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Abstract.  
 
While most workload characterization focuses on application and architecture 
performance, the variability in performance also has wide ranging impacts on the users 
and managers of large scale computing resources. Performance variability, while 
secondary to absolute or optimal performance itself, can significantly detract from both 
the overall performance realized by parallel workloads and the suitability of a given 
architecture for a workload.  In making choices about how to best match an HPC 
workload to an HPC architecture most examinations focus primarily on application 
performance, often in terms nominal or optimal performance. A practical concern which 
brackets the degree to which one can expect to see this performance in a multi-user 
production computing environment is the degree to which performance varies. Without 
an understanding of the performance variability exhibited by a computer for a given 
workload, in a practical sense, the effective performance that can be realized is still 
undetermined.  In this work we examine both architectural and application causes of 
variability, quantify their impacts, and demonstrate performance gains realized by 
reducing variability.  
 
Introduction and Motivation 
 
Variability of parallel application performance has broad implications for how much 
useful work can be produced by a particular HPC system. Factors leading to changes in 
performance occur over multiple time scales and originate both from within applications 
and externally. As a result variability in runtime performance is as strongly tied to the 
workload and HPC architecture as it is to any specific application. This motivates the 
need for a better understanding of workload characteristics and the interplay between 
individual applications on a parallel computer. This work examines performance 
variations in parallel applications on time scales of years to microseconds, with a focus 
on understanding the causes of performance variability in multi-user production 
environments. While the focus is on IBM SP systems, comparisons are made across 
several architectures, interconnects and operating systems. Where possible, specific 
causes for the variation measured are identified.  In so far as performance variability is 
the result of some sort of contention, decreasing variability nearly always equates with 
increased performance. An evaluation of actions taken to achieve both of these goals is 
presented.  
 
The characterization of HPC workloads and their representative applications’ 
performance has been the topic of many and on going studies. Performance benchmark 
timings of parallel HPC applications may be taken either on dedicated hardware or in the 
context of day to day use. For a large scale computing center such as NERSC the latter 



means the timings may be influenced by hundreds of other parallel jobs, system 
administrative activity, and contention for shared resources. All of these may to lead to 
changes in execution times.  It is this more complicated production context that is 
arguably more important in setting expectations about how long a scientific calculation 
will take to complete. 
 
Variability in runtimes leads to many negative impacts all of which make HPC systems 
less productive.  The first impact is less work overall done by the system. Runtime 
variability is inherently bad for performance since variations in runtime proceed upward 
from some best case runtime, i.e., variation is never toward better than optimal 
performance. The longer a task takes, the more time it takes to get usable results for 
analysis.  Since some applications have a strict order of processing steps (i.e. in climate 
studies year 1 has to be simulated before year 2 can start), we can not directly overcome 
this slowdown via increased parallelism, and longer time steps mean slower progress.  
 
Variability decreases the efficiency of HPC parallel computers in that cycles are lost to 
both job failure and complex job scheduling.  Jobs fail through incorrect estimation of the 
batch queue requirements. System scheduling becomes less effective because users must 
be overly conservative in requesting batch time.  Most scheduling software relies on user-
provided run estimates, or times assigned by default values, to schedule work.  When a 
cautious user over estimates run time, the job scheduler operates on poor information and 
can cause inefficient scheduling selections on system. Any job that overruns the 
requested batch queue time will suffer a loss of productive time elapsed since the last 
checkpoint, or in the case of code which do not check point, the entire run may be lost.  
 
For the above reasons variability in runtime is a quantity that we seek to minimize insofar 
as it does not impact the mean application performance. In very general terms we may 
summarize the goal of this study algebraically by first identifying a workload, W, and 
expressing the realized performance, P, as the optimal or nominal performance P0 less the 
performance lost due to variability, V.  
 

P(W) = P0(W) - cV(W,…) 
 
This is the performance expression which accounts for the performance loss due to 
variability. It is written here for a fixed compute resource. Note that without the context 
of a particular workload such an expression of performance is not possible.  I.e., we 
identify performance as having meaning only within the context of both workload and 
computer. The overall goal of the present work is to identify the factors “…” which 
influence V and if possible the impact extent and parallel scaling of these factors.  
 
In order to do so, it is important to be able to detect, measure, and address the causes of 
performance variability. Keeping both goals in mind we will concentrate on how the 
shape of the distribution of runtimes for a task or application is influenced by a variety of 
factors and events occurring on the system. 
 



Understanding the parallel scaling of factors leading to performance variation is a chief 
concern of those who use and maintain large scale parallel computers. Large scale HPC 
resources are often built from thousands of smaller systems. Since the majority testing 
and performance analysis is done on the test systems much smaller than production 
machines it’s common to encounter variability induced performance loss that goes 
unseen on smaller systems. As we will demonstrate below the performance impact of 
variability at high concurrency can be quite large, becoming the dominant impediment to 
parallel scaling in some cases.   
 
Variability over long time scales 
 
The majority of the data reported here comes from “Seaborg”, the 10 Teraflop/s IBM SP 
at NERSC. This machine has 380 16 way POWER3 nodes connected with a colony 
switch. Some of the data comes from tests conducted in order to answer specific 
questions other data is collected as part of routine procedures.  This section shows how 
system events that impact application performance change throughout the lifetime of the 
machine. 
 
For a sufficiently large parallel compute resource operating in a diverse production 
environment it is difficult to unambiguously identity a precise normative state in terms of 
level of contention or overall functioning. Instead it is useful to utilize a compact set of 
short running benchmarks that serve as a barometer as to system functioning.  The 
timescales on which influences on performance act span many orders of magnitude, with 
some changes coming only on the timescale of months or years. Changes in such a course 
grained barometer provide evidence of how the system and/or its workload is evolving 
over very long intervals of days to years.  
 
In order to examine factors that change throughout a parallel machine over time the 
concept of node index is useful. We will define an arbitrary index whose values are 
important only in that they span the entire machine, providing a machine coordinate 
through which we examine properties across the machine.  

 
Fig 1.  A chronology of filesystem and process events that could impact parallel 
applications on seaborg. Blue = unaccounted for unix process, Green = filesystem 
memory buffers low, Red and Purple = significant filesystem or node problem 



 
As seen in Fig. 1, the space of system events that may impact parallel applications is not 
homogenous within the machine over long time scales. Events ranging from minor 
interruptions to outright node failures occur sporadically within this 6080 CPU parallel 
machine. While outright system failure is an exceptional case in which measuring 
performance is not directly meaningful, many system events do not cause failure, but 
rather introduce unexpected delays in some part of the parallel application. It’s important 
to note that these events may occur inhomogeneously both in time and within the 
machine itself.  Certain events occurring regularly, e.g. persistently low filesystem 
buffers (dense green line near the bottom in Fig. 1) occur only on login nodes, where no 
parallel applications are run, but only sporadically on batch compute nodes.  While these 
types of events do impact application performance, e.g. slowing filesystem access, they 
occur so infrequently that they are rarely considered in performance analysis studies.  
 
Once identified, the causes of these events can be investigated in detail and when 
possible improvements are made to system software or configuration to eliminate them. 
This is evidenced in the case of the filesystem buffer under-runs (green events) and stray 
unix processes (blue events) in Fig. 1. In both cases system level changes were made to 
prevent or decrease the frequency of such events. In these cases performance 
improvements are the result of diligently monitoring and addressing variability at a 
system administrative level.  
   
A similar chronology of performance variability at the application level is visible in the 
scaled wallclock times presented in Fig 2. Here the ratio of observed time to the average 
time over the course of more than three years shows wallclock times varying, in some 
cases, by a factor of two for the LU NBP benchmark and by just 20% for the less 
synchronizing EP NPB. These measurements were made with unchanging set of binaries 
(no recompilation was done). Many factors drive the fluctuations seen in Fig.2. Changes 
in operating systems and associated system software, internal interconnect loads, batch 
queue configurations, application libraries (e.g.  MPI) are among the influences on these 
timings.  Some of these changes can be clearly identified as coinciding with changes in 
the average performance or the variance therein.  
 
• Jan 2002 average performance increase following system software upgrades 
 
• April 2003 increase in variability after doubling the number of nodes on the switch.  
 
• October 2003 decrease in variability and increase in performance coincides with steps 
taken to remove asymmetries in the machine (vide infra) 
 



 
Fig 2. The ratio of observed wallclock time to the average time for EP and LU class 
C 256 way NAS NPB benchmarks. The average  is computed over the entire span of 
the data.  
 
The data shown in Fig. 2, while presenting a chronology of variability, do not accurately 
describe the underlying distribution of runtimes so much as simply demonstrating the 
outliers. The distributions  are shown in Fig. 3 for a total of twelve thousand  runs 
conducted over three years. The data marked “new” contains only data after October 23 
2003 when changes, detailed below, were implemented.  
 

 
 
Fig 3. Wallclock timing distributions for EP (blue) and LU class C 256 way NAS 
NPB benchmarks.  The LU data show performance variability prior to (red) and 
after (green) improvements in system configuration.  
 
It is interesting to note that the distribution of EP timings, which span the same time 
frame as the LU timings, is relatively unchanged throughout. That performance variation 
is tied to application and workload characteristics is not unusual.  When resource 
contention is involved it often gives some indication as to what resource is being 
contended for. Indeed the LU and EP benchmarks are quite different in that the former 
involves significant inter-task communication while the later involves very little.  
  



 
In this section we have presented a high level view of performance variability over long 
time scales. In the sections that follow we present examinations into performance 
variability factors at finer time scales and using more tightly controlled tests. By looking 
at a fine grained time scale we are able to identify some of the causes that underlie the 
above course grained changes.  
 
While we are principally concerned with the IBM SP architecture, where possible 
comparison across architectures is made. The next section in particular examines overall 
system architecture and runtime variability.  
 
Overall System Architecture: 
 
One of the fundamental contributors to variability is the hardware and software 
architecture. Almost all current large scale systems consist of a set of nodes connected by 
an internal interconnect, run by different software. Different architectures show different 
susceptibility to variabilityi.  
 
Four systems with different architectural features were examined: 
 
 Cray T3E - The oldest system is the Cray T3E at the NERSC, placed into service in 

1997 consisted of 696 CPUs (or PEs – Processing Elements), each with 256 MB of 
local memory. The PEs are connected by a network arranged in a 3-dimensional 
Torus with low latency and relatively high bandwidth but static routing. The 
processors are Alpha EV-57 running at 450 MHz.  

 IBM SP - The next system is a 6,656 processor IBM-RS/6000-SP at NERSC called 
Seaborg. It is composed of a 380 compute nodes containing 16 Power 3+ processors 
connected to each other with a high-bandwidth, switching network known as the 
“Colony” switch in a Omega topology. A full instance of AIX runs on every node. 
Each node has two switch adapters.  

 Compaq SC - The Lemieux Compaq SC system at the Pittsburgh Supercomputer 
Center (PSC) is composed of 750 Compaq Alphaserver ES45 nodes and a separate 
front end node. Each computational node contains four 1-GHz processors capable of 
two Flop/s per cycle and runs theTru64 Unix operating system. Intel -  LBNL’s 
Alvarez commodity cluster of 85 two-way SMP Pentium III nodes connected with 
Myrinet 2000, another Fat Tree. The CPUs are xSeries 330, running at 866 MHz with 
1GB SDRAM. Each node runs the Linux RedHat distribution.  

 
 



System  LU FT 
 Number of Runs 119 118 
Cray T3E Mean Wallclock Run Time (sec) 305.2 106.5 
 Standard Dev (sec) 47.8 12.1 
 Coefficient of Variance based on wallclock tim 15.58% 11.33%
 Coefficient of Variance based on accounted tim 0.6% 0.93%
 Number of Runs 165 210 
IBM SP Mean Run Time (sec) 74.6 41.5 
 Standard Dev (sec) 3.4 2.4 
 Coefficient of Variance 4.58% 5.70%
 Number of Runs 359 371 
Compaq SC Mean Run Time (sec) 42.8 30.6 
 Standard Dev (sec) 1.9 1.0 
 Coefficient of Variance 4.53% 3.18%
 Number of Runs 71 119 
Intel Cluste Mean Run Time (sec) 408.7 90.7 
 Standard Dev (sec) 10.7 1.0 
 Coefficient of Variance 2.62% 1.07%

Table 1 shows the basic statistics for the test runs.  Including some of the special tests discussed below, over 
2,500 test runs were made. 
 
The class C benchmarks were not run on the BlueGene/L system but a similar 
examination of the class B FT NPB was conducted and a comparison of the runtime 
distributions is shown in Fig 4. This architecture is also based on a microkernel and 
shows a tighter distribution of runtimes than the AIX based POWER3 system to which it 
is compared.   

 
Fig. 4 Relative distributions of runtimes for the class B FT NPB compared between 
an AIX / IBM SP cluster (in red) and a microkernel based BlueGene Prototype (in 
green).  
 
We now move from the high level architectural view of operating system, interconnect, 
and application to a detailed examination of specific causes of performance variability. 
 
Causes of Variability I: SMP Resource Contention 
 
 In most large parallel systems, one task of one application runs on each CPU.  This task 
requires not only the CPU as a resource in order to make application progress, but 
memory access, and will periodically require access to the communication fabric 
interfaces.  
   



The impact of intra-SMP contention between tasks within a node for CPU and memory is 
shown in Fig 5. In this experiment the given number of synchronized tasks each fill a 
separate vector of the given size with a scalar value. This operation requires CPU and 
memory bandwidth for each task to make progress. The frequency and magnitude of 
variation depend on the concurrency and the data size. The data size determines 
essentially which resource might be contended for ( L1 cache, L2 cache, main memory 
etc.)  Concurrency controls the frequency of contention. 

 
Fig 5. The impact of contention within an SMP node. The given number of 
synchronized tasks each fill a vector of a given size with a scalar value. 
 
On a fully packed SMP executing such a fill operation requires all caches closest to the 
CPU. If a non application process is to be scheduled it must necessarily displace one or 
more of the application processes from a CPU and cache. The result is contention 
between application code and system activity. This is demonstrated in Fig 5 by the large 
variations in the blue lines for small data sizes.  
 
This sort of contention occurring at the very smallest measurable timescales leads to 
processing scheduling and resource locking problems which impact codes which require 
synchronization between tasks.  Work is underway to address CPU scheduling through 
co-scheduling in order to minimize the temporal cross section of the aggregate time spent 
outside of application code.  
 
The impact of this low level contention on higher concurrency codes is realized in the 
subsequent analysis that examines such synchronization.  
 
Causes of Variability II: MPI 
  
Outside of CPU and memory applications contention may occur in communications 
between and within nodes through messaging.  
 
Measuring the roundtrip transit time for small messages on seaborg reveals statistically 
distinct modes.  The first mode is dominant accounting for 99.45% of all messages sent 
and received. The median transit time for this mode corresponds to the nominal latency 
of 11 microseconds. Analysis of the slower modes is increasingly complex, but the 
second most significant mode is reasoned to be a result of the 10 millisecond interval at 
which process scheduling takes place.  



 
Tests were conducted on POWER3 and colony in full production mode as well as on a 
dedicated system running no workload other than the test at hand.  
 
The slower messaging modes show strong overlap with from unix processes. In the case 
of shared memory the overall variability from the nominal latency occurs for a mixture of 
reasons, which may with further analysis be identified.  

 
Fig. 6 Distribution of intra-node roundtrip MPI_Send/MPI_Recv times through 

shared memory  in dedicated and production modes. 
 
 
Conducting the same experiments for short MPI messages over the colony switch fabric 
shows a dominant mode with the expected 36 microsecond round trip latency. The 
manner in which variability in messaging times arise is however different from the single 
node shared memory case.  Instead of distinct modes the dominant mode is shifted by 2.5 
microseconds and a broad range of transit times in the range of 70 to 180 microseconds 
occurs.  

 
Fig. 7 Distribution of intra-node roundtrip MPI_Send/MPI_Recv times through the 
colony switch fabric in dedicated and production modes. 
 
In a production environment  998 out of 1 million  transits requiring more than  50 usec. 
The system in dedicated mode has 1/3 as many .Nearly same holds for colony MPI so 



contention is likely in this case a result of GPFS or other daemons requiring resources 
within the node. 
 
In order to estimate the impact on applications of the minor modes observed in this study 
one must model the cumulative impact of infrequent slow messages on the MPI 
implemented in an application.  
 
The simplest model of a fully synchronizing MPI Collective operation for N tasks would 
entail each task sending or receiving a number of message proportional to the 
concurrency. Any variability leading to a slowdown in point-to-point communication 
would be reflected in a collective slowdown that increases with concurrency.   
 
It should be noted that the long time tails seen in the above distributions are similar to the 
features seen in distributions of application timings. There is a nominal runtime which 
varies downward very slightly but can drift upward (slower) to a significant greater 
degree.  
 
 
Causes of Variability III: Kernel Process Scheduling  
 
In their default mode of operation AIX and other Unix operating system kernels interrupt 
running code to schedule new processes for running in a round robin manner. For 
instance, in the AIX kernel there is an interrupt for each CPU at 10 millisecond intervals 
to schedule new work on each CPU. In AIX this interval is tunable via the schedtune 
utility. Given that many HPC applications have a lock step program flow which is highly 
synchronous, it is natural to consider if there is a benefit in process scheduling happening 
less frequently.  
 
To test this question we adjusted the AIX kernels process scheduling interval and 
examine the resultant impact on colony fabric MPI latency.  The second dominant mode 
in AIX/PWR3 colony MPI latency is seen to be directly related to this kernel interval. We 
conducted experiments on POWER3/AIX5.1 to determine the optimal value for the clock 
tick interval. The impact of lengthening the clock tick is to shift the messaging time to 
lower (better) values and decrease the magnitude of the second mode. A 4x clock tick 
setting leads to the number of message times greater than 40 microseconds decreasing 
from 0.2% to 0.06% and an average messaging time one microsecend less.  
 
 



 
Figure 8. The central moment and second mode of the inter node MPI latency are shown to improve by making  

the AIX kernel’s process scheduling interval less frequent.  
 
 
An arguably more important benefit is the reduction in the number of very slow messages 
in the second mode of the distribution. These slow messages, while infrequent, have a 
compounded impact at high concurrency leading to significant scalability problems.  
Since MPI collectives are built from a number point to point messages which often scale 
logarithmically (MPI_Allreduce) or quadratically (MPI_Alltoall) with concurrency the 
impact of this kernel process scheduling  
 
 
 
Causes of Variability IV: Cross application contention 
 
One of the most complex manifestations of performance variability on large scale parallel 
computers involves the contention between applications. Diagnosis of cross application 
contention is difficult for both statistical reasons and in that it requires a system context 
as opposed to application context of the factors leading to performance degradation. For 
instance in Fig. 9 we show the MPI_Allreduce performance for a 1290 way application 
that optimally, in the sense of  P0(W), should show constant timings per iteration for its 
reduction step. In practice, as shown in Fig. 9, we on occasion observe a sustained 2-3X 
increase in MPI_Allreduce timings that commence at times unrelated the flow of the 
program itself. Fig. 10 shows a different performance variation for the same application. 
The distinct, and in the case of Fig. 10 discrete, nature of these performance variations 
points to causes outside both the application itself and the normative state of the parallel 
computer.  In order to determine the cause for this performance variation we must go 
outside the context of this specific application and examine the other workload coincident 
with the slowdown.  
 



 

Fig. 9 Systematic change in application 
performance.  

Fig. 10 Periodic change in application 
performance.  

 
 
In order to make sense of the performance seen in Fig. 9 and 10 we look outside of the 
application itself to the other workload which coincides with the performance changes. 
Fig 11. shows that these performance changes coincide with GPFS read activity initiated 
from a different parallel application. In this case the contention leading to performance 
changes is for resources shared between applications, namely the parallel filesystem and 
interconnect.  
 
 

 
Figure 11. The coincidence of application performance changes in one application 
(lower) and the GPFS read activity in another application (upper). The read activity 
in the upper panel is represented as a machine index versus time. The nodes 
responsible for the read activity are from a different parallel job that than the one 
shown in the lower panel.  
 



In the case of Fig 11. the most directly accessible means on lessening performance 
variability was to examine and improve the I/O strategy in the application that induced 
the slowdown in the application shown in Figures 9 and 10. 
 
 
Causes of Variability V: System Activity 
 
NERSC’s IBM SP was doubled in size in early 2003.  Due to previous experience with 
variability performance issues, great care was taken to assure all known causes of 
variability were eliminated.  Some of these include 

• All new hardware was identical to the existing hardware 
• In order to assure the software configurations between the new and old nodes was 

identical, an exact image of all software was made and copied onto the new nodes. 
• All system administrative procedures were identical. 

 
In order to enable testing of the new nodes they were separated into a queue used for 
testing and an early user program. During this test period there were reports of the new 
nodes performing somewhat better – about 10% - than the old hardware. All reports 
involved parallel MPI codes. No serial performance differences were detected.  At other 
times, the new and old sets of nodes showed very similar parallel performance. After the 
new nodes were integrated with the existing nodes comparisons of parallel jobs between 
old and new nodes became extremely difficult due to do IBM’s LoadLeveler scheduling 
implementation but the difference in performance between new and old nodes continued 
to be a concern. 
 
Old/new node performance differences continued.  Periodic observations and testing 
provided inconsistent results and at times no asymmetry could be measured. The systems 
were audited and not cause was determined. 

 
Figure 12: Comparison of measured and modeled slowdown between two sets of nodes in a parallel computer.  

Over time a body of data and timings was established and it was found that parallel jobs 
ran slower, in proportion to their concurrency, on old nodes. The degree of the difference 
depends on the concurrency and the amount of synchronization in the MPI calls used in 
the code.  A test case employed in the resolution of this issue is the NAS parallel 



benchmark LU because it was turned out to be a fast, reliable probe that coincided with 
the performance difference of full scale applications. 

Since serial codes show no measurable difference the parts of the parallel codes that 
involve synchronization are implicated. Interruptions at the OS level or at the switch 
adapter level can have a minimal impact on serial processes, but compound when many 
concurrent processes are interrupted. If a linear model of frequent short interruptions on 
each node is extrapolated, the old nodes have half the performance of the new nodes (for 
LU decomposition) at a concurrency of 1250 tasks. Everything observed from the testing 
shows that synchronization of parallel jobs were impacted by delays proportional to 
concurrency. However it was not known if these interruptions were from hardware or 
software.  

 
 
By looking at UNIX process accounting logs 
it was possible determine the control work 
staion (CWS) on certain nodes ran several 
processes (lssrc, spget, odmget) and other 
system administrative commands up to 27 
times more often than other nodes.  This led 
to analysis of the problem management 
subsystem (pman) and found that while four 

definitions were deactivated using the system management GUI, they were still running.  
A problem in the implementation meant pman required explicit deletion of definition, 
rather than deactivation as was documented.   

       Process     #calls   #calls   Asymmetry       

    Name        old      new       ratio 

 

#spget_sy   191817     6864      27.945367 
#fcistm     192121     7188      26.728019 
#lssrc      194608     7780      25.013882 
#basename   385701    15550      24.803923 
#odmget     193918     8481      22.864992 
#ksh        390625    20129      19.406081 
#rm         197514    12449      15.865853 
#sed        397999    29482      13.499729 
 ksh        206206    23159       8.903925 

 
Once the definitions were deactivated, applications ran with very low variability 
regardless of how many new and old nodes it used.   

 
Figure 13: The parallel scaling of MPI_Barrier after leaving and MPI_Barrier is compared before (red) and 

after (green) changes where made to lessen synchronization variability within the machine.  
  

Furthermore, applications run at high concurrency with much less variability. 
Resolving this issue lead to a measurable improvement for synchronizing MPI codes at 
high concurrency. In normal operation, jobs use a combination of old and new nodes.  
Thus, the end result is that all codes see a benefit of faster and more consistent run times, 



particularly those codes at higher concurrency. The performance gains shown earlier in 
Fig 2. and Fig 3. are a result of the changes described in this section.  
 
   
Conclusion: 
 
Many factors lead to variability in HPC application runtime on parallel architectures. 
Variability in performance is inherently tied to contention for resources between 
applications and operating system. 
 
Events that occur as a machine evolves over years and at the microsecond timescale lead 
to the performance distributions observed in production environments.  Among these are: 
 
 OS/Kernel intrusion on applications 
 Transaction processing oriented kernel scheduling algorithms 
 Inter-Application contention for shared resources 
 Concurrency as a magnifier of synchronization penalties  

 
In general application level interruptions due to resource contention and process 
scheduling are at the root of runtime variability. It is hoped that by illustrating the 
specific mechanisms by which variability is introduced and by quantifying the impact of 
variability on parallel codes that system architects might better understand which 
elements of design impact HPC goals and that developers of parallel applications might 
better understand how to mitigate the impact of variability.  
 
It may be possible to reduce the causes of variability (I-V) detailed above down to a 
smaller subset of fundamental causes, the profiling and monitoring required to do so 
would likely introduce system load that could skew the analysis. The detail and scope of 
performance monitoring which best suits HPC computing is an active and open area of 
investigation.  
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