in/photostream/

http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/
http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/
http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/

45

III. Basic MPI

● Introduction to MPI

● Parallel programming concepts

● The Six Necessary MPI Commands

● Example program

46

Introduction to Message Passing Interface (MPI)

● The Message Passing Interface (MPI) is a standardized
and portable message-passing system designed to
function on a wide variety of parallel computing
architectures.

○ Standards have evolved over the years

○ Accommodate advances in hardware and programming

practices.

● Industry standard for parallel programming

○ 200+ page document

47

Introduction to MPI

● MPI implemented by many vendors; open source
implementations available too

○ Cray, IBM, HPE vendor implementations

○ MPICH, OpenMPI (open source)

● MPI function library is used in writing C, C++, or Fortran
programs in HPC

48

Introduction to MPI
● MPI-1 (1994 finalized and released)

○ Provided basic point-to-point and collective communication functionalities.

● MPI-2 (1996 release)

○ Introduced several significant extensions, including dynamic process
management, parallel I/O, and one-sided communications.

● MPI-3 (2012 release)

○ Further enhanced the capabilities of MPI with non-blocking collective

operations, improved one-sided communications, and better support for shared
memory programming. Added support for the Fortran 2008 standard.

● MPI-4.0 (June 2021 release)

○ Includes several enhancements and new features

49

MPI 4.0 Standard
● Partitioned Communications

○ Introduces a new communication mechanism designed for GPUs & other devices
where data can be partitioned into parts that can be processed independently.

● Persistent Collectives

○ Extends the existing persistent communication interface to include collective
operations, providing optimizations for frequently repeated operations.

● Fault Tolerance

○ Adds new mechanisms to handle failures in hardware and processes more effectively.

● Enhancements for Hybrid Programming

○ Improvements in the handling of shared memory, which is crucial for systems

combining multiple levels of parallelism.

50

Parallelization Concepts

● Two primary programming paradigms:

○ SPMD (single program, multiple data)

○ MPMD (multiple programs, multiple data)

● MPI can be used for either paradigm

51

SPMD vs. MPMD

● SPMD: Write single program that will perform same
operation on multiple sets of data

○ Multiple chefs baking many lasagnas

○ Rendering different frames of movie

● MPMD: Write different programs to perform different
operations on multiple sets of data

○ Multiple chefs preparing four-course dinner

○ Rendering different parts of movie frame

● Can also write hybrid program in which some processes
perform same task

52

The Six Necessary MPI Commands

int MPI_Init(int *argc, char **argv)

int MPI_Finalize(void)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Send(void *buf, int count, MPI_Datatype  
	 datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype  
	 datatype, int source, int tag, MPI_Comm comm,  
	 MPI_Status *status)

53

Initiation and Termination

● MPI_Init(int *argc, char **argv) initiates MPI

○ Place in body of code after variable declarations and before any

MPI commands

○ Initializes the MPI execution environment. Must be called before

any other MPI function.

● MPI_Finalize(void) shuts down MPI

○ Place near end of code, after last MPI command

○ Terminates the MPI execution environment. No MPI function can

be called after this except MPI_Init and MPI_Finalize.

54

Message Passing Interface

55

Environmental Inquiry

● MPI_Comm_size(MPI_Comm comm, int *size)

○ Determines the size of the group associated with a communicator

○ Allows flexibility in number of processes used in program

● MPI_Comm_rank(MPI_Comm comm, int *rank)

○ Find out identifier of current process

○ Determines the rank of the calling process in the communicator.

○ 0 ≤ rank ≤ size-1

56

Message Passing: Send

● MPI_Send(const void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

○ Performs a send from this MPI process to another.

○ Send message of length count items and datatype datatype

contained in buf with tag tag to process number dest in communicator
comm

○ With MPI 4.0, The buf parameter is now marked as const to indicate
that the buffer should not be modified during the send operation.

○ E.g., MPI_Send(&x, 1, MPI_DOUBLE, manager, me,
MPI_COMM_WORLD)

57

Message Passing: Receive

● MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)

o Performs a blocking receive of data from another process.

o Receive message of length count items and datatype

datatype with tag tag in buffer buf from process number
source in communicator comm, and record status status

o E.g. MPI_Recv(&x, 1, MPI_DOUBLE, source, source,
MPI_COMM_WORLD, &status)

58

Message Passing
● WARNING! Standard receive function is blocking

● MPI_Recv returns only after receive buffer contains requested

message

● MPI_Send may or may not block until message received (usually

blocks)

o Depends on implementation standard as the blocking behavior of MPI_Send

depends on the size of the message and the underlying system's buffering
capabilities.

o MPI_Send will block until it can safely copy the message to the system's buffer,
which might not necessarily mean the message has been received by the
destination process.

o For small messages, it may return quickly if the system can buffer them, but for
larger messages, it may block until the receiving process calls MPI_Recv.

● Must watch out for deadlock

59

Warning: DEADLOCKS

Must Watch Out for DEADLOCKS

● Deadlocks can occur in MPI programs if send and receive

operations are not properly ordered

o more generally, if processes are waiting on each other indefinitely.

● To avoid deadlocks, ensure that the send/receive operations are
properly matched

o And consider using non-blocking communication functions

(MPI_Isend, MPI_Irecv) or changing the program's structure to
avoid circular dependencies.

60

Deadlocking Example (Always)
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

 int me, np, q, sendto;

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &np);

 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 if (np%2==1) return 0;

 if (me%2==1) {sendto = me-1;}

 else {sendto = me+1;}

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto);

 MPI_Finalize();

 return 0;

}

61

Deadlocking Example (Sometimes)
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

 int me, np, q, sendto;

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &np);

 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 if (np%2==1) return 0;

 if (me%2==1) {sendto = me-1;}

 else {sendto = me+1;}

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto);

 MPI_Finalize();

 return 0;

}

62

Deadlocking Example (Safe)
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

 int me, np, q, sendto;

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &np);

 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 if (np%2==1) return 0;

 if (me%2==1) {sendto = me-1;}

 else {sendto = me+1;}

 if (me%2 == 0) {

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);

	 } else {

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);

 }

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, sendto);

 MPI_Finalize();

 return 0;

}

63

Explanation: Always Deadlocking Example

● Logically incorrect

● Deadlock caused by blocking MPI_Recvs

● All processes wait for corresponding MPI_Sends to

begin, which never happens

64

Explanation: Sometimes Deadlocking Example

● Logically correct

● Deadlock could be caused by MPI_Sends competing for

buffer space

● Unsafe because depends on system resources

● Solutions:

○ Reorder sends and receives, like safe example, having evens
send first and odds send second

○ Use non-blocking sends and receives or other advanced
functions from MPI library (see MPI standard for details)

65

INTERLUDE 1: COMPUTING PI IN PARALLEL

“Pi of Pi” by spellbee2, from http://www.flickr.com/photos/49825386@N08/7253578340/
sizes/l/in/photostream/

http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/
http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

66

Interlude 1: Computing 𝝅 in Parallel

● Project Description

● Serial Code

● Parallelization Strategies

● Your Assignment

67

Project Description

● We want to compute 𝝅

● One method: method of

darts*

● Ratio of area of square to

area of inscribed circle
proportional to 𝝅

* This is a TERRIBLE way to compute pi! Don’t
do this in real life!!!! (See Appendix 1 for better
ways)

“Picycle” by Tang Yau Hoong, from http://
www.flickr.com/photos/tangyauhoong/
5609933651/sizes/o/in/photostream/

http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/

68

Method of Darts

● Imagine dartboard with
circle of radius R inscribed
in square

● Area of circle

● Area of square

● Area of circle

Area of square

“Dartboard” by AndyRobertsPhotos, from
http://www.flickr.com/photos/aroberts/
2907670014/sizes/o/in/photostream/

http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/

69

Method of Darts

● Ratio of areas proportional to 𝝅

● How to find areas?

○ Suppose we threw darts (completely  
randomly) at dartboard

○ Count # darts landing in circle & total # darts  
landing in square

○ Ratio of these numbers gives approximation to ratio of areas

○ Quality of approximation increases with # darts thrown

70

Method of Darts

𝝅 = 4 × # darts inside circle

 # darts thrown

Method of Darts cake in celebration of Pi
Day 2009, Rebecca Hartman-Baker

71

Method of Darts

● Okay, Rebecca and Charles, but how in the world do we
simulate this experiment on a computer?

● Decide on length R

● Generate pairs of random numbers (x, y) s.t.

 -R ≤ (x, y) ≤ R

● If (x, y) within circle (i.e., if (x2+y2) ≤ R2) add one to tally for

inside circle

● Lastly, find ratio

72

Serial Code (darts.c)
#include "lcgenerator.h"

static long num_trials = 1000000;

int main() {

 long Ncirc = 0;

 double pi, x, y;

 double r = 1.0; /* radius of circle */

 double r2 = r*r;

 for (long i = 0; i < num_trials; i++) {

 x = r*lcgrandom();

 y = r*lcgrandom();

 if ((x*x + y*y) <= r2)

 Ncirc++;

 }

 pi = 4.0 * ((double)Ncirc)/((double)num_trials);

 printf("\n For %ld trials, pi = %f\n", num_trials, pi);

 return 0;

}

73

Serial Code (lcgenerator.h)
// Random number generator -- and not a very good one, either!

static long MULTIPLIER = 1366;

static long ADDEND = 150889;

static long PMOD = 714025;

long random_last = 0;

// This is not a thread-safe random number generator

double lcgrandom() {

 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)%PMOD;

 random_last = random_next;

 return ((double)random_next/(double)PMOD);

}

74

Serial Code (darts.f90) (1)
! First, the pseudorandom number generator

 real function lcgrandom()

 integer*8, parameter :: MULTIPLIER = 1366

 integer*8, parameter :: ADDEND = 150889

 integer*8, parameter :: PMOD = 714025

 integer*8, save :: random_last = 0

 integer*8 :: random_next = 0

 random_next = mod((MULTIPLIER * random_last + ADDEND), PMOD)

 random_last = random_next

 lcgrandom = (1.0*random_next)/PMOD

 return

 end

75

Serial Code (darts.f90) (2)
! Now, we compute pi

 program darts

 implicit none

 integer*8 :: num_trials = 1000000, i = 0, Ncirc = 0

 real :: pi = 0.0, x = 0.0, y = 0.0, r = 1.0

 real :: r2 = 0.0

 real :: lcgrandom

 r2 = r*r

 do i = 1, num_trials

 x = r*lcgrandom()

 y = r*lcgrandom()

 if ((x*x + y*y) .le. r2) then

 Ncirc = Ncirc+1

 end if

 end do

 pi = 4.0*((1.0*Ncirc)/(1.0*num_trials))

 print*, ‘ For ‘, num_trials, ‘ trials, pi = ‘, pi

 end

76

Parallelization Strategies

● What tasks independent of each other?

● What tasks must be performed sequentially?

● Using PCAM parallel algorithm design strategy

77

Partition

● “Decompose problem into fine-grained tasks to maximize
potential parallelism”

● Finest grained task: throw of one dart

● Each throw independent of all others

● If we had huge computer, could assign one throw to each

processor

78

Communication

“Determine communication pattern among tasks”

● Each processor throws dart(s) then sends results back to

manager process

79

Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs”

● To get good value of π, must use millions of darts

● We don’t have millions of processors available

● Furthermore, communication between manager and

millions of worker processors would be very expensive

● Solution: divide up number of dart throws evenly between

processors, so each processor does a share of work

80

Mapping

“Assign tasks to processors, subject to tradeoff between
communication cost and concurrency”

● Assign role of “manager” to processor 0

● Processor 0 will receive tallies from all the other

processors, and will compute final value of π

● Every processor, including manager, will perform equal

share of dart throws

81

Your Assignment

● Clone the whole assignment (including answers!) to Perlmutter
from the repository with: git clone https://
github.com/NERSC/crash-course-
supercomputing.git

● Copy darts.c/lcgenerator.h or darts.f90 (your
choice) from crash-course-supercomputing/darts-
suite/{c,fortran}

● Parallelize the code using the 6 basic MPI commands

● Rename your new MPI code darts-mpi.c or darts-

mpi.f90

Introduction to MPI Collectives

83

IV. MPI COLLECTIVES

“The First Tractor” by Vladimir Krikhatsky (socialist realist, 1877-1942). Source: http://
en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg
http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

84

MPI Collectives

● Communication involving group of processes

● Collective operations

○ Broadcast

○ Gather

○ Scatter

○ Reduce

○ All-

○ Barrier

85

Broadcast

● Perhaps one message needs to be sent from manager to
all worker processes

● Could send individual messages

● Instead, use broadcast – more efficient, faster

● int MPI_Bcast(void* buffer, int count,

MPI_Datatype datatype, int root, MPI_Comm
comm)

86

Gather
● All processes need to send same (similar) message to manager

● Could implement with each process calling MPI_Send(…) and

manager looping through MPI_Recv(…)

● Instead, use gather operation – more efficient, faster

● Messages concatenated in rank order

● int MPI_Gather(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

● Note: recvcount = # items received from each process, not total

87

Gather
● Maybe some processes need to send longer messages than

others

● Allow varying data count from each process with

MPI_Gatherv(…)

● int MPI_Gatherv(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI_Datatype
recvtype, int root, MPI_Comm comm)

● recvcounts is array; entry i in displs array specifies
displacement relative to recvbuf[0] at which to place data
from corresponding process number

88

Scatter
● Inverse of gather: split message into NP equal pieces, with ith

segment sent to ith process in group

● int MPI_Scatter(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

● Send messages of varying sizes across processes in group:
MPI_Scatterv(…)

● int MPI_Scatterv(void* sendbuf, int *sendcounts,
int *displs, MPI_datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

89

Reduce

● Perhaps we need to do sum of many subsums owned by
all processors

● Perhaps we need to find maximum value of variable
across all processors

● Perform global reduce operation across all group
members

● int MPI_Reduce(void* sendbuf, void*
recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

90

Reduce: Predefined Operations
MPI_Op Meaning Allowed Types
MPI_MAX Maximum Integer, floating point

MPI_MIN Minimum Integer, floating point

MPI_SUM Sum Integer, floating point, complex

MPI_PROD Product Integer, floating point, complex

MPI_LAND Logical and Integer, logical

MPI_BAND Bitwise and Integer, logical

MPI_LOR Logical or Integer, logical

MPI_BOR Bitwise or Integer, logical

MPI_LXOR Logical xor Integer, logical

MPI_BXOR Bitwise xor Integer, logical

MPI_MAXLOC Maximum value & location *

MPI_MINLOC Minimum value & location *

91

Reduce: Operations

● MPI_MAXLOC and MPI_MINLOC

○ Returns {max, min} and rank of first process with that value

○ Use with special MPI pair datatype arguments:

■ MPI_FLOAT_INT (float and int)

■ MPI_DOUBLE_INT (double and int)

■ MPI_LONG_INT (long and int)

■ MPI_2INT (pair of int)

○ See MPI standard for more details

● User-defined operations

○ Use MPI_Op_create(…) to create new operations

○ See MPI standard for more details

92

All- Operations

● Sometimes, may want to have result of gather, scatter, or
reduce on all processes

● Gather operations

○ int MPI_Allgather(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm comm)

○ int MPI_Allgatherv(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI_Datatype recvtype,
MPI_Comm comm)

93

All-to-All Scatter/Gather

● Extension of Allgather in which each process sends
distinct data to each receiver

● Block j from process i is received by process j into ith
block of recvbuf

● int MPI_Alltoall(void* sendbuf, int
sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype
recvtype, MPI_Comm comm)

● Corresponding MPI_Alltoallv function also available

94

All-Reduce

● Same as MPI_Reduce except result appears on all
processes

● int MPI_Allreduce(void* sendbuf, void*
recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

95

Barrier

● In algorithm, may need to synchronize processes

● Barrier blocks until all group members have called it

● int MPI_Barrier(MPI_Comm comm)

96

Bibliography/Resources: MPI/MPI Collectives

● Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David
W. Walker, and Jack Dongarra. (1996) MPI: The
Complete Reference. Cambridge, MA: MIT Press. (also
available at http://www.netlib.org/utk/papers/mpi-book/
mpi-book.html)

● MPICH Documentation http://www.mpich.org/
documentation/guides/

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.mpich.org/documentation/guides/
http://www.mpich.org/documentation/guides/

97

Bibliography/Resources: MPI/MPI Collectives

● Message Passing Interface (MPI) Tutorial https://hpc-
tutorials.llnl.gov/mpi/

● MPI Standard at MPI Forum: https://www.mpi-forum.org/docs/

○ MPI 1.1: http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

○ MPI-2.2: http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm

○ MPI 3.1: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

○ MPI 4.0: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

https://hpc-tutorials.llnl.gov/mpi/
https://hpc-tutorials.llnl.gov/mpi/
https://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

98

INTERLUDE 2: COMPUTING PI WITH MPI
COLLECTIVES

“Pi-Shaped Power Lines at Fermilab” by Michael Kappel from http://www.flickr.com/photos/m-i-
k-e/4781834200/sizes/l/in/photostream/

http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/
http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/

99

Interlude 2: Computing 𝝅 with MPI Collectives

● In previous Interlude, you used the 6 basic MPI routines
to develop a parallel program using the Method of Darts
to compute 𝝅

● The communications in previous program could be made
more efficient by using collectives

● Your assignment: update your MPI code to use collective
communications

● Rename it darts-collective.c or darts-
collective.f90

