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Goals and Outline i

* Goals
— Not a tutorial on MPI or OpenMP

— Practical tips and real case studies of hybrid MPl/OpenMP
implementations to prepare applications for Cori

* Outline
— Introduction
— Scaling Tips
— Process and Thread Affinity
— Tools for OpenMP
— Case Studies
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The Big Picture e

The next large NERSC production system “Cori” will be Intel
Xeon Phi KNL (Knights Landing) architecture:

— >60 cores per node, 4 hardware threads per core

— Total of >240 threads per node

* Your application is very likely to run on KNL with simple
port, but high performance is harder to achieve.

 Many applications will not fit into the memory of a KNL
node using pure MPI across all HW cores and threads
because of the memory overhead for each MPI task.

* Hybrid MPI/OpenMP is the recommended programming
model, to achieve scaling capability and code portability.

* Current NERSC systems (Babbage, Edison, and Hopper) can
help prepare your codes.
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Hybrid MP1/0OpenMP Reduces Memory Usage

* Smaller number of MPI processes. Save the memory needed
for the executables and process stack copies.
* Larger domain for each MPI process, so fewer ghost cells
— e.g. Combine 16 10x10 domains to one 40x40. Assume 2 ghost layers.
— Total grid size: Original: 16x14x14=3136, new: 44x44=1936.

 Save memory for MPI buffers due to smaller number of MPI
tasks.

* Fewer messages, larger message sizes, and smaller MPI all-
to-all communication sizes improve performance.
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Why Scaling is So Important
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Courtesy of Jim Jeffers and James Reinders
e Scaling of an application is important to get the performance potential on
the Xeon Phi manycore systems.
e Does not imply to scale with “pure MPI” or “pure OpenMP”
e Does not imply the need to scale all the way to 240-way either

e Rather, should explore hybrid MPI/OpenMP, find some sweet spots with
combinations, such as: 4 MPI tasks * 15 threads per task, or 8*20, etc.
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Babbage ==

* NERSC Intel Xeon Phi Knights e
Corner (KNC) testbed. N ;"E
Processor \%3 :

* 45 compute nodes, each has:

Host node: 2 Intel Xeon
Sandybridge processors, 8 cores
each.

2 MIC cards each has 60 native
cores and 4 hardware threads per
core.

MIC cards attached to host nodes To best prepare codes on Babbage for Cori:

>= 8GB GDDR5 memory

via PCl-express. * Use “native” mode on KNC to mimic KNL, which
_ 8 GB memory on each MIC card means ignore the host, just run completely on
KNC cards.
* Recommend to use at least 2  Encourage single node exploration on KNC cards

threads per core to hide latency of  with problem sizes that can fit.
in-order execution.

228, U.S. DEPARTMENT OF Office of

>

A
freeeere I'"|

@ ENERGY science 7 L




Scaling and Tips
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Fine Grain and Coarse Grain Models

Program fine_grain
I$OMP PARALLEL DO

doi=1,n
... computation
enddo

I$OMP END PARALLEL DO
... Ssome serial computation ...

I$OMP PARALLEL DO
doi=1,n
... computation
enddo
I$OMP END PARALLEL DO
end

*  Program is single threaded except
when actively using multiple threads,
such as loop processing,

*  Pro: Easier to adapt to MPI program.

*  Con: thread overhead, serial section
becomes bottleneck.
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Program coarse_grain
I$OMP PARALLEL
I$OMP DO
doi=1,n
... computation

enddo
I$OMP END DO

I$SOMP DO
doi=1,n
... computation
enddo
I$OMP END DO
I$OMP END PARALLEL
end

Majority of program run within an
OMP parallel region.

Pro: low overhead of thread
creation, consistent thread affinity.

Con: harder to code, prone to race
condition.
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Memory Affinity: “First Touch” Memory e

Memory affinity: allocate memory as close as possible to the core on
which the task that requested the memory is running.

Memory affinity is not decided by the memory allocation, but by the
initialization. Memory will be local to the thread which initializes it. This
is called “first touch” policy.

* Hard to do “perfect touch” for real applications. Instead, use number of
threads few than number of cores per NUMA domain.

Initialization
Stream NUMA effects - Hopper
#pragma omp parallel for 60

for (j=0; j<VectorSize; j++) {
a[j] = 1.0; blj] = 2.0; c[j] = 0.0;}

w
o

=*=TouchByAll
“®TouchByOne

&
o

Bandwidth GB/s
S 8

Compute

#pragma omp parallel for
for (jzo; j<VeCtorSize; j++) { 1234567 8 9101112131415161718192021222324
a[j]=b[j]+d*C[J];} No. of OpenMP Threads

Courtesy of Hongzhang Shan
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Cache Coherence and False Sharing o

 Data from memory are accessed via cache lines.

* Multiple threads hold local copies of the same
(global) data in their caches. Cache coherence
ensures the local copy to be consistent with the
global data.

* Main copy needs to be updated when a thread
writes to local copy.

* Writes to same cache line is called false sharing or
cache thrashing, since it needs to be done in serial.
Use atomic or critical to avoid race condition.

* False sharing hurts parallel performance.
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Cache Locality N

* Use data in cache as much as possible
— Use a memory stride of 1

* Fortran: column-major order
e C: row-major order

— Access variable elements in the same order as they are
stored in memory

— Interchange loops or index orders if necessary
— Tips often used in real codes
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Why Not Perfect Speedup?

Jacobi OpenMP Execution Time (sec)
1 thread 121
2 threads 63
4 threads 36

 Why not perfect speedup?
— Serial code sections not parallelized
— Thread creation and synchronization overhead
— Memory bandwidth
— Memory access with cache coherence
— Load balancing
— Not enough work for each thread
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Programming Tips for Adding OpenMP —

* Choose between fine grain or coarse grain parallelism
implementation.

* Use profiling tools to find hotspots. Add OpenMP and
check correctness incrementally.

* Parallelize outer loop and collapse loops if possible.
 Minimize shared variables, minimize barriers.

* Decide whether to overlap MPI communication with
thread computation.

— Simplest and least error-prone way is to use MPI outside
parallel region, and allow only master thread to communicate
between MPI tasks.

— Could use MPI inside parallel region with thread-safe MPI.
* Consider OpenMP TASK.
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MPI vs. OpenMP Scaling Analysis e

Flash Kernel on Babbage * Eachline represents
50 ! ! z multiple runs using fixed
—W%— 60-way MPI+OpenMP
sl — % 120-way MPI+OpenMP || total number of cores =
- MPL-only e Sty MPiOpenNIP #MPI tasks x #OpenMP
= 3 | threads/task.
= N * Scaling may depend on the
o o= kernel algorithms and
= I problem sizes.
| * In this test case, 15 MPI
| _ | tasks with 8 OpenMP
15 - . o .
60 VP! ranks oy card 5 threads per task is optimal.

Courtesy of Chris Daley, NERSC

* Understand your code by creating the MPI vs. OpenMP scaling plot,
find the sweet spot for hybrid MPI/OpenMP.

e It can be the base setup for further tuning and optimizing on Xeon Phi.
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If a Routine Does Not Scale Well S

Examine code for serial/critical sections, eliminate if possible.
Reduce number of OpenMP parallel regions to reduce overhead costs.

Perhaps loop collapse, loop fusion or loop permutation is required to
give all threads enough work, and to optimize thread cache locality. Use
NOWAIT clause if possible.

Pay attention to load imbalance. If needed, try dynamic scheduling or
implement own load balance scheme.

Experiment with different combinations of MPI tasks and number of
threads per task. Less MPI tasks may not saturate inter-node bandwidth.

Test different process and thread affinity options.

Leave some cores idle on purpose, for memory capacity or bandwidth
capacity.
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Process and Thread Affinity for
Hopper/Edison
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Hopper/Edison Compute Nodes

Hopper Compute Node

Socket 0 Socket 1
NUMA node 0 NUMA node 2
Core2| |[Core3 Core 2| |Core 3
DDR3 DDR3

Core4| |Core5

NUMILode 1

Core 4

Core §

NUMAI\ode 3

DDR3 - Core 1
Core 2| |Core3
DDR3

Core4| |[Core§

Core 1

Core 3

DDR3
DDR3

Core 5

Edison Compute Node

[ N

e Hopper: NERSC Cray XE6, 6,384 nodes, 153,126 cores.

e 4 NUMA domains per node, 6 cores per NUMA domain.

e Edison: NERSC Cray XC30, 5,576 nodes, 133,824 cores.
e 2 NUMA domains per node, 12 cores per NUMA domain.

2 hardware threads per core.
e Memory bandwidth is non-homogeneous among NUMA domains.
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MPI Process Affinity: aprun “-S” Option C3%

* Process affinity: or CPU pinning, binds MPI process to a CPU or a ranges of
CPUs on the node.

* Important to spread MPI ranks evenly onto different NUMA nodes.

* Use the “-S” option for Hopper/Edison.

aprun-n4—-d6

=2, U.S. DEPARTMENT OF

Hopper Compute Node

Socket 0 Socket 1

Hopper Compute Node

Socket 0 Socket 1

Office of

ENERGY science
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GTC Hybrid MPI/OpenMP
on Hopper, 24,576 cores

1400
__ 1200 +— -S2-d3
(8]
‘3’,' 1000 +—
g 800 - —
i= 600 - & with -S -ss
c
400 -
& no -S -ss
200 -
0 T T T T T 1
24576*1 12288*2 8192*3 4096*6 2048*12
MPI Tasks * OpenMP Threads
-19-




Thread Affinity: aprun “-cc” Option —

* Thread locality is important since it impacts both
memory and intra-node performance.

* Thread affinity: forces each process or thread to run on

a specific subset of processors, to take advantage of
local process state.

* On Hopper/Edison:

— The default option is -cc cpu (use for non-Intel
compilers)

— Pay attention to Intel compiler, which uses an extra
thread.

e Use “-cc none” if 1 MPI process per node

e Use “-cc numa_node” (Hopper) or “-cc depth” (Edison) if
multiple MPI processes per node
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Process and Thread Affinity for
SEVWIEDTE
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Babbage MIC Card EZ] e

11111111

Babbage MIC Card

Logical Core 5,6,7,8

Logical Core 9,10,11,12

Logical Core 13,14,15,16
Logical Core 233,234,235,236
Logical Core 237,238,239,0
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Physical Core 2
Physical Core 3
Physical Core 4
Physical Core 5
Physical Core 6
Physical Core 58
Physical Core 59

i
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Physical Core 60

Babbage: NERSC Intel Xeon Phi testbed, 45 nodes.

* 1 NUMA domain per MIC card: 60 physical cores, 240 logical cores.
* Process affinity: spread MPI process onto different physical cores.

* Logical core 0 is on physical core 60.
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Thread Affinity: KMP_AFFINTIY 0

*  Run Time Environment Variable.
* none: no affinity setting. Default setting on the host.
* compact: default option on MIC. Bind threads as close to each other as possible

Node
HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 1 2 3 4 5

e scatter: bind threads as far apart as possible. Default setting on MIC.
HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 3 1 4 2 5

*  balanced: only available on MIC. Spread to each core first, then set thread numbers using different HT of
same core close to each other.

HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4
Thread 0 1 2 3 4 5

* explicit: example: setenv KMP_AFFINITY “explicit, granularity=fine, proclist=[1:236:1]"
* New env on coprocessors: KMP_PLACE_THREADS, for exact thread placement

U.S. DEPARTMENT OF Offlce Of
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Thread Affinity: KMP_PLAGE_THREADS — Y

* New setting on MIC only. In addition to KMP_AFFINITY, can
set exact but still generic thread placement.

* KMP_PLACE_THREADS=<n>Cx<m>T,<0>0
— <n> Cores times <m> Threads with <o> of cores Offset

— e.g. 40Cx3T,10 means using 40 cores, and 3 threads (HT2,3,4) per
core

* OS runs on logical proc 0, which lives on physical core 60
— OS procs on core 60: 0,237,238,239.
— Avoid use proc 0
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YEARS

MPI Process Affinity: |_MPI_PIN_DOMAIN m'ﬂqe;%w

* A domainis a group of logical cores
— Domains are non-overlapping
— Number of logical cores per domain is a multiple of 4
Logial U o™

— 1 MPI process per domain .
— OpenMP threads can be pinned inside each domain

* |_MPI_PIN_DOMAIN=<size>[:<layout>]

<size>=omp adjust to OMP_NUM_THREADS
auto #CPUs/ #MPI procs

<n> a number
<layout> = platform according to BIOS numbering
compact close to each other
scatter far away from each other
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Tools for OpenMP
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YEARS

Adding OpenMP to Your Program i

* On Hopper/Edison, under Cray programming environment, Cray
Reveal tool helps to perform scope analysis, and suggests OpenMP
compiler directives.

Based on CrayPat performance analysis
— Utilizes Cray compiler optimization information

X Reveal
Navigatio Source- _mpi.
< | Top Loops S8 4 up | ¥ pown &
- poisson_mpic @ 159 myn-o O X\ Reveal OpenMP Scoping
- allocate_arrays 160 o
Scope Loops = Scoping Results
00055 Loop@252 for (i = i_minlny_rankl; i <= i_max(ny_rankl; i++ )
00055 Loop@258 e 7 poisson_mpi.c: Loop@161
- jacobi
04556 Logp@325 LSra 163 for (5 =11 § <= Wi jo) Name  Type  Scope  Info
9.4094 Loop@327 164 1 my_change Scalar FAIL: Last defining fteration not known for variable that is ive on ext
00479 Loop@343 165 if (u_nev[INDEX(1,1)] != 0.0 ) H mn o Sealar FAIE: Last defining feration not known forvariable thatis v on exit
00370 Loop@354 166 { —
- ma\:@‘ 167 ny_change = ny_change 800 ] OpenMP Directive
335342 Loop@148 168 + fabs (1.0 - ulINDEX(i, )] / u_new[INDEX(i,})] ); ZDD,!;ﬁ;‘;z‘,’ﬁ,ﬁ‘,‘;élﬂ’éf;f’é;:ﬂf,‘mw;y beincomplete.
235715 Loop@161 169 unresolved (my_change.my_n) \
170 myn =nyn+1; i shared (my_rank.N.i_maxu_new.u) \
- - Sty te
- ol ) N | firstprivate ()
00000 Loop@404 pees ) | max
- make_source -
- - 173} my_rank
00056 :;“:’f;‘::: I 174 WPI_Allreduce ( &my_change, Schange, 1, WPI_DOUBLE, WPI_SUM, u
175 HPI_COMM_WORLD ); u_new
176 -
{1 177 WPL_Allreduce ( &my_n, &n, 1, MPL_INT, MPI_SUN, MPI_COMM_WORLD );
178 |
179 if (n1=0) | Copy Directive ¥ close
= m | > m——
(an2Lhnalis]; - Find Name: | ]
@ Aloop was notvectorized because a recurrence was found between “u_new"and “my_change" at line 167.
Insert Directive | [ Show Directie Close
m >

poisson_mpi.pl loaded. poisson_mpi+pat+1119130-3263t ap2 loaded

 On Babbage, Intel Advisor tool helps to guide threading design
options.
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Performance Analysis And Debugging £

* Performance Analysis
— Hopper/Edison:
* Cray Performance Tools
* |IPM
e Allinea MAP, perf-reports
* TAU

— Babbage:
* Vtune
* Intel Trace Analyzer and Collector
 HPCToolkit
* Allinea MAP

* Debugging
— Hopper/Edison: DDT, Totalview, LGDB, Valgrind
— Babbage: Intel Inspector, GDB, DDT
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Case Studies
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Case Studies Introduction =,

OpenMP parallelizing techniques used in real codes.

LBM on TACC Stampede (by Carlos Rosales, TACC)
— Add OpenMP incrementally
— Compare OpenMP affinity

MFDn on Hopper (by H. Metin Aktulga et al., LBNL)
— Overlap communication and computation

NWChem on Babbage (by Hongzhang Shan et al., LBNL)
— CCSD(T)
e Add OpenMP at the outermost loop level
* Loop permutation, collapse
* Reduction, remove loop dependency

— Fock Matrix Construction (FMC)
* Add OpenMP to most time consuming functions
* OpenMP Task
* Find sweet scaling spot with hybrid MPI/OpenMP
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Case Study #1: LBM, Add OpenMP Incrementally o

400
350
300
250
200

1913ag Sl JoMOo7
Time (sec)

150
100
50
0

Steps to Parallelize LBM
140

120

100

W PostStream
80

Stream

MLUPS

60

PostCollision

Jonag st 4aysiH

40

Serial Step 1 Step 2 Step 3

- - - - i Collision ¢
I | | 20 ..A
[ . — 0

Compare OpenMP Affinity Choices

Balanced —a&—
Scatter

Compact ——

0 50 100 150 200 250
Number of OMP Threads

Lattice Boltzmann Method: a Computational Fluid Dynamics Code.
Actual serial run time for Collision > 2500 sec (plotted above as 200 sec only for better

display), > 95% of total run time.

Step 1: Add OpenMP to hotspot Collision. 60X Collision speedup.
Step 2: Add OpenMP to the new bottleneck, Stream and others. 89X Stream speedup.

Step 3: Add vectorization. 5X Collision speedup.
Balanced provides best performance overall.
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Case Study #2: MFDn, Overlap Comm and Comp U

1$OMP PARALLEL

1.8 if (my_thread_rank < 1) then
) call MPI_xxx(...)
1.6 else
1.4 L - do some computation
1.2 endif
g.' I$OMP END PARALLEL
§).8 o L o ] L * Need at least MPI_THREAD_FUNNELED.
‘"0_5 L . [ | | : * While master or single thread is making
0.4 | | | | || | | || MPI calls, other threads are computing!
0.2 L L L L L * Must be able to separate codes that can
run before or after halo info is received.
0
Very hard!

pure MPI hybrid A hybrid B hybrid C hybrid D . ...
* Lose compiler optimizations.

*  MFDn: a nuclear physics code.
e Hopper. Pure MPI: 12,096 MPI tasks.
e  Hybrid A: hybrid MP1/OpenMP, 2016 MPI* 6 threads.

e Hybrid B: hybrid A, plus: merge MPI_Reduce and MPI_Scatter into
MPI_Reduce_Scatter, and merge MPI_Gather and MPI_Bcast into MPI_Allgatherv.

e Hybrid C: Hybrid B, plus: overlap row-group communications with computation.

e  Hybrid D: Hybrid C, plus: overlap (most) column-group communications with
computation.
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Case Study #3: NWChem CCSD(T), Baseline ‘nersc/[m
0 p en M P FOREFRONT

Baseline OpenMP

10000
=®=Total Time

5 = —&-Time in Loop Nests
= 2 -&-Time in GetBlock
= g 1000
CUDJ ﬁ 311
2 e
= E 215
® E —8—a—u

= 100 96

c

=}

14

10

1 2 4 8 16 32 60 120 180 240
OMP_NUM_THREADS

* Due to memory limitation, can only run with 1 MPI process per MIC.

*  OpenMP added at the outermost loops of hotspots: Loop Nests. Scales
well up to 120 threads.

e GetBlock is not parallelized with OpenMP. Hyper-threading hurts
performance.

* Total time has perfect scaling from 1 to 16 threads. Best time at 120
threads.

* Balanced affinity gives best performance.
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Case Study #3: NWChem CCSD(T), More 'nersciln T
OpenMP Optimizations se

Optimized OpenMP

=B=Total Time

10000

) —*=Time in Loop Nests

% T -®Time in GetBlock

) g 1000

—. (]

o L

o g

@ 'i 100 124
g 62
("2 62

10

1 2 4 8 16 32 60 120 180 240
OMP_NUM_THREADS

* GetBlock optimizations: parallelize sort, loop unrolling.
 Reorder array indices to match loop indices.

 Merge adjacent loop indices to increase number of iterations.
* Align arrays to 64 bytes boundary.

* Exploit OpenMP loop control directive, provide complier hints.
* Total speedup from base is 2.3x.

>
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Case Study #4: NWChem FMC, Add OpenMP to  NeRsc/| [ @ Y

at the

HotSpots (OpenMP #1)
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* Total number of MPI ranks=60; OMP=N means N threads per MPI rank.

e Original code uses a shared global task counter to deal with dynamic load balancing
with MPI ranks

* Loop parallelize top 10 routines in TEXAS package (75% of total CPU time) with
OpenMP. Has load-imbalance.

* OMP=1 has overhead over pure MPI.
OMP=2 has overall best performance in many routines.
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Case Study #4: NWChem FMC, OpenMP Task  pewa
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at the

Implementation (OpenMP #3)

Fock Matrix Construction — OpenMP Task

Implementation

cSOMP parallel
myfock() =0
cSOMP master
current_task_id =0

* OpenMP task model is flexible and

mytid = omp_get_thread_nun,; f |
My_task = global_task_counter(task_u.osk size) power ul.
forijkl =2¥ntypeto2step-1do * The task directive defines an explicit task.
for ij = min(ntype, ijkl - 1) to max(1, ijkl - ntype) scen -1 do .
kI = ijkl = i e Threads share work from all tasks in the
if (my_task .eq. current_task_id) then
cSOMP task firstprivate(ij,kl) default(shared) taSk p00| .
create_task(ij, kI, ...)
Boh Pt et * Master thread creates tasks.
my_task=global_task_counter(task_block_size) ° The taskwait direcﬁve ma keS sure a”
end if
current_task_id = current_task_id + 1 child tasks created for the current task
end for 0..g
end for ﬁnISh'
AP e e e * Helps to improve load balance.

c¢SOMP taskwait
cSOMP end parallel
Perform Reduction on myfock to Fock matrix

 Use OpenMP tasks.

 To avoid two threads updating Fock matrix simultaneously, a
local copy is used per thread. Reduction at the end.
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Case Study #4: NWChem FMC, Run Time 10"

MIC
?1 0000 Fock Matrix Construction Time Host
g 'g 10000
= 8 g - ==0penMP Module
€ 2 1000 = <-Pure MPI
7 g ) _g 1000 OpenMP Task
%j = 183 o l:n x‘»m”
= w £ J‘N
® @ 100 - -@-FlatMPI ©E ——
S —A—OpenMP #1 (loop-level) D & T ——
° ~@-OpenMP #2 (module-level) 72 54 B y B
=&—0OpenMP #3 (Tasks) 1 ) 4 3 16
10 No. of Threads

1 2 4 8 16 32 60 120 180 240
Total Hardware Thread Concurrency

* Flat MPl is limited to a total of 60 ranks due to memory limitation.
*  OpenMP #1 uses flat MPI up to 60 MPI processes, then uses 2, 3, and 4 threads per MPI rank.
e OpenMP #2 and #3 are pure OpenMP.

OpenMP #2 module-level parallelism saturates at 8 threads (critical and reduction related).
Then when over 60 threads, hyper-threading helps.

OpenMP #3 Task implementation continues to scale over 60 cores. 1.33x faster (with 180
threads) than pure MPI.

* The OpenMP Task implementation benefits both MIC and Host.
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Case Study #4: NWChem FMC, MPI1/OpenMP m -
Scaling and Tuning

60-way 60

3 7525»’
120-way = 120 £
§ 70%()
= w2
= =
. &~
180-way he e
TB =)
- =

ﬁ 55

240-way 240 45 45 50

45
1 2 3 4 6 8 12

No. of MPI Processes

 Another way of showing scaling analysis result.

* Sweet spot is either 4 MPI tasks with 60 OpenMP threads per task,
or 6 MPI tasks with 40 OpenMP threads per task.

* 1.64x faster than original flat MPI.
e 22% faster than 60 MPI tasks with 4 OpenMP threads per task.

R U.S. DEPARTMENT OF Office of

\ ENERGY Science -38-

~
A
rrrrrrr ‘""




N =
m L A YEARS

Summary o

* Use Edison/Babbage to help you to prepare for Cori regarding
thread scalability (hybrid MP1/OpenMP implementation).

MPI performance across nodes or MIC cards on Babbage is not optimal.
Concentrate on optimization on single MIC card.

* Case studies showed effectiveness of OpenMP

Add OpenMP incrementally. Conquer one hotspot at a time.

Experiment with thread affinity choices. Balanced is optimal for most
applications. Low hanging fruit.

Pay attention to cache locality and load balancing. Adopt loop collapse,
loop permutation, etc.

Find sweet spot with MPl/OpenMP scaling analysis.
Consider OpenMP TASK. Major code rewrite.
Consider overlap communication with computation. Very hard to do.

* Optimizations targeted for one architecture (XE6, XC30, KNC) can
help performance for other architectures (Xeon, XC30, KNL).
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