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ABSTRACT

The Lanczos Algorithm is becoming accepted as a powerful tool for finding
the eigenvalues and eigenvectors of large sparse matrices. This dissertation
considers the application of the Lanczos algorithm to the solution of large
sparse symmetric systems of linear equations. We analyze the symmetric
Lanczos process with various reorthogonalization methods, and present a
new implementation of the algorithm, whi_ch efliciently maintains orthogonal-
ity among the Lanczos vectors. This new algorithm is discussed in detail,

compared to other methods, and tested with some numerical examples.
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INTRODUCTION

In many applications one encounters the intermediate task of comput-

ing a solution vector z to the system of linear equations
Az = b , (0.1)

where 4 is a symmetric, nonsingular nxn matrix and b is an n-vector. If Als
large and sparse, there is an elegant way to exploit the sparsity by employing
4 only es a linear operator which computes 4v for any given vector v. There
are several methods known which produce an approximate solution vector
based only on repeated computation of matrix vector products, e.g., the
method of conjugate gradients (called hereafter CG) by Hestenes and Stiefel
[12], Lanczos’ [18] method of minimized iterations (called hereafter LAN),
and the algorithm SYMMLQ by Paige and Saunders [28].

These methods have several attractive features in common. There are
no special properties needed for 4 (except positive definiteness for CG), no
acceleration parameters have to be estimated, and the fast storage require-

ments are only a few n-vectors in addition to the demands of the operator A.

Since Reid [33] pointed out these advantages CG has been widely used
for solving sparse positive definite systems. By rethinking CG so that it could
be applied to indefinite (i.e. neither positive nor negative definite ) systems,
Paige and Saunders created SYMMLQ. Both methods are iterative in nature,
i.e. at each step a current approximate solution vector is be updated until an
estimate for the corresponding residual norm is smaller than a prescribed
tolerance. In contrast to this updating feature the Lanczos algorithm com-
putes a set of orthonormal vectors, the Lanczos vectors. Only at the end of a

run is an approximate solution to (0.1) computed from the Lanczos vectors.



When A is positive definite, it turns out that in exact arithmetic all these
methods mentioned above produce exactly the same approximate solution.
So why reintroduce a variant of an established algorithm, which - as it
appears - has the disadvantage of requiring the storage of a large number of

vectors? The are two arguments in favor of the Lanczos algorithm:

1) The availability of the Lanczos vectors makes it possible to compute
approximate solutions for subsequent right hand sides at little cost,

whereas for CG the iteration has to be carried out for each right hand

side from the beginning.

2) Because of the influence of roundof! errors the actual implementations
of these methods differ considerably from their ideal counterparts. The
Lanczos vectors and the corresponding residual vectors in CG lose their
orthogonality and may even become linearly dependent. One might
expect that under these circumstances the algorithm is unstable and
breaks down. But the loss of orthogonality does not prevent conver-
gence, it only delays it. CG, which would terminate in exact arithmetic
after at most n steps, may in practice well take many more than n steps
for ill conditioned systems, but still produce a good solution. If ortho-
gonality among the Lanczos vectors can be maintained at some reason-
able cost, then LAN will minimize the number of calls on 4 and thus
reduce the overall cost. Finally the recent idea of preconditioning can
cut down significantly the number of steps needed (Meijerink and van

der Vorst[21]; Kershaw [16]; Jennings and Malik [14]; Manteuffel [20]).

An implementation of the Lanczos algorithm therefore faces two crucial
tasks: the storage of a certain number of Lanczos vectors and the mainte-

nance of orthogonality among them. The problem of storing the Lanczos vec-
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tors can be solved by using secondary storage. This should be fairly easy
since the vectors are only needed from time to time and are always accessed

sequentially.

The maintenance of orthogonality is more difficult. Traditionally (Wilkin-
son [41]; Golub, Underwood, and Wilkinson [8]) it has been suggested to use
full reorthogonalization of the Lanczos vectors at each step. This is very
expensive for the size of problem considered here. Recently Parlett and
Scott [32] introduced selective orthogonalization (SO) for the eigenvalue
problem as an economical way of maintaining orthogonality among the Lanc-
zos vectors. In [30] Parlett shows how the Lanczos algorithm with SO can be

used for the solution of symmetric linear systems.

This thesis follows the program outlined in Parlett[30] and discusses in
detail various aspects of the application of the Lanczos algorithm for solving
(0.1) for large sparse systems. Its main contributions are a new understand-
ing of the loss of orthogonality in finite precision arithmetic and a new
reorthogonalization method which we call partial reorthogonalization (PRO)

to distinguish it from Parlett and Scott’s selective orthogonalization (SO).

In Chapter 1 the Lanczos algorithm in exact arithmetic is introduced
and its relation to the method of conjugate gradients and the algorithm
SYMMLQ is exhibited. The connections with various other methods for
indefinite systems are discussed. An a priori error bound for this family of
methods is derived, based on results obtained by Kaniel [15]. Some details of
the algorithm are presented, and finally it is shown how the Lanczos algo-

rithm lends itself to the treatment of several right hand sides.

Chapter 2 presents a readable error analysis of the symmetric Lanczos

algorithm in finite precision arithmetic. The loss of orthogonality arnong the
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computed Lanczos vectors can now be explained satisfactorily with the help
of a recurrence formula, and Paige's Theorem {24] can be derived trom this
recurrence. A backward error analysis then shows that semiorthogonality
among the Lanczos vectors is enough to guarantee the accufacy of the com-
puted quantities up to machine precision. This is an improvement over
results by Grear [8]. Finally various orthogonalization strategies are
analyzed, and it is shown that selective orthogonalization as introduced by

Parlett and Scott [32] indeed maintains semiorthogonality among the Lanec-

zos vectors,

The results of Chapter 2 give rise to the already mentioned
reorthogonalization scheme for the Lanczos algorithm called PRO. It is
based on a recurrence which allows one to monitor the loss of orthogonality
among the Lanczos vectors directly without computing any inner products.
Based on the information from the recurrence, reorthogonalizations are
made only when necessary. Thus substantial savings are gained as compared
to full reorthogonalization. Details of the practical implementation of PRO

and a comparison with SO are discussed in Chapter 3.

The Lanczos algorithm with PRO is tested in Chapter 4. Several large sys-
tems (up to order 1000) of linear equations derived from finite element
approximations to structural engineering problems are solved. The numeri-
cal results show that the Lanczos algorithm is especially useful, when the
matrix vector product dominates other costs, or when the system has to be
solved for several right hand sides. In addition positive definite

indefinite systems can be solved with equal ease.

The results of Chapter 2 and 3 are also applicable to the eigenvalue

problemn. Therefore, whenever it is possible without distraction from the



main topic, immediate consequences of our results for the eigenvalue prob-

lem are stated.

Throughout this thesis the notation will follow Householder's convention:
small Greek letters for scalars, small Roman letters for column vectors, capi-
tal Roman letters for matrices. Symmetric letters (A,M,V,#) will be reserved
for symmetric matrices. All quantities are real unless otherwise noted.
denotes the Euclidean norm for vectors and the associated spectral norm for

matrices.
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relation between the two methods has been pointed out by Householder in

[13, pg. 139-141].

(1.2.8) shows from a different perspective why CG in general cannot be
used for indefinite A. In this case 7; may be singular for certain values of j,
then the factorization (1.2.8) does not exist, and hence the algorithm breaks
down. Paige and Saunders [28] recognized that this difficulty can be over-
come, if a different factorization of T; is chosen. They suggest that instead of

(1.2.8) the orthogonal factorization
Ty = L;Z; (1.2.9)

is used, where Z;Z,- = J; and Z_,_ is a lower trapezoidal matrix. This factoriza-
tion always exists and is numerically stable. Paige and Saunders use a
sequence of plane rotations in order to obtain the factorization (1.2.9), and
derive a new iterative method for updating z; in the same manner as CG. This
new method is called SYMMLQ. The approximate solution computed in this
way is identical to the one computed by either LAN or CG. There is however a
subtle modification in SYMMLQ which should be mentioned. At the j-th step
the matrix 17 in (1.2.9) is sometimes replaced by the matrix L;, which is the
jxj leading part of Z,-Tl, and which differs from IT in the (j,7) element only.
This change produces an approximate solution zJ-LQ. which is different from
:z:J-CG = z;. The algorithm choses at each step among :rfc and :z:J-LQ the one with
the smaller residual norm. .erQ is usually chosen when T; is ill-conditioned.
In [28] it is reported that SYMMLQ worked well on indefinite problems, but
was slower than CG on positive definite problems due to a larger number of

operations per step.

There are several other methods, which attempt to modify CG in order

to make it also applicable for indefinite matrices, e.g. Luenberger's
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algorithm [19] using hyperbolic pairs or Fletcher’s [6] method, taking two CG
steps at once if necessary, which is equivalent to carrying out the Bunch-

Parlett [3] algorithm using 2x2 pivots on the tridiagonal matrix 7j.

Other Krylov subspace methods for solving indefinite systems are
derived by using different subspaces and/or a different characterization of
the approximate solution vector at the j-th step. Two important classes of

algorithms are:

1) z; minimizes ||b — 4s || over all s€k7(b;4).
These methods were discussed by Rutishauser [35], Reid [33] ( versions
4,56, and 8 of the CG algorithm ), and Paige and Saunders [28]
(MINRES).

R) z; minimizes ||z ~s over all s €K7 (4b;4).
The feasibility of methods of this type was first recognized by Fridman
[7]. his algorithm is however unstable. Fletcher [6] (orthogonal direction
algorithm ), and Stoer and Freund [38] ( SF-method ) present stable ver-
sions of Fridman's method. Fletcher also shows that the vectors z}%,
which are occasionally used in SYMMLQ, are identical to the iterates in

his method.

All these methods do have their relative merits in terms of savings in
storage, number of operations, or in terms of applicability to certain types of
problems. However they are all iterative in nature and, since they all at least
implicitly involve the Lanczos algorithm, they will all suffer from the same

type of errors in finite precision arithmetic.

It is important to realize that the proposed algorithm LAN, although it is
equivalent on an abstract level to the various version of CG differs radically in

its practical implementation from all the methods mentioned. This radical
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difference lies in the storage of the Lanczos vectors q,.qa, - * 1q;- By keeping
them and maintaining orthogonality among them, LAN actually computes
something like an approximate factorization of the matrix A. LAN therefore
can be looked upon as an intermediate method in between direct and itera-
tive methods. It is iterative in the sense that implicitly at each step an
approximate solution vector is updated and improved, and it is direct in the
sense that as a byproduct the factorization of a low rank approximation to A
is computed. The increased cost of LAN as compared to CG therefore is
justified if the Lanczos vectors can be used for subsequent right hand sides in
a similar fashion as the once computed triangular factors in Gaussian elimi-
nation are used. This question is pursued further in section 1.4 and in the
numerical tests. CG and SYMMLQ were introduced here in some more detail,

because they will be used in Chapter 4 for numerical comparisons.
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1.3. Convergence Properties.

From section 1.1 it is clear that the Lanczos algorithm replaces a com-
plicated problem by a simpler one, but it is not evident that it is also
smaller, i.e. that the residual norm becomes small already for a § « n. In
the general case we only know from the minimizing property of z; that for
positive definite 4 the error ||z —z;(|, is monotonically decreasing with
increasing j. This does not imply that the error |z —-z;| or the residual
norm |b — Az; || are monotonically decreasing. In fact it is typical for the
algorithm that |r;|| oscillates as it decreases. The behavior of
Iz = z; I, |z —=z;ll4, and |Ib - Az; || for a sample run of LAN is shown in Fig-
ure 1.1.

For positive definite 4 it is possible to derive an a priori estimate on the
number of steps required to reduce the error in the energy norm by a cer-
tain given factor. Since z;€K7(b:4), z; can be also expressed as z; = w(4)b,
where w(¢) is a polynomial of degree j-1 . Denote by P’ the set of polynomials
of degree < j and by P{ = fw|weP?, w(0) = 1}. Then using the minimizing

property of z; one obtains
—z.ll, = mi z -mw(A)b ], = min |47 - w(4)b ||
lz = =z;1, min, I (A)b |l 4 ﬁP,_lﬂ 4
= min (I = m(4)4)A7/? || <= min||w(4)| [zl (1.3.1)
nepi-t weP}

Now let the spectrum of 4 be contained in the interval [v,u] with 0 < v < u.

Then

Iz = ;4 < min max_ |w(\)| (1.3.2)
lz Il 4 wePg AE[v.4]

This min-max problem is solved by the Chebychev polynomial T; of degree

adapted to the interval [v,u] and normalized so that w(0) = 1 {e.f. Rivlin [34]).
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Using Ty(¢) = %[($+VEE-1)’ + (¢-VE=1)7], we obtain after some computa-

tions

V-1

_ 2 ( )i
1 Vie+1 VE-1 s
" = = < 2 ( ) (1.3.4)
+y =1 .0os = eV 11
7, (ALY 14 2j K+
j(#"V | (\/E+1)

where k = %—is the spectral condition number of 4. In order to reduce the
initial error by a factor of §, has to be chosen such that

V-1

)
A =6 (1.3.5)
i.e.

In2~-1né
(YErL (1.3.8)

V-1

» Ve+l,_ 2 '

Since In (\/Tc-—l ) > 7= Ve finally have that

. Vi 2
iz 5-InZ (1.3.7)

The number of steps needed in order to reduce the error in the A-norm by a
given factor is according to {1.3.7) proportional to the square root of the con-

dition number of the matrix 4.

The bound derived here is sometimes a very crude estimate, as the
example in Figure 1.1 shows. But in this generaliy it is the best possible. A
priori bounds of this type can be refined in two ways, by using more informa-
tion about the polynomial n (c.f Greenbaum [10]) or by using more informa-

tion about the spectrum of A (cf. Axelsson [2]). Atlestam [1] reports an
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extension for the indefinite case. The resulting bounds are however no

improvement over bounds directly obtainable by considering A°Az = 4°b.

a priomi estimate

10 - . eTTOT NOTM =]

T

— —

A-norm
of the error

g

107 —
residual norm

| ] | 1
20 40 60 80 100
Lanczos Steps

Figure 1.1. Behavior of the Error in Various Norms for a Sample Run of LAN.
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1.4. Updating the Residual Norm and Solving the Tridiagonal System.

We mentioned already in section 1.2 that T; f; = 8,e, has to be solved in
a stable way, since for some k < j the matrix 7, may be very ill-conditioned,
particularly when A has both positive and negative eigenvalues. In this case
the LDL’ factorization of T; may break down or give unreliable results. Since
the updating of the residual norm according to (1.1.12) also requires the fac-
torization of 7;, both tasks can be treated simultaneously. Here we want to

use the @F-factorization in order to achieve this task.

The QR-factorization can be accomplished in an efficient way by using
fast scaled rotations (Hammerling [11], Parlett [29,pg. 100-104]). Since we
are not interested in a similarity transformation of Ty, but only in a reduc-
tion of T; to upper triangular form, we simply premultiply 7; and simultane-

ously the right hand side g,e, by matrices of the type
1 ] [1 ]

1 -0 T -1

o or J (1.4.1)

Let us call the matrix on the left of type I and the matrix on the right of type
IL. The scalars g and 7 in (1.4.1) are chosen to reduce the subdiagonal ele-
ment B; to zero. The matrices in (1.4.1) represent Givens plane rotations,
scaled by a factor of cos ¥ (type 1) or sin ¥ (type 1I), where ¥ is the angle of
rotation. Therefore ¢ = tan ¥ and 7 = cot 1§, and we can choose between both
types such that || = 1or r| < 1. This enhances the stability of the reduc-

tion.

If we consider in detail the i-th step, we obtain for type L
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[ 11 = , %

1 =044, 0 1% Bisx O ] [‘4-01+1ﬂ¢+1 Bi+1— 01410441 —Og+1Bi4

Ois1 1 O| [Bis1 @1 Buse| = [meari®i+Bis OuarBPrartisr  Buaz
0 0 1] | 0 PBise 442 0 Bi+e 0y +2

and for type I

ST I - 2

+1 =1 % Bisr O ] (418 —Bi+1 TeerBis1—0441 -ﬁi+2]
1 7 ! 41 Ot Bisz| = | WHTearBinr Bint+Terrlinr Tir1Biss
D 0 1 | O PBise Bus2 0 Bi+2 Qg

In order to reduce the subdiagonal element to zero we have to set for type I:

GeerBe + Bin =0 e, Oy =~ (1.4.32)
25
and for type IL:
~ : &
& + Tis1fis1 =0 Jie, Ty =——" (1.4.3b)

Hence we choose type 1if ;4 <|& |, and type IIif |&; < Bi+1 Note that in
both case we change the diagonal element in position (i+1,i+1), and for type
Il the super diagonal element in position (i+1,i+2). The ~ indicates these
elements changed from the previous step. This algorithm cannot break down
because Bi4 > 0. If &; =0 we have a scaled rotation of type II, which inter-

changes the rows. Finally the right hand side B,e, is modified as follows:

|
(1 ol B m _ [] (1.4.42)
Oi+1 1 0] ~ i.ai+lﬁi - ﬁi*l- '
I 1 ] - 1
Tier —1 1 T _ Ti+174 _ ™ (1.4 4b)
l 1 7] (O] 7 { i T il

From this material we can construct algorithms for both the updating of the
residual norm, and the solution of the symmetric tridiagonal system. In the

practical algorithm we will store only 7; or 1/0; in an array named T.
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Therefore |7(| < 1 indicates that a scaled rotation of type Il was performed

at step i, and |7;| = 1 indicates a scaled rotation of typelwith gy = 1/ 7.

In order to update the residual norm we just update the quantities
B, Bi+1, and 74 as we go along with the Lanczos algorithm. Then the residual
norm according to (1.1.12) can be found as B;4,|7;/ & . The nice feature is
that there is no need to keep the @&;, §;, and 7. These quantities can be
recomputed from the 7;, when needed for the solution i =(vnpa - ;o;)',
e.g. the @&; can be found from the relation &;+7;4,8i+; = 0, or &;/ T¢4,+8; = O.
Similarly we can find g, and n,. The algorithm for the updating procedure is
given in Table 1.3, where only four variables ®&,8,m, and 7,4 are used. The

corresponding algorithm for the back substitution is given in Table 1.4.

1. Initialization
a«an, B« Ba Mg « By

2. Loop:fori =23 -- do
Ti « —a/ By
N« Nod/ Ti
B« o+f/ 7

B « Bin1
if (|7;| < 1) then
a « T
B« BTy
N« Nold
Notd < Mold Ti
residual norm « B;,,|n/ &|

Table 1.3. Algorithm for Updating the Residual Norm.



20

1. Initialization

Pj « N5/ &
il Tj-.ﬁj i.fl’f‘j-;i <1
e TN
i ~[(B—ay/ 7)ol [-Bi(Ts+1/7g)] i |7y 21
I ~[(758~-04)p; 1/ [-B;(147F)] < ol o R
2. Fork =3,--:,jdo
iej+l—k

i {lﬂiﬂ if |7yl =1
- =
Tefiv1 i [7T¢] €1

??TH, if |Ti+2 =1

— .
T Inra/ Teee 1 |Tel €1

MTie1 M |Teal 21
temp « | i 7| <1

- temp —(Bis 1 Tis1= 00 1)Pi 41 PisnPise
_.311-1{]4"?':24-1_}

i

Table 1.4. Back Substitution Algorithm for Solving 7;f; = £e;.

The actual implementation can be simplified further, for example it is
possible to use only two if-statements per loop. Finally it should be noted
that this idea is not restricted to the special right hand side e, i.e., it is
possible to implement an algorithm for solving symmetric tridiagonal sys-
tems based on scaled rotations, which uses only one extra vector of storage

(for 7), and leaves the elements of the matrix unchanged.
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1.5. Initial Guess, Starting Vector, and Treatment of Several Right Hand
Sides.

So far we have concerned ourselves only with the case where the system
Az = b had to be solved, and no additional information was available. In many
applications, however, an initial guess z4 for the solution is available.
standard procedure is then to write z = zy + 2., where z, is a correction to

the initial guess, and to solve
Az, =ro=b — Azrg (1.5.1)
instead of the original equation.

One may ask whether there is something more sophisticated which can
be done when a good guess is given, for example, one might want to start the
Lanczos algorithm with z, i.e. set g, « 2o/ | Zzpl|. It is however easy to check
that even if zy were the exact solution, the algorithm would not recognize
that and would proceed until the residual norm becomes small. Another
suggestion is to use a starting vector which has large components in the
direction of eigenvectors corresponding to the small eigenvalues of 4. But in
general it is not advisable to use any other vector than the right hand side b
as a starting vector for the Lanczos algorithm for the following reason.
pose we used the vector g, where g is an arbitrary n-vector as a starting vec-
tor for the Lanczos algorithm. Then the computation of the residual norm

according to (1.1.11) must be modified to

Ty = b - AQ; Tj_l Qj’b
=b = (Q;T; + Bj+19;+185) Ty 1 @50
=b — ;@B - Bj+195+125Ti 1 Qb

= (I - @006 — Byr195+19; (1.5.2)
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where ¢, denotes the j-th component of the vector h;, solution to Tihy = Q,’b.
The important difference to {1.1.11) is not that @it is now a full j-vector, but
the additional (/-@; Qj')b-term in the residual. This term accounts for the
fact that in the general case the right hand side is not necessarily contained
in the Krylov subspace X7, and (I-& Q,-')b is just the orthogonal complement
of b. If g is not related to b, there is therefore no reason to hope that by
some coincidence |[(7/—; §)b | might be small for j < n. In other words, we
want b €K7 for small j. Unless we take g = b/B, the only way to guarantee
this is by choosing a g, such that m{4)q, = b, where  is some polynomial of
degree j-1. This however requires to solve a system of linear equations, which
is even more complicated than the original one. In general there seems to
be no better alternative to chosing the right hand side as starting vector,
and it appears that given an initial guess zg, it is best to utilize it as in
(1.5.1), and then to proceed with the Lanczos algorithm using b —Az, as start

ing vector.

This discussion is of certain relevance for the treatment of a sequence of
right hand sides. Let us consider the case where we have stopped the first
Lanczos run for solving Az(!) = (1) at step j, because the residual became
negligible. The Lanczos vectors &; and T; are then still available and can be

used for computing an approximation to the solution z(® of the problem
Az® = p@) (1.5.3)

where b(® is a new right hand side. We can find an initial approximation z§?

to z® from span (@;) as follows:
262) = QJ Tj—IQj.b(e) (1.54)

This is just (1.1.10) for the new right hand side 5®). We have to form §;b(®,

which is now in general a full j-vector, then solve T;h; = @6, and finally
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assemble z{?) = Q;h;. The initial guess z{® will be utilized as outlined above,
i.e. we compute a solution z{® to Az{®) = #{?) = p®@ — Az{? by starting a new
Lanczos run. The numerical results in Chapter 4 indicate that this second
run of the algorithm will need considerably fewer steps than did the first run,
provided that the second right hand side represents a physically related
problem. For an arbitrary right hand side it is not clear that span (Qj) is a
good subspace for approximation, and there may be little to be gained from
computing z{?. In this case it will be better to use a more sophisticated pro-
cedure for the treatment of consecutive right hand sides. In [30] it is
described how the Lanczos vectors from the second run can be kept orthogo-
nal to the already computed Lanczos vectors from the first run. This algo-
rithm will not only reduce the number of Lanczos steps for the second right
hand side, but it will also provide an orthonormal basis for a larger subspace,

which can be used for the third right hand side, and so on.

However it should be clear from the initial discussion in this section that
it does not pay simply to continue the old Lanczos recurrence from the first
right hand side, and wait until the residual norm becomes small, because we

cannot expect that b will be well represented in K7 (b(1;4).
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2. ANALYSTS OF THE SYMMETRIC LANCZOS ALGORITHM IN FINITE PRECISION

A Mathematical Model of the Lanczos Algorithm in the Presence of
Roundoft

Most error analyses start out by making some assumptions on the
roundoff errors which will occur when elementary operations like addition,

are carried out in floating point computation with relative precision &.
Based on these assumptions upper bounds on the errors in vector inner pro-
ducts, matrix-vector multiplications, etc., are derived or the reader is
referred to Wilkinson [40]. After providing these tools then finally the object
of analysis itself is approached. Lengthy and complicated derivations finally
yield error bounds which are rigorous but, in most cases, unrealistically pes:
simistie.

The error analyst's dilermnma is that he has to take into account any pos-
sible contrived worst case example at each step in his analysis in order to
make it rigorous, but he also knows that this combination will hardly ever
occur in practice. By including all these cases it is not only more compli-
cated to read and understand the analysis, but it is also difficult to prove

facts which appear to be "true” from practical experience with an algorithm.

We try here to find a way out of this dilemma by using a different
approach. In this section we are going to state a set of assumptions on the
behavior of the Lanczos algorithm in finite precision. These assumptions con-
stitute a model for the actual computation. A model which includes features
(the essential ones in my opinion), but discards others (the irrelevant ones).
On this model we build a rigorous analysis. The simplification of the results
and their relation to the observed behavior of the Lanczos algorithm must

eventually justify our choice of model.
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The presentation of the Lanczos algorithm in section 1.1 assumed an
ideal mathematical setting. However, Lanczos himself [17] was already aware
of the strong influence which roundoff had on the algorithm. The computed

quantities can differ greatly from their theoretical counterparts.

In the context of finite precision arithmetic the basic three term
recurrence (1.1.2) between the Lanczos vectors at the j-th step can be writ-

ten

Bi+195+1 = Ag; — 0595 — Bid5-1 — [y (2.1.1)

where the n-vector S accounts for the local roundoff errors at the j-th step,
and the a;,f;,9; denote from now on the corresponding computed quantities.

As in (1.1.8) the first j equations (2.1.1) can be written in matrix form
AQ; = @i Ty = Bju1gjnief + Fy (2.1.2)

where the nxj matrix F; is given by Fi=(f1f2" -f;). Abound on | |
depends on the specific implementation of the Lanczos algorithm, and on &
the machine roundoff unit. Parlett [29, pg.288] reports that no exception

has been observed to the assertion that
IF; <ela (2.1.3)

This claim is supported by a study of I S |, reported in section 3.1. In the fol-
lowing analysis we assume that (2.1.3) holds, i.e. that the local errors are at

roundoff level.
Let the jxj matrix W; = (w; ) be defined by
W; = Qj’Qj (2.1.4)

Ideally the Lanczos vectors should be orthogonal, i.e. W; = I;. But this rela-

tion is completely destroyed by the effects of finite precision arithmetic. No
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implementation of the Lanczos algorithm as described in Chapter 1 yields a
small a priori bound on | W;~/{, in fact the elements of W, —I; can become
as big as 1. The computed Lanczos vectors do not only loose orthogonality
but become linearly dependent to working precision. The growth of the ele-
ments of W;-J; will be referred to as the loss of orthogonality among the
Lanczos vectors. Let the j first Lanczos vectors 9.9z ' ' ,q; satisfy

lafqe | < w; (2.1.5)
fori=1,- -ji k=1,"7; k#j and 0 < w; < 1. The smallest w; for which
(2.1.5) holds will be called the level of orthogonality among the Lanczos vec-
tors. If w; = v&, then the Lanczos vectors will be called semiorthogonal,
Clearly, if w; = 0 the vectors are orthonormal. The following example illus-

trates the typical loss of orthogonality as the Lanczos algorithm proceeds.

100
1~
- 3
10-5 - 8
- <
L
s
(]
- Q
10—10 A g
— &
10-18 =
| |
. 40 80

Lanczos Steps

Figure 2.1. The Loss of Orthogonality among the Lanczos Vectors.

In Figure 2.1 the level of orthogonality among the Lanczos vectors is plotted
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on a logarithmic scale for the first 55 steps of a run of the algorithm with a
matrix of order n=961, resulting from an approximation to Poisson's egua-

tion on the unit square with 31x31 grid points. The starting vector is

g, =11, --,1)*/VB0.

Some more assumptions are necessary in order to simplify the technical
details of the analysis of the loss of orthogonality. It will be assumed that the

Lanczos vectors are exactly normalized,i.e. that
g =1 Jfor k=1, (2.1.8)

and that locally the level of orthogonality among the g;'s is of the size of the

roundoff unit, i.e. that

lgeaqel <&, SJor k=1, -] (2.1.7)

Here ¢, is some constant 1 > &, > ¢. In practice it turns out that q,-'“q,- occa-
sionally may become large if g;,, is small, or equivalently if the angle
between Ag; and g; is small. This is actually not a problem peculiar to the
Lanczos algorithm, but of orthogonalizing two vectors which form an small
angle. It is solved by reorthogonalizing g;,, immediately (within the Lanczos
step) against g; if f;4, drops below some threshold. We therefore assume
that g, is a modest multiple of the roundoff unit. As long as &; « V& the
actual size of &£, is not important for the following analysis. Similarly the
later analysis will show that roundoff errors in the normalization of the g;'s

are inconsequential for the loss of orthogonality.
Finally let us assume that
no B, ever becomes neglible (2.1.8)

This is almost always true in practice, and the rare cases where a f;,; does

become small, are actually the lucky ones, since then the algorithm should
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be terminated, having found an invariant subspace.

(2.1.1)~(2.1.8) constitute the mathematical model of the Lanczos algo-
rithm which we are going to investigate further. The goal of the remaining
chapter is to identify a mechanism which causes the loss of orthogonality in
the Lanczos algorithm, and then to analyze the algorithm in the light of this
new understanding. The results will help to clarify the role of the V& thres-
hold, which appears both in Parlett and Scott's [32] and Grear's [9] work.
The insight will also lead to a new orthogonalization procedure, which will be

discussed in the Chapter 3.
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2.2. The Loss of OrthogonaIity.

The loss of orthogonality and the associated "instability” of the Lanczos
algorithm in the past has been credited to "an accumulation of roundoff and
cancellation errors” (Golub, Underwood, Wilkinson [B]). Paige [24] was the
first to provide a better understanding of what exactly is happening when
orthogonality is lost. However Paige does not convincingly identify a
mechanism, which would explain the loss of orthogonality directly. Recently
Grear [9] gave a new interpretation and his work is closely related to the
results of this section. He is the first one to regard the loss of orthogonality
as an amplification of the local errors which can be explained through
recurrence formulas. We follow his ideas and express the loss of orthogonal-
ity in terms of computed quantities. Thus we obtain a simpler and easier
understandable recurrence formula. This is done here in form of Theorem
2.1. Paige’s main result concerning the loss of orthogonality then immedi-

ately follows from Theorem 2.1.

The situation becomes clearer, if one follows a simple geometrical argu-
ment. Suppose the algorithm was carried out for ] steps without any error
and the vectors ¢q;, - ,g; were perfectly orthogonal. Now at the j+1 st step
a small error occurs, such that 97+1 is no longer orthogonal to the previous
Lanczos vectors. From then on the algorithm is again continued without
error. Even if g;,, were constructed perfectly orthogonal to g5+ and gy, it
would no longer be orthogonal to the vectors g1 ' .gj-1, because gj,, was
not orthogonal to them. The same is true for all consecutive Lanczos vectors.

The once introduced error is propagated to future Lanczos vectors.

Now if two consecutive Lanczos vectors gr-3 and g, deviate slightly from

their correct direction then of course the vector Ag, will be also slightly
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wrong. This by itself would not be so bad, but this already slightly wrong Ag,
will now additionally be orthogonalized against already deviating vectors and
thus the resulting g;,, will differ even more from its true direction. Once
introduced, the error is thus not only propagated, but depending on the

geometry of the g;'s it may be additionally amplified,

The loss of orthogonality therefore can be viewed as the result of an
amplification of each local error after its introduction into the computation.
The following theorem is the arithmetic equivalent of the geometric con-
siderations above. It quantifies precisely how the local error is propagated in
the algorithm, and how the level of orthogonality rises due to the mechan-

isms of the algorithm. It is the core of our analysis.
Theorem 2.1. The elements w; of the jxj matrix W; = Q,-’Q,- satisfy the fol-
lowing recurrence:

e = 1 for k =1, j
W k-1 = & for £k = 2, - J (221)
Bi+10541k = Bre+1Wj k1 + (e —0y)on + Bewjp—1 — Bywj—1k + 95Tk — Qi f;

for 1<k <j,and w4 = Wisy 5. Here wpo=0and g, = gyge ;-
Proof. Write (2.1.1) for j and for k:
Bj+195+41 = Ay — 0495 = B5q5-1 — f5 (2.2.2)

Brs 1941 = AQe — 2k — BeQe—1 — Tk (2.2.3)

Forming g¢(2.2.2) — ¢;(2.2.3) and simplifying yields the result

Theorem 2.1 was already published by Takahasi and Natori [39], but

rediscovered here independently.
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Note that (2.2.1) can be also obtained in vector form. First premultiply
(2.1.1) by g}

Bi+1@541 = QjAg; — oy @q; — By Qqy-y - Qif; (2.2.4)

T Q95 = 05Q7%5 =~ B;Q05-1 + Byr1505ng; + Fia; — QF;

Let R; be the strictly upper triangular part of W;. i.e. R; is zero on and
below the diagonal, and let ,,i,, - - ; bet the columns of R;. And let

W4y = @954+, Then from (2.2.4) it follows that
ﬁjﬂw,-ﬂ = T,-wj - a,-'w_,- - ﬁ_,—ﬁ)‘,-_l + g;j (225)

where g; = Fiq; - €;fj. Equation (2.2.5) could have been obtained directly
from (2.2.1), by writing (2.2.1) in vector form for k = 1, -+ -j. From (2.2.5)

we can obtain an estimate for the loss of orthogonality.

ﬁjﬂwijH < (| T; I+ ‘%‘UH”@J‘ [ + Bj H@,-IJ' + 0(e[Al) (2.2.8)

< 2| Al max{|m; |I.l|@;-, |1} + 0] All) (2.2.7)

Therefore the level of orthogonality grows at most by a factor of 2[4/ 8;.,
at each step. A small B;+1 will cause a great loss of orthogonality. A Lanczos
run, which has rapidly decreasing or greatly varying f;‘s will therefore suffer

from a larger loss of orthogonality, than a run with nearly constant g;'s.

The recurrence formula (2.2.1) shows that the loss of orthogonality is
merely initiated by the local error Jfj. The growth of the elements of Wi
depends mainly on the a;‘s and Bi's. It is therefore definitely nof due to an

accumulation of roundoff or cancellation errors. Once the wjr have grown to

s
a certain level of about O(z*), the local error terms ¢Sk — gcf;, which are

O(e) contribute negligibly to the growth of the loss of orthogonality.

Paige [25] puts considerable effort into analyzing computational vari-

ants of the Lanczos algorithm in order to determine among several possible
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variations of the algorithm the one for which the local error f; is smallest. In
the light of (2.2.1) this is irrelevant as regards the loss of orthogonality. As
long as the local error remains at the roundoff level, all computational vari-
ants will suffer from the same loss of orthogonality. The loss of orthogonality
is a phenomenon which is started by the f;, but from then on its growth is

determined by the a;'s and B;'s, i.e. by the eigenvalue distribution of A and

by the starting vector q;-

The way in which orthogonality is lost can be understood better if equa-
tion (2.2.5) is analyzed further. Let the exact spectral factorization of T; be
given by 7;S; = 5;0;, where ®; = diag(sf), - .- D), S5 = (s §),....s80),
and SJ-'= S-1, and define the vectors Y = @;s;fori =1, .. 4. Note that con-
trary to (1.1.13) we consider here the ezact eigen decomposition of the com.-
puted T;. Therefore the ¥{) and ) should be referred to as the computed
Ritz values and vectors. They may differ from their ideal counterparts as
defined in (1.1.13). Especially there is no reason to expect the computed Ritz
vectors to be orthonormal. Nevertheless we will refer to them here simply as
Ritz values and vectors, since no confusion with the ideal quantities is likely.
Furthermore let 0; = e,’s/), the bottom element of the eigenvector s), and

let the eigenvectors 5/) be normalized to make o; positive.

With all this notation the remaining analysis becomes quite simple. Con-
sidering the first steps of the algorithm, the corresponding instances of for-
mula (2.2.5) can be combined in matrix form as

ﬁjﬂw,-“e;: T,RJ _RJ Tj + G:.' (2.2.8)

where G is the strictly upper triangular part of Fj@; — @/F;. Forming

s;(2.2.8)s; one obtains
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Bjr1SiWy105 = Vs Rys; — S{Rysi%y + 5Gys;
By 14105 = S{Gysy = g (2.2.9)
This is precisely Paige's theorem:
Theorem 2.4. (Paige). Let S;. 85, Gj. 04, and y4 be defined as above. Then

the vectors g; = @s¢, fori =1, - j satisfy

. Vil
wa =S = 2.2.
J+1 Brei0n (2.2.10)

Formula (2.2.10) describes the way in which the orthogonality is lost. We
have assumed in (2.1.8) that no §;,, becomes negligible. If we also assume
that 7 is tiny like £l 4[|, the only way that y,'g;.+; can become large is by Oji

becoming small. As Paige pointed out

Ay — v || = 1AQ;sy — @8:8; = [ Bj1TjmesSi+Fysy < Bjnon + |l All

and so a small oy indicates that (9, ¥;) is an approximate eigenpair of the
matrix A. Paige's theorem therefore can be stated as: loss of orthogonality

implies convergence of a Ritz pair to an eigenpair.

Lemmas.

In this section we will state and prove several Lemmas, which will be
needed in the later analysis of the Lanczos algorithm. These Lemmas are
mainly concerned with certain properties of the matrix #;=@;@; and related
matrices, and are therefore completely independent of any properties of the
Lanczos algorithm.

Let the jxj matrix ¥ be given by ¥ = (wg), with wy=1 for i=1, - 7,

—1<wy<1 for i#k, i,k =1, --j. Then define w= max |wy and
1t k<)
ink

W, =(1-w)j+wee’, W_=(l+w)lj—wee *. where the j-vectore® = (1,1, - - 1).
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Denote by A,(#) the smallest and by A;(W) the largest eigenvalue of the

matrix W.

Lemma 1.
a) M)z 1-(j~1o.
b) A(W)< 1+(i-1)o.

e) [|W| = 1+(j -1)w.

1
d Ifwc 7-1

Proof. Application of Gershgorin's theorem =

Lemma 2. Let w=< -1—-1—. Then LL®

2 j-2

exists and

IZl =1Ll <2
IL7 =1L <=2

Proof.

L " = V)\J(LL ) = V}\Jz W,’SS (1+(j—1)&))

L] = VREGTE = VNI s (1-(-1)e) * <2

Lemma 3. The Choleski factor L, of the jxj matrix W,

where 0 < w < 1, is given by

1
w

(A
1

then W~ exists and | #~!|| <

LA

-G =

-

w

- g -

= W the Choleski factorization of ¥

(2.3.1)
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§, 0. . 0

M 62 . . .
Li=|. m2. . .|, (2.3.2)

S

M Mz - Nj-1 6

where
- (1—w)(1+{k-1)w) - o a

Ok \/ 1+(k -2)o k=1, J (2.3.3)
(2.3.4)

- 1-w =1 ... 4=
m = o T, kT
Proof. With 0 < w < 1 the matrix ¥ is symmetric and positive definite, and

its Choleski factorization W, = L,L; exists.

Consider the first step of the factorization:

Therefore 6, = Vi =VIi=1andn; = w/Vé = wand

1—0? w—e? . .  w—of]
. jo—e® 1-0? .
We = Wl - _’w’l‘_;l)___: . . . . .
. 1-0® w—-o?
o—e? w-w? . w-w? 1-0?

Denote now by 8, and 7, the diagonal and off diagonal elements in the matrix

,, which contains the part of # which is still to be factored at the k-th step



Then considering the k

that 3; and 7, can be computed by the recurrence

M1
8-

5 =3k—1 -

where 31 =1and 7 = w. It can be shown by induction that

3 = (1=e)(1+(k ~1)w)

1+{k -2)o k=l -j
R € ) ) k=1, . j-1
= Tvk-2)a ;

Finally 6, and 7, are obtained from

V&
e ]
Lemma4. Ifw< 7 1 1 the Choleski factor L_ of the matrix W_
1 - )
- 1
V.= .
1 -w
|—e - 1

where 0 < w < 1, is given by

-th step in the same way as the first step,

38

one finds
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[df" 0 =%
mi? 8§ .
L.=|. nf) . . .
Y J B
mi) ni) . mf} o)

where

9 ~ /TEOO=E=T%y IR
6=~/ 1-(k-2)» k=1,

-) = 1+0 =1 ...l
mid = o/ (-G -2))(1-(k-Doy F =L J-L
Proof. Replace &by —w in Lemma 3 =
Lemma 5. Let W, and L, be as in Lemma 3 and #_ and L_ as in Lemma 4. If

(j-1)w?/2< ¢, then 6; = 1+0(e) .

Proof. From Lemma 3 we have

-~ /oG =0s)
6=~/ 1+G-2o

= V1-(j-1)o + 0G%9)

1-(j-1)0?/2 + 0(j%u*)

1+ 0(e) + O(e®)
Similarly

6}’) =1+0(g) =
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2.4. Analyzis of the simple Lanczos algorithm.

There are two quantities at hand, which could be the object of an error
analysis of the Lanczos algorithm: the Lanczos vectors ¢; and the matrix 7}
formed by the o; and g;. It is important to note the following fact at the
outset of any further analysis: If a matrix 4 is close to 4 this does not imply
that the sequence of Lanczos vectors computed from 4 is in any way close to

the sequence of Lanczos vectors computed from A, as the following example

shows.

Example. Consider
[1 4 ol
A= 2 3
03 4,\

where 7 is a real parameter. Then the first Lanczos step yields:

1] ol
Afy=m op=13 gp=il
0 0'\

However for the same g, and

e
—

|

"

o
w N o
ENERE

one obtains that

[1] o]
Ag,= |0 El=q;ZQ1=1;§2=0-
1

Hence gJzqp = 0 independent of 7, and even a small perturbation in the

matrix may therefore result in totally different, i.e. orthogonal Lanczos vec-

tors
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This example shows the limitations of a forward error analysis of the
Lanczos algorithm. Since the Lanczos vectors may differ considerably, even
when there is only a small perturbation, any error analysis, which attempts
to compare the "ideal” (i.e. exact arithmetic) Lanczos vectors with the com-
puted ones, has to run into considerable difficulties. Grear [9] avoids this
difficulty in his forward analysis, by making the strong assumption a priori

that the error between "ideal” and computed Lanczos vectors is small.

The example above indicates that the situation for the Lanczos algo-
rithm is comparable to other methods for tridiagonalizing a symmetric
matrix, like Givens' or Householder's method. The computed, intermediate
quantities may differ from their ideal counterparts, but this is not the impor-
tant issue if one performs a backward analysis. For these methods it can be
shown that the computed tridiagonal matrix is exactly similar to a perturba-
tion of the original matrix 4, where the relative size of the perturbation is a
modest multiple of the roundoff unit and IAll. We feel that a similar
approach is also appropriate for the Lanczos algorithm, since the Lanczos
vectors are ruled out as an object of a backward analysis by the above exam-

ple. Our main attention will therefore be directed towards the matrix T;.

Let us first remark that the loss of linear independence of the Lanczos

vectors does not concern us here. From Lemma 1 we can conclude that as

long as @ < the Lanczos vectors are linearly independent. This means in

1
j-1
a typical situation with £ = 1075, j = 100, that w can be as large as 107%, and
the Lanczos vectors will be still linearly independent. Hence the level of
orthogonality can grow by a factor of 10'® without affecting the linear

independence of the g;. The loss of linear independence is therefore a conse-

quence rather than a cause of the loss of orthogonality, and will not concern
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us for the moment.

The following theorem shows how the loss of orthogonality affects the

matrix Tj .

Theorem 2.3. If w, the level of orthogonality among the Lanczos vectors
91:92.93:...954+; satisfles » < é— 3%5- then the computed tridiagonal matrix Ty

is similar to a matrix 7—’_,,. where Tj is a perturbation of the orthogonal projec-

tion of 4 onto span(@;). If Ap denotes this projection, then
l4p=T; |l < BVT wBjey + 2e||A| + O(e?) | (2.4.1)

Proof. Since gq,,qp, - - - g5+1 are linearly independent, the the QR factoriza-
tion of €; has the form Q; = NJ-L_,-', where N; is a nxj matrix with orthonormal
columns, and LJ-’ is a jxj upper triangular matrix with positive diagonal ele-
ments. Moreover N; and Lj’ are uniquely determined. Since
W; = @@ = LyN{N;L = L, 1|, L, is also the Choleski factor of w;.
Similarly @;,, = N; L'y, where Ni+1 = [Nj|n;,,] and

| 5 5] | L |

Lj+l = = l Ly
0° 6541 0°* |

Now the basic Lanczos equation can be rearranged as follows:
AQ; - Q; T; = ﬂj+1%’+lej’+ F;
Ty = QAG ~ By1Qfayne] — QF,
LiLiTy = Ly NjAN; L} = BysrLyNiNyslyrref — Ly NjF;

LiT; L * = NjAN; - Bj+1NsNjsiljsrefLi* = NiF;Li° (2.4.2)

Let 7y = L/T;L;", then T; is similar to T;. T; can now be considered as a per-

turbation of 4p = N{AN; the orthogonal projection of A onto span(@;). The
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norm of this perturbation can be bounded by
|Ap=T; | < Bis1ll Nj.Nj+llj+lej’Lj_‘” + | N{Fs L")

Now NNy, = 7, = [/;]0] and Lile; = 6;'e;, where 65 is the bottom diagonal
element of the Choleski factor L. As |[NJ| =1 and L] =2 by Lemma 2,

we obtain:

I4p = T3 1l < 81411167 el + 211 75 [ (14 0(s))

< Bi+167 |Gl + Re| Al + O(e?)

Now assume that the worst case happens, i.e. that W; = W_, where W_ is the
matrix defined in section 2.3. Then applying the results of Lemma 4 one

obtains

l4p - Tl = B;.07/ i ;)‘(‘1":5’_”1)”) o/ (1_0_};“;;(1_”) V7 +2e]4] + 0(c?)

< 20V7 By + 26 4] + O(e2) .
Theorem 2.3 says that the norm of the perturbation is proportional to the

level of orthogonality among the Lanczos vectors, as long as the loss of linear
independence among the Lanczos vectors is not imminent. The conclusion of
Theorem 2.3 no longer holds when the Lanczos vectors begin to lose their

linear independence, because then L'l and 6;! can no longer be bounded.

It is also interesting to note that an attempt to relate T; to the projec-

tion of a perturbed matrix fails. In this case one would write
LJ'.TJ'LJ'_. = NJ‘(A - ﬁj+1Nj+llj+le;Lj-'N; b FJLJ-.NJ')Nj (2-4.3)

instead of (2.4.2). Then || Njulj1e/Li Nyl < | gs4yn677! | < 6;! < 1+w. This is

not surprising, considering the example at the beginning of this section.
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Another important quantity to consider is the matrix W;, which ideally
should be the identity matrix I;. Much of the material in the previous section
was related to the question, how much we can allow #; to deviate from I;,
and yet satisfy some useful properties enjoyed by I;. Lemma 5 is the most

important result in this direction. This Lemma gives a first insight as to, why

—R&_
j-1

the particular bound o < '\/ is crucial for the Lanczos algorithm. In

this case F; has still, at least up to roundofl, the property of the identity
matrix, that its lower triangular part is also its Choleski factor., This can be
also seen by writing W; = (/-R;/M"R;) = I~R;/~R; + R/R;. Now if the bound on
omega holds Rj'}?,- becomes negligible like £. It seems that this property of
W; is enough to assure that the Lanczos algorithm in finite precision behaves
up to roundoff like its ideal counterpart. This will be shown in the following

Theorem 2.4. If (j-1)o?/2 < &, i.e. if

w<\/ jz_sl (2.4.4)

then
NjAN; = T; + V; (2.4.5)

where the elements of V; are of order O(¢||4]). and N; is the matrix as
defined in Theorem 2.3. |

Proof. Since N,-’AN,- is symmetric, it is sufficient to show by induction that
the last column of N;AN; and 7; differ only by a vector of order o(s|All).

For j=1 this is trivial since n, = q,.

For general j transpose and rearrange equation (2.4.2) from Theorem 2.3:
NjAN; = L' Ty Ly + By Lite;I0y, + LiVFYN;

The last column of NyAN; then is given by
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N;AN,E, = Lj-lTijEJ' + Bj+1Lj—12jl_j.+lej + Lj-le.Njej (246)
The proof now rests upon the fact that the last two terms in (2.4.8) are small
and that Lj‘lT,-LJ- is a lower Hessenberg matrix and thus only the last two ele-
ments of L;"!T; L;e, are nonzero. Since L; and L;™! are almost like the identity
matrix, we should obtain that L,“T,Lj e;Naje; + Bye;_ . In the remaining part

of the proof we are going to show that these statements are true.

Let the elements in the bottom right corner of L; be denoted by

[ N
Ly=| Mjaj0 O
Nij-1 Mjj

Then the corresponding elements of L are

r 1
LJ'-I =\ "7_;—115—1 0

7ih n;}

Mi -1

where n}}l_)l = -n”m_”_l.

With this notation we can evaluate the terms in (2.4.8) further.
L' TyLyes = L' Ti(n; ye;) = ny ;LN oye; + Biey-y)
= ny505L7"e; + my ;8L ey,
= Ny 5045585 + 05 i85 o185 + nf7e;)
= oje; + My Nj-15-18585-1 + 05 ;M7 }-1B;6;
For the second term one obtains
Bi+1Li el ie; = Braamiinge se;

Here 71, j4, is the j-th element of the vector Lisy.
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Applying Lemma 5 we obtain now that

1+ 0(g)

Nj-135-1

nj; =1+ 0(e) ,

and therefore also 77} =1+ O(g) mj};-; =1+ O(g). Since there is no ele-
ment growth during a Choleski factorization, and we assumed in (2.1.7) that

|wj 511 = £, we also have that

Nji-1= 0(e) .

Nj+15 = o(e) .
Then also

N33 = =m0 5omi ) nit g = 0(e)(L + 0(2))? = O(z) .
Taking all this together we have

N{AN;e; = aje; + (1+0(e))%B;e;-, + (1+0(e))0(£)By+125 + L Finy

o e; + ﬁ,-e,-_l + (ﬁje‘,'_l + ﬂjej + ﬁj+lej)0(8) + LJ"-IF';TLJ' ;

Since we can assume that B;+f;,;< 4|, we are almost done. It only
remains to be shown that also the elements of Ly !Fjn; are also O(e[4l]).

But as | L;!| = 2 by Lemma 2.2, it follows that
1L Fin; || < 2¢| Al = O(el|Al)
and this concludes the proof L]

In the proof of Theorem 2.4 it was assumed that -21‘7{_1'—1)w2 implies
W< ‘7—1—1— This will be only true, as long as j < £~},a condition which will be
satisfied for all practical applications of the Lanczos algorithm. From now on

we will assume that j « 7%

Theorem 2.4 sets the stage for the next section. If it is possible to keep

orthogonality at a level of &, then the Lanczos algorithm actually computes a
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matrix 7;, which is, up to roundofi, the orthogonal projection of A onto
span (Q_.,-), even though the Lanczos vectors themselves are no longer orthog-

onal to working precision.
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2.5. Semiorthogonalization Strategies.

As soon as the level of orthogonality deteriorates so much that

L 2 L
lq,ﬂqkl >wp = \/j—sl ; for some k < J, the nice result T,NNjAN, does not

hold any longer. The main goal in this section is to show that if by some
means semiorthogonality (i.e. lgq, | = VE for izk ) can be maintained
among the Lanczos vectors, the result of Theorem 2.4 will still hold for the

modified algorithm.

Traditionally one was advised to perform the Lanczos algorithm with full
reorthogonalization of the Lanczos vectors (Lanczos [17], Wilkinson [41]).
This modification aims at maintaining orthogonality to working precision
among the Lanczos vectors. Theorem 2.4 shows that not all this effort is
necessary. More recently selective orthogonalization (Parlett and Scott [32])
and periodic reorthogonalization (Grear [9]) have been suggested as means
of keeping semiorthogonality among the Lanczos vectors. The analysis for all
these orthogonalization methods can be unified with the concept of a

semiorthogonalization strategy for the Lanczos algorithm.

Suppose at the j-th step of the Lanczos algorithm

B'inQ'541 = Ay — o595 — Biq5-1 — f;

and |g'/1q; | = |@;41 4] > wp for some k <j.
Then we choose j—1real numbers £, - - - +£;-1, and form
=1
Bi+195+41 = B'5419'j41 — g_}l&qk -f5 . (2.5.1)

The algorithm will be continued with 95+ instead of g';,,. This modification
of the Lanczos algorithm will be called a semiorthogonalization strategy if

the following conditions are satisfied:
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1) The numbers ¢, k=1, - - - Jj—1 are chosen such that
(@G5 ] = {oja11] < e (2.5.2)
(2.5.2)
where wy = J,_—sland 1959541 < &,

2) The computation of the £:'s and the formation of g5+1 causes at most

roundoff errors of O(z|/ 4| ).i.e. we have

Bi+195+1 = Agj — oy9; — By - g:ifk 9 — f5 (2.5.3)

and || f;]l < e[ Af.
It seems somewhat artificial not to include an orthogonalization against g; in
(2.5.1). But we assumed initially in (2.1.7) that the simple Lanczos algorithm
Produces already a g'j4;, with |9's+195 ] < &,. A proof analogous to (83.3.5)
shows that then also |g,,9;| <&, holds. An extra orthogonalization of g';,,

against g; is hence unnecessary (c.f. the remarks following (2.1.7)).

All orthogonalization methods mentioned above can be summarized
under the new concept of a semiorthogonalization strategy. The details,
which are nontrivial in the case of selective orthogonalization, will be dis-
cused later. Surprisingly under very general assumptions we can prove the

following

Theorem R2.5. Let 7; be the tridiagonal matrix computed by the Lanczos
algorithm with a semiorthogonalization strategy. Then N_,-’ANj. the orthogonal

projection of 4 on span (@;) satisfies
N;ANJ' = Tj + Vj ' (2.54)

where the elements of V; are of order O(z | 4]).
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Proof. For a certain number of steps the algorithm will be just the ordinary

Lanczos algorithm and Theorem 2.4 can be applied. Suppose now at step j

]

for the first time the semiorthogonalization strategy comes into play:

i-1
Bi+19541 = Agy — ®;9; = 95y — kE Qe —F;
=1
or in terms of matrices:
'_l * *
AQ; = T, + :Z_:I& qees + Bjr1954185+F; (2.5.5)
& .
= (T + kZ‘ eerey) + Bi+195+185 + Fy
=1
Transposing and multiplying by @; one obtains
* j_l » ] L] *
QAQ; = (T; + kZ} rejer)QQ; + Bi+189541@; + F;Q;
=1
As before let @; = N;L{, Q/Q; = L;L;, then
. - =l pe - - - .
NJ’ANJ- = Lj I(TJ + g_:lgkejek)[,j + ﬁj-HLj 18jlj+1 + LJ IFB-NJ'

Now comes the important observation when we consider as before the j-th
column of the matrix N,-'ANJ-. The perturbation term in T; simply cancels put,

as ey Lje; = Mjsere; =0, fork =1, - .J—1. Thus

N;AN, = Lj_lTJn”-eJ + ﬂj+1Lj_12jl—j.+lej + Lj’lF;nj . (2.56)
Now we can estimate the terms in (2.5.8) in the same way as in Theorem 2.4,
and the result follows.

Suppose that from step j onward, at each step, an orthogonalization
occurs. If not, then we can simply set the corresponding §, = 0. Then the

governing equation (2.5.5) at step m > J can be written:
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ACp - @, Tm = ﬁm+1qm+lerr.;+1 +F,
where

m -1
T = Tm + ), Y tMe e,
I=§ k=1

However it is clear that again T,,', em = Tpe, = Tmem, and then the argument

of Theorem 2.4 can be also used for the general case =

At the first glance the result of Theorem 2.5 is Very surprising. Because

ple structure of the Lanczos algorithm, that one might expect the output of
the algorithm to be changed drastically as well. But this is only true if one
thinks in terms of the exact algorithm. There the matrix T; loses its simple
tridiagonal structure, when it is modified to Tj In finite precision the quan-
tity to consider is not T3, but LT; L;*, which is almost the exact projection of
4 on span (g;). Moreover it is an upper Hessenberg matrix but so is LJ-’T‘J-LJ-"!
Therefore the modification of T; due to an orthogonalization actually does
not change the structure of the important quantities in the algorithm. This

explains the relative ease with which Theorem 2.5 follows from Theorem 2.4.

In order to prove Theorem 2.5 within our model we had to assume that

the semiorthogonalization strategy maintains a level of orthogonality of

W = \/?81 among the Lanczos vectors. The dependence on j in o is a
J—

nuisance, since the practical experience shows that semiorthogonality, i.e. a
Ve level, is enough for computing an accurate T;. The reason that Theorem
2.5 is weaker than we would like to have, resides in the assumption implicitly
made by using Lemma 3 that all offdiagonal elements of W; assume the max-
imum value w,. In the view of Theorem 2.1 this is an unrealistic assumption.

Only some elements in the last column of W; will be as large as o and force
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an orthogonalization. The majority of ofldiagonal elements of W; will be well
below this threshold. Therefore the use of V& for a practical algorithm is

justified, although we did not prove it rigorously.

2.5.1. Partial Reorthogonalization.

Originally the Lanczos algorithm was executed only with full reorthogo-
nalization (FRO). This amounted to an orthogonalization of the new g';4,

against all previous g; at every step, i.e.

Ty =F'5619'5+41 = Ay —a;9; — B3935 =T 5

Ty =Ty = kél ("9 g

It is clear that FRO will satisfy (2.5.2) and (2.5.3) for a general semiorthogo-
nalization strategy. Actually we expect that |gyg,,, < Vn g, i.e. much more

than necessary for (2.5.2).

There is a minor point still to be considered. In (2.5.1) we do not con-
sider an orthogonalization against g;- However since

|77q;5] = B'5411¢'+19;1 = €l|A]l, we can write the FRO as

Bi+195+1 = A9y — &g — BjG5-1 — :z;ifk‘h -fi
where f; = f'; + B'541(9'/+195) g5. Therefore with ¢, =7'/q,, k =1, -+ j-1,
FRO is a semiorthogonalization strategy for the Lanczos algorithm and
Theorem 2.5 holds. On the other hand Theorem 2.5 assures us that only a
level of orthogonality of wy; among the Lanczos vectors is sufficient. FRO is
therefore not efficient, since the extra orthogonality gained does not pro-

duce a more accurate T,-.

This insight is the basis for Grear’s [9] periodic reorthogonalization. In

this method one has to update an n —vector which simulates the error in the
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current Lanczos vector as compared to the ideal Lanczos vector. If this esti-
mate for the error rises above the V-level a full reorthogonalization of the
current Lanczos vector against all the previous ones is performed. If the
error estimate is correct, Grear's analysis shows that the Lanczos algorithm
with periodic reorthogonalization computes a Ty, which is accurate up to

roundofl.

Periodic reorthogonalization can be improved in two ways by using the
recurrence from Theorem 2.1 . Based on this recurrence we only update a
J —vector, which contains estimates @j+1 & for the terms q',’ﬂq,, k=17
Secondly, since the @j+1 ¢S indicate against which previous Lanczos vectors
orthogonality has been lost, the current Lanczos vector has to be orthogonal-
ized only against some of the previous Lanczos vectors. The resulting new

method is called partial reorthogonalization (PRO).

The success of PRO depends very much on an accurate estimate for
q','ﬂq,c. This is not a trivial task since the recurrence (2.2.1) involves among
others terms of the type 7/, — frg;, which are not directly available in the
algorithm, yet crucial for the recurrence. This problem is discussed in detail
in Section 3.1. Similarly it is not obvious against which previous Lanczos vec-
tors to orthogonalize when the recurrence signals that orthogonality beyond
the threshold value of V¢ has been lost. Of course PRO forces an orthogonali-
zation against all g, where ]q';ﬂqkl exceeds the threshold. It turns out that
it is most economical to perform orthogonalizations against "batches" of
Lanczos vectors, containing the offending ones and a certain number of

neighboring vectors. The details will be given in section 3.3.

The Lanczos algorithm with PRO at an abstract level therefore can be

written as follows:
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1) Perform a regular Lanczos step:
B'sa1's+1 = Agy — ayq; — Byq;-1 = [';. (2.5.7a)

2) Update the estimates Wj+ra for q';“q,,, for k =1,:--,j using the

recurrence (2.3.1).

3) Based on the information from the @j+1 2 determine a set of indices

LG)=1tk | 1<k <j ] and compute

Bi+195+1 = B'5419 541 = . %:(') (Bsn'snge) g = f5 (2.5.7b)
eL(y

Clearly with £ = £';.19'/s19x PRO is a semiorthogonalization strategy.
Theorem 2.5 can be applied and guarantees the computation of a T; accurate

up to the roundoff level.

2.5.2. Selective Orthogonalization.

The previous section was a natural application of Theorem 2.5. In order
to check whether selective orthogonalization (S0O) is also a semiorthogonali-
zation strategy for the Lanczos algorithm, let us first recall the result of

Paige's theorem (Theorem 2.2), which forms the basis for SO.

Paige's theorem describes how the new vector g'j+1 behaves, when
orthogonality is lost: it is tilted towards the vectors Y;, which are approxi-
mate eigenvectors for the matrix A. The quantity 74/ B'j+10j5 is a measure
for the loss of orthogonality in direction of a certain vector Y;. Our general
assumptions on the Lanczos algorithm imply that Y4 is of the order of the
roundofl unit. Let us therefore assume that |y;| < ¢||4|. The only way that
y{q'j,,l can become large is by Bji = £'j+105 becoming small. SO therefore

computes and monitors some of the Bs- If one B; becomes smaller than a
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certain threshold value «;, then g';,; is orthogonalized against the
corresponding y;. The j-th step of the Lanczos algorithm with SO can there-

fore be written as follows:

1) Perform aregular Lanczos step:
B'nQ'y41 = Ady — 59 — B35 — ' (2.5.82)
2) Determine the set
LG =] 1si<j, By <K} (2.5.8b)
3) Compute y; = @u; for icL(j). Then the next Lanczos vector is given by

Bi+195+1 = B'5419 541 — . ;,( )(ﬁ'jn‘ffﬂ%)yi -J; (2.5.8¢)
eL(y

The set L(j) may be empty, then nothing will be done in step 3. This is a
simplified version of an actual implementation of SO, for example the y; are
not recomputed. However (2.5.8) catches the main features of SO, and it is

sufficient to consider here as a model of the actual computation.

It is not obvious at all that SO as defined in (2.5.8) is a semiorthogonali-
zation strategy. We want to show first that SO formally follows the pattern in
(2.5.2).

BitiG5+1 = B'5a1Q'541— 2, (B340 f+1%:) @550 — f5
ieL(j)

=Bjnd541 — i: Y (B9 n¥)oma: = F5 . (2.5.9)
E=11i€L(j)

Recall that the eigen decomposition of T; is given by

TyS; = 5;8; ,s{ = (04, ' " ' .05). Also note that for the j-th term
_ : | 7 | _ , ,
lé51 = X Bimg—0o5 = |LG)| |yal =jel Al
LeL(f) B'j+103
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The effects of SO regarding the j-th Lanczos vector are hence of the same
order as the roundoff unit and we can subsume them in the f;-term. Hence

S0 is formally a semiorthogonalization strategy with

b = 2 (6Ij+1q'j‘+ly1’.)obi kE=1---,5-1.
ieL(§)

The method of SO is due to Parlett and Scott [32]. They suggest the use
of the threshold k; = V& | T; || in order to maintain semiorthogonality among
the Lanczos vectors. The following Theorem shows; from a different perspec-

tive, why this is the right choice.

Theorem 2.8. If the first j Lanczos vectors are semiorthogonal, if
|71 < el All, and if k; is chosen such that k; = j || 4 || Ve, then one step of SO

according to (2.5.8) produces a vector g;+1 such that

8
| @g51l < VE+ 0GZ]Ale) (2.5.10)

Proof. Let w, =@fq, for k=1, ,j+1 and ;s = @+ Then
Wi = (wy, '+ ). Let Sy = (sl., ++ +,8;) be defined as before.

Multiplying (2.5.9) by @; and using this notation, one obtains:
Bij+1Wis1 = By W'iey — ﬁ’j+1t Y (@ ) omw, — @5F;
k=11ieL(j)
=By Wi =By 3 (Wihs) é oW — @f; (2.5.11)
ieL(4) k=1
Because of the symmetry of #; it follows that

Bi+1Wj+1 = ﬂ'jﬂ(‘wjﬂ - ;( )(w';“s,;)szi) - Qj.f,- . (2.5.12)
i€eL(y

Since w';4; is a j—vector it can be expanded in terms of the orthonormal

vectors s;,
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Wiy = f)ms( with @ = w'fy;s;

i=1
Then (2.5.12) becomes:
Bia1Wis1 = B'paa é eiSt = Y e Wis) - @f;
i=1 teL(5)
= B4l pisy + ei(l; = Wy)sy) — @5, .
41 14;(5) iS¢ ¢s‘1‘.\—“u) iy = Wy)s if (2.5.13)
Therefore

Bsrillwy |l = BynllG=12)) max lecl + LG 11— max|el] + e 4l

<8 ] +il;=W +
B'541l max FAREAPES A max lecl3 +elAll  (2.5.14)
We can estimate the terms in (2.5.14) further. Consider the definition of L(5)

in (2.5.8b). It follows that i¢L(j) iff B'j+105 = ;. Using Paige's Theorem we

have g8';,,04 = %‘—, hence for i¢L(j) we can estimate:
L]

{74 | < ellA] - \/E
B'5+105 Kj J

les| = , (2.5.15)

with the choice of x; = j | 4[| VE. A
On the other hand if i€L(j), we simply estimate |¢;| < |[w'j4, [, and || Wil
can be estimated by using (2.3.7) and the semiorthogonality of the first j

Lanczos vectors. One obtains
Birleil € Bsallwiinl <2]4lV7e + 0(e]All) . (2.5.18)

Finally using a result analog to Lemma 1 and again the semiorthogonality, it

follows that
W; = w;ll = G-1)ve . (2.5.17)

Assume now that [L(j)| = k, where k is a small integer, then substituting

(2.5.15)-(2.5.17) into (2.5.14) it follows that
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Biuilwyasll < Byer jij?-+ k(G -1)VERIA|VTE + 0] 4])) + Ol All)

s
< f';aVe + 0% lAlle) . (2.5.18)
Now it can be shown that g;,, = (1 + 0(8))ﬁ',~+1 and (2.5.10) follows -

In order to appreciate Theorem 2.6 several more remarks are neces-
sary. The proof of Theorem 2.6 seems to indicate that from an SO point of
view it would be more natural to define the level of orthogonality by using
| @g;+1 ]l instead of using || @g;4, /- as we did. Assuming that || @ ge+,ll < Ve,
it would be possible to prove (2.5.10) with an O(j&| A||) term. With this more
realistic interpretation Theorem 2.8 indeed shows that SO maintains
semiorthogonality among the Lanczos vectors in the sense that

| @qrs1ll = Vefork =1, 5.

Formula (2.5.13) makes clear how SO goes about maintaining semiortho-
gonality. The loss of orthogonality vector w';4, is decomposed into its eigen-
components. The components which have grown too large (i€L(j)) are
reduced by orthogonalization tb roundoff level, the other components
(i¢L(j) ) remain unchanged. The key to the understanding why SO main-
tains semiorthogonality hence lies in (2.5.13). The remaining part of the
proof of Theorem 2.8 only translates the informal argument above into exact

estimates.

Formula (2.5.13) also illustrates why SO had some problems in gaining
wide acceptance as a means of maintaining semiorthogonality. The proper
way to study SO is in terms of the y; or as in (2.5.13) in terms of the s;. This
is conceptually more difficult than the apparent and "natural” way to study
S0 in terms of the Lanczos vectors. This different point of view only involves

a change of basis in span(Qj), however the failure to recognize this prompted
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wrong judgements about SO, e.g. [9,p.124].

Finally by making the requirements on k; more stringent, it is possible
to show that SO will also be able to maintain a level of orthogonality of wy. To
be precise, we have the following

Corollary. If the level of orthogonality among the Lanczos vectors is wg, if

3. e
74 < £||A|, and if k; is chosen such that ;=32 (A \/;—. then one step of

selective orthogonalization produces a gs+1 such that

: < oo + 04
max 195419 | < wo + O(jel All) .
The proof is analog to Theorem 2.8. With the help of this corollary we can
apply Theorem 2.5, and it follows that also SO produces a matrix 7y, which is

accurate up to roundofl.
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2.6. Applications.

So far we have discussed the Lanczos algorithm in finite precision only
as a way of tridiagonalizing the given matrix 4. The main application we had
in mind, however, was solving linear systems of equations. Recall from sec-
tion 1.1, that in order to compute an approximate solution vector z; to
Ar = b, we solved Tyhj = Bye,, and then computed Z; = @ih;. Suppose that
we have employed some semiorthogonalization strategy, computed 7; and

@;, and determine now

zy = Q] Tj_lﬁlel . (2.6.1)

In this case it is easier to compare z; to Z;, rather than to estimate » — Az;.
Here Z; is the best approximation from sprm(Q,-), i.e. using orthogonal pro-

jections,

z; = NJ'(NJ"ANJ')_IN;b . (2.8.2)

»

Recall that N;N; is the orthogonal projector onto span (@;), where N; = Q; Lj
is defined as in section 2.4. Since g, = n,, we have Z; = N;(NjAN;) 'Be,.

According to Theorem 2.5 we have that T; + V;

s = NjAN;, where the elements

of V; are of O(e|Al]). Therefore it does not make any difference if we
replace‘ N,-'AN, by 7}, since the error introduced this way in the computation
of z; is of the same order as the error which we have to take into account
anyway when solving linear systems. It depends only on IC(Tj), the condition

number of Tj.

The only way that the finite precision Lanczos algorithm affects the com-
putation of z; versus Z;, is through the formation of z; as a linear combina-
tion of the g,,which are not orthogonal. This effect can be estimated by com-

paring @; with N;:
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1@ = Nyl < | N;L=Ny [l = || L) - Iy | < VEFE (2.6.3)

where we have used that the level of orthogonality among the Lanczos vec-
tors is wy. Hence if the Lanczos algorithm is used for solving linear systems of
equations, and the required accuracy is not less than V& ,» the solution z;
computed from (2.8.1) is as good as the "ideal” solution obtainable from

span(Qj). Only when a higher accuracy is required additional steps have to

be taken (c.f. Parlett[30]).

If the algorithm is used for computing eigenvalues the situation is even
better. Theorem 2.5 assures us that the eigenvalues of T; are up to roundoff
the Rayleigh-Ritz approximations from span(Qj). This is best we could hope

for.
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3. PARTIAL REORTHOGONALIZATION.

3.1. Computing the Loss of Orthogonality.

The method of partial reorthogonalization (PRO) was introduced in
(2.5.7), but many detailed questions were left unanswered in Chapter 2. One

of these questions concerns the evaluation of the recurrence

W = 1 for k=13
Wek-1=& for k=29 (3.1.1)
Bi+1@541k = Bes1®y ka1 + (0 —05)op + Brws ey — Bywij_1x + 9,71 - 9/
for1<k <j,and wjzs) = Wp414. Herewpo=0and g, = Qe Tk -1

An accurate evaluation of (3.1.1) would be advantageous in two respects:
the loss of orthogonality given by W = qj'q,, could be monitored directly and
these inner products would be immediately available in the event of an
reorthogonalization. However (3.1.1) involves the local error vectors I
which are unknown unless one wants to compute them in double precision.
But even this may be impossible if the matrix vector product is unaccessible
and truly in black box form. The unavailability of f; appears to make (3.1.1)

useless, but there is a way to utilize (3.1.1) without computing Jj-

Once the w; ‘s have risen to a level close to V£ the q,-'f,, - q,:f,--terms,
which are at roundoff level, do not contribute significantly to the computa-
tion of wj4+yx. These terms are only important as long as the wj are small
like £[|A|l. We propose that the computation of the inner products gi+19 can
be simulated by replacing the unknown quantities by random values from

appropriate ranges as follows:
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e =1 for k=1, -7

Wi p-1 = 'wk for k=2, - J (3.1.2)
1

Wistk = = [Be+1w5 k41 + (Q—ag)wj + Bt -1 — Biwy-16] + Bz

for 1<k <j,and &jir+) = Wk+15. Here wyo = 0, and ¥; and 9, are certain
random numbers, which have to be chosen appropriately. From now on we
will refer to the wy's computed with (3.1.2) as the computed or estimated
orthogonality components, in contrast to the true components which are

given by the inner products g,g;.

Formula (3.1.2) can be regarded as a simulation of how the loss of ortho-
gonality would occur on a different machine which generated numbers ¥
and ¥, as actual roundoff errors. From our interpretation of Theorem 2.1 we
concluded that the loss of orthogonality mainly depends on the a; and B,
and from Theorem 2.3 and 2.4 we know that the computed a; and g; are
exact up to roundofl. Therefore the computed loss of orthogonality from for-
mula (3.1.2) will behave like the true loss of orthogonality as soon as the wg's

reach the critical region of about Vz.

This is illustrated by the following examples, where we examined the
dependence of formula (3.1.2) on the choice of ¥; and ¢;. For a matrix of
order n=128, which is part of the matrix in Example 1,Chapter 4, and with
starting vector g; = (1,...1)/ V128, we determined first the true loss of ortho-
gonality. It turns out that for this matrix the Lanczos vectors remain
semiorthogonal for 71 steps. Then we computed in two series of experiments
the values for wg with (3.1.2). First we chose ¥, eN(0,g), (i.e., we chose for
the ¥;'s a sequence of normally distributed random numbers with mean 0
and standard deviation &), and 9, €N(0,c¢), with ¢ = 1.0, 10.0, 100.0, 1000.0 .

Then we kept ¥, fixed and varied ¥;. The true and the estimated loss of
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orthogonality are plotted in Figure 3.1.
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Figure 3.1. True and estimated level of orthogonality for various choices of ¥
0 - True level of orthogonality
- Estimated level of orthogonality, ¢« = 1.0
2 - Estimated level of orthogonality, £ = 10.0
3 - Estimated level of orthogonality, £ = 100.0

4 - Estimated level of orthogonality, « = 1000.0
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Figure 3.2. True and estimated level of orthogonality for various choices of ¥;.

(Graphs labeled as in Figure 3.1.)

Figures 3.1 and 3.2 show that the estimated level of orthogonality with
formula (3.1.2) reflects quite well the qualitative behavior of the true level of
orthogonality. It is important to see that although, due to an overestimate of
the error terms the computed level of orthogonality lies initially above the

true level of orthogonality, the curves move very close together when they
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reach the critical V& region. Even the curve with the largest overestimate
reaches the V¢ threshold only three steps to early at step 688. In spite of the
dependence on the random terms, (3.1.2) therefore appears to produce a

quite accurate estimate for the level of orthogonality.

We repeated these tests with the example from Figure 2.1. In this exam-

ple the level of orthogonality reaches the threshold of V& after 11 steps. The

behavior is shown in Figures 3.3 and 3.4.
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Figure 3.4. True and estimated level of orthogonality for various choices of ;.

(Graphs labeled as in Figure 3.1.)

The conclusions we can draw from Figures 3.3 and 3.4 are the same as
from Figures 3.1 and 3.2. No matter whether the level of orthogonality
begins to increase early or late, the recurrence (3.1.2) yields a qualitatively
quite accurate estimate of the true level of orthogonality in the sense that

(3.1.2) signals at about the right Lanczos step that the Ve-level has been
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reached. These test also show that the recurrence is relatively insensitive to
moderate overestimates in the error terms for example, as Figure 3.1
shows, an increase in the estimate for the g;f, - g, f;-term by a factor 1000,
resulted in wj’s which reached the threshold only 3 steps too early. For a
practical computation of the loss of orthogonality with (3.1.2) in connection

with PRO it is therefore advisable to overestimate these terms somewhat.

At this point we could content ourselves with the analysis of these error
terms, since their direct influence on the loss of orthogonality is not too
strong. However, there is one incentive, which may make a further study of
these terms rewarding. It may be possible to compute (3.1.2) so accurately
that the direct computation of qj’ﬂqk can be saved and the values w;,; can

be used instead in the reorthogonalization process.

In order to obtain more information about the behavior of the
g; e — qefj-terms and g,’;,g; it is quite useful to study first || f;||. For that
purpose we computed || f;1|/(8;.,£) in double precision! for test runs of the
single precision Lanczos algorithm with a set of twelve test matrices. At each
step the loss of orthogonality was computed directly and a full reorthogonali-
zation was performed, when V& was exceeded. The algorithm terminated
either after 50 steps or when the residual norm was reduced by a factor of

1073, The tests were repeated for matrices of order n = 40, 160, 640, 960.

The following results were obtained:

1A1] computations were carried out on the VAX 11/780 of the EECS Department Computer
Science Division at ﬂ%e University of California, Berkeley For single precision computations the
roundoff unit £ = 2<%, for double precision £ = 27°
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n mean | stand.dev. | no. of items
40 | 1.2531 0.5375 192

160 | 1.1863 0.3786 302

640 | 1.2304 0.6449 315

960 | 1.3279 0.8887 324

Table 8.1. [1£,11/ (8;:¢)

The following figure gives some more information about the distribution

of [ £511/ (Bss1e):
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Figure 3.5. Distribution of || f; 1|/ (8;+,2) for n=960.

Table 3.1 and Figure 3.5 show that in all our examples | f; | ~B;+18. In no
case | f;|| was larger than 6f;.,z. This means that in the examples con-
sidered here in most of the cases the evaluation of Ag; — a;9; — £;9;-1 Was

exact up to one unit in the last place.
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This information about || £ is very helpful for the study of 95 e — qef ;-
Since g; and g, are unit vectors, || f; [®Bs+18, and || fi | RBr+18, We expect
that (g;7x — qrf;)/ (Bj+1+Be+1)™e. This expectation proved to be correct.
The results of the test runs with the same test matrices as before are sum-

marized in the following table:

n mean stand.dev. | no. of items

40 | -.003858 0.1423 2898
160 | -.004655 0.09503 5100
840 | -.007217 0.08282 4562
960 | -.001733 0.08560 5168

9, — Wt
Table 3.2, —L—=__2%-J
E(Bj+1+Br+1)

Based on the results in Table 3.2 we decided to set

Vs = e(Bes1+Fj+1)0 (3.1.3)

where ®eN(0,0.3). ® is more than twice the largest standard deviation
observed in Table 3.2 and will therefore yield an estimate for qj’fk - qif;
which will be too large in most of the cases. This is desirable for PRO accord-

ing to the discussion above

In order to determine some estimates for q,-'ﬂqk we used the following

relation
Bs 1959541 = 95AQ5 — 039595 — B59595-1 — 9575 (3.1.4)
Therefore
Giay = —D—g? 6 (3.1.5)
9i95+1 = -F—_quj—l + 0j 1.
j+1

where 6; = (g,A9;—04959;—q;f 1)/ Bj+1, and &; is at roundoff level. If in (3.1.5)

the corresponding equations for j, j-1, ... are substituted, one obtains
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o

® » -
Qi = —  —— 1+ 6 .

;9541 Bin 92951 i (3.1.6)
where §; is the sum of all remaining terms. We therefore computed the term
Bs+195q5+1 .

%—. The extra n was introduced, since we are trying to estimate the

error of an inner product. The following results were obtained as before:

n mean stand.dev. | no. of items
40 | -.001594 0.2893 180
160 .004411 0.3187 290
640 .004258 0.3066 303
960 .006926 0.09762 312

Table 3.3 MZOELI
.3. —

According to these results we choose

”_

Ve = EN ﬁj;l ¥ (3.1.7)

where ¥eN(0,0.6).

There is one more error term to be considered. After a reorthogonaliza-
tion has been performed, the terms q,-'ﬂqk have to be reset. Ideally, of
course, these inner products should be zero, but here we expect them to be
at roundoff level. Again we performed a statistical study and computed
q,'ﬂqk/e for our set of test problems, whenever a reorthogonalization

occurred.

n mean stand.dev. | no. of items

40 .01389 0.2412 692
160 | -.01859 0.3451 358
640 02272 0.3743 578
960 | -.01703 0.6925 838

Table 3.4. g;,,9;/ ¢ after reorthogonalization.
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Since the two vectors were already semiorthogonal before the reorthogonali-
zation, the values in Table 3.4 are quite small, and there is no strong depen-
dence on n. Based on this result we are choosing :.)j+,,,€N(0.1.5)s after a

reorthogonalization has been performed.
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3.2. The Behavior of the Computed Level of Orthogonality.

In section 3.1 we discussed how an estimate for the level of orthogonality
can be computed with formula (3.1.2) and appropriately chosen random
numbers for ¥; (3.1.3), ¥ (3.1.7), and wy after reorthogonalization (3.1.8).
In this section we will examine how well the thus computed wy reflects the

behavior of the true level of orthogonality.

We tested (3.1.2) with several examples where a full reorthogonalization
was performed whenever one w;; became larger than the threshold of V&. In
Figures 3.6 and 3.7 the true level of orthogonality and the computed

estimated are plotted for two of the sample runs.
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Figure 3.8.a. True and computed level of orthogonality for A = diag (1%,2%, - - - ,10002)

andq; = (1,1, - - ,1)/ VI0O0O.
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Figure 3.7. True and com puted level of orthogonality for the matrix
used in Figures 3.1 and 3.2.

These figures show that the computed level of orthogonality behaves as

expected. The overestimates for the error terms cause an overestimate for

s
the computed level of orthogonality as long as it is about £4. If the level of

orthogonality increases further the error terms are relatively unimportant
and the computed level of orthogonality approximates the true level of

orthogonality quite closely.

In Figure 3.6 we used a diagonal matrix for test purposes. This seems to
be artificial and a trivial example. The Lanczos algorithm is however invariant
(in exact arithmetic) under similarity transformations and a diagonal matrix

as good as any other for a theoretical study of the Lanczos algorithm. Since

it is not obvious that this is also true in a finite precision environment we

N

finqouoboyyup fo 18ne7
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repeated the sample run from Figure 3.8.a with a similarity transformation

of the diagonal matrix A. The starting vector was changed accordingly. We

obtained:
1078
! T
102
estimated ™
true
1018
| |
50 100 150

Lanczos Steps

Figure 3.6.b. True and computed level of orthogonality for a matrix

similar to A from Figure 3.6.a.

The level of orthogonality is different from Figure 3.6.a. Here the threshold is
reached about 10 steps earlier. This different behavior is due to the fact that
the tridiagonal matrix is changed slightly, and the change in oy and §; in
turn produces different orthogonality components. This is not surprising,
and consistent with the results from section 3.2. However what is more
important for our analysis here is the fact that in both cases computed and
true level of orthogonality agree well with each other. Their mutual relation
is not affected whether a diagonal matrix is used or not. So although diagonal

matrices are of course trivial examples for solving linear systems, it is quite

Level of Orthogonality
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legitimate (and easier) to use them for the purpose of studying the loss of
orthogonality and related questions. In the following sections we will there-

fore repeatedly use diagonal matrices as test examples.

The properties of (3.1.2) discussed above turn the formula into a useful
tool for predicting the level of orthogonality. It would be even more con-
venient if the wy; would be so accurate that the inner products qj'q,, would
not have to be recomputed. Let us recall that by Paige's Theorem (Theorem

the vector u; = @/g;,, = (919541.9295+1, *497954+1)° tilts towards an
eigenvector of T;, when the corresponding Ritz value is about to converge
against an eigenvalue of A4 Let us consider now the vector
wj = (W41 pWyar - .@j+15)" computed by (3.1.2). Earlier we expressed
the view that the computation of (3.1.2) can be considered as a simulation of
the level of orthogonality as it would happen on a different machine, where
the random numbers chosen for Y5 and 9, would be equal to the
corresponding actual roundoff error terms. Therefore Paige's Theorem will
also hold for w;, Le., w; will have large components in direction of those
eigenvectors of T; for which the corresponding Ritz values are about to con-

verge.
How u; = Q/q;,, and w; = (w4, 1p@j+12 © Wy415)° behave in practice

be seen from the figures in Table 3.5. For the matrix

A = 10%diag(1,1/2,1/ 3, 1/ 60) and the starting vector
g: = (1,1,...1)/ VB0 we computed for the first 10 Lanczos steps the following

quantities:
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Step | cos ¥(wj.s{)) | cos ¥(u;,5{) | cos ¥uyws) | luyla
2 0.9899 0.8032 0.7105 0.53e-18
3 0.0946 0.9603 0.2082 0.23e-15
4 0.2475 0.9903 0.1808 0.96e-15
5 0.4609 0.9994 0.4399 0.66e-14
6 0.9188 0.9999 0.9159 0.63e-13
7 0.9886 1.0000 0.9880 0.75e-12
8 0.9982 1.0000 0.9881 0.11e-10
9 0.9997 1.0000 0.9967 0.18e-09
10 0.9999 1.0000 0.9999 0.35e-08

Table 3.5. Eigenexpansion of the Orthogonality Components.
Here s,ﬁ) denotes the eigenvector corresponding to the largest Ritz value of
T;. This example was chosen since after 10 steps the largest Ritz value of T}
has already converged to an eigenvalue of A. The first three columns of
Table 3.5 show the angles of u; and w; with s,m. The figures show that with
increasing level of orthogonality both u; and w; are tilted increasingly
towards sj(’) and that upon convergence of the associated Ritz value all three

vectors practically point into the same direction.

These observation are not surprising, since they are just a consequence
of Paige's Theorem. Unfortunately the situation is not always as simple as in
Table 3.5. As a second example we consider the matrix
A = 1000*diag(-1,-1/2, .,-1/30,+1/30,...,+1/2,1) with a random starting
vector. Because of the symmetry in the spectrum the Ritz values converge in
this example in pairs. The first pair { -1 and +1) converges after 15 steps. In
Table 3.8 below we summarize the corresponding angles. Here we denote by
Si the plane spanned by the two eigenvectors of T; corresponding to the

largest and the smallest Ritz value.
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Step | cos {w;,S7) | cos ¥(u;,57) | cos Hu;.w;) e llw
2 1.0000 1.0000 -0.1342 0.43e-17
3 0.9997 0.9765 0.2279 0.29e-18
4 0.3765 0.7777 0.8461 0.34e-18
5 0.6713 0.8826 0.2408 0.18e-16
6 0.3471 0.3039 0.6262 0.88e-16
7 0.7718 0.6047 0.0910 0.30e-15
8 0.9132 0.8948 -0.5388 0.15e-14
9 0.9931 0.9820 -0.6622 0.62e-14

10 0.9988 0.9965 -0.7200 0.69e-13
11 0.9997 0.9989 -0.7968 0.51e-12
12 0.9999 0.9998 -0.7488 0.46e-11
13 0.9999 0.9999 -0.6982 0.29e-10
14 1.0000 1.0000 -0.6927 0.37e-09
15 1.0000 1.0000 -0.7352 0.26e-08

Table 3.6. Projection of the Orthogonality Components.
The results of Table 3.6 can be interpreted as follows: as both extreme Ritz
values converge, both u; and wj tilt increasingly towards the plane S7. How-
ever the angle between them does not tend to zero as before, but they make
a nearly fixed angle as they converge. The cos ¥(u;,w;) seems to settle at
about -0.7 in this example. Some more runs with the same matrix and
different starting vectors showed the same behavior, only the angle between

Uj and wj settled down at a different value for each run.

This behavior of u; and w; is consistent with Paige’s Theorem. We only

know that u; and w; will form a small angle with the subspace spanned by

the eigenvectors corresponding to converging Ritz values, but we do not
know how u; and wj will behave in relation to the individual eigenvectors of
T; Since in general at a given Lanczos step we do not even know how many
Ritz values are about to converge (unless we want to do a spectral analysis of
T; comparable to selective orthogonalization), there seems to be no easy way

to relate u; and wj; either in terms of eigenvectors of Ty or directly.
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Therefore the & are here only used for estimating the level of orthogonal-

ity, but not for the computation of the g/},q;

It turns out that if the computed orthogonality components are used for
the reorthogonalization in a situation as in Table 3.5, the level of orthogonal-
ity is indeed reduced to a value below the threshold level, however not to
roundoff level. This raises the additional problem of how the recurrence
(3.1.2) has to be restarted after a reorthogonalization has been performed.
If it turns out that the new level of orthogonality has to be recomputed then
nothing has been gained by using the orthogonality components directly. It
might be possible to proceed analog to section 3.1 and derive some statisti-
cal estimate for the new level orthogonality, but this question was not pur-

sued further. The topic warrants further investigation.
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3.3. Chosing Reorthogonalizations.

In section 3.1 and 3.2 we saw how to compute the level of orthogonality
with (3.1.2), and what information from the computed level of orthogonality
can be inferred. In this section we will discuss how this information is used in

order to decide when and against which past Lanczos vectors the current

Lanczos vector has to be orthogonalized.

From the analysis in Chapter 2 it follows that it is always necessary to
orthogonalize g;,, against some previous Lanczos vectors, if [g;y,qx| > vz
for some k. V is the optimal threshold here, since it is the largest level of
orthogonality among the Lanczos vectors which we can tolerate and still
obtain accurate o;'s and §;'s. A smaller threshold would result only in more
orthogonalizations without any gain in accuracy. This is confirmed by numer-
ical tests (Scott [37,p.82]) in relation with the analysis of selective orthogo-

nalization.

There is another important idea concerning reorthogonalization, which
we can borrow from the method of selective orthogonalization [32]. Suppose
at step we decided to reorthogonalize g;,; against all previous g, then we
will also reorthogonalize at step j+1 the new Lanczos vector g;+2 against all
previous g,, no matter what the q,’ﬂqk are. There is a direct justification of
this additional reorthogonalization through formula (3.1.1). By reorthogonal-

izing at step j we make g;,,q, = O(¢) for all k < j. Then

Bi+2Qi+2qe = —Bjn195 9k + O(&) (3.3.1)

But if for some k,lqj'ﬂqk = Ve before the reorthogonalization, then also
959, must have been comparatively large, i.e. almost as big as V&, since by
(2.3.7) there is a bound on the growth of the level of orthogonality. One

reorthogonalization by itself therefore does not help very much to reduce
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the size of q,‘,,gq,,. If however two reorthogonalizations are performed in a

row, then formula (3.1.1) yields

By+2 9y+2q = O(e) (3.3.2)

and we can be sure that at least for the next couple of steps the level of

orthogonality will remain small.

So far we always assumed that during one reorthogonalization the
current Lanczos vector was orthogonalized against all previous Lanczos vec-
tors. But this is not necessary if our aim is to maintain only semiorthogonal-
ity. An important observation concerning the loss of orthogonality can be
drawn from Figure 3.8. Here we plotted on a logarithmic
Jusdk, Kk =1,+ 42 for a run of the Lanczos algorithm
A = diag(1,4,9, - 100%) and g} = (1,1, - - 1)/ 10.

10-8

10-12 — lassgl

10—10

0 20 40
k

Figure 3.8. |g,’,19; for fixed j and k<j.

Figure 3.8 shows the typical pattern in the loss of orthogonality. Usually only



80

some neighboring qj'ﬂqk have grown to about the Vv level, whereas most
other inner products remain quite small. In order to maintain semiortho-
gonality it is therefore only necessary to orthogonalize against selected
Lanczos vectors in the example given in the table it could be the first ten.
Since (3.1.2) gives a reliable prediction of the level of orthogonality the old
Lanczos vectors against which g;,, has to be orthogonalized, can be picked
with the help of (3.1.2). It is clear that an orthogonalization only against
those g, with Iq,-'“qk > Ve is not successful. The same argument which was
used to introduce two successive orthogonalizations at consecutive Lanczos
steps can be applied again. Formula (3.3.1) says that qJ-‘qu depends on
{9k +1.9;9%+979k 1. and g;,g, Therefore it does not help to make only g;g
and g;’y,g, small, also the neighboring g g+, and g;g,-, have to be reduced
in order to make the orthogonalization useful, i.e., not to allow q,-'“q,, to
become large again. However, in order to keep these small for some more

Lanczos steps their neighbors in turn have to be small.

This situation can be expressed best in the following figure (similar to

the domain of dependence /domain of influence argument in numerical PDE):

k-3 ¢ °

k=2 o °

k—1 e °

k o o --sm.a.llc.)kj
k+1 o o "—la.rgew,,j
k+2

k+3 °

jj+1 j+2 j+3 j+4
Figure 3.9. Propagation of the Loss of Orthogonality.
Figure 3.9 shows that reorthogonalizations against single Lanczos vectors are

useless, since their effect is immediately wiped out by the neighboring large

terms. The best strategy “for chosing Lanczos vectors to reorthogonalize
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way due to the influence of unorthogonalized neighbors (cf. Figure 3.9). These
runs were repeated for different values of . Table 3.7 summarizes the
results for two examples. For each example we list in the first column the
number of orthogonalizations and in the second column the number of

recalls, i.e., the number of steps at which reorthogonalizations occurred.

Example I Example Il
mn Orthogonalizations | Recalls || Orthogonalizations | Recalls
Ve 824 26 1518 40
10~V 520 21 1178 29
1073ve 528 17 781 22
10~V 507 15 875 15
10~V 478 12 817 11
10-5v¢ 504 10 872 9
10-8ve 576 10 705 8
107"V 820 10 843 )
10-8ve 756 10 925 8

Table 3.7. Influence of the Lower Bound 7 on the Reorthogonalizations.

Here Example is the matrix 4 = 10**diag(1,1/2,1/3,...,1/ 1000) and Exam-
ple II is the matrix A = diag(100,49.548.5,. ,,—49.5) both with
g; = (1,1, 1)/10 as starting vector. Although the figures in the Table look
rather similar, the two examples are quite different. Example 1I has a uni-
form and equally spaced eigenvalue distribution, whereas the eigenvalues in
Example I have a large relative separation at one end of the spectrum and

are clustered at the other,

The minimum number of orthogonalizations occurs in both cases for
n = 1074 This can be explained as follows: if n is decreased further the
batches of Lanczos vectors become larger and more orthogonalizations are

made against vectors where the inner product 5+1G, is still quite small. If 7
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is increased then the batches become smaller, the effects of the reorthogo-
nalization are wiped out already after a few steps (c.f. Figure 3.9), and a new

reorthogonalization is necessary.

There is however a second cost factor which we have ignored so far. For
large examples it will be not possible any more to keep the Lanczos vectors
in fast storage. They have to be written into secondary storage, and every
time some of them are needed one has to scan through all the Lanczos vec-

The cost of the recall operation will depend on the system which is
used and it is therefore difficult to compare it to savings in the orthogonali-
zations. The numbers in Table 3.7 suggest that the number of recall opera-
tions or rewinds of the tape with the Lanczos vectors is constant as long as
7 < 1075V and then increases only slowly. Therefore the optimal choice for
n regarding both cost factors lies somewhere between 1075V and 1074V,

regardless of the precise relation between both cost factors. In order to

ER
determine an 7 independent from the machine used, we suggest n = ¢*. On

the VAX 11/780 this choice yields n & 0.2274* 107!%, which is slightly smaller

than 107*Ve n 0.3725*107!%, This also seems to be a satisfactory choice in

#-|m

the sense that n = £¢* is "halfway" between V& (semiorthogonality) and ¢
(orthogonality to working precision) on a logarithmic scale. The examples

Table 3.7 were run again with this 7, and the following results were

obtained.

No. of Orthogonalizations | No. of Recalls

Example I 501 11
Example Il 807 10

3
Table 3.8. Results with np = ¢4,
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3
The figures in Table 3.B indicate that n = ¢&* yields almost the minimum
number of both orthogonalizations and recalls. With this choice of 7) we have
finally determined against which previous Lanczos vectors the current Lanc-

zos vector has to be orthogonalized, and thus completed the definition of

partial reorthogonalization.

A good insight into the mechanism of PRO can be gained from the follow-
ing Figures 3.10 and 3.11. Horizontal bars indicate the "batches" of Lanczos
vectors against which the current Lanczos vector is orthogonalized. The dou-
ble appearance of the bars corresponds to the fact that orthogonalizations

are always carried out for two consecutive steps.
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Figure 3.10. Range of Reorthogonalizations for Example I, n = £%.
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Figure 3.11. Range of Reorthogonalizations for Example I, n = ¢ ‘,

Let us finally summarize the results of the discussion of PRO in the form

of the following algorithm:



Parameters:

7= index, which indicates the first vector in bateh i
§;= index, which indicates the last vector in batch i

nifialize:

second step + false
T+~ 0
s+ 0

Subroutine PRO af the j—th Lanczos step:

1.)fork=1,:+-jdo

update the recurrence for wy,
2.} if (second step) go to 7
3.)fork=1,:++jdo

if (|wysrpl =2VE)goto 5

4.)goto 8
B.)ry +«D;5+0
E} for all k such that |$}J'+1j=i > v do
determine r; and s;, such that |wy.y ;| >,
where l=ry ri+l, « c =1k k+1,++5.-1,5
7.)forl=ryri+l, - 5y =1ls,raretl, - - 5p—1,557g,.... do

orthogonalize 8',19'j+; against g
8.) if (.not. second step } then

second step « true;

Ty ?"{+1:

5'1; L ad Ei—l:
9.) return

Table 3.9. Algorithm for Partial Reorthogonalization.

88
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3.4. Some More Details on PRO.

There are two more topice to be discussed in relation with PRO. One
concerns the question of the effect of PRO on the inner products of gj+1 with
those previous Lanczos vectors against which the current Lanczos vector is
not orthogonalized. Let g'y4; be the current Lanczos vector before reorthog-

onalization and (compare 2.5.7)

351 = @501 -k:éw (9'7419e) T (3.4.1)
Then for q;, I L(5)
@il = ¢'5nd - (9'5119: Xgem)
j+191 ind ke%:m '5+19x ) 9 Qs (3.4.2)

Since semiorthogonality is maintained, we know that |g,g, =< V&, and from

(2.3.7) we know that |g'/,,q, | ® V. Hence
_ qi+19

gin@ = ¢'fam + O L(G) el All) (3.4.3)

and we do not have to worry that the level of orthogonality between the Lanc-
zos vectors unaflected by PRO may deteriorate. A similar argument was used

for SO and the corresponding Ritz vectors (Parlett [29,p.281]).

Finally we want to mention that there is an easy way of avoiding the
second of the two consecutive recalls of the Lanczos vectors by utilizing
(3.3.1 Suppose we orthogonalized at the j-th step gs5+1 against gz. Then at

the (j+1)-st step by (3.3.1)

B'j+2q {+e9k = —B5+19792 + O(elAll) (3.4.4)

Since we orthogonalized in batches, also the inner products qj'qk +1 and q,-'qk_l
are at roundoff level, and we obtain (3.4.4) for all vectors in the interor of the
batches. We do not have to be concerned about the two vectors, which

border the batch, because we do not orthogonalize against them at the
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(j+1)-st step anyway. Therefore it is possible to compute already at the j-th

step the vector
vi = "ﬁjn; (959e )9k (3.4.5)

where we sum over all k€L(j) which are not on the edge of the batch. Then

at the (j+1)-st step the second orthogonalization simply becomes

Bi+2g5+2 = B'y+2q 'g42 — Yy (3.4.8)
Thus at the cost of one extra n-vector the second recall of the Lanczos vec-
tors is saved. There are however no savings in terms of arithmetic opera-
tions. This device is therefore only useful if the recall of the Lanczos vectors

is expensive
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3.5. Comparison with Selective Orthogonalization .

3.5.1. Maintenance of Semiorthogonality.

Selective orthogonalization (SO) was briefly discussed in section 2.5 as
an alternative method for maintaining semiorthogonality. Practical numeri-
cal experience with SO for eigenvalue problems (Nour-Omid,Parlett,and Tay-
lor [23]) and for the solution of linear systems {Nour-Omid [22]) shows that
S0 works very efficiently. Since SO maintains orthogonality with respect to
the Ritz vectors rather than with respect to the Lanczos vectors, it is also of

certain theoretical interest to compare both methods.

As a first example we chose the matrix 4 of order n =981 derived from
an approximation to Poisson’s equation on the unit square with 31x31 grid
points We solved the system Ar = b, where b was chosen such that
z’ = (1,1, 1), both with SO and PRO. The corresponding algorithms were
stopped as soon as an approximate solution was found, which reduced the
residual norm by a factor of 1071%. Some information of the runs with PRO

and SO is given in the following table.

PRO SO

Orthogonalizations g, to ggg at step 40 | y,at step 43
of q'y4, against g, toggp at step 41 | y,,_, at step 46

Yn -2 at step 50
yg at step 50
Y2 at step 46

Yy, at step 43

Table 3.10. Comparison between PRO and SO, Example 1.

This example can be considered as typical for a two dimensional problem.

The amount of orthogonalizations in both cases was small and convergence
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occurred already after 50 steps. Both algorithms produced the same oy's
and g;’s in agreement with Theorem 2.5. However the way in which this was
achieved is quite different as Table 3.10 shows. Both algorithms recognize
about the same time that orthogonality is going to be lost, and decide that
orthogonalizations are necessary. But the only correspondence appears to be
that PRO performs a reorthogonalization at about the same time when SO

performs the orthogonalization against the dominant Ritz vectors.

In order to understand PRO in terms of the Ritz vectors we computed

the vector vespan (Qj) against which g5+) was orthogonalized during PRO,

83
e.g. at step 40 the vector v = )} (9'[19x)g,, normalized it, and then
k=1

expanded it in terms of the Ritz vectors y;. The results for Example 1 are

given in Table 3.11

Step Components of v in direction of

Yn Yn -1 Yn-2 Y3 Ya Y

40 0.88 | 0.27 | -.11e-1 | -.4Be-2 .56e-1 0.38
41 -0.87 | -0.26 | .1le-1 | .4Be-2 | -.58e-1 | -0.40

Table 3.11. Expansion of PRO Vectors in Terms of Ritz Vectors, Example 1.

The results of Table 3.11 are again a verification of Paige's theorem. PRO
almost does the same as SO: a reorthogonalization against the two converg-
ing Ritz vectors. However it also reduces at the same time components in
direction of the other Ritz vectors, where Ritz values converge only a couple

of steps later.

In order to understand the relation between PRO and SO better, we

repeated these numerical experiments with a different matrix. We chose as
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second example the matrix 4 = 100*diag (1,1/2,1/3,1/4, - ,1/ 100) with

g: = (1,1,1, 1)/ 10 as starting vector. The algorithm was stopped, as soon
as an approximate solution to Az = g, was found, which reduced the residual
norm by a factor of 10~8(xv/z). This is a very contrived and artificial example,
which was chosen on purpose, because an interesting pattern of reorthogo-

nalizations occurs already quite early. The results for this example are shown

in Tables 3.12 and 3.13.

PRO SO

Orthogonalizations
of ¢'y,, against

g,to gy at step 11
g, to g,5 at step 18
g, to g, at step 25
g, to g, at step 30

Ynat steps 11,19,26
Yn-; at steps 14,23
Yn-p at steps 16,26
Yn-s at steps 18,30
Yn-4 at step 21
Yn-5 at step 23
Yn-g at step 25
Yn-¢ at step 27
Yn-p at step 29

Table 3.12. Comparison between PRO and SO, Example 2.

Step Components of v in direction of
Yn Yn—1 Yn -2 Yn-3 Yn-a Yn-5 Yn-8
11 -1.00 .14e-3 .28e-5 .26e-B8 .55e-7 | -.18e-6 | -.46e-7
12 1.00 | -.3%e-3 -.12e-4 -.13e-5 .89e-6 .18e-5 .36e-8
18 1.00 .25e-1 | -.B4e-1 -.5l1le-1 .16e-1 .12e-2 .71le-5
|19 -0.94 | -.50e-1 | -.21e+0 | .24e+0 | -.11e+0 | .1le-1 | -.15e-3
| 25 -1.00 .46e-2 | -.13e-2 | -.11e-2 .45e-2 .1le-1 | -.15e-1
26 0.98 | -.95e-2 | -.42e-2 .51le-2 -.27e-1 .B%e-1 | -.15e+0
| 30 [ 0.96 | -.28e+0 | -.13e-1 | .19e-1 | .B0e-2 | .19e-3 | .99e-3

Table 3.13. Expansion of PRO Vectors in Terms of Ritz Vectors, Example 2.
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PRO apparently cannot be easily interpreted in terms of the Ritz vectors.
The figures in Table 3.13 show that the reorthogonalization mainly occurred
in direction of the dominant Ritz vector, but that there was also a not
insignificant component in direction of the other Ritz vectors. PRO reduces
these relatively small components together with the needed orthogonaliza-
tion in direction of the dominant Ritz vector. It therefore prevents the
growth of the level of orthogonality in the direction of those Ritz vectors
already at an early stage, and orthogonalizations against the second or third
Ritz vector (as one would expect in S0) occur only in a hidden way in PRO

(e.g. against y, _, at step 30).

3.5.2. Comparison of Costs.

Let us go back to Tables 3.10 and 3.12 and compare the cost of PRO and
SO. The longer list of orthogonalizations for SO is somewhat misleading,
because orthogonalizations against recurring Ritz vectors are very inexpen-
sive. They involve only two inner products and the recalling of
corresponding Ritz vector from secondary storage. Although SO appears to
be more expensive, because of a larger number of orthogonalizations, it is

actually not, which can be shown by counting the inner products involved.

Again we are faced with the question, how to relate the 1/0 cost to the
cost of the arithmetic operations. But even without giving a precise answer to
this question, we gained from a large number of examples the experience
that the cost of the two algorithms for orthogonalizations is comparable.
examples above favors PRO slightly, but there are also examples, where the

situation is reversed.

Also the overhead costs for SO and PRO are comparable. PRO needs two

extra j-vectors for the updating of the wy,;;, which can be done in 0(j)
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operations. On the other hand SO needs one j-vector for the eigenvector of
¥; and some extra vectors of dimension < j for analyzing Ty. One can deter-
mine the interesting Ritz values and (if necessary) the corresponding eigen-

vectors of Ty in O(j) operations [31].

Hence it appears that neither method has a clear edge over the other
one. The differences between the two methods can be better understood if we
look at examples where either of them performs very poorly. The following

example are again contrived in order to present the extreme possible cases.

Let us first consider 4 = diag (1,2,3,...,999,2000), q; = (1,1,...1)/ V1000,

where for both SO and PRO the algorithm was stopped after 60 steps.

PRO SO

Orthogonalizations | g, to gg at step 15 | vy, at steps 11,27,39,53

of g;,, against g, to gg at step 27
g, to g, at step 39
g, to g,q at step 51

Table 3.14. Comparison between PRO and SO, Example 3.

Again we observe that reorthogonalizations in PRO occur about the same
step, when in SO an orthogonalization against the dominant eigenvector is
performed. Because of the wide separation of the dominant eigenvalue
A, = 2000 from the rest of the spectrum, these reorthogonalizations are,
contrary to example 1, the only ones, which are necessary in SO, and hence
can be performed very cheaply. PRO does not have this information available,
performs the more expensive reorthogonalizations, and needs about four

times as many orthogonalizations in order to achieve the same result.

On the other hand, the following example shows that also the opposite

situation can oCcCcur. Consider the matrix
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A = diag (100,48.5,47.5, —47.5,-48.5,~49.5) and the right hand side
b = (100,48.5,47.5, —47.5,~48.5,-49.5). Solving Az = b we encounter the
special situation that the solution vector has equal components in direction
of all eigenvectors, and that the eigenvalues of 4 are evenly distributed (with
the exception of A,). It is therefore not surprising that the Lanczos algo-
rithm needs n steps, when the stopping requirement is to reduce the residual
norm by V. It is too cumbersome to list all the individual orthogonaliza-
tions in this example. Here SO turns out to be more expensive than PRO in
all respects. Because the algorithm terminates only for j = n, SO computes
a large number of Ritz vectors and performs orthogonalizations against
them. The situation does not improve, if we stop in SO the performance of
new orthogonalizations after a certain fixed number of Ritz values has con-
verged, and continue only orthogonalizations against already computed Ritz
vectors. Because all eigenvectors of 4 contribute equally strongly to the solu-
tion, such a procedure only delays the convergence of some of the Ritz vec-

tors and thus also delays the convergence of the algorithm.

This situation seems to be typical if we want to solve linear systems of
equations, since we have to wait until all eigencomponents of the solution
vector are well represented in span (&;). This can mean that quite a large
number of Ritz vectors is converging without necessarily improving the
approximate solution. In this situation SO is forced to perform many orthogo-
nalizations, and also many recalls of Ritz vectors, whereas PRO can handle
the situation more efficiently. Besides SO is forced to compute Ritz values
and vectors, which are of no direct relevance for the solution of linear sys-

tems.
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If we consider on the other hand eigenvalue computations, then the ori-
ginal problem can be changed by shifting and inverting in such a way that
the Ritz values and vectors which converge first are indeed the desired ones,
In this case (compare example 3) SO fares much better, since the loss of
orthogonality will be exclusively in direction of the few desired and already
computed Ritz vectors. Only cheap repeated orthogonalizations in direction
of these wanted Ritz vectors have to be performed, whereas PRO has to recall
each time the Lanczos vectors and perform a reorthogonalization, which is as
expensive as the first one. In addition to that PRO does not provide a priori
any information on the progress of the convergence of the Ritz values, and
would require the additional cost of computing Ritz values and vectors if

applied to the eigenvalue problem

Hence we can draw the conclusion that PRO appears to be more advan-
tageous for solving linear systems of equations, whereas SO is more appropri-
ate for the eigenvalue problem. This conclusion is preliminary and has to be

fortified by more numerical evidence
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4. NUMERICAL EXAWPLES.

The Lanczos algorithm with partial reorthogonalization (LANPRO) as
described in Chapter 3 was tested on several examples arising from finite
element approximations to problems in structural engineering.
corresponding stiflness matrices were computed using the finite element
approximation program FEAP [42,Chapter 23]. In all reported examples the
algorithms were stopped when the initial residual norm was reduced by a fac-

tor of 1078,

Example 1. Here we consider a beam problem with one end encastre and one
end free. A finite element approximation using B0 elements with 3 degrees of
freedom per node yields the positive definite matrix Hgyg, of order n = 237

with about six nonzero elements per row. We solved the problem
Hpgrz = €35

which corresponds to applying a unit load to about the middle of the beam,
both with LANPRO and with CG. This type of problem is one of the most
difficult to solve with an iterative procedure. A comparison of the residual

norms for both methods is given in Figure 4.1

Figure 4.1 shows the typical behavior of the conjugate gradient algo-
rithm, which needs 888 steps (~3.7n steps ) to achieve the desired reduction
in the residual norm, whereas LANPRO needs only 158 steps. The mainte-
nance of semiorthogonality among the Lanczos vectors yields, as expected, a
large reduction in the number of necessary steps. This reduction is of course
not free - LANPRO needed about 7016 extra inner products for orthogonaliza-

tions in order to achieve this result.
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What is even more important, the maintenance of semiorthogonality
guarantees termination of the Lanczos algorithm after at most n steps. For

CG in finite precision there is no such guarantee and the algorithm may not

terminate at all.

Another advantage of LANPRO is the availability of the Lanczos vectors
for computing an initial approximation to the solution if consecutive right
hand sides have to be processed. We computed an initial guess for a couple of
new right hand sides according to (1.4,9), and then restarted the Lanczos

algorithm. The results are shown in the table below.

Right Hand Side | Number of Steps (LANPRO)

€38 4
€141 4
e135—€gg )
€135—@ 195 4

Table 4.1. Consecutive Right Hand Sides for Example 1.

CG has to start for each new right hand side completely from the begin-
ning and needs a full run (probably another 888 steps) in order to achieve
the required accuracy. This has to be contrasted with the numbers for LAN-
PRO in Table 4.1. The Lanczos algorithm obtains the solution for consecutive

right hand sides almost for free.

Example 2. We consider the same beam problem as before, but use now 240
elements and obtain Hgg,, a positive definite matrix of order n = 857. We
solve the corresponding problem as in Example 1,

Hgsyz = €405 (4.2)
and obtain the following graph for the residual norms.
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Figure 4.2. Residual Norms for Example 2.

The conjugate gradients algorithm here needs 14,1689 steps, an enor-
mous amount as compared to only 638 steps for LANPRO. Since this problem,
except for its size, is the same as Example 1, all the remarks made above
apply here. Also for consecutive right hand sides we obtain comparable

results. The savings in LANPRO are now even more dramatic.
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Right Hand Side | Number of Steps (LANPRO)

414 12
€308 12
€405 €225 12
€ 405—€ 585 12

Table 4.2. Consecutive Right Hand Sides for Example 2.

Example 3. Here we consider
(Hgpg; - 2000)z = (1,1, -,1)° (4.3)

where Hys, is the matrix from example 1. The shift of -2000 makes the prob-
lem indefinite. Because CG in general is not applicable to indefinite problems,
we compared our algorithm here with the algorithm SYMMLQ (c.f. section
1.2). The indefinite problem (4.3) causes no problem for LANPRO, and it com-
pares very favorably in cost with SYMMLQ which is more expensive per step

than conjugate gradients and needs here 2003 steps for convergence.
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Example 4. Here we consider a three dimensional problem arising from the
finite element approximation to the building in Figure 4.4. The resulting sys-
tem of linear equations is of order 468. For this example the residual norms

behave quite differently (right hand side = e,g5) as Figure 4.5 shows.
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LANPRO is here about 50 steps faster than CG, but in turn needs
reorthogonalizations only twice. The steep drop of the residual norm during
the first couple of steps indicates an advantage of the Lanczos algorithm as
compared to direct methods. In many applications the solution vector is only
required to a moderate accuracy. LANPRO may deliver such an approximate
solution very cheaply after only a couple of steps. A direct method however
always computes the solution vector to full accuracy, whether needed or not.
Lanczos will therefore be a very attractive method when only a moderately

accurate solution is required.

The comparison of simple CG with LANPRO might be criticized as unreal-
istic, since in practice CG will be always used in connection with precondi-
tioning. However, as on an abstract level both CG and Lanczos are identical,
both should be affected by preconditioning in the same way. If precondition-
ing improves the performance of CG, then it will improve Lanczos as well, and
a comparison between preconditioned versions of both algorithms will yield
the same qualitative insights, as a comparison between the not precondi-
tioned versions. To illustrate this point, we run Example 4 with a simple diag-
onal preconditioning. CG now terminated after 243 steps. LANPRO took 192
steps, but needed now only one reorthogonalization (at step 102/103). Hence
for both preconditioned algorithms the original cost is considerable reduced,

and preconditioning did not improve one algorithm more than the other.

The nice feature about LANPRO becomes very clear in this example. For
little extra cost we were able to produce a semiorthogonal basis for the
Krylov subspace, which can be exploited for consecutive right hand sides.
The updating and monitoring of the recurrence and the occurrence of one

reorthogonalization are the small price to pay for it and yet, LANPRO still



104

compares favorably with CG in terms of cost.

Admittedly the discussion of the numerical results left out one impor-
tant point: the cost of 1/0 operations, which may be essential if the problem
is very large. There is however nothing conclusive which can be said about
this cost factor at this point, since it is totally dependent on the system. All
numerical tests reported here were carried out on a machine with virtual
memory, and the true 1/0 cost are therefore hidden. If the problem under
consideration is however so large that the matrix cannot be kept in core, and
each matrix-vector multiplication needs additional 1/0 operations, then we
can expect that LANPRO will compare very favorably with CG, as LANPRO
minimizes the number of matrix vector muiltiplications. This advantage may
be set off by additional 1/0 operations for recalling the Lanczos vectors. It
seems however that for problems as considered in Examples 1 or 2, LANPRO

will have a clear advantage since the difference in steps is very large.

Let us leave this speculation behind and draw some conclusions from the
observed behavior of the Lanczos algorithm with partial reorthogonalization.

The above examples show that LANPRO
] finds a solution in = n steps,
is economical for the treatment of several right hand sides,
- can handle definite and indefinite problems equally well,
can take advantage of low accuracy requirements,

- compares favorably with CG when the matrix vector product is expen-

sive.



105

References

[1] B. Atlestam, Tschebyscheff-Polynomials for Sets Consisting of Two Dis-

[2]

[3]

[4]

(5]

(6]

[7]

joint Intervals with Application for Convergence Estimates for the Conju-
gate Gradient Method, Report 77.06R, Dept. of Computer Science, Chal-

mers Univ., Gdteborg, Sweden, 1978.

0. Axelson, Solution of Linear Systems of Equations: Iterative Methods, in
"Sparse Matrix Techniques Copenhagen 1976" ed. V.A. Barker, Lecture

Notes in Mathematics No.572, Springer Verlag, Berlin 1977.

J.R. Bunch and B.N. Parlett, Direct Methods for Solving Symmetric
Indefinite Systems of Linear Equations, SIAM J. Num. Anal., 8, 839-855,
1971.

J. Cullum and R. Willoughby, Lanczos and the Computation in Specified

Intervals of the Spectrum of Large Sparse Real Symmetric Matrices, in

"Sparse Matrix Proceedings" ed. 1. Duff and G.W. Stewart, SIAM, Philadel-
1979,

J. Cullum and R. Willoughby, Computing Eigenvectors and Eigenvalues of
Large Sparse Symmetric Matrices Using Lanczos tridiagonalization, in "
Numerical Analysis Proceedings, Dundee 1979 " ed. G.A. Watson,

Springer Verlag, Berlin, 1980.

R. Fletcher, Conjugate Gradient Methods for Indefinite Systems, in
"Proceedings of the Dundee Conference on Numerical Analysis, 1975",

ed. G.A. Watson, pg. 73-89, Springer Lecture Notes No. 508, Berlin 1978.

V.M. Fridman, The Method of Minimum Iterations with Minimum Errors
for a System of Linear Algebraic Equations with a Symmetrical Matrix,

USSR Comp. Math. and Math. Phys. 3, 362-363, 1963.



108

[8] G. Golub, R. Underwood, and J.H. Wilkinson, The Lanczos Algorithm for
the Symmetrie Az = ABz Problem, Tech. Rep. STAN-CS-72-720, Comp.
Sci. Dep., Stanford University, 1972.

[9] J. Grear, Analyses of the Lanczos Algorithm and of the Approximation
Problem in Richardson's Method, PhD Thesis, University of Illinois at

Urbana-Champaign, 1881

[10] A. Greenbaum, Convergence Properties of the Conjugate Gradient
rithm in Exact and Finite Precision Arithmetic, PhD Thesis, Dept. of

Math., University of California, Berkeley, 1981.

[11] S. Hammerling, A Note on Modification to the Givens Plane Rotation,
Inst. Math. Appl. 13, 215-218, 1574,

[12] M.R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving

Linear Systems, J.Res.Bur. Standards 48, 409-436, 1952.

[13] A. Householder, The Theory of Matrices in Numerical Analysis, Dover

(reedition), 1975.

[14] A. Jennings and G.M. Malik, The Solution of Sparse Linear Equations by

the Conjugate Gradient Method, Int.J. Num. Meth. Eng. 12, 141-158, 1978,

[15] S. Kaniel, Estimates for some Computational Techniques in Linear

bra, Math. Comp. 20, 368-378, 1966.

[16] D.S. Kershaw, The Incopmlete Choleski-conjugate gradient Method for
the Iterative Solution of Systems of Linear Equations, J.Comp. Physics

24, 43-85, 1978.

[17] C. Lanczos, An Iteration Method for the Solution of the Eigenvalue Prob-
lem of Linear Differential and Integral Operators, J. Res. Nat. Bur. Stan-

dards 45, 2565-282, 1850.



107

[18] C. Lanczos, Solution of Systems of Linear Equations by Minimized Itera-

tions, J. Res. Nat. Bur. Standards 49, 33-53, 1952.

[19] D.G. Luenberger, Hyperbolic Pairs in the Method of Conjugate Gradients,
SIAM J. Appl. Math. 17, 1263-1287, 19869,

[20] T.A. Manteuffel, Shifted Incomplete Choleski Factorization, pg.41-81 in

"Sparse Matrix Proceedings" ed. 1. Duff and G.W. Stewart, SIAM, Philadel-
phia, 1979.

[21] J.A. Meijerink and H.A. van der Vorst, An Iterative Solution Method for for
Linear Systems of which the Coeflicient Matrix is a symmetric M-matrix,

Math. Comp. 31, 148-187, 1977.

[22] B. Nour-Omid, A Newton-Lanczos Method for Solution of Nonlinear Finite
Element Equations, Report UCB/SESM-81/04, Dept. of Civil Engineering,

University of California, Berkeley, 1981

[23] B. Nour-Omid, B.N. Parlett, and R. Taylor, Lanczos versus Subspace
Iteration for the Solution of Eigenvalue Problems, Report UCB/SESM-
B0/08, Dept. of Civil Engineering, University of California, Berkeley,
1980.

[24] C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large

Sparse Matrices, Ph.D.-Thesis, Univ. of London, 1971.

[25] C. Paige, Computational Variants of the Lanczos Method for the Eigen-
problem, J. Inst. Math. Appl., 10, 373-381, 1972,

[28] C. Paige, Error Analysis of the Lanczos Algorithm for Tridiagonalizing a
Symmetric Matrix, J. Inst. Math. Appl., 1B, 341-349, 19786.

[27] C. Paige, Accuracy and Effectiveness of the Lanczos Algorithm for the
Symmetric Eigenproblem, Lin. Alg. Appl., 34, 235-258, 1980.



108

[28] C. Paige and M. Saunders, Solution of Sparse Indefinite Systems of

Linear Equations, SIAM J. Num. Anal,, 12, 817-829, 1975.

[29] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Engle-
wood Cliffs, 1980.

[30] B.N. Parlett, A New Look at the Lanczos Algorithm for Solving Symmetric

Systems of Linear Equations, Lin. Alg. Appl. 29, 323-346, 1980.
[31] B.N. Parlett, private communication.

[32] B.N. Parlett and D. Scott, The Lanczos Algorithm with Selective Orthogo-

nalization, Math. Comp. 33, 217-238, 1979.

[33] J. Reid, On the Method of Conjugate Gradients for the Solution of a
Sparse Large System of Linear Equations, in "Proceedings of the Confer-
ence on Large Sparse Sets of Linear Equations” ed. J. Reid, Academic

Press, London - New York, 1971.
[34] T.J. Rivlin, Chebychev Polynomials, Wiley, New York, 1976.

[35] H. Rutishauser, Theory of Gradient Methods, Chapter 2 of "Refined Itera-
tive Boundary Value Problems" by M. Engeli, Th. Ginsburg, H.

Rutishauser, and E. Stiefel, Birkhauser, Basel, 1958.

[36] Y. Saad, On the Rate of Convergence of the Lanczos and the Block Lanc
zos Method Methods, SIAM J. Num. Analysis, 1981.

[37] D.S. Scott, Analysis of the Symmetric Lanczos Process, Ph.D. Thesis,

Dept. of Math., University of California, Berkeley 1978.

[38] J. Stoer and R. Freund, On the Solution of Large Indefinite Systems of
Linear Equations by Conjugate Gradient Algorithms, Tech. Report, Inst.

far Ang. Math. und Statistik, Univ. Warzburg, W. Germany, 1981.



109

[39] H. Takahasi and M. Natori, Eigenvalue Problem of Large Sparse Matrices,
Rep. Comp. Centre, Univ. Tokyo 4, 129-148, 1971-1872.

[40] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall,

Englewood Cliffs, 1964,

[41] J.H. Vilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford,

19865.

[42] O.C. Zienkiewicz, The Finite Element Method, 3rd edition, McGraw Hill,

London, 1977.





