
NERSC Overview
CSADS Workshop on PetaScale

Applications and Performance Strategies

Katie Antypas
HPC Consultant

July 14, 2008

Overview

•Overview of NERSC Systems and
Services

•Tips for running your code
successfully at NERSC (or any
other HPC Center)

2

NERSC Mission

The mission of the National Energy
Research Scientific Computing Center
(NERSC) is to accelerate the pace of
scientific discovery by providing high
performance computing, information, data,
and communications services for all DOE
Office of Science (SC) research.

3

NERSC is the Production
Facility for DOE

•NERSC serves all areas
~3000 users, ~400 projects

•Allocations managed by DOE
– 10% INCITE awards:
• Large allocations, extra service
• Used throughout SC; not just DOE mission

– 70% Production (ERCAP) awards:
• From 10K hour (startup) to 5M hour
• Only available at NERSC

– 10% each NERSC and DOE/SC reserve

•8 consultants to help users
– Monday - Friday 8am - 5pm PT
– email us at consult@nersc.gov
– We are here to help! 4

Astrophysics

6%

Accelerator Physics

7%

Lattice Gauge Theory

7%

Climate Research

9%

Materials Science

13%

Chemistry

13%

Fusion Energy

28%
Life Sciences

6%

Environmental Sciences

0%

Engineering

1%

Geosciences

2%

Computer Science

1%

Applied Math

2%
Nuclear Physics

5%

High Energy Physics

0%

Fusion Energy
28%

Chemistry
28%

Material Science
28%

Climate
9%

Lattice Gauge
7%

Acceleratory Physics
7%

Astro
6%

Life Science
6%

Nuclear Physics
6%

Getting an HPC allocation

• Not as hard as you might think
– If you have an abstract of your research goals applying will

take you 30 min or so
• A small allocation is stepping stone toward a large

allocation when you need it. It helps you build a
computing relationship with DOE and project
reviewers.

• NERSC
– https://nim.nersc.gov/newpi.php

• ANL
– https://accounts.alcf.anl.gov/accounts/projects/intrepid.htm

• ORNL
– http://www.nccs.gov/user-support/access/project-request

Systems

6

HPSS Archival Storage
• 44 PB capacity
• 10 Sun robots
• 130 TB disk cache

NERSC 2008 Configuration

7

Large-Scale Computing System

Franklin (NERSC-5): Cray XT4
• 9,740 nodes; 19,480 cores
• 19 Tflop/s sustained SSP (100 Tflops/s peak)

Upgrading to QuadCore
• ~36 Tflops/s sustained SSP (355 Tflops/s peak)

Clusters

Bassi (NCSb)
• IBM Power5 (888 cores)

Jacquard (NCSa)
• LNXI Opteron (712 cores)

PDSF (HEP/NP)
• Linux cluster (~1K cores)

NERSC Global
 Filesystem (NGF)

230 TB; 5.5 GB/s

Analytics /
Visualization

• Davinci (SGI
Altix)

Clusters at NERSC

• 2 clusters are available at
NERSC for small and
medium sized jobs

• NCS-a “Jacquard” (08/2005)
– 722-processor (2.2 GHz

Opteron) Linux Networx
Evolocity cluster

– InfiniBand fat-tree
• NCS-b “Bassi” (01/2006)

– 122 IBM p5-575 nodes (with
32GB)

– 1.9 GHz POWER 5 processors
– Dual plane Federation

interconnect

NERSC-5 System is a Cray XT-4
• Parallelism: 9,740 nodes with 19,480 cores

• 102 Node Cabinets, 16 KWs per cabinet
• 39.5 TBs Aggregate Memory

• Peak performance: 100 Tflop/s
• Sustained performance: 19 Tflop/s
• Interconnect: Cray SeaStar2, 3D Torus

• >6 TB/s Bisection Bandwidth
• >7 GB/s Link Bandwidth

• Shared Disk: 345 TBs
• Upgrading to QuadCore

• 355 Tflops/s peak
• ~36 Tflops/s sustained

Benjamin Franklin, performed ground
breaking work in energy efficiency, electricity,
materials, climate, ocean currents,
transportation, health, medicine, acoustics
and heat transfer.

Franklin Cray XT-4 System

Computing at Scale

Concurrency on Franklin by % of Raw Hours

Date

100%

75%

50%

25%

0%

Franklin Programming
Environment

• Compilers (Fortran, C, C++)
– PGI
– PathScale
– GNU

• Parallel Programming Models: Cray MPICH2 MPI,
Cray SHMEM, Open MP

• AMD Core Math Library (ACML): BLAS, LAPACK,
FFT, Random number generators, GNU Fortran
libraries

• LibSci scientific library: ScaLAPACK, BLACS,
SuperLU

• Profiling tools CrayPat, Apprentice2, IPM, TAU
• Performance API (Papi)
• Modules

!

Extensive 3rd Party Software

• Check to make sure your application isn’t already
installed

• Use modules command to see software availability on
all NERSC machines (“module avail”)

• Math - acml, aztec, dfftpack, fftw, gsl, LibSci, parmetis,
parpack, petsc, pspline, superlu, sprng

• I/O - hdf5, nco, netcdf, pnetcdf
• Chemistry/Mat Sci - amber, namd, nwchem, abinit,

cpmd, lammps, quantum expresso, siesta, vasp
• Visualization - idl, gnuplot, visit, ncar
• Debuggers - Allinea’s DDT

!

Franklin Overview

Compute
 Node

Compute
 Node

Compute
 Node

Compute
 Node

Compute
 Node

Compute
 Node

Compute
 Node etc….

No
local
disk

Login
 Node

Login
 Node

Login
 Node etc….

/home

Login
 Node

Login
 Node

/scratch

Login
 Node etc….

/project
HPSS

Full Linux OS CNL (no logins)

What kind of OS?

USER PITFALL!!
• Consider what kind of OS you are using

– Limited OS
• Depends on system but limited OS calls
• Features which could be limited on compute

nodes
– Shared libraries
– Scripting languages, python, perl
– Process control (fork, exec)
– Can’t ssh from compute node to compute node
– Can’t call system() from Fortran parallel job
– No Java on the compute nodes
– No X-Windows support on compute nodes

Memory Considerations

USER PITFALL!!
• Each Franklin compute node has 4GB of

memory.
• CNL kernel, uses ~300 MB of memory.
• Lustre uses about 17 MB of memory
• Default MPI buffer size is about 72 MB.
• Single core MPI jobs have ~3.6 GB/task.
• Dual core MPI jobs have ~1.8 GB/task.
• Change MPI buffer sizes by setting certain

MPICH environment variables.

User Questions and
Problem Reports

Profile of Incidents by Category
Category Incidents
Announcements 4
Files/Data Storage 361
Information Technology 55
Network Access 56
Programming 194
Running Jobs 1032
Software 346
Record Count: 7

NERSC Consulting Tickets Jan 1, 2007 to September 18, 2007

Running a Job on Franklin

Login Node

Actually 1 dual-core chip

1. Log in from your
desktop using SSH

2. Compile your code or
load a software module

3. Write a job script
4. Submit your script to

the batch system
5. Monitor your job’s

progress
6. Archive your output
7. Analyze your results

On a Franklin login node:

Login nodes run full
version of SUSE

Linux

www.nersc.gov/nusers/status/queues/franklin/

NERSC Analytics server (DaVinci)

Batch Queues

• At NERSC users submit jobs to a queue and
wait in line to run

• Queue policies are set to:
– Be fair
– Accommodate needs

• Users
• DOE strategic

– Encourage high parallel concurrency
– Maximize scientific productivity

• Special requests always given consideration
– Reservations
– Emergencies

Batch Queues

• regular: production runs
• debug: short, small test runs
• premium: I need it now, 2X charge

– Fast turn around on Franklin, not usually needed
• low: I can wait a while: ½ charge
• special: unsual jobs by prior

arrangement
• Interactive: implicit in qsub –I

Code Profiling

• Profiling tools are too heavy
• Users want to do science, not spend

months looking a code profiles
• But, profiling can still be valuable…
• At the very least user should know

– Amount of aggregate memory
– Amount of memory per core
– % MPI time
– % Time in IO

• Franklin tools
– CrayPat and Apprentice from Cray
– IPM

MPI Calls by Count

MPI Calls by Time

!

Disk Space

USER PITFALL!!• Disk space is expensive and therefore limited
and shared among users

• Every center must manage disk space in
some way (purging, begging, quotas)

• Understand the disk usage policy at your
center

• Be a courteous disk space user. We want
you to run very large jobs, but then we want
you to back up your files (quickly)

Disk Quotas

USER PITFALL!!
• Each NERSC system has 2 local file systems

– /home
• small (10s GB)
• Backed up
• Permanent

– /scratch
• larger (100s GB-TBs)
• not backed up
• not permanent

• Projects needing larger disk quotas just need to ask
• Still disk space over subscribed, when usage gets

high we resort to begging first, then purging old files
• NERSC Global File System can be a solution

NERSC Global Filesystem (NGF)

• Seamless data access
from NERSC’s
computational and
analysis resources

• Single unified
namespace makes it
easier for users to
manage their data
across multiple system

• Goals: Functionality,
Reliability, Performance

• Access HPSS from any
NERSC resource with:

•HIS
•HTAR
•ftp/pftp

• Outside NERSC must
do a few extra steps

• 61+ million files
• 44 PB capacity

Large Storage Environment (HPSS)

IO on Franklin

25

Axis of IO

Striping

Total Output Size

Number of
Processors

IO Library
File Size Per

Processor

Chunking

Number of Files
per Output Dump

Blocksize

Transfer Size File System
Hints

Strided or
Contiguous

Access

Collective vs
IndependentWeak vs Strong

Scaling

This is why IO is complicated…..

I/O

• User Wish List
– Write data from multiple processors into a single file
– File can be read in the same manner regardless of the number

of CPUs that read from or write to the file. (eg. want to see the
logical data layout… not the physical layout)

– Do so with the same performance as writing one-file-per-
processor (only writing one-file-per-processor because of
performance problems)

– And make all of the above portable from one machine to the next
• IO on Franklin

– /home and /scratch file use Lustre File System
– Unfortunately users need to know about file system in order to

get best performance
– Failures happen - recommend checkpointing code!

Serial I/O

0 1 2 3 4

File

processors

• Each processor sends its data to the
master who then writes the data to a
file

• Advantages
• Simple
• May perform ok for very small IO sizes

• Disadvantages
• Not scalable
• Not efficient, slow for any large number
of processors or data sizes

• May not be possible if memory
constrained

5

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

•Each processor writes its own data to a separate file
•Advantages

• Simple to program
• Can be fast -- (up to a point)

• Disadvantages
• Can quickly accumulate many files
• With Lustre, hit metadata server limit
• Hard to manage
• Requires post processing
• Difficult for storage systems, HPSS, to handle many small files

5

File

Flash Center IO Nightmare…
• Large 32,000 processor run on LLNL BG/L
• Parallel IO libraries not yet available
• Intensive I/O application

– checkpoint files .7 TB, dumped every 4 hours, 200 dumps
• used for restarting the run
• full resolution snapshots of entire grid

– plotfiles - 20GB each, 700 dumps
• coarsened by a factor of two averaging
• single precision
• subset of grid variables

– particle files 1400 particle files 470MB each
• 154 TB of disk capacity
• 74 million files!
• Unix tool problems
• Took 2 years to sift though data, sew files together

Parallel I/O Single-file

0 1 2 3 4

File

processors

•Each processor writes its own data to the same file using MPI-IO
mapping

•Advantages
• Single file
• Manageable data

• Disadvantages
• Lower performance than one file per processor at some concurrencies

5

Common Storage Formats

• ASCII:
– Slow
– Takes more space!
– Inaccurate

• Binary
– Non-portable (eg. byte ordering and types sizes)
– Not future proof
– Parallel I/O using MPI-IO

• Self-Describing formats
– NetCDF/HDF4, HDF5, Parallel NetCDF
– Example in HDF5: API implements Object DB model in portable file
– Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

• Community File Formats
– FITS, HDF-EOS, SAF, PDB, Plot3D
– Modern Implementations built on top of HDF, NetCDF, or other self-describing

object-model API

Many NERSC
users at this level.
We would like to

encourage users to
transition to a

higher IO library

IO Library Overhead

Data from Hongzhang Shan

Very little, if any overhead from HDF5 for one file per
processor IO compared to Posix and MPI-IO

A Plug for Self Describing Formats ...

• Application developers shouldn’t care about
about physical layout of data

• Using own binary file format forces user to
understand layers below the application to get
optimal IO performance

• Every time code is ported to a new machine or
underlying file system is changed or upgraded,
user is required to make changes to improve IO
performance

• Let other people do the work
– HDF5/pNetCDF can be optimized for given platforms and

file systems by developers
– User can stay with the high level

• But what about performance?

File Per Processor vs Shared File
Time

How much overhead can you afford?

Aggregate File Size 1 GBfpp vs shared 1GB time

0

2

4

6

8

10

12

14

256 512 1024 2048 4096

Processors

S
e
c
o

n
d

s

One file per Proc

Single Shared File

File per Proc vs Shared File time 1TB

0

100

200

300

400

500

600

1024 2048 4096

Processors

S
e
c
o

n
d

s

One File per Proc

Shared File

~ 3
mins

Aggregate File Size 1 TB

~10
secs

File Per Processor vs Shared File --
Rate GB/Sec

How much overhead can you afford?

Aggregate File Size 1 GB Aggregate File Size 1 TB1 file per processor vs Shared file 1GB File

0

4

8

12

16

20

256 512 1024 2048 4096

Processors

G
B

/
S

e
c

One File per Proc

Single Shared File

Peak performance line -
Anything greater than this
is due to caching effect or

timer granularity

File per Proc vs Shared File

 Aggregate File Size 1TB

0

2

4

6

8

10

12

14

16

18

1024 2048 4096

Processors
G
B
/
S
e
c

One file per proc

Single Shared File

What is Striping?

• Lustre file system on Franklin made up of
an underlying set of file systems calls
Object Storage Targets (OSTs), essentially
a set of parallel IO servers

• File is said to be striped when read and
write operations access multiple OSTs
concurrently

• Striping can be a way to increase IO
performance since writing or reading from
multiple OSTs simultaneously increases
the available IO bandwidth

What is Striping?

• File striping will most likely improve
performance for applications which read
or write to a single (or multiple) large
shared files

• Striping will likely have little effect for the
following type of IO patterns
– Serial IO where a single processor performs all

the IO
– Multiple node perform IO, but access files at

different times
– Multiple nodes perform IO simultaneously to

different files that are small (each < 100 MB)
– One file per processor

Striping Commands

• Striping can be set at a file or directory level
• Set striping on an directory then all files created in that directory

with inherit striping level of the directory
• Moving a file into a directory with a set striping will NOT change

the striping of that file

• stripe-size -
– Number of bytes in each stripe (multiple of 64k block)

• OST offset -
– Always keep this -1
– Choose starting OST in round robin

• stripe count -
– Number of OSTs to stripe over
– -1 stripe over all OSTs
– 1 stripe over one OST

lfs setstripe <directory|file> <stripe size> <OST Offset> <stripe count>

Stripe-Count Suggestions

• Franklin Default Striping
– 1MB stripe size
– Round robin starting OST (OST Offset -1)
– Stripe over 4 OSTs (Stripe count 4)

• Many small files, one file per proc
– Use default striping
– Or 0 -1, 1

• Large shared files
– Stripe over all available OSTs (0 -1 -1)
– Or some number larger than 4 (0 -1 X)

• Stripe over odd numbers?
• Prime numbers?

Recommendations

N/A

N/A

4096

2048

1024

512

256

100 MB 1 GB 10 GB 100 GB 1 TB

Aggregate File Size

P
ro

ce
ss

or
s

Single Shared File,
Default or No
Striping

Single Shared File,
Stripe over many
OSTs

Single Shared File,
Stripe over many
OSTs OR File per
processor with
default striping

Benefits to mod n
shared files

Single Shared File,
Stripe over some
OSTs (~10)

Legend

Recommendations

• Think about the big picture
– Run time vs Post Processing trade off
– Decide how much IO overhead you can afford
– Data Analysis

• Is there analysis you can do during your production run?
– Portability
– Longevity

• H5dump/ncmpidump works on all platforms
• Can view an old file with h5dump/ncmpidump
• If you use your own binary format you must keep track of

not only your file format version but the version of your
file reader as well

– Storability

Recommendations

• Use a standard IO format, even if you are following a
one file per processor model

• One file per processor model really only makes some
sense when writing out very large files at high
concurrencies, for small files, overhead is low

• If you must do one file per processor IO then at least
put it in a standard IO format so pieces can be put
back together more easily

• Follow striping recommendations
• Consider the value of your time -- even if your advisor

is not
• Ask the consultants, we are here to help!

Portability and Flexibility

• HPC machines change quickly
– NERSC does technology refresh every 3 years
– Always consider challenge for users moving to

machine but we need to keep up with technology
and market

• Codes become more robust when run on
multiple platforms with multiple compilers

• Familiarity with different programming
models, performance tools and debuggers
gives you an advantage

• Be prepared to be able to move from center
to center - go where the cycles are

NERSC Science Over the Years

Please let us know what we can do to help!

Consult@nersc.gov
45

Tips for running successfully at
NERSC (or any HPC center)

46

Traditional Sources of Performance
Improvement are Flat-Lining

• New Constraints
– 15 years of exponential

clock rate growth has ended

• But Moore’s Law
continues!
– How do we use all of those

transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead of clock
frequency!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith47

Growth in HPC System Concurrency

Must ride exponential wave of increasing concurrency for forseeable future!
You will hit 1M cores sooner than you think!

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000

Ju
n
-9
3

D
e
c
-9
3

Ju
n
-9
4

D
e
c
-9
4

Ju
n
-9
5

D
e
c
-9
5

Ju
n
-9
6

D
e
c
-9
6

Ju
n
-9
7

D
e
c
-9
7

Ju
n
-9
8

D
e
c
-9
8

Ju
n
-9
9

D
e
c
-9
9

Ju
n
-0
0

D
e
c
-0
0

Ju
n
-0
1

D
e
c
-0
1

Ju
n
-0
2

D
e
c
-0
2

Ju
n
-0
3

D
e
c
-0
3

Ju
n
-0
4

D
e
c
-0
4

Ju
n
-0
5

D
e
c
-0
5

Ju
n
-0
6

List

P
ro

ce
ss

o
rs

48

Application Community’s
Response to Technology Trends

• Parallel computing has thrived on weak-scaling for
past 15 years

• Flat CPU performance increases emphasis on
strong-scaling

• Workload Requirements will change accordingly
– Concurency will increase proportional to system scale
– Timestepping algorithms will be increasingly driven towards

implict or semi-implicit stepping schemes
– Multiphysics/multiscale problems increasingly rely on spatially

adaptive approaches such as Berger-Oliger AMR
– Strong scaling will push applications towards smaller messages

sizes – requiring lighter-weight messaging

49

The Multicore Future

• Start thinking about implications of multicore
• Don’t need to have answers (nobody does)
• How can you increase parallelism?
• Will your code require algorithmic changes?
• Where are the bottlenecks in your code?
• Would a different language/communication

construct help you?

Small Aggregate Output Sizes
100 MB - 1GB

One File per Processor vs Shared File - Time
Aggregate File Size 100 MB

But when looking at absolute time, the difference
doesn’t seem so big...

Aggregate File Size 1 GBfpp vs shared 1GB time

0

2

4

6

8

10

12

14

256 512 1024 2048 4096

Processors
S

e
c
o

n
d

s

One file per Proc

Single Shared File

Time One file per Proc vs Shared file 100 MB

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096

Processors

S
e
c
o

n
d

s

One File Per Proc

Single Shared File

Aggregate Output Size 1TB

File per Proc vs Shared File

 Aggregate File Size 1TB

0

2

4

6

8

10

12

14

16

18

1024 2048 4096

Processors

G
B
/
S
e
c

One file per proc

Single Shared File

File per Proc vs Shared File time 1TB

0

100

200

300

400

500

600

1024 2048 4096

Processors

S
e
c
o

n
d

s

One File per Proc

Shared File

One File per Processor vs Shared File
Rate: GB/Sec Time: Seconds

~ 3
mins

Is there anything we can do to improve the
performance of the 4096 processor shared file case ?

976
MB/proc

244
MB/proc

Science Stories

53

Simulation of a Low Swirl
Burner Fueled with Hydrogen

• Calculation: Numerical simulation of flame surface of
an ultra-lean premixed hydrogen flame in a laboratory-
scale low-swirl burner. Burner is being developed for
fuel-flexible, near-zero-emission gas turbines.

• PI: John Bell
Science Result:
• Detailed transport and chemical kinetics

using an adaptive low Mach number
algorithm for reacting flow.

Scaling:
• Adaptive Mesh Refinement used to save

memory and time.
• Scales to 6K cores, typically run at 2K
• Used 2.2M early science hours on

Franklin

54

Nanoscience Calculations and
Scalable Algorithms

• Calculation: Linear Scaling 3D Fragment (LS3DF). Density
Functional Theory (DFT) calculation numerically equivalent to
more common algorithm, but scales with O(n) in number of atoms
rather than O(n3)

• PI: L.W. Wang, LBNL

55

• Science Results
• Calculated dipole moment on 2633

atom CdSe quantum rod,
Cd961Se724H948 .

• Scaling Results
• Ran on 2560 cores
• Took 30 hours vs many months for

O(n3) algorithm
• Good parallel efficiency (80% on

1024 relative to 64 procs)

• Calculations: AstroGK gyrokinetic code for
astrophysical plasmas

• PIs: Dorland (U. of Maryland), Howes, Tatsuno

Middle Users Capable Large-Scale
Computational Science

• Science Results
• Shows how magnetic

turbulence leads to particle
heating

• Scaling Results
• Runs on 16K cores
• Combines implicit and

explicit methods

56

Modeling Dynamically and Spatially
Complex Materials for Geoscience

• Calculation: Simulation of seismic waves through
silicates, which make up 80% of the Earth’s mantle

• PI: John Wilkins, Ohio State University

57

• Scaling Result
－ First use of

Quantum Monte
Carlo (QMC) for
computing elastic
constants
－ 8K core vs. 128 on

allocated time

• Science Result
– Seismic analysis shows jumps in wave velocity due to

structural changes in silicates under pressure

Validating Climate Models

• INCITE Award for “20th Century Reanalysis” using an
Ensemble Kalman filter to fill in missing climate data since
1892

• PI: G. Compo, U. Boulder

58

Sea level pressures with color showing uncertainty
(a&b); precipitation (c); temperature (d). Dots indicate
measurements locations (a).

• Science Results:
– Reproduced 1922

Knickerbocker storm
– Data can be used to

validate climate and
weather models

• Scaling Results:
– 3.1M CPU Hours in

allocation
– Scales to 2.4K cores
– Switched to higher

resolution algorithm
with Franklin access

Nuclear Physics
• Calculation: High accuracy ab initio calculations on O16

using no-core shell model and no-core full configuration
interaction model

• PI: James Vary, Iowa State
• Science Results:

– Most accurate calculations to
date on this size nuclei

– Can be used to parametrize new
density functionals for nuclear
structure simulations

• Scaling Results:
– 4M hours used; 200K allocated
– 12K cores; vs 2-4K before

Franklin uncharged time
– Diagonalize matrices of

dimension up to 1 billion

59

