SIAM J. MATRIX ANAL. APPL. © 1990 Society for Industrial and Applied Mathematics
Vol. 11, No. 2, pp. 323-334, April 1990 012

A NEW ALGORITHM FOR FINDING A PSEUDOPERIPHERAL
NODE IN A GRAPH"

ROGER G. GRIMES', DANIEL J. PIERCE!, AND HORST D. SIMON?#

Abstract. A new algorithm for the computation of a pseudoperipheral node of a graph is
presented, and the application of this algorithm to reordering algorithms for the solution of sparse
linear systems is discussed. Numerical tests on large sparse matrix problems show the efficiency
of the new algorithm. When used for some of the reordering algorithms for reducing the profile
and bandwidth of a sparse matrix, the results obtained with the pseudoperipheral nodes of the new
algorithm are comparable to the results obtained with the pseudoperipheral nodes produced by the
SPARSPAK version of the Gibbs-Poole-Stockmeyer algorithm. The advantage of the new algorithm
is that it accesses the adjacency structure of the sparse matrix in a regular pattern. Thus this
algorithm is much more suitable both for a parallel and for an out-of-core implementation of the
ordering phase for sparse matrix problems.

Key words. sparse matrices, reordering algorithms, bandwidth reduction, reverse Cuthill-
McKee algorithm, Gibbs-Poole-Stockmeyer algorithm, eigenvalues of graphs

AMS(MOS) subject classifications. 65F05, 05C99, 94A20

1. Introduction. Algorithms for the numerical solution of sparse linear systems
of equations usually start out with reordering the coefficient matrix in order to re-
duce the fill-in during Gaussian elimination. Several reordering algorithms for sparse
matrices require as a first step the determination of a pseudoperipheral node of the
graph associated with the adjacency matrix of the problem. For example, the reverse
Cuthill-McKee [3] algorithm, the automated nested dissection algorithm, the refined
quotient-tree algorithm, and the one-way-dissection algorithm in SPARSPAK [7] all
require the determination of a peripheral (or at least pseudoperipheral) node in the
associated graph. A widely used algorithm for this purpose is due to Gibbs, Poole, and
Stockmeyer [8], and was improved by George and Liu [7], and by Lewis [10]. Other
related algorithms have been investigated by Smyth [15]. These heuristic algorithms
do not guarantee finding a peripheral node. However, the pseudoperipheral node
computed by these algorithms is usually well suited for the purposes of reordering the
sparse matrix.

The idea common to all these algorithms is the concept of a rooted level structure
of the graph. All these algorithms make direct use of the level structure in performing
some type of search heuristic. Here we consider a new and quite different algorithm for
determining a pseudoperipheral node. This new algorithm is based on the dominant
eigenvector of the adjacency matrix of the graph. Even though our new algorithm does
not yield a significant improvement in the performance of the reordering algorithms
for sparse linear systems, there are two reasons for writing this detailed investigation
of the new algorithm. First, it is indeed remarkable that an algebraic quantity such
as an eigenvector can be used in the solution of a discrete graph problem. Eigenval-
ues of graphs have been studied extensively [4]. Aspvall and Gilbert [2] have used

1o * Received by the editors February 17, 1988; accepted for publication (in revised form) May 1,
89.

t Scientific Computing and Analysis Division, Boeing Computer Services, M/S 7L-21, Seattle,
Washington 98124.

4 _Numerica.l Aerodynamic Simulation (NAS) Systems Division, National Aeronautics and Space
Administration (NASA) Ames Research Center, Mail Stop 258-5, Moffett Field, California 94035.
(The author is an employee of the Scientific Computing and Analysis (SCA) Division of Boeing
Computer Services.))

323

324 R. G. GRIMES, D. J. PIERCE, AND H. D. SIMON

eigenvectors of the adjacency matrix for the graph coloring problem. Our algorithm, -
however, appears to be the first application of spectral properties of graphs to sparsge
matrix reordering problems.

Furthermore, the new algorithm is more suitable for an out-of-core or a paralle]
implementation. Its key computational requirement is a matrix-vector multiplication,
which can be easily implemented, both out-of-core and on a parallel machine. Thig
is in contrast to the algorithms based on a rooted level structure. The generatiop
of a rooted level structure requires repeated access to the adjacency structure of the
graph (or the sparse matrix). This involves a large number of random input/outpuyt
accesses, which make programming an out-of-core version of these algorithms difficult,
and their performance inefficient.

The current study of an alternative approach was motivated by the need for
an out-of-core reordering algorithm for sparse matrices arising in structural analysis,
Since the new reordering capability needed to be implemented in the context of an
existing structural analysis package, it was bound by severe core memory limitations,
These limitations were imposed rather by the structure of the package, than by actual
physical limitations. Details of the implementation are reported by Grimes and Pierce
in [9).

In a connected graph with n vertices and m edges an exact peripheral node can be
found in O(nm) time by an obvious algorithm. For sparse matrix applications, what is
wanted is an almost peripheral node in O(m) time. In this paper “pseudoperipheral”
means “approximately peripheral,” i.e., a heuristic approximation to a peripheral
node. In some other contexts [7] a pair of nodes are defined to be pseudoperipheral
if they both have eccentricity equal to the distance between them. The SPARSPAK
algorithm finds such a pair of nodes, usually in O(m) time in practice, although there
are examples that can make it run for at least O(m+/n) time, and perhaps more. A
different algorithm gets O(m/n) time in the worst case but is not practical (12].

The current report summarizes some of the initial investigations into an alterna-
tive algorithm for determining a pseudoperipheral node. Most of the material is based
on an earlier report [14]. In §2 we collect some definitions, and in §3 we present the
heuristic algorithm. Section 4 presents some bounds on the dominant eigenvector of
a graph, which give additional (albeit weak) justification for the heuristic algorithm.
Computational issues and numerical results are discussed in §§5 and 6.

2. Definitions. Here we consider an undirected, connected graph G = (X, E),
where X is the set of nodes, and E is the set of edges. The elements ai; of the
adjacency matrix A of GG are defined by

(1) g = 1 if nodeiand j are adjacent, orifi = j
Y710 otherwise.

This definition differs from the common definition of an adjacency matrix for a graph
(e.g., in [4]) in that we also set a;; = 1, whereas usually the diagonal elements are
set to be zero. If G is the ordered graph of a symmetric positive definite matrix M,
this definition proves to be more useful for our purposes. In this case the a;; could
be defined directly by

(2) aij = { 1 if mij #0

0 if mij =0,

i.e., the adjacency matrix reflects directly the zero-nonzero structure of a given matrix:
and is therefore the appropriate tool for sparse matrix computations.

ok kil b oadediie ils

| re————. 3
(I ———— ———_t)

ALGORITHM FOR A PSEUDOPERIPHERAL NODE 325

Since we assumed G to be connected, the matrix A is irreducible. By the Perron-
Frobenius theorem, A has a simple, positive eigenvalue A. The corresponding eigen-
vector v = (v1,v2," " ,v,)T has all components v; > 0,fori=1,---,n. Heren= | X
Therefore v can be normalized such that Soavi=1 In the following we will only
deal with A and v, such that

(3) Av = Av, Zv,-:l, v, >0 fori=1,---,n.
i=1

No confusion with other eigenvalues and vectors is possible. Since G is connected,
every TOwW sum of A is at least 2, for n > 1. Hence A>2.

We will also use the notation A; > A, implying that all elements of the matrix
A, are larger than the corresponding elements of A,. Similarly, A > « fora € R
means that all elements of A are larger than the scalar a. We will use the same
notation for the componentwise comparison of vectors.

The distance of two nodes z; and z;, i.e., the length of the shortest path connecting
r; and z;, is denoted by d(z;,z;), or for short by dij. The eccentricity of a node z; is
the quantity
(4) e(z:) = max d(zi, z5)-

=1,-,n
The diameter of G is then defined by

(5) §(G) = max_e(zi).

A node z; € X is said to be peripheral if its eccentricity is equal to the graph’s
diameter, i.e., if 6(G) = e(z;).
For a subset Y C X, the adjacency set of Y, denoted by Adj(Y), is

(6) Adj(Y) = {zi € X -Y| {z:i,z;} € Eforsomez; € Y}.

For a node z € X, the level structure rooted at x is the partitioning L(z) of X
satisfying

L(.’L‘) = {LO("I:)»LI(I),'"’Le(z)(x)} ’
(M) Lo(z) = {z}, Li(z)= Adj(Lo(z)),
Li(z) = Adj(Li-1(2)) = Li—2(x) fori= 2,3, -, €(x).

3. A heuristic algorithm for finding peripheral nodes. We are trying to
find a peripheral node of the graph G, i.e., a node with maximum eccentricity. Such a
node seems likely to have the greatest average distance from all other nodes. Consider
now the matrix A*. Its (i, j)th entry denotes the number of different paths (or walks)
of length k leading from z; to zj, where paths are included, which “stay for a while”
at a node, because of a;; = 1. Now let u=(1,1,---, 1)T. Then the ith component of
A*y is equal to the number of paths of length k, beginning at an arbitrary node and
ending in z;. If a node z; is “peripheral,” this number will be smaller and if a node
z; lies in the “center” of the graph, this number will be larger. So for k — oo one
should obtain some average number, which indicates how many paths go “on average”
through a node. But with some suitable normalization, Ay converges to the largest

326 R. G. GRIMES, D. J. PIERCE, AND H. D. SIMON

FIG. 1. Counterezample.

eigenvector v of A, unless u were orthogonal to this eigenvector. But this cannot
happen; since u = (1,--+,1)T, we have

(8) uTv=2n:v,~=1;é0.

i=1

A similar argument has been used in (16] to determine the center of a graph for an
application in geography. We use the same method for a different, but closely related
application. These arguments suggest the following very simple algorithm for finding
pseudoperipheral nodes of a graph:

(1) Find v, the dominant eigenvector of the adjacency matrix A.

(2) The node corresponding to the smallest component in v is a pseudoperipheral
node.

This algorithm will only determine pseudoperipheral nodes and not necessarily
a peripheral node. As a counterexample, consider the graph in Fig. 1. Clearly all
the nodes in the two cliques at the end (z1,72,z3 and zs,T9,z19) are peripheral.
The vector v, however, is given by v &~ (0.1073, 0.1073, 0.1073, 0.1211, 0.0569, 0.0569,
0.1211, 0.1073, 0.1073, 0.1073)T. The smallest components of v are just corresponding
to the “interior” nodes z5 and zg. It is interesting to note that the graph in Fig. 1
also serves as the standard counterexample for a perfect elimination graph for which
the minimum degree algorithm does not find a perfect elimination order (see (5, p.
130)).

The proposed method will also fail if the graph is regular, that is, all vertices
have the same degree. In this case the components of the dominant eigenvector are
all equal. Regular graphs are not common in practice, but it is easy to construct
regular graphs in which eccentricities vary widely.

o~

g

ALGORITHM FOR A PSEUDOPERIPHERAL NODE 327

4. Bounds for the dominant eigenvector. Although the example above shows
that the heuristic algorithm from §3 will not always produce peripheral nodes, we are
able to obtain lower bounds on the components of the dominant eigenvector. These
pounds indicate that there is a certain inverse relationship between the components
of the eigenvector and the eccentricity of the corresponding node.

PROPOSITION 1. For n > 1 the components v; of the dominant eigenvector v
satisfy

v; 2 1
©) 2 S = 1)) + 1

fOT'l: =1,2,-:",n.
Proof. Let Av = Av and let L(z;) = {Lo(a:i),Ll(z.-),---,Le(,..)} be the level
structure rooted at z;. Furthermore, for brevity let

(10) > v
Adj(xi)

denote the sum of all v; over all indices j, such that z; € Adj(z;), and similarly

S L(z) Vio etc. _
Now Av = v implies that (for n > 1)

1 1 .
& w=r O w=yoy o PThem
Adj(z:) Ly(zi)
Substituting (11) into itself and taking into account that z; € Adj(z;) forz; € Ly(z:),
we obtain _
1 .
(12) UiZ-(—,\—:-_-ﬁg Z Vj, i=1,---,n.

La(zi)

This process can be repeated e(z;) times so that we obtain

(13) v.'z(—l\—-_l—l—),; Z v; fori=1,2,---,n andk =1,2,---,e(zi)
Ly (zi)

Summing up the e(z;) inequalities (13), it follows that

e(zi) n

1 1 1—v;
14) e(wm> Y, rE O Y2 GoTeEd S vi= e
- _ - - i _ (i)
k=1 A -1) Li(z+) (X 1ye= j=1ig#i (A= 1)<

Here A > 2 was used, which is correct for n > 1, as mentioned after formula (3).

Therefore

1

> fori = 1.2, e 11
Y= () (A = 1)) +1 ori =1,2 n

(15)

This is also correct for n = 1. O
PROPOSITION 2. Let § be the diameter of the graph. Then

(16) ,\21+{/";1.

328 R. G. GRIMES, D. J. PIERCE, AND H. D. SIMON

Proof. From (9) it follows that

1

> - fori=1,2,---,n.
TP S L "

(17

Summing up for i = 1,2,---,n and rearranging yields the result. O

For the proof of Proposition 3, the following lemma is needed.

LEMMA 4.1. Let ag.’) be the (i,j)th entry of the matriz Ak k£ =1,2,3,--- and let
n > 1. Then it holds that
(18) ag') >1 foralli,jwithd(zi,z;) =k |

(19) o) >k foralli,jwithd(zi,z;) <k

Proof. Let d(z;,zj) =p < k. Now a,(-;‘) counts the number of paths of length a¢
most k steps from z; to z;. If we follow the shortest path and make exactly k steps,
of which p go forward and k — p stay at the same node (go around self-loops), there

are (';) possibilities for the choice of p forward steps. But (’;) > kif 1 <p <k giving

(19) if i # j; the case i = j is treated similarly, and (’;) =1if p= k giving (18). O
ProrosITION 3.
1

(20) v; > e 1

fori=1,---,n.

Proof. Let aS;‘) be the (i,j)th entry of AF as before, and let D be the distance
matrix of the graph, i.e., D = (dij), where d;; = d(zi,z;). Then the following
statements about ag?) and d;; can be made for k = 1,2, --- using (18) and (19):

(21) a%‘) >k foralli, j withd;; < kexcept

dij > 1 for the diagonal elements where d;; = 0

(k)

(22) a; 21 } foralli, j withd; = k

d,'j =k

a® =0
(23) e } foralli, j withd; > k + 1.
ij Z N

Taking (21) - (23) together in matrix form it holds that every element of the matrix
I + A* + D is greater or equal to k + 1, where I is the n x n identity matrix. Let J
be the n x n matrix with all entries equal to one. Then this fact can be written as

(24) I+AF+D>(k+1)J.
Therefore
(25) v+ A¥v + Dv > (k+1)Jv = (k + 1)u,

where u = (1,1,--+,1)T. The ith component of Dv can be bounded as follows:

L aam o

(26) (Dv); = zn: dyv < e(z;) i v = e(x;).
=1 =1

ALGORITHM FOR A PSEUDOPERIPHERAL NODE 329

TABLE 1
Eigenvector bounds for ezample graph.

i v; | e(z;) | Lower bound Lower bound
from Prop. 1 | from Prop. 3

1 | 0.0364 4 0.00235 0.00317
2| 0.1111 3 0.00998 0.01322
3 | 0.0756 4 0.00235 0.00317
4 | 0.0414 4 0.00235 0.00317
51 0.1144 3 0.00998 0.01322
6 | 0.1315 3 0.00998 0.01322
7 | 0.1330 3 0.00998 0.01322
8 | 0.1232 3 0.00998 0.01322
9 | 0.0871 3 0.00998 0.01322
10 | 0.1480 3 0.00998 0.01322

Using (25) and AFy = Ay, one obtains for the components in (24)
271 v+ Mew; +e(zi) 2 k+1 fori=1,2,---,n and k= 1,2,3,:--.

If k is chosen to be e(z;), then (20) follows.]

Note that the choice k = e(z;) in (27) makes the bounds the best possible, since
k < e(z;) yields trivial bounds and k > e(z;) yields in general some worse bounds
because of the rapidly growing denominator.

PROPOSITION 4.

(28) A>Vn-1.

Proof. Set k = 6 in (27). Then

6+1-— 8(1‘,‘) 1
N+l T A+

Summing over i and rearranging yields (28). O

All the bounds in the propositions above are rather weak. But this is to be ex-
pected, since they were proven for general graphs without any further assumptions.
The bounds of Proposition 1 are better for some smaller graphs, whereas the bounds
of Proposition 3 are better for larger graphs (for larger e(z;)). It should also be noted
that the bounds of Proposition 3 are almost sharp, if the graph is a clique. There-
fore, there is not much hope to improve these bounds in all generality. However, all
bounds on the components of the eigenvector show that there is an inverse relationship
between eccentricity e(z;) and the corresponding v;.

The weakness of the bounds can be seen in the following example. The graph is
taken from [7], where it is also used to illustrate several algorithms and concepts. For
this graph the figures in Table 1 were obtained. Clearly the bounds from Propositions
1 and 3 are an order of magnitude smaller than the corresponding components of the
eigenvector.

Here § = 4 and A ~ 4.21. The bounds of Propositions 2 and 4 yield

fori=1,---,n.

(29) v >

(30) A 2143 ~225
A >V9 =1732

330 R. G. GRIMES, D. J. PIERCE, AND H. D. SIMON

FIG. 2. Ezample.

5. Application to bandwidth and profile reduction for sparse matrices.
In §2 we proposed a new algorithm for computing a pseudoperipheral node in a graph.
Since this algorithm is only a heuristic, and since the term “pseudoperipheral” is only
defined in the context of this heuristic algorithm, there is only one way to assess the
efficacy of such an algorithm: to compare it to other algorithms in an application to a
practical problem. The application of the new algorithm that we are most interested
in is sparse matrix computations.

The solution of sparse linear equations of the form

(31) Mz =5

by direct methods has been an area of intensive research during the past 15 years.
For symmetric positive definite matrices most of the effort has been directed toward
a combination of Gaussian elimination with some reordering of the equations and
unknowns in (31). The goal is to obtain a permutation such that the solution of
the permuted system incurs less fill-in than the solution of the original system. The
actual numerical entries of M are irrelevant for this reordering phase, because if M
is positive definite, then so is the permuted system, and a Cholesky factorization can
always be computed. Thus the reordering can be based on the structural information
for the matrix, i.e., the graph of the adjacency matrix alone. For a detailed discussion
of the topic see the book by George and Liu [7].

Several reordering heuristics discussed in [7] ideally require the computation of a
peripheral node. The practical Fortran implementation of these algorithms, however,
relies on the Gibbs-Poole-Stockmeyer (GPS) algorithm, which computes a pseudope-
ripheral node. For most practical applications, this node is a good starting node for
the reordering algorithms in SPARSPAK. In order to test the new pseudoperipheral

. ALGORITHM FOR A PSEUDOPERIPHERAL NODE 331

node finder, we replaced the subroutine FNROOT in SPARSPAK by a new subroutine
which computed the dominant eigenvector of the adjacency matrix using the power
method. Then the node corresponding to the component with the smallest entry in
the eigenvector was used as a pseudoperipheral node. We could have used a more
powerful algorithm such as the Lanczos algorithm, as is argued in [13]. But for our
purposes here a few steps of the power method were sufficient, as our results in the
next section will show.

The application of the power method is straightforward. The only question that
remains to be discussed is a suitable stopping criterion. We are interested only in the
Jocation of the smallest entry of the dominant vector, possibly only in the location of a
small, but not necessarily the smallest entry. The numerical results indicate that four
steps of the power method were sufficient to obtain a pseudoperipheral node which
was efficient for our sparse matrix applications. This number of iteration steps was
also chosen in the implementation discussed in [9].

The new algorithm can be applied in the context of profile and bandwidth reduc-
tion algorithms for the reordering of sparse matrices. Recent research results (1], [11]
indicate that sparse Gaussian elimination based on profile and bandwidth is no longer
competitive with general sparse and multifrontal methods. However, band and enve-
lope methods are widely used in applications in structural engineering, and are used
in many software packages for engineers. For these applications the new algorithm is
an alternative, since it does not require a general redesign of the package based on
a new data structure for the sparse matrices. As in the case of [9] only one extra
subroutine is required. Another potential application of the new algorithm is in the
context of general sparse schemes, which sometimes require pseudoperipheral nodes
as well, e.g., the automated nested dissection algorithm [7].

6. Numerical results. In Table 2 we summarize some characteristics of the
sparse matrix test problems, which we used to evaluate the new heuristic algorithm.
All test problems are available in the Boeing Harwell sparse matrix collection and
are described in [6]. Table 2 lists the problems, the number of equations (nodes), the
number of nonzeros in the matrix (edges in the graph), and both profile and bandwidth
of the unordered matrix. The first two examples are electric power networks. These
are planar graphs, which correspond probably most closely to the model we had in
mind, when developing the new algorithm. Problems 3 - 7 are finite-element models
of three-dimensional structures. They are probably distinguished by the existence of
many cliques. These examples are typical for the type of matrices encountered in
structural engineering. The last three examples are finite-difference approximations
to problems defined in very regular two-dimensional domains.

The matrices in Table 2 were first reordered with the reverse Cuthill-McKee
(RCM) algorithm as implemented in [7] . and then reordered using the new eigenvector
algorithm. In order to evaluate the change in efficiency in the reordering, we computed
the smallest component of the iteration vector in the power method for each of the
first 25 iterations of the power method, and then at each iteration step the resulting
RCM ordering. In Table 3 we list the results of this numerical experiment. We give
the best result obtained with the eigenvector method, and the number of iterations
required to obtain this result. In most (but not all) cases more iterations of the power
method did not change the results in Table 3.

Table 3 demonstrates that the node corresponding to the smallest component of
the iteration vector in the power method is a suitable alternative as a pseudoperiph-
eral node. The RCM method yields about the same reduction in profile and bandwidth

Ty

332 R. G. GRIMES, D. J. PIERCE, AND H. D. SIMON
TABLE 2
Test matrices.
Title Equations | Nonzeros Profile | Bandwidth
1 | Western US Power Network 1,723 6,511 472,515 1,663
2 | Entire US Power Network 5,300 21,842 6,122,200 5,189
3 | TV Studio 1,074 12,960 240,161 590
4 | Fluid Flow - Stiffness Matrix 2,003 83,883 434,798 1,250
5 | Geodesic Dome 2,132 14,872 188,488 1,805
6 | Cannes Matrix 1,072 12,444 277,248 1,048
7 | Connection Table 2,680 25,026 587,863 2,499
8 | 9-Point Operator on 40 x 40 Grid 1,600 13,924 63,960 41
9 [9-Point Operator on 80 x 80 Grid 6,400 56,644 511,920 81
10 | George’s L-shaped Problem 3,466 23,896 363,844 3,434
TABLE 3
Comparison with SPARSPAK RCM for envelope reduction.
SPARSPAK RCM [Best power with RCM | Iter. Time | Time
Profile Bandw. | Profile Bandw. RCM | power
1 79,260 133 74,251 130 4 0.18 0.44
2 | 667,245 285 | 626,863 274 9 0.66 3.10
3 | 282,999 704 | 246,776 640 1 0.22 | 0.20
4 | 502,907 546 | 522,640 411 2 1.08 1.86
5| 171,437 105 | 172,712 101 8 0.30 1.94
6 56,438 178 75,409 248 1 0.24 0.14
7 | 102,983 69 | 105,058 69 15 0.50 5.96
8 81,497 79 81,497 79 1 0.55 0.46
9 | 666,997 159 | 666,997 159 1 2.25 1.86
10 | 158,546 62 | 158,546 62 1 0.48 0.32
TABLE 4

Comparison with SPARSPAK RCM as a pseudoperipheral node finder.

Diameter | Periph. Nodes SPARSPAK RCM | Best power with RCM
Node Eccen. | Node Eccen.

1 38 5 418 38 224 38
2 50 6 | 1436 50 92 48
3 9 4| 1063 9 1 9
4 12 90 659 12 34 11
5 35 20 633 35 192 34
6 13 24 203 13 46 12
7 76 7 243 76 240 73
8 40 156 40 40 1 40
9 80 316 80 80 1 80
10 91 2 16 91 16 91

P S— .
-~ | — — = — 1

ALGORITHM FOR A PSEUDOPERIPHERAL NODE 333

with either the SPARSPAK pseudoperipheral node as starting node or with the node
delivered by our algorithm. The execution times (in seconds) for these numerical tests
were obtained on a Sun 3/260 with a floating-point accelerator. The new method
does require somewhat higher execution times; however, this additional overhead is
insignificant when compared to actual numerical factorization times for these types
of matrices (cf. [1], [11]).

Table 3 demonstrates that the eigenvector method is suitable for the intended
sparse matrix application. The effectiveness of the eigenvector method for finding
pseudoperipheral nodes is demonstrated in Table 4. For the graphs corresponding to
the matrices in Table 2 we list the diameter, the number of peripheral nodes, and the
nodes found by SPARSPAK RCM and the eigenvector method together with their
eccentricity. The numbering of the nodes refers to the original ordering of the matrices
as given in the sparse matrix test collection [6].

In Table 5 we summarize the reduction in profile obtained by using the SPARSPAK
pseudoperiphera.l node, the node corresponding to the smallest component of the
power method iteration vector after 4 steps, and the node corresponding to the small-
est component of the dominant eigenvector. In addition, we list the envelope reduction
obtained from the GPS algorithm and from the Gibbs-King (GK) algorithm as im-
plemented by Lewis in [10]. Generally the Gibbs—King is known to obtain the best
reduction in envelope size, usually at the cost of increasing the bandwidth.

TABLE 5
Profile reduction using SPARSPAK RCM, GK, GPS, four iterations of the power method
(POW4), and dominant eigenvector (EIG).

RCM | GK | GPS | POW4 | EIG

1| 017 |0.14 | 0.15 0.16 | 0.18
2| 0.11]0.09| 0.09 0.16 | 0.13
3| 1.18|0.80 | 0.87 1.27 | 1.27
4| 116|097 | 107 1.20 | 1.30
5| 091089 | 092 0.94 | 0.92
6| 020018 | 0.27 0.36 | 0.20
7| 0.18|0.16 | 0.17 0.25 | 0.18
8| 1.27 | 1.00 | 1.00 1.27 | 1.27
9| 1.30|1.00 | 1.00 1.30 | 1.30
10| 043]043 | 043 0.43 | 0.43

Four iterations of the power method were used in (9], and Table 5 demonstrates
that this is a reasonable choice. The node thus selected delivers a profile reduction
comparable to the GPS node, at a cost which is slightly higher. Note that Table 5
lists the reduction in profile obtained, normalized so that the profile of the original
matrix as given in [6] is one. Apparently Problems 3 - 5 are given in a reduced profile
form already, since we are not able to obtain any improvements. All algorithms fail
in the same way on the regular grid problems. If there is no reduction in the envelope
size, GPS and GK are returning the original ordering.

These results demonstrate that the new pseudoperipheral node finder based on
the dominant eigenvector, or the computationally more efficient algorithm based on
a few steps of the power method, is an alternative to the GPS, GK, and SPARSPAK
RCM algorithms. The figures in Table 5 indicate the better performance of GPS
and GK on this test set. These are results with the unmodified versions of these

334 R. G. GRIMES, D. J. PIERCE, AND H. D. SIMON

algorithms. We did not merge our eigenvector algorithm with GPS and GK in the
same way as we combined it with SPARSPAK RCM. These tests were not carried
out, since we expect to see very similar results.

Because of its simplicity the above algorithm has been implemented as an out-of-
core alternative in a software package for solving linear systems arising in structural
analysis [9]. The advantages of the new algorithm for a parallel implementation
are clear, but have not yet been pursued by the authors. More fundamentally, we
were able to exploit the algebraic properties of the adjacency matrix of a graph for
computational purposes. That it is possible at all to utilize this information in order
to uncover structural properties of the graph and the corresponding sparse matrix
came as a surprise to us. We believe that spectral properties of the adjacency matrix
have more potential use in sparse matrix computations beyond the ideas discussed
here.

Acknowledgment. We would like to thank John Lewis for making several valu-
able suggestions for improving the manuscript, as well as for providing the numerical
test results with the GPS and GK algorithms.

REFERENCES

[1] C. ASHCRAFT, R. GRIMES, J. LEWIS, B. PEYTON, AND H. SIMON, Recent progress in sparse
matriz methods for large linear systems, Internat. J. Supercomput. Appl., 1 (1987), pp.
10 - 30. .
[2] B. ASPVALL AND J. GILBERT, Graph coloring using eigenvalue decomposition, SIAM J.
Algebraic Discrete Methods, 5 (1984), pp. 526 — 538.
[3] E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices, in Proc.
24th National Conference of the Association of Computing Machinery, ACM Publications,
1969, p. P69.
[4] D. CVETKOVIC, M. DOOB, AND H. SACHS, Spectra of Graphs, Academic Press, New York,
1980.
[5] 1. DUFF, A. ERISMAN, AND J. REID, Direct Methods for Sparse Matrices, Clarendon Press,
Oxford, 1986.
[6] I S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matriz test problems, ACM TOMS, 15
(1989), pp. 1 - 14.
[7] A. GEORGE AND J. L1u, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.
[8] N. GiBBS, W. POOLE, AND P. STOCKMEYER, An algorithm for reducing the bandwidth and
profile of a sparse matriz, SIAM J. Numer. Anal., 13 (1976), pp. 236 - 249.
[9] R. GRIMES AND D. PIERCE, The implementation of three resequencing algorithms for
MSC/NASTRAN, Tech. Report ETA-TR-65, Boeing Computer Services, Seattle, WA,
1987.
[10] J. LEWIS, Implementations of the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms, ACM
Trans. Math. Software, 8 (1982), pp. 180 - 189.
(11] J. LEWIS AND H. SIMON, The impact of hardware gather/scatter on sparse Gaussian elimi-
nation, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 304 — 311.
(12] J. K. PACHL, Finding pseudoperipheral nodes in graphs, J. Comput. System Sci., 29 (1984),
pp. 48 - 53.
(13] B. PARLETT, H. SIMON, AND L. STRINGER, Estimating the largest eigenvalue with the
Lanczos algorithm, Math. Comp., 38 (1982), pp. 153 - 165.
[14] H. D. SIMON, Bounds for the dominant eigenvector of a graph, Tech. Report, Dept. of Appl.
Math., State University of New York, Stony Brook, NY, 1982.
[15] W. F. SMYTH, Algorithms for the reduction of matriz bandwidth and profile, J. Comp. Appl.
Math., 12/13 (1985), pp. 551 — 561.
(16] P. D. STRAFFIN, Linear algebra in geography: FEigenvector networks, Math. Mag., 53 (1980),
pp. 269 - 276.

