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Increasingly, scientific advances require the fusion of large
amounts of complex data with extraordinary amounts of
computational power. The problems of deep science demand
deep computing and deep storage resources. In addition to
teraflop-range computing engines with their own local storage,
facilities must provide large data repositories of the order of
10 –100 petabytes, and networking to allow the movement of
multi-terabyte files in a timely and secure manner. This paper
examines such problems and identifies associated challenges.
The paper discusses some of the storage systems and data
management methods that are needed for computing facilities
to address the challenges and describes some ongoing
improvements.

Introduction
Deep scientific computing has evolved to the integration of
simulation, theory development, and experimental analysis
as equally important components. The integration of these
components is facilitating the investigation of heretofore
intractable problems in many scientific domains. Often
in the past, only two of the components were present:
Computations were used to analyze theoretical ideas
and to assist experimentalists with data analysis. Today,
however, beyond each component informing the
others, the techniques in each domain are being closely
interleaved so that science investigations increasingly
rely on simulations, observational data analyses, and
theoretical hypotheses virtually simultaneously in
order to make progress.

High-performance computing is now being integrated
directly into some experiments, analyzing data while the
experiment is in progress, to allow real-time adaptation
and refinement of the experiment and to allow the
insertion of human intuition into the process, thus making
it very dynamic. When computational models operate in
concert with experiments, each can be refined and
corrected on the basis of the interplay of the two. The
integration of computing with the other investigative
methods is improving research productivity and opening
new avenues of exploration.

In many cases, investigations have been limited by the
computational power and data storage available, and these
constraints, rather than the scale of the question being
studied, have determined the resolution of a simulation or
the complexity of an analysis. As available computational
power, memory, and storage capacity increase,
investigations can be expanded at a natural scale rather
than being constrained by resources. But deep scientific
computing can still be constrained by an inadequate
capability to cope with massive datasets. In order to
handle massive amounts of data, attention must be paid to
the management of temporary and long-term storage, at
the computing facility and elsewhere, and to networking
capabilities to move the data between facilities.

An important aspect of the challenge of deep computing
is the fact that today and in the foreseeable future no
computational system can hold all needed data using
on-line, local disk storage. As discussed later, for many
applications, each step of a simulation produces gigabytes
(GB) to terabytes (TB) of data. A deep computing system
is used by multiple applications and for many time steps,
so any delay in being able to move and access the data
means under-utilizing the computational resource. Thus, a
key subsystem in every facility involved in deep computing
is a large data archive or repository that holds hundreds
of terabytes to petabytes (PB) of storage. These archives
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are composed of a hierarchy of storage methods ranging
from primary parallel disk storage to secondary robotic
tape storage to possibly tertiary shelf-based tape storage.
The efficient management of data on such systems is
essential to making the computational systems effective.

While large-scale computational and storage systems
have been in place for decades, it is only in the past 20
years that networking began to change the way in which
computing is performed. Initially, this was done via
remote log-in access over connections that were relatively
slow compared to the computing power and storage of the
time. Since the mid-1990s, networking capabilities have
evolved to the point that they have significantly changed
the way in which large-scale resources are used. Indeed,
the explosion of raw Internet bandwidth is enabling
people to envision new paradigms of computing. One
such new paradigm is Grid computing with the Open Grid
Service Architecture [1]. Flexible access to computing and
storage systems is now being implemented as a part of the
Grid. This paper does not deal specifically with Grid
issues, but concentrates on the underlying functions and
methods required to enable distributed systems to reach
their full potential.

Network capabilities have seen manyfold fundamental
improvements in hardware, such as the change from
copper-based networking to optical-fiber-based
networking. Although these hardware improvements are
expected to continue into the future, the performance of
the networking protocols that were designed to operate
on significantly lower-speed networks has not grown with
the network capacity. End host paths from memory to
the network also have often not kept pace with the
improvements in the network capabilities. These lags have
caused serious limitations in the end-to-end efficiency and
utilization of applications running on the network. End-to-
end networking technology must now keep pace, or it
will not be able to match the exponentially increasing
computational power of new systems and the dramatic
increases in storage capacity. Middleware associated with
the Grid introduces even more demands on the underlying
data and network infrastructure. Furthermore, the
protection of intellectual and physical assets in a
networked environment is critical.

Because of the intense on-demand needs of many
applications, a new requirement is emerging—the
widespread deployment of high-performance network
connections within and across shared networks. This
requirement is different from the principles that led to the
scalable Internet, which has grown rapidly over the last
10 to 15 years. The use of these network connections
by multiple scientific fields will entail new concepts of
fairness and new modes of network operation, monitoring,
and management. The need for new solutions is
heightened by the rapid development of Grids, which

implicitly assume that adequate networks capable of
quantifiable high performance will be available on demand
for priority tasks.

In short, the use and movement of deep data adds
another level of complexity to high-performance
computing. This paper discusses several of the challenges
posed by the need to handle massive amounts of scientific
data at the very high end, and describes some possible
approaches for doing so. It also examines the interplay
among the three elements that make up deep computing:
computation, storage, and networking. Unless these three
are balanced, high-end computing will be less effective in
addressing future needs.

The rest of this paper is organized as follows: The first
section discusses examples of the applications that drive
deep-data science in order to identify the capabilities and
services needed to support them. The second section deals
with methods of providing and managing associated large
data repositories. The third section discusses networking
problems that prevent deep data from flowing efficiently
through the network and presents some methods of
recognizing and resolving these problems. These sections
include the following themes:

● Deep science applications must now integrate simulation
with data analysis. In many ways this integration is
inhibited by limitations in storing, transferring, and
manipulating the data required.

● Very large, scalable, high-performance archives,
combining both disk and tape storage, are required to
support this deep science. These systems must respond
to large amounts of data— both many files and some
very large files.

● High-performance shared file systems are critical to
large systems. The approach here separates the project
into three levels—storage systems, interconnect fabric,
and global file systems. All three levels must perform
well, as well as scale, in order to provide applications
with the performance they need.

● New network protocols are necessary as the data flows
are beginning to exceed the capability of yesterday�s
protocols. A number of elements can be tuned and
improved in the interim, but long-term growth requires
major adjustments.

● Data management methods are key to being able
to organize and find the relevant information in an
acceptable time. Six methods are discussed that can
be built into the applications and eventually into the
underlying storage and networking infrastructure.

● Security approaches are needed that allow openness
and service while providing protection for systems.
The security methods must understand not just the
application levels but also the underlying functions of
storage and transfer systems.

W. T. C. KRAMER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

210



● Finally, monitoring and control capabilities are
necessary to keep pace with the system improvements.
This is key, as the application developers for deep
computing must be able to drill through virtualization
layers in order to understand how to achieve the needed
performance.

Applications that drive deep data science
Ideally, users would like all resources to be virtualized and
not to have to deal with storage or transfer components
and issues. However, in deep computing, the virtualization
scheme breaks down because of the sheer magnitude of
the problems and data. Virtualization implementations are
typically targeted to more general cases in magnitude
and intensity. Hence, for deep computing, the user and
application often have to know much more about the
implementation and details of the features and functions
of a system than they would like. The following examples
demonstrate that it is no longer possible to consider an
application as limited by computation, networking, or
storage. All are needed simultaneously. The main reason
for using distributed computing resources is that the data
size and/or the computational resource requirements of
the task at hand are too large for a single system. This
motivates the sharing of distributed components for data,
storage, computing, and network resources, but the data
storage and computational resources are not necessarily
sited together. In this section, we describe several phases
of the scientific exploration process that illustrate such
requirements in order to identify the capabilities and
services needed to support them, emphasizing end-to-
end performance from the user�s point of view.

Data production phase
Many scientific projects involve large simulations of
physical phenomena that are either impossible or too
expensive to set up experimentally. For example, it is too
expensive to set up combustion or fusion experiments to
investigate the potential benefit of a new design or to
discover design errors. Instead, detailed simulations,
usually involving high granularity of the underlying mesh
structures, are used to screen candidate designs. Similarly,
simulations are used in climate modeling because it is
impossible to recreate climate phenomena accurately
in a laboratory. In high-energy physics, simulations
are conducted before the actual multi-billion-dollar
experiments in order to design the hardware and
software systems necessary to process the data from
the experiment.

The above examples are typical of simulations that
produce multi-terabyte datasets from long-running parallel
computations. Providing such simulations with adequate
computing resources may involve a single site with a large
computing facility or an aggregation of multiple computing

resources at multiple sites. There must be disk storage
resources large enough to hold the simulation data and
fast enough to keep pace with its generation so that the
computing resources are used effectively. Furthermore, the
data must be moved to deep archives as it is generated in
order to free up the disk storage as rapidly as possible.

An example of generating a large volume of data during
the simulation phase is a colliding black hole simulation [2]
performed at the National Energy Research Scientific
Computing Facility (NERSC). The collision of two
black holes and the resulting gravitational waves were
simulated. Since the gravitational wave signal that can be
detected by interferometers in the field is so faint as to
be very close to the level of noise in these devices, the
simulated wave patterns are important tools for data
interpretation. The code used performs a direct evolution
of Einstein�s general relativity equations, which are a
system of coupled nonlinear elliptic hyperbolic equations
that contain millions of terms if fully expanded.
Consequently, the computational and storage resource
requirements just to carry out the most basic simulations
are enormous. These simulations had been limited by
both the memory and the CPU performance of today�s
supercomputers.

One of the simulations, depicted in Figure 1, used
1.5 TB of RAM and more than 2 TB of disk storage space
per run on the NERSC IBM SP* system. Runs typically
consumed 64 of the large-memory nodes of the SP
(containing a total of 1,024 processors) for approximately
48 wall-clock hours at a stretch. In the space of three
months, these simulations consumed 400,000 CPU hours,
simulating one full orbit before coalescence. Not only was
this simulation very intensive in memory, on-line I/O, and
CPU requirements, but it had extreme networking needs
as well. In addition to the challenge of moving so much
data off the computational engine to a storage archive,
the entire application was designed to be interactively
monitored and steered using advanced visualization tools.
For example, at the 2002 Supercomputing Network
Bandwidth Challenge competition (SC2002), this
application used almost 17 gigabits per second of data
bandwidth for the full application to be visualized in
real time across systems at seven sites in four different
countries [3]. Now that the concept has been successfully
demonstrated, future efforts to expand the time scale of
the simulation for a more complete understanding are
expected to require 5 TB of RAM, 10 TB of on-line disk
storage per run, and more than six million CPU hours.

Another example of an intensive data production
phase is in the area of climate modeling. A recent data
production run completed the first 1,000-year control
simulation of the present climate [5] with the new
Community Climate System Model (CCSM2) [6]
developed at the National Center for Atmospheric
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Research (NCAR). This simulation produced a long-term,
stable representation of the earth�s climate. Few climate
models in the world can achieve this combination of
accuracy, consistency, and performance; previous
simulations contained too much drift to allow a complete,
uncorrected simulation of 1,000 years. Computationally,
the full CCSM2 code is complex, consisting of five
integrated models that are organized to execute
concurrently within a single job. The components
exchange data at various frequencies appropriate to the
large-scale physical processes being simulated through a
“flux coupler” component. Each simulated year requires
6 GB of data to feed the next step in the simulation, and
many intermediate files are produced. The requirements
for this ongoing effort increase by a factor of 2 or more
every year.

Data post-processing phase
Post-processing involves running application programs
to interpret simulated or observed data. While some
applications, such as the black hole simulation, use very
little input data in the data production phase, the post-
processing phase requires access to entire datasets
generated by simulation programs or experiments. Post-
processing components must be capable of performing the
computation at the sites where the data is located or
moving the data and the computation to a common site.

Depending on the amount of data to be moved, this phase
may be very lengthy. However, in many applications it is
possible to overlap the movement of the input data with
the computation, if the interpretation programs do not
require all of the data at once. The interpretation
programs may generate datasets larger than the input
datasets.

An example of the post-processing of experimental data
is the work of the Nearby Supernova Factory (SNfactory)
[7]. Discovering supernovae as soon as possible after
they explode requires imaging the night sky repeatedly,
returning to the same fields every few nights, and then
quickly post-processing the data. The most powerful
imager for this purpose is the charge-coupled device
(CCD) camera built by the Jet Propulsion Laboratory.
This camera delivers 100 MB of imaging data every
60 seconds, and an upgraded version of the camera
will more than double this. The new images are
computationally compared to images of the same field
using digital image subtraction to find the light of any
new supernovae. Because the amount of data is so large
(50 GB per night per observatory, or 18.6 TB per year),
the image archive even larger, and the computations so
extensive, it is critical that the imaging data be transferred
to a large computing center (in this case NERSC) as
quickly as possible. The refined data is then analyzed and
compared to theoretical simulations in order to select
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candidate stars to watch more closely. The candidate list is
then distributed to observatories around the world. This
time-centered processing has resulted in a dramatic
increase in the rate of detection of Type Ia supernovae,
which now averages more than eight per month. This
project brought new understanding of the universe and its
fate, concluding almost a century of debate— one of the
key scientific discoveries in recent times. The project is
now contributing to the design of future experiments, such
as the Supernova/Acceleration Probe (SNAP), a satellite
which is now being developed.

Another example of the need for post-processing is the
U.S. Department of Energy (DOE) Coupled Climate
Model Data Archive, which makes output data from
DOE-supported climate models freely available to the
climate-modeling community [8]. This is the largest single
collection of publicly available climate model output.
Results from the NCAR-coupled general circulation
models, PCM (pulse-code modulation) and CCSM2, are
currently available. The data in these archives has been
post-processed from the original output data so that it
can be stored and accessed in a database that makes the
data more convenient and useful to climate researchers.
The volume of the post-processed data includes
various summaries of the data as well as an inverted
representation of the data, organized as time series per
variable. Consequently, the volume of the post-processed
data exceeds the volume of the original simulated data.

Current network limitations affect users of this climate
data collection in two ways. First, and foremost, individual
researchers generally download subsets of this data to
their own remote sites for inclusion in their own
specialized analysis programs. Hence, slow networks can
limit the amount of data analyzed in a practical way.
Second, because of the volume of post-processed data,
several days are often necessary to transfer the contents
of an entire simulation from NCAR mass storage to the
NERSC High Performance Storage System* (HPSS). This
is a substantial fraction of the time required to generate
the post-processed data. In the future, projects such as the
Earth System Grid [9] offer the prospect of supporting
efficient distributed access to the collection. In this
vision, model data would reside on storage media at the
supercomputing center that produced the data. Metadata
catalogs and interpretation programs would provide a
seamless interface to the database, hiding the distributed
nature of the underlying files. For this concept to be
practical, however, network speeds must be increased
substantially over current rates.

Data extraction and analysis phase
This phase generally involves the exploration of selected
subsets of the data in order to gain insights into the data
and to reach and present new conclusions about the data.

The storage of data away from the site where the analysis
is being done forces the use of a distributed computing
model. For example, consider the need to create a
sequence of images of the temperature variation over
some region of the world for a certain ten-year period.
The simulation may contain data for the entire globe
over hundreds of years for 20 to 30 different variables in
addition to temperature. The problem here is to extract
the subset of the data needed, perhaps from multiple
archives, and move it to the visualization site. The
main capabilities and services required in this case are
computing and disk storage resources. But the amount of
space needed is only for the selected subset, typically a
small fraction of the original dataset. Applications filter
and extract the desired data at the location where the data
resides, and move only the filtered data to the client�s
site. Assembly of the filtered data requires invoking an
assembly application program and handing it the filtered
subsets of the data.

A large-scale data analysis effort involving hundreds to
thousands of collaborators worldwide is typical in several
high-energy and nuclear physics experiments. One example
that recently started full production is the STAR detector
(Solenoidal Tracker At RHIC) at Brookhaven National
Laboratory. The data analysis and simulation studies
require the extraction of subsets of the data to be used
by 400 –500 collaborators from about 50 institutions
worldwide. The post-processing phase takes the raw
data from the detector and reconstructs particle tracks,
momenta, and other data about collisions. In the data
extraction and analysis phase, physics results are derived
by carrying out statistical analysis of large numbers of
particle collisions that must be extracted from archived
files.

The STAR detector produces more than 300 TB of
data per year, and it is only one of the experiments at the
Relativistic Heavy Ion Collider (RHIC). All told, the four
experiments at RHIC produce between 1 and 1.5 PB of
data per year, and newer experiments will be even more
voluminous. In 2007, when the Large Hadron Collider
(LHC) goes on line at CERN in Europe, just one of the
experiments, ATLAS (A Toroidal LHS ApparatuS), is
expected to produce 1.5 PB of raw data per year. ATLAS
is the largest collaborative effort ever attempted in the
physical sciences, with 2,000 physicists participating
from more than 150 universities and laboratories in 34
countries. The direct interaction of so many widely
dispersed collaborators is made possible by tools for
efficiently accessing, organizing, and automatically
managing massive datasets.

Another rapidly growing area of science that will
require efficient data extraction and analysis tools is
genomics and bioinformatics. While currently relatively
small in data requirements compared with some of the
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other disciplines, bioinformatics has large and highly
distributed data needs that are growing at exponential
rates. A single assembly of the fish Fugu rubripes [10],
done with the JAZZ Genome Assembler [11] created by
the DOE Joint Genome Institute, generated 30 GB of
data files and used 150 GB of working space—and this
species has an unusually small genome for a vertebrate.
The leading sequencing facilities are now able to sequence
one or more organisms a day, and the rate of increase
with new technology is such that more and more raw
sequences are being produced. Research in comparative
genomics will require the extraction of datasets from the
genomes of many different species. Projections are that
within five years, many sites will have 100 TB of genomic
data stored in the form of assembled and annotated
genomes. If the raw image data were completely saved in
digital form, the data requirements could be as much as
1,000 times greater.

Dynamic data discovery process
In the above phases, we assume that all of the input data
for a computational job is available prior to execution.
However, there is a growing trend toward more adaptive
simulations, in which the input data required by an
analysis depends on the results of just-executed
computations. We can refer to this method of exploration
as dynamic data discovery. A good example of this process
is data mining, in which the researchers initially may not
know exactly what they are looking for, but they want to
find and map correlations and see which correlations
represent significant trends. Agile data access and
management techniques are a necessity for this kind of
research, and detailed pre-planning of the data transfers
is not always possible.

Another instance of dynamic data discovery is the
running of simulations of different resolutions or initial
conditions simultaneously with mutual feedback between
the simulations so that they can refine each other�s results.
For example, typical global climate models today cannot
resolve very narrow current systems (including fronts and
turbulent eddies) that play a crucial role in the transport
of heat and salt in the global ocean, nor can they resolve
important sea ice dynamics that occur in regions of
complicated topography, such as the Canadian
Archipelago. Feeding data from the global model into a
higher-resolution regional model, then transferring the
regional results back to the global model, could increase
the precision and accuracy of climate simulations.

Still another important example of dynamic data
discovery is computational steering of a simulation on the
basis of analysis or visualization of the current results.
With interactive visualization, the client may choose to
“stir” the simulation parameters using visualization-based
tools, or to zoom in to obtain higher-granularity data for

a more limited space. In this case, it may be necessary to
change the plan of execution on the basis of observations
of partial results. Computational steering requires that a
control channel to the executing service be open, that the
execution process be interruptible, and that a new or
modified plan can be submitted. As in the previous
examples, there is no implication that logical subtasks
have to be performed in a sequential fashion. On the
contrary, all subtasks should be performed in parallel
if possible.

Table 1 summarizes the current and projected storage
requirements [12] for several DOE Office of Science
scientific disciplines using NERSC. Each discipline has
multiple simulations and analyses going on simultaneously.

The user’s view: End-to-end performance and
function
An important goal in building deep computing capabilities
that address the needs of scientists is providing
responsiveness to the user. From the user�s point of view,
performance is measured by the time between the
initiation of an action and its completion. In the case of
a data transfer, this may be the period of time from the
point at which the user issues the command to transfer the
data to the point at which the data is available for use on
the target machine. In order to effectively do scientific
processing, the entire data path—including the path
through the machine, the storage, the archives, and the
networks—must present as little delay as possible and a
path of the highest bandwidth possible for operations to
occur in a timely manner. In the simple case, data flows
from the memory of a source system, through a network
interface card, over the local network, through the
network interface of the destination system, and into its
memory (and perhaps to on-line storage). Even in this
simple model, there are a number of potential bottlenecks.

The simple model presented above is rarely the reality.
The data path is usually much more complex and involves
many more components, including routers, storage
systems, archives, and other networks. Consider the
example of a user working on a large-scale system located
at a different site. The system may support computation
and/or experimental analysis for any of the previously
discussed phases. The user has a desktop and also a
small server system that has relatively modest data and
computational capability. The large-scale system generally
has the data archived in a mass storage system. Other
storage resources may also be assigned temporarily to
the job to run the computation. In the simplest case, the
computing and storage resources are all in one system,
and the internal switch fabric is used. More often, the
mid- to long-term storage is provided by another system,
connected by an Internet Protocol (IP) or Fibre Channel
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[13] network. When the application must move the
simulation data to the archive, the data is organized into
a large number of files whose movement to the archive
is reliable and verifiable. After files are moved to the
archive, the temporary storage is released automatically
(garbage collection) for other uses. File movement from
temporary storage to the archive can start as soon as each
file is generated, which requires monitoring and progress
reporting of file movement. A long-lasting job that may
take many hours cannot be expected to be restarted
in case of partial failure, so checkpoint and restart
capabilities must also be supported. Also, in contrast to
the simple case, the data must now flow through routers in
the network. A router buffers each packet as it arrives and
then sends it to the next router along the path toward
the destination. At each step or hop, the packet may be
redirected, broken into smaller parts, rejected, delayed, or
just lost. The paths traveled by packets are determined by
the routing protocols and the current status of the network.
Sometimes different packets from the same data stream
take different paths, at different speeds, and with
different numbers of hops. It is not possible for the
user to determine whether any of this is occurring, but
any step along the way may affect and degrade end-to-end
performance. Another factor in the achieved performance
over the network is the transport protocol: Many protocols
include some form of flow and/or congestion control which
can limit their sending rate.

Data repositories for HPC systems
As mentioned above, any high-performance computing
(HPC) facility supporting deep science must have multiple
subsystems. There are one or more computing platforms,
local data storage at the computing platforms, a data
repository archive, visualization and other pre- and post-
processing servers, local networking, and connections to
one or more wide-area networks. Some facilities also have
robotic tape storage. Figure 2 shows the logical diagram of
one such site—the flagship supercomputing facility of the
DOE Office of Science, the NERSC Facility [14], located
at the Lawrence Berkeley National Laboratory. The
challenge at such facilities is to make efficient use of the
available resources while performing the computations in
an effective and timely manner. This challenge requires
efficient individual storage components and software that
can manage the combination of these components
effectively. In the remainder of this section, we discuss the
design of storage components and the software to
effectively manage and stage for computation the data on
the storage resources. Topics include storage systems,
unified file systems, and managing large datasets in shared
storage resources.

High Performance Storage System
The High Performance Storage System* (HPSS) [15] is
one of several systems that serve to provide data storage
and archive repositories. While not as common as some
commercially oriented systems such as TSM** [16],

Table 1 Storage requirements for selected scientific applications.

Scientific
discipline

Near term Five years More than five years

Climate Currently there are several data
repositories, each of the order
of 20 to 40 TB.

Simulations will produce about
1 TB of data per simulated
year. There will be several
data repositories, each from 1
to 5 PB.

More detailed and diverse
simulations. There will be several
data repositories of the order of
10 PB each.

High-energy
physics

Between 0.5 and 1.2 PB per
experiment per year with
five to ten experiments.
Need network rates of 1 Gb/s.

1 PB or more per experiment
per year with five to ten
experiments. Need network
rates of 1,000 Gb/s.

Exabytes (1,000 PB) of data with
wide-area networking more than
1,000 Gb/s.

Magnetic
fusion

0.5 to 1 TB per year with
networking (for real-time
steering and analysis) of 33
Mb/s per experimental site
(three sites planned).

100 TB of data with network
rates at 200 Mb/s per
experimental site.

Hundreds of TB.

Chemistry Simulations produce 10 –30-TB
datasets.

Each 3D simulation will
produce 30 –100-TB datasets.

Large-scale molecular dynamics and
multi-physics and soot simulations
produce 0.2 to 1 PB per simulation.

Bioinformatics 1 TB. 1 PB.
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SAMFS** [17], and VERITAS** [18], HPSS has been
shown in the course of ten years of service to be effective,
reliable, and highly scalable. It has replaced the Cray Data
Migration Facility (DMF) [19] as arguably the most
popular storage system used at supercomputing facilities.
HPSS was developed as a collaborative effort involving
IBM, six of the national research laboratories, the
DOE (Department of Energy) Lawrence Livermore,
Los Alamos, Sandia, Lawrence Berkeley, and Oak
Ridge national laboratories, and the NASA (National
Aeronautics and Space Administration) Langley Research
Center. It has been in production service since 1996
at several sites, and now is used for large-scale data
repositories at more than 25 different HPC organizations.
While HPSS has many novel features, it is instructive to
look at its design, evolution, and usage, since it is typical
of systems that have to meet the requirements of deep
computing sites.

HPSS design
HPSS is designed to move, store, and manage large
amounts of data reliably between high-performance
systems. The system provides very scalable performance
that is close to the maximum of the underlying physical
components and will track improvements in these

components into the future. It must be parallel in all
regards in order to achieve the high-performance goals
required to move terabytes of data in a reasonable time
period. It provides security and reliability and supports a
wide range of hardware technology that can be upgraded
independently. Thus, it is modular in design and function
and treats the network as the primary mechanism for data
movement. Rather than designing a system that was tied
to the computational resource, the collaboration realized
that HPSS had to be designed as a modular system, but
also had to stand alone as a system itself. The HPSS
architecture follows the IEEE Storage System Reference
Model, Version 5 [20]. This model was developed from
the experiences of several older archive storage systems
such as the MSS system developed at NASA Ames
Research Center, the Common File Storage System
developed at Los Alamos National Laboratory, and others.

HPSS treats all files as bit streams. The internal format
of a file is arbitrary and is defined by the application or
originating system. HPSS stores all of the bits associated
with a fileset on physical devices that are arranged
in a hierarchy according to physical performance
characteristics. There can be any number of hierarchies,
which usually consist of different-speed disk and tape
devices. A storage hierarchy is a strategy for moving data

Figure 2

The NERSC system for deep science computing. The system contains one or more very large computational platforms (in this case a 10-Tflop/s 

IBM SP), a set of small computational systems (in this case several IA-32 clusters that range up to hundreds of CPUs), and a very large data 

archive repository (here HPSS, consisting of eight STK robots and 15 TB of Fibre Channel cache disk, with a maximum capacity of almost 9 

petabytes). The networking consists of a major local-area network as well as one or more major wide-area connections.
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between different storage classes. Storage classes may
consist of a single storage technology, such as a single type
of tape, or multiple types of media. For example, one class
may be very-high-speed RAIDs (Redundant Arrays of
Inexpensive Disks) with parallel hardware interfaces, while
another class is composed of slower, cheaper disks with
more capacity. Most sites have one or more storage
classes that use tape as the storage media. Often the tape
is automatically managed with robot tape libraries such as
those from StorageTek 1 or IBM.

A typical HPSS configuration is shown in Figure 3. Data
flows over the network to a cache disk storage device.
Then, following the site policy, one or more copies of
the data move to lower storage classes, which presumably
consist of cheaper but slower storage devices. Once data
moves, it is deleted from the original storage class, making
room for new data to move to the higher storage class.
This process is called migration.

It is also possible to segregate types of files into
different hierarchies. For example, very large files may be
handled by placing them on very fast, very expensive disks,
but then migrating them to tape media designed to hold
large amounts of data. HPSS provides both serial and
parallel access to data stored in its storage classes.

HPSS functions
In order to make HPSS work, a number of functions are
implemented by servers:

● The mover manages the transfer of bits from one device
to another. Devices may be tape drives, disk drives,
network interfaces, or any other media. HPSS can
support third-party transfers, in which the mover just
manages the transfer and the data flows directly from
source to destination.

● Devices and data paths are prepared for data movement
by a set of core servers. One core server is the name
server, which maps a human-readable file name to a
system-generated bitfile ID. The name server also
manages relationships among files, which may be
grouped and joined together into directory hierarchies
like a standard file system.

● Once the name of a file is mapped to a file ID, it must
be mapped to the class of physical media on which it
resides. The storage server does this. The storage server
finds the actual physical device (say, a tape in a tape
robot) and gets it mounted so that the transfer can
begin.

● The physical volume library (PVL) manages all of the
physical media in a system. It works with the physical
volume repository (PVR) and other software and
hardware to locate tapes and cause them to be mounted

in the appropriate drives so that the mover can access
them. The PVRs issue the tape library commands that
manage the actual media in the system.

● The migration manager is responsible for migrating data
from one medium to another. This includes moving data
from disk to tape to free up disk space, and migrating
data from one tape to another (often more dense) tape.
Tape migration is done to consolidate tapes as files are
deleted and to move data from old to new tape media,
thus allowing automatic conversion.

● The storage system manager allows operators and
administrators to manage the storage system. It provides
a GUI (graphical user interface) which displays the
status of servers, tasks, and resources. It passes
commands to the system manager to perform operations
on HPSS components, including allocation and
configuration of resources, and initialization and
termination of tasks.

● A location server provides a mechanism for clients to
locate servers and gather information about HPSS
systems.

HPSS provides multiple ways to interface with the
system. The most basic are the File Transfer Protocol
(FTP) and a high-performance parallel version (PFTP)
created for HPSS. Another interface, HSI (Hierarchical
Storage Interface), was developed to support more user-1 StorageTek Corporation, Louisville, CO.

Typical of HPSS configurations for serving high-performance 

scientific centers, the NERSC HPSS system consists of a complex 

mesh of hardware and software, tied together with the HPSS 

software.
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friendly commands and graphic user interface interactions.
HPSS also provides the ability to export HPSS data as
network file systems (NFSs), distributed file systems
(DFSs), and extended file systems (XFSs). HPSS supports
the Data Migration Application Programming Interface
(DMAPI) and is currently implementing standard grid
interfaces.

Security was a major design goal for HPSS. Its
components communicate in an authenticated and, when
necessary, encrypted manner. It has auditing abilities
beyond standard UNIX** and can enforce features such
as access control lists.

The performance of HPSS has been demonstrated to
be highly scalable, and the system is highly reliable, even
while it handles 20 million or more files and petabytes of
data. Transfer rates to and from HPSS run up to 80% of
the underlying media rate, including Gigabit Ethernet.

Technologies needed for unified file systems
An emerging issue for many sites involved with deep
computing is the waste and inefficiency surrounding
the use of on-line disk storage. Currently, each high-
performance system must have a large amount of local
disk space to meet the needs of applications with large
data sets. This file space is limited, and often applications
and projects must live within quotas. When users access
different machines, they typically make complete copies
of the application and data needed. Thus, having separate
storage on each machine is inefficient both in storage and
in productivity. The main reason why it persists as the
norm is that only local storage provides the I/O rates
needed by deep applications. While file systems such as
NFS and other distributed file systems are convenient,
they lack the high performance and scalability required.

Fortunately, the confluence of several technologies is
making it possible to address this problem more robustly.
At the base technology level, new disk storage devices and
Fibre Channel fabric switches make it possible to attach
a single device to multiple systems. Network-attached
storage (NAS) and storage-area networks (SANs) provide
some fundamental building blocks, although not many
operate in a truly cross-vendor manner yet. Finally, shared
or cluster file systems provide a system-level interface to
the underlying technology. Combinations of the new
technologies are beginning to approach the performance
rates of locally attached parallel file systems.

File system technologies
Without reliable, scalable, high-performance shared file
systems, it will be impossible to deploy the center-wide
file systems needed at deep computing sites to support
activities such as interactive steering and timely visualization.
There are currently two major approaches for sharing

storage between systems: network-attached storage
(NAS) and storage area networks (SANs).

Network-attached storage is a general term for storage
that is accessible to client systems over general-purpose
IP networks from the local storage of network-attached
servers. Since data transfers between storage servers and
clients are performed over a network, such file systems are
limited by network bandwidth, network protocol overhead,
the number of copy operations associated with network
transfers, and the scalability of each server. The file
system performance is often constrained by the bandwidth
of the underlying IP network.

Storage area networks provide a high-performance
network fabric oriented toward block storage transfer
protocols and allow direct physical data transfers between
hosts and storage devices, as though the storage devices
were local to each host. Currently, SANs are implemented
using Fibre Channel (FC) protocol-based high-performance
networks employing a switched any-to-any fabric. Emerging
alternative SAN protocols, such as iSCSI and SRP (SCSI
RDMA Protocol), are enabling the use of alternative
fabric technologies, such as Gigabit Ethernet and
Infiniband, as SAN fabrics. Regardless of the specific
underlying fabric and protocol, SANs allow hosts
connected to the fabric to directly access and share
the same physical storage devices. This permits high-
performance, high-bandwidth, and low-latency access to
shared storage. A shared-disk file system will be able to
take full advantage of the capabilities provided by the
SAN technology.

Sharing file systems among multiple computational and
storage systems is a very difficult problem because of the
need to maintain file system coherency through the
synchronization of file system metadata operations and
coordination of data access and modification. Maintaining
coherency becomes very challenging when multiple
independent systems are accessing the same file system
and physical devices.

Shared file systems that directly access data on shared
physical devices through a SAN are commonly categorized
as being either symmetric or asymmetric. Asymmetric
shared file systems allow systems to share and directly
access data, but not metadata. In such shared file systems,
the metadata is maintained by a centralized server that
provides synchronization services for all clients accessing
the file system. Symmetric shared file systems share and
directly access both data and metadata. Coherency of
data and metadata is maintained through global locks
which are maintained either by lock servers or through
distributed lock management performed directly between
participating systems.

Shared file systems are not common, because
implementing them is inherently difficult. Implementations
of asymmetric unified file systems are the more common
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of the two types, because centralized metadata servers
are easier to implement than distributed metadata
management. However, symmetric shared file systems
promise better scalability without the bottleneck and
single-point-of-failure problems inherent in the
asymmetric types.

Storage technologies
A new category of storage systems called utility storage
is being introduced by new storage vendors such as
3PARdata** [21], Panasas ActiveScale Storage Cluster**
[22], and YottaYotta** [23], who promise to deliver
higher levels of scalability, connectivity, and performance.
These storage systems use parallel computing and
clustering technology to provide increased connectivity
and performance scalability, as well as redundancy for
higher reliability.

The storage provided by utility storage can scale from
a few dozen to a few hundred terabytes, or even in the
petabyte range, with a transfer rate as fast as a few
thousand MB/s and the ability to sustain beyond 100,000
I/O operations per second (IOPS).

SAN fabric technologies
Today, most shared file systems either are very slow or use
a proprietary interconnect from a single vendor. In the
latter case, the file system is limited to the products of
that vendor, or more often to a subset of the vendor�s
products. For a deep computing facility, that is not
sufficient. Recently, several viable interconnect fabrics
have started to emerge that may allow the introduction of
high-performance, heterogeneous storage. While this is a
positive sign, it also means that in most cases a site will be
dealing with multiple interconnect fabrics that are bridged
together. Such environments will require that the fabric
bridges operate efficiently and without introducing large
latencies in bridged communications.

Fibre Channel technology has recently undergone an
upgrade from 1-Gb/s to 2-Gb/s bandwidth, with 4-Gb/s
and 10-Gb/s bandwidths on the near-term horizon.
These increases will allow substantially improved storage
performance. Fibre Channel is also showing substantially
improved interoperability between equipment from
different vendors in multiple-vendor SANs.

Using Ethernet as a SAN fabric is now becoming
possible because of the iSCSI standard [24]. The iSCSI
protocol is a block storage transport protocol. The
protocol allows the standard SCSI packets to be enveloped
in Ethernet packets and transported over standard IP
infrastructure, thus allowing SANs to be deployed on IP
networks. This is very attractive, since it allows SAN
connectivity at a lower cost than can be achieved with
Fibre Channel, although also with lower performance. The
iSCSI protocol will allow large numbers of inexpensive

systems to be connected to the SAN and use the shared
file system through commodity components.

The emerging Infiniband (IB) interconnect [25] shows
promise for use in a SAN as a transport for storage traffic.
Infiniband offers performance (both bandwidth and
latency) beyond that of either Ethernet or Fibre Channel,
with even higher bandwidths planned. The current 4�

Infiniband supports 10-Gb/s bandwidth, while 12�

Infiniband with 30-Gb/s bandwidth is poised for release.
However, beyond demonstrating the ability to meet the
fundamental expectations, advanced storage transfer
protocols (e.g., SRP) and methodologies for Infiniband
technology have to be developed and proven, as do fabric
bridges between Infiniband, Fibre Channel, and Ethernet
SANs.

Unified file system architectures
Several promising new unified file system architectures
have been designed for high-performance cluster
environments, typically with some kind of high-speed
interconnect for the messaging traffic. Many of the new
architectures perform storage transfers between client
nodes and storage nodes over the high-speed interconnect.

Currently there are several major projects at
supercomputing centers that are addressing the issues of
unified file systems. One is the Global Unified Parallel
File System (GUPFS) project at NERSC [26] (Figure 4)
and another is the ASCI Pathforward Scalable Global
Secure File System (SGSFS) project [27] at Lawrence
Livermore National Laboratory.

Storage virtualization has been widely used as a
way to provide higher capacity or better performance.
Virtualization can also be implemented at the file system
level. File system virtualization allows multiple file systems
to be aggregated into one single large virtual file system to
deliver higher performance than a single NFS or NAS
server could provide. A few examples of federated file
systems include the IBM General Parallel File System
[28], Lustre [29], the Hewlett-Packard DiFFS [30], the
Maximum Throughput InfinARRAY [31], and the Ibrix
SAN-based file system [32].

Figure 5 shows a potential architecture for the
federated file systems using the high-speed interconnect
for the storage traffic.

R&D challenges for unified file systems
The technologies needed for unified file systems at
deep computing sites face a number of research and
development challenges regarding scalability, performance,
and interoperability.

One of the major storage issues is the degree of
efficiency with which the storage can handle I/O requests
from multiple clients to individual shared devices (each a
logical unit number, or LUN). The scalability of single-
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device access has been a common problem with many
storage systems, both in the number of initiators (clients)
allowed on a single device and in the performance of
shared access. On most storage systems, the maximum
number of client initiators allowed on a single LUN has
been less than 256; deep computing sites will require
storage devices to support thousands of simultaneous
accesses. The envisioned GUPFS implementation, for
example, is a shared-disk file system with tens of
thousands of client systems. That system must provide
high performance of individual components and
interoperability of components in a highly heterogeneous,
multi-vendor, multiple-fabric environment. The ability of
the file systems to operate in such a mixed environment is
very important to the ultimate success of a useful global
unified file system for deep computing.

In addition to simply supporting very large numbers of
simultaneous accesses, storage devices must be able to
efficiently recognize and manage access patterns. Current
storage devices are unable to do so, and simultaneous

sequential accesses by even a few tens of clients appear
as random access patterns, resulting in inefficient cache
management. New scalable cache management strategies
will be required.

To adequately support thousands of clients, storage
devices will have to be able to deliver tens to hundreds
to thousands of GB/s of sustained bandwidth, employing
multiple SAN interfaces. To operate effectively in the
multiple-SAN/interconnect-fabric environment expected
at deep computing sites, the storage devices will have to
support multiple types of fabric interfaces simultaneously
(e.g., Fibre Channel, Infiniband, and Ethernet interfaces)
through building block modules.

In order to support tens of GB/s sustained I/O rates for
very large numbers of clients, SAN fabric switches with
very large numbers of ports must be fielded in order to
minimize the ports needed for the fabric mesh. This in
turn requires fabric switches with much higher (tens
of GB/s) interswitch link capabilities to facilitate link
aggregation to the high-performance storage devices.

 For position only

The Global Unified Parallel File System (GUPFS) being developed at NERSC. Currently, each major system in a facility must have large 

amounts of local disk space in order to achieve the performance levels needed for deep science. In the next four to five years, emerging 

technology should enable high-performance parallel file systems that will allow a large amount of persistent storage to be shared while 

maintaining high-performance I/O transfer rates.
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Although storage and fabric vendors are beginning to
recognize and address these issues, it will take significant
research and development to support the needed
functionalities.

Managing large datasets in shared storage
resources
In the previous sections we introduced archiving
technologies and methods of sharing on-line disk space
between computing servers. These systems provide the
basic components we need to begin to address the
application phases mentioned in the introductory sections
of this paper, but they are not sufficient. What is still
needed is the software to manage the movement of the
data between the storage media and to the computing
servers.

Consider an analysis application, such as the analysis
of transaction data of a grocery store for the purpose
of decision-making. If the amount of data is small, the
analysis program loads all of the data into memory and
performs the analysis in memory. If the amount of data
does not fit into memory, it is brought piecewise from a
disk cache. If the level of computation is high enough that
it is not slowed down by access from disk, there is no loss
in efficiency. Various optimization techniques can be used,
such as methods to reorganize the data according to the
access patterns, or using indexes to minimize the access
time or disk I/O. Another technique is to speed up access
from disks by providing file systems that use parallel
striping methods, such as General Parallel File System
(GPFS) or Parallel Virtual File System (PVFS) [33]. Such
techniques have been the subject of many studies in the
domain of data management research. Our purpose in this
section is not to cover the above techniques, but rather to
discuss the problems that arise if the amount of data is so
large that it does not fit on disk, but must be stored in
archival storage. For example, the amount of scientific
data generated by simulations or collected from large-
scale experiments has reached levels that cannot be
stored in the researcher�s workstation or even in a local
computer center. Access to data is becoming the primary
bottleneck in such data-intensive applications. This is a
new class of problems, because access from archival
tertiary storage is relatively slow, and other optimization
methods must be applied. What can be done to manage
data stored in tertiary storage systems more efficiently?

Suppose one has 1 TB in tertiary storage that one
wishes to analyze, using a supercomputer that can
analyze the data in parallel. Getting the data to the
supercomputer requires downloading the data from tape
to disk. Assuming that there is available a parallel disk
system with 100 disks and that each disk can read data
at 10 MB/s, data can be streamed to the supercomputer
at a rate of 1 GB/s. Thus, the data can be read by the

supercomputer in 1,000 seconds, which is reasonable for
analyzing this quantity of data. However, in order to
achieve this rate from tertiary storage, 100 tape drives,
each reading at 10 MB/s, would have to be dedicated to
this task for 1,000 seconds. This is not a very practical
solution, especially considering datasets in the petabyte
range. Also, with the tapes available today, each tape
may hold 50 –200 GB, and multiple tapes may have
to be loaded, adding latency as a result of mounting and
dismounting tapes. In this scenario the robotic tape system
is the bottleneck. What techniques can be applied? We
now discuss several.

1. Overlap data processing with staging data to disk.
In many applications, it is possible to start processing
subsets of the data. For example, one can start analyzing
transaction data piecewise, such as transactions for a day
at a time. Assuming that data is organized in large files,
one can devise software that will stream data to the
analysis program and concurrently continue to stage files
from tape. Streaming data to the analysis programs is also
an effective way of sharing disk cache with many users
concurrently. Even if each user needs most of the
space of the disk cache, it is not necessary to move all

A potential architecture for integrating a large global file system 

with federated components.
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of the data to disk for exclusive use and schedule users
to operate sequentially. Instead, each user gets part of
the disk cache, and the data is streamed to all of the
applications concurrently. To support this streaming
model, it is important that a user release files already
processed as soon as possible, so that quota space can be
reused. This requires systems that support the concept of
pinning and releasing files. Pinning a file guarantees that
the file will stay in the shared disk cache for a period of
time. If the file is released within this period of time, the
space can be reclaimed and reused. Otherwise, at the end
of that time, the file will be released by the system.

2. Observe incremental results on the streaming data with
increasing accuracy.
The streaming model discussed above also provides
opportunities to end analysis or simulation tasks early,
thus saving a tremendous amount of computing and
storage resources. Often, the analysis produces statistical
results, such as histograms. These can be obtained
incrementally as the data streams through the analysis
programs. This permits the client to observe the data
statistics as they are generated with increasing accuracy.
When a sufficient level of accuracy is achieved, the client
can stop the analysis. Given that proper sampling of the
data is performed (e.g., applying random sampling of files
from tapes), it is sufficient to read only 5–10% of the data
in most applications to achieve the desired accuracy. This
idea has been exploited in the database community for
online query processing, but it is even more important for
the analysis of massive amounts of data streaming out of
robotic tape systems. A similar idea can be applied for the
processing of large simulations. Some scientific simulations
such as astrophysics or climate modeling may take many
days of computation and produce several terabytes of data
each. It is important to identify at an early stage whether
a simulation is progressing correctly. Again, statistical
analysis and visualization techniques can be used to
observe the progress of the simulation.

3. Share “hot” data that is brought to disk.
Another opportunity for using disk caches effectively to
reduce reading data from tape is to share files among
users. This is the case when a community of users share
disk caches to analyze the same very large dataset. Often,
a user will access the same files repeatedly, or different
users interested in the same aspect of the data will request
files that another user previously staged to disk from tape.
Such files are referred to as hot files. In order to share
hot files, one must have software to track file usage and
“smart” predictive algorithms to determine which files to
evict when space is needed.

4. Minimize tape mounts.
One of the most costly aspects of dealing with robotic
tape systems is the time it takes to mount a tape. This
is typically in the range of 20 – 40 seconds with current
technology. Another latency problem is searching for a file
on a tape, which can also take 20 – 40 seconds depending
on the tape size and the search speed. Avoiding these
delays results in a large performance gain. To achieve
this benefit, a scheduling system can be used that has the
flexibility to stage files in tape-optimized order over many
clients. Such a scheduling system must also ensure that
no one job is postponed unfairly. The scheduling system
has to have information on file location on tapes (i.e.,
which tapes, and location on the tape). The HPSS
system mentioned above is designed with some minimal
optimizations for submitted file requests. However, it does
not have a global view of the files needed for an entire
job. If entire jobs are provided to a front-end system for
many users, that system may be able to perform global
optimization ahead of time by grouping file access
requests in a tape-optimized order.

5. Use indexing techniques for finding desired subsets of the
data.
Another important technique for reducing the amount of
data that is read from tape systems is having information
on the content of the files, so that only the relevant files
are accessed for a given analysis. This problem is so
severe in some application domains, such as high-energy
physics, that subsets of the data are pre-extracted by
performing full scans of the very large datasets and
selecting the subsets of interest. Many such subsets are
generated, which only adds to the replication of the data
and the use of more storage. Indexing techniques can
eliminate the need to scan the data many times to generate
desired subsets. For example, in high-energy physics,
the objects stored in files are chunks of data, 1–10 MB
each, called events, representing high-energy collisions of
particles. It is possible to obtain a set of properties for
each event, such as the energy of the event and the types
of particles produced by that event. There are billions of
such events stored in thousands of files. An index of the
event properties can identify the files of the desired events
for the analysis, and then only those files will be accessed.

6. Automate garbage collection.
As mentioned above, one of the biggest problems with
shared storage is waste caused by moving files into the
storage spaces but never removing them. It is impossible
to track which file is really valuable, and ineffective
to force users to “clean up.” Another approach is
to have shared spaces managed by letting space be used
dynamically. The main concept is that a file is brought to
the shared disk cache on a temporary basis with some
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minimal lifetime guarantee. As mentioned above, the
concept of pinning can be used, with a lifetime associated
with the pin. The lifetime should be long enough for a
client to perform the intended task, but it is then expected
that the client will release the file in order to obtain more
space. If the client is irresponsible and does not act within
the lifetime, the file can be removed by the storage system
manager when the lifetime expires. This methodology
works only if each valuable file is stored in an archive
and is brought to the shared disk cache for processing or
analysis only. The ability to pin and release a file within
a lifetime is the key to supporting automatic garbage
collection.

Storage Resource Managers (SRMs): A software layer to
support the dynamic management of storage
The concepts described above have been developed at
the Lawrence Berkeley National Laboratory and other
Department of Energy laboratories and are implemented
in SRMs [34, 35], which are middleware software modules
whose function is to provide dynamic space allocation and
file management on shared storage resources. The term
storage resource refers to any storage system that can be
shared by multiple clients. We use the term client here to
refer to a user or a software program that runs on behalf
of a user.

SRMs dynamically manage what should reside on the
storage resource at any one time. They complement
Compute Resource Managers and Network Resource
Managers in providing storage reservation and dynamic
storage availability information for planning the execution
of high-performance jobs. SRMs can be thought of as
managing two types of resources: spaces and files. When
managing space, SRMs negotiate space allocation with
the requesting client, and/or assign default space quotas.
When managing files, SRMs allocate space for files,
invoke file transfer services to move files into the space,
pin files for a certain lifetime, release files upon the
client�s request, and use file replacement policies to
optimize the use of the shared space. SRMs can be
designed to provide effective file sharing for read-only
files by monitoring the activity of shared files and making
dynamic decisions on which files to keep until space is
needed. In addition, SRMs perform automatic garbage
collection on unused files by removing files whose lifetime
has expired when space is needed.

A Disk Resource Manager (DRM) manages a shared disk
cache. This disk cache can be a single disk, a collection of
disks, or a RAID system. The disk cache is made available
to the client through some operating system that provides
a file system view of the disk cache, with the usual
capability to create directories and open, read, write, and
close files. The function of a DRM is to manage this cache
using a policy that can be set by the administrator of the

disk cache. The policy may restrict the number of
simultaneous requests by users, or may give preferential
access to clients on the basis of their assigned priority.

A Tape Resource Manager (TRM) is a middleware layer
in front of a robotic tape system. Such tape systems are
accessible to a client through fairly sophisticated Mass
Storage Systems (MSSs) such as HPSS or Unitree. TRM
systems usually have some disk cache that is used to stage
files temporarily before transferring them to clients. MSSs
typically provide a client with a file system view and a
directory structure, but do not allow dynamic opening,
reading, writing, and closing of files. Instead, they provide
some way to transfer files to the client space, using
transfer protocols such as FTP and variants of FTP. The
function of the TRM is to accept requests for file transfers
from clients, queue such requests in case the MSS is busy
or temporarily down, and apply a policy regarding the use
of the MSS resource. As in the case of a DRM, the policy
may restrict the number of simultaneous requests by users,
or may give preferential access to clients on the basis of
their assigned priority.

A Hierarchical Resource Manager (HRM) is a TRM that
has a staging disk cache for its own use. It can use the
disk cache for pre-staging files for clients and for sharing
files between clients. This functionality can be very useful,
since a request from a client may be for multiple files.
Even if the client can process only one file at a time,
the HRM can use its cache to pre-stage the next files.
Furthermore, the transfer of large files on a shared
network may be sufficiently slow that while a file is being
transferred, another can be staged from tape. Because
robotic tape systems are mechanical, they have a latency
of mounting a tape and searching for the location of a file.
Planning the pre-staging in a tape-optimized order can
help eliminate this latency. Another advantage of using
a staging disk in an HRM is that it can be used for file
sharing. Given that multiple clients can make requests for
multiple files to an HRM, the HRM can choose to leave a
file in cache longer so that it can be shared with other
clients on the basis of use history or anticipated requests.

SRMs can support three possible types of files in a
shared storage resource, depending on their expected
usage and function. These file types are necessary for the
smooth functioning of an SRM and automatic reclaiming
of unused space.

1. Permanent files: This type of file is stored in a location
that is intended to be permanent, usually on a tape
archive. Typically, it is the location where files are
stored immediately after they are created. A permanent
file is a physical file that can be created and removed
only by the owner of the file. This is consistent with the
usual concept of files owned by users. A permanent file
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can be thought of as having a pin with an indefinite
lifetime.

2. Volatile files: Volatile files are created dynamically to
satisfy user requests to process the files. The files are
not owned by the user, but rather by the SRM. A
volatile file should stay in the cache if the demand for
it is high; otherwise, it can be removed when space
is needed. A volatile file can be thought of as a
temporary file, except that it has a lifetime associated
with it. The lifetime guarantees that the file will be in
the cache as long as necessary, but after the lifetime
expires it can be removed from the cache by the SRM.
The client can also terminate the lifetime of a pinned
file. This early release of a file permits the SRM to
reuse the space as soon as it is needed.

3. Durable files: A durable file is like a volatile file in that
it has a lifetime associated with it, but is also like a
permanent file, because when the lifetime expires, the
file is not automatically eligible for removal. Instead,
the SRM advises the client or an administrator that
the lifetime has expired, and they can then take the
necessary corrective action. The durable file type
was introduced to provide temporary space for files
generated by large simulations, which should be
transferred as soon as possible to an archive. This is a
reasonable approach for sharing temporary space yet
protecting important files. Like volatile files, durable
files can be released by the user.

For the file types described above, the semantics of file
pinning and releasing and the lifetime of a file provide the
basis for dynamically managing the content and space
allocation of a storage resource. These concepts are also
useful in supporting the data streaming model described in
the previous section. This is achieved by staging files into
a disk space and letting the applications access the staged
files concurrently with the staging of additional files. As
soon as files are released by the application, the space
can be used to stage additional files.

Several versions of prototype SRMs have been
developed and used in test cases as part of the Particle
Physics Data Grid (PPDG) [36] and Earth System Grid
(ESG) [9] projects. A prototype of an HRM was also
developed at the Fermi National Accelerator Laboratory
to interface with their Enstore mass storage system [37].
In addition, efforts are now underway to coordinate
the SRM functionality across several projects, including
the development of an HRM at the Thomas Jefferson
National Accelerator Facility to interface with their
JASMine mass storage system [38] and the European Data
Grid to interface with their CASTOR mass storage system
[39]. The emerging concepts and interfaces seem to nicely
complement other Grid middleware services being
developed by various Grid projects, such as providing

efficient and reliable file transfer, replica catalogs, and
allocation of computing resources.

Networking for HPC systems
The techniques described up to this point have dealt
mostly with the data movement, storage, and archiving
requirements of deep computing within a facility.
However, in many of the scientific cases listed in the
introduction, the data is not at the same location as the
computing servers, or the results have to be moved to a
different location. In these situations, the wide-area
network connecting the sites becomes involved, and
efficient transfer of the data across this network is
required.

When high-performance computing applications utilize
resources spread across a wide-area network, they usually
require particular bandwidth, latency, reliability, security,
and privacy guarantees. The end-to-end network
performance of an application is a product of the
application behavior, the machine capabilities, the network
path, the network protocol, and the competing traffic.
If the expected performance is not achieved, it is often
difficult to ascertain the limiting factor without significant
end-to-end monitoring and diagnostic capabilities.

Data is broken into packets by the network protocol
before it is sent on the network. Most traffic on the
network uses the Transmission Control Protocol (TCP).
TCP provides reliable point-to-point transfer of data by
retransmitting lost packets. It also incorporates flow and
congestion control algorithms that allow it to adjust its
sending rate to the network capabilities and cross traffic
so that it can share the bandwidth fairly with other traffic.
Over the years, many improvements to TCP have been
implemented. Some of the well-known modifications
include fast retransmit, fast recovery, selective
acknowledgments (SACK), slow start, and delayed
acknowledgments. These modifications were introduced to
improve the behavior and fairness of TCP. Changes to the
algorithms in the router have included explicit congestion
notification (ECN) and random early detection (RED)
among others. These changes in the routers are designed
to improve fair allocation of resources to the various
data streams flowing through the router and to provide
feedback to the data streams regarding congestion.

The component that is most limited in its ability to
transmit data through the network is usually referred to as
the bottleneck. The bottleneck determines the maximum
bandwidth that can be achieved on the path. The amount
of bandwidth an application effectively utilizes in the
network is usually less than the bottleneck bandwidth and
is determined by many factors. In this section we examine
several of these factors, including end host issues, routers
and gateways, and transport protocols. We also discuss
the importance of security, monitoring, and prediction.
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End host issues
Although most supercomputer and cluster architectures
use special high-speed interconnects such as Myrinet [40],

cluster, one or more front-end hosts or nodes provide the
only external access to the machine. These hosts are often
the limiting factor. As an example of the issues for a node
in such a system, we examine a typical PC cluster, for
which the host hardware performance factors are the
memory bandwidth and the memory and I/O interconnect
bandwidth.

It is tempting to assume that the host throughput to
and from the network is simply the slower of the I/O bus
speed or the memory bus speed, but the reality is more
complex. The real throughput that can be achieved in
transferring data from the user memory on the machine
to the network interface card is defined by adding 1)
the time to copy data from user memory to the kernel
memory across the memory bus and 2) the time to copy
from the kernel memory to the network interface card.
Typically it takes two memory bus cycles to copy data
from the user memory to the kernel memory, and one I/O
bus cycle to copy from the kernel memory to the network
interface card. The number of memory bus cycles required
to transfer a word from the kernel memory to the I/O bus
is determined by dividing the memory bus speed by the
I/O bus speed. Thus, the typical throughput between the
user memory and the network interface of a typical PC
is defined as

throughput �
memory bandwidth

2 �
memory bus clock

I/O bus clock

. (1)

The typical hardware platform is an x86-based processor
equipped with 32-bit/33-MHz and/or 64-bit/66 –133-MHz
peripheral component interconnect (PCI) buses as the I/O
subsystem. The 32-bit/33-MHz PCI I/O subsystem provides
a maximum bandwidth of 132 MB/s, which is equivalent
to 1 Gb/s. The Hewlett-Packard 64-bit/133-MHz PCI-X
subsystem provides 8.5-Gb/s I/O bandwidth. The memory
bandwidth provided by these x86 motherboards, equipped
with PCI subsystem and using 400-MHz double data
rate (DDR) memory modules, varies from 650 to about
2,500 MB/s. Given the memory bus speed and the I/O
bus speed, we can calculate the expected throughput
to the network. For example, a motherboard with the
latest VIA 2 PCI chipset (VT600, 32-bit/33-MHz PCI,
DDR400 memory and AMD 3 2700� CPU) provides
850-MB/s memory bandwidth. The maximum expected
throughput to the network is 485 Mb/s (60.7 MB/s �

850 MB/s � 14). Clearly, a system equipped with a

32-bit/33-MHz PCI bus will not achieve gigabit throughput
to the network if the data is coming from and going to the
user space. Consider a high-end (server) x86 motherboard
with 64-bit/133-MHz PCI-X bus with 200- to about 266-MHz
DDR memory modules. In this system, the maximum
memory bandwidth is around 1,100 –2,500 MB/s. Thus,
the expected maximum network throughput it can achieve
is 2,500 MB/s � 1/4 � 625 MB/s, or 5,000 Mb/s, by
Equation (1). If we also include DMA and memory
controller overheads, the real throughput to the network
will be slightly lower [42]. The latest Network Interface
Card (NIC) speed available for these PCI-X systems
is 10 Gb/s. Therefore, the current x86 systems with the
fastest available memory and PCI bus are not able to
provide enough I/O power to drive a 10-Gb NIC at
full speed. Today�s best systems are at least a factor
of 2 below the required speed.

Although mechanisms such as OS bypass can reduce the
number of copies required between sections of memory,
the copy from memory to the I/O bus cannot be avoided.
The computer industry is aware that the I/O bus is the
bottleneck in current and future hardware systems, and
fast I/O standards are proposed for a next-generation I/O
bus. In the short term, PCI-X 2.0 and PCI-X 3.0 are both
designed to increase the PCI bus clock rate and provide
more I/O bandwidth. In the long term, the Intel** PCI-
Express (formerly called 3GI/O, or third-generation I/O)
is expected to provide even higher I/O bandwidth (64-Gb/s
one-way total bandwidth with 32 lanes). This should help
to improve the overall system I/O performance. However,
this new-generation I/O subsystem will still be the
bottleneck for network I/O, because this I/O standard will
require time to mature before its potential is realized in
practice, and network bandwidth will continue to increase
during that time. The network interface card speed has
on average doubled every year in the past several years. If
this trend continues, the network interface cards will reach
1 Tb/s before PCI-X 3.0 and PCI-Express can be widely
deployed.

Routers and gateways
There are three major classes of switching technology in
use in the world today: internal computational switches

the Hewlett-Packard Superdome, etc.), local-area networks
(Gigabit Ethernet and, to a lesser degree, Fibre Channel),
and wide-area networks [most often Packet over SONET
(Synchronous Optical NETwork), ATM]. For deep
computing, these classes of switches must be effectively
integrated, and end-to-end requirements should have a
minimal performance impact.

Internal computational switches and shared disk are
designed for very low latency and high bandwidth.
Computational switches are based on very large frame

2 StorageTek Corporation, Louisville, CO.
3 VIA Technologies, Inc., Hsin-Tien, Taipei, Taiwan.
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(packet) sizes, typically 64 KB, and suffer performance
degradation at lower sizes. Local-area networks based
on Gigabit Ethernet can run up to 9-KB jumbo frames
reliably for on-site mass storage and backups. The 9-KB
frame size increases performance compared with standard
Ethernet by reducing overhead and CPU load; but
compared with 64-KB frames, it has lower performance
and higher latency than computational switches. Wide-
area networks are typically restricted to 1,500-byte frames
because of the need to support millions of simultaneous
connections, even though the main protocols, SONET and
ATM, will pass frames up to 9 KB.

This mismatch in maximum transfer unit (MTU) sizes,
and, more significantly, the performance degradation that
is associated with running small MTUs, make it difficult
to effectively integrate a massively parallel computer
system into any networked environment. The two major
approaches used to date have been to add an external
interface to each node or to turn one or more
computational nodes into gateway routers and have
external traffic flow across the internal switch to these
gateways.

Both of these approaches have major weaknesses. Deep
computing will require thousands to tens of thousands of
nodes [43]. Adding an external gigabit interface to every
computing node for external connectivity to data storage
systems and other computational resources is not practical,
nor will it allow single-stream performance to increase
above current levels, even though this has the best chance
for meeting large aggregate bandwidth requirements.
Using a computing node that has a connection to the
internal switch fabric as well as multiple bonded Gigabit
Ethernet interfaces or 10-Gb/s Ethernet as a router is
logistically easier and potentially has better single-stream
performance, but aggregate performance will suffer,
especially coupled with traffic comprising MTUs of different
sizes on the computational switch. Also, a computing node
that must run packets through its IP stack to divide the
traffic into packets, generate packet headers, and perform
flow and congestion control will never be able to keep up
with the fastest switches and routers that just store and
forward with all decisions in application-specific integrated
circuits (ASICs).

One possible solution would be a Layer-7 router with a
computational switch interface that could do the bridging,
MTU repackaging, and load balancing. However, the
chance of someone building this is very small. A more
workable solution would be to modify a computing node
to act like a high-performance router. Most of the
hardware components for modifying a computing
node already exist or would be simple to create. A
computational switch, such as a Federation SMA3 adapter,
and a 10-Gigabit Ethernet card, both with sufficient field-
programmable gate array (FPGA) space to offload the IP

protocol, would limit the duties of computing nodes to
setting up remote direct memory access (RDMA) between
the two interfaces. Frame fragmentation and coalescing
are often done through TCP proxies, but should be
programmable in a reasonable amount of FPGA space,
thus reducing the adverse impact of widely disparate
MTUs.

Transport protocols
The TCP congestion control algorithm aims to fully utilize
the network path yet be fair to other traffic. There are two
types of losses in the network: random and congestion. If
network traffic arrives at a router or network interface and
there is not enough capacity left to buffer the packet, the
packet is discarded (congestion loss). In TCP, the receiver
acknowledges data as it is received. When a sender
receives three duplicate acknowledgments, it assumes
that data has been lost, cuts its sending rate in half,
and retransmits the data just above the duplicate
acknowledgment. It then increases the sending rate by
one each round-trip time until the next loss, and the
cycle repeats. This algorithm is called additive increase,
multiplicative decrease (AIMD). TCP also includes a slow-
start algorithm, which is used at the beginning of a TCP
connection to double the sending rate each round-trip
time until the first loss is detected. TCP uses a congestion
window to track the sending rate that is allowed. If the
buffer size for sockets were not selected appropriately for
the network connection, the congestion window might be
artificially limited or the receiver might be overrun. Ideally
the buffer size is continually tuned to the optimal size.
The Net100 project has created a work-around daemon
to perform this dynamic tuning [44].

Although TCP is relatively robust, in high-speed wide-
area networks there are several issues. One primary
problem is that the product of the bandwidth and the
delay of the path is very large. To fully utilize the
available bandwidth in such a path requires that the
amount of data in flight at any point in time be equal to
the bandwidth delay product. For example, in order to fill
a one-gigabit path which has a 100-millisecond round-trip
time and a packet size (MTU) of 1,500 bytes, a TCP
stream would have to have of the order of 8,000 packets
in flight continuously—the equivalent of 12 megabytes.
The TCP protocol is designed with the premise that the
random loss rate in network components is insignificant
compared to the loss rate due to congestion. Thus, the
TCP sending rate is a function of the packet loss rate
(assumed congestion) in the network. The packet sending
rate drops dramatically as a response to a congestion
event (packet loss); then the sending rate increases slowly
until the next congestion event is encountered. In the
high-bandwidth delay product example above, an error
rate of 2 � 10�8 (one packet every 555 round trips) or
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less must be maintained in order to allow TCP to fully
utilize the available network capacity [45]. In high-speed
networks, this required error rate is less than the random
loss rate of the components without any congestion being
present. Thus, TCP by its very design is prevented from
utilizing the available bandwidth on high-bandwidth delay
product paths.

Several approaches have been developed recently to
address high-bandwidth delay product paths [46]. The
solution most commonly used today is parallel streams.
Parallel streams have the feature that a random loss
affects one stream and that stream cuts its congestion
window in half, causing the reduction in the combined
congestion windows of the streams to be 1/(2 � N), where
N is the number of independent streams being used for
the transfer (instead of the one half that a single stream
would have experienced). If we look at fairness, parallel
streams operate as N streams rather than one stream and
thus get N times their share. This is primarily an issue
when the link is congested. Another issue with parallel
streams is that their use requires software to split the data
across the streams and reassemble it at the destination.
This introduces additional overhead within the hosts
because of the context switches and assembly operations
required.

One recently proposed variant of TCP is the FAST
algorithm, which would use queuing delay rather than
loss as a measure of congestion [47]. Another proposal,
referred to as HighSpeed TCP, would modify the AIMD
algorithm constants to make the back-off less than one
half on loss and the linear increase faster when the
congestion window is large [18].

Several mechanisms have been created to allow
applications requiring high bandwidth to have priority
access to the bandwidth. The most aggressive of these
is to create a dedicated path for the traffic by reserving
a dedicated link/circuit/channel. The best-known
mechanisms for this include virtual circuits and RSVP
(Research ReSerVation Protocol). Another mechanism is
to mark the traffic as priority; then each router in the path
expedites the traffic. The standard method for this is to
use a bandwidth broker to arbitrate the access to the
bandwidth on a pairwise basis. If the intervening routers
agree to the priority path, the packets are marked as
priority as they enter the network and each router in the
path forward; the packets receive preference over all other
traffic.

An alternative approach that has been proposed is
the use of priority ratings on traffic or reserving virtual
circuits. Although prioritizing traffic has received a lot of
attention, it has generally been impractical. It is likely that
traffic requiring guaranteed bandwidth will have to reserve
virtual circuits through the network. This does not,

however, remove the need to find a transport protocol
that can effectively make use of the dedicated bandwidth.

Security
Deep computing also implies deep security. Protection of
assets— computationally expensive or irreplaceable data
as well as multi-million-dollar machines—is critical. In
the business world and government, where the data is
considered sensitive, the potential losses due to a security
incident, with recovery time measured in weeks if not
months, may far exceed the costs of reproducing the
hardware and data.

Therefore, very common bottlenecks for distributed
scientific applications are currently the security devices at
the interface between a local network and a wider-area
network. Firewalls and active intrusion detection systems
(IDSs) that inspect packets and make decisions on
whether or not to forward them will never be able to keep
up with the high-end “store and forward” switches and
routers. Conversely, relying only on passive devices for
security may avoid performance impact but introduce
more risk of delaying a response to an intrusion.

Fortunately, some workable solutions are currently
available, and they lead to a path that may scale security
to levels needed for deep computing. Scaling firewall
performance under certain situations is as easy as adding
more firewalls. While this approach does not solve the
single-stream throughput requirements of deep computing,
it does point to an interesting solution, tightly coupled
security and routing policies.

Two routers and a diverse set of firewalls and IDSs
acting as one system have the potential to scale both
security and throughput. This scenario is shown in
Figure 6. The simplest approaches could be having all
Microsoft** Windows**-related protocols go through a
dedicated Windows-specific firewall and UNIX traffic
through a UNIX/Linux**-specific firewall based on static
transport layer (Layer 4/TCP header information) routing
policy. Performance-critical data streams could be routed
to a third clear channel. More complex solutions contain
stateful and application firewalls, FTP proxies, and IDSs
that adjust local routing tables to shunt identified
legitimate streams to clear channels, thus simultaneously
improving throughput and reducing firewall loads.

A complementary technique of shunting suspected bad
traffic through more aggressive scrutiny by extremely tight
firewalls and active IDSs may also increase security.
Looking at every FTP-data packet for every known HTTP
(HyperText Transfer Protocol) payload is obviously not a
good use of an IDS, but looking very closely at HTTP
packets that show indications of malicious activity makes
sense.
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Passive IDSs tend to rely on port mirroring or hardware
taps, and analyze all traffic across a link. This has a 2�

scaling issue for full-duplex links. Fortunately, not all
packets contain the same level of information from a
security point of view. For TCP, a synchronize (SYN)
packet asking for a socket to be created conveys far more
security information than an acknowledgment (ACK)
packet for data transferred. Therefore, it is possible to
have a passive IDS accomplish more real work with a
much lower load by feeding it only the data that it wants
to examine.

One implementation of this combined approach is the
Bro system [48], developed by Vern Paxson. It was used at
the SC2002 conference to successfully monitor the SCinet

experimental network, which consisted of two OC-192 links,
seven 10-Gigabit Ethernet links, and three Gigabit Ethernet
links at the same time, with a single Gigabit Ethernet IDS
and static Layer-4 filter-based port mirroring (Figure 7).

Not only can higher performance be achieved, but
improved security can be gained by having IDSs
dynamically update the filter rules in routers and/or on
hosts to better watch suspect traffic. Having a complete
copy of an incident as soon as it is detected is a possibility
with dynamic filter-based port mirroring and is very useful
to security analysts. The bandwidth requirements of deep
computing make performing this task next to impossible
any other way.

Monitoring and prediction
As illustrated by the cases discussed in the beginning of
this paper, deep computing applications are large and
consume significant storage, network, and computing
resources before they complete. Also, many of these
computations take a long time to complete. Typically, a
project has only a limited allocation for use of a large-
scale computing facility, and the project cannot afford
to waste any of this allocation. Thus, it is important for
the end user to be able to monitor the progress of the
computing job so the user can take appropriate action if
something goes wrong. In addition, if the user has access
to more than one computing facility or resource, the user

(a) Logical view of a typical network security implementation that 

allows high-bandwidth data transfers where there are two paths, 

one monitored for control and sensitive traffic and the other not 

monitored for the high-bandwidth bulk traffic. (b) Logical view of 

a more complex network security implementation that allows 

monitoring of all traffic, both the sensitive and the high-bandwidth 

data transfers.
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or scheduler needs accurate information to decide where
to submit the job. Factors such as where the data and
executable are currently located must be considered in this
decision, and ideally the user needs predictions of future
availability, since the job is not yet running.

Large-scale computing facilities generally provide
information about their current loading. In order to make
a decision about where to run a computing job, the user
needs information about all of the components involved,
including the network. Once the job is scheduled, a
monitoring capability is needed to allow the user to
recognize whether, for example, a job is blocked from
being started because it is waiting for the disks to become
available or because performance across the network is
significantly worse than expected. Users can recognize
these problems and take corrective action only if they
have monitoring data that reports on all phases of the
progress. This includes reporting across virtualization
levels.

Traditionally, large computing facilities have needed to
concentrate only on performance within their facilities.
As many of the application examples show, there is now
increasing dependence on the network as an integral part
of the computing job. Diagnosing problems with a network
path is difficult for the application, since it has control of
only the two endpoints and none of the components in
between. Problems in a distributed system might be caused
by anything, including the application itself. A wide-
area network path usually traverses several different
administrative domains, and even the network
administrators do not usually have access to all of the
routers in the path.

One of the first problems of diagnosing what is wrong
with the network is determining what the behavior should
have been. Another difficulty is knowing what other traffic
was present in the network. Network monitoring is still a
research topic, but there are several monitoring tools that
can help to indicate the location of a problem, including
NetLogger [49], Self-Configuring Network Monitor
(SCNM) [50], and others.

Concluding remarks
Increasingly, scientific advances require the fusion of large
amounts of complex data with extraordinary amounts of
storage, network, and computational power. The problems
of deep science demand not only deep computing but also
deep storage resources and deep networking capabilities.
In addition to teraflop-range computing engines, facilities
must provide large data repositories of the order of
10 –100 petabytes, and networking to allow the movement
of multi-terabyte files in a timely manner. This will be
possible only if the technology for using and moving the
data is greatly improved.

This paper has presented some examples of deep
science application phases that have different data usage
characteristics. It then discussed the current technology
available to support these phases for large-scale
applications. Each application phase challenges the
technology in different ways. We have indicated, for each
technology area, how the challenges can be overcome and
some emerging work that is pointing the way to full-scale
solutions. Finally, we have discussed areas that remain
open for new solutions.

Only with the creation of improved technology will the
scientific challenges of the twenty-first century be met.
Very large, scalable, high-performance archives and shared
file systems are just the underlying technologies that are
necessary. Both of these will rely on layers of technology
that must work together to provide high performance not
just for many independent data flows, but also for very
large, single data flows. New protocols are necessary, since
the data flows are beginning to exceed the capability of
yesterday�s protocols. End host hardware improvements
are also needed to take advantage of the network
capabilities. Data management methods are key to being
able to organize and locate the relevant information in an
acceptable time. These methods will have to be built into
the applications and eventually the underlying storage and
networking infrastructure. In order to not become the
throttling bottleneck, new security approaches will be
needed that allow openness and service while providing
protection. Finally, monitoring and eventually control
capabilities will be needed to keep pace with the system
improvements. Work is proceeding in all of these areas,
and the authors are hopeful that technology will keep
pace with the imagination of those of us who are doing
deep computing.
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