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TWO CONJUGATE-GRADIENT-TYPE METHODS
FOR UNSYMMETRIC LINEAR EQUATIONS*

M. A. SAUNDERSt, H. D. SIMON;, AND E. L. YIP§

Abstract. We propose two new conjugate-gradient-type methods for the solution of sparse unsymmetric

linear systems. We present a new tridiagonalization process for unsymmetric matrices that is closely related
to the Lanczos process. We use orthogonal factorizations of the tridiagonal matrix to derive the new
algorithmsUSYMLQ and USYMQR in the same fashion as SYMMLQ and MINRES [c. C. Paige and
M.A: Saunders, "Solution of sparse indefinite systems of linear equations," SIAM J. Numer. Anal., 12
(1975),pp. 617-629], for symmetric matrices. Some numerical results for the new methods and comparisons
withother methods are presented.

Key words. conjugate gradients, unsymmetric sparse linear systems

AMS (MOS) subject classification. 65FlO

1. Introduction.The successful application of the method of conjugate gradients
for the numerical solution of sparse symmetric positive-definite linear systems,
especiallyin connection with preconditioning, has prompted an intensive search for
extensionsof this method, which would perform equally well for nonsymmetric matrices
(fora survey, see [3]). The three properties that make the method of conjugate gradients
(CG hereafter) so useful and interesting are the finite termination property, the
minimizationproperty, and the fact that the method is based on a three-term recurrence.
Theseproperties imply that CG is guaranteed to terminate after a finite number of
steps(in exact arithmetic), that some measure of the error is decreased at every step
of the method, and that the computational requirements for each step are constant.
Eventhough the finite termination property is rarely of importance in the ptactical
applications of CG, it distinguishes CG theoretically from methods such as SOR,
whichdo not possess this property.

Here we will present a method for general unsymmetric linear systems that enjoys
allthree nice properties of the conjugate-gradient algorithm. This does not contradict
theresults of Faber and Manteuffel [5], who answered negatively a question by Golub
[6]about the existence of such a method. In contrast our method is not based on an
approximation from a Krylov subspace. The new method also does not apply conjugate
gradientsto the normal equations. Instead, the methods are derived from a tridiagonaliz-
ation process for unsymmetric matrices, which will be discussed in § 2. This
tridiagonalization process reduces to the symmetric Lanczos process if it is applied to
a symmetric matrix. It is distinctively different from the Lanczos biorthogonalization
(orthe biconjugate-gradient method) for unsymmetric matrices, which has been used
forderiving methods for unsymmetric linear systems, for example, by Saad [18], [19].

The application of the new tridiagonalization process to the solution of linear
systemsis discussed in § 3, where we also derive some of the properties of the new
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methods. We discuss the choice of the starting vectors and the relationship to other f

methods in § 4. t
Section 5 presents the practical implementation of the new methods. Using the

LQ factorization of the tridiagonal matrix we obtain the algorithm USYMLQ in an
analogous manner to the derivation of SYMMLQ from the symmetric Lanczos process
by Paige and Saunders [13]. We use the QR factorization to obtain USYMQR, which
can be considered as a generalization of MINRES [13]. Some numerical results are
presented in § 6.

2. Atridiagonalization process for unsymmetric matrices. In this section we present
a tridiagonalization process for a general unsymmetric real n x n matrix A. We consider
only the real case here, and * will always mean "transpose," but the algorithm can be
easily extended to complex matrices. The tridiagonalization process can be derived by
constructing the following transformation of A:

(2.1) P*AQ= T,

where P and Q are orthogonal matrices and T is a tridiagonal matrix. If A is symmetric
we can choose P = Q. Then T is symmetric as well and the symmetric Lanczos algorithm
will be obtained (see [13]). We note that (2.1) is quite different from the Lanczos
biorthogonalization algorithm for unsymmetric matrices (see [9], [25]), which is based ,.

on the similarity transformation

(2.2) P*AQ= T.

T is again tridiagonal, but P* = Q-I. Whereas (2.2) preserves the eigenvalues of A,
(2.1) preserves the singular values of A, which is quite appropriate for solving linear
equations. The proposed tridiagonalizationproc~ss therefore can also be used for
determining the singular values of large matrices. This will be discussed further in §4.

THEOREM1. Let A be a general n x n matrix. There exist orthogonal matricesP
and Q and a tridiagonal matrix T with positive offdiagonal elements such that

(2.3) P*AQ= T.

Proof. Set qo= 0, Po= 0, {3J= 0, 'YJ= O. Choose arbitrary unit vectors PI and ql'
Then for j = 1,2, . . . , n -1 define

(2.4a) (3j+JPj+J=Aq; - CijPj - 'YjPj-J,

(2.4b) 'Yj+Jq;+1= A*pj ~ Cijq; - {3jqj-J,

with Cij= pJ Aq;, where (3j+J> 0 and 'Yj+1> 0 are chosen such that Pj+J and q;+Jare unit
vectors. We will now show that the vectors thus constructed satisfy

Hence the matr

will satisfy (2.3)
Because of

j = 1,2, . . . , n-
induction that (
we obtain by ml

Here we also u
induction and f(

Similarly (2.5b)
Finally we I

possible that

A*p

In that case q;+1 (
if we choose an ~

choose Pj+I..lspal
holds in this case

The proof (
uniquely determi
unless breakdow

A tridiagona
ALGORITHM

(1) Initializ:
Choo~
Set Po

(2) Loop
For i =

u
v.
Cii
u.
v.
/3;
'Yi
if

End 10

(2.5a) qJ qk = 0 for k <j,

(2.5b) pJpk=O for k <j,

(2.5c) pJAqk =0 for k<j-l,

(2.5d) qJApk =0 for k <j -1.
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Hence the matrices Q= Qn = (ql, q2, . . . qn), P = Pn = (Pi> P2, . . . ,Pn),and

al 1'2 0 . . . 0

f32 a2 1'3 ... 0
T= Tn =

0

0
. .. f3n-1 an-I

0 f3n

1'n

an

will satisfy (2.3).

Because of the choice of ai we have immediately that qj+1qj = 0 and pj+IPj = 0 for
j = 1,2, . . . , n -1. Also it can be verified that (2.5) is true for j = 1. We will show by
induction that (2.5) holds in general. Suppose that (2.5) has been shown for j; then
weobtain by multiplying(2.4b) with q[, k <j -1 that

1'j+lq[qj+1 = q[A*pj
= pj Aqk = pj(f3k+IPk+1+ akPk+ 1'kPk-l)= O.

Here we also used (2.4b) for Aqk' Similarly, (2.5b)-(2.5d) can be obtained using
induction and formulas (2.4a), (2.4b). In order to show (2.5a) for k =j we compute

1'j+lqj-lqj+1 = qj-IA*pj - f3j

= pj(f3jPj + aj-IPj-1 + 1'j-lPj-2) - {3i

= f3j - f3j = O.

Similarly(2.5b) can be shown for k = j.
Finally we have to address the question of a breakdown of formulas (2.4). It is

possiblethat

A*pj E span (ql, q2, . . . , qJ or Aqj Espan (PI,P2,. . . , Pj).

Inthat case %+1(or Pj+l)would be zero. However, the recurrence (2.4) can be continued,
ifwechoosean arbitrary unit vector %+I.lspan(ql, q2,q3,' . ., qj) and set ri+1=0 (or
choosePj+I.lspan (PI, P2,P3,' . ., Pi) and set f3j+1= 0). It can be shown that (2.5) also
holdsin this case. This completes the proof of Theorem 1. 0

The proof of Theorem 1 shows that the tridiagonalization (2.3) is essentially
uniquelydetermined by the matrix A and the choice of the starting vectors PI and ql,
unlessbreakdown occurs.

A tridiagonalization algorithm can be derived from (2.3) as follows:

ALGORITHM1. Tridiagonalization of an Unsymmetric Matrix.
(1) Initialization.

Choose two arbitrary vectors b ¥-0, c ¥-O.
Set Po= qo=O, {31= libII,1'1= l\cl\,and PI ==bl {3i> ql = chi'

(2) Loop
For i=I,2,3'" do

u ~ Aqi -1'iPi-1

V ~ A*Pi - f3iqi-1
ai~p'tu
u~u-aiPi
v~v-a'tqi
f3i+1 ~ !lull
1'i+1 ~ IIvii

if f3i+1= 0 Of 1'i+1 = 0 then stop
else Pi+1~ ul f3i+1

qi+1 ~ V/1'i+1

End loop
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The choice of band c,and the consequences of an early termination of the algorithm I

(because /3i = 0 or "Yi = 0), will be discussed later.

Let the tridiagonal matrix ~ be defined as the leading j x j submatrix of T = Tn'

and let ~ and Qj be matrices whose columns are the vectors Pi and qi, i.e.,~=
(PI, PZ, . . . ,Pj), Qj = (q), qz,' . . , q;). Then the first j steps can be written as

(2.6a)

(2.6b)

AQj = ~~+ /3j+IPj+lej,

A* ~ = QjTj+ "Yj+lqj+lej.

Here ej is a unit vector of length j, ej = (0, 0, . . . , 1).

The above algorithm appears to be a natural generalization of the symmetric

Lanczos algorithm to the unsymmetric case: instead of one three-term recurrence in

the symmetric Lanczos algorithm we obtain here two three-term recurrences of the I

same type. Furthermore, for a symmetric matrix A the formulation of Algorithm I t

reduces to a version of the symmetric Lanczos algorithm. The actual implementation

I.

.

.

.'

used in Algorithm 1 corresponds to a modified Gram-Schmidt orthogonalization with

respect to the past two vectors. A detailed error analysis of the new algorithm would

be beyond the scope of this paper. Because of its formal similarity, we believe that

resultsby Paige [12] will generalize. Other results of recent investigations of the

symmetric Lanczos algorithm such as the global behavior of the roundoff errors (loss

of orthogonality) [12], [23], and the application of reorthogonalization methods ~

[17], [22] probably can be carried over to the new algorithm as well.
Because of these similarities we might suspect that our new algorithm is closely

related, if not identical, to the application of the symmetric Lanczos algorithm to the
matrix of the normal equations. However, the distinct character of the tridiagonalization
algorithm is apparent from the subspaces involved in the computation. From (2.6) it
follows for k = 1,2, . . . that

PZk E span (b, AA*b, . . . , (AA*)k-Ib, Ac, AA* Ac, . . . , (AA*)k-IAc),

PZk+1 E span (b, AA*b, . . . , (AA*)kb, Ac, AA* Ac, . . . , (AA*)k-IAc),

qZkEspan (c, A* Ac,' . . , (A* A)k-IC, A*b, A* AA*b,' . . , (A* A)k-IA*b),

qZk+1Espan (c, A* Ac,' . . , (A* A)kC,A*b, A* AA*b, . . . , (A* A)k-IA*b).

The underlying subspaces are therefore not Krylov subspaces. They can be viewed
as the union of two Krylov subspaces generated with the normal equations matrices
AA * (or A *A) with starting vectors band Ac (or c and A *b). If b = c then these
spaces can also be seen as modified Krylov subspaces in the sense that a multiplication
by A is followed by a multiplication by A *. Thus the subspaces span (Qzd and
span (QZk+I) contain the Krylov subspace generated by k steps of the symmetric
Lanczos algorithm applied to the normal equations. In addition they contain the space
spanned by the intermediate vectors obtained if the matrix of the normal equations is
not formed explicitly, but the multiplications by A and A* are carried out in sequence.

3. Solving linear systems. We now consider the application of the tridiagonaliz.
ation algorithm from the previous section to the solution of linear systems of the form

(3.1) Ax=b,

where A is a general, unsymmetric n x n matrix. t
Let Xobe an initial approximation to the solution of (3.1); define ro=b - Axo, f31=,

IIroll, PI = ro/ /31; choose an arbitrary unit vector ql, and start the tridiagonalization

algorithm. 1
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algorithm. After} steps of Algorithm 1 it is possible to define an approximate solution
to (3.1) as follows: let x? be the vector from the affine subspace xo+span (Q;), such
that the residual vector r? = b - Ax? is orthogonal to span (~). This method falls into
the class of oblique projection methods previously considered by Saad [18], [19] and
Saad and Schultz [21]. It is easy to show that x? can be computed by:

Solve the} X} tridiagonal linear system Tjh? = f31el.

Set x? = Xo+ Q;h'?.

The superscript cg stands for conjugate gradients. Indeed, for a symmetric positive-
definite matrix A the approximate solution computed from (3.2) is identical to the
approximate solution vector computed after} steps of the conjugate-gradient method.
This follows from the fact that our algorithm reduces to the symmetric Lanczos
algorithm for a symmetric matrix A, and the equivalence of the Lanczos algorithm
and the conjugate-gradient method for positive-definite matrices (see [13]). Formula
(3.2) is the obvious generalization of the construction of a solution vector in the
symmetricLanczos algorithm (see [16]) to the unsymmetric case.

For the residual vector r? we obtain by using (2.6):

r?= b-Ax?= ro-AQF?

= f3IPl - (P;Tjh?+ f3j+lPj+l ej h?)

= -f3;+l(efh?)pj+l'

From(3.3) we can draw two conclusions. First, it is possible to compute IIr?11 without
computing x? By taking norms in (3.3) we obtain

(3.4) Ilr?II=f3j+llefh?l.

(3.2)

(3.3)

Thepractical implementation of the computation of x? via the LQ factorization of Tj
willbe discussed in § 5. We will call the resulting method USYMLQ.

Methods that are guaranteed to reduce some measure of the error at every step
are sometimes preferable in practical situations to methods such as the above that
satisfyonly a Galerkin condition p*(b - AXj) = 0 for all vectorsPEspan (P;) (see also
thenumerical results in [4]). We therefore want to consider a different approximate
solutionvector which can also be constructed easily from span (Qj).

An approximate solution vector xjr that minimizes the residual norm can be
obtained as follows: let S; be the U+ 1) X} matrix obtained by augmenting Tj by the
extrarow f3j+1ef , i.e.,

[
Tj

]Sj= * .
f3j+1ej

Let h'j' be the solution to the least-squares problem

(3.6a) minllS;h - f31e111" .

(3.5)

(el is a}+I-vector), and let

(3.6b) xcr= x + Q.hcr
J 0 J J .

Then we have the following theorem.
THEOREM2. If x'j' is determined by (3.6), then

(3.7) Ilr),11= Ilb-Ax),11 =min Ilb-A(xo+q)ll,
q

where q E span (Qj).
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Proof. If q is an arbitrary vector from span (Qj), then q = Qjh for some hE Rj.
Also, from (2.6a) and (3.5) we have AQj =~+lSj' Hence

lib - A(xo+ q)1I= 11ro- AQjh11

= I1I3IPI - ~+ISjh II

= 11~+I(l3lel-Sjh)11

=1I131e]-Sjhll,

which by definition is minimized by the choice h = hi'. 0
The superscript cr refers to the conjugate residual method, to which the above

method reduces for symmetric A. Theorem 2 also implies that the residuals are
monotonically decreasing, Le., that for j = 1, 2, 3, . . .

(3.8) II ri:1 II ~ IIrirli.

The least-squares problem (3.6a) is numerically best solved by an orthogonal
factorization of Sj. This orthogonal factorization can be combined with an updating
procedureto makexi' directlyavailableat eachstep.TheresultingalgorithmUSYMQR -

for the computation of xi' is discussed in detail in § 5. !
It should be mentioned that both USYMLQ and USYMQR can simultaneously 1

...

.-

compute an approximate solution Yj to the transposed problem ,-

(3.9) A*y = c.

Given an initial guess Yo, all that is needed is to set 'YI= II c - A*y II and ql = (c - A *Yo)/ 'YI
instead of an arbitrary ql' Then after j steps the approximate solution yi'to (3.9) is
defined by

(3.10)

- -
[

T'!'

]Solve the least-squares problem Sjhj = 'YIel with Sj = ) * .
'Yj+1ej

Set yi' = Yo+~hj.

By reversing the roles of ~ and Qj and transposing all other quantities we can show
that the associated residual norms are also monotonically decreasing. An approximate'
solution yJ8 can be computed in the obvious way using Tj.

A final question to be discussed is the possible breakdown of the algorithm, i.e.,
the situation where fh+1=0 (or Pj+1= 0). The proof of Theorem 1 shows that the
tridiagonalization can be continued, but we show that there is no need when solving
linear systems, so that we can talk about a "lucky breakdown."

THEOREM3. If Pj+1= 0, then USYMLQ and USYMQR terminate with x? =xi'=x,
the exact solution to equation (3.1).

Proof. If Pj+l= 0, then we also have I3j+1= 0 and the last row of Sj is zero. Hence
the least-squares solution hj to (3.6a) is identical to the solution of the linear system
1jhj = I3lel as computed in (3.2). It follows that xi' = xJ8 and hence by (3.4), IIr?11=0,
i.e., Xjis the exact solution. 0

Theorem 3 guarantees that a breakdown of the type Pj+1 = 0 implies that the exact
solution has been found. If a breakdown with qj+l= 0 occurs, the exact solution to the
transposed system has been found.

Since the tridiagonalization algorithm terminates after at most n steps for an n x n
linear system we have the following corollary.
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COROLLARY.USYMLQ and USYMQR determine the exact solution to (3.1) in at
most n steps.

Hence the algorithm USYMQR extends the three desirable properties of finite
termination, a three-term recurrence, and the minimization property to the unsymmetric
case. USYMLQ, in general, has no obvious minimization property; however, we show
in the next section that USYMLQ does minimize a certain norm of the error for a
special choice of the starting vector.

4. Choice of starting vector and relation to other methods. Theorem 3 in the previous
section indicates that a good choice of the starting vector is PI = ql = ro/ IIroll. If we
choose ql arbitrarily we may encounter the situation that the transposed system can
be solved before the original system and thus an unwanted breakdown would occur.

Aswith the symmetric Lanczos algorithm, however, an exactly zero {3j+1is unlikely to
occur in practice. Theorem 3 is therefore primarily of theoretical interest.

We might ask whether other choices for ql would lead to desirable properties of
USYMLQ and USYMQR. For example, since PI and q. together with A determine T;
uniquely, we might try to determine ql such that T; is symmetric. This is at least
theoretically possible since we have the following.

THEOREM4. Ifql=JA*AA-1pI' then the tridiagonalization algorithm yields a
symmetric matrix T. Furthermore, the approximate solution x? computed by (3.6)
minimizes the .JA *A -norm of the error over the affine subspace Xo+ span (Qj)'

Proof Let the singular value decomposition of A be given by

A= UDV*,(4.1)

whereD is a diagonal matrix and U and V are orthogonal.Then definethe symmetric
matricesJA* A = VDV* and JAA* = UDU*. Now consider the tridiagonalization of
JA*A by the symmetric Lanczos algorithm with starting vector q.. We obtain (see [15])

(4.2) JA* A Qi= QiT;+ {3j+lqi+lej,

with T; symmetric. Hence,

VDV*Qj = QjT;+{3j+lqj+lej,

UDV*Qj = UV*QiT;+ f3i+1UV*qi+tej,

AQi = ~T;+ {3j+IPj+lej,

wherePk= UV* qk, for k = 1, 2, . . . ,j + 1.This is precisely(2.6a) with a symmetricT;.
In particular, we have

qt = VU*PI =JA*A A-1PI'

Thusbecause of the uniqueness of the tridiagonalization process we obtain a symmetric
1]for an arbitrary PI, if ql is chosen as above.

Since JA *A is symmetric positive-definite the solution x? computed using (4.2)
isthe conjugate-gradient solution to

JA*A x = {31ql= {3)A*A A-1PI,

Le.,to Ax = {3IPI' Because of the minimization property of the conjugate-gradient
algorithmthe second part of the theorem follows as well. 0

Obviously Theorem 4 has little practical value since the computation of
JA*A A -IPI is more difficult than the simple solution of the original linear system.
Theorem4, however, does suggest two things: First, an approximation to JA *A A -tPI
mightbe a good second starting vector, although we do not know of any method to
computesuch an approximation cheaply. Second, the algorithm USYMLQ contains
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at least implicitly the "natural" extension of conjugate gradients to the unsymmetric

case. Unfortunately, this natural extension based on the operator JA* A iscomputa-

tionally impractical.

The tridiagonalization process considered here is also closely related to the

Golub-Kahan [7] bidiagonalization. Consequently, USYMLQ and USYMQR show

some similarities to methods derived from the bidiagonalization process such as LSQR
[14]. (For a survey of other mathematically equivalent methods, see [14].) All these
methods are based, however, on applying conjugate gradients tothe normal equations,
whereas USYMLQ uses a different approach. The difference becomes clearer if we
consider the augmented symmetric 2n x 2n matrix

B= [;* ~].

The Golub- Kahan bidiagonalization is mathematically equivalent to the symmetric
Lanczos process applied to B with the starting vector [~o].Because of the special
structure of the matrix and starting vector, the last n componentsof the odd Lanczos
vectors and the first n components of the even Lanczos vectors are zero. The nonzero
components of the even and of the odd Lanczos vectors thus form two sequences of
orthogonal vectors which are used analogously to P and Q in USYMLQ for the
computation of an approximate solution to (3.1).

In contrast, we consider in USYMLQ a starting vector of the form u\ = C:].With
this starting vector no similar pattern of zero entries will be encountered in the sequence
of vectors Bku" k = 1, 2, . . '. Furthermore, our tridiagonalization algorithm is
equivalent to constructing a sequence of vectors such that the top n and the bottom
n components separately form sequences of orthogonal vectors. These vectors are thus
different from the top and bottom half of the Lanczos vectors computed with Band
ul. So although we are using the operator B in a particular way, we do not apply
conjugate gradients to the normal equations. Here we use extra information from the
intermediate nonzero components in the quasi-Krylov vectors. This information is not
used in the normal equations, where these components are zero. Methods based on
the use of the operator B with a generalstartingvectorare discussedby lea and Young
[8].

Another interesting observation (due to Beresford Parlett) relates some of the
subspaces used here to block Krylov subspaces obtained with the symmetric block
Lanczos algorithm. For example, we have

span (Q2k) = span (F, A*AF,"', (A*A)m-\p),

where P = (c, A *b). Hencethe same subspace as in the tridiagonalization algorithm
is generated by a block Lanczos algorithm for A *A with starting block (c, A *b). The
block Lanczos algorithm would generate a symmetric pentadiagonal matrix. It can be
shown that this matrix is equal to Tfk T2k' This relationship opens a variety of new
possibilities to consider. Here we restrict ourselvesto observingthat there isno easy
direct formula to relate the new tridiagonalization algorithm to the symmetric Lanczos
algorithm on B.

It is also possible to show the following result (for a proof, see [2]).
THEOREM5. If m is the number of distinct singular values of A, then USYMLQ

and USYMQR converge in at most min (2m, n) steps to the exact solution, assuming
exact arithmetic.

It should be noted that if m < n this result is actually worse than a corresponding
theorem for the normal equations, which would compute the exact solution in at most

m steps, wit
potential di~
based on the

Finally
values of A
computation
[1].

5. The i

tions of US'i
of the algori

Let us fi

via the LQ f,

(5.l)

where ~ is ;

The matrix L
elements 'Y2,

We note that
that we are ir
~ = QjUj, tI
Zj and the co
foundin the.

The resu
of storage: fOT
and one each
and that both
be performed
per step plus 1
requires 9n 0]
careful impler
14n operation

Let us no

Using the QR

where \.';+1is
actually of up



YIP

nts to the unsymmetric
ltor .JA *A is comput a-

closely related to the
~ and USYMQR show
rlprocess such as LSQR
Ids, see [14).) All these
:0 the normal equations,
: becomes clearer if we

llivalent to the symmetric
Because of the special

,ents of the odd Lanczos
rs are zero. The nonzero
s form two sequences of
Q in USYMLQ for the

f the form UI=C~]. With
;ountered in the sequence
malization algorithm is
he top n and the bottom
,rs. These vectors are thus
Irs computed with Band
ar way, we do not apply
ctra information from the
~s.This information is not
zero. Methods based on

scussed by Jea and Young

rlett) relates some of the
with the symmetric block

rn-I F),

.diagonalization algorithm
arting block (c, A*b). The
ldiagonal matrix. It can be
ip opens a variety of new
rving that there is no easy
1 to the symmetric Lanczos

proof, see [2]).
1lues of A, then USYMLQ
he exact solution, assuming

Norse than a corresponding
heexactsolution in at most

TWO CONJUGATE-GRADIENT-TYPE METHODS 935

m steps, with a comparable amount of work per step. This theoretical limit indicates
potential disadvantages of the new algorithms in comparison to LSQR [14], which is
based on the normal equations approach.

Finally we want to point out that the singular values of ~ approximate the singular
values of A. It is thus conceivable to use the tridiagonalization algorithm for the
computation of the singular values of large matrices in a manner analogous to [11] or
[1].

5. The implementation of USYMLQ and USYMQR. The practical implementa-
tions of USYMLQ and USYMQR are based on ideas used in [13] for the derivation
of the algorithms SYMMLQ and MINRES for symmetric indefinite matrices.

Let us first consider the solution of the tridiagonal system (3.2)

~h?=13lel

via the LQ factorization of ~, i.e., let

(5.1) ~ = LjUj,

where ~ is a j xj orthogonal matrix and the lower triangular matrix Lj has the form

81 0 0 ... 0

Al 82 0 . . . 0

. 101 A2 83 ... 0L-=
'j

0 ej-3 Aj-2 8j-1 0

0 . .. ej-2 Aj-l I5j

The matrix ~ is a product of plane rotations designed to eliminate the superdiagonal
elements 12,13, . . . , 1j' The tridiagonal system becomes

~h? = Lj~h? = 13lel.

We note that h? has no elements in common with hj~I' However, it is not really h?
that we are interested in, but rather x? as defined by equation (3.2). If Zj= U;h'? and
W;= QjUj, then x? = xo+ ""fZj'From here on we can proceed as in [13], and compute
Zjand the columns of ""f by simple recursions. We omit the details, which can be
found in the literature [13].

The resulting algorithm USYMLQ can be implemented using only six n-vectors
of storage: four for the generalized Lanczos vectors in the tridiagonalization algorithm
and one each for x and w. This assumes that the right-hand side vector is overwritten
and that both the multiplication of a vector by the matrix A and its transpose A * can
be performed as an update of the form y ~ y + Ax. A total of 13n operations are needed
per step plus the demands of the matrix vector multiplications. The tridiagonalization
requires 9n operations and the updates to x and w require 4n operations. In a more
careful implementation we might recompute Q'in two different ways, and thus obtain
14n operations per step.

Let us now consider the solution of the least-squares problem (3.6):

5jhfr=131el.

Usingthe QR factorization of 5j, let

5j = \j+1 [~j].

where \j+1 is a j + 1x j + 1 orthogonal matrix and the upper triangular matrix Rj is
actuallyof upper trapezoidal form, with three nonzero diagonals.
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The reduction of Sj to upper triangular form is achieved by a sequence of plane
rotations which at each step reduce the {3j+1entry in Sj to zero. The orthogonal matrix
\.-)+1is the product of these rotations. Now define the n xj matrix ~ = QjRjl . Then
x'j' can be computed by a simple updating process, using the columns of ~. The
columns of ~ in turn can be computed by a three-term recurrence. Again we omit
the details, which are analogous to the implementation of MINRES in [13]. The
resulting algorithm is called USYMQR.

This implementation of USYMQR needs 12n operations per step in addition to
the requirements for computing Ap and A*q. The double Lanczos recurrence requires
9n operations, and the updates to the direction vector m and the solution vector x
require 2n and n operations, respeCtively. Compared to USYMLQ, one extra n-vector
of storage is needed for the update of m; hence the total storage requirement is seven
n-vectors.

Although the operation count per step for both USYMLQ and USYMQR appears
high in comparison to methods for symmetric matrices, it is comparable to other
methods for unsymmetric matrices. For example, if the matrix A is the five-point
discrete Laplacian, then the number of operations per step for USYMLQ is about the
same as for ORTHOMIN(5) [24]. On the other hand, USYMLQ requires storage for
only six vectors of length n, whereas ORTHOMIN(5) would require 13 n-vectors.
Generally speaking all comparisons made here are highly hypothetical, since we do
not know how the rates of convergence of these methods compare.

6. Numerical results. The following three numerical examples demonstrate that
both USYMLQ and USYMQR are viable numerical methods for the solution of
unsymmetric linear systems. They also shed some light on specific areas of applications
for which the use of USYMLQ and USYMQR may be particularly advantageous. For
Examples 1 and 2 no preconditioning was used. In Example 3 we used an incomplete
LU factorization of the coefficient matrix as preconditioner. All results were obtained
on a Cray-lS, which provides about 13 decimal digits of accuracy.

Example 1. This is a model problem, which allows us to study the influence of
unsymmetry on the solution behavior of some iterative methods. It has been used
before by Saad [18] and others (see references in [18]). The matrix A is given by the.
block tridiagonal matrix ~

f
B
-]

-]

B -]
A=

-] B

-]
-]

B

with

B=

4
a

and a = -1 + 8,b = -1 - 8. [I
The parameter 8 controls the symmetry of this family of matrices. We considered'

the problem where n = 400 and the dimension of B is 20. The components of the
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solution vector were chosen to be uniformly distributed random numbers between 0
and 1. We solved the resulting linear system of equations with the methods
ORTHOMIN(5), GCR(5), and LSQR [24], [4], [20], [14] as well as with USYMLQ
and USYMQR. For each method the iteration was stopped when the residual norm
was reduced by a factor of 10-6. For various 5 the results in Table 1 were obtained.

The number of iteration steps does not provide full information on the amount
of computational work of these methods, since the number of operations per step
varies. Therefore we also list the total number of floating-point operations in Table 2.

Obviously USYMLQ and USYMQR become more competitive the more unsym-
metric the matrix becomes. However, the same is true for LSQR, and for this example
LSQR is more efficient than either USYMLQ or USYMQR for all 5. On the other
hand, for a symmetric matrix, all methods perform about the same, although LSQR
takes twice as many steps as the other methods.

The most interesting behavior can be observed for a nearly symmetric matrix
(5 =0.01). A small perturbation away from symmetry increases the number of iteration
steps considerably. If the coefficient matrix is symmetric, USYMLQ and USYMQR
reduce to SYMMLQ and MINRES from [13]. Then the equivalent to Theorem 5
suddenly says that the number of steps is at most min (m, n). Hence
USYMLQjSYMMLQ and USYMQRjMINRES exploit symmetry in a special way.
Thus for nearly symmetric matrices both USYMLQ and USYMQR are relatively
inefficient.

It is interesting to note that the break-even point between the ORTHOMIN-type
methods and USYMLQ and USYMQR occurs for a value of 5 for which (A - A*)j2,
the unsymmetric part of the matrix, becomes comparable in size to the symmetric part.
A further investigation of this observation, especially the precise relation between
symmetry and convergence behavior, appears to be a worthwhile research topic.

In this numerical example we did not attempt to find the optimal values for K1
and K2 such that the methods ORTHOMIN (K1) and GCR (K2) would deliver the
solutionwith the required accuracy in a minimal number of operations. Other numerical

TABLE 2

Number of floating-point operations (in millions) to achieve the requested accuracy.

TABLE 1

Number of iteration steps required to achieve the requested accuracy.

[, 0.0 0.01 0.1 1.0 10.0 100.0

ORTHOMIN (5) 33 59 77 85 258 214

GCR(5) 33 59 80 76 176 >400

LSQR 70 173 185 100 71 33

USYMLQ 32 207 215 154 107 71

USYMQR 33 206 216 154 108 70

[, 0.0 0.01 0.1 1.0 10.0 100.0

ORTHOMIN (5) 0.31 0.57 0.75 0.83 2.55 2.11

GCR(5) 0.27 0.49 0.66 0.63 1.46 >3.33

LSQR 0.28 1.38 1.48 0.80 0.57 0.27

I
USYMLQ 0.30 1.90 1.98 1.42 0.99 0.66

trices. We considered USYMQR 0.30 1.88 1.98 1.41 0.99 0.64

e components of the
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results [3], [20] show that a different choice of these parameters can influence the
convergence behavior of the ORTHOMIN-type methods considerably. The choice of
these parameters is also very significant for the practical performance of these methods,
since it determines storage requirements and the number of arithmetic operations per
step. It is an advantage of USYMLQ and USYMQR (and LSQR) to be independent
of the choice of any parameter.

The convergence for ORTHOMIN(K) and GCR (K) can only be shown for
matrices with a positive-definite symmetric part [3], [20]. For Example 1 this was the
case independent of B. If the diagonal entries of the matrix A are set to two instead
of four, the symmetric part of this matrix is no longer positive-definite. For B= 1.1 the
following results are obtained: ORTHOMIN (5) and GCR (5) stagnate and are unable
to achieve the requested reduction in the residual norm, whereas USYMLQ, USYMQR,
and LSQR converge in 102, 101, and 86 steps, respectively. Hence these methods
behave well also in the presence of an indefinite symmetric part of the matrix.

Example 2 (see [3, p. 135]). Consider the matrix arising from the discretization
of the elliptic partial differential equation

Lu=f with Lu = -(BuJx - (CUy)y+ Euy+ (Eu)y + Fu

on the unit square with homogeneous boundary conditions, using a five-point centered
finite .difference scheme on a uniform N x N grid, with h = (N + 1)-]. Here B(x, y);=

e-XY, C(x,y)=exy, E(x,y)={}(x+y), and F(x,y)=(1+x+y)-]. We solved the
resulting linear system of order 324 (i.e., N =18) and obtained the following results.

Case (a). {}= 10.0 with a right-hand side chosen such that the solution is
(1,1,'" ,1)T:

ORTHOMIN (5)

GCR (5)

USYMLQ

USYMQR

stagnates after 10 steps with a rdative residual of 3.32x 10-2,

stagnates after 10 steps with a relative residual of 3.48 x 10-2,

reduces the residual norm by a factor of 10-6 after 33 steps,

reduces the residual norm by a factor of 10-6 after 34 steps.

Case (b). {}= 50.0with a right-hand side chosen as in [3].
Here all methods achieved the required reduction of the residual norm by a factor

of 10-6. The parameters for the ORTHOMIN-type methods were chosen such that the
amount of work per step is about the same for all methods listed. The necessary number
of steps was

Again Cases (a) and (b) can be considered as opposite extremes. In Case (a) none
of the ORTHOMIN-type methods converged to the required accuracy, whereas
USYMLQ and USYMQR had no difficulty computing the solution. In Case
(b) USYMLQ and USYMQR took about twice as long to find the solution as the
ORTHOMIN-type methods,which all performed about the same. Thus USYMLQ and
USYMQR offer the advantage of guaranteed convergence at the price of a possible
inefficiency for the cases where ORTHOMIN-type methods do perform well.
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Example 3. Both ORTHOMIN and USYMLQ have been implemented in a code
for the solution of transonic flow problems. The details of this work are reported in
[2]. Here we present an extreme example of the behavior of both methods, which
confirms the observations made above.

ORTHOMIN (5) and USYMLQ were used in the inner loop of an inexact Newton-
type iteration for the nonlinear problem. The initial guess for the outer Newton iteration
was subsonic, and the final solution corresponded to a transonic state. In Table 3 we
list for a problem of order 1536 the number of inner iteration steps required by both
ORTHOMIN (5) and USYMLQ in the course of one Newton iteration.

TABLE3

Number oj iteration steps in a Newton iteration Jor a
transonic flow problem.

ORTHOMIN (5) fails in the difficult transition from subsonic to transonic flow, which
occurs during Newton step 3.

Some related numerical experiments with BIORTH, a mathematically equivalent
implementation of USYMQR, are reported in [10]. On some large problems derived
from the discretization of three-dimensional elliptic partial differential equations
BIORTH was compared to conjugate-gradients on the normal equations and to biconju-
gate-gradients. On these problems the USYMQR equivalent method did not perform
as well as either of its competitors.

7. Conclusions. The numerical results show that USYMLQ and USYMQR are
not only theoretically interesting new methods, but also provide a valuable tool for
solvingsparse unsymmetric linear systems. Since USYMLQ and USYMQR are working
with the same subspace, we did not observe any significant differences in the conver-
gencebehavior of USYMLQ and USYMQR, as was to be expected. Comparing both
methods to ORTHOMIN-type methods we observed that USYMLQ and USYMQR.have better convergence behavior than ORTHOMIN (K) and related methods
for strongly unsymmetric problems or problems with indefinite symmetric part,. have the advantage of not requiring the choice of any parameters, but. require multiplication by the transposed matrix,.are less efficient than ORTHOMIN (K)-type methods for nearly symmetric
problems, and problems with positive-definite symmetric part.

Unfortunately, we were not able to find a type of problem in the spectrum of
unsymmetric sparse matrices for which the new methods offer clear performance
advantages. For nearly symmetric problems, and problems with symmetric positive-
definitepart, Krylov subspace-type methods remain superior. For strongly unsymmetric
problems, LSQR achieves about the same results as USYMLQ and USYMQR, but
doesso usually with a smaller number of operations. Further research into USYMLQ
andUSYMQR thus may be only of theoretical interest.

Acknowledgments. The first author is grateful to Ake Bjorck for his interest and
forproviding computing facilities for initial experiments during a visit to Linkoping

ORTHOMIN (5) USYMLQ

Newton step 1 6 27

Newton step 2 27 71

Newton step 3 stagnation 97
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