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Abstract

Over the past decade, the ability to accurate sequence genomes has
improved to the point where today, it is possible to acquire complete
genomic sequences of organisms within a day. This makes it feasible
to start to study the interaction genes and other signal information
have with the genome. The effort described in this paper is to use
the manual analysis of a gene regulatory network, which took years of
effort to produce, and use it to see if, given a set of data of what genes
are influenced when other genes are active or inactive, it is possible
to automatically determine the regulatory network with any degree of
accuracy.

1 Introduction

Over the past decade, the ability to accurate sequence genomes has improved
to the point where it is possible to acquire complete genomic sequences of or-



ganisms within a day. This makes it feasible to start to study the interaction
genes and other signal information have with the genome. This process, the
influence one gene has on others - either helping turn target genes on or off
- is the regulatory network, and the act of turning a gene on or off is called
transcription regqulation.

Transcription is initiated when RNA polymerase begins to unravel the
two strands of DNA and starts transcribing the DNA sequence into an RNA.
For RNA polymerase to bind to the transcription start site (TSS), other pre-
initiation protein complexes generally have to bind to the DNA just upstream
(with respect to the direction of transcription) of the gene in question. The
intergenic region close to the start of the gene, called the promoter region,
contains small sets of sequences where transcription factors, can selectively
bind. It is common that combinations of transcription factors are needed
to influence the transcription. The result is that the relationships between
genes can be expressed as a graph, where the genes are considered nodes or
vertices.

Directed edges indicate whether or not one gene influences another. The
influence of a gene can either cause the target gene to express (turn on) or
repress (turn off) and hence the edge can have weight of 0, 1, or -1. Once in
this form, graph algorithms, such as motif finding, can be used for further
analysis.

Only a few regulatory networks have been explored to an unambiguous
degree, in part because of the expense and time required to experimentally
determine the complex relationships. However, recent advances in microarray
technology make it possible to rapidly assess whether a specific gene is active,
and to do it in a cost-effective way. Thus the genomics community is on
the verge of an explosion of expression data which can only be analyzed by
automating the ability to find transcription relationships between genes.

Microarrays are two-dimensional grids of expression data where time is
along one axis and different genes (or mutant forms of the same gene) are
along the other. Arrays give a broad, comprehensive view of the state in the
cell or embryo, see Figure 1.

Fortunately, a few well-studied organisms like Escherichia coli and Sac-
charomyces cerevisiae have had their expression patterns studied for decades
using techniques that are slower than micro-arrays. One of these studies by
a large team lead by Eric Davidson recently published the proposed tran-
scription network for the embryonic development of the sea urchin Strongy-
locentrotus purpuratus.



Figure 1: Image of micorarray

The aim of this paper is to automate the network inference process un-
dertaken by Davidson and completed following years of painstaking peicing
together of the regulatory puzzle. While no piece of software can seriously
aspire to replace the bench experimentalist’s hard-won intuition, we hope
that by trading a little accuracy for a lot of time, we can expedite what will
likely be a common procedure in the near future.

2 Regulatory Gene Networks in the Sea Urchin
Embryo

The sea urchin embryo offers many advantages for study of developmental
regulatory networks. The embryo shows considerable development in only 36
hours, and develops into a simple larva compared with insects or vertebrates.
In addition, the molecular and developmental biology of the sea urchin has
been extensively studied, and dozens of regulatory genes have been cloned
and their expression pattern well described. Furthermore, the genome has
been somewhat characterized.

For this reason, many research groups are actively performing experi-
ments with sea urchin embyros. Recently, Davidson and co-workers published
a provisional regulatory gene network [1, 2] for specification of endomesderm



in the sea urchin embryo. Based on many years of work, the network incor-
porates perturbation data; computational and experimental cis-regulatory
data; the results of rescue experiments; and all the underlying information
from experimental embryology.

Before commencing the perturbation experiments, a good deal of work
was spent disovering and characterizing new genes [3, 4]. According to
Davidson and coworkers most of the transcriptional regulatory genes that
are involved specifically in endomesoderm specification up to 24 hours are
probably known. After discovery, many genes were sequenced and direct
cis-regulatory analysis carried out. In some cases cis-regulatory regions for
genes were confirmed experimentally, while in other cases, the regions were
inferred by comparison with the same region of the genome of a close relative
of the sea urchin under study.

2.1 Perturbation Data

A variety of perturbation experiments were made by Davidson and coworkers
to uncover the relationship between various genes in the network. We divide
these into two categories, the first being perturbations of factors that act
on the gene network from outside, the second being perturbations of factors
that are entirely within the gene network. This distinction, of course, de-
pends on the progress of experiments — future experiments will expand the
network and encompass current ‘external 'perturbations. However, separat-
ing the perturbations will be useful when comparing our model to Davidsons.
Since, using the simple models in this project, we are not likely to be able to
correctly generate a model of the external factors.

The first category is a set of perturbations consisting of mRNA injec-
tions that influence transcription factors that are known to be important in
the development of the endomesoderm, but are not themselves expression
products of genes in the network being studied. Much previous work has
uncovered that nuclearisation of (-catenin is required in a certain spatially
localized ring of cells in order that the sea-urchin embryo develops correctly,
and that a cadherin mRNA (cad moe) injection binds free (-catenin in the
cytoplasm and prevents nuclearisation. This type of knock out effects many
genes downstream. In a similar manner, an injection of dominant negative
Notch overexpression (dnn moe) acts to block the Notch receptor. This re-
ceptor is part of an important intercellular signaling mechanism that causes
particular type of cells to form, and blocking it’s action causes a large ripple
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‘ Perturbation Type ‘ Gene ‘

External MOE cad dnn

Internal MASO alxl bra dri etsl eve foxa
foxb gatac gatae gcm
gsc hnf6 n pmarl soxbl
hox11/13b krl tbr

Internal EN dri elk krox otx pmarl
Internal MOE pmarl soxbl

Table 1: Perturbations used

effect.

The second set of experiments is a much larger set of perturbations, each
designed to knock out or enhance the effect of a particular gene in the net-
work. Within this set there are three techniques used to develop knock outs
or enhancers:

e Antisense morpholino oligonucleotides (MASO) are molecules designed
to bind to the mRNA produced by a particular gene. This shuts down
the the translation of mRNA to transcription factor and acts to knock
out the expression of a particular gene.

e Engrailed repressor domain fusions (EN) are mRNA molecules that are
a fusion of the mRNA of a particular gene and a piece of mRNA the
encodes a powerful repressor called Engrailed. When these molecules
are translated, the transcription factor will likely bind to any site that
the original genes transcription would bind to, but it’s action will be
to silence the gene it has bound to.

e Use of an mRNA of a gene directly. This causes an over expression of
a particular gene (MOE).

For example, if the gene krox normally upregulates gene otx, then an
injection of engrailed fusion of krox (krox EN) causes a transcription factor
to be produced that will bind to otx and prevent any expression of otx. The
full set of perturbations is shown in the table 2.1.

The effects of these perturbations were monitored in two ways. The
first was whole-mount in situ hybridization, where mRNA expressed by a



gene of interest is fused with a special piece of sequence which can be made
visible after some further processing. This technique allows information to
be gathered about the time and location of gene expression, but is not very
accurate.

The second was using qualitative polmerase chain reaction (QPCR). In
this technique the expressed mRNA is converted to DNA via a reverse tran-
scriptase, and with appropriate PCR primers the number of copies is expo-
nentially increased via the usual PCR procedure. By running the PCR until
the DNA is just detectable, the original amount of mRNA can be calculated
based on how many PCR iterations were required. This process is very ac-
curate, but does not afford any spatial information regarding expression to
be gathered.

To be recorded a change of greater than 3-fold was required, i.e. less
than 33% of the control level of transcripts or more than a 300% result
from the perturbation. Usually more than one experiment was performed,
using both the same embryo culture and different ones. The results of all
the QPCR experiments are available at http://www.its.caltech.edu/~
mirsky/qpcr.htm and are updated as new experiments are performed.

A schematic of the network in [1] is shown in Figure 2.1. Additional view
of the network and of our intermediate results are available at [18, 17].

2.2 Direct and Indirect Effects

By itself, perturbation data cannot distinguish between direct or indirect ef-
fects on genes. A knock out of a gene that encodes a transcriptional activator
may decrease expression of both the target genes it has an immediate effect
on, and also on genes donwstream of this target gene. A direct effect occurs
when a perturbation changes the expression or function of a transcription
factor that changes the expression of another gene which has a target site
for that factor. Obviously, detailed cis-regulatory analysis of the gene will
resolve whether or not there is a target site, but this analysis was not avail-
able for many genes. In this case, rescue experiments were used. A rescue
experiment consists of the attempted rescue (reversal) of a pertubation effect
by injection of an appropriate amount of mRNA encoding a different per-
turbation. For example, the perturbation otx En depresses the expression of
the eve gene in the 24-27 hour time period. However, introduction of krox
MOE returns the expression of eve to normal levels, so it is likely that otx
acts on eve indirectly through krox.



Davidson’s Data
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Figure 2: Davidson’s Gene Network



Direct experimental and computational cis-regulatory analysis of genes is
recorded somewhat cryptically in Table 3 of [2], using the acronyms ECRA
to mean experimentally verified connection, and CCRA to mean a computa-
tionally verified connection. The details of rescue experiments are scattered
in footnotes to Table 3 and Appendix I of [2]. They are not recorded as
direct QPCR measurements.

3 Modeling the Sea Urchin cis-Regulatory Net-
work

We chose to model the cis-Regulatory network using a directed graph (di-
graph) where the nodes in the graph are genes, and the arcs between the
nodes are perturbations. The arcs carry a sign to indicate whether the per-
turbation is an enhancer, +1, or a repressor, —1.

3.1 Working with the QPCR Data
The original format of the QPCR data file was:

GENE gene name
PERTURB  perturbation name
time spec. {value, NS} separator {value, NS} separator . ..

where time spec. indicates the time period during which the experiment
was run, for example, 12-16h; value is a real number showing the increase
or decrease of expression of the specified gene in response to the sepcified
perturbation, NS is used to indicate no signal; separator may be one of ¢, used
to indicate QPCR experiments using the same batch of cDNA, or ‘/used to
separate different embryo cultures.

To this file we added two more annotations. The first was to facilitate a
direct comparison of the network shown in Davidson’s paper with our own
networks. The annotation consisted of the keyword NET followed by a +1 in-
dicating an up or down regulation respectively. The second annotation was
made to account for the various rescue experiments and additional informa-
tion that had been accumulated to indicate that an interaction was actually
indirect. This annotation consisted of the keyword NET followed by 0.



3.2 Software and Algorithms

Two parallel software suites were written to manipulate this data. The first
consisted of a set of Perl scripts to parse the QPCR data file and generate
connectivity matrices, to compare connectivity matrices, and to generate
input data for Gnuplot so a network could be visualized using a scatter
plot; a Fortran 90 program to carry out other matrix manipulations such
as transitive reduction. For more details, see [18] The second was a Java
framework to parse the data, generate connectivity matrices perform other
matrix manipulations, and to implement a motif finding algorithm. For more
details, see [17]

One of the most obvious experiments to try on the QPCR data is a
transitive reduction.

The transitive closure of a directed graph (digraph) G, denoted by G,
is obtained by adding an arc (i, 7) if there is a path from ¢ to j in G [8]. The
transitive closure of a graph indicates the reachability of all pairs of vertices
in a graph. Two graphs G and G’ are said to be transitively equivalent if they
have the same transitive closure. The transitive reduction of GG, denoted by
GG, is obtained by removing as many arcs as possible, such that the resulting
graph is transitively equivalent to G.

For an arbitrary digraph, finding its transitive reduction in NP-complete;
however, if the digraph is acyclic, then its transitive reduction can be deter-
mined in polynomial time. Warshall’s transitive closure algorithm [15] finds
a transitive closure of a matrix in O(n?) time and O(n?) space.

We modify Warshall’s algorithm in a simple way to produce a transitive
reduction of the QPCR digraph, taking into account that: the edges in our
digraph have signs, the meaning of which must be preserved; and that the
matrix representing the digraph, D, is not an adjacency matrix, it is likely
to have transitive edges. The first modification is to use the product of
the edges when generating a new transitive edge. This ensures that, for
example, when A enhances B and B enhances C, then A must enhance C. The
second modification is that algorithm must record edges that are present in
D but discovered to be transitive, and must record newly generated edges as
transitive. The algorithm is shown as pseudocode below. After the algorithm
has completed, and element of R that has a value greater than 2 corresponds
to a transitive edge.



R :=D
for k = 1 to n do
for i 1 to n do
for j =1 ton do
if R(j,i) > 0 and R(k,i)*R(j,k) > 0 or
R(j,i) < 0 and R(k,i)*R(j,k) < O then
R(j,i) := 2%R(j,1)
else if R(j,i) == 0 and R(k,i)*R(j,k) !'= O then
R(j,i) := 2xR(k,1)*R(j,k)
else if R(j,i) != 0 and R(k,i)*R(j,k) !'= O then
record inconsistent edge

The final branch of the if clause records edges that are inconsistent with
one another.

The variant of the Warshall algorithm implemented has limitations when
the input contains cycles, and the perturbation data actually contains a
small number of cycles. For example, otx increases expression of krox and
krox increases the expression of bra, however krox increases the expression
of otx which also increases the expression of bra. Under these circumstances,
edges otx — krox and krox — otx are both labelled transitive and both are
deleted. Because of this behaviour, some nodes have no inputs after running
the algorithm. In reality, at least one of these edges needs to be kept. We
implemented a simple fix for this problem. If the node has no inputs after
transitive reduction, an edge is kept for a value of R equal to 2. These
correspond to edges between nodes that are connected via one other path.
In the example above both edges will be kept.

4 Motifs in genetic regulatory networks

It is by now well-established that many artifical and naturally-ocurring net-
works have striking and recurrent topological properties. For instance, net-
works as disparate as the World Wide Web, the human social network, and
power grids posses a degree-distribution among their nodes that varies as
an inverse power. The so-called 'power-law’ networks possess nodes whose
outdegree goes as 1/k®, where k is the node rank, and « is some scaling pa-
rameter typically ranging from 2 to 4. Such a degree distribution also leads
to other interesting macroscopic properties among such networks, such as
strikingly short search times and small average diameter.
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Many networks also possess certain striking microscopic properties, specif-
ically, the existence of over-represented motifs. A motif is a combination of
three, four, or five (or arbitrarily many) node subgraphs that appear more
often than random chance would allow. In the case of transcription net-
works, such motifs are thought to represent the biochemical constraints of
how transcription factors bind to each other and to DNA, and thus initiate
transcription. Hence, finding such motifs, if they exist, would elucidate not
only how transcription factors collaborate to control transcription, but would
also facilitate building the large-scale network describing the interaction of
transcription factors among many genes (thousands in the case of the whole
genome).

Recently, the Alon [10] group enumerated all three and four-node sub-
graphs appearing in the transcription network of a well-studied organism S.
cerevisiae, or brewer’s yeast. Then, they compared the rate of appearance
of a given motif to the same motif in random networks of similar degree
distribution. Motifs appearing in the transcription network more than their
random counterparts were flagged as significant. In the case of S. cerevisiae,
there were three such motifs: the feed-forward loop, the single-input module,
and the dense overlapping region (DOR).

P/

Figure 3: Recurring motifs in transcription networks. Feed-forward loop
(left), single-input module(center), and dense-overlapping region (right).
These latter two are directional bipartite graphs.

The motifs were found through exhaustive and computationally slow
search of three and four node subgraphs, as well as a clustering approach
that located areas of dense connectivity, and hence high probability of find-
ing a DOR. However, such a search may well be slow in a transcription
network larger than the ~ 500 nodes of E. coli. Additionally, computer sci-
ence theorists have delighted in finding polynomial-time algorithms for the
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motif-finding problem (or more correctly, the subgraph isomorphism prob-
lem), which is known to be NP-complete[6]. To that end, two of these authors
formulated just such algorithms for the three motifs cited above, and imple-
mented them on the E. coli network used in [10]. Since this paper focuses
only on sea urchin and the Davidson work, we only summarize these results
here.

The feed-forward loop can easily be found via the Floyd-Warshall al-
gorithm [9] in O(n?) time. The single input module and dense-overlapping
region can be seen to both be examples of one type of subgraph, what we call
a directional bipartite graph. Unlike the conventional bipartite graph well-
known to graph theorists, our definition includes the additional constraint
that the graph be directed, and furthermore all edges traversing the partition
be pointing in the same direction. Thus a DB graph is a directed graph that
can be divided into two sets of nodes V; and V, such that (u,v) € E implies
that u € V; and v € V;, and that u ¢ V5, v ¢ V4. This is exactly the dense
overlapping region sketchily defined by Alon[10] and shown in Fig. 3.

The details and full implementation of the algorithm can be found here[16].
Very generally, the algorithm crawls the network in a depth-first search-like
manner, growing a series of directional bipartite graphs as it trawls, and only
outputting the set of maximal such subgraphs. The running time is O(n)
for arbitrary motif size, a dramatic improvement over the exponential cost of
the Alon group’s exhaustive search. While additional heuristics were added
to assure accuracy in the face of possible strange topologies, the authors are
confident of the algorithm’s fundamental soundness.

A graph of the FE.coli transcription network with discovered motifs is
available[16], and seems to concur broadly with the motifs found in [10].
As indicated in that work, the motifs correlate strongly with gene function,
with a given dense-overlapping region comprising most or all of the genes
involved in a cell’s basic functions, such as osmotic stress reaction or carbon
utilization.

It is possible, if not likely, that these motifs are also prevalent in higher
organisms, like sea urchin. If this is true, then finding such motifs in a net-
work like the one considered in this paper would make the task of network
inference considerably easier. In the edge-removal process described in this
paper, edges belonging to a known motif might be spared, as such edges
are more likely to be correct. In addition, examining nodes as grouped in a
motif might allow us to extract information that, currently, resides only the
experimentalist’s head. In other words since, as indicated by [10], topology
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probably reflects function, then knowing such microscopic topological detail
may elucidate function. As we have discovered in this work, armed with
nothing other than the Davidson perturbation data and rudimentary knowl-
edge of sea urchin development, inferring the transcription network is difficult
indeed. If, however, we can clearly divide the relevant genes by function, it
would be one more factor to consider, in addition to time and location of
expression within the embryo, in understanding gene expression.

This leaves for the moment the equally challenging question of motif
discovery. If indeed there are recurrent motifs in transcription networks, then
they are likely to be more complex in multicellular eukaryotes like sea urchin,
than those found in single-celled prokaryotes like F. coli. Alternatively, while
the basic building blocks could be limited to the simple motif vocabulary
found in E.coli, there may well be a higher-order structure that organizes such
blocks into a complex network. Hence, the obvious next step in the study
of transcription networks is to probe larger and more complex networks,
in larger and more complex organisms, where such phenomenon would be
apparent.

5 Analysis

The procedures described above iteratively progresses from all the possible
transcription factor networks indicated in the QPCR data toward the network
presented in Davidson’s paper [2]. There are 55 different genes in the original
QPRC data, which can be viewed as nodes on the network. Six more nodes
are added to the network in the paper to accommodate maternal influences
and other affects. In a directed network of 61 nodes, there are 7,442 possible
edges.

Davidson’s actual data tables indicates a total of 238 edges, yet the fi-
nal transcription factor network in the paper, which we will call the ‘paper
network’, only has 104 edges defined. There are multiple ways the edges are
reduced as described below. Using the footnote information in the Davidson
paper removes 66 edges.

Performing transitive reduction on the data eliminates more edges. There
are two ways to do transitive reduction. The first is to do the transitive
reduction once for all the data. The other is to do it at each of the four
time periods, and merge the results keeping all non-transitive edges at each
time step. These two approaches differ in their impact. For example, using
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’ Data ‘ Operation ‘ Number of Edges ‘

QPCR 238
QPCR with footnotes 172
QPCR TR 43
QPCR with footnotes TR 49
QPCR MTR 159
QPCR with footnotes MTR 130

Table 2: Number of Edges in Network as a Function of Data and Algorithm

the original QPCR data, which starts with 238 edges the one time reduction
eliminates 195 edges, far too many. Using transitive reduction on the data per
each time period eliminates 79 edges and leaves a total of 159. Similar results
are shown for other combinations. Essentially, doing transitive reduction
once eliminates too many edges, but for transitive reduction taken at each
time step the number of edges starts to approach the number of edges in the
paper network close to the final diagram.

Table 2 summarizes the number of edges for each type of operation. The
two basic data sources are the original, undisturbed QPCR data, and the
QPCR data with the adjustments indicated in the Davidson paper. The
two operations are transitive reduction done on edges from all time periods
simultaneously (TR), and transitive reduction performed at each time of the
four time periods (MTR). This results in 6 combinations.

There is a significant difference in doing transitive reduction once or mul-
tiple times - once per time interval. If the reduction is done just once, the
number of edges is well under what is reported in the paper network. Ap-
plying transitive reduction at each phase of development, yields a number of
edges higher than the paper network.

It is interesting to look at the number of edges in the original data at
each of the four time periods. These are shown in Table 3.

Agreement on the total number of edges is not sufficient, the edges have
to be the correct edges. Table 4 shows the comparison of the number of edges
in each derived Transcription Factor network and that of the paper network.
For each combination of operations, there are three categories of edges:

e Edges that exist in both derived network and the paper network

e Edges that exist in the derived network but do not exist in the paper
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| Time Period (hours) | QPCR | QPCR with footnotes

12-16 58 45
17-21 116 189
23-28 173 126
30-36 16 16

Table 3: Number of Edges as a function of Time

Comparing Paper with: QPCR | QPCR | QPCR | QPCR | QPCR | QPCR
TR MTR | with with with
foot- foot- foot-
notes notes notes
TR MTR
In Common 69 17 60 69 23 61
Edges in data but not in paper | 166 26 97 100 26 67
Edges in paper but not data 32 87 42 32 81 41
Edges that disagree 3 0 2 3 0 2
Edges displayed 235 43 157 169 49 128
Edges in the Paper Network 104 104 104 104 104 104

Table 4: Comparison of edge counts and types

network.

e Edges that are in paper network, and not in the derived network.

Also in some cases, there is disagreement for a small number of edges that
exist in both the derived network and the paper network. This is where the
edges exists in both, but are opposite in function (e.g. an activator rather

than a repressors, of vis a vis).

Some interesting points can be made about Table 4. First, the transfor-
mation with the closest match to the paper network is QPCR data, adjusted
with the footnote comments in the paper footnotes and then with transitive
reductions performed at each phase. This agrees to within 23% on the num-
ber of total edges. Despite that, the number of edges in the derived data and
the paper network, are not consistent. There are 41 edges in the paper but

not in the derived graph.
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Comparing Paper with: QPCR | QPCR | QPCR | QPCR | QPCR | QPCR
TR MTR | with with with
foot- foot- foot-
notes notes notes
TR MTR
In Common 69 17 60 69 23 61
Edges in data but not in paper | 121 22 64 70 19 41
Edges in paper but not data 4 59 14 4 53 13
Edges that disagree 3 0 2 3 0 2
Edges displayed 190 39 124 139 42 102

Table 5: Comparison of edge counts and types

Another way to evaluate the degree of agreement is to reduce the QPCR
data to only the genes and perturbations in the paper network. Then the
same transformations are applied to the data. In this case, the data shows
improved agreement when all information is used. Indeed, as Table 5 shows,
there is now 98% agreement between the number of edges in the derived
network and the network in the paper. However, these edges are still in-
consistent, as is also shown, with 13% of the edges indicated in the paper
network not present in the derived network.

Figures showing the results are available in a separate PDF file, or at [17].

6 Conclusions

Several conclusions are clear from our analysis. First, it is not possible to
automatically or even manually derive a network from the data presented in
the QCPR tables that is consistent with the paper network. There are two
aspects to this conclusion. First, we are unable to derive a network that has
approximately the same number of edges as the paper network. The second
aspect is whether the data can be consistently derived - so that even if the
total edges do agree, there is consistency in whether edges are overly specified
or under specified. The closest agreement, as one would expect is when all
the information is taken into account for the derived graph that adjusts the
QPCR with footnoted information and with Transitive Reduction at each
Time phase. Yet while there is agreement in total edges, it only had 48% of
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the edges in agreement between the derived edges and the paper.

There may be several reasons for this discrepancy. First, there may be
errors in our methods we have not detected, or that the algorithms used by
Davidson had addition function we did not include. This is mitigated by the
fact we approached the reductions in two algorithmic ways and the annota-
tions from the QPCR data with footnote information is straightforward. The
results of the two independent algorithms agree to less than 1% difference.
Another possibility is that there is addition information Davidson had that
is not included in the paper, which led to the transcription factor network in
the paper. This information was not found by us in other publications.

When the data set was reduced to just the genes and perturbations in
the paper network, there was very close agreement in the number of edges in
the derived network, but still 13% inconsistency in which edges were actually
found.
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