Iterative Methods and
Preconditioning Techniques

Esmond G. Ng
(EGNg@Ibl.gov)

Lawrence Berkeley National Laboratory

Direct Solution of Linear Systems of Equations

 Need a triangular factorization of the coefficient matrix.
1 Require a finite number of operations to compute the solution.
 Can pivot to maintain numerical stability.

 Suffer from fill (zero entries turn into nonzero) when
coefficient matrix is sparse.

= Manage fill.
= Cost of Gaussian elimination.

 Need extra processing for sparse matrices.
= Ordering
= Symbolic factorization

\| E.G. Ng / 2

Iterative Solution of Linear Systems of Equations

O Start with an initial guess of the solution.
 Generate a sequence of approximations.

 Often require only matrix-vector multiplications and inner
products.

= Great for sparse linear systems since no matrix factorizations are
needed.

 Generating the sequence???
 Convergence of the sequence???
 Often unpredictable number of operations.

\| E.G. Ng / 3

Iterative Solution of Linear Systems of Equations

 Many iterative methods and lot of theory.

J Excellent references:

= Richard Barrett, Michael Berry, Tony Chan, James Demmel, June
Donato, Jack Dongara, Victor Eijkhout, Roldan Pozo, Charles
Romine, and Henk van der Vorst, “Templates for the Solution of
Linear Systems: Building Blocks for lterative Methods”, SIAM,
1994.

= Yousef Saad, “lterative Methods for Sparse Linear Systems”,
available from http://www-users.cs.umn.edu/~saad/books.html.

= Henk van der Vorst, “lterative Krylov Methods for Large Linear
Systems”, to be published in 2003.

\| E.G. Ng / 4

Iterative Solution of Linear Systems of Equations

 Some are simple:
= Jacobi
= Gauss-Seidel

= Successive overrelaxation and symmetric successive
overrelaxation

 Others are more complicated:

»| Conjugate gradient|and generalized conjugate gradient
Minimum residual and generalized minimal residual
Biconjugate gradient and biconjugate gradient stabilized
Conjugate gradient squared

Quasi-minimal residual

Chebyshev iterations

\| E.G.Ng /5

The Conjugate Gradient Method

O For symmetric positive definite linear systems, the conjugate
gradient method is the most popular method.

 Based on minimizing a convex quadratic function.

f(x) = %XTAX - x'b

O The minimizer is given by the solution of AX=Db.

\| E.G. Ng / 6

The Conjugate Gradient Method

A Basic idea in minimizing f (x) = %xTAx - x"b:

= Given an approximation to the minimizer, x{-1,
= Select a search direction p®.
Minimize f(x) along the direction x(-D + a p(,
+ This becomes a problem of a single (scalar) variable: a.
Let a; be the minimizer.
Then set x0 = xt1 +a.pO,
Repeat ...

3 Choice of search directions p® ?

= Chosen so that they are A-orthogonal (or A-conjugate).
[PO] TA[pW] =0, forit j.

\| E.G.Ng/ 7

The Conjugate Gradient Method

Given an initial guess x'%.

Compute the initial residual r'® =b- Ax©®.
Setp® =0;r_, =1.

fori=1, 2, ---

r, = [r.(i—l)]Tr.(i—l)

b, =r.,/r,,

p® =D 4 p pH -—
q® = Ap®
a; = ri-ll[p(i)]Tq(i)
x® = x+D 4+ g.p® —
r® =00 g0 «—

Check convergence; continue if necessary

end

2 inner products

1 matrix-vector multiplication

3 vector updates

L N

HERKELEY LAE

E.G. Ng / 8

The Conjugate Gradient Method

 Need 2 inner products and 1 matrix-vector multiplication.
= Great for sparse linear systems.

= No fill to worry about.

1 Parallel implementation of the conjugate gradient method.

= Assume that each vector is partitioned among the processors.

= Partial inner products can be computed in parallel and then globally
summed.

= Need parallel sparse matrix-vector multiplication!

L N

E.G. Ng /9

Notion of Preconditioning

O Lot of theory on the conjugate gradient method ...

= The conjugate gradient method converges in at most n iterations.
+ Krylov subspaces.
¢ In practice, difficult to say because of roundoff errors.

= If A has m distinct eigenvalues, then the conjugate gradient
method requires m iterations to converge to a solution.

+ Desirable to have a small number of clustered eigenvalues.

O To improve the convergence, change the eigenvalues of the
coefficient matrix.

= The preconditioning step.
= Many choices.

'ﬂ:jhl ¢
s ‘ | E.G. Ng / 10

HERKELEY LAE

Preconditioning

d Consider AxX =b; A symmetric positive definite.

U Let K be a nonsingular matrix.
d Then KAKT is symmetric positive definite.
 Instead of solving Ax = Db, solve

(KAKT) (K ™) =[By =c|=Kb..
with B = KAKT as the coefficient matrix, ¢ = Kb as the right-

hand side, and y = K-Tx as the unknown vector.

d The eigenvalue distribution for B = KAKT may be quite
different from that of A.

= K iIs referred to as the preconditioning matrix or preconditioner.

J Choice of K?

,/J,>| o
-—\H E.G. Ng / 11

Preconditioning ... An Example

O A is symmetric and positive definite.
d Let L be the Cholesky factor of A: A=LLT.

A Suppose we were able to set K=1L"1.
d Then KAKT = LPAL T = L-4(LLT) LT = (LIL)(LTL-D) =1 .

 The conjugate gradient method, when applied to
(KAKT) (KT x) =(Kb),

will converge in 1 iteration.

J Need more realistic choices.

;'m)
'_\H E.G. Ng / 12

Approximate Triangular Factorization

 Talked about sparse Gaussian elimination last time.

3 If A is symmetric positive definite, then A =LLT, with L
being lower triangular (Cholesky factorization).

 Instead of computing L exactly, we can compute an
approximationto L: L.

d Thenset K=1L1,1.

d If L, is agood approximation to L, then KAKT will be close
to 1, and L, will be a good preconditioner for A.

O How to construct the approximation?

;'m $
"\H E.G. Ng / 13

Incomplete Triangular Factorization

O Recall that the triangular factorization of a sparse matrix A
will change some of the zero entries into nonzero (Fill).

 Idea for constructing the approximation:
= Discard some of the fill entries in the factorization.

= The discarded fill entries may or may not participate in updating
future columns (depending on the algorithms and location of fill).

= Resulting triangular factor is inexact, and is called an incomplete
factor.

= Simplest dropping criterion: Discard all fill entries.

= Many other ways to drop fill to produce an incomplete
factorization.

 Matrix may lose positive definiteness.

;'m $
-—\H E.G. Ng / 14

E.G. Ng / 15

(7))
((b)
—_— -
©
c b=
(@))
- =
(@) ﬁ
o)
Su c
<) - TIrrTre
O = TIIEII:)
o (b} (I TTIITI Y
| (- 171
© P II1
O (I1IT
V) (7)) (11117
e i (TITERT
o o (T I 1]
© o © .dhlhﬂﬁ- .
o N - . (1)
S < 8 e
—_ O Q
me @ 2590005
a0 ae8s
[]
(]
® ' T 11
L 1] 2880
(T 1) T
[TY 1] T I 1]
L 1 1 K 7) 2880
11311 T
oNeE a8 [T Y1)
__ %8 as [1 B
o ae® o® (T 1)
(] FTT LX)
(1] (T3
2 B8 289 B®
Y]
aee
[I 1]
1]
[T
e aew
aw
[T

Example of Sparse Cholesky Factor

Computing Incomplete Factorization in Parallel

O Once a dropping criterion is decided, the incomplete
factorization can be computed in parallel, much like sparse
complete factorization although there are fewer operations
and less fill.

= Column modifications cmod(j,,k) and cmod(j,,k) can be performed
in parallel as long as columns j, and J, are assigned to different
processors and as long as column k of the factor is made available
to j, and }j,.

= Some of the cdiv operations can also be performed in parallel.

] Related issues: ordering and symbolic factorization.

= Different from sparse direct methods and can be much more
difficult.

,/J,>| o
-—\H E.G. Ng / 16

Computing Incomplete Factorization in Parallel

O It is much harder to get good efficiency in parallel incomplete
factorization than in parallel complete factorization.

d Why?
= Usually much fewer operations to perform.

= Unlike sparse complete factorization, usually no dense submatrices
to allow memory hierarchy to be exploited.

;'m)
'_\H E.G. Ng /7 17

A Left-looking Block Incomplete Factorization

 Based on the theory and left-looking algorithms for sparse
complete Cholesky factorization [Ng/Raghavan '99-'01].

 Choice of dropping criterion:

= Nonzero entries that do not satisfy a threshold condition are
dropped from the Cholesky factor, and they do not participate in
updating later columns of A.

 Take advantage of the supernodal structure to exploit memory
hierarchy.

= Drop rows of nonzero entries instead of individual nonzero entries.

+ Within a supernode, a row of nonzero entries is dropped if all entries
satisfy the threshold condition.

+ Force dense blocks to be retained.

;'m $
-—\H E.G. Ng / 18

Left-looking Block Incomplete Factorization

;f;tfi:.
£,
i ::::::.:=L.
=:EE:§E:. .
..:E=:.
reee]) 6. Ng /19

m
m
a
A
m
r
m
<
r
»
m

Left-looking Block Incomplete Factorization

O Requiring a row of nonzero entries within a supernode to be
dropped is a very stringent condition ... may lead to too few
nonzero entries being dropped in large supernodes.

 Remedy: Divide each large supernode into small blocks (e.g.,
block size 2, 4, or 8).

O This forces a block structure in the incomplete factorization.

O Can be implemented easily in the framework of (serial/parallel)
sparse complete factorization.

= Still exploit memory hierarchy.

,/J,>| o
-—\H E.G. Ng / 20

Preconditioned Conjugate Gradient Method

Given an initial guess x®. Compute incomplete factor K.
Compute the initial residual [r® = (Kb) - (KAKT) x®|.
Setp® =0;r_, =1.

fori=1 2, ---
r, = [r(i—l)]Tr(i—l)
b, =r.,/r,

p(i) =r®D 4 p 1p(i-l)
q(‘) — (KAKT)p(‘)
a; =r;, /[p(i)]Tq(i)
x® = 3D 4 a.p(‘)

Check convergence; continue if necessary
end

If converged, set x = K'x®.

;r/:>| ‘ﬁi| E.G. Ng / 21
L0 .G. Ng

bcsstk1l5

700.00
600.00
500.00 /// /
@)
£ 400.00 ——1
g —— 2
3
° —A—4
@ ——8
< 300.00
o
| /// /
200.00
100.00 ;'//
0.00 T T T T T
1 3 4 5 6 10 11
drop tolerance
'f’hl)
- ‘ E.G. Ng /7 22

HERKELEY LAE

bcsstk1l5

180.00

160.00
140.00 //
120.00
—— 1
100.00
—— 2
—a—4
—— 8
80.00
60.00 /// ///
40.00
20.00 %

OOO T T T T T T T T T T

ops in computing IC

drop tolerance

P A
rreeers ‘m

HERKELEY LAE

E.G. Ng / 23

bcsstk1l5

100.00
90.00
70.00
o
® 60.00
S ——1
g ——
IS
8 50.00 —a—4
o ——8
(O]
£ 40.00
30.00 //./ - - —
10.00
000 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11
drop tolerance
Frreerr 1]
L ‘ E.G. Ng / 24

HERKELEY LAE

bcsstk1l5

12.00
10.00 -
8.00
o
IS
5 '\ —~1
= —=—2
O
¢ 600 ,
8 —<—8
O
E
4.00
2.00
0.00 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11
drop tolerance
Frereerr 1]
L0 ‘ E.G. Ng / 25

HERKELEY LAE

spa060

200.00

180.00

i 3 &
160.00 /K%
140.00 ////
120.00
—— 1
—a—2
100.00 —a— 1
x//////x)
80.00 /
60.00 /

40.00

nonzero count in IC

20.00

000 T T T T T T T T T T

drop tolerance

P A
rreeers ‘m

HERKELEY LAE

E.G. Ng / 26

spa060

16.00

14.00
12.00 ////
10.00
—— 1
—— 2
8.00 /)// a1l
—— 8
6.00
4.00 p——

2.00 ///

000 T T T T T T T T T T

ops in computing IC

drop tolerance

P A
rreeers ‘m

HERKELEY LAE

E.G. Ng / 27

spa060

9.00

8.00 _ M — o

7.00

6.00

——1
5.00

——2

e S —a—
///"’////Ai———_——qi—i —>—8
4.00

time to compute IC

3.00

L%
2.00

1.00 7

OOO T T T T T T T T T T

drop tolerance

P A
rreeers ‘m

HERKELEY LAE

E.G. Ng / 28

spa060

16.00

14.00)i

12.00
¢ 10.00
O
IS ——
= 1
o 800 +2
=4 4
o —>—8
()
IS
= 6.00

4.00

2.00

0.00 : : : : ; s ; L —R = a - " - i

1 2 3 4 5 6 7 8 9 10 11
drop tolerance
] A
rreers ‘lll E.G. Ng /7 29

HERKELEY LAE

Observations

O Effect of increasing block size:

» Increase fill and operation count, but improve quality of
incomplete factor as a preconditioner.

= Decrease time to compute incomplete factor.
= Modest change in triangular solution time.

'ﬂ:jhl B
s ‘ | E.G. Ng / 30

HERKELEY LAE

Experimental Results

 Heat equations on 2-D and 3-D grids.

 Problems chosen so that number of nonzero entries per
processor is approximately constant as number of processors

Increases.
D N/2-D N/3-D
1 40, 000 27,000
2 73,441 42,875
4 138, 384 74,088
8 252,004 125, 000

16 467, 856 195, 112
32 891, 136 314, 432
64| 1,679,616 531, 441

;'m $
-—\H E.G. Ng / 31

Incomplete Factorization Times for 2D Grids

Incomplete Factorization Times

60

50

40

30

20

10

+\
——1
——2
\ ;
8
—K—16
—e—32
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sparsity of Incomplete Factors

E.G. Ng / 32

Incomplete Factorization Times for 3D Grids

50

N

45

40

35

T ——1
30 ——2
| 4
25 8
T A—_A ——16
20 ——32

Incomplete Factorization Times

N —
M . <

EQA\
0 » -t e .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sparsity of Incomplete Factors

;'m B
s ‘ | E.G. Ng / 33

Preconditioned Conjugate Gradient Method

Given an initial guess x©.
Compute the initial residual [r® = (Kb)- (KAK™)x°).
Setp® =0;r_, =1.

fori=1 2, ---
o =[r(i—1)]Tr(i—1)
b, =1, /1,

p® =D 4+pptD
q® = (KAKT)p(‘) <
a,=r,,/[p"1"q"

x D = 30D 4 aip(i)

__| need sparse triangular solutions

Check convergence; continue if necessary
end

If converged, set x = K'x®.

;r/:>| ‘ﬁi| E.G. Ng / 34
= .G. Ng

Parallel Conjugate Gradient Method

d Need to solve 2 sparse triangular systems at every iteration of
conjugate gradient.

 Can become the bottleneck in a parallel environment ...

= Triangular solutions are sequential in nature because of the
substitution process.

= There is parallelism in sparse triangular systems, but too much
synchronization and too few operations, resulting in poor
scalability.

;'m ¢
__\H E.G. Ng / 35

Parallel Sparse Triangular Solutions

 Replace the substitution process in a triangular solution by a
sequence of matrix-vector multiplications, which has a higher
degree of parallelism.

 The extreme:
= Explicitly invert a triangular matrix?

+ Explicit inverse of a sparse triangular matrix is typically dense.
¢ EXxpensive to compute and expensive to store.

J Alternatives?

'ﬂ:jhl B
s ‘ | E.G. Ng / 36

HERKELEY LAE

Consider The Dense Case

O Let T be alower triangular matrix.
d Solve Tx=Db.

AT 0]
0 Suppose T is partitioned into a block 2”2 matrix: T = S E
81_21 T22U
" . 0, U ex,u
O Partition b and x accordingly: bnglu;x: A 10
832u 2U

 Then the solution X is given by
-rllxl = bl I:) Xl
T,X +T,.X =b, P X

T..'b,
T; (bz T21X1)

3 Can avoid triangular solution if we have T;' and T,, explicitly.

;'m 5
__\H E.G. Ng / 37

Sparse Triangular Solutions

L Apply the idea to sparse triangular matrices that

exhibit dense blocks on the diagonal, such as those
from block (complete/incomplete) factorizations.

= Selective inversion - Compute the inverse of each dense °ee
diagonal block [Raghavan '97]. ces
00

= Related work: Anderson/Saad '89: Alvardo/Schreiber cee
'03; Heath/Raghavan '98; Raghavan '98; oo

Teranishi/Raghavan/Ng '02.

;'m ¢
__\H E.G. Ng / 38

Performance of Selective Inversion

O Consider sparse symmetric positive definite matrices.
 Performance results based on complete Cholesky factorization.

 Consider cost of factorization + cost of multiple triangular
solutions on a distributed-memory multiprocessor machine.

 Compare traditional substitution and selective inversion.

O Finite element matrices from a square grid.

= Grid size varies with number of processors so that triangular
solution work per processor is about constant.

,/J,>| 3
__\H E.G. Ng / 39

Performance of Selective Inversion

1.3
= fact
== fact + 1 soln
1.2 + = fact + 2 soln
fact + 4 soln
== fact + 8 soln
1.1

=
o

ratios of times

o
00
!

0.6 I I I I I I
1 2 4 8 16 32 64 128
processors

P A
rereers ‘m

HERKELEY LAE

E.G. Ng / 40

Performance of Selective Inversion

O Small penalty in computing inverses of diagonal blocks.
 Big improvements when solving multiple right-hand sides.

O The results show that selective inversion has the potential of
Improving the performance of multiple triangular solutions in
Iiterative methods with incomplete factorizations as
preconditioners.

;'m $
-—\H E.G. Ng / 41

Performance of Selective Inversion

Taoral pregpnditioning ame : 10% of nonzesos of L Total precondiionng fime: 50% of roneesos of L

[- — . - R — [- — = - E—
—t= ICE-1]
- |CE-2 i - |CE-2
45 ~ ICTE

e

234

Total precpnditoning time V0% of nonsenos of L

Tedal preconcibonng fime: 40% of noroenos of L

AL T T AL T T
| [=— =1 | [=— =1
| | & k-2 | | & -2
ar | & BT ar | & BT
| | ==~ Pamgais | | ==~ Pamgais
al al
I I
Tk T
i i
&}
E | |
- r
l l

= |

PumEmr of prosssan

- A
rereers ‘m

HERKELEY LAE

E.G. Ng / 42

Summary

1T one is willing to compute some sort of
factorization of a sparse matrix as a
preconditioner, then there is essentially

no difference between sparse direct

methods and preconditioned iterative
methods.

E.G. Ng / 43

Project ldea

O Talked about SuperLU/SuperLU_MT/SuperLU_DIST last time.
= Exploit dense blocks in supernodes.

O Incorporate selective inversion into sparse triangular solution.
= Need to understand the data structure in SuperLU.
= Need to identify the diagonal blocks.
= Invert the diagonal blocks.

= Rewrite the triangular solution in terms of inverses of the diagonal
blocks.

O Both Sherry Li (XSLi@Ilbl.gov) and 1 (EGNg@lIbl.gov) can help.

;'m $
-—\H E.G. Ng / 44

