Intel® Math Kernel
Library

Reference Manual

Document Number: 630813-017
World Wide Web: http://developer.intel.com

http://developer.intel.com/software/products/perflib/index.htm

Version
-001
-002

-003

-004

-005

-006

-007

-008

-009
-010

-011

-6001

-6002

-6003

-6004
-6005

-017

Version Information
Original Issue.

Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk, and
?syr2k not previously described. Pagination revised.

Changed the title; former title: “Intel BLAS Library for the Pentium® Processor Reference Man-
ual.” Added functions ?rotm, ?rotmg and updated Appendix C.

Documents Intel® Math Kernel library (Intel® MKL) release 2.0 with the parallelism capability.
Information on parallelism has been added in Chapter 1 and in section “BLAS Level 3 Rou-
tines” in Chapter 2.

Two-dimensional FFTs have been added. C interface has been added to both one- and two-
dimensional FFTs.

Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added in
Chapter 2.

Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines (Chapters
4 and 5) and CBLAS interface (Appendix C) have been added.

Quick Reference has been excluded from the manual; MKL 3.0 Quick Reference is now avail-
able in HTML format.

Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been
revised. In Chapters 4 and 5 NAG names for LAPACK routines have been excluded.

New LAPACK routines for eigenvalue problems have been added in chapter 5.

Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML functions has
been added.

Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended to
include the full list of computational and driver routines.

Documents Intel Math Kernel Library release 6.0 beta. New DFT interface and Vector Statisti-
cal Library functions have been added.

Documents Intel Math Kernel Library 6.0 beta update. DFT functions description has been
updated. CBLAS interface description was extended.

Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated. Auxiliary
LAPACK routines’ descriptions were added to the manual.

Documents Intel Math Kernel Library release 6.1.

Documents Intel Math Kernel Library release 7.0 beta. Includes ScaLAPACK and sparse
solver descriptions.

Documents Intel MKL and Intel® Cluster MKL release 7.0 gold. Auxiliary ScaLAPACK and
alternative sparse solver interface were added.

Date
11/94
5/95

1/96

11/96

8/97

1/98

1/99

6/99

11/99
06/00

04/01

07/02

12/02

03/03

07/03
11/03

04/04

This manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms
of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel
may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Celeron, Dialogic, 1386, 1486, iCOMP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II
Xeon, Pentium III Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 1994-2004 Intel Corporation.
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Chapters 4 and 5 include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

Contents

Chapter1 Overview

About This Software............ccoeeeeeiiiieiieee e,
Technical SUPPOrt.....cooovviiiii
BLAS ROULINESeneiieeeeeeeeee e
Sparse BLAS Routines.........c.cccoco,
LAPACK ROULINES......ccvveieeiiieeeeeeee e
ScalLAPACK ROULINES.......uceiiiiieieeeeeeee e
Sparse Solver Routines........ccccccvvvvieeii
VML FUNCHIONS......oueiiiieeeeeee e
VSL FUNCHONS ..eeeceiee e
DFT and FFT Functionscccoooviiiiiiiiiiiiieeeeiee e
Performance Enhancementscccceevieiiiieeennnnn.
Parallelism ...,
Platforms Supported.........ccooooiiiiiiiiis

About This Manualcceeiiiiiiii e
Audience for This Manualccooeeveiiiieieiiiieee,
Manual Organizationccoooeiieiiiiiiiiiias
Notational Conventionsccccooevvviiiiiiiiiiieeeeeeeees

Routine Name Shorthandccccooooeviiiiiiiivinnnnnn.
Font Conventions...........ccoeeeiiiieiiiiiee e,

Chapter 2 BLAS and Sparse BLAS Routines

Routine Naming Conventionscccccoeviiieeeeienniiinne.
Matrix Storage Schemes..............ccooeeiieiiiiii e,

v

Intel ® Math Kernel Library Reference Manual

BLAS Level 1 Routines and FUNCLIONSoooevvieeiiiiiiiiieeee e 2-4
2= 1101 o DO URURRN 2-5
= (0 2-6
oo o PP PP PPPPPR PP 2-7
e (o] (U 2-8
€10 (o | RPN 2-9
e (o] (o2 2-10
4o [0 (U IO 2-11
111 1 VU 2-12
4 (0) ST OTRR 2-13
O oo ———————— 2-15
4101 2 NP PPN 2-16
O MG e —————————— 2-18
4107 | R PRRR 2-19
51T o OSSPSR 2-20
1P2=1 04 =) GO 2-21
12=1 .01 1 o TSR 2-22

BLAS Level 2 ROULINEScovieieeee e 2-24
2ODMIV . —————————————— 2-25
DOBIMV ettt 2-28
2T e ———————————— 2-30
DOBIC e 2-32
2OBIU e 2-33
4] 01101728 2-35
1= .01V 2-37
14 01 S RPRRR 2-39
4 =) 072U 2-41
DIV e 2-43
DT e —————————— 2-45
D s 2-46
2] o] 1 1 V2R 2-48
7 0] 1.0 1727 2-51
2O e ——————————— 2-53
] 0 72T 2-54

Contents

517111V 2-56
) PP P PP TPPPPPP 2-58
1L 7P 2-60
1o 1 V2P 2-62
DSV s 2-65
70 2 YRR 2-67
1011 PP 2-69
4 02 1Y PP 2-71
D SV e e e a s 2-73
BLAS Level 3 ROULINESuuuiiiiiiiiiiiiiiiiiiiiiiieiieieeeteee et eeeeeeeeeees 2-76
Symmetric Multiprocessing Version of Intel® MKLccoovveeeeeeee. 2-76
4[] 101 0 £ TP PPP P PPPPPPP 2-77
PREMIM e 2-79
PREIK e e e 2-82
PREIZK e 2-84
DOYIMIM et e e e e e e e e e e e e e e e e as 2-87
1L PP 2-90
2OYT2K e 2-93
4L 1.1 0 RO PPREI 2-96
= 0 0 P 2-98
Sparse BLAS Routines and FUNCtionscccccvvviviviviiivieieeeiieeveeeee, 2-102
Vector Arguments in Sparse BLAS ... 2-102
Naming Conventions in Sparse BLAS ..., 2-102
Routines and Data Types in Sparse BLAS ..., 2-103
BLAS Routines That Can Work With Sparse Vectors........................ 2-104
DAXPY T ettt e e e e e e 2-104
40 [| PRSP PP 2-106
4o 0] (o PSR SPP 2-107
40 0] (PSRRI 2-108
4o | Lo PSSR 2-109
0 142 2P 2-110
4 o L (PSRRI 2-111
4o 1 PSSR SP 2-112

vi

Intel ® Math Kernel Library Reference Manual

Chapter 3

vii

LAPACK Routines: Linear Equations

Routine Naming Conventions ... 3-2
Matrix Storage SChemesoooiiiiiiiiiii i 3-3
Mathematical Notation...........ccccooiiie e 3-3
ErrOr ANAlYSIS .oooviieiii e e 3-4
Computational ROUINEScoooiiiiii 3-5
Routines for Matrix Factorizationcccccoiiiiiiiiiie e 3-7
PG e 3-7

4o o] 1 SRR 3-9
PO e 3-11
PO e ———————————— 3-12
0o 3-14

4 0] o) 1 SR 3-16

4 o] 1 USRS 3-18
4531 R 3-19
PNt e 3-22
PSP e ——————————— 3-24

4 0] o) (s SRS 3-27
Routines for Solving Systems of Linear Equations 3-29
2GIIS e 3-29
2GS o ——— 3-31
2OHES e 3-33
OIS i —————— 3-35
4014~ 3-37
IS o ———— 3-39
I S oo ———————— 3-41
2OV S o ————— 3-43
IS o ————————— 3-45
2SS e ———— 3-47
D S e ———————— 3-49
DETEES e e e 3-51
IS oo —————————— 3-53

410 (S RERRP 3-55

Contents

Routines for Estimating the Condition Number.................................. 3-57
4o [T o PP PPPRTPPPPPP 3-57
0 To7 o o 1SR 3-59
POECON e 3-61
4 o To7o] o ISP 3-63
oo o 1P 3-65
41 To7o] o [P 3-67
o) (oo] o 1P 3-69
451) o [P 3-71
1= oo o 1P 3-73
] 0 1o o] o TP PPPPPP 3-74
] oo o 1P 3-76
4 o o IR 3-78
¥ oo o 1P 3-80
PHDCON e 3-82

Refining the Solution and Estimating Its Errorcccooccoiiieiiinns 3-84
0 1= 4 £ P 3-84
2GS s 3-87
0 L3 =P 3-89
o]y £ PP 3-92
4 1o 4 £= P 3-94
o] o £= PP 3-97
403 £ PP 3-99
2SS e 3-101
NI s 3-104
] o] 1 £ 3-106
] o3 £ PP 3-108
4 L £ USRS 3-111
1o £ PP 3-113
410 1 £ PRSP 3-116

Routines for Matrix INVersion ... 3-119
PG e 3-119
4 o) 1o PP 3-121
oo 1o PP 3-122

viii

Intel ® Math Kernel Library Reference Manual

514 L PRSPPI 3-124
2 1= RO 3-126
] 01 PSSRSO 3-127
401 0] (PRSP ERRRRN 3-129
4L {1 SRR 3-131
410 (PRSP EERRRN 3-132
Routines for Matrix Equilibrationcccccvvvviiiiiiiiiiiii, 3-134
4 ST [V PP UPPUPPPPPPPPRN 3-134
2ODEAU . 3-136
0 T= o U S 3-138
4] 0 1= o U SRR 3-140
o] 7= o U RO 3-141
Driver ROULINESuuiiiiiiiiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e 3-144
OBV i e e 3-145
0 T=T517 0 O 3-146
2GSV e 3-152
2ODSVX 3-153
2O SV e 3-159
015172 OSSP 3-160
4011 USRS 3-164
P OSVX i ———————— 3-166
4137 SRR 3-170
40101172 G UPPPPPPRPP 3-172
DSV e eneeees 3-176
PDSVX o 3-178
4137 S 3-182
40155172 GO 3-184
)71V PO PP PPPPPP PP 3-187
2O S X tiiiii it ————————————— 3-189
NSV e eneeees 3-193
DB SVX e 3-195
701V 3-199
4] 015372 GO OPPPPPPP 3-201
421137 SRR 3-205

ix

Contents

Chapter 4

101172 PP 3-207
LAPACK Routines: Least Squares and Eigenvalue Problems
Routine Naming Conventionscccuuviiiiiiiiiiiiee e 4-3
Matrix Storage SChEMESuuuiiiiiiiiiiiiiiiiiiir e ee e eeeeees 4-4
Mathematical Notationccccuviiiiiiiiiiiiiiii e 4-4
Computational ROULINESccoooiiiiiiiii s 4-5

Orthogonal Factorizations ... 4-5

o 1= Lo Lo f PP 4-7

o =T | o PSP 4-9

o T=To | 03 TSP P PPPRPPPPPPPP 4-12

0] e o | U EEPPR PP 4-15

014 1T | S PPPPPPPPN 4-17

481 Te o | SRR 4-19

40910 o | SO PP 4-21

2GEIOT s 4-23

0T | Lo PSPPSR 4-26

o4 2 21 PP 4-28

40 Vo[[PPSR 4-30

012 1 (o PP 4-32

o 1= Lo | PSPPSR 4-34

0] e o | I EEPP PP 4-36

40 3T o | PP PPPPSPPPPP 4-38

o T4 2 T | 4-40

40910 o | PP 4-42

PG s 4-44

Lo T4 | (o [P 4-46

48T] (o P EPPP T PTPPPRP 4-48

014 101 (o [OOSR PP 4-50

01021 PP 4-52

ZEZE s 4-54

04 2 1] 2P 4-56

4810 1.0 2RO 4-59

o[Lo | PR PPP PRI 4-62

Intel ® Math Kernel Library Reference Manual

X1

2Nl e ———————— 4-65
Singular Value Decompositioncccoiiiiiiiiiiiiieeieeeee e 4-68
2gEDId o —————— 4-70
4o o] o] (o SRR SP 4-73
2OIgDr e ————— 4-76
(o4 221 o 4-79
UNGDT . ———— 4-82
UMM e 4-85
DASAr e ————— 4-88
PDASAC . 4-92
Symmetric Eigenvalue Problemscooooiiiiiiiiiicccc, 4-95
DOYEI e 4-99
2OTgEr oo —————————— 4-101
(04 021 TP 4-103
PREtrd e 4-105
PUNGEE et 4-107
4810 .01 RSP ERRRN 4-109
] 011 o SRR 4-111
2OPOL e ———————————————— 4-113
(0] o] 2 111 S STSSTRP 4-114
NP e 4-116
UPGEE e 4-118
UM o 4-119
4] o)1 [P SSPRERRRN 4-121
PRI e 4-123
1 (= o ST 4-125
1 (=T | (S PPRSRRPON 4-127
1 (= o [4-130
1 (=T | S OPRSRPON 4-133
0 (= o | SRR 4-137
2SEEDZ e 4-140
1 (= 4-143
2AISNA e e e e e 4-145

Contents

Generalized Symmetric-Definite Eigenvalue Problems 4-147
2SS e 4-148
A T=T 0 S PTPPPRP 4-150
4] o1 1) ST P PP PPPPRPPPPI 4-152
] T - SRR 4-154
2SS 4-155
PRDGST .. 4-158
4 0] 0 1= 4 PSRRI 4-160

Nonsymmetric Eigenvalue Problemsccccvieiiiiiiiieeccceee, 4-162
PGENI .. 4-166
01 | o PP 4-168
(o 4 021 o] OSSP 4-170
U T | o P 4-173
011221 o PP 4-175
o =Y o= | PP 4-178
PGEDAK . 4-181
=TT | PP 4-183
0 7= PRSP 4-187
ATV e e 4-192
= 0 = PP 4-196
PETEXC ettt a e e 4-201
== o PP 4-203
=)/ PP 4-207

Generalized Nonsymmetric Eigenvalue Problemsccee. 4-210
o o 1 PP 4-211
2GGDAI e 4-214
oo 7= G PPPPPP 4-217
PNGEAZ e 4-219
0 1= o 4-225
A0 [(PP PPPPPPPPPPI 4-229
0 1= o PP 4-232
EGSY | e 4-238
0 - TP 4-242

Generalized Singular Value Decompositionccccccvevieeiieeeennneen. 4-246

xil

Intel ® Math Kernel Library Reference Manual

xiii

0 0 1Y/ o SRR 4-247
A0 L= TSSO UPPUPPPPPPPPRN 4-251
Driver ROULINES ...ttt e e e e e e e e eeeeeas 4-257
Linear Least Squares (LLS) Problemsccccooiiiiiiiiiiiiiiniiiie, 4-257
2OBIS oo —————— 4-258
2GBISY e 4-261
2OBISS o 4-265
PGEISA e 4-268
Generalized LLS Problems ... 4-272
20188 e 4-272
2000IM e ————— 4-275
Symmetric Eigenproblemsuvviiiiiiiii e 4-277
2O BV i 4-278
4 == 4-280
2SYEVA o —————————— 4-282
BBV e 4-284
2O VX oo —————— 4-287
BBV X oo 4-290
2 Y BVl i ———————————————————————————- 4-294
4 == 4-298
2PV i b ————————————— 4-303
4 11 4-305
2SPEVA 4-306
1 1= o 4-309
2P EVX e ——————— 4-312
DBV X e 4-315
2DV e 4-318
PRDEY e 4-320
PSDEVA e 4-322
PhDEVA . 4-324
2DV e e 4-328
DBV X e 4-332
45 (5. RSP RERRRN 4-336
28 VA e 4-338

Contents

451 (52 P PSURTPP 4-341
1 0=/ PP 4-344
Nonsymmetric Eigenproblemscccooviviriiiiiiii e, 4-348
2B ittt e e 4-348
o T=T=T) PP 4-353
DOBBY e e 4-358
o T=T=) PP 4-362
Singular Value DecompoOSitioncoooiiiiiiiiiiiiiiiiieeeee e 4-368
0 T=T37 Lo PP 4-368
P9ESAA . 4-372
o o =37 o PP 4-376
Generalized Symmetric Definite Eigenproblems............cccccvvvvveeneen. 4-381
517 VPP 4-382
BV e 4-385
5370 VLo PP 4-388
PHEGVA o 4-391
5170 V2 PP 4-394
PREGVX e 4-398
] 0 1o | 4-402
DGV e 4-404
] 010)L PP 4-407
PRPGVA 4-410
] 010 |2 PP 4-413
4 170 Y P 4-417
1 oo | PP 4-421
14 21 0T | PSSR 4-423
2SDGVA e 4-425
PhDGVA e 4-428
] 00 1T PP 4-431
PRDGVX 4-435
Generalized Nonsymmetric Eigenproblemsoovvvvviveviieiinennen. 4-439
4 [[T PO PP P PPPPPRPPPPI 4-439
o o =T PP 4-445
4 [1V PSP PPPPPSPPI 4-452

X1iv

Intel ® Math Kernel Library Reference Manual

PGBV i ————— 4-456
Chapter 5 LAPACK Auxiliary and Utility Routines
AUXIlIArY ROULINESooiiiiiiiie e 5-1
2IACOY oo ——— 5-11
4 = T 1 0 T 5-12
4 = o2 SRS 5-13
DIBESY e 5-14
4 o) SRR 5-16
10 1.1 1Y/ 5-17
2Ol e ————— 5-19
DOYIMIV et e e 5-20
ST e 5-22
12 0= o P 5-24
410 0 1 SRR 5-25
2O 2 e 5-26
PGEDAZ e 5-27
PGENAZ ... 5-29
20EIG2 e ———— 5-32
2GEAIZ e 5-33
DOBAIZ e 5-35
4[] 0 PP PEPTRPP 5-37
DOESC2 .. ———— 5-38
2GBICZ 5-40
2B e ———— 5-41
2GS e 5-42
4 = o] o SRS 5-44
ZIACON e ——————— 5-47
2 ACPY oo —————— 5-48
0AAIV e e 5-49
4 = 1= SRR 5-51
PIAEDZ . ————— 5-52
4 = 1= [OOSR 5-56
4 = 1= o B 5-59

XV

Contents

P0BEAZ ... 5-61
4 = 1= X SRRSO 5-63
P0BEAA ... 5-66
g = 1= o L TP 5-67
P0BEAG ... 5-68
4 = 1= o P 5-70
P0BEAB .. 5-73
4 = 1= o 1 P 5-77
P0BEAA ... 5-79
4 = 1= 1o PRSPPI 5-81
PIABVZ .. 5-84
4 F= 1= (PRSPPI 5-85
4 = To 1P 5-87
DIAYSZ .. 5-89
4 = To 11 PP 5-91
PIAGEM s 5-93
4 = To | £ PPPPPPPPPP 5-95
PIAGVZ e 5-97
4 E= 1 Lo | P 5-99
14 =1 1o ISP 5-101
4 = L3 PRSPPSO 5-104
14 =1 12 SRRSO 5-106
1AISO e 5-109
g = == PP 5-113
P0AISA <. 5-117
PIAIMIG e 5-119
4 E= 10 To | o TSP 5-120
PIBNGE <. 5-122
4 = Lo | SRR 5-124
4 = 1 L 5-125
PIANSD e 5-126
20ANND e 5-128
4 E= 10 1= o 5-130
4 F= 1 o TSP 5-132

Xvi

Intel ® Math Kernel Library Reference Manual

20anSt/21aNNt ... 5-133
PIBNSY e 5-135
0ANNE .. 5-136
AANTD e 5-138
4 E= 11 o TS OPRRRPIN 5-140
2LANET e 5-142
PIANVZ e 5-144
4= o | PSS RERRRN 5-145
AP e ————————— 5-146
PIBPY2 e 5-147
4 =1) V2 P ERRT 5-148
20AAGD . 5-149
4 C= To o [T OSSPSR 5-151
4 = To | 17U 5-153
2 AP oo ———————— 5-154
g = To 1= o 5-157
4 F= To 1] o PPN 5-159
DIBASY et e e 5-160
4 = 1o || ORI 5-162
ATV e 5-165
PIBI2V e e e 5-167
4= L RSSO SRRRRN 5-168
4= L4 { o TSP ERRRRN 5-170
LAITG e 5-172
4= L PRSP 5-174
4T o 7 G U PPUUUPR 5-177
2 ANV e —————— 5-178
ZIAINV Lo a e e e e ea 5-180
4= L4 RSP ERRRRN 5-181
L= 1 (T U PPURPR 5-183
4= L4 PSRRI 5-185
2T 1 0 SRR 5-187
4 = o (o T OPROTRPN 5-190
L= YU SPUUUPR 5-191

Xvil

Contents

PIBIUV et e e e 5-193
4 L= A O USUPPPNS 5-194
0AIZD e 5-196
RIAIZE e aaaaeans 5-198
4 = 7SR 5-201
4 E= 1T PO RURUPPPR: 5-202
4 = T [PRSP SPP 5-204
4 = T i SO ERRSPP 5-206
4 = T 12 PRSPPSO 5-209
4 = o 1 TSRO 5-212
4 = T PSR SPP 5-215
21ASAD e e e e aean 5-217
4 = T [PSSP 5-218
4 = T 7/ PSSRSO 5-223
4 = T < PSSR 5-226
4 = e 1 IR 5-228
4 = T = PSRRI 5-230
g = 1= Lo [5-234
4 = T | S PSSR 5-237
2 ASEE e aaaeans 5-238
4 = 1T I P 5-239
g = 1= 5-240
4 E= 1T X PP 5-242
g = 1= P 5-243
g E= 1T [T PP 5-245
g = 1T [5-246
4 =] PSSR 5-247
4 E= 1= o PR UURUPPPRS 5-249
4 E= 1< [P 5-250
DIASVZ e aaaaaan 5-252
4 E= 153/ o J PP 5-254
PIBSY2 .. 5-255
L= 15V PP 5-257
AANET e 5-260

Xviil

Intel ® Math Kernel Library Reference Manual

XixX

21AtDS e 5-262
4 E= 1 L | 5-264
Al DS oo —————————— 5-266
4 E= 1 [5-269
4 E= (= U 5-272
b= { AR 5-276
4 E= 101U 5-278
4 b= 1010 o H TR 5-280
P0PG2H/2UNG2L .o 5-281
POPG2I/PUNGZE et e e e e 5-283
20rgI2/7UNGI2 .o 5-284
P0rGr2/7UNGI2 oottt e e e 5-286
20rM2l/2UNM2L .. 5-287
Lo 0 aVA7 A aV] o] 01724 CHR U 5-290
20rMI2/2UNMIZ oot 5-292
POIMI2/UNMIZ .o e e e e e 5-294
20rmMI3/2UNMIS oot e e e eeaaaas 5-297
Pt s 5-299
POt o ———————————— 5-301
401772 5-303
4 1o I 5-304
PSYGS2/TNEASZ e 5-305
2sytd2/7hetd2 .. 5-307
452722 PRSP RRRRRN 5-309
4 1= 77U 5-311
BN e 5-313
Sy 2 oo ——————————— 5-315
1 5-319
Utility Functions and ROUtINESccoovviiiiiiiiiii e, 5-321
] F=T=T o |V U 5-321
=TT o SRR 5-324
EST=] 0 01T 5-325
EST=1 0 411 o E SRR 5-325
4 F= 1 o= To SO 5-326

Contents

Chapter 6

PIAMCN e 5-327
2lAMCT e e aaaaean 5-328
4 =10 1 PSSR 5-329
PIAMCS e e aaaaean 5-330
PIAMCA e 5-331
PIAMCE e e aeans 5-331
ST eTo] g F o 1= o7 o T PP 5-332
XEIDla e 5-333
ScaLAPACK Routines
OVEIVIEBW ...eiieeieiiie ettt e e e e e e e e e e e e e e e s nae e e e e e e e e annnssneeeaaeeeanns 6-2
Routine Naming Conventionscccuveeiiiiiiiiiiiiicee e 6-3
Computational ROULINESccooiiiiiiiic e 6-4
Linear EQUAtIONSovviiiiiiiiiiiiiiiiieeeeeeeeeeee e e 6-4
Routines for Matrix Factorizationcccccoiiiiiiiiie e 6-6
PO e 6-6
P 2O Lo 6-8
[o3rde] o] (3 R TR TS PPPPRP 6-10
P 2POIT Lo 6-13
(0374 o] o) (3 TR PPRP 6-14
P 2P e 6-17
(o34 1113 PR ER ST PPRP 6-19
Routines for Solving Systems of Linear Equations 6-21
P2GEIIS i 6-22
P2ODIIS oot 6-24
374 010 (=SSR 6-27
PPPDIIS oo 6-29
P2PHIS ot a e e e aaaaaaaaaaaaas 6-31
PPAMIS Loviiiiiiiiiiee e 6-34
P2ADIIS oo 6-36
O34 L= PP PR PPPPPPPPPPN 6-39
Routines for Estimating the Condition Number................................... 6-42
PPUECON ..uiiiiiiiiiiiitiireeeeeeeeeeeee e e e e e e e e e e e e e e e e ee e e e e e e e e et eaaaaaaaaaaaaaaaaaaaaaaaaaaaans 6-42
374 o Yo Yo o TN PR SRPRSSRRRR 6-45

XX

Intel ® Math Kernel Library Reference Manual

XX1

374 o] o P 6-48
Refining the Solution and Estimating Its Error............ccccccooiiiiinennen. 6-51
O30 =T 3 £ P 6-51
0274 0T 3 =P 6-55
374 L £ TP 6-59
Routines for Matrix Inversionccccoovviiiii 6-63
O340 =1 {4 P 6-64
0274 0T} [TP 6-66
274 L P 6-68
Routines for Matrix Equilibrationccocciiiii 6-69
O340 =TT U PP 6-70
0274 o Yo Y=o [U PSP 6-72
Orthogonal Factorizationscoooeeiiiiiiiiiccc 6-75
2740 =Y | o P 6-75
O30 =T | o) P 6-78
374 0] o o | P 6-81
274 0TV Lo | PP 6-83
2740 1 12T 6-85
02748 Lo 0T | P 6-89
3740 =1 o | P 6-92
O30 o] Lo P 6-95
0274 8TV | o P 6-97
0340 1 101 o PP 6-99
274 8T 001 o R 6-103
O30 =T || P PPPPPPP 6-106
3740 o o | PR 6-109
0374 8 Lo [| PP PPPPPPPP 6-111
3740 1 12T | 6-113
0374 8 Lo 32T | 6-117
3740 =T o | PR 6-120
O30T o] (o [P PPPPPPI 6-123
274 8TV | o R 6-125
O30T 141 o [P 6-127
274 8T o o1 o 6-131

Contents

PAZIZE oo 6-134
374 0] 1 2] 2R 6-137
PPUNMIZ Looiiiiieiiieeeeeeee et e e et e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaeeaaaeaaeaaaeeas 6-141
[SJrge e oo PP PPPPR P PPPPPPPI 6-144
[O3g e[| o | PP PPR TR 6-149
Symmetric Eigenproblemsc..oooiiiiiiiiii 6-154
P2SYIRA oo 6-154
3740 1 101 | SRR 6-159
PPREIId oo, 6-162
374 8T 01 { U 6-166
PP2SEEDZ oo 6-170
037451 (=11 o TR 6-174
Nonsymmetric Eigenvalue Problemsccccoiciiiiiiiiiecic e, 6-178
PPGENIA . 6-179
34011 101 o PRSP PRUPPRUPR 6-182
374 8T o 03] o SRR 6-186
P2AANGT e, 6-189
Singular Value DecompoSitioncooiiiemieeieiiiiiiiieee e 6-191
P2GEDIA oo, 6-192
3740 1 2] o SRR 6-197
PPUNMDE .o 6-202
Generalized Symmetric-Definite Eigenproblemscccccceee. 6-206
P 2SYGST ettt 6-207
PPREGST i 6-209
Driver ROULINESeiiiiiiiiiiieieeeeeeeeeeeeeee e 6-212
PPOESV ettt e e e as 6-213
PPOESVX wotiiiieiiieiieeeee e et e et e e et et e et et e a e 6-215
P2GDSV e 6-221
P2ADSY et aeeas 6-224
P2ALSY e a e 6-226
PPPOSY ertitiiiietieieieeeee et e et e e e e et et e et e e e et e et e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaas 6-229
374 01011V R 6-232
P2PDSY oot 6-238
374 0] £V SRR 6-241

xxil

Intel ® Math Kernel Library Reference Manual

Chapter 7

Xxiil

P 2OEIS e ——————————————a————— 6-243
P2SYEBY ettt e e a e e e 6-247
P 2SY VX i ———. 6-250
374 TST 215 PP 6-257
O30 [=13Y /o P PPPPPPP 6-264
PPSYGVX ettteeteee et e ittt e e e e e e e e e e e e e e e e 6-269
034 1T 1 PP 6-277
ScaLAPACK Auxiliary and Utility Routines
AUXIlIArY ROULINESciiiiiiiiiiiee e 7-1
0374 F= Lo VPP PPPPPRPP 7-6
374 1T PP 7-7
2C0MDAMAXT oo 7-9
27410 10 o PP 7-10
P2ADIISY Lo — i ——————————— e 7-11
3740 L= OSSPSR 7-14
O30 =1 0T 2P 7-18
PP?GENAZ e 7-22
O30 =1 o 12U 7-25
3740 =T |12 7-28
O3q 0 =T | 2P 7-30
3740 =T o 2P 7-33
P 2O 2 b — b ————————————————s 7-35
374 =1 o o 7-37
0374 F= Lo o] o KPP 7-41
374 F= o] 4 T=1 o TP 7-43
374 F= Uo7 o)2 7-44
374 = o7 0 1< J 7-46
0374 F= Uo7 oY PP 7-48
0374 F= 1=V o P 7-50
034 F= 1] (o OO 7-52
374 = 1Y o2 P 7-55
0374 F= 1 o 1= TSP 7-56
0374 F=1 1 - PR 7-58

Contents

p?lansy, p?lanhe ... 7-60
274 =1 1 (SRS 7-63
P2UAPIV e a s 7-65
0374 =T o = TSRS 7-68
P2UAGSY werereiiiiiitii ittt a e e e e 7-70
0374 F= 1 7=To It Ko RS RSR 7-73
P2AArEA2d ..o 7-74
0374 = 1 o RS RR 7-76
P2AAMD e 7-79
374 = T {2 PRSPPI 7-82
P2AAMTG oo 7-85
0374 = 1 SRS 7-87
PPUAIZ oo a e e e e e e aaaaaa e 7-90
374 = 7 TSRS 7-94
PPUArZC oo 7-98
0374 =1 72 (XU 7-101
PPUASCl oo 7-105
P2AASEL e 7-107
P2AASMSUD oo, 7-109
0374 F= 1= o TR 7-110
PPUASWD oo 7-112
374 = = TR 7-114
P2AAIA oo, 7-115
374 F= =R 7-119
PPAAIIZ oo 7-121
P2AUUZ oo 7-124
P2AUUM oo, 7-126
P2AAWIL oo 7-127
P20rG2l/PPUNG2L oo 7-128
P2OrG2r/PPUNG2E oot 7-131
P?0rgI2/PPUNGI2 oo 7-133
P2OrGr2/PPUNGI2 oo 7-136
P20rmM2I/P2UNM2L oo 7-138
P2OrM2r/P2UNMZE oo 7-142

XX1V

Intel ® Math Kernel Library Reference Manual

Chapter 8

XXV

P20rmMI2/PPUNMIZ .o 7-146
P2OrMI2/P2UNMIZ2 oottt e et e e e e e e e e eeeeaeeeeeeeeees 7-150
374 0] o L= PSPPI 7-154
07 0 L= PP 7-158
374 010 1722 PP 7-162
274 =] PP 7-163
P?SYTS2/PPREGS2 oo 7-165
P?2sytd2/p?hetd2 ... 7-167
P2 s 7-171
2lamMSh e 7-173
4= L PRSP EERRR 7-175
4 F= 1T o - USRS 7177
4 =] 72 SRRRT 7-178
1 (=1 22O 7-179
40| o) 172 PSP EERPR 7-182
4o | o] (o PRSPPI 7-184
40 L (s PRSPPI 7-185
0 1= 7-187
D SV oo ——————————— 7-188
1 (= o | 72 7-190
Utility Functions and RoOUtiNE€Scoovivviiiiiiii e, 7-192
0374 F=1 o 7= T 7-193
P?IACHKIEEEeeeiiiiiieii e 7-194
0374 F= 10 ¢ e o TP 7-195
0374 F= =] 0] o AP 7-196
[0S o] - TP 7-197
Sparse Solver Routines
PARDISO - Parallel Direct Sparse Solver Interface.........ccccvvevevveveeveeeneee. 8-1
2= o =0 8-3
Direct Sparse Solver (DSS) Interface Routings............cevveeveeeieeiienninnnn.. 8-15
Interface DEeSCrIPLIONvviiiiiiieeeeeeeeeeeeeeee e 8-17
RoUuting OPLioNSeeeiiiiiiiiieeeeeeeeeeeeee e 8-17
USEr Data ArTayS......coouiiiiiiiiiieieee et 8-18

Contents

Chapter 9

ASS_CrEALE ..oeeeiiie e 8-18
dss_defiNne_SIrUCIUIEcoiveeiiieeiie e 8-19
(o LTSI (=T o] (o L= SRR 8-20
dss_factor_real, dss_factor_complexccccoemiiiiiiiiiiiiiiiiiiiiieeee 8-21
dss_solve_real, dss_solve_compleXcccccevieiieiiiiiiiiiciiniieeeeeeeeeinn, 8-23
[0 [0 (<1 () (T 8-24
dss_StatistiCs ...ccovvniiii e 8-25
mkl_cvt_to_null_terminated_Strccoooeeiiiiiiiii e 8-28
Implementation DetailS............coovveeiiiiiiie 8-29
Memory Allocation and Handles..............ccccccoviiiiiiiiiiiiiiiieeeen 8-29
Calling Direct Sparse Solver Routines From C/C++ 8-30
Caveat for C USEIS ... 8-31
Vector Mathematical Functions
Data Types and Accuracy MOAEScccooviiiiiiiiiiiee e 9-2
Function Naming Conventionsccceeiiiiiiiiiiiiiie e 9-2
FUNCLONS INtEITACEoevvveeee e e 9-3
VML Mathematical FUNCLIONSooiviiiiiiiee e 9-3
Pack FUNCLIONSoouniii e 94
Unpack FUNCLIONS........cooiieiieeeee e, 9-4
SErviCe FUNCHIONSueii it e e 9-4
Input Parameters ..., 9-5
OUutput Parametersuuuiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee e 9-5
Vector Indexing Methods ... 9-6
] o g T F=To [(0T o= 9-6
VML Mathematical FUNCLIONScooivvieiiiiee e, 9-7
IV e e e e e e e e e ———————— 9-9
3 YR 9-10
Yo | SO PPP 9-11
INVSIt oo ——— 9-12
(04 o] (R 9-14
117707 o] o AR 9-15
P OW e 9-16
POWX e 9-18

XXVi

Intel ® Math Kernel Library Reference Manual

D d o TP 9-19
o TR 9-21
oo 1t 1 O PP 9-22
{070 1= PR 9-23
] SR 9-24
71 (O 1= T NPRRR 9-25
L= IO TPt 9-27
ACOS .. 9-28
A SN e e 9-29
N = | o TR 9-30
ALANZ e 9-31
(07011 o [OOSR 9-33
] 12 o SR 9-34
=121 o PR 9-36
ACOSIN .. 9-37
ASINN e ———————— 9-38
AtaNN e 9-39
] o 9-40
] o (R 9-42
VML Pack/Unpack FUNCLIONScooiiiiiiiiie e, 9-43
PaACK ... 9-44
U T = Lo QSRR 9-46
VML Service FUNCLIONS cooooiiieeieee e, 9-48
SEIMOAE ... 9-49
(€11 (1Y, Lol [T 9-51
SEIEMStatUS .. .o 9-53
(T =y] =) (U TR 9-54
ClearErrStatusooooeeeeeeeeeee e 9-55
SetErrorCallBackooooueiiieiiieieeeeeee e 9-55
GetErrorCallBackKoooeeiuieieeeeee e 9-58
ClearErrorCallBackeuueeeieeeeieeeeeee e 9-59

XXVil

Contents

Chapter 10 Vector Generators of Statistical Distributions

(070] 0 1V/=T 0] (1073 130 10-2
Mathematical Notationcccooiiiiiii i 10-2
Naming CoNVENTIONSuuiiiiiiee e 10-3

[SF= TS (ol CT=T a1 = | (o] =T 10-5
RanNdom Streamscoooivieiiiie e 10-6
D= = T 1Y/ o T= S 10-6
Parameter Definitionsoooovveiiiiiie e 10-7

Service SUDIOULINESovvveiieee et 10-10

N LA S (oY= 1 o RN 10-12
NEWSHIEAMEX ... e 10-13
DeleteStreamooveiii e 10-15
COPYSIIEAM ..o 10-16
CopyStreamStateccccccccviiiiiiiiiiii e 10-17
LeapfrogStream ... 10-18
] (AN A L=T= (o Ry 1 =T o o PP 10-21
GetStreamStateBrng ... 10-24
GEtNUMREGBIMNG ...ovviiiiiiiiiiiiiiiiiiieeeet e e e e e e e e e aee s 10-25

Distribution GEeNErators............c.uuiiiiiiii e 10-26

Continuous Distributionsccooeiiiiiiiiieee e, 10-27
0 o1 (o] o HR OO 10-27
(=101 = o U 10-29
GauSSIaNMV ... 10-32
EXPONENtialcoooeieiieeeeee e 10-36
=T o] = o7 = SRR 10-39
WEIBUIL .. e 10-41
CAUCNY . 10-44
Rayl€Igh oo, 10-46
LOGNOIMAL ..o 10-49
(101001 o 7= U 10-52

Discrete Distributionscoooeviiiiiiiie e, 10-54
(0 a1 o] o o o KU 10-54

XXViil

Intel ® Math Kernel Library Reference Manual

Chapter 11

XXIX

UNIfOrmMBIS .o 10-56
BernOouUlli ..o 10-58
GEOMETIIC ... e e 10-59
BIiNOMIaAl ... e 10-61
HYpPEergeomMetriCoovvvveiii e 10-63
POISSON .. e 10-65
POISSONVY ..t eeeeeaas 10-67
NegBIinOmIal ... 10-68
Advanced Service SUbroutinesccccvveiiiiiiiiiiiiie e 10-70
Data tyPeS ..oooeiiiie e 10-70
RegisSterBrNgcooooeeiie e 10-72
GetBrNgProperties ... 10-73
Formats for User-Designed Generatorsccccccvvvvvvveiiiiiiiiiiiiiiccceee. 10-74
IBRNG e 10-77
SBRNG e 10-78
ABRING it e e e e e 10-79
Discrete Fourier Transform Functions
Computing DFT oo 11-2
DFT INEITACE ..ccoeeieieee e 11-3
Status Checking Functionscccccc . 114
ErTOrCIass ..o 11-5
ErrOrMESSAQE ... e 11-6
Descriptor Manipulationccccccuiimiiiiiiiiiiiiiiiieiieereeeeeeeeeeeeeeeeeeeeeeeees 11-7
CreateDesCriptorocoooiiiiii i 11-7
CommIitDESCIIPIOr ..o i 11-10
CopPYDESCHPIOr ... 11-11
[=T LT o 4] o] (o] PR 11-12
[ol I 0704] 010 £= 1110] o HE PP 11-13
ComputeForwardccoooiiiiiicc s 11-13
ComputeBackwardcooooiiiiiiii s 11-16
Descriptor Configuration..............ueeeiiiiiiii e 11-18
SEIVAIUE ..o 11-18
GetValue ... 11-21

Contents

Configuration Settingsooooiiiiiii i 11-24
Precision of transform ..., 11-28
Forward domain of transformccccoeiiiii 11-28
Transform dimension and lengths.............cccoiiiiie 11-29
Number of transforms............ccoooiiiii e 11-30
SigN and SCAIE..........oeiiiiiiii e 11-30
Placement of result...........oocuiiiiiiiii i 11-31
Packed formats...........uuueeiiiiiiiiee e 11-31
Y (o] =T [T Yol a =T o 41T PP 11-34
Number of user threads............cco 11-44
Input and output distanCesccovvvciiiiiiieiie e, 11-45
SIS et 11-46
Initialization Effort..........cooueeiiiiie 11-47

(@0 [T o [o [PPSO PPPPPR PP 11-48

LAY (o 1 6 o T- Lo = SO 11-49
TranNSPOSItION ..o 11-49

Chapter 12 Fast Fourier Transforms

One-dimensional FETScooiiiiiiiee e 12-1
Data Storage TYPES......coouuiiiiiiiee e 12-2
Data Structure Requirementsccccccc 12-2
Complex-to-Complex One-dimensional FFTS..........cccvvvviiiiiiiiiieieene. 12-3
CIIA/ZIFII oo 12-4
CItIAC/ZIFIIAC oo 12-5
Real-to-Complex One-dimensional FFTsccccc, 12-6
SCItTA/AZIFIIA oo 12-7
SCH1AC/AZIFITIAC oo 12-9
Complex-to-Real One-dimensional FFTScccovvviiiiiiiiiieiiieiiieeee, 12-10
CSTRIA/ZAFIIA oo 12-12
CSt1AC/ZAfft1AC oo 12-13
Two-dimensional FFETS ... 12-15
Complex-to-Complex Two-dimensional FFTSccovviiiiiiiieiiieieennennn. 12-16
CIt2d/ZITI2d ..o 12-17
CIft2dC/ZIFL2AC oo 12-18

XXX

Intel ® Math Kernel Library Reference Manual

Real-to-Complex Two-dimensional FFTSc.ocovviiiiiiiiiiiiiiiieiiennn, 12-19
SCt2A/AZIFI2d ...eeeeeeeeeeee e 12-20
SCt2dC/dZfE2AC ..o 12-22

Complex-to-Real Two-dimensional FFTSccccoiiiiiiiiiiiiiis 12-25

CST2d/ZAt2d ..o 12-26
csfft2dc/zdfft2de ... 12-27

Appendix A Linear Solvers Basics

Matrix Fundamentalsooooiiiiiiiiii e A-2
DireCt Methoduviiiiiiiiiie e A-3
Fill-ln and Reordering of Sparse Matricesccccccevve. A-4
Sparse Matrix Storage Formatcooeiiiiiiiii A-7
Storage Format Restrictionsooooiiiiiiiiiiiiciic, A-10

Appendix B Routine and Function Arguments

Vector Arguments in BLAS ... B-1
Vector Arguments in VMLooiiiii e B-2
Positive Increment INdexingcccoooviviiiieiiiiiiii e B-3
Index Vector INAeXingcccuuviiiiiiiiiie e B-3

Mask Vector INAeXiNgccoeveeiiiiiiie e e e e e B-3
Matrix ArgUMENTSot B-3

Appendix C Code Examples

BLAS Code EXamplesccoooiiiiiiiiiieecccc e C-1
PARDISO Code EXamplesccoooiiiiiiiii e C-7
Examples for sparse symmetric linear systems........cccccccvvvevvveeenennnn. C-7
Example results for symmetric systems...........cccoieiiiiiiiiiii, C-7
Examples for sparse unsymmetric linear systems............................ C-17
Example results for unsymmetric systems............cccccceeviiiiiinennn. C-17
Direct Sparse Solver EXamples...........cccccvvvivviiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeees C-27
Example results for symmetric systems...........cccoviieiiiiiiiiiiinnnnn. C-28

DFT Code EXamMPIESuuuuiuuiiiiiiiiiiiiiiiiiiiiiiiiiirsvieeveteveeaveseseseeeeseeeseeeees C-39
Examples of Using Multi-Threading for DFT Computation C-48

XXX1

Contents

Appendix D

Glossary
Bibliography

Index

CBLAS Interface

to the BLAS

CBLAS ArQUMENTS ...ttt e eebeesssassssseseeesesseeeeeeeeees D-1
Enumerated TYPeS......cccueiiiiiiie e D-2

Level 1 CBLAS ...t e e e e e e e e e D-3

LeVel 2 CBLAS ...t D-5

Level 3 CBLAS ... D-12

Sparse CBLAS ... D-16

XXXil

Overview 1

The Intel® Math Kernel Library (Inte]® MKL) provides Fortran routines and functions that
perform a wide variety of operations on vectors and matrices including sparse matrices. The
library also includes discrete Fourier transform routines, as well as vector mathematical and vector
statistical functions with Fortran and C interfaces.

The version of the library named Intel® Cluster MKL is a superset of Intel MKL and includes also
ScaLAPACK software for solving linear algebra problems on distributed-memory parallel
computers.

The Intel MKL enhances performance of the application programs that use it because the library
has been optimized for latest generations of Intel® processors.

This chapter introduces the Intel Math Kernel Library and provides information about the
organization of this manual.

About This Software

The Intel Math Kernel Library includes the following groups of routines:

* Basic Linear Algebra Subprograms (BLAS):
— vector operations
— matrix-vector operations
— matrix-matrix operations

® Sparse BLAS (basic vector operations on sparse vectors)
¢ LAPACK routines for solving systems of linear equations

®* LAPACK routines for solving least-squares problems, eigenvalue and singular value
problems, and Sylvester’s equations

* Auxiliary and utility LAPACK routines

1-1

1 Intel® Math Kernel Library Reference Manual

* ScaLAPACK computational, driver and auxiliary routines (for Intel Cluster MKL only)
* Direct Sparse Solver routines

® Vector Mathematical Library (VML) functions for computing core mathematical functions on
vector arguments (with Fortran and C interfaces)

® Vector Statistical Library (VSL) functions for generating vectors of pseudorandom numbers
with different types of statistical distributions

® General Discrete Fourier Transform Functions (DFT) and a subset of Fast Fourier transform
routines (FFT) with Fortran and C interfaces.

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information,
including product features, white papers, and technical articles. For the latest information, check:
http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information, user
forums, and more (visit http://support.intel.com/support/).

Registering your product entitles you to one year of technical support and product updates through
Intel® Premier Support. Intel Premier Support is an interactive issue management and
communication web site providing these services:

® Submit issues and review their status.

* Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://www.intel.com/software/products/support

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations
they perform:

* BLAS Level 1 Routines and Functions perform operations of both addition and reduction on
vectors of data. Typical operations include scaling and dot products.

* BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector
multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.

http://developer.intel.com/software/products/perflib/index.htm
http://support.intel.com/support/performancetools/libraries/mkl
http://developer.intel.com/software/products/support

Overview 1

* BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix
multiplication, rank-k update, and solution of triangular systems.

Sparse BLAS Routines

Sparse BLAS Routines and Functions operate on sparse vectors (that is, vectors in which most of
the elements are zeros). These routines perform vector operations similar to BLAS Level 1
routines. Sparse BLAS routines take advantage of vectors’ sparsity: they allow you to store only
non-zero elements of vectors.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK computational, driver, auxiliary
and utility routines.

The original versions of LAPACK from which that part of Intel MKL was derived can be obtained
from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai,
C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they
perform:

* Routines for solving systems of linear equations, factoring and inverting matrices, and
estimating condition numbers (see Chapter 3).

® Routines for solving least-squares problems, eigenvalue and singular value problems, and
Sylvester’s equations (see Chapter 4).

* Auxiliary and utility routines used to perform certain subtasks, common low-level
computation or related tasks (see Chapter 5).

ScaLAPACK Routines

ScaLAPACK package (included with Intel Cluster MKL only, see Chapter 6 and Chapter 7) runs
on distributed-memory architectures and includes routines for solving systems of linear equations,
solving linear least-squares problems, eigenvalue and singular value problems, as well as
performing a number of related computational tasks.

1-3

http://www.netlib.org/lapack/index.html

1 Intel® Math Kernel Library Reference Manual

The original versions of ScaLAPACK from which that part of Intel Cluster MKL was derived can
be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are

L. Blackford, J. Choi, A.Cleary, E. D’ Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.
Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

Intel Cluster MKL version of ScalLAPACK is optimized for Intel processors and uses MPICH
version of MPL.

Sparse Solver Routines

Direct sparse solver routines in Intel MKL (see Chapter 8) solve symmetric and
symmetrically-structured sparse matrices with real or complex coefficients. For symmetric
matrices, these Intel MKL subroutines can solve both positive definite and indefinite systems.
Intel MKL includes the PARDISO* sparse solver interface as well as an alternative set of user
callable direct sparse solver routines.

VML Functions

Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized
implementations of certain computationally expensive core mathematical functions (power,
trigonometric, exponential, hyperbolic etc.) that operate on real vector arguments.

VSL Functions

Vector Statistical Library (VSL) functions (see Chapter 10) include a set of pseudo- and
quasi-random number generator subroutines implementing basic continuous and discrete
distributions. To provide best performance, VSL subroutines use calls to highly optimized Basic
Random Number Generators and the library of vector mathematical functions, VML.

DFT and FFT Functions

The Intel MKL multidimensional Discrete Fourier Transform functions with mixed radix support
(see Chapter 11) provide uniformity of DFT computation and combine functionality with ease of
use. Both Fortran and C interface specification are given.

For compatibility with previous versions, Intel MKL provides also a set of simplified one- and
two-dimensional Fast Fourier Transform functions (see Chapter 12) that support powers of 2
transform size.

1-4

http://www.netlib.org/scalapack/index.html

Overview 1

Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both processor and system
features and capabilities. Special care has been given to those routines that most profit from
cache-management techniques. These especially include matrix-matrix operation routines such as
dgemm ().

In addition, code optimization techniques have been applied to minimize dependencies of
scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:
* Loop unrolling to minimize loop management costs.

* Blocking of data to improve data reuse opportunities.

* Copying to reduce chances of data eviction from cache.

* Data prefetching to help hide memory latency.

® Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due
to arithmetic unit pipelines.

¢ Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel MKL offers performance
gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature.
You can obtain improvements from SMP in the following ways:

®* One way is based on user-managed threads in the program and further distribution of the
operations over the threads based on data decomposition, domain decomposition, control
decomposition, or some other parallelizing technique. Each thread can use any of the Intel
MKL functions because the library has been designed to be thread-safe.

® Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and
require no alterations of your application to gain the performance enhancements of
multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent
scaling. Since the threads are called and managed within the library, the application does not
need to be recompiled thread-safe (see also BLAS Level 3 Routines in Chapter 2).

1-5

1 Intel® Math Kernel Library Reference Manual

® Yet another method is to use tuned LAPACK routines. Currently these include the single- and
double precision flavors of routines for OR factorization of general matrices, triangular
factorization of general and symmetric positive-definite matrices, solving systems of
equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK
routines, see the Intel MKL Technical User Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions optimized for Intel®
processor-based computers running operating systems that support multiprocessing. In addition to
the Fortran interface, the Intel MKL includes a C-language interface for the Discrete Fourier
transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library
functions.

For hardware and software requirements to use Inlel MKL, see MKL Release Notes.

About This Manual

This manual describes the routines and functions of the Intel MKL and Intel Cluster MKL.
Each reference section describes a routine group typically consisting of routines used with four
basic data types: single-precision real, double-precision real, single-precision complex, and
double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling
sequence, or syntax, for each type of data with which each routine of the group is used. The
following sections are also included:

Description Describes the operation performed by routines of the group based on one
or more equations. The data types of the arguments are defined in
general terms for the group.

Input Parameters Defines the data type for each parameter on entry, for example:

a REAL for saxpy
DOUBLE PRECISION for daxpy

Output Parameters Lists resultant parameters on exit.

Overview 1

Audience for This Manual

The manual addresses programmers proficient in computational mathematics and assumes a
working knowledge of the principles and vocabulary of linear algebra, mathematical statistics, and

Fourier transforms.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Overview. Introduces the Intel Math Kernel Library software, provides
information on manual organization, and explains notational conventions.

BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and Sparse
BLAS functions and routines.

LAPACK Routines: Linear Equations. Provides descriptions of LAPACK
routines for solving systems of linear equations and performing a number of
related computational tasks: triangular factorization, matrix inversion,
estimating the condition number of matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems. Provides
descriptions of LAPACK routines for solving least-squares problems, standard
and generalized eigenvalue problems, singular value problems, and Sylvester’s
equations.

LAPACK Auxiliary and Utility Routines. Describes auxiliary and utility
LAPACK routines that perform certain subtasks or common low-level
computation.

ScalL APACK Routines. Describes ScaLAPACK computational and driver
routines (software included with Intel Cluster MKL only).

ScalLAPACK Auxiliary and Utility Routines. Describes ScaLAPACK auxiliary
routines (software included with Intel Cluster MKL only).

Sparse Solver Routines. Describes direct sparse solver routines that solve
symmetric and symmetrically-structured sparse matrices.

Vector Mathematical Functions. Provides descriptions of VML functions for
computing elementary mathematical functions on vector arguments.

Vector Generators of Statistical Distributions. Provides descriptions of VSL
functions for generating vectors of pseudorandom numbers.

1-7

1 Intel® Math Kernel Library Reference Manual

Chapter 11 Discrete Fourier Transform Functions. Describes multidimensional functions
for computing the Discrete Fourier Transform.

Chapter 12 Fast Fourier Transforms. Provides descriptions of a simplified fast Fourier
transform (FFT) routines.

Appendix A Linear Solvers Basics. Briefly describes the basic definitions and approaches
used in linear algebra for solving systems of linear equations.

Appendix B Routine and Function Arguments. Describes the major arguments of the BLAS
routines and VML functions: vector and matrix arguments.

Appendix C Code Examples. Provides code examples of calling various Intel MKL
functions and routines (BLAS, Sparse Solver, DFT).
Appendix D CBLAS Interface to the BLAS. Provides the C interface to the BLAS.

The manual also includes a Bibliography, Glossary and an Index.

Notational Conventions

1-8

This manual uses the following notational conventions:
® Routine name shorthand (?ungqgr instead of cungqgr/zungqgr).

®* Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?” in names of routine groups.
The question mark is used to indicate any or all possible varieties of a function; for example:

?swap Refers to all four data types of the vector-vector ? swap routine: sswap,

dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Data type used in the discussion of input and output parameters
for Fortran interface. For example, CHARACTER*1.

Overview 1

lowercase courier

lowercase courier mixed
with UpperCase courier

lowercase courier italic

Code examples:
a(k+i,j) = matrix(i,Jj)
and data types for C interface, for example, const float*

Function names for C interface,
for example, vmlSetMode

Variables in arguments and parameters discussion. For example,
incx.

Used as a multiplication symbol in code examples and
equations and where required by the Fortran syntax.

1-9

BLAS and Sparse BLAS
Routines

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel® Math
Kernel Library. The routine descriptions are arranged in four sections according to the BLAS level
of operation:

* “BLAS Level 1 Routines and Functions” (vector-vector operations)

* BLAS Level 2 Routines (matrix-vector operations)

* BLAS Level 3 Routines (matrix-matrix operations)

®* Sparse BILAS Routines and Functions.

Each section presents the routine and function group descriptions in alphabetical order by routine
or function group name; for example, the ?asum group, the ?axpy group. The question mark in
the group name corresponds to different character codes indicating the data type (s, d, ¢, and z or
their combination); see Routine Naming Conventions on the next page.

When BLAS routines encounter an error, they call the error reporting routine xerbla. To be able
to view error reports, you must include xerbla in your code. A copy of the source code for
xerbla is included in the library.

(1341}
1

In BLAS Level 1 groups i?amax and i?amin, an “i” is placed before the character code and
corresponds to the index of an element in the vector. These groups are placed in the end of the
BLAS Level 1 section.

2-1

2 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions

BLAS routine names have the following structure:

<character code> <name> <mod> ()

The <character codes is a character that indicates the data type:

s real, single precision c complex, single precision
d real, double precision z complex, double precision

Some routines and functions can have combined character codes, such as
sc or dz. For example, the function scasum uses a complex input array and returns a real value.

The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1
routines ?dot, ?rot, ?swap compute a vector dot product, vector rotation, and vector swap,
respectively.

In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge general matrix

gb general band matrix

sy symmetric matrix

sp symmetric matrix (packed storage)
sb symmetric band matrix

he Hermitian matrix

hp Hermitian matrix (packed storage)
hb Hermitian band matrix

tr triangular matrix

tp triangular matrix (packed storage)

tb triangular band matrix.

The <mod> field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the <mod> field:

c conjugated vector
u unconjugated vector
g Givens rotation.

BLAS level 2 names can have the following characters in the <mod> field:
mv matrix-vector product

sv solving a system of linear equations with matrix-vector operations
r rank-1 update of a matrix

r2 rank-2 update of a matrix.

BLAS and Sparse BLAS Routines 2

BLAS level 3 names can have the following characters in the <mod> field:
mm matrix-matrix product

sm solving a system of linear equations with matrix-matrix operations
rk rank-k update of a matrix

r2k rank-2k update of a matrix.

The examples below illustrate how to interpret BLAS routine names:
<d> <dot> ddot: double-precision real vector-vector dot product
<c> <dot> <c> cdotc: complex vector-vector dot product, conjugated

<sc> <asum> scasum: sum of magnitudes of vector elements, single precision real output
and single precision complex input

<c> <dot> <u> cdotu: vector-vector dot product, unconjugated, complex
<s> <ge> <mv> sgemv: matrix-vector product, general matrix, single precision

<z> <tr> <mm> ztrmm: matrix-matrix product, triangular matrix, double-precision complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1.
For more information, see “Naming Conventions in Sparse BLAS”.

Matrix Storage Schemes

Matrix arguments of BLAS routines can use the following storage schemes:

® Full storage: a matrix 4 is stored in a two-dimensional array a, with the matrix element a;;

stored in the array element a (1, 7).

Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more

compactly: the upper or lower triangle of the matrix is packed by columns in a

one-dimensional array.

® Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

3

For more information on matrix storage schemes, see “‘Matrix Arguments” in Appendix B.

2-3

2 Intel® Math Kernel Library Reference Manual

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table 2-1
lists the BLAS Level 1 routine and function groups and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or

Function

Group Data Types Description

?asum s, d, sc, dz Sum of vector magnitudes (functions)

?axpy s,d, ¢z Scalar-vector product (routines)

2copy s,d,c,z Copy vector (routines)

?dot s, d Dot product (functions)

?sdot sd, d Dot product with extended precision
(functions)

?dotc c,z Dot product conjugated (functions)

?dotu c, z Dot product unconjugated (functions)

?nrm2 s, d, sc, dz Vector 2-norm (Euclidean norm) a normal
or null vector (functions)

?rot s, d, cs, zd Plane rotation of points (routines)

?rotg s,d,c z Givens rotation of points (routines)

?rotm s, d Modified plane rotation of points

?rotmg s, d Givens modified plane rotation of points

?scal s, d, ¢, z, cs, zd Vector scaling (routines)

?swap s, d, ¢,z Vector-vector swap (routines)

i?amax s, d,c,z Vector maximum value, absolute largest

element of a vector where 1 is an index to
this value in the vector array (functions)

i?amin s,d,c,z Vector minimum value, absolute smallest
element of a vector where 1 is an index to
this value in the vector array (functions)

BLAS and Sparse BLAS Routines 2

?asum

Computes the sum of magnitudes of the vector elements.

Syntax
res = gsasum (n, x, incx)

res = scasum (n, x, incx)

res = dasum (n, x, incx)
res = dzasum (n, x, incx)
Description

Given a vector x, ?asum functions compute the sum of the magnitudes of its elements or, for
complex vectors, the sum of magnitudes of the elements’ real parts plus magnitudes of their

imaginary parts:

res = |Rex (1) |+ [Imx (1) + [Rex (2) | + [Imx (2) [+ ... + |Rex (n) | + |Imx (n) |

where x is a vector of order n.

Input Parameters

n

X

incx

INTEGER. Specifies the order of vector x.

REAL for sasum

DOUBLE PRECISION for dasum
COMPLEX for scasum

DOUBLE COMPLEX for dzasum

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

INTEGER. Specifies the increment for the elements of x.

Output Parameters

res

REAL for sasum

DOUBLE PRECISION for dasum
REAL for scasum

DOUBLE PRECISION for dzasum

Contains the sum of magnitudes of all elements’ real parts plus magnitudes of

their imaginary parts.

2 Intel® Math Kernel Library Reference Manual

?axpy

Computes a vector-scalar product and adds the result

to a vector.
Syntax
call saxpy (n, a, x, incx, y, incy)
call daxpy (n, a, x, incx, y, incy)
call caxpy (n, a, x, incx, y, incy)
call zaxpy (n, a, x, incx, y, incy)
Description

2-6

The ?axpy routines perform a vector-vector operation defined as

y = a*x + y
where:
a is a scalar

x and y are vectors of order n.

Input Parameters
n INTEGER. Specifies the order of vectors x and y

a REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Specifies the scalar a.

x REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

BLAS and Sparse BLAS Routines 2

v REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

v Contains the updated vector y

?copy

Copies vector to another vector.

Syntax
call scopy n, x, incx, y, incy

()
call dcopy (n, x, incx, y, incy)
()
()

call ccopy n, x, incx, y, incy
call zcopy n, x, incx, y, incy
Description

The ?copy routines perform a vector-vector operation defined as
y =X

where x and y are vectors.

Input Parameters
n INTEGER. Specifies the order of vectors x and y.

x REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

2-7

2 Intel® Math Kernel Library Reference Manual

incx INTEGER. Specifies the increment for the elements of x.

v REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

y Contains a copy of the vector x if n is positive. Otherwise, parameters are
unaltered.

?dot

Computes a vector-vector dot product.

Syntax

res sdot (n, x, incx, y, incy)

res = ddot (n, x, incx, y, incy)

Description

The 2dot functions perform a vector-vector reduction operation defined as

res = Z (x*y),

where x and y are vectors.

Input Parameters
n INTEGER. Specifies the order of vectors x and y

x REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+ (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

2-8

BLAS and Sparse BLAS Routines 2

v REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+ (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

res REAL for sdot
DOUBLE PRECISION for ddot

Contains the result of the dot product of x and y; if n is positive. Otherwise,
res contains 0.

?sdot

Computes a vector-vector dot product with extended

precision.
Syntax
res = sdsdot (n, sb, sx, incx, sy, incy)
res = dsdot (n, sx, incx, sy, incy)
Description

The ?sdot functions compute the inner product of two vectors with extended precision. Both
functions use extended precision accumulation of the intermediate results, but the function
sdsdot outputs the final result in single precision, whereas the function dsdot outputs the
double precision result. The function sdsdot also adds scalar value sb to the inner product.

Input Parameters

n INTEGER. Specifies the number of elements in the input vectors sx and sy

sb REAL. Single precision scalar to be added to inner product (for the function
sdsdot only).

sx, sy REAL. Arrays, DIMENSION at least (1+ (n-1) *abs (incx)) and
(1+(n-1) *abs (incy)), respectively. Contain the input single precision
vectors.

2-9

2 Intel® Math Kernel Library Reference Manual

incx INTEGER. Specifies the increment for the elements
of sx.

incy INTEGER. Specifies the increment for the elements
of sy.

Output Parameters

res REAL for sdsdot
DOUBLE PRECISION for dsdot

Contains the result of the dot product of sx and sy (with sb added for
sdsdot), if n is positive. Otherwise, res contains sb for sdsdot and 0 for
dsdot.

?dotc

Computes a dot product of a conjugated vector with
another vector.

Syntax

res = cdotc (n, x, incx, y, incy)
res = zdotc (n, x, incx, y, incy)
Description

The ?dotc functions perform a vector-vector operation defined as

res = Z (conjg(x)*y),

where x and y are n-element vectors.

Input Parameters
n INTEGER. Specifies the order of vectors x and y

x COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

2-10

BLAS and Sparse BLAS Routines 2

v COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

res COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Contains the result of the dot product of the conjugated x and unconjugated y;
if n is positive. Otherwise, res contains 0.

?dotu

Computes a vector-vector dot product.

Syntax
res = cdotu (n, x, incx, y, incy)

res = zdotu (n, x, incx, y, incy)
Description

The ?dotu functions perform a vector-vector reduction operation defined as res = Z (x*y),

where x and y are n-element complex vectors.

Input Parameters
n INTEGER. Specifies the order of vectors x and y.

x COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs (incx)).
inecx INTEGER. Specifies the increment for the elements of x.

v COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (1 + (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

res COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Contains the result of the dot product of x and y; if n is positive. Otherwise,
res contains 0.

?nrm2

Computes the Euclidean norm of a vector.

Syntax

res = snrm2 (n, x, incx)
res = dnrm2 (n, x, incx)
res = scnrm2 (n, X, incx)
res = dznrm2 (n, x, incx)
Description

The ?nrm2 functions perform a vector reduction operation defined as

res = ||x|],
where:

x 18 a vector

res is a value containing the Euclidean norm of the elements of x.

2-12

BLAS and Sparse BLAS Routines 2

Input Parameters
n INTEGER. Specifies the order of vector x.

x REAL for snrm2
DOUBLE PRECISION for dnrm2
COMPLEX for scnrm2
DOUBLE COMPLEX for dznrm2

Array, DIMENSION at least (1 + (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm?2
DOUBLE PRECISION for dznrm2

Contains the Euclidean norm of the vector x.

?rot

Performs rotation of points in the plane.

Syntax

call srot (n, x, incx, y, incy, c, s)
call drot (n, x, incx, y, incy, c, s)
call csrot (n, x, incx, y, incy, ¢, s)

call zdrot (n, x, incx, y, incy, c, s)

Description

Given two complex vectors x and y; each vector element of these vectors is replaced as follows:
x(1i) = c*x(1) + s*y(i)

y(i) = c*y(i) - s*x(1)

2-13

2 Intel® Math Kernel Library Reference Manual

2-14

Input Parameters

n

X

incx

incy

INTEGER. Specifies the order of vectors x and y.

REAL for srot

DOUBLE PRECISION for drot
COMPLEX for csrot

DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1) *abs (incx)).
INTEGER. Specifies the increment for the elements of x.

REAL for srot

DOUBLE PRECISION for drot
COMPLEX for csrot

DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1) *abs (incy)).
INTEGER. Specifies the increment for the elements of y:

REAL for srot

DOUBLE PRECISION for drot
REAL for csrot

DOUBLE PRECISION for zdrot

A scalar.

REAL for srot

DOUBLE PRECISION for drot
REAL for csrot

DOUBLE PRECISION for zdrot

A scalar.

Output Parameters

X

y

Each element is replaced by c*x + s*y.

Each element is replaced by c*y - s*x.

BLAS and Sparse BLAS Routines 2

?rotg

Computes the parameters for a Givens rotation.

Syntax

call srotg (a, b, ¢, s)
call drotg (a, b, ¢, s)
call crotg (a, b, ¢, s)
call zrotg (a, b, ¢, s)

Description

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a, b, c,
and s associated with the Givens rotation that zeros the y-coordinate of the point.

Input Parameters

a REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the x-coordinate of the point p.

b REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the y-coordinate of the point p.

Output Parameters

a Contains the parameter r associated with the Givens rotation.
b Contains the parameter z associated with the Givens rotation.
c REAL for srotg

DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg

2-15

2 Intel® Math Kernel Library Reference Manual

Contains the parameter c associated with the Givens rotation.

s REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Contains the parameter s associated with the Givens rotation.

?rotm

Performs rotation of points in the modified plane.

Syntax
call srotm (n, x, incx, y, 1ncy, param)

call drotm (n, x, incx, y, incy, param)

Description

Given two complex vectors x and y; each vector element of these vectors is replaced as follows:
x(1) = H*x(1i) + H*y(1i)

y(i) = H*y(i) - H*x(1i)

where:

His a modified Givens transformation matrix whose values are stored in the param(2) through

param (5) array. See discussion on the param argument.

Input Parameters
n INTEGER. Specifies the order of vectors x and y.

x REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

v REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSTION at least (1 + (n-1) *abs (incy)).

2-16

BLAS and Sparse BLAS Routines 2

incy INTEGER. Specifies the increment for the elements of y:

param REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.

The elements of the param array are:

param (1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of
the array H.

Depending on the values of f1ag, the components of H are set as follows:
1. - g —|h11 h12
h21 h22

flag

flag = 0.: H = { 1. hlZ}
h21 1.

flag = 1.: H = {hll 1'}
-1. h22

flag = -2.:H = {1' 0}
0. 1.

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on
the last three values of £1ag and are not actually loaded into the param vector.

Output Parameters

x Each element is replaced by hi1+x + hi2*y.
v Each element is replaced by h21+x + h22*y.
H Givens transformation matrix updated.

2-17

2 Intel® Math Kernel Library Reference Manual

?rotmg

Computes the modified parameters for a Givens
rotation.

Syntax
call srotmg (di, d2, x1, yl, param)
call drotmg (di, d2, x1, yl, param)

Description

Given cartesian coordinates (x1, y1) of an input vector, these routines compute the components of
a modified Givens transformation matrix H that zeros the y-component of the resulting vector:

X _ g x1
0 y1
Input Parameters

di1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the x-coordinate of the input vector
(sqrt (d1) x1).

dz REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the y-coordinate of the input vector
(sqrt (d2) y1).

x1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the input vector.

yvi REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

2-18

BLAS and Sparse BLAS Routines 2

Output Parameters

param REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.

The elementsof the param array are:

param (1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of
the array H.

Depending on the values of £1ag, the components of H are set as follows:

flag = -1.: g =|h11 h12
h21 h22

flag = 0.: H = 1. hiz
h21 1.

flag:l:H:hll 1.
-1. h22

flag = -2.: H = {1' 0}
0. 1.

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on the
last three values of £1ag and are not actually loaded into the param vector.

?scal

Computes a vector by a scalar product.

Syntax
call sscal n, a, x, incx)
call dscal n, a, x, incx)

call cscal n, a, x, incx)

—~ o~ o~ o~

call zscal n, a, x, 1incx)

call c¢sscal (n, a, x, incx)

2-19

2 Intel® Math Kernel Library Reference Manual

call zdscal (n, a, x, incx)

Description

The ?scal routines perform a vector-vector operation defined as
X = a*x

where:

a is a scalar, x is an n-element vector.

Input Parameters
n INTEGER. Specifies the order of vector x.

a REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal

Specifies the scalar a.

x REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and csscal

Array, DIMENSION at least (1 + (n-1)*abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

x Overwritten by the updated vector x.

?swap

Swaps a vector with another vector.

2-20

Syntax
call sswap (n, x, incx, y, incy)

call dswap (n, x, incx, y, incy)

BLAS and Sparse BLAS Routines 2

call cswap (n, x, incx, y, incy)

call zswap (n, x, incx, y, incy)

Description

Given the two complex vectors x and y; the ? swap routines return vectors y and x swapped, each
replacing the other.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zZswap

Array, DIMENSION at least (1 + (n-1) *abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.

v REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1) *abs (incy)).

incy INTEGER. Specifies the increment for the elements of y:

Output Parameters

x Contains the resultant vector x.
y Contains the resultant vector y:
i7amax

Finds the element of a vector that has the largest
absolute value.

Syntax

index = isamax (n, x, 1ncx)

2-21

2 Intel® Math Kernel Library Reference Manual

index = idamax (n, x, 1ncx)
index = icamax (n, x, incx)

index = izamax (n, x, incx)

Description

Given a vector x, the i ?amax functions return the position of the vector element x (1) that has the
largest absolute value or, for complex flavors, the position of the element with the largest sum
[Re x (1) |+ [Im x (1) .

If n is not positive, 0 is returned.

If more than one vector element is found with the same largest absolute value, the index of the first
one encountered is returned.

Input Parameters

n INTEGER. Specifies the order of the vector x.

x REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax

Array, DIMENSION at least (1+ (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

index INTEGER. Contains the position of vector element x that has the largest
absolute value.

i?7amin
Finds the element of a vector that has the smallest
absolute value.

2-22

Syntax
index = isamin (n, x, 1ncx)
index = idamin (n, x, incx)

BLAS and Sparse BLAS Routines 2

index = icamin (n, x, 1ncx)
index = izamin (n, x, incx)
Description

Given a vector x, the 1 ?amin functions return the position of the vector element x (1) that has the
smallest absolute value or, for complex flavors, the position of the element with the smallest sum
[Rex (1) |+ [Imx (1)].

If n is not positive, 0 is returned.
If more than one vector element is found with the same smallest absolute value, the index of the
first one encountered is returned.

Input Parameters

n INTEGER. On entry, n specifies the order of the vector x.

x REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin

Array, DIMENSION at least (1+ (n-1) *abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

index INTEGER. Contains the position of vector element x that has the smallest
absolute value.

2-23

2 Intel® Math Kernel Library Reference Manual

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table 2-2
lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine Data

Groups Types Description

?gbmv s,d,c,z Matrix-vector product using a general band
matrix

?gemv s, d,c,z Matrix-vector product using a general matrix

?ger s, d Rank-1 update of a general matrix

?gerc c, z Rank-1 update of a conjugated general matrix

?geru c, z Rank-1 update of a general matrix,
unconjugated

?hbmv c, z Matrix-vector product using a Hermitian band
matrix

?hemv c z Matrix-vector product using a Hermitian matrix

?her c z Rank-1 update of a Hermitian matrix

?her2 c z Rank-2 update of a Hermitian matrix

?hpmv c, z Matrix-vector product using a Hermitian packed
matrix

?hpr c, z Rank-1 update of a Hermitian packed matrix

?hpr2 c z Rank-2 update of a Hermitian packed matrix

? sbmv s, d Matrix-vector product using symmetric band
matrix

? spmv s, d Matrix-vector product using a symmetric packed
matrix

?sSpr s, d Rank-1 update of a symmetric packed matrix

?spr2 s, d Rank-2 update of a symmetric packed matrix

? symv s, d Matrix-vector product using a symmetric matrix

?Syr s, d Rank-1 update of a symmetric matrix

?syr2 s, d Rank-2 update of a symmetric matrix

?thmv s, d, ¢,z Matrix-vector product using a triangular band
matrix

?tbsv s, d, ¢,z Linear solution of a triangular band matrix

2-24

BLAS and Sparse BLAS Routines 2

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)
Routine Data
Groups Types Description
? tpmv s,d,c,z Matrix-vector product using a triangular packed

matrix

?tpsv s, d,c,z Linear solution of a triangular packed matrix
?trmv s, d, ¢,z Matrix-vector product using a triangular matrix
?trsv s, d,c,z Linear solution of a triangular matrix

?gbmv

Computes a matrix-vector product using

a general band matrix

Syntax

call sgbmv
call dgbmv
call cgbmv
call zgbmv

Description

—~ o~~~

trans,
trans,
trans,

trans,

ki1,
k1,
k1,
k1,

lda, x,
lda, x,
lda, x,
lda, x,

alpha, a, inxc, beta,

alpha, a, incx, beta,

alpha, a, incx, beta,

alpha, a, incx, beta,

The ?2gbmv routines perform a matrix-vector operation defined as

Yy =
or
Yy =
or
Yy =

where:

alpha and beta are scalars

x and y are vectors

alpha*a*x + beta*y

alpha*a'*x + beta*y,

alpha*conjg(a') *x + beta*y,

a is an m by n band matrix, with k1 sub-diagonals and ku super-diagonals.

2-25

2 Intel® Math Kernel Library Reference Manual

2-26

Input Parameters

trans

k1

alpha

CHARACTER* 1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed

Norn y:= alpha*a*x + beta*y

Tort y:= alpha*a'*x + beta*y

Corc y:= alpha*conjg(a') *x +beta*y

INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

INTEGER. Specifies the number of sub-diagonals of the matrix a. The value of
k1 must satisfy 0 < k1.

INTEGER. Specifies the number of super-diagonals of the matrix a. The value
of ku must satisfy 0 < ku.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Specifies the scalar alpha.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Array, DIMENSION (1da, n). Before entry, the leading (k1 + ku+ 1) by n
part of the array a must contain the matrix of coefficients. This matrix must be
supplied column-by-column, with the leading diagonal of the matrix in row
(ku + 1) of the array, the first super-diagonal starting at position 2 in row ku,
the first sub-diagonal starting at position 1 in row (ku + 2), and so on.
Elements in the array a that do not correspond to elements in the band matrix
(such as the top left ku by ku triangle) are not referenced.

The following program segment transfers a band matrix from conventional full
matrix storage to band storage:

BLAS and Sparse BLAS Routines 2

lda

incx

beta

incy

k = ku + 1
do 10, i = max(1, j-ku), min(m, j+kI1)
a(k+i, j) = matrix(i,j)

10 continue
20 continue

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k1 + ku + 1).

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)) when trans = 'N' or
'n' and at least (1 + (m - 1) *abs (incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be
Zero.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be set
on input.

REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv

DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (m- 1) *abs (incy)) when trans = 'N' or
'n' and at least

(L+ (n-1)*abs (incy)) otherwise. Before entry, the incremented array y
must contain the vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y

Overwritten by the updated vector y.

2-27

2 Intel® Math Kernel Library Reference Manual

?gemv

Computes a matrix-vector product
using a general matrix

Syntax
call sgemv trans, m, n, alpha, a, lda, x, incx, beta, y, incy
call dgemv trans, m, n, alpha, a, lda, x, incx, beta, y, incy

call cgemv trans, m, n, alpha, a, lda, x, incx, beta, y, incy

—~ o~ o~ o~

call zgemv trans, m, n, alpha, a, lda, x, incx, beta, y, incy

Description

The ?gemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,
where:

alpha and beta are scalars

x and y are vectors

a is an m by n matrix.

Input Parameters

—_ — — ~—

trans CHARACTER*1. Specifies the operation to be performed, as follows:
trans value Operation to be Performed
Norn y:= alpha*a*x + beta*y
Tort y:= alpha*a'*x + beta*y
Corc y:= alpha*conjg(a') *x +beta*y

2-28

BLAS and Sparse BLAS Routines 2

alpha

lda

incx

beta

INTEGER. Specifies the number of rows of the matrix a. m must be at least
Zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Specifies the scalar alpha.

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Array, DIMENSION (1da, n).Before entry, the leading m by n part of the array
a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1+ (n-1) *abs (incx)) when trans = 'N' or
'n' and at least (1+ (m - 1) *abs (incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for sgemv

DOUBLE PRECISION for dgemv
COMPLEX for cgemv

DOUBLE COMPLEX for zgemv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

2-29

2 Intel® Math Kernel Library Reference Manual

v REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1 + (m - 1) *abs (incy)) when trans = 'N' or
'n' and at least (1 + (n - 1) *abs (incy)) otherwise. Before entry with
beta non-zero, the incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.
Output Parameters

b Overwritten by the updated vector y.

?ger

Performs a rank-1 update of a general matrix.

2-30

Syntax

call sger (m, n, alpha, x, incx, y, incy, a, lda)
call dger (m, n, alpha, x, incx, y, incy, a, lda)
Description

The ?ger routines perform a matrix-vector operation defined as

a := alpha*x*y' + a,
where:

alpha is a scalar

x 18 an m-element vector
y is an n-element vector

a is an m by n matrix.

BLAS and Sparse BLAS Routines 2

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha REAL for sger
DOUBLE PRECISION for dger

Specifies the scalar alpha.

x REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (m - 1) *abs (incx)). Before entry, the
incremented array x must contain the m-element vector x.

inex INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

v REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION (1da, n).Before entry, the leading m by n part of the array
a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

Output Parameters

a Overwritten by the updated matrix.

2-31

2 Intel® Math Kernel Library Reference Manual

?gerc

Performs a rank-1 update (conjugated)
of a general matrix.

2-32

Syntax

call cgerc (m, n, alpha, x, incx, y, incy, a, lda)
call zgerc (m, n, alpha, x, incx, y, incy, a, lda)
Description

The ?gerc routines perform a matrix-vector operation defined as

a := alpha*x*conijg(y') + a,
where:

alpha is a scalar

x 1s an m-element vector

v is an n-element vector

a is an m by n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Specifies the scalar alpha.

X SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Array, DIMENSION at least (1 + (m - 1) *abs (incx)). Before entry, the
incremented array x must contain the m-element vector x.

BLAS and Sparse BLAS Routines 2

inecx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

b COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION (1da, n).Before entry, the leading m by n part of the array
a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

Output Parameters

a Overwritten by the updated matrix.
?geru
Performs a rank-1 update (unconjugated) of a general
matrix.
Syntax
call cgeru (m, n, alpha, x, incx, y, incy, a, lda)
call zgeru (m, n, alpha, x, incx, y, incy, a, lda)
Description
The ?geru routines perform a matrix-vector operation defined as
a:= alpha*x*y' + a,
where:

alpha is a scalar

2-33

2 Intel® Math Kernel Library Reference Manual

x 18 an m-element vector
y 18 an n-element vector

a is an m by n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Specifies the scalar alpha.

x COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (m - 1) *abs (incx)). Before entry, the
incremented array x must contain the m-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

v COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION (Ida, n).Before entry, the leading m by n part of the array
a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, m).

Output Parameters

a Overwritten by the updated matrix.

2-34

BLAS and Sparse BLAS Routines 2

?hbmv

Computes a matrix-vector product using a Hermitian
band matrix.

Syntax

call chbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
Description

The ?hbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

ais an n by n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

uplo value Part of Matrix a Supplied
Uoru The upper triangular part of matrix a is being
supplied.
Lorl The lower triangular part of matrix a is being
supplied.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.
k INTEGER. Specifies the number of super-diagonals of the matrix a. The value

of k must satisfy 0 < k.

alpha COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

2-35

2 Intel® Math Kernel Library Reference Manual

lda

Specifies the scalar alpha.

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION (lda, n). Before entry with

uplo='U' or 'u’', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the Hermitian matrix. The matrix must be
supplied column-by-column, with the leading diagonal of the matrix in row (k
+ 1) of'the array, the first super-diagonal starting at position 2 in row k, and so
on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a

Hermitian band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=k+ 1 -3

do 10, 1 = max (1, j - k), J
a(m + 1, j) = matrix(i, 7J)
10 continue

20 continue

Before entry with uplo='L' or '1', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the Hermitian matrix, supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1
in row 2, and so on. The bottom right k by k triangle of the array a is not
referenced.

The following program segment transfers the lower triangular part of a
Hermitian band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=1-7

do 10, 1 = j, min(n, j + k)
a(m+ 1i, j) = matrix(i, j)

10 continue
20 continue

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

BLAS and Sparse BLAS Routines 2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the vector x.

inex INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar beta.

v COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.
Output Parameters

v Overwritten by the updated vector y.

?hemv

Computes a matrix-vector product
using a Hermitian matrix.

Syntax

call chemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zhemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
Description

The ?hemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars

2-37

2 Intel® Math Kernel Library Reference Manual

x and y are n-element vectors

ais an n by n Hermitian matrix.

Input Parameters

uplo

alpha

lda

2-38

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

vuoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar alpha.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION (lda, n). Before entry with

uplo='U"' or 'u', the leading n by n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced. Before entry with

uplo='L' or '1', the leading n by n lower triangular part of the array a must
contain the lower triangular part of the Hermitian matrix and the strictly upper
triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

BLAS and Sparse BLAS Routines 2

inecx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar beta. When beta is supplied as zero then y need not be
set on input.

v COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.
Output Parameters

v Overwritten by the updated vector y.

?her

Performs a rank-1 update of a Hermitian matrix.

Syntax

call cher (uplo, n, alpha, x, incx, a, lda)
call zher (uplo, n, alpha, x, incx, a, 1lda)
Description

The ?her routines perform a matrix-vector operation defined as

a := alpha*x*conijg(x') + a,
where:

alpha is areal scalar

x 1s an n-element vector

ais an n by n Hermitian matrix.

2-39

2 Intel® Math Kernel Library Reference Manual

2-40

Input Parameters

uplo

alpha

incx

lda

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

Uoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

REAL for cher
DOUBLE PRECISION for zher

Specifies the scalar alpha.

COMPLEX for cher
DOUBLE COMPLEX for zher

Array, dimension at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for cher
DOUBLE COMPLEX for zher

Array, DIMENSION (lda, n). Before entry with

uplo='U" or 'u', the leading n by n upper triangular part of the array a must
contain the upper triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo = 'L' or '1', the leading n by n lower triangular part
of the array a must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

BLAS and Sparse BLAS Routines 2

Output Parameters

a With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?her2

Performs a rank-2 update of a Hermitian matrix.

Syntax

call cher2 (uplo, n, alpha, x, incx, y, incy, a, lda)
call zher2 (uplo, n, alpha, x, incx, y, incy, a, lda)
Description

The ?her2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
where:

alpha is a scalar

x and y are n-element vectors

ais an n by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

Uoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

2-41

2 Intel® Math Kernel Library Reference Manual

alpha

incx

incy

lda

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

COMPLEX for cher2
DOUBLE COMPLEX for zher2

Specifies the scalar alpha.

COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION (lda, n). Before entry with
uplo='U" or 'u', the leading n by n upper triangular part of the array a must
contain the upper triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo= 'L' or '1', the leading n by n lower triangular part
of the array a must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

Output Parameters

a

2-42

With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

BLAS and Sparse BLAS Routines 2

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?hpmv

Computes a matrix-vector product using a Hermitian

packed matrix.

Syntax

call chpmv (uplo, n, alpha,
call zhpmv (uplo, n, alpha,

Description

x, 1incx, beta, y, incy)

x, 1incx, beta, y, incy)

The ?hpmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:
alpha and beta are scalars

x and y are n-element vectors

ais an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied
Uoru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

2-43

2 Intel® Math Kernel Library Reference Manual

alpha

ap

incx

beta

incy

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar alpha.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular part of the Hermitian
matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.
Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap (1) contains a (1, 1), ap (2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar beta. When beta is supplied as zero then y need not be
set on input.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

Y

2-44

Overwritten by the updated vector y

BLAS and Sparse BLAS Routines 2

?hpr

Performs a rank-1 update of a Hermitian packed
matrix.

Syntax

call chpr (uplo, n, alpha, x, incx, ap)
call zhpr (uplo, n, alpha, x, incx, ap)
Description

The?hpr routines perform a matrix-vector operation defined as

a := alpha*x*conijg(x') + a,

where:

alpha is a real scalar

x is an n-element vector

ais an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied
Uoru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZET0.
alpha REAL for chpr

DOUBLE PRECISION for zhpr

Specifies the scalar alpha.

2-45

2 Intel® Math Kernel Library Reference Manual

incx

ap

COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be
Zero.

COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo= 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian

matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.

Before entry with upIlo= 'L' or '1', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap (1) contains a(1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

Output Parameters

ap

With uplo = 'U" or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?hpr2

Performs a rank-2 update of a Hermitian packed

matrix.

2-46

Syntax
call chpr2

(

uplo, n, alpha, x, incx, y, incy, ap)

BLAS and Sparse BLAS Routines 2

call zhpr2 (uplo, n, alpha, x, incx, y, incy, ap)

Description

The?hpr2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
where:

alpha is a scalar

x and y are n-element vectors

ais an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows

uplo value Part of Matrix a Supplied
Uoru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZETo0.
alpha COMPLEX for chpr2

DOUBLE COMPLEX for zhpr2
Specifies the scalar alpha.

x COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, dimension at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

inecx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

2-47

2 Intel® Math Kernel Library Reference Manual

incy

ap

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo= 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian

matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.

Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap (1) contains a(1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.
With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.
The imaginary parts of the diagonal elements need are set to zero.
?sbmv

Computes a matrix-vector product using a symmetric

band matrix.

Syntax
call ssbmv

call dsbmv

2-48

uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

BLAS and Sparse BLAS Routines 2

Description

The ?sbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

uplo value Part of Matrix a Supplied
Uuoru The upper triangular part of matrix a is supplied.
Lorl The lower triangular part of matrix a is supplied.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.
k INTEGER. Specifies the number of super-diagonals of the matrix a. The value

of k must satisfy 0 < k.

alpha REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar alpha.

a REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION (l1da, n).Before entry with

uplo='U' or 'u’', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a
symmetric band matrix from conventional full matrix storage to band storage:

2-49

2 Intel® Math Kernel Library Reference Manual

lda

incx

beta

2-50

do 20, j =1, n

m=%k + 1 -3

do 10, 1 = max(1, j - k), jJ
a(m+ i, j) = matrix(i, j)

10 continue
20 continue

Before entry with uplo='L' or '1', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the symmetric matrix, supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1
in row 2, and so on. The bottom right k by k triangle of the array a is not
referenced.

The following program segment transfers the lower triangular part of a
symmetric band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=1-73
do 10, i = j, min(n, j + k)
a(m+ i, j) = matrix(i, J)

10 continue
20 continue

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar beta.

REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the vector y.

BLAS and Sparse BLAS Routines 2

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

v Overwritten by the updated vector y.

?spmv

Computes a matrix-vector product
using a symmetric packed matrix.

Syntax

call sspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
call dspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
Description

The ?spmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,
where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied

Uoru The upper triangular part of matrix a is supplied in
ap.

Lorl The lower triangular part of matrix a is supplied in
ap.

2-51

2 Intel® Math Kernel Library Reference Manual

alpha

ap

incx

beta

incy

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar alpha.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least ((n* (n + 1)) /2). Before entry with uplo= 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap (1) contains a (1,
1), ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so on.
Before entry with uplo = 'L' or '1', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap (1) contains a(1, 1), ap(2) and ap(3)
contain a (2, 1) and a (3, 1) respectively, and so on.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

Output Parameters

Y

2-52

Overwritten by the updated vector y.

BLAS and Sparse BLAS Routines 2

?spr

Performs a rank-1 update

of a symmetric packed matrix.

Syntax

call sspr(uplo, n, alpha, x, incx, ap)

call dspr(uplo, n, alpha, x, incx, ap)

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*x'

where:

+ a,

alpha is a real scalar

x 1S an n-element vector

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo

alpha

CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied

Uoru The upper triangular part of matrix a is supplied in
ap.

Lorl The lower triangular part of matrix a is supplied in
ap.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

REAL for sspr
DOUBLE PRECISION for dspr

Specifies the scalar alpha.

2-53

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx

x REAL for sspr

DOUBLE PRECISION for dspr
incx

must not be zero.
ap REAL for sspr

DOUBLE PRECISION for dspr

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo= 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap (1) contains
a(1l,1),ap(2) and ap(3) contain a (1, 2) and a (2, 2) respectively, and so
on.

Before entry with upIlo= 'L' or '1', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap (1) contains a(1,1), ap(2)and
ap(3)contain a(2,1) and a (3, 1) respectively, and so on.

Output Parameters

With uplo = 'U" or 'u', overwritten by the upper triangular part of the

ap
updated matrix.
With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.
?spr2

Performs a rank-2 update
of a symmetric packed matrix.

Syntax
call sspr2(uplo, n, alpha, x, incx, y,

call dspr2(uplo, n, alpha, x, incx, y,

incy, ap)

incy, ap)

BLAS and Sparse BLAS Routines 2

Description

The ?spr2 routines perform a matrix-vector operation defined as

a:= alpha*x*y' + alpha*y*x' + a,
where:

alpha is a scalar

x and y are n-element vectors

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied
Uuoru The upper triangular part of matrix a is supplied in
ap.
Lorl The lower triangular part of matrix a is supplied in
ap.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZETo0.
alpha REAL for sspr2

DOUBLE PRECISION for dspr2
Specifies the scalar alpha.

x REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

inecx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

v REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

2-55

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements of y: The value of incy
must not be zero.

ap REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap (1) contains
a(l,1),ap(2) and ap(3) contain a (1,2) and a (2, 2) respectively, and so
on.

Before entry with uplo = 'L or '1', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap (1) contains a(1,1), ap(2) and ap (3)
contain a(2,1) and a(3,1) respectively, and so on.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or '1', overwritten by the lower triangular part of the
updated matrix.

?symv

Computes a matrix-vector product
for a symmetric matrix.

2-56

Syntax

call ssymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call dsymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
Description

The ?symv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

BLAS and Sparse BLAS Routines 2

alpha and beta are scalars
xand y are n-element vectors
a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced
Uoru The upper triangular part of array a is to be
referenced.
Lorl The lower triangular part of array a is to be
referenced.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
Z€r0.
alpha REAL for ssymv

DOUBLE PRECISION for dsymv
Specifies the scalar alpha.

a REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION (1da, n). Before entry with

uplo='U"' or 'u', the leading n by n upper triangular part of the array a must
contain the upper triangular part of the symmetric matrix and the strictly lower
triangular part of a is not referenced. Before entry with

uplo='L' or '1', the leading n by n lower triangular part of the array a must
contain the lower triangular part of the symmetric matrix and the strictly upper
triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n) .

x REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

2-57

2 Intel® Math Kernel Library Reference Manual

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

v REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.
Output Parameters

v Overwritten by the updated vector y.

?syr

Performs a rank-1 update of a symmetric matrix.

2-58

Syntax

call ssyr(uplo, n, alpha, x, incx, a, lda)
call dsyr(uplo, n, alpha, x, incx, a, lda)
Description

The ?syr routines perform a matrix-vector operation defined as
a := alpha*x*x' + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n symmetric matrix.

BLAS and Sparse BLAS Routines 2

Input Parameters

uplo

alpha

incx

lda

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

Uoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

REAL for ssyr
DOUBLE PRECISION for dsyr

Specifies the scalar alpha.

REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION (lda, n). Before entry with

uplo='U" or 'u’', the leading n by n upper triangular part of the array a must
contain the upper triangular part of the symmetric matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo = 'L' or '1', the leading n by n lower triangular part
of the array a must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

2-59

2 Intel® Math Kernel Library Reference Manual

Output Parameters

a

With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

?syr2

Performs a rank-2 update of symmetric matrix.

Syntax

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

Description

The ?syr2 routines perform a matrix-vector operation defined as

a

:= alpha*x*y' + alpha*y*x' + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the

2-60

array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

Uoru The upper triangular part of array a is to be
referenced.

Lorl The lower triangular part of array a is to be
referenced.

BLAS and Sparse BLAS Routines 2

alpha

incx

incy

lda

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2

Specifies the scalar alpha.

REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1) *abs (incy)). Before entry, the
incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION (lda, n). Before entry with

uplo='U" or 'u', the leading n by n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo= 'L' or '1', the leading n by n lower triangular part
of the array a must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n) .

2-61

2 Intel® Math Kernel Library Reference Manual

Output Parameters

a With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

?tbmv

Computes a matrix-vector product
using a triangular band matrix.

Syntax

call stbmv uplo, trans, diag, n, k, a, lda, x, incx

(k)
call dtbmv (uplo, trans, diag, n, k, a, lda, x, incx)
call ctbmv (uplo, trans, diag, n, k, a, lda, x, incx)
call ztbmv (uplo, trans, diag, n, k, a, lda, x, incx)

Description

The ?tbmv routines perform one of the matrix-vector operations defined as

X 1= a*x,0rx := a'*x,0rx := conjg(a') *x,

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

Input Parameters

uplo CHARACTER* 1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

2-62

BLAS and Sparse BLAS Routines 2

trans

diag

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed
Norn X = a*x

Tort X 1= a'*x

corc x := conjg(a') *x

CHARACTER* 1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of
super-diagonals of the matrix a. On entry with uplo= 'L' or '1', k specifies
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 < k.

REAL for stbmv

DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv

DOUBLE COMPLEX for ztbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced. The following program
segment transfers an upper triangular band matrix from conventional full
matrix storage to band storage:
do 20, j =1, n

m=%k + 1 - j
do 10, i = max(1l, j - k), j

2-63

2 Intel® Math Kernel Library Reference Manual

lda

incx

a(m + i, j) = matrix(i, 7J)
10 continue
20 continue

Before entry with uplo='L' or '1"', the leading

(k + 1) by n part of the array a must contain the lower triangular band part of
the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is
not referenced. The following program segment transfers a lower triangular
band matrix from conventional full matrix storage to band storage:

do 20, j =1, n

m=1-73

do 10, 1 = j, min(n, j + k)
a(m + 1, j) = matrix (i, 3J)

10 continue

20 continue

Note that when diag = 'U' or 'u', the elements of the array a corresponding
to the diagonal elements of the matrix are not referenced, but are assumed to be
unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

REAL for stbmv

DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv

DOUBLE COMPLEX for ztbmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

2-64

Overwritten with the transformed vector x.

BLAS and Sparse BLAS Routines 2

?tbsv

Solves a system of linear equations whose coefficients
are in a triangular band matrix.

Syntax

call stbsv (uplo, trans, diag, n, k, a, lda, x, incx)
call dtbsv (uplo, trans, diag, n, k, a, lda, x, incx)
call ctbsv (uplo, trans, diag, n, k, a, lda, x, incx)
call ztbsv (uplo, trans, diag, n, k, a, lda, x, incx)

Description

The ?tbsv routines solve one of the following systems of equations:

a*x = b,ora'*x = b,0r conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

The routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.
Input Parameters

uplo CHARACTER* 1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uuoru An upper triangular matrix.
Lorl A lower triangular matrix.
trans CHARACTER*1. Specifies the operation to be performed, as follows:
trans value Operation to be Performed
Norn a*x = b

2-65

2 Intel® Math Kernel Library Reference Manual

2-66

diag

trans value Operation to be Performed
Tort a'*x = b
Corc conjg(a')*x = b

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
voru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of
super-diagonals of the matrix a. On entry with uplo= 'L' or '1', k specifies
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 < k.

REAL for stbsv

DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv

DOUBLE COMPLEX for ztbsv

Array, DIMENSION (I1da, n).Before entry with

uplo='U"' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced.

The following program segment transfers an upper triangular band matrix from
conventional full matrix storage to band storage:

do 20, j =1, n

m=5k+ 1 -3

do 10, 1 = max (1, j - k), j
a(m + 1, j) = matrix (i, 3J)

10 continue
20 continue

Before entry with uplo='L' or '1"', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of
the matrix of coefficients, supplied column-by-column, with the leading

BLAS and Sparse BLAS Routines 2

diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is
not referenced.

The following program segment transfers a lower triangular band matrix from
conventional full matrix storage to band storage:

do 20, j =1, n
m=1 -7
do 10, 1 = j,
a(m + i, j) = matrix (i, J)
10 continue
20 continue

min(n, j + k)

When diag = 'U' or 'u', the elements of the array a corresponding to the
diagonal elements of the matrix are not referenced, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least (k + 1).

x REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.
Output Parameters

x Overwritten with the solution vector x.

?tpmv

Computes a matrix-vector product
using a triangular packed matrix.

Syntax

call stpmv (uplo, trans, diag, n, ap, X, 1incx)

2-67

2 Intel® Math Kernel Library Reference Manual

call dtpmv (
call ctpmv

call ztpmv (

Description

uplo, trans, diag, n, ap, X, incx)
(uplo, trans, diag, n, ap, X, incx)
uplo, trans, diag, n, ap, x, incx)

The ?tpmv routines perform one of the matrix-vector operations defined as

X 1= a*x,0rx

where:

r= a'*x, 0rx :=

conjg(a') *x,

x 18 an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

uplo

trans

diag

2-68

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation To Be Performed

Norn X = ar*x
Tort X = a'*x
corc x := conjg(a') *x

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

BLAS and Sparse BLAS Routines 2

ap

incx

REAL for stpmv

DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv

DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular matrix packed
sequentially, column-by-column, so that ap (1) contains a (1,1), ap(2) and
ap(3) contain a(1,2) and a (2, 2) respectively, and so on. Before entry with
uplo='L" or '1', the array ap must contain the lower triangular matrix
packed sequentially, column-by-column, so that ap (1) contains a(1,1),
ap(2) and ap(3) contain a(2,1) and a (3, 1) respectively, and so on. When
diag= 'U' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.

REAL for stpmv

DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv

DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

Overwritten with the transformed vector x.

?tpsv

Solves a system of linear equations whose coefficients
are in a triangular packed matrix.

Syntax

call stpsv
call dtpsv
call ctpsv
call ztpsv

—~ o~~~

uplo, trans, diag, n, ap, x, incx
uplo, trans, diag, n, ap, X, incx

uplo, trans, diag, n, ap, x, incx

—_— — — o~

uplo, trans, diag, n, ap, x, incx

2-69

2 Intel® Math Kernel Library

Reference Manual

Description

The ?tpsv routines solve one of the following systems of equations

a*x = b,0ora'*x

where:

= b,orconjg(a')*x = b,

b and x are n-element vectors

a is an n by n unit,

This routine does n
calling this routine.

or non-unit, upper or lower triangular matrix, supplied in packed form.

ot test for singularity or near-singularity. Such tests must be performed before

Input Parameters

uplo

trans

diag

2-70

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
voru An upper triangular matrix.
Lorl A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation To Be Performed
Norn a*x = b

Tort a'*x = b

Corc conjg(a')*x = b

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least
zZero.

BLAS and Sparse BLAS Routines 2

ap

incx

REAL for stpsv

DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv

DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least ((n* (n+ 1)) /2). Before entry with uplo = 'U"
or 'u', the array ap must contain the upper triangular matrix packed
sequentially, column-by-column, so that ap (1) contains a(1, 1), ap(2) and
ap(3) contain a (1, 2) and a (2, 2) respectively, and so on. Before entry
with uplo="L' or '1', the array ap must contain the lower triangular matrix
packed sequentially, column-by-column, so that ap (1) contains a(1, 1),
ap(2) and ap(3) contain a (2, 1) and a (3, 1) respectively, and so on. When
diag= 'U' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.

REAL for stpsv

DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv

DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

X

Overwritten with the solution vector x.

?2trmv

Computes a matrix-vector product

using a triangular matrix.

Syntax

call strmv
call dtrmv
call ctrmv

call ztrmv

—~ o~~~

uplo, trans, diag, n, a, lda, x, incx)
uplo, trans, diag, n, a, lda, x, incx)
uplo, trans, diag, n, a, lda, x, incx)

uplo, trans, diag, n, a, lda, x, incx)

2-71

2 Intel® Math Kernel Library Reference Manual

Description

The ?trmv routines perform one of the following matrix-vector operations defined as
X := a*x0rx := a'*x Oorx := conjg(a') *x,

where:

x 18 an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
Uoru An upper triangular matrix.
Lorl A lower triangular matrix.
trans CHARACTER*1. Specifies the operation to be performed, as follows:
trans value Operation To Be Performed
Norn X = a*x
Tort X 1= a'*x
Corc X := conjg(a')*x
diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:
diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
ZEero.
a REAL for strmv

DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

2-72

BLAS and Sparse BLAS Routines 2

Array, DIMENSION (Ida, n). Before entry with

uplo='U"' or 'u', the leading n by n upper triangular part of the array a must
contain the upper triangular matrix and the strictly lower triangular part of a is
not referenced. Before entry with uplo= 'L or '1', the leading n by n lower
triangular part of the array a must contain the lower triangular matrix and the
strictly upper triangular part of a is not referenced. When

diag= 'U' or 'u', the diagonal elements of a are not referenced either, but
are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

x REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.
Output Parameters

x Overwritten with the transformed vector x.

?trsv

Solves a system of linear equations whose coefficients
are in a triangular matrix.

Syntax

call strsv (uplo, trans, diag, n, a, lda, x, incx)
call dtrsv (uplo, trans, diag, n, a, lda, x, incx)
call ctrsv (uplo, trans, diag, n, a, lda, x, incx)

call ztrsv (uplo, trans, diag, n, a, lda, x, incx)

2-73

2 Intel® Math Kernel Library Reference Manual

Description

The?trsv routines solve one of the systems of equations:

a*x = bora'*x = b,0rconjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a
voru An upper triangular matrix.
Lorl A lower triangular matrix.
trans CHARACTER*1. Specifies the operation to be performed, as follows:
trans value Operation To Be Performed
Norn a*x = b
Tort a'*x = b
Corc conjg(a')*x = b
diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:
diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.
n INTEGER. Specifies the order of the matrix a. The value of n must be at least
Zero.

2-74

BLAS and Sparse BLAS Routines 2

a REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION (lda, n). Before entry with

uplo='U"' or 'u’', the leading n by n upper triangular part of the array a must
contain the upper triangular matrix and the strictly lower triangular part of a is
not referenced. Before entry with uplo= 'L or '1', the leading n by n lower
triangular part of the array a must contain the lower triangular matrix and the
strictly upper triangular part of a is not referenced. When diag= 'U' or 'u’',
the diagonal elements of a are not referenced either, but are assumed to be
unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of 1da must be at least max (1, n).

x REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION at least (1 + (n - 1) *abs (incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

b Overwritten with the solution vector x.

2-75

2 Intel® Math Kernel Library Reference Manual

BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3

routine groups and the data types associated with them.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types
Routine Data
Group Types Description
?gemm s,d,cz Matrix-matrix product of general matrices
?hemm c z Matrix-matrix product of Hermitian matrices
?herk c z Rank-k update of Hermitian matrices
?her2k c, z Rank-2k update of Hermitian matrices
?symm s,d,cz Matrix-matrix product of symmetric matrices
?syrk s,d,c z Rank-k update of symmetric matrices
?syr2k s, d,c,z Rank-2k update of symmetric matrices
?trmm s,d, ¢z Matrix-matrix product of triangular matrices
?trsm s,d,c z Linear matrix-matrix solution for triangular

matrices

Symmetric Multiprocessing Version of Intel® MKL

2-76

Many applications spend considerable time for executing BLAS level 3 routines. This time can be
scaled by the number of processors available on the system through using the symmetric
multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements
based on the parallel use of the processors are available without any programming effort on your

part.

To enhance performance, the library uses the following methods:

® The operation of BLAS level 3 matrix-matrix functions permits to restructure the code in a
way which increases the localization of data reference, enhances cache memory use, and

reduces the dependency on the memory bus.

* Once the code has been effectively blocked as described above, one of the matrices is
distributed across the processors to be multiplied by the second matrix. Such distribution
ensures effective cache management which reduces the dependency on the memory bus

performance and brings good scaling results.

BLAS and Sparse BLAS Routines 2

?gemm

Computes a scalar-matrix-matrix product and adds the
result to a scalar-matrix product.

Syntax

call sgemm
call dgemm
call cgemm

call zgemm

Description

(
(
(
(

transa,
transa,
transa,

transa,

transb, m,
transb, m,
transb, m,

transb, m,

, alpha,
alpha,

~

alpha,

~

G

, alpha,

lda,
lda,
lda,
lda,

o o o o

~

N

~

1db,
1db,
1db,
1db,

beta,
beta,
beta,
beta,

The ?gemm routines perform a matrix-matrix operation with general matrices. The operation is

defined as

c := alpha*op (a) *op (b)

where:

op (x) isone of op (x) =

X Or op (x)

alpha and beta are scalars

a, b and c are matrices:

op (a) is an mby k matrix

op (b) is a k by n matrix

c is an m by n matrix.

Input Parameters

transa

+ beta*c,

= X' Or op (x)

conjg(x'),

CHARACTER*1. Specifies the form of op (a) to be used in the matrix

multiplication as follows:

transa value

Norn
Tort

Corc

Form of op (a)

op(a) = a
op(a) = a'
op(a) = conjg(a'")

2-77

2 Intel® Math Kernel Library Reference Manual

2-78

transb

alpha

lda

CHARACTER*1. Specifies the form of op (b) to be used in the matrix
multiplication as follows:

transb value Form of op (b)

Norn op(b) = b

Tort op(b) = b'

Corc op(b) = conjg(b")

INTEGER. Specifies the number of rows of the matrix op (a) and of the matrix
c. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (b) and the
number of columns of the matrix c. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (a) and the
number of rows of the matrix op (b) . The value of k must be at least zero.

REAL for sgemm

DOUBLE PRECISION for dgemm
COMPLEX for cgemm

DOUBLE COMPLEX for zgemm

Specifies the scalar alpha.

REAL for sgemm

DOUBLE PRECISION for dgemm
COMPLEX for cgemm

DOUBLE COMPLEX for zgemm

Array, DIMENSION (lda, ka), where ka is k when transa = 'N' or 'n"',
and is m otherwise. Before entry with transa = 'N' or 'n', the leading mby k
part of the array a must contain the matrix a, otherwise the leading k by m part
of the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When transa = 'N' or 'n', then 1da must be at least max (1,
m) , otherwise 1da must be at least max (1, k).

REAL for sgemm

DOUBLE PRECISION for dgemm
COMPLEX for cgemm

DOUBLE COMPLEX for zgemm

BLAS and Sparse BLAS Routines 2

Array, DIMENSION (1db, kb), where kb is n when transb = 'N' or 'n"',
and is k otherwise. Before entry with transb = 'N' or 'n"', the leading k by n
part of the array b must contain the matrix b, otherwise the leading n by k part
of the array b must contain the matrix b.

1db INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. When transb= 'N' or 'n', then 1db must be at least max (1,
k), otherwise 1db must be at least max (1, n).

beta REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar beta. When beta is supplied as zero, then ¢ need not be
set on input.

c REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (1dc, n).Before entry, the leading m by n part of the array
c must contain the matrix c, except when beta is zero, in which case c need
not be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of 1dc must be at least max (1, m).
Output Parameters

c Overwritten by the m by n matrix (alpha*op (a) *op (b) + beta*c).

?hemm

Computes a scalar-matrix-matrix product (either one of
the matrices is Hermitian) and adds the result to
scalar-matrix product.

Syntax
call chemm (side, uplo, m, n, alpha, a, lda, b, 1db, beta, c, 1ldc)

2-79

2 Intel® Math Kernel Library Reference Manual

call zhemm (side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, 1ldc)

Description

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is
defined as

c := alpha*a*b + beta*c

or

c := alpha*b*a + beta*c,
where:

alpha and beta are scalars

a is an Hermitian matrix

b and c are m by n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the Hermitian matrix a appears on the left or
right in the operation as follows:

side value Operation To Be Performed
Lorl ¢ := alpha*a*b + beta*c
Rorr c := alpha*b*a + beta*c

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
Hermitian matrix a is to be referenced as follows:

uplo value Part of Matrix a To Be Referenced

Uuoru Only the upper triangular part of the Hermitian
matrix is to be referenced.

Lorl Only the lower triangular part of the Hermitian
matrix is to be referenced.

m INTEGER. Specifies the number of rows of the matrix c. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix c. The value of n
must be at least zero.

2-80

BLAS and Sparse BLAS Routines 2

alpha

1da

1db

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar alpha.

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (lda, ka), where ka is mwhen side="'L' or '1' and is
n otherwise. Before entry with side = 'L or '1', the mby m part of the array
a must contain the Hermitian matrix, such that when

uplo='U"' or 'u’', the leading m by mupper triangular part of the array a must
contain the upper triangular part of the Hermitian matrix and the strictly lower
triangular part of a is not referenced, and when uplo='L' or '1', the leading
m by m lower triangular part of the array a must contain the lower triangular
part of the Hermitian matrix, and the strictly upper triangular part of a is not
referenced. Before entry with side = 'R' or 'r', the n by n part of the array a
must contain the Hermitian matrix, such that when uplo = 'U' or 'u’, the
leading n by n upper triangular part of the array a must contain the upper
triangular part of the Hermitian matrix and the strictly lower triangular part of
a is not referenced, and when uplo= 'L’ or '1', the leading n by n lower
triangular part of the array a must contain the lower triangular part of the
Hermitian matrix, and the strictly upper triangular part of a is not referenced.
The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)
program. When side = 'L' or '1' then 1da must be at least max (1, m),
otherwise 1da must be at least max (1, n).

COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (1db, n).Before entry, the leading m by n part of the array
b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

2-81

2 Intel® Math Kernel Library Reference Manual

beta COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar beta. When beta is supplied as zero, then ¢ need not be
set on input.

c COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (c, n).Before entry, the leading m by n part of the array c
must contain the matrix c, except when beta is zero, in which case c need not
be set on entry.

ldc INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, m) .
Output Parameters

c Overwritten by the m by n updated matrix.

?herk

Performs a rank-n update of a Hermitian matrix.

2-82

Syntax
call cherk (uplo, trans, n, k, alpha, a, lda, beta, c, 1ldc)
call zherk (uplo, trans, n, k, alpha, a, lda, beta, c, 1dc)

Description

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is
defined as

c := alpha*a*conjg(a') + beta*c,
or

c := alpha*conjg(a')*a + beta*c,
where:

alpha and beta are real scalars

c is an n by n Hermitian matrix

BLAS and Sparse BLAS Routines 2

a is an n by k matrix in the first case and a k by n matrix in the second case.

Input Parameters

uplo CHARACTER* 1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced
Uoru Only the upper triangular part of Cis to be
referenced.
Lorl Only the lower triangular part of Cis to be
referenced.
trans CHARACTER*1. Specifies the operation to be performed as follows:
trans value Operation to be Performed
Norn c:= alpha*a*conjg(a') +beta*c
Corc c:= alpha*conjg(a') *a+beta*c
n INTEGER. Specifies the order of the matrix c. The value of n must be at least
Z€r0.
k INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the

matrix a, and with
trans="'C' or 'c', k specifies the number of rows of the matrix a. The value
of k must be at least zero.

alpha REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar alpha.

a COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (1da, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part
of the array a must contain the matrix a, otherwise the leading k by n part of
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least max (1,
n), otherwise 1da must be at least max (1, k).

2-83

2 Intel® Math Kernel Library Reference Manual

beta

ldc

REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar beta.

COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (ldc, n). Before entry with

uplo='U" or 'u', the leading n by n upper triangular part of the array ¢ must
contain the upper triangular part of the Hermitian matrix and the strictly lower
triangular part of c is not referenced.

Before entry with uplo = 'L' or '1', the leading n by n lower triangular part
of the array ¢ must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

c With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.
With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.
?her2k

Performs a rank-2k update of a Hermitian matrix.

2-84

Syntax
call cher2k
call zher2k

(
(

uplo, trans, n, k, alpha, a, lda, b, 1db, beta, c, 1ldc)
uplo, trans, n, k, alpha, a, lda, b, 1db, beta, c, ldc)

BLAS and Sparse BLAS Routines 2

Description

The ?her2k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The
operation is defined as

c :=alpha*a*conjg(b') + conjg(alpha) *b*conjg(a') + beta*c,
or

c :=alpha*conjg(b')*a + conjg(alpha) *conjg(a') *b + beta*c,
where:

alpha is a scalar and beta is a real scalar

c is an n by n Hermitian matrix

aand b are n by k matrices in the first case and k by n matrices in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

Uoru Only the upper triangular part of Cis to be
referenced.

Lorl Only the lower triangular part of Cis to be
referenced.

trans CHARACTER*1. Specifies the operation to be performed as follows:
trans value Operation to be Performed
Norn c:=alpha*a*conjg(b')
+alpha*b*conjg(a') +beta*c
Corc c:=alpha*conjg(a') *b

+alpha*conjg(b') *a+beta*c

n INTEGER. Specifies the order of the matrix c. The value of n must be at least
zero.
k INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the

matrix a, and with
trans="'C' or 'c', k specifies the number of rows of the matrix a. The value
of k must be at least zero.

2-85

2 Intel® Math Kernel Library Reference Manual

alpha

1da

beta

1db

2-86

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Specifies the scalar alpha.

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (1da, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n"', the leading n by k part
of the array a must contain the matrix a, otherwise the leading k by n part of
the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least max (1,
n), otherwise 1da must be at least max (1, k).

REAL for cher2k
DOUBLE PRECISION for zher2k

Specifies the scalar beta.

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (1db, kb), where kb is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n"', the leading n by k part
of the array b must contain the matrix b, otherwise the leading k by n part of
the array b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1db must be at least max (1,
n), otherwise 1db must be at least max (1, k).

COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldc, n). Before entry with

uplo='U"' or 'u’', the leading n by n upper triangular part of the array ¢ must
contain the upper triangular part of the Hermitian matrix and the strictly lower
triangular part of c is not referenced.

Before entry with uplo= 'L or '1', the leading n by n lower triangular part
of the array ¢ must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of c is not referenced.

BLAS and Sparse BLAS Routines 2

The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

lde INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).
Output Parameters

c With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?symm

Performs a scalar-matrix-matrix product (one matrix
operand is symmetric) and adds the result to a
scalar-matrix product.

Syntax

call ssymm (side, uplo, m, n, alpha, a, lda, b, 1db, beta, c, 1ldc)
call dsymm (side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c¢, 1ldc)
call csymm (side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
call zsymm (side, uplo, m, n, alpha, a, lda, b, 1ldb, beta, c, 1ldc)
Description

The ? symm routines perform a matrix-matrix operation using symmetric matrices. The operation is
defined as

c := alpha*a*b + beta*c,

or

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars

2-87

2 Intel® Math Kernel Library Reference Manual

a is a symmetric matrix
b and c are m by n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the symmetric matrix a appears on the left
or right in the operation as follows:

side value Operation to be Performed
Lorl ¢ := alpha*a*b + beta*c
Rorr c := alpha*b*a + beta*c

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
symmetric matrix a is to be referenced as follows:

uplo value Part of Array a To Be Referenced

voru Only the upper triangular part of the symmetric
matrix is to be referenced.

Lorl Only the lower triangular part of the symmetric
matrix is to be referenced.

m INTEGER. Specifies the number of rows of the matrix c. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix c. The value of n
must be at least zero.

alpha REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar alpha.

a REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (1da, ka), where ka is mwhen side= 'L' or '1' and is
n otherwise. Before entry with side = 'L' or '1', the m by m part of the array
a must contain the symmetric matrix, such that when uplo= 'U' or 'u', the

2-88

BLAS and Sparse BLAS Routines 2

lda

1db

beta

leading m by m upper triangular part of the array a must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part of
a is not referenced, and when uplo = 'L' or '1', the leading m by m lower
triangular part of the array a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r', the n by n part of the array a must
contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading
n by nupper triangular part of the array a must contain the upper triangular
part of the symmetric matrix and the strictly lower triangular part of a is not
referenced, and when uplo= 'L' or '1', the leading n by n lower triangular
part of the array a must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or '1' then 1da must be at least max (1, m),
otherwise 1da must be at least max (1, n).

REAL for ssymm

DOUBLE PRECISION for dsymm
COMPLEX for csymm

DOUBLE COMPLEX for zsymm

Array, DIMENSION (1db, n). Before entry, the leading m by n part of the array
b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

REAL for ssymm

DOUBLE PRECISION for dsymm
COMPLEX for csymm

DOUBLE COMPLEX for zsymm

Specifies the scalar beta. When beta is supplied as zero, then c need not be
set on input.

REAL for ssymm

DOUBLE PRECISION for dsymm
COMPLEX for csymm

DOUBLE COMPLEX for zsymm

Array, DIMENSION (Idc,n).Before entry, the leading m by n part of the
array ¢ must contain the matrix c, except when beta is zero, in which case ¢
need not be set on entry.

2-89

2 Intel® Math Kernel Library Reference Manual

ldc INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, m).

Output Parameters

c Overwritten by the m by n updated matrix.

?syrk

Performs a rank-n update of a symmetric matrix.

2-90

Syntax
call ssyrk (uplo, trans,

call dsyrk (uplo, trans,

~

~

G

alpha,
alpha,
alpha,
alpha,

lda,
lda,
I1da,
lda,

beta,
beta,
beta,
beta,

ldc
ldc
Ildc
ldc

The ?syrk routines perform a matrix-matrix operation using symmetric matrices

call csyrk (uplo, trans,
call zsyrk (uplo, trans,
Description

defined as

c := alpha*a*a' + beta*c,
or

c := alpha*a'*a + beta*c,
where:

alpha and beta are scalars

c is an n by n symmetric matrix

a is an n by k matrix in the first case and a k by n matrix in the second case.

. The operation is

BLAS and Sparse BLAS Routines 2

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced
Uoru Only the upper triangular part of cis to be
referenced.
Lorl Only the lower triangular part of cis to be
referenced.
trans CHARACTER*1. Specifies the operation to be performed as follows:
trans value Operation to be Performed
Norn c:= alpha*a*a' + beta*c
Tort c:= alpha*a'*a + beta*c
Corc c:= alpha*a'*a + beta*c
n INTEGER. Specifies the order of the matrix c. The value of n must be at least
Z€T0.
k INTEGER. On entry with trans = 'N' or 'n', k specifies the number of

columns of the matrix a, and on entry with trans='T'or 't' or 'C' or 'c',
k specifies the number of rows of the matrix a. The value of k must be at least
Zero.

alpha REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar alpha.

2-91

2 Intel® Math Kernel Library Reference Manual

2-92

lda

beta

ldc

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part
of the array a must contain the matrix a, otherwise the leading k by n part of
the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least
max (1, n), otherwise 1da must be at least max (1, k).

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Specifies the scalar beta.

REAL for ssyrk

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk

DOUBLE COMPLEX for zsyrk

Array, DIMENSION (ldc, n). Before entry with

uplo='U"' or 'u', the leading n by n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of ¢ is not referenced.

Before entry with uplo= 'L or '1', the leading n by n lower triangular part
of the array ¢ must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of c is not referenced.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

(e}

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

BLAS and Sparse BLAS Routines 2

?syr2k

Performs a rank-2k update of a symmetric matrix.

Syntax

call ssyr2k
call dsyr2k
call csyr2k
call zsyr2k

Description

uplo,
uplo,
uplo,
uplo,

trans,
trans,
trans,

trans,

~

~

G

, 1db, beta, c, ldc)
1db, beta, c, 1ldc)
1db, beta, c, ldc)
, 1db, beta, c, ldc)

alpha, a, lda,
alpha, a, lda,

~

alpha, a, lda,

~

o o oo

alpha, a, lda,

The ?syr2k routines perform a rank-2k matrix-matrix operation using symmetric matrices. The
operation is defined as

c := alpha*a*Db'

or

(e}

where:

alpha and beta are scalars

c is an n by n symmetric matrix

+ alpha*b*a' + beta*c,

alpha*a'*b + alpha*b'*a + beta*c,

a and b are n by k matrices in the first case and k by n matrices in the second case.

Input Parameters

uplo

CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value

Uoru

Lorl

Part of Array c To Be Referenced

Only the upper triangular part of cis to be
referenced.

Only the lower triangular part of cis to be
referenced.

2-93

2 Intel® Math Kernel Library Reference Manual

2-94

trans

alpha

1da

CHARACTER*1. Specifies the operation to be performed as follows:

trans value Operation to be Performed

Norn c:= alpha*a*b'+alpha*b*a'+beta*c
Tort c:= alpha*a'*b+alpha*b'*a+beta*c
Corc c:= alpha*a'*b+alpha*b'*a+beta*c

INTEGER. Specifies the order of the matrix c. The value of n must be at least
Zero.

INTEGER. On entry with trans = 'N' or 'n', k specifies the number of
columns of the matrices a and b, and on entry with trans = '"T' or 't or
'C'or 'c', k specifies the number of rows of the matrices a and b. The value
of k must be at least zero.

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Specifies the scalar alpha.

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n"', the leading n by k part
of the array a must contain the matrix a, otherwise the leading k by n part of
the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1da must be at least
max (1, n), otherwise 1da must be at least max (1, k).

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

BLAS and Sparse BLAS Routines 2

1db

beta

1dc

Array, DIMENSION (1db, kb) where kbis k when trans='N' or 'n' and
is 'n' otherwise. Before entry with trans = 'N' or 'n', the leading n by k
part of the array b must contain the matrix b, otherwise the leading k by n part
of the array b must contain the matrix b.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then 1db must be at least
max (1, n), otherwise 1db must be at least max (1, k).

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Specifies the scalar beta.

REAL for ssyr2k

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k

DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldc, n). Before entry with

uplo = 'U"' or 'u', the leading n by n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of ¢ is not referenced.

Before entry with uplo= 'L or '1', the leading n by n lower triangular part
of the array ¢ must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of c is not referenced.

INTEGER. Specifies the first dimension of ¢ as declared in the calling
(sub)program. The value of 1dc must be at least max (1, n).

Output Parameters

C

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo= 'L' or '1', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

2-95

2 Intel® Math Kernel Library Reference Manual

2trmm

Computes a scalar-matrix-matrix product (one matrix

operand is triangular).

Syntax

call strmm
call dtrmm
call ctrmm

call ztrmm

Description

The ? t rmm routines perform a matrix-matrix operation using triangular matrices.

defined as

—~ o~ o~ o~

side, uplo, transa, diag,
side, uplo, transa, diag,
side, uplo, transa, diag,

side, uplo, transa, diag,

b := alpha*op(a)*b

or

b := alpha*b*op (a)

where:

alpha is a scalar

bis an m by n matrix

m, n, alpha,
m, n, alpha,
m, n, alpha,

m, n, alpha,

a is a unit, or non-unit, upper or lower triangular matrix

op(a) isone of op(a) =a orop(a) =a' orop(a) = conjg(a').

Input Parameters

side

2-96

lda,
lda,
lda,
lda,

, 1db)
1db)
1db)
, 1db)

~

o oo U

The operation is

CHARACTER* 1. Specifies whether op (a) multiplies b from the left or right in

the operation as follows:

side value Operation To Be Performed
Lorl b :=
Rorr b :=

alpha*op (a) *b
alpha*b*op (a)

BLAS and Sparse BLAS Routines 2

uplo

transa

diag

alpha

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix as follows:

uplo value Matrix a
Uoru Matrix a is an upper triangular matrix.
Lorl Matrix a is a lower triangular matrix.

CHARACTER*1. Specifies the form of op (a) to be used in the matrix
multiplication as follows:

transa value Form of op (a)

Norn op(a) = a

Tort op(a) = a'

Corc op(a) = conjg(a')

CHARACTER*1. Specifies whether or not a is unit triangular as follows:

diag value Matrix a
Uoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the number of rows of b. The value of m must be at least
ZEero.

INTEGER. Specifies the number of columns of b. The value of n must be at
least zero.

REAL for strmm

DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

DOUBLE COMPLEX for ztrmm

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b
need not be set before entry.

REAL for st rmm

DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

DOUBLE COMPLEX for ztrmm

2-97

2 Intel® Math Kernel Library Reference Manual

lda

1db

Array, DIMENSION (Ida, k), where k is m when

side="'L"'or '1' andis nwhen side = 'R' or 'r'. Before entry with uplo
= 'U' or 'u’', the leading

k by k upper triangular part of the array a must contain the upper triangular
matrix and the strictly lower triangular part of a is not referenced.

Before entry with uplo= 'L or '1', the leading k by k lower triangular part
of the array a must contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced. When diag = 'U"' or 'u', the diagonal
elements of a are not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or '1', then 1da must be at least max (1,
m) , when side = 'R' or 'r', then 1da must be at least max (1, n).

REAL for strmm

DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm

DOUBLE COMPLEX for ztrmm

Array, DIMENSION (1db, n). Before entry, the leading
m by n part of the array b must contain the matrix b.

INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

Output Parameters

b Overwritten by the transformed matrix.
?trsm
Solves a matrix equation (one matrix operand is
triangular).

Syntax

2-98

call strsm
call dtrsm
call ctrsm

call ztrsm

side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)
side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db)

BLAS and Sparse BLAS Routines 2

Description

The ?trsm routines solve one of the following matrix equations:

op(a)*x = alpha*b,

or

x*op(a) = alpha*b,

where:

alpha is a scalar

x and b are m by n matrices

a 1s a unit, or non-unit, upper or lower triangular matrix

op(a) isoneofop(a) = a orop(a) = a' or
op(a) = conjg(a').

The matrix x is overwritten on b.

Input Parameters

side CHARACTER*1. Specifies whether op (a) appears on the left or right of x for
the operation to be performed as follows:

side value Operation To Be Performed
Lorl op(a)*x = alpha*b
Rorr x*op(a) = alpha*b
uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular

matrix as follows:

uplo value Matrix a

Uuoru Matrix a is an upper triangular matrix.

Lorl Matrix a is a lower triangular matrix.
transa CHARACTER*1. Specifies the form of op (a) to be used in the matrix

multiplication as follows:

transa value Form of op (a)

Norn op(a) = a

2-99

2 Intel® Math Kernel Library Reference Manual

2-100

diag

alpha

lda

transa value Form of op (a)
Tort op(a) = a'
Corc op(a) = conjg(a')

CHARACTER*1. Specifies whether or not a is unit triangular as follows:

diag value Matrix a
vuoru Matrix a is assumed to be unit triangular.
Norn Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the number of rows of b. The value of m must be at least
Zero.

INTEGER. Specifies the number of columns of b. The value of n must be at
least zero.

REAL for strsm

DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm

DOUBLE COMPLEX for ztrsm

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b
need not be set before entry.

REAL for strsm

DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm

DOUBLE COMPLEX for ztrsm

Array, DIMENSION (lda, k), where k is m when

side="'L'or '1l' andis n when side = 'R' or 'r'. Before entry with uplo
= 'U' or 'u', the leading k by k upper triangular part of the array a must
contain the upper triangular matrix and the strictly lower triangular part of a is
not referenced.

Before entry with uplo = 'L' or '1', the leading k by k lower triangular part
of the array a must contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced. When diag= 'U"' or 'u', the diagonal
elements of a are not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or '1', then 1da must be at least max (1,
m) , when side = 'R' or 'r', then 1da must be at least max (1, n).

BLAS and Sparse BLAS Routines 2

b REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (1db, n).Before entry, the leading m by n part of the array
b must contain the right-hand side matrix b.

1db INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of 1db must be at least max (1, m).

Output Parameters

b Overwritten by the solution matrix x.

2-101

2 Intel® Math Kernel Library Reference Manual

Sparse BLAS Routines and Functions

This section describes Sparse BLAS, an extension of BLAS Level 1 included in Intel® Math
Kernel Library beginning with Intel MKL release 2.1. Sparse BLAS is a group of routines and
functions that perform a number of common vector operations on sparse vectors stored in
compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and
functions are specially implemented to take advantage of vector sparsity. This allows you to
achieve large savings in computer time and memory. If nz is the number of non-zero vector
elements, the computer time taken by Sparse BLAS operations will be O(niz).

Vector Arguments in Sparse BLAS

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only
non-zero elements of a are the following:

alky),alky),alky) ...alky,),
where nz is the total number of non-zero elements in a.

In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, x
(values) and indx (indices). Each array has nz elements:

x(1)=a(k,), x(2)=a(k,), ...x(nz)=a(k,,),

indx (1) =k;, indx(2) =k,, ... indx(nz) =k

—nz:

Thus, a sparse vector is fully determined by the triple (nz, x, indx). If you pass a negative or zero
value of nz to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a
single FORTRAN array (a full-storage vector). If y is a full-storage vector, its elements must be
stored contiguously: the first element in y (1), the second in y (2), and so on. This corresponds to
an increment incy =1 in BLAS Level 1. No increment value for full-storage vectors is passed as
an argument to Sparse BLAS routines or functions.

Naming Conventions in Sparse BLAS

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data
type involved: s and d for single- and double- precision real; ¢ and z for single- and
double-precision complex.

2-102

BLAS and Sparse BLAS Routines 2

If a Sparse BLAS routine is an extension of a “dense” one, the subprogram name is formed by
appending the suffix i (standing for indexed) to the name of the corresponding “dense”
subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine
saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

Routines and Data Types in Sparse BLAS

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in

Table 2-4.

Table 2-4 Sparse BLAS Routines and Their Data Types

Routine/
Function

?axpyi
?doti

?dotci
?dotui

?gthr

?gthrz

?roti

?sctr

Data
Types

s,d,c,z
s, d
(4
(W4

s,d,c,z

s,d,c, z

s, d

s,d,c, z

Description

Scalar-vector product plus vector (routines)
Dot product (functions)

Complex dot product conjugated (functions)
Complex dot product unconjugated (functions)

Gathering a full-storage sparse vector into
compressed form: nz, x, indx (routines)

Gathering a full-storage sparse vector into
compressed form and assigning zeros to
gathered elements in the full-storage vector
(routines)

Givens rotation (routines)

Scattering a vector from compressed form to
full-storage form (routines)

2-103

2 Intel® Math Kernel Library Reference Manual

BLAS Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you pass to them a
compressed-form array x (with the increment incx = 1):
sum of absolute values of vector elements
copying a vector
Euclidean norm of a vector
scaling a vector
i?amax index of the element with the largest absolute value or,
for complex flavors, the largest sum [Rex (1) |+ [Imx (1) |.
i?amin index of the element with the smallest absolute value or,
for complex flavors, the smallest sum |[Rex (1) | + |Imx (1) .
The result i returned by i?amax and i ?amin should be interpreted as index in the
compressed-form array, so that the largest (smallest) value is x (1) ; the corresponding index in

?asum
?copy
?nrm2
?scal

full-storage array is indx (1) .

You can also call 2rotg to compute the parameters of Givens rotation and then pass these
parameters to the Sparse BLAS routines ?roti.

?axpyi

Adds a scalar multiple of compressed sparse vector to a
full-storage vector.

2-104

Syntax

call saxpyi
call daxpyi
call caxpyi

call zaxpyi

Description

The ?axpyi routines perform a vector-vector operation defined as

y = a*x + y
where:

a is a scalar

nz,
nz,
nz,

nz,

indx,
indx,
indx,

indx,

BLAS and Sparse BLAS Routines 2

(nz, x, indx) is a sparse vector stored in compressed form
v is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of y whose indices are listed in the
array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Specifies the scalar a.

x REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

v REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Array, DIMENSION at least max; (indx(1)).

Output Parameters

v Contains the updated vector y

2-105

2 Intel® Math Kernel Library Reference Manual

?doti

Computes the dot product of a compressed sparse real
vector by a full-storage real vector.

Syntax

res = sdoti (nz, x, indx, y)
res = ddoti (nz, x, indx, y)
Description

The ?doti functions return the dot product of x and y defined as

x(1)*y(indx (1)) + x(2)*y(indx(2)) +..

.+ xX(nz) *y(indx(nz))

where the triple (nz, x, 1ndx) defines a sparse real vector stored in compressed form, and y is a
real vector in full storage form. The functions reference only the elements of yy whose indices are
listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

x REAL for sdot i

DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sdot i

DOUBLE PRECISION for ddoti
Array, DIMENSION at least max; (indx(1)).

Output Parameters

res REAL for sdoti

DOUBLE PRECISION for ddoti

Contains the dot product of x and y; if nz is positive. Otherwise, res contains

0.

2-106

BLAS and Sparse BLAS Routines 2

?dotci

Computes the conjugated dot product of a compressed
sparse complex vector with a full-storage complex

vector.

Syntax
res =

res =

Description

nz, x, indx, y)

(nz, x, indx, y)

The ?dotci functions return the dot product of x and y defined as

conjg(x(1l))*y(indx(1l)) + ... + conjg(x(nz))*y(indx(nz))

where the triple (nz, x, 1ndx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices
are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz

X

indx

INTEGER. The number of elements in x and indx .

COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.

INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least max; (indx(1)).

Output Parameters

res

COMPLEX for cdotci
DOUBLE COMPLEX for zdotci

Contains the conjugated dot product of x and y;
if nz is positive. Otherwise, res contains 0.

2-107

2 Intel® Math Kernel Library Reference Manual

?dotui

Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

2-108

Syntax
res = cdotui (nz, x, indx, y)

res = zdotui (nz, x, indx, y)

Description
The ?dotui functions return the dot product of x and y defined as
x(1)*y(indx (1)) + x(2)*y(indx(2)) +...+ x(nz) *y(indx(nz))

where the triple (nz, x, 1ndx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices
are listed in the array indx. The values in indx must be distinct.

Input Parameters
nz INTEGER. The number of elements in x and indx.

x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least max; (indx(1)).

Output Parameters

res COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of x and y; if nz is positive. Otherwise, res
contains 0.

BLAS and Sparse BLAS Routines 2

?gthr

Gathers a full-storage sparse vector’s elements into

compressed form.
Syntax
call sgthr (nz, y, x, indx)
call dgthr (nz, y, x, indx)
call cgthr (nz, y, x, indx)
call zgthr (nz, y, x, indx)
Description

The 2gthr routines gather the specified elements of a full-storage sparse vector y into
compressed form (nz, x, indx). The routines reference only the elements of y» whose indices are
listed in the array indx:

x(i) = y(indx(i)), fori=1,2,...nz.

Input Parameters

nz

indx

INTEGER. The number of elements of y to be gathered.

INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.

REAL for sgthr

DOUBLE PRECISION for dgthr

COMPLEX for cgthr

DOUBLE COMPLEX for zgthr

Array, DIMENSION at least max; (indx(1)).

Output Parameters

X

REAL for sgthr

DOUBLE PRECISION for dgthr
COMPLEX for cgthr

DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.

Contains the vector converted to the compressed form.

2-109

2 Intel® Math Kernel Library Reference Manual

?gthrz

Gathers a sparse vector’s elements into compressed form,

replacing them by zeros.

2-110

Syntax

call sgthrz
call dgthrz
call cgthrz
call zgthrz

Description

—~ o~ o~ o~

nz, y, X, indx

)
nz, y, x, indx)
nz, y, x, indx)

)

nz, y, x, indx

The 2gthrz routines gather the elements with indices specified by the array indx from a
full-storage vector y into compressed form

(nz, x, indx) and overwrite the gathered elements of y by zeros.

Other elements of y are not referenced or modified (see also ?gthr).

Input Parameters

nz

indx

INTEGER. The number of elements of y to be gathered.

INTEGER. Specifies indices of elements to be gathered.Array, DIMENSION at
least nz.

REAL for sgthrz

DOUBLE PRECISION for dgthrz

COMPLEX for cgthrz

DOUBLE COMPLEX for zgthrz

Array, DIMENSION at least max; (indx (1)).

Output Parameters

X

REAL for sgthrz

DOUBLE PRECISION for dgthrz

COMPLEX for cgthrz

DOUBLE COMPLEX for zgthrz

Array, DIMENSION at least nz.

Contains the vector converted to the compressed form.

The updated vector y.

BLAS and Sparse BLAS Routines 2

?roti

Applies Givens rotation to sparse vectors one of which is
in compressed form.

Syntax
call sroti (nz, x, indx, y, ¢, S)

call droti (nz, x, indx, y, c, s)

Description

The ?roti routines apply the Givens rotation to elements of two real vectors, x (in compressed
form nz, x, indx) and y (in full storage form):

x(1) = c*x(1) + s*y(indx(i))
y(indx(i)) = c*y(indx(i)) - s*x(1)

The routines reference only the elements of ¥ whose indices are listed in the array indx. The
values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

x REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least max; (indx(1)).

c A scalar: REAL for sroti
DOUBLE PRECISION for droti.

s A scalar: REAL for sroti
DOUBLE PRECISION for droti.

Output Parameters

x and y The updated arrays.

2-111

2 Intel® Math Kernel Library Reference Manual

?sctr

Converts compressed sparse vectors into full storage

form.

2-112

Syntax

call ssctr
call dsctr
call csctr

call zsctr

Description

—~ o~ o~ o~

nz,
nz,

nz,

indx,
indx,
indx,

indx,

The ?sctr routines scatter the elements of the compressed sparse vector (nz, x, indx) to a
full-storage vector y. The routines modify only the elements of y» whose indices are listed in the

array indx:
y(indx (1))

x (i), fori=1,2,...nz

Input Parameters

nz

indx

INTEGER. The number of elements of x to be scattered.

INTEGER. Specifies indices of elements to be scattered.Array, DIMENSION at
least nz.

REAL for ssctr

DOUBLE PRECISION for dsctr

COMPLEX for csctr

DOUBLE COMPLEX for zsctr

Array, DIMENSION at least nz.

Contains the vector to be converted to full-storage form.

Output Parameters

y

REAL for ssctr

DOUBLE PRECISION for dsctr

COMPLEX for csctr

DOUBLE COMPLEX for zsctr

Array, DIMENSION at least max; (indx(1)).
Contains the vector y with updated elements.

LAPACK Routines:
Linear Equations

This chapter describes the Intel® Math Kernel Library implementation of routines from the
LAPACK package that are used for solving systems of linear equations and performing a number
of related computational tasks. The library includes LAPACK routines for both real and complex
data.

Routines are supported for systems of equations with the following types of matrices:

® general

®* banded

* symmetric or Hermitian positive-definite (both full and packed storage)
* symmetric or Hermitian positive-definite banded

* symmetric or Hermitian indefinite (both full and packed storage)

* symmetric or Hermitian indefinite banded

* triangular (both full and packed storage)

* triangular banded

® tridiagonal.

For each of the above matrix types, the library includes routines for performing the following
computations: factoring the matrix (except for triangular matrices); equilibrating the matrix;
solving a system of linear equations; estimating the condition number of a matrix; refining the
solution of linear equations and computing its error bounds; inverting the matrix.

To solve a particular problem, you can either call two or more computational routines or call a
corresponding driver routine that combines several tasks in one call, such as ?gesv for factoring
and solving. Thus, to solve a system of linear equations with a general matrix, you can first call
?getrf (LU factorization) and then ?getrs (computing the solution). Then, you might wish to
call ?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the
driver routine ?gesvx which performs all these tasks in one call.

WARNING. LAPACK routines expect that input matrices do not contain
INF or NaN values. When input data is inappropriate for LAPACK, problems
may arise, including possible hangs.

3-1

3 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions

For each routine introduced in this chapter, you can use the LAPACK name.

LAPACK names are listed in Table 3-1 and Table 3-2, and have the structure xyyzzz or
xyyzz, which is described below.

The initial letter x indicates the data type:

s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
ge general

gb general band

gt general tridiagonal

po symmetric or Hermitian positive-definite

pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band

pt symmetric or Hermitian positive-definite tridiagonal

sy symmetric indefinite

sp symmetric indefinite (packed storage)

he Hermitian indefinite

hp Hermitian indefinite (packed storage)

tr triangular

tp triangular (packed storage)

tb triangular band

For computational routines, the last three letters zzz indicate the computation performed:
trf form a triangular matrix factorization

trs solve the linear system with a factored matrix

con estimate the matrix condition number

rfs refine the solution and compute error bounds

tri compute the inverse matrix using the factorization

equ equilibrate a matrix.

For example, the routine sgetrf performs the triangular factorization of general real matrices in
single precision; the corresponding routine for complex matrices is cgetrf.

For driver routines, the names can end either with -sv (meaning a simple driver), or with -svx
(meaning an expert driver).

LAPACK Routines: Linear Equations 3

Matrix Storage Schemes

LAPACK routines use the following matrix storage schemes:

® Full storage: a matrix 4 is stored in a two-dimensional array a, with the matrix element a;;
stored in the array element a (1, 7).

® Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

® Band storage: an m by n band matrix with k1 sub-diagonals and ku super-diagonals is stored
compactly in a two-dimensional array ab with k1+ku+1 rows and n columns. Columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in p; arrays
with matrices in band storage have names ending in b.

13

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation

Descriptions of LAPACK routines use the following notation:

Ax=b
AX=B
x|
4|

[I¥[]o = max; [x;]
[l4]|o. = max; Ej |
4]l = maiji |a;;

y
K(A) = [JA]| [l47]

A system of linear equations with an n by n matrix 4 = {aij}, a
right-hand side vector b = {b;}, and an unknown vector x = {x;}.

A set of systems with a common matrix 4 and multiple right-hand sides.
The columns of B are individual right-hand sides, and the columns of X
are the corresponding solutions.

the vector with elements |x;| (absolute values of x;).
the matrix with elements |a;| (absolute values of a;)).
The infinity-norm of the vector x.

The infinity-norm of the matrix 4.

The one-norm of the matrix 4. [J4||; = |47]|.o = |47

The condition number of the matrix A.

3 Intel® Math Kernel Library Reference Manual

Error Analysis

34

In practice, most computations are performed with rounding errors. Besides, you often need to
solve a system Ax = b where the data (the elements of 4 and b) are not known exactly. Therefore,
it’s important to understand how the data errors and rounding errors can affect the solution x.

Data perturbations. If x is the exact solution of Ax = b, and x + dx is the exact solution of a
perturbed problem (4 + 8A4)x = (b + &b), then

M < K(A)(

13a] _ 85
E

I220)) where k(&) = [|a]|[la-!].
& ||b||)

In other words, relative errors in 4 or » may be amplified in the solution vector x by a factor k(4) =
l4]| ||[47Y)| called the condition number of A.

Rounding errors have the same effect as relative perturbations c(n)e in the original data. Here €
is the machine precision, and c(n) is a modest function of the matrix order n. The corresponding
solution error is

[[6xx]|/||x]| < c(n)x(A)e. (The value of c(n) is seldom greater than 10n.)

Thus, if your matrix 4 is ill-conditioned (that is, its condition number k(A) is very large), then the
error in the solution x is also large; you may even encounter a complete loss of precision.
LAPACK provides routines that allow you to estimate k(4) (see Routines for Estimating the
Condition Number) and also give you a more precise estimate for the actual solution error (see

Refining the Solution and Estimating Its Error).

LAPACK Routines: Linear Equations 3

Computational Routines

Table 3-1 lists the LAPACK computational routines for factorizing, equilibrating, and inverting
real matrices, estimating their condition numbers, solving systems of equations with real matrices,
refining the solution, and estimating its error.

Table 3-2 lists similar routines for complex matrices.

Table 3-1 Computational Routines for Systems of Equations with Real Matrices
Matrix type, Factorize Equilibrat Solve Condition Estimate Invert
storage scheme matrix e matrix system number error matrix
general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri
general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs
general ?gttrf ?gttrs ?gtcon ?gtrfs
tridiagonal
symmetric ?potrf ?poequ ?potrs ?pocon ?porfs ?potri

positive-definite
symmetric ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage

symmetric ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs
positive-definite,

band

symmetric ?pttrf ?pttrs ?ptcon ?ptrfs
positive-definite,

tridiagonal

symmetric ?sytrf ?sytrs ?sycon ?syrfs ?sytri
indefinite

symmetric ?sptrf ?sptrs ?spcon ?sprfs ?sptri
indefinite,

packed storage

triangular ?trtrs ?trcon ?trrfs 2trtri
triangular, ?tptrs ?tpcon ?tprfs ?tptri

packed storage

triangular band ?tbtrs ?tbcon ?tbrfs

In this table ? denotes s (single precision) or d (double precision).

3-5

3 Intel® Math Kernel Library Reference Manual

Table 3-2 Computational Routines for Systems of Equations with Complex Matrices

Matrix type, Factorize Equilibrat Solve Condition Estimate Invert
storage scheme matrix e matrix system number error matrix
general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri
general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general ?gttrf ?gttrs ?gtcon ?gtrfs

tridiagonal

Hermitian ?potrf ?poequ ?potrs ?pocon ?porfs ?potri

positive-definite
Hermitian ?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri
positive-definite,
packed storage

Hermitian ?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs
positive-definite,

band

Hermitian ?pttrf ?pttrs ?ptcon ?ptrfs
positive-definite,

tridiagonal

Hermitian ?hetrf ?hetrs ?hecon ?herfs ?hetri
indefinite

symmetric ?sytrf ?sytrs ?sycon ?syrfs ?sytri
indefinite

Hermitian ?hptrf ?hptrs ?hpcon ?hprfs ?hptri
indefinite,
packed storage

symmetric ?sptrf ?sptrs ?spcon ?sprfs ?sptri
indefinite,
packed storage

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular, ?tptrs ?tpcon ?tprfs ?tptri
packed storage

triangular band ?tbtrs ?tbcon ?tbrfs

In this table ? stands for ¢ (single precision complex) or z (double precision complex).

3-6

LAPACK Routines: Linear Equations 3

Routines for Matrix Factorization

This section describes the LAPACK routines for matrix factorization. The following factorizations
are supported:

® LU factorization

® Cholesky factorization of real symmetric positive-definite matrices

® Cholesky factorization of Hermitian positive-definite matrices

* Bunch-Kaufman factorization of real and complex symmetric matrices

®* Bunch-Kaufman factorization of Hermitian matrices.

You can compute the LU factorization using full and band storage of matrices; the Cholesky
factorization using full, packed, and band storage; and the Bunch-Kaufman factorization using full
and packed storage.

?getrf

Computes the LU factorization
of a general m by n matrix.

Syntax
call sgetrf (m, n, a, lda, ipiv, info)

call dgetrf (m, n, a, lda, ipiv, info)

call cgetrf (m, n, a, lda, ipiv, info)
call zgetrf (m, n, a, lda, ipiv, info)
Description

The routine forms the LU factorization of a general m by n matrix 4 as
A = PLU,

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m> n) and U is upper triangular (upper trapezoidal if m < n). Usually A4 is square (m=
n), and both L and U are triangular. The routine uses partial pivoting, with row interchanges.

3 Intel® Math Kernel Library Reference Manual

3-8

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m = 0).
n INTEGER. The number of columns in 4 (n=>0).
a REAL for sgetrf

DOUBLE PRECISION for dgetrf

COMPLEX for cgetrf

DOUBLE COMPLEX for zgetrf.

Array, DIMENSION (1da, *). Contains the matrix 4.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a.

Output Parameters
a Overwritten by L and U. The unit diagonal elements of L are not stored.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(1).

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, u;, is 0. The factorization has been completed, but U is exactly
singular. Division by 0 will occur if you use the factor U for solving a system
of linear equations.
Application Notes
The computed L and U are the exact factors of a perturbed matrix 4 + E, where
|El < c(min(m, n))€ P|L|| U]

¢(n) is a modest linear function of #, and € is the machine precision.

The approximate number of floating-point operations for real flavors is
2/3)n° if m=n,
(1/3)n*(3m-n) ifm> n,
(1/3)m*(3n-m) ifm<n.

The number of operations for complex flavors is 4 times greater.

After calling this routine with m = n, you can call the following:

LAPACK Routines: Linear Equations 3

?getrs to solveAX=BorATX=BorAHX=B;
?gecon to estimate the condition number of 4;
?getri to compute the inverse of 4.

?gbtrf

Computes the LU factorization
of a general m by n band matrix.

Syntax

call sgbtrf (m, n, k1, ku, ab, ldab, ipiv, info)
call dgbtrf (m, n, k1, ku, ab, ldab, ipiv, info)
call cgbtrf (m, n, k1, ku, ab, ldab, ipiv, info)
call zgbtrf (m, n, k1, ku, ab, ldab, ipiv, info)

Description

The routine forms the LU factorization of a general m by n band matrix 4 with k1 non-zero
sub-diagonals and ku non-zero super-diagonals. Usually 4 is square (m = n), and then
A = PLU

where P is a permutation matrix; L is lower triangular with unit diagonal elements and at most k1
non-zero elements in each column; U is an upper triangular band matrix with k1 + ku
super-diagonals. The routine uses partial pivoting, with row interchanges (which creates the
additional k1 super-diagonals in U).

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m = 0).

n INTEGER. The number of columns in 4 (n = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
ab REAL for sgbtrf

DOUBLE PRECISION for dgbtrf
COMPLEX for cgbtrf

3-9

3 Intel® Math Kernel Library Reference Manual

3-10

DOUBLE COMPLEX for zgbtrf.

Array, DIMENSION (1dab, *).

The array ab contains the matrix 4 in band storage

(see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(1dab2=2k1+ ku+1)
Output Parameters

ab Overwritten by L and U. The diagonal and k1 + ku super-diagonals of U are
stored in the first 1 + k1 + ku rows of ab. The multipliers used to form L are
stored in the next k1 rows.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(1).

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, u;, is 0. The factorization has been completed, but U is exactly
singular. Division by 0 will occur if you use the factor U for solving a system
of linear equations.

Application Notes

The computed L and U are the exact factors of a perturbed matrix 4 + E, where
|E| < c(k1+kxu+1)e P|L||U

c(k) is a modest linear function of &, and € is the machine precision.

The total number of floating-point operations for real flavors varies between approximately
2n(kutl)kl and 2n(k1+kut1)k1. The number of operations for complex flavors is 4 times
greater. All these estimates assume that k1 and ku are much less than min(m, n).

After calling this routine with m = n, you can call the following:
?gbtrs to solve AX =B orATX=BorAHX=B;

?gbcon to estimate the condition number of 4.

LAPACK Routines: Linear Equations 3

?gttrf

Computes the LU factorization of a tridiagonal matrix.

Syntax

call sgttrf
call dgttrf
call cgttrf
call zgttrf

Description

n, dl, d, du, du2, ipiv, info)
n, dl, d, du, du2, ipiv, info)
n, dl, d, du, du2, ipiv, info)
n, dl, d, du, du2, ipiv, info)

The routine computes the LU factorization of a real or complex tridiagonal matrix 4 in the form

A = PLU,

where P is a permutation matrix; L is lower bidiagonal with unit diagonal elements; and U is an
upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
The routine uses elimination with partial pivoting and row interchanges .

Input Parameters

n

dl, d, du

INTEGER. The order of the matrix 4 (n = 0).

REAL for sgttrf

DOUBLE PRECISION for dgttrf

COMPLEX for cgttrf

DOUBLE COMPLEX for zgttrf.

Arrays containing elements of A.

The array d1 of dimension (n - 1) contains the sub-diagonal elements of A.
The array d of dimension n contains the diagonal elements of 4.

The array du of dimension (n - 1) contains the super-diagonal elements of A.

Output Parameters

dl

du

Overwritten by the (n-1) multipliers that define the matrix L from the LU
factorization of A.

Overwritten by the n diagonal elements of the upper triangular matrix U from
the LU factorization of A.

Overwritten by the (n-1) elements of the first super-diagonal of U.

3 Intel® Math Kernel Library Reference Manual

duz

ipiv

info

REAL for sgttrf

DOUBLE PRECISION for dgttrf

COMPLEX for cgttrf

DOUBLE COMPLEX for zgttrf.

Array, dimension (n-2). On exit, du2 contains (n-2) elements of the second
super-diagonal of U.

INTEGER.
Array, dimension (n).
The pivot indices: row i was interchanged with row ipiv(i).

INTEGER. If info =0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info= i, u;;is 0. The factorization has been completed, but U is exactly
singular. Division by zero will occur if you use the factor U for solving a
system of linear equations.

Application Notes

?gbtrs

?gbcon

to solve AX =B or A'X =B or Ax = B;

to estimate the condition number of 4.

?potrf

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix.

3-12

Syntax

call spotrf
call dpotrf
call cpotrf
call zpotrf

Description

—~ o~ o~ o~

uplo, n, a, lda, info
uplo, n, a, lda, info

uplo, n, a, lda, info

—_— — — ~—

uplo, n, a, lda, info

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite matrix A:

A=U"U

if uplo="U"

LAPACK Routines: Linear Equations 3

A=LL"

if uplo="L",

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo

lda

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as U'U.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

INTEGER. The order of matrix A (n=0).

REAL for spotrf

DOUBLE PRECISION for dpotrf

COMPLEX for cpotrf

DOUBLE COMPLEX for zpotrf.

Array, DIMENSION (1da, *).

The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).

The second dimension of a must be at least max(1, n).

INTEGER. The first dimension of a.

Output Parameters

a

info

The upper or lower triangular part of a is overwritten by the Cholesky factor U
or L, as specified by uplo.

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite, and the factorization could not be completed. This may
indicate an error in forming the matrix 4.

Application Notes

If uplo='u', the computed factor U is the exact factor of a perturbed matrix 4 + E, where

B < c(n)e |U7|U, es5] < clme Ja;;a;;

c(n) is a modest linear function of n, and € is the machine precision.

A similar estimate holds for uplo= 'L"'.

3 Intel® Math Kernel Library Reference Manual

The total number of floating-point operations is approximately (1/3)n> for real flavors or (4/3)n’
for complex flavors.

After calling this routine, you can call the following:

?potrs to solve AX = B;
?pocon to estimate the condition number of 4;
?potri to compute the inverse of 4.

?pptrf

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix using
packed storage.

Syntax
call spptrf uplo, n, ap, info
call dpptrf uplo, n, ap, info

call cpptrf uplo, n, ap, info

—~ o~ o~~~
.

call zpptrf uplo, n, ap, info

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite packed matrix A4:

A=U"U if uplo="U"
A=LL" if uplo="1L"

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is packed in the array
ap, and how A4 is factored:

3-14

LAPACK Routines: Linear Equations 3

If uplo='uU", the array ap stores the upper triangular part of the matrix A4,
and A is factored as UU.
If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as LL,
n INTEGER. The order of matrix 4 (nn=0).
ap REAL for spptrf
DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrt.
Array, DIMENSTION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap The upper or lower triangular part of 4 in packed storage is overwritten by the
Cholesky factor U or L, as specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite, and the factorization could not be completed. This may
indicate an error in forming the matrix 4.

Application Notes

If uplo='u", the computed factor U is the exact factor of a perturbed matrix 4 + E, where

B < c(melv]|ul, ey, < e(n)e fai;a;;

¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo='L".

The total number of floating-point operations is approximately (1/3)3 for real flavors and (4/3)n°
for complex flavors.

After calling this routine, you can call the following:

?pptrs to solve AX = B,
?ppcon to estimate the condition number of 4;
?pptri to compute the inverse of 4.

3 Intel® Math Kernel Library Reference Manual

?pbtrf

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite band matrix.

3-16

Syntax

call spbtrf
call dpbtrf
call cpbtrf
call zpbtrf

Description

uplo, n, kd, ab, ldab, info
uplo, n, kd, ab, ldab, info
uplo, n, kd, ab, ldab, info
uplo, n, kd, ab, ldab, info

—_ — — ~—

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite band matrix 4:

A=U"U
A=LL"

if uplo='U"

if uplo="1L"

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo

kd

ab

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is stored in the array
ab, and how 4 is factored:

If uplo='u", the array ab stores the upper triangular part of the matrix A4,
and A is factored as UU.

If uplo= 'L, the array ab stores the lower triangular part of the matrix 4; 4
is factored as LL".

INTEGER. The order of matrix 4 (n = 0).

INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

REAL for spbtrf

DOUBLE PRECISION for dpbtrf

COMPLEX for cpbtrf

DOUBLE COMPLEX for zpbtrf.

Array, DIMENSION (1dab,*).

LAPACK Routines: Linear Equations 3

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(1dab > kd +1)
Output Parameters

ap The upper or lower triangular part of 4 (in band storage) is overwritten by the
Cholesky factor U or L, as specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite, and the factorization could not be completed. This may
indicate an error in forming the matrix 4.

Application Notes

If uplo='u', the computed factor U is the exact factor of a perturbed matrix 4 + E, where

1B < c(xa+ e U] U, |eij|S c(kd+)€ Ja;;a,;

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo='L"'.

The total number of floating-point operations for real flavors is approximately n(kd+1)?. The
number of operations for complex flavors is 4 times greater. All these estimates assume that kd is
much less than n.

After calling this routine, you can call the following:
?pbtrs to solve AX = B;

?pbcon to estimate the condition number of A4;

3 Intel® Math Kernel Library Reference Manual

?pttrf

Computes the factorization of
a symmetric (Hermitian) positive-definite tridiagonal

matrix.

Syntax

call spttrf
call dpttrf
call cpttrf
call zpttrf

Description

—~ o~ o~ o~

n, d, e, info)
n, d, e, info)
n, d, e, info)
n, d, e, info)

This routine forms the factorization of a symmetric positive-definite or, for complex data,
Hermitian positive-definite tridiagonal matrix 4:

A=LDL" where D is diagonal and L is unit lower bidiagonal. The factorization may also be
regarded as having the form 4 = UDU , where D is unit upper bidiagonal.

Input Parameters

n
d

INTEGER. The order of the matrix 4 (n=>0).

REAL for spttrf, cpttrf

DOUBLE PRECISION for dpttrf, zpttrf.

Array, dimension (). Contains the diagonal elements of A.

REAL for spttrf

DOUBLE PRECISION for dpttrf

COMPLEX for cpttrf

DOUBLE COMPLEX for zpttrf.

Array, dimension (n - 1). Contains the sub-diagonal elements of A.

Output Parameters

d

3-18

Overwritten by the n diagonal elements of the diagonal matrix D from the
LDL™ factorization of A.

Overwritten by the (n1 - 1) off-diagonal elements of the unit bidiagonal factor L
or U from the factorization of A.

LAPACK Routines: Linear Equations 3

info

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info= i, the leading minor of order i (and hence the matrix 4 itself) is not
positive-definite; if 1 < n, the factorization could not be completed, while if 1
= n, the factorization was completed, but d (n)=0.

?sytrf

Computes the Bunch-Kaufman factorization of a

symmetric matrix.

Syntax

call ssytrf
call dsytrf
call csytrf
call zsytrf

Description

uplo, n, a, lda, ipiv, work, lwork, info
uplo, n, a, lda, ipiv, work, lwork, info

uplo, n, a, lda, ipiv, work, lwork, info

—_ = = ~—

uplo, n, a, lda, ipiv, work, lwork, info

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:

if uplo='U",

if uplo="1",

A=PUDUTPT
A=pPLDLTPT

where 4 is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of

D.

Input Parameters

uplo

CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as PUDU'PT.,

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as PLDLTPT.

INTEGER. The order of matrix A (n = 0).

3 Intel® Math Kernel Library Reference Manual

3-20

lda
work
1lwork

REAL for ssytrf

DOUBLE PRECISION for dsytrf

COMPLEX for csytrf

DOUBLE COMPLEX for zsytrf.

Array, DIMENSION (1da, *).

The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).

The second dimension of a must be at least max(1, n).
INTEGER. The first dimension of a; at least max(1, n).
Same type as a. Workspace array of dimension 1work
INTEGER. The size of the work array (1work 2 n)

See Application notes for the suggested value of Iwork.

Output Parameters

a

work (1)

ipiv

info

The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U (or L).
If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D.

If ipiv(i) =k>0,thend,; isa 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

LAPACK Routines: Linear Equations 3

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) =iforall i =1...n,then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo='u', the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo= 'L".

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3
for complex flavors.

After calling this routine, you can call the following:

?sytrs to solve AX =B,
?sycon to estimate the condition number of 4;
?sytri to compute the inverse of 4.

3-21

3 Intel® Math Kernel Library Reference Manual

?hetrf

Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix.

Syntax

call chetrf (uplo, n, a, lda, ipiv, work, lwork, info)
call zhetrf (uplo, n, a, lda, ipiv, work, lwork, info)
Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:
ifuplo='u', A=PUDU"PT
ifuplo='1', A=PLDLAPT

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:
If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as PUDUPT.
If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as PLDLYPT.

n INTEGER. The order of matrix 4 (n = 0).
COMPLEX for chetrf
DOUBLE COMPLEX for zhetrf.
Array, DIMENSION (1da, *).
The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

3-22

LAPACK Routines: Linear Equations 3

work Same type as a. Workspace array of dimension 1work

lwork INTEGER. The size of the work array (1work 2 n)
See Application notes for the suggested value of Iwork.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

ipiv INTEGER.
Array, DIMENSTION at least max(1,n).
Contains details of the interchanges and the block structure of D.
If ipiv(i) =k>0,thend,; isa l1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Application Notes

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If 4 is in
fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks
occur in D.

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1work for the first run.
On exit, examine work (1) and use this value for subsequent runs.

3-23

3 Intel® Math Kernel Library Reference Manual

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) =iforall i=1...n,then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo='u"', the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo='L".

The total number of floating-point operations is approximately (4/3)1‘13 .

After calling this routine, you can call the following:

?hetrs to solve AX = B;
?hecon to estimate the condition number of 4;
?hetri to compute the inverse of A.

?sptrf

Computes the Bunch-Kaufman factorization of a
symmetric matrix using packed storage.

3-24

Syntax
call ssptrf (uplo, n, ap, ipiv, info)
call dsptrf (uplo, n, ap, ipiv, info)

call csptrf (uplo, n, ap, ipiv, info)
call zsptrf (uplo, n, ap, ipiv, info)
Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix 4 using packed
storage:

if uplo='U', A4=PUDU'P"

LAPACK Routines: Linear Equations 3

if uplo="1",

A=PLDLTPT

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U
and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters

uplo

ap

CHARACTER*1. Mustbe 'U' or 'L'.

Indicates whether the upper or lower triangular part of 4 is packed in the array
ap and how A4 is factored:

If uplo='U", the array ap stores the upper triangular part of the matrix A4,
and A is factored as PUDUTPT.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as PLDLTPT.

INTEGER. The order of matrix 4 (nn=0).

REAL for ssptrf

DOUBLE PRECISION1brdSptrf

COMPLEX for csptrf

DOUBLE COMPLEberzsptrf

Array, DIMENSTION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap

ipiv

The upper or lower triangle of A (as specified by uplo) is overwritten by
details of the block-diagonal matrix D and the multipliers used to obtain the
factor U (or L).

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D.

If ipiv(i) =k>0,thend;; isa 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U"'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

3-25

3 Intel® Math Kernel Library Reference Manual

3-26

Ifuplo="'L"'and ipiv(i) =ipiv(i+1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L overwrite elements of the corresponding columns of the matrix 4,
but additional row interchanges are required to recover U or L explicitly (which is seldom
necessary).

If ipiv(i) =iforall 1 =1...n, then all off-diagonal elements of U (L) are stored explicitly in
packed form.

If uplo='u", the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo= 'L".

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n>
for complex flavors.

After calling this routine, you can call the following:

?sptrs to solve AX = B;
?spcon to estimate the condition number of 4;
?sptri to compute the inverse of 4.

LAPACK Routines: Linear Equations 3

?hptrf

Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix using packed storage.

Syntax
call chptrf (uplo, n, ap, ipiv, info)
call zhptrf (uplo, n, ap, ipiv, info)

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:
ifuplo='u', A=PUDU"PT
ifuplo='1', A=PLDLAPT

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is packed and how 4
is factored:

If uplo='u", the array ap stores the upper triangular part of the matrix A4,
and A4 is factored as PUDUPT.
If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4

is factored as PLDLYPT.
n INTEGER. The order of matrix 4 (n = 0).
ap COMPLEX for chptrf

DOUBLE COMPLEX for zhptr£.

Array, DIMENSION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

3-27

3 Intel® Math Kernel Library Reference Manual

3-28

Output Parameters

ap The upper or lower triangle of A (as specified by uplo) is overwritten by
details of the block-diagonal matrix D and the multipliers used to obtain the
factor U (or L).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D.
If ipiv(i) =k>0,thend,; is a 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular. Division by 0 will occur if you use D for solving a system of linear
equations.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) =iforall i=1...n,then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo='u", the computed factors U and D are the exact factors of a perturbed matrix 4 + E,
where

|E| < c(n)e P|Ul|Dl|U7] P

¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for the computed L and D when uplo= 'L".

The total number of floating-point operations is approximately (4/3)n°.

After calling this routine, you can call the following:

LAPACK Routines: Linear Equations 3

?hptrs to solve AX=B;
?hpcon to estimate the condition number of 4;
?hptri to compute the inverse of 4.

Routines for Solving Systems of Linear Equations

This section describes the LAPACK routines for solving systems of linear equations. Before
calling most of these routines, you need to factorize the matrix of your system of equations (see
Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if
your system of equations has a triangular matrix.

?getrs

Solves a system of linear equations with an LU-factored
square matrix, with multiple right-hand sides.

Syntax

call sgetrs (trans, n, nrhs, a, lda, ipiv, b, 1db, info)
call dgetrs (trans, n, nrhs, a, lda, ipiv, b, 1db, info)
call cgetrs (trans, n, nrhs, a, lda, ipiv, b, 1db, info)
call zgetrs (trans, n, nrhs, a, lda, ipiv, b, 1db, info)

Description

This routine solves for X the following systems of linear equations:

AX=B if trans="N",
ATx=B if trans="T",
Alx =B if trans="'¢C" (for complex matrices only).

Before calling this routine, you must call 2getrf to compute the LU factorization of 4.

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans= 'N', then AX = B is solved for X.

3-29

3 Intel® Math Kernel Library Reference Manual

nrhs

a, b

lda
1db

ipiv

If trans='T', then ATX = B is solved for X.
If trans = 'C', then 47X = B is solved for X.

INTEGER. The order of 4; the number of rows in B (n = 0).
INTEGER. The number of right-hand sides (nrhs > 0).

REAL for sgetrs

DOUBLE PRECISION for dgetrs
COMPLEX for cgetrs

DOUBLE COMPLEX for zgetrs.
Arrays: a(lda,*), b(1db,*).

The array a contains the matrix 4.
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of b; 1db > max(1, n).

INTEGER.
Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?getrt.

Output Parameters

b

info

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

|E| < c(n)e P|L||U]

c(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

LAPACK Routines: Linear Equations 3

= xol..

Ixll.,

< c(n) cond (A, x)&

where cond(4,) = || |4~ J4] i [l / ¥l < 47!l Ml = ().

Note that cond(4,x) can be much smaller than k..(4); the condition number of A” and 4" might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 8n? for complex flavors.

To estimate the condition number x., (4), call 2gecon.
To refine the solution and estimate the error, call ?2gerfs.

?gbtrs

Solves a system of linear equations with an LU-factored
band matrix, with multiple right-hand sides.

Syntax

call sgbtrs (trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1ldb, info)

call dgbtrs (trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)

call cgbtrs (trans, n, k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
(b)

call zgbtrs (trans, n, k1, ku, nrhs, ab, ldab, ipiv, , 1db, info

Description

This routine solves for X the following systems of linear equations:

AX=B if trans="N",
ATx=B if trans="T",
A%x =B if trans="C" (for complex matrices only).

Here A is an LU-factored general band matrix of order n with k1 non-zero sub-diagonals and ku
non-zero super-diagonals. Before calling this routine, you must call 2gbtr £ to compute the LU
factorization of 4.

3-31

3 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.

n INTEGER. The order of 4; the number of rows in B (n = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b REAL for sgbtrs

DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs

DOUBLE COMPLEX for zgbtrs.
Arrays: ab(ldab,*),b(1ldb, *).

The array ab contains the matrix 4 in band storage (see Matrix Storage
Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.

(1dab >2k1 + ku+1).
1db INTEGER. The first dimension of b; 1db = max(1, n).
ipiv INTEGER. Array, DIMENSION at least max(1,n).

The ipiv array, as returned by ?gbtrf.

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where
|E| < c(kl+ku+1)e P|L||U

c(k) is a modest linear function of %, and ¢ is the machine precision.

LAPACK Routines: Linear Equations 3

If x is the true solution, the computed solution x satisfies this error bound:

[= x|
W < c(kl+ku+1)cond (A x)e

where cond(4,) = || |4~ J4] b [l / ¥l < 47!l [l = ().

Note that cond(4,x) can be much smaller than k..(4); the condition number of A” and 4" might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector is 2n(ku +
2k1) for real flavors. The number of operations for complex flavors is 4 times greater. All these
estimates assume that k1 and ku are much less than min(m, n).

To estimate the condition number x., (4), call 2gbcon.
To refine the solution and estimate the error, call 2gbrfs.

?gttrs

Solves a system of linear equations with a tridiagonal
matrix using the LU factorization computed by ?gttrt.

Syntax

call sgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
call dgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
call cgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)
call zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, 1ldb, info)

Description

This routine solves for X the following systems of linear equations with multiple right hand sides:

AX=B if trans="N",
ATx=B if trans="T",
A"x =B if trans="C" (for complex matrices only).

Before calling this routine, you must call 2gttrf to compute the LU factorization of 4.

3-33

3 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".
Indicates the form of the equations:
If trans = 'N"', then AX = B is solved for X.
If trans='T', then ATX = B is solved for X.
If trans='C', then AMX = B is solved for X.

n INTEGER. The order of 4 (n > 0).
nrhs INTEGER. The number of right-hand sides, i.e., the number of columns in B
(nrhs 2 0).

dil,d,du,du2,b REAL for sgttrs
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrf.
Arrays: d1(n-1),d(n),du(n-1),du2(n-2), b(ldb,nrhs).
The array d1 contains the (z - 1) multipliers that define the matrix L from the
LU factorization of A.
The array d contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of 4.
The array du contains the (n1- 1) elements of the first super-diagonal of U.
The array duz contains the (n - 2) elements of the second super-diagonal of
U.
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

1db INTEGER. The leading dimension of b; 1db = max(1, n).
ipiv INTEGER.
Array, DIMENSION (n).
The ipiv array, as returned by ?gttrt.
Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where
Bl < c(a)e PIL|[U

¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

= %ol...

————— < c¢(n) cond (A, x)&
Il

where cond(4,) = || |4~ J4] i [l / el < 47!l [l = ().

Note that cond(4,x) can be much smaller than k..(4); the condition number of A” and 4" might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 8n? for complex flavors.

To estimate the condition number x,, (4), call 2gecon.
To refine the solution and estimate the error, call ?2gerfs.

?potrs

Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

call spotrs (uplo, n, nrhs, a, lda, b, 1db, info)

call dpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call cpotrs (uplo, n, nrhs, a, lda, b, ldb, info)
(b)

call zpotrs uplo, n, nrhs, a, lda, , 1db, info

3-35

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of 4:

A=U"U if uplo='U"
A=LL" if uplo='L"

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates how the input matrix 4 has been factored:
If uplo='U", the array a stores the factor U of the Cholesky factorization 4 =

viu.
If uplo= 'L, the array a stores the factor L of the Cholesky factorization 4
=LY,

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

a, b REAL for spotrs

DOUBLE PRECISION for dpotrs

COMPLEX for cpotrs

DOUBLE COMPLEX for zpotrs.

Arrays: a(lda,*), b(1db,*).

The array a contains the factor U or L (see uplo).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

Application Notes

If uplo= 'u"', the computed solution for each right-hand side 4 is the exact solution of a
perturbed system of equations (4 + E)x = b, where
Bl < c(a)e|UH[l

c(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo='L".
If x is the true solution, the computed solution x satisfies this error bound:

[—o..
BN

< c(n) cond(A, x)&

where cond(4,) = || |4~ J4] i [l / ¥l < 47!l [l = ().

Note that cond(4,x) can be much smaller than ., (4).
The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 817 for complex flavors.

To estimate the condition number ., (4), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

?pptrs

Solves a system of linear equations with a packed
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

call spptrs (uplo, n, nrhs, ap, b, 1ldb, info)
call dpptrs (uplo, n, nrhs, ap, b, 1ldb, info)
call cpptrs (uplo, n, nrhs, ap, b, 1ldb, info)
call zpptrs (uplo, n, nrhs, ap, b, 1ldb, info)

3-37

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the system of linear equations 4X = B with a packed symmetric
positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky
factorization of 4:

A=U"U if uplo='U"
A=L1" if uplo="'L

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of 4.

Input Parameters

uplo CHARACTER+*1. Mustbe 'U' or 'L".
Indicates how the input matrix 4 has been factored:
If uplo='U", the array a stores the packed factor U of the Cholesky
factorization 4 = U7U.
If uplo='L", the array a stores the packed factor L of the Cholesky
factorization 4 = LL".

n INTEGER. The order of matrix 4 (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
ap, b REAL for spptrs

DOUBLE PRECISION for dpptrs

COMPLEX for cpptrs

DOUBLE COMPLEX for zpptrs.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(nt+1)/2).

The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(l,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

Application Notes

If uplo= 'u"', the computed solution for each right-hand side 4 is the exact solution of a
perturbed system of equations (4 + E)x = b, where
Bl < c(n)e |UH]|Ul
¢(n) is a modest linear function of n, and € is the machine precision.
A similar estimate holds for uplo='L".

If x is the true solution, the computed solution x satisfies this error bound:

= ol

Il

< ¢(n) cond(A, x)&

where cond(4,%) = || |4~ JA| | [l / ¥l < [14° 1 [} = Ko,
Note that cond(4,x) can be much smaller than K,(4).

The approximate number of floating-point operations for one right-hand side vector b is 2n? for
real flavors and 8n? for complex flavors.

To estimate the condition number K_,(4), call 2ppcon.
To refine the solution and estimate the error, call ?pprfs.

?pbtrs

Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite band matrix.

Syntax

call spbtrs (uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
call dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
call cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
call zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, 1db, info)

3-39

3 Intel® Math Kernel Library Reference Manual

3-40

Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite
or, for complex data, Hermitian positive-definite band matrix A4, given the Cholesky factorization
of A4:

A=U"U if uplo="'U"
A=LL" if uplo="L"

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of 4 in
the band storage form.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo= 'U", the array a stores the factor U of the factorization 4 = UU in
the band storage form.
If uplo= 'L, the array a stores the factor L of the factorization 4 = LL" in
the band storage form.

n INTEGER. The order of matrix A (n=0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix A
(kd = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b REAL for spbtrs

DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs

DOUBLE COMPLEX for zpbtrs.
Arrays: ab(1ldab,*), b(1db,*).

The array ab contains the Cholesky factor, as returned by the factorization
routine, in band storage form.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(1dab = kd +1).

LAPACK Routines: Linear Equations 3

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

1Bl < c(ka+ 1)e PlU|Ul or |E < c(xa+ 1)e p|L|L)
c(k) is a modest linear function of £, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:
[~ ..

I < c(kd+ 1) cond(A, x)é&

where cond(4,0) = || 14 J4] i [l / ¥l < 147!l Al = 4.
Note that cond(4,x) can be much smaller than K ,(4).
The approximate number of floating-point operations for one right-hand side vector is 4n*kd for

real flavors and 16n*kd for complex flavors.

To estimate the condition number k., (4), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

?ptirs

Solves a system of linear equations with a symmetric
(Hermitian) positive-definite tridiagonal matrix using
the factorization computed by ?pttrt.

Syntax

call spttrs (n, nrhs, d, e, b, 1ldb, info)

call dpttrs (n, nrhs, d, e, b, 1ldb, info)

call cpttrs (uplo, n, nrhs, d, e, b, 1db, info)

3-41

3 Intel® Math Kernel Library Reference Manual

3-42

call zpttrs (uplo, n, nrhs, d, e, b, 1db, info)

Description

This routine solves for X a system of linear equations 4X =B with a symmetric (Hermitian)
positive-definite tridiagonal matrix 4.

Before calling this routine, you must call ?pttrf to compute the LDL? or U'DU factorization
of A.

Input Parameters

uplo CHARACTER*1. Used for cpttrs/zpttrs only.
Mustbe 'u' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal
matrix 4 is stored and how 4 is factored:
If uplo= 'u", the array e stores the superdiagonal of 4, and 4 is factored as

Ufpu;
If uplo= 'L, the array e stores the subdiagonal of 4, and 4 is factored as
LDLH

n INTEGER. The order of 4 (n > 0).

nrhs INTEGER. The number of right-hand sides, i.e., the number of columns of the
matrix B (nrhs 2> 0).

d REAL for spttrs, cpttrs

DOUBLE PRECISION for dpttrs, zpttrs.
Array, dimension (n). Contains the diagonal elements of the diagonal matrix
D from the factorization computed by ?pttrf.
e, b REAL for spttrs
DOUBLE PRECISION for dpttrs
COMPLEX for cpttrs
DOUBLE COMPLEX for zpttrs.
Arrays: e(n- 1), b(1db, nrhs).
The array e contains the (- 1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ?pttrf (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

1db INTEGER. The leading dimension of b; 1db = max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

?sytrs

Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix.

Syntax

call ssytrs (uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
call dsytrs (uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
call csytrs (uplo, n, nrhs, a, lda, ipiv, b, 1db, info)
call zsytrs (uplo, n, nrhs, a, lda, ipiv, b, 1ldb, info)

Description

This routine solves for X the system of linear equations AX = B with a symmetric matrix 4, given
the Bunch-Kaufman factorization of 4:

if uplo='u', A=PUDU'PT

ifuplo='1', A=PLDL'PT
where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple

right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U
(or L) and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates how the input matrix 4 has been factored:

If uplo = 'u", the array a stores the upper triangular factor U of the
factorization 4 = PUDU'PT.

If uplo='L", the array a stores the lower triangular factor L of the
factorization 4 = PLDLTPT.

n INTEGER. The order of matrix A (n=0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).

3-43

3 Intel® Math Kernel Library Reference Manual

3-44

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

a, b REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(1da,*), b(1db, *).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the system of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|E| < c(n)e P|UIDI|U"|P” or |E|< c(n)e P|L||DI|L"| P
c(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

Il

< c(n) cond(A, x)&

where cond(4,) = [| A~ 4] I [/ e < 47! 14 =).
Note that cond(4,x) can be much smaller than K_,(4).

The total number of floating-point operations for one right-hand side vector is approximately 2n?
for real flavors or 8n” for complex flavors.

LAPACK Routines: Linear Equations 3

To estimate the condition number x., (4), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

?hetrs

Solves a system of linear equations with a UDU- or
LDL-factored Hermitian matrix.

Syntax
call chetrs (uplo, n, nrhs, a, lda, ipiv, b, 1ldb,
call zhetrs (uplo, n, nrhs, a, lda, ipiv, b, 1db,

Description

info)

info)

This routine solves for X the system of linear equations AX = B with a Hermitian matrix 4, given

the Bunch-Kaufman factorization of 4:
ifuplo='u', A=PUDU"PT
ifuplo='1', A=PLDLPT

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U
(or L) and the array ipiv returned by the factorization routine ?hetrf.

Input Parameters

uplo CHARACTER+*1. Mustbe 'U' or 'L".

Indicates how the input matrix 4 has been factored:

If uplo = 'u", the array a stores the upper triangular factor U of the

factorization 4 = PUDUPT,

If uplo='L", the array a stores the lower triangular factor L of the

factorization 4 = PLDLYPT,
n INTEGER. The order of matrix 4 (n = 0).

nrhs

INTEGER. The number of right-hand sides (nrhs = 0).

3-45

3 Intel® Math Kernel Library Reference Manual

3-46

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

a, b COMPLEX for chetrs.
DOUBLE COMPLEX for zhetrs.
Arrays: a(lda,*), b(1db, *).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the system of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|El < c(n)e PIUDI|U7 P™ or |EI < c(n)e Plz/|D|L7 P
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:
[~ ..

Ixll.,

< c(n) cond(A, x)&

where cond(4,1) = ||]4”|] oo/ 1l < 147"l Al = Fe(A).
Note that cond(4,x) can be much smaller than x_,(4).
The total number of floating-point operations for one right-hand side vector is approximately 8n2.

To estimate the condition number ¥, (4), call 2hecon.
To refine the solution and estimate the error, call ?herfs.

LAPACK Routines: Linear Equations 3

?sptrs

Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix using packed storage.

Syntax

call ssptrs (uplo, n, nrhs, ap, ipiv, b, 1db, info)
call dsptrs (uplo, n, nrhs, ap, ipiv, b, 1db, info)
call csptrs (uplo, n, nrhs, ap, ipiv, b, 1db, info)
call zsptrs (uplo, n, nrhs, ap, ipiv, b, 1db, info)

Description

This routine solves for X the system of linear equations AX = B with a symmetric matrix 4, given
the Bunch-Kaufman factorization of 4:

ifuplo='u', A=PUDU'PT

ifuplo='1', A=PLDLTPT

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply the factor U (or L) and the
array ipiv returned by the factorization routine ?sptrf.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo= 'U", the array ap stores the packed factor U of the factorization 4 =

PUDUTPT.
If uplo= 'L, the array ap stores the packed factor L of the factorization 4 =
PLDLTPT.

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).

The ipiv array, as returned by ?sptrf.

ap, b REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs

3-47

3 Intel® Math Kernel Library Reference Manual

3-48

DOUBLE COMPLEX for zsptrs.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(n+1)/2).

The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the system of equations. The second dimension of b must be at least
max(l,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|El < c(n)e PlU|D||UT P or |El < c(n)e PlLl|DI|L7] PT
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

= ol

Il

< ¢(n) cond(A, x)&

where cond(4,0) = || 4™ [] [l / ¥l < 114"l Al = .4).

Note that cond(4,x) can be much smaller than K ,(4).

The total number of floating-point operations for one right-hand side vector is approximately 2n?

for real flavors or 8n” for complex flavors.

To estimate the condition number x., (4), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

LAPACK Routines: Linear Equations 3

?hptrs

Solves a system of linear equations with a UDU- or
LDL-factored Hermitian matrix using packed storage.

Syntax
call chptrs (uplo, n, nrhs, ap, ipiv, b, 1db, info)
call zhptrs (uplo, n, nrhs, ap, ipiv, b, 1db, info)

Description

This routine solves for X the system of linear equations AX = B with a Hermitian matrix 4, given
the Bunch-Kaufman factorization of 4:

if uplo='u', A4=PUDU"PT

ifuplo='1', A=PLDLPT

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit

diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L) and ipiv in the form returned
by the factorization routine ?hptrf.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates how the input matrix 4 has been factored:

If uplo= 'u", the array ap stores the packed factor U of the factorization 4 =

PUDUPT.
If uplo='L", the array ap stores the packed factor L of the factorization 4 =
PLDLHPT.

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).

The ipiv array, as returned by ?hptrf.

ap, b COMPLEX for chptrs.
DOUBLE COMPLEX for zhptrs.
Arrays: ap (*), b(1db, *)

3-49

3 Intel® Math Kernel Library Reference Manual

The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the system of equations. The second dimension of b must be at least
max(l,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b, where

|El < c(n)e PIUDI|U7| P™ or |El < c(n)e PlL)|D|L7 P
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

| = %ol

————— < c(n) cond(A, x)&
Il

where cond(4x) = || 14”41 i [/ ¥l < 14l [=).

Note that cond(4,x) can be much smaller than x(4).

The total number of floating-point operations for one right-hand side vector is approximately 8n?

for complex flavors.

To estimate the condition number x, (4), call hpcon.
To refine the solution and estimate the error, call ?hprfs.

LAPACK Routines: Linear Equations 3

?trtrs

Solves a system of linear equations with a triangular
matrix, with multiple right-hand sides.

Syntax
call strtrs (uplo, trans,diag,n,nrhs,a,lda,b,ldb,info)

call ctrtrs

(

call dtrtrs (uplo, trans,diag,n,nrhs,a,lda,b,1db,info)
(uplo, trans,diag,n,nrhs,a,lda,b,1db, info)
(

call ztrtrs (uplo, trans,diag,n,nrhs,a,lda,b,1db,info)

Description

This routine solves for X the following systems of linear equations with a triangular matrix 4, with
multiple right-hand sides stored in B:

AX=B if trans="N",
ATx=B if trans="'T",
A"x =B if trans="C" (for complex matrices only).

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:
If uplo='uU", then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".
If trans= 'N"', then AX = B is solved for X.
If trans='T', then AX = B is solved for X.
If trans = 'C', then 47X = B is solved for X.
diag CHARACTER*1. Mustbe 'N' or 'U".

If diag= 'N", then 4 is not a unit triangular matrix.
If diag= 'U", then A4 is unit triangular: diagonal elements of 4 are assumed to
be 1 and not referenced in the array a.

n INTEGER. The order of A4; the number of rows in B (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).

3-51

3 Intel® Math Kernel Library Reference Manual

a, b REAL for strtrs
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(1db, *).

The array a contains the matrix 4.
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

lda INTEGER. The first dimension of a; 1da = max(1, n).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

|El < c(n)e |A]
c(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

[~ %ol

lxll.,

< c(n) cond(A, x)é&, provided c(n) cond(A, x)e< 1

where cond(4,) = || |4~ J4] b [l / el < 47!l Ml = o).

Note that cond(4,x) can be much smaller than «..(4); the condition number of A” and 4" might or
might not be equal to K.(4).

The approximate number of floating-point operations for one right-hand side vector b is n? for real
flavors and 4n? for complex flavors.

LAPACK Routines: Linear Equations 3

To estimate the condition number x., (4), call 2trcon.
To estimate the error in the solution, call ?trrfs.

?tptrs

Solves a system of linear equations with a packed
triangular matrix, with multiple right-hand sides.

Syntax

call stptrs (uplo, trans, diag, n, nrhs, ap, b, 1db, info)
call dtptrs (uplo, trans, diag, n, nrhs, ap, b, 1ldb, info)
call ctptrs (uplo, trans, diag, n, nrhs, ap, b, 1ldb, info)
call ztptrs (uplo, trans, diag, n, nrhs, ap, b, 1ldb, info)

Description

This routine solves for X the following systems of linear equations with a packed triangular matrix
A, with multiple right-hand sides stored in B:

AX=B if trans="N",
ATx=B if trans="'T",
A%x =B if trans="¢C" (for complex matrices only).

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates whether 4 is upper or lower triangular:

If uplo='u", then 4 is upper triangular.

If uplo='L", then 4 is lower triangular.
trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".

If trans= 'N"', then AX = B is solved for X.

If trans= 'T', then ATX = B is solved for X.

If trans='C', then AMX = B is solved for X.
diag CHARACTER*1. Mustbe 'N' or 'U"'.

If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U"', then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ap.

3-53

3 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of 4; the number of rows in B (n 2> 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
ap, b REAL for stptrs

DOUBLE PRECISION for dtptrs

COMPLEX for ctptrs

DOUBLE COMPLEX for ztptrs.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the matrix 4 in packed storage
(see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the system of equations. The second dimension of b must be at least
max(1,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

|E| < c(n)e |A]
¢(n) is a modest linear function of n, and € is the machine precision.

If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

Il

< c(n) cond(A, x)&, provided c(n) cond(A, x)e< 1

where cond(4,) = || A |l o/ [l < 47 [l 4] = ()

Note that cond(4, x) can be much smaller than ..(4); the condition number of 47 and 4" might or
might not be equal to K. (4).

LAPACK Routines: Linear Equations 3

The approximate number of floating-point operations for one right-hand side vector b is n” for real
flavors and 4n? for complex flavors.

To estimate the condition number ¥, (4), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

?tbtrs

Solves a system of linear equations with a band
triangular matrix, with multiple right-hand sides.

Syntax

call stbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, info)
call dtbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, info)
call ctbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, info)
call ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, info)

Description

This routine solves for X the following systems of linear equations with a band triangular matrix 4,
with multiple right-hand sides stored in B:

AX=B if trans="N",
ATx=B if trans="T",
Alx =B if trans="¢C" (for complex matrices only).

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='uU", then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".

If trans= 'N"', then AX = B is solved for X.

If trans='T', then ATX = B is solved for X.

If trans='C', then AMX = B is solved for X.
diag CHARACTER*1. Mustbe 'N' or 'U".

If diag= 'N", then 4 is not a unit triangular matrix.

3-55

3 Intel® Math Kernel Library Reference Manual

If diag= 'U"', then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ab.

n INTEGER. The order of 4; the number of rows in B (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ab, b REAL for stbtrs

DOUBLE PRECISION for dtbtrs
COMPLEX for ctbtrs

DOUBLE COMPLEX for ztbtrs.
Arrays: ab(1dab, *), b(1db, *).

The array ab contains the matrix 4 in band storage form.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of ab; 1dab > kd+ 1.

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

Application Notes
For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (4 + E)x = b where

Bl < c(n)e Al

¢(n) is a modest linear function of n, and € is the machine precision.
If x is the true solution, the computed solution x satisfies this error bound:

[= %ol

W < c(n) cond(A, x)&, provided c(n) cond(A, x)e< 1

LAPACK Routines: Linear Equations 3

where cond(d,) = || A |l lo / dllo < 47 [l 4] =)

Note that cond(4, x) can be much smaller than ..(4); the condition number of 47 and 4" might or
might not be equal to K. (4).

The approximate number of floating-point operations for one right-hand side vector b is 2n* kd
for real flavors and 8n* kd for complex flavors.

To estimate the condition number x,, (4), call ?tbcon.
To estimate the error in the solution, call ?tbrfs.

Routines for Estimating the Condition Number

This section describes the LAPACK routines for estimating the condition number of a matrix. The
condition number is used for analyzing the errors in the solution of a system of linear equations
(see Error Analysis). Since the condition number may be arbitrarily large when the matrix is
nearly singular, the routines actually compute the reciprocal condition number.

?gecon

Estimates the reciprocal of the condition number of a
general matrix in either the 1-norm or the
infinity-norm.

Syntax

call sgecon (norm, n, a, lda, anorm, rcond, work, iwork, info)
call dgecon (norm, n, a, lda, anorm, rcond, work, iwork, info)
call cgecon (norm, n, a, lda, anorm, rcond, work, rwork, info)

call zgecon (norm, n, a, lda, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a general matrix 4 in either the
1-norm or infinity-norm:

K1 (A) = (A1 A7l = Keol(AT) = K(A7)
Koo () = [|]|oo 47 loo = %1 (A7) = 5, (A7) .

Before calling this routine:

3-57

3 Intel® Math Kernel Library Reference Manual

3-58

* compute anorm (either [|4|]; = max; X;|a;| or |||, = max; X, |a;])
® call 2getrf to compute the LU factorization of 4.

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I"'.
If norm='1" or '0', then the routine estimates K;(4).
If norm= "1, then the routine estimates K, (4).

n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for sgecon
DOUBLE PRECISION for dgecon
COMPLEX for cgecon
DOUBLE COMPLEX for zgecon.
Arrays: a(1da, *), work (*).

The array a contains the LU-factored matrix 4, as returned by ?getrt.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 4*n) for real flavors and
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

lda INTEGER. The first dimension of a; 1da = max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgecon
DOUBLE PRECISION for zgecon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call to this routine involves solving a number of systems
of linear equations Ax = b or A"x = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n® floating-point operations for real flavors and 8 for complex
flavors.

?gbcon

Estimates the reciprocal of the condition number of a
band matrix in either the 1-norm or the infinity-norm.

call
call
call
call

Syntax
sgbcon (norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
dgbcon (norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
cgbcon (norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)
zgbcon (norm, n, k1, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a general band matrix 4 in either
the 1-norm or infinity-norm:
K1 (A) = [[4]|y 47| = Keo(AT) = Ko (A7)
Koo () = Ales (147 |oo = 11 (47) = 1, (4.
Before calling this routine:
* compute anorm (either ||4||; = max; X; |a;] or ||4]|., = max; X, |a;])

® call 2gbtrf to compute the LU factorization of 4.

Input Parameters
norm CHARACTER*1. Mustbe '1' or 'O' or 'I'.

If norm='1" or '0', then the routine estimates «;(4).
If norm= "1, then the routine estimates K, (A4).

3-59

3 Intel® Math Kernel Library Reference Manual

3-60

k1

ldab

ipiv

ab, work

anorm

iwork

rwork

INTEGER. The order of the matrix 4 (n = 0).
INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
INTEGER. The number of super-diagonals within the band of 4 (ku = 0).

INTEGER. The first dimension of the array ab.
(1dab >2k1+ ku+1).

INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

REAL for sgbcon

DOUBLE PRECISION for dgbcon
COMPLEX for cgbcon

DOUBLE COMPLEX for zgbcon.

Arrays: ab(1dab, *), work (*).

The array ab contains the factored band matrix A4,
as returned by ?gbtrf.

The second dimension of ab must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cgbcon
DOUBLE PRECISION for zgbcon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call to this routine involves solving a number of systems
of linear equations Ax = b or A"x = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n(ku + 2k1) floating-point operations for real flavors and 8n(ku
+ 2k1) for complex flavors.

?gtcon

Estimates the reciprocal of the condition number of a
tridiagonal matrix using the factorization computed by

?gttrf.

Syntax
call sgtcon (norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info)
call dgtcon (norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info)
call cgtcon (norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)
call zgtcon (norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)

Description
This routine estimates the reciprocal of the condition number of a real or complex tridiagonal
matrix 4 in either the 1-norm or infinity-norm:

1) = 4] 147

Koo (A) = [[4]lo |47l

An estimate is obtained for ||47!||, and the reciprocal of the condition number is computed as
rcond=1/(||4|| |I47|)-

Before calling this routine:

* compute anorm (either [|4|]; = max; X;|a;| or |||, = max; X, |a;])
® call 2gttrf to compute the LU factorization of 4.

3-61

3 Intel® Math Kernel Library Reference Manual

3-62

Input Parameters

norm

n
dl,d,du,duZz

ipiv

anorm

work

iwork

CHARACTER*1. Mustbe '1' or 'O' or 'I".

If norm='1" or '0', then the routine estimates «;(4).

If norm= "1, then the routine estimates K, (4).

INTEGER. The order of the matrix 4 (n = 0).

REAL for sgtcon

DOUBLE PRECISION for dgtcon

COMPLEX for cgtcon

DOUBLE COMPLEX for zgtcon.

Arrays: dl(n-1),d(n),du(n-1),du2(n-2).

The array d1 contains the (z - 1) multipliers that define the matrix L from the
LU factorization of A as computed by ?gttrf.

The array d contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of 4.

The array du contains the (n- 1) elements of the first super-diagonal of U.
The array du2 contains the (n - 2) elements of the second super-diagonal of
U.

INTEGER.
Array, DIMENSION (n).
The array of pivot indices, as returned by ?gttrf.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

REAL for sgtcon

DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon

DOUBLE COMPLEX for zgtcon.
Workspace array, DIMENSION (2*n).

INTEGER.
Workspace array, DIMENSION (n).
Used for real flavors only.

Output Parameters

rcond

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working

LAPACK Routines: Linear Equations 3

precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

?pocon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite matrix.

Syntax
call spocon uplo, n, a, lda, anorm, rcond, work, iwork, info)
call dpocon uplo, n, a, lda, anorm, rcond, work, iwork, info)

call cpocon uplo, n, a, lda, anorm, rcond, work, rwork, info)

—~ o~ o~ o~

call zpocon uplo, n, a, lda, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite matrix A:
K1 (A4) =||4||; |47"||; (since 4 is symmetric or Hermitian, K,.(4) = i;(4)).
Before calling this routine:
* compute anorm (either [|4||; = max; X;|a;| or ||]|., = max; X, |a;])
® call ?potrf to compute the Cholesky factorization of 4.

3-63

3 Intel® Math Kernel Library Reference Manual

3-64

Input Parameters

uplo

a, work

lda

anorm

iwork

rwork

CHARACTER+*1. Mustbe 'U' or 'L'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = U"U.

If uplo= 'L, the array a stores the lower triangular factor L of the
factorization 4 = LL".

INTEGER. The order of the matrix 4 (n = 0).

REAL for spocon

DOUBLE PRECISION for dpocon
COMPLEX for cpocon

DOUBLE COMPLEX for zpocon.
Arrays: a(1da, *), work (*).

The array a contains the factored matrix A4, as returned by ?potrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of a; 1da = max(1, n).

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cpocon
DOUBLE PRECISION for zpocon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working

LAPACK Routines: Linear Equations 3

precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

?ppcon

Estimates the reciprocal of the condition number of a
packed symmetric (Hermitian) positive-definite matrix.

Syntax
call sppcon uplo, n, ap, anorm, rcond, work, iwork, info
call dppcon uplo, n, ap, anorm, rcond, work, iwork, info

call cppcon uplo, n, ap, anorm, rcond, work, rwork, info

—~ o~ o~ o~
—_ — = o~

call zppcon uplo, n, ap, anorm, rcond, work, rwork, info

Description

This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian)
positive-definite matrix A:
K1 (A4) =||4||; |47"||; (since 4 is symmetric or Hermitian, K,.(4) = i;(4)).
Before calling this routine:
* compute anorm (either [|4||; = max; X;|a;| or ||]|., = max; X, |a;])
¢ call ?pptrf to compute the Cholesky factorization of 4.

3-65

3 Intel® Math Kernel Library Reference Manual

3-66

Input Parameters

uplo

n

ap, work

anorm

iwork

rwork

CHARACTER+*1. Mustbe 'U' or 'L'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array ap stores the upper triangular factor U of the
factorization 4 = U"U.

If uplo= 'L, the array ap stores the lower triangular factor L of the
factorization 4 = LL".

INTEGER. The order of the matrix 4 (n = 0).

REAL for sppcon

DOUBLE PRECISION for dppcon
COMPLEX for cppcon

DOUBLE COMPLEX for zppcon.
Arrays: ap (*), work (*).

The array ap contains the packed factored matrix 4, as returned by ?pptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cppcon
DOUBLE PRECISION for zppcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

LAPACK Routines: Linear Equations 3

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

?pbcon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrix.

Syntax

call spbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call dpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call cpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite band matrix 4:
Ki1(A4) =||4||; |47"||; (since 4 is symmetric or Hermitian, .., (4) = k;(4)).
Before calling this routine:
* compute anorm (either ||4||; = max; X; |a;] or ||4]|., = max; X, |a;])
¢ call ?pbtrf to compute the Cholesky factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array ab stores the upper triangular factor U of the

3-67

3 Intel® Math Kernel Library Reference Manual

Cholesky factorization 4 = U"U.
If uplo='L", the array ab stores the lower triangular factor L of the
factorization 4 = LL".

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix A4
(kd = 0).

ldab INTEGER. The first dimension of the array ab.
(1dab > kd +1).

ab, work REAL for spbcon

DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.

Arrays: ab(1dab, *), work (*).

The array ab contains the factored matrix 4 in band form, as returned by
?pbtrf.

The second dimension of ab must be at least max(1, n),

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbcon
DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

3-68

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

?ptcon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite tridiagonal
matrix.

Syntax

call sptcon (n, d, e, anorm, rcond, work, info)
call dptcon (n, d, e, anorm, rcond, work, info)
call cptcon (n, d, e, anorm, rcond, work, info)
call zptcon (n, d, e, anorm, rcond, work, info)

Description

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric
or complex Hermitian positive-definite tridiagonal matrix using the factorization 4 = LDL" or A4
= UHDUcomputed by ?pttrf:

Ki1(A4) = ||4||; |47"||; (since 4 is symmetric or Hermitian, k.., (4) = k;(4)).
The norm ||47!|| is computed by a direct method, and the reciprocal of the condition number is
computed as rcond=1/(||4|| |47
Before calling this routine:

* compute anorm as ||4||; = max; X;|a;

® call ?pttrf to compute the factorization of 4.

3-69

3 Intel® Math Kernel Library Reference Manual

3-70

Input Parameters

n
d, work

anorm

INTEGER. The order of the matrix 4 (n = 0).

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.

Arrays, dimension (n).

The array d contains the n diagonal elements of the diagonal matrix D from the
factorization of 4, as computed by ?pttrf ;

work is a workspace array.

REAL for sptcon

DOUBLE PRECISION for dptcon

COMPLEX for cptcon

DOUBLE COMPLEX for zptcon.

Array, DIMENSION (n-1).

Contains off-diagonal elements of the unit bidiagonal factor U or L from the
factorization computed by ?pttrf .

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1- norm of the original matrix A (see Description).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

LAPACK Routines: Linear Equations 3

?sycon

Estimates the reciprocal of the condition number of a
symmetric matrix.

Syntax

call ssycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

(

call dsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call csycon (
(

call zsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a symmetric matrix 4:
Ki1(A4) =||4||; |47"]|; (since 4 is symmetric, K..,(4) = k;(4)).

Before calling this routine:
* compute anorm (either ||4||, = max; 2; |a;] or ||4]|., = max; 2, |a;])
® call ?sytrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = PUDU'PT.
If uplo= 'L, the array a stores the lower triangular factor L of the
factorization 4 = PLDLTPT.

n INTEGER. The order of matrix 4 (n = 0).

a, work REAL for ssycon
DOUBLE PRECISION for dsycon
COMPLEX for csycon
DOUBLE COMPLEX for zsycon.
Arrays: a(1da, *), work (*).

The array a contains the factored matrix A4, as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

The array work is a workspace for the routine.

3-71

3 Intel® Math Kernel Library Reference Manual

3-72

lda

ipiv

anorm

iwork

rwork

The dimension of work must be at least max(1, 2*n).
INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sytrf.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for csycon
DOUBLE PRECISION for zsycon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8z for complex flavors.

LAPACK Routines: Linear Equations 3

?hecon

Estimates the reciprocal of the condition number of a
Hermitian matrix.

Syntax
call checon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zhecon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Description
This routine estimates the reciprocal of the condition number of a Hermitian matrix 4:
Ki(A) =||4||; ||47Y|; (since 4 is Hermitian, K.(4) = K,(4)).

Before calling this routine:
* compute anorm (either [|4|]; = max; X;|a;| or ||]|., = max; X, |a;])
® call ?hetrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array a stores the upper triangular factor U of the
factorization 4 = PUDUPT.

If uplo= 'L, the array a stores the lower triangular factor L of the
factorization 4 = PLDL"PT.

n INTEGER. The order of matrix A (n=0).

a, work COMPLEX for checon
DOUBLE COMPLEX for zhecon.
Arrays: a(1da, *), work (*).

The array a contains the factored matrix 4, as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

3-73

3 Intel® Math Kernel Library Reference Manual

ipiv

anorm

rwork

INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hetrf.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

REAL for checon
DOUBLE PRECISION for zhecon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n”
floating-point operations.

?spcon

Estimates the reciprocal of the condition number of a

packed symmetric matrix.

3-74

Syntax

call sspcon

(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

LAPACK Routines: Linear Equations 3

call dspcon (uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)
call cspcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

call zspcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a packed symmetric matrix 4:
Ki(A) = ||4||; ||47Y]|; (since 4 is symmetric, K.(4) = K;(4)).

Before calling this routine:
* compute anorm (either ||4||; = max; %; |a;] or ||4]|., = max; X, |a;])
® call ?sptrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array ap stores the packed upper triangular factor U of the
factorization 4 = PUDU'PT.
If uplo= 'L, the array ap stores the packed lower triangular factor L of the
factorization 4 = PLDLTPT.

n INTEGER. The order of matrix A (n=0).

ap, work REAL for sspcon
DOUBLE PRECISION for dspcon
COMPLEX for cspcon
DOUBLE COMPLEX for zspcon.
Arrays: ap (*), work (*).

The array ap contains the packed factored matrix 4, as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

3-75

3 Intel® Math Kernel Library Reference Manual

iwork

rwork

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cspcon
DOUBLE PRECISION for zspcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors and 8n? for complex flavors.

?hpcon

Estimates the reciprocal of the condition number of a

packed Hermitian matrix.

3-76

Syntax
call chpcon

call zhpcon

(
(

uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

LAPACK Routines: Linear Equations 3

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix 4:
Ki1(A4) =||4||; ||47Y|; (since 4 is Hermitian, K.(4) = «;(4)).

Before calling this routine:

* compute anorm (either ||4||; = max; 2; |a;] or ||4]|., = max; 2 |a;])

¢ call ?hptrf to compute the factorization of 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

If uplo='u", the array ap stores the packed upper triangular factor U of the
factorization 4 = PUDUTPT.

If uplo='L", the array ap stores the packed lower triangular factor L of the
factorization A = PLDLTPT.

n INTEGER. The order of matrix 4 (nn=0).

ap, work COMPLEX for chpcon
DOUBLE COMPLEX for zhpcon.
Arrays: ap (*), work (*).

The array ap contains the packed factored matrix 4, as returned by ?hptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

rwork REAL for chpcon
DOUBLE PRECISION for zhpcon.
Workspace array, DIMENSION at least max(1, n).

3-77

3 Intel® Math Kernel Library Reference Manual

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n”
floating-point operations.

?trcon

Estimates the reciprocal of the condition number of a
triangular matrix.

Syntax

call strcon (norm, uplo, diag, N, a, lda, rcond, work, iwork, info)
call dtrcon (norm, uplo, diag, N, a, lda, rcond, work, iwork, info)
call ctrcon (norm, uplo, diag, N, a, lda, rcond, work, rwork, info)
call ztrcon (norm, uplo, diag, N, a, lda, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a triangular matrix 4 in either the
1-norm or infinity-norm:

K1 (A) = [[4]|1 47| = Keo(AT) = k(A7)

3-78

LAPACK Routines: Linear Equations 3

Keo () =]leo 147" |oo = 161 (47) = 16, (47 .

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I".
If norm='1" or '0', then the routine estimates K;(4).
If norm= "1, then the routine estimates K, (4).

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='uU", the array a stores the upper triangle of 4, other array elements
are not referenced.

If uplo= 'L, the array a stores the lower triangle of 4, other array elements
are not referenced.

diag CHARACTER+*1. Mustbe 'N' or 'U".
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array a.

n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for strcon
DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon
DOUBLE COMPLEX for ztrcon.
Arrays: a(lda,*), work (*).

The array a contains the matrix 4.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; 1da = max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctrcon
DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION at least max(1, n).

3-79

3 Intel® Math Kernel Library Reference Manual

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
n? floating-point operations for real flavors and 4n* operations for complex flavors.

?tpcon

Estimates the reciprocal of the condition number of a
packed triangular matrix.

Syntax

call stpcon (norm, uplo, diag, n, ap, rcond, work, iwork, info)
call dtpcon (norm, uplo, diag, n, ap, rcond, work, iwork, info)
call ctpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info)

call ztpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a packed triangular matrix 4 in
either the 1-norm or infinity-norm:

Ki(d) = A1 l47l = KeoldT) = k(A"
Koo (A) = [|]|eo [l |oo = 161 (A7) = 16, (47) .

3-80

LAPACK Routines: Linear Equations 3

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I".
If norm='1" or '0', then the routine estimates «;(4).
If norm= "1, then the routine estimates K, (4).

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='uU", the array ap stores the upper triangle of 4 in packed form.

If uplo='L", the array ap stores the lower triangle of 4 in packed form.
diag CHARACTER*1. Mustbe 'N' or 'U".

If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ap.

n INTEGER. The order of the matrix 4 (n = 0).

ap, work REAL for stpcon
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
Arrays: ap (*), work (*).

The array ap contains the packed matrix A.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctpcon
DOUBLE PRECISION for ztpcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working

3-81

3 Intel® Math Kernel Library Reference Manual

precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
n? floating-point operations for real flavors and 4n* operations for complex flavors.

?tbcon

Estimates the reciprocal of the condition number of a
triangular band matrix.

Syntax
call stbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info

norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info

()
call dtbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)
call ctbcon ()

()

call ztbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info

Description

This routine estimates the reciprocal of the condition number of a triangular band matrix 4 in
either the I-norm or infinity-norm:

Ki(d) = A1 l47l = Kool dT) = k(4"
Koo (4) = [|4]|eo [} |oo = 11 (A7) = 1, (47) .

Input Parameters

norm CHARACTER*1. Mustbe '1' or 'O' or 'I".
If norm='1" or 'O, then the routine estimates «;(4).
If norm= '1', then the routine estimates K., (4).

3-82

LAPACK Routines: Linear Equations 3

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:
If uplo='U", the array ap stores the upper triangle of 4 in packed form.
If uplo= 'L, the array ap stores the lower triangle of 4 in packed form.

diag CHARACTER*1. Mustbe 'N' or 'U"'.
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then 4 is unit triangular: diagonal elements are assumed to be 1
and not referenced in the array ab.

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

ab, work REAL for stbcon

DOUBLE PRECISION for dtbcon
COMPLEX for ctbcon

DOUBLE COMPLEX for ztbcon.
Arrays: ab(1dab, *), work (*).

The array ab contains the band matrix 4.

The second dimension of ab must be at least max(1,n)).

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of the array ab.
(1dab = kd +1).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbcon
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
=0 if the estimate underflows; in this case the matrix is singular (to working

3-83

3 Intel® Math Kernel Library Reference Manual

precision). However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than p (the reciprocal of the true condition number) and in
practice is nearly always less than 10p. A call

to this routine involves solving a number of systems of linear equations

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n(kd + 1) floating-point operations for real flavors and 8n(kd + 1) operations for complex
flavors.

Refining the Solution and Estimating Its Error

This section describes the LAPACK routines for refining the computed solution of a system of
linear equations and estimating the solution error. You can call these routines after factorizing the
matrix of the system of equations and computing the solution (see Routines for Matrix
Factorization and Routines for Solving Systems of Linear Equations).

?gerfs

Refines the solution of a system of linear equations with
a general matrix and estimates its error.

3-84

Syntax

call sgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, 1dx,
ferr, berr, work, iwork, info)

call dgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx,
ferr, berr, work, iwork, info)

call cgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, 1dx,
ferr, berr, work, rwork, info)

call zgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx,
ferr, berr, work, rwork, info)

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
or ATX= B or A X = B with a general matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag| < B |agl, 18b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xel|oo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?getrf
® call the solver routine ?getrs.

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form 4X = B.
If trans = 'T', the system has the form A7X = B.
If trans='C', the system has the form 47X = B.

n INTEGER. The order of the matrix 4 (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
a,af,b,x,work REAL for sgerfs

DOUBLE PRECISION for dgerfs

COMPLEX for cgerfs
DOUBLE COMPLEX for zgerfs.

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?getrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?getrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

3-85

3 Intel® Math Kernel Library Reference Manual

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
lda INTEGER. The first dimension of a; 1da = max(1, n).
ldaf INTEGER. The first dimension of af; 1daf = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(l, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?getrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgerfs
DOUBLE PRECISION for zgerfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n’
floating-point operations (for real flavors) or 16n” operations (for complex flavors). In addition,
each step of iterative refinement involves 61> operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n? floating-point operations for real
flavors or 8n? for complex flavors.

3-86

LAPACK Routines: Linear Equations 3

?gbrfs

Refines the solution of a system of linear equations with
a general band matrix and estimates its error.

Syntax

call sgbrfs (trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1db,
x, 1ldx, ferr, berr, work, iwork, info)

call dgbrfs (trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1ldb,
x, 1ldx, ferr, berr, work, iwork, info)

call cgbrfs (trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1db,
x, 1ldx, ferr, berr, work, rwork, info)

call zgbrfs (trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, 1ldb,
x, 1ldx, ferr, berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
or ATX = B or A”X = B with a band matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error . This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|5alj|/|alj| < B |al-j|, |6bl|/|bl| < B |bl| such that (A + SA)X = (b + Sb)

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?gbtrf

¢ call the solver routine ?gbtrs.

3-87

3 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N"', the system has the form 4AX = B.
If trans='T', the system has the form 47X = B.
If trans = 'C', the system has the form Afx=B.

n INTEGER. The order of the matrix 4 (n = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
nrhs INTEGER. The number of right-hand sides (nrhs > 0).

ab,afb,b, x, work REAL for sgbrfs
DOUBLE PRECISION for dgbrfs
COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.

Arrays:

ab(ldab, *) contains the original band matrix 4, as supplied to 2gbtrf, but
stored in rows from 1 to k1 + ku+ 1.

arfb(ldafb,*) contains the factored band matrix A4, as returned by 2gbtrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
ldab INTEGER. The first dimension of ab.
ldafb INTEGER. The first dimension of afb .
1db INTEGER. The first dimension of b; 1db = max(1, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

3-88

LAPACK Routines: Linear Equations 3

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgbrfs
DOUBLE PRECISION for zgbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n(k1 + ku)
floating-point operations (for real flavors) or 16n(k1 + ku) operations (for complex flavors). In
addition, each step of iterative refinement involves 2n(4k1 + 3ku) operations (for real flavors) or
8n(4k1 + 3ku) operations (for complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 2n?
floating-point operations for real flavors or 8n? for complex flavors.

?gtrfs

Refines the solution of a system of linear equations with
a tridiagonal matrix and estimates its error.

Syntax

call sgtrfs (trans, n, nrhs, dl1, d, du, dlf, df, duf, du2, ipiv, b, 1db,
x, ldx, ferr, berr, work, iwork, info)

3-89

3 Intel® Math Kernel Library Reference Manual

3-90

call dgtrfs (trans, n, nrhs, dl1, d, du, dlf, df, duf, du2, ipiv, b, 1db,
x, 1ldx, ferr, berr, work, iwork, info)

call cgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, 1db,
x, 1ldx, ferr, berr, work, rwork, info)

call zgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, 1db,
x, 1ldx, ferr, berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
or ATX = B or AX = B with a tridiagonal matrix 4, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error B. This
error is the smallest relative perturbation in elements of 4 and b such that x is the exact solution of
the perturbed system:

18a/lag| < B lagl, 8b/b] < B |b] such that (4 + 8A)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?gttrf
¢ call the solver routine ?gttrs.

Input Parameters

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form 4AX = B.
If trans = 'T', the system has the form A7X = B.
If trans='c', the system has the form 47X = B.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides , i.e., the number of columns of the
matrix B (nrhs = 0).

dl,d,du,dlf,df,

duf,du2,b, x, work REAL for sgtrfs
DOUBLE PRECISION for dgtrfs
COMPLEX for cgtrfs
DOUBLE COMPLEX for zgtrfs.

Arrays:
di, dimension (n- 1), contains the subdiagonal elements of 4.

LAPACK Routines: Linear Equations 3

1db
1dx

ipiv

iwork

rwork

d, dimension (n), contains the diagonal elements of 4.
du, dimension (n - 1), contains the superdiagonal elements of 4.

d1f, dimension (n- 1), contains the (zz- 1) multipliers that define the matrix
L from the LU factorization of A as computed by >gttrf.

df, dimension (n), contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

duf, dimension (n- 1), contains the (n- 1) elements of the first
super-diagonal of U.

du2, dimension (n-2), contains the (n-2) elements of the second
super-diagonal of U.

b(1db,nrhs) contains the right-hand side matrix B.

x(1dx,nrhs) contains the solution matrix X, as computed by ?>gttrs.
work (*) is a workspace array;

the dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; 1db = max(1, n).
INTEGER. The first dimension of x; 1dx > max(1, n).
INTEGER.

Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gttrt.

INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.

REAL for cgtrfs
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

X
ferr, berr

info

The refined solution matrix X.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
INTEGER.

If info =0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

3-91

3 Intel® Math Kernel Library Reference Manual

?porfs

Refines the solution of a system of linear equations with
a symmetric (Hermitian) positive-definite matrix and
estimates its error.

Syntax

call sporfs (uplo, n, nrhs, a, lda, af, ldaf, b, 1ldb, x, 1ldx, ferr, berr,
work, iwork, info)

call dporfs (uplo, n, nrhs, a, lda, af, ldaf, b, 1db, x, 1ldx, ferr, berr,
work, iwork, info)

call cporfs (uplo, n, nrhs, a, lda, af, ldaf, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

call zporfs (uplo, n, nrhs, a, lda, af, ldaf, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error B. This
error is the smallest relative perturbation in elements of 4 and b such that x is the exact solution of
the perturbed system:

|8al/|ag| < B |agl, |8b:/|b;] < B |by] such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

® call the factorization routine ?potrf
¢ call the solver routine ?potrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:

3-92

LAPACK Routines: Linear Equations 3

n

nrhs

a,af,b,x,work

lda
ldaf
1db
1dx

iwork

rwork

If uplo='U", the array af stores the factor U of the Cholesky factorization 4
= Ufu.

Ifuplo= 'L, the array af stores the factor L of the Cholesky factorization 4
=L,

INTEGER. The order of the matrix 4 (n = 0).

INTEGER. The number of right-hand sides (nrhs = 0).

REAL for sporfs

DOUBLE PRECISION for dporfs

COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?potrf.

af(ldaf,*) contains the factored matrix A4, as returned by ?potrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work

must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex
flavors.

INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of af; 1daf = max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).
INTEGER. The first dimension of x; 1dx > max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cporfs
DOUBLE PRECISION for zporfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

The refined solution matrix X.

3-93

3 Intel® Math Kernel Library Reference Manual

ferr, berr

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise

forward and backward errors, respectively, for each solution vector.

info INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the

actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n’

floating-point operations (for real flavors) or 16n” operations (for complex flavors). In addition,
each step of iterative refinement involves 61> operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n? floating-point operations for real

flavors or 8n? for complex flavors.

?pprfs

Refines the solution of a system of linear equations with
a packed symmetric (Hermitian) positive-definite

matrix and estimates its error.

Syntax

call spprfs (uplo, n, nrhs,
iwork, info)

call dpprfs (uplo, n, nrhs,
iwork, info)

call cpprfs (uplo, n, nrhs,
rwork, info)

call zpprfs (uplo, n, nrhs,
rwork, info)

3-94

ap,

ap/

ap,

ap/

afp,

afp,

afp,

afp,

1db,

1db,

1db,

1db,

1dx,

1dx,

1dx,

1dx,

ferr,

ferr,

ferr,

ferr,

berr,

berr,

berr,

berr,

work,

work,

work,

work,

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a packed symmetric (Hermitian) positive definite matrix 4, with multiple right-hand sides.
For each computed solution vector x, the routine computes the component-wise backward error 3.
This error is the smallest relative perturbation in elements of 4 and b such that x is the exact
solution of the perturbed system:

|al/|ag| < B |agl, |8b;/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?pptrf
¢ call the solver routine ?pptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array afp stores the packed factor U of the Cholesky
factorization 4 = U'U.
If uplo="'L", the array afp stores the packed factor L of the Cholesky
factorization 4 = LL".

n INTEGER. The order of the matrix 4 (n = 0).
nrhs INTEGER. The number of right-hand sides (nrhs = 0).
ap,afp,b,x, work REAL for sppris

DOUBLE PRECISION for dpprfs

COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.

Arrays:

ap (*) contains the original packed matrix 4, as supplied to ?pptrf.
afp (*) contains the factored packed matrix A4, as returned by ?pptrf£.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

3-95

3 Intel® Math Kernel Library Reference Manual

3-96

1db
1dx

iwork

rwork

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of b; 1db =max(1, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for cpprfs
DOUBLE PRECISION for zpprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X
ferr, berr

info

The refined solution matrix X.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the

actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n?
floating-point operations (for real flavors) or 16n° operations (for complex flavors). In addition,
each step of iterative refinement involves 60 operations (for real flavors) or 24n° operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors or 8n? for complex flavors.

LAPACK Routines: Linear Equations 3

?pbrfs

Refines the solution of a system of linear equations with
a band symmetric (Hermitian) positive-definite matrix
and estimates its error.

Syntax

call spbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1db, x, 1ldx,
ferr, berr, work, iwork, info)

call dpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1db, x, 1ldx,
ferr, berr, work, iwork, info)

call cpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1db, x, 1ldx,
ferr, berr, work, rwork, info)

call zpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, 1db, x, 1ldx,
ferr, berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error 3.
This error is the smallest relative perturbation in elements of 4 and b such that x is the exact
solution of the perturbed system:

18a/lag| < B lagl, 18b/b < B |b] such that (4 + 8A)x = (b + 5b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

¢ call the factorization routine ?pbtrf

¢ call the solver routine ?pbtrs.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L".
Indicates how the input matrix 4 has been factored:

3-97

3 Intel® Math Kernel Library Reference Manual

If uplo='uU", the array afb stores the factor U of the Cholesky factorization

4=U".
If uplo='L", the array afrb stores the factor L of the Cholesky factorization
A=LL".

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

nrhs INTEGER. The number of right-hand sides (nrhs 2 0).

ab,afb,b,x, work REAL for spbrfs
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.

Arrays:

ab(ldab, *) contains the original band matrix 4, as supplied to ?pbtrf.
arfb(ldafb,*) contains the factored band matrix A4, as returned by ?pbtrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the second

dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
ldab INTEGER. The first dimension of ab; 1dab > kd + 1.
ldafb INTEGER. The first dimension of afb; 1dafb = kd+ 1.
1db INTEGER. The first dimension of b; 1db = max(1, n).
ldx INTEGER. The first dimension of x; 1dx > max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbrfs
DOUBLE PRECISION for zpbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

3-98

LAPACK Routines: Linear Equations 3

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 8n* kd
floating-point operations (for real flavors) or 32n* kd operations (for complex flavors). In
addition, each step of iterative refinement involves 12n* kd operations (for real flavors) or 48n* kd
operations (for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 4n* kd
floating-point operations for real flavors or 16n* kd for complex flavors.

?ptrfs

Refines the solution of a system of linear equations with
a symmetric (Hermitian) positive-definite tridiagonal
matrix and estimates its error.

Syntax

call sptrfs (n, nrhs, d, e, df, ef, b, 1db, x, ldx, ferr, berr, work,
info)

call dptrfs (n, nrhs, d, e, df, ef, b, 1db, x, ldx, ferr, berr, work,
info)

call cptrfs (uplo, n, nrhs, d, e, df, ef, b, 1ldb, x, 1ldx, ferr, berr,
work, rwork, info)

call cptrfs (uplo, n, nrhs, d, e, df, ef, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

3-99

3 Intel® Math Kernel Library Reference Manual

3-100

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric (Hermitian) positive definite tridiagonal matrix 4, with multiple right-hand
sides. For each computed solution vector x, the routine computes the component-wise backward
error B. This error is the smallest relative perturbation in elements of 4 and b such that x is the
exact solution of the perturbed system:

|0al/|ag| < B |agl, |8b:{/|b;] < B |b;] such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?pttrf
¢ call the solver routine ?pttrs.

Input Parameters
uplo CHARACTER=*1. Used for complex flavors only.
Mustbe 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal

matrix A is stored and how 4 is factored:
If uplo='u", the array e stores the superdiagonal of 4, and 4 is factored as

UADU;
If uplo= 'L, the array e stores the subdiagonal of 4, and A is factored as
LDL.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

d, df, rwork REAL for single precision flavors

DOUBLE PRECISION for double precision flavors

Arrays: d(n),df(n), rwork(n).

The array d contains the n diagonal elements of the tridiagonal matrix A.

The array df contains the n diagonal elements of the diagonal matrix D from

the factorization of A as computed by ?pttrf.

The array rwork is a workspace array used for complex flavors only.
e,ef,b,x,work REAL for sptrfs

DOUBLE PRECISION for dptrfs

COMPLEX for cptrfs

DOUBLE COMPLEX for zptrfs.

Arrays: e(n-1), ef(n-1), b(1db,nrhs), x(1dx,nrhs), work(*).

LAPACK Routines: Linear Equations 3

The array e contains the (n- 1) off-diagonal elements of the tridiagonal
matrix 4 (see uplo).

The array ef contains the (n- 1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ?pttrf (see uplo).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The array x contains the solution matrix X as computed by ?pttrs.

The array work is a workspace array. The dimension of work must be at least
2*n for real flavors, and at least n for complex flavors.

1db INTEGER. The leading dimension of b; 1db = max(1, n).
ldx INTEGER. The leading dimension of x; 1dx = max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

?syrfs

Refines the solution of a system of linear equations with
a symmetric matrix and estimates its error.

Syntax

call ssyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, ldx, ferr,
berr, work, iwork, info)

call dsyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr,
berr, work, iwork, info)

call csyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, ldx, ferr,
berr, work, rwork, 1info)

call zsyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr,
berr, work, rwork, info)

3-101

3 Intel® Math Kernel Library Reference Manual

Discussion

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a symmetric full-storage matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag| < B |agl, |8b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?sytrf
¢ call the solver routine ?sytrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array af stores the Bunch-Kaufman factorization 4 =

PUDU'PT.
If uplo="'L", the array af stores the Bunch-Kaufman factorization 4 =
PLDLTPT.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

a,af,b,x,work REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?sytrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?sytrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

3-102

LAPACK Routines: Linear Equations 3

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex

flavors.
lda INTEGER. The first dimension of a; 1da = max(1, n).
ldaf INTEGER. The first dimension of af; 1daf = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(l, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?sytrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n”
floating-point operations (for real flavors) or 16n” operations (for complex flavors). In addition,
each step of iterative refinement involves 61> operations (for real flavors) or 24n” operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n? floating-point operations for real
flavors or 8n? for complex flavors.

3-103

3 Intel® Math Kernel Library Reference Manual

?herfs

Refines the solution of a system of linear equations with
a complex Hermitian matrix and estimates its error.

3-104

Syntax

call cherfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx, ferr,
berr, work, rwork, info)

call zherfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, ldx, ferr,
berr, work, rwork, 1info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a complex Hermitian full-storage matrix 4, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error B. This
error is the smallest relative perturbation in elements of 4 and b such that x is the exact solution of
the perturbed system:

|al/|ai] < B |agl, 18b:/|b;] < B |by] such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

e call the factorization routine ?hetrf
® call the solver routine ?hetrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array af stores the Bunch-Kaufman factorization 4 =

PUDUHPT,
If uplo='L", the array af stores the Bunch-Kaufman factorization 4 =
PLDLHPT,

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs > 0).

a,af,b,x,work COMPLEX for cherfs
DOUBLE COMPLEX for zherfs.

LAPACK Routines: Linear Equations 3

Arrays:

a(lda,*) contains the original matrix 4, as supplied

to ?hetrf.

af (ldaf,*) contains the factored matrix A4, as returned by ?hetrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second

dimension of b and x must be at least max(1,nrhs); the dimension of work
must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; 1da = max(1, n).
ldaf INTEGER. The first dimension of af; I1daf = max(1, n).
1db INTEGER. The first dimension of b; 1db = max(1, n).
1dx INTEGER. The first dimension of x; 1dx = max(1, n).
ipiv INTEGER.

Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?hetrf.

rwork REAL for cherfs
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for cherfs
DOUBLE PRECISION for zherfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

3-105

3 Intel® Math Kernel Library Reference Manual

For each right-hand side, computation of the backward error involves a minimum of 16n°
operations. In addition, each step of iterative refinement involves 24n° operations; the number of
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n?
floating-point operations.

The real counterpart of this routine is ssyrfs /dsyrfs.

?sprfs

Refines the solution of a system of linear equations with
a packed symmetric matrix and estimates the solution
error.

Syntax

call ssprfs (uplo, n, nrhs, ap, afp, ipiv, b, 1ldb, x, 1ldx, ferr, berr,
work, iwork, info)

call dsprfs (uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr,
work, iwork, info)

call csprfs (uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

call zsprfs (uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a packed symmetric matrix 4, with multiple right-hand sides. For each computed solution
vector x, the routine computes the component-wise backward error B. This error is the smallest
relative perturbation in elements of 4 and b such that x is the exact solution of the perturbed
system:

|al/|ai] < B |agl, |8b:/|b;] < B |by] such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution |jx —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine:

3-106

LAPACK Routines: Linear Equations 3

¢ call the factorization routine ?sptrf
¢ call the solver routine ?sptrs.

Input Parameters

uplo

n

nrhs

ap,afp,b, x, work

1db

1dx

ipiv

iwork

rwork

CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates how the input matrix 4 has been factored:

If uplo='u", the array afp stores the packed Bunch-Kaufman factorization
A =PUDUTPT.

If uplo='L", the array afp stores the packed Bunch-Kaufman factorization
A =PLDLPT.

INTEGER. The order of the matrix 4 (n = 0).

INTEGER. The number of right-hand sides (nrhs 2 0).

REAL for ssprfs

DOUBLE PRECISION for dsprfs

COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.

Arrays:

ap (*) contains the original packed matrix 4, as supplied to ?sptrf.

afp (*) contains the factored packed matrix A4, as returned by ?sptrf.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b and x must be at least max(1,nrhs); the dimension of

work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of b; 1db = max(l, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for csprfs
DOUBLE PRECISION for zsprfs
Workspace array, DIMENSION at least max(1, n).

3-107

3 Intel® Math Kernel Library Reference Manual

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n?
floating-point operations (for real flavors) or 16n° operations (for complex flavors). In addition,
each step of iterative refinement involves 61 operations (for real flavors) or 24n° operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately
2n? floating-point operations for real flavors or 8n* for complex flavors.

?hprfs

Refines the solution of a system of linear equations with
a packed complex Hermitian matrix and estimates the
solution error.

3-108

Syntax

call chprfs (uplo, n, nrhs, ap, afp, ipiv, b, 1ldb, x, ldx, ferr, berr,
work, rwork, info)

call zhprfs (uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, ldx, ferr, berr,
work, rwork, info)

LAPACK Routines: Linear Equations 3

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX =B
with a packed complex Hermitian matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error . This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag] < B |agl, |8b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

Finally, the routine estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).
Before calling this routine:

¢ call the factorization routine ?hptrf
¢ call the solver routine ?hptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array afp stores the packed Bunch-Kaufman factorization

A = PUDU"PT.
If uplo='L", the array afp stores the packed Bunch-Kaufman factorization
A = PLDLYPT,

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs = 0).

ap,afp, b, x, work COMPLEX for chprfs
DOUBLE COMPLEX for zhprfs.

Arrays:

ap (*) contains the original packed matrix 4, as supplied to ?hptrf.

afp (*) contains the factored packed matrix A4, as returned by ?hptrf£.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the

second dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 2*n).

1db INTEGER. The first dimension of b; 1db =max(1, n).

3-109

3 Intel® Math Kernel Library Reference Manual

3-110

1dx INTEGER. The first dimension of x; 1dx = max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

rwork REAL for chprfs
DOUBLE PRECISION for zhprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.
ferr, berr REAL for chprfs.
DOUBLE PRECISION for zhprfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 16°
operations. In addition, each step of iterative refinement involves 24n? operations; the number of
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n?
floating-point operations.

The real counterpart of this routine is ssprfs / dsprfs.

LAPACK Routines: Linear Equations 3

?trrfs

Estimates the error in the solution of

a system of linear equations with a triangular matrix.

Syntax

call strrfs (uplo, trans, diag, n, nrhs, a, lda, b, 1db, x, 1ldx, ferr,
berr, work, iwork, info)

call dtrrfs (uplo, trans, diag, n, nrhs, a, lda, b, 1ldb, x, 1ldx, ferr,
berr, work, iwork, 1info)

call ctrrfs (uplo, trans, diag, n, nrhs, a, lda, b, 1db, x, 1ldx, ferr,
berr, work, rwork, info)

call ztrrfs (uplo, trans, diag, n, nrhs, a, lda, b, 1ldb, x, 1ldx, ferr,
berr, work, rwork, 1info)

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or A7”X=B
or A”X = B with a triangular matrix 4, with multiple right-hand sides. For each computed solution
vector x, the routine computes the component-wise backward error B. This error is the smallest
relative perturbation in elements of 4 and b such that x is the exact solution of the perturbed
system:

|0al/|ai| < B |ag], 18b:/|b;] < B |by] such that (4 + 8A4)x = (b + 8b).

The routine also estimates the component-wise forward error in the computed solution ||x —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo='u", then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form 4AX = B.
If trans='T', the system has the form 47X = B.

3-111

3 Intel® Math Kernel Library Reference Manual

diag

nrhs

a, b/ X,

lda
1db
1dx

iwork

rwork

3-112

work

If trans = 'C', the system has the form Afx=B.
CHARACTER*1. Mustbe 'N' or 'U'.
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", then A4 is unit triangular: diagonal elements of 4 are assumed to
be 1 and not referenced in the array a.

INTEGER. The order of the matrix 4 (n = 0).
INTEGER. The number of right-hand sides (nrhs = 0).

REAL for strrfs

DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs

DOUBLE COMPLEX for ztrrfs.

Arrays:

a(lda,*) contains the upper or lower triangular matrix 4, as specified by
uplo.

b(1db, *) contains the right-hand side matrix B.
x(1dx,*) contains the solution matrix X.
work (*) is a workspace array.

The second dimension of a must be at least max(1,n); the second dimension of
b and x must be at least max(1,nrhs); the dimension of work must be at least
max(1, 3*n) for real flavors and max(1, 2*n) for complex flavors.

INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of b; 1db = max(l, n).
INTEGER. The first dimension of x; 1dx > max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations 3

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately n” floating-point operations for real flavors or 4n* for complex flavors.

?tprfs

Estimates the error in the solution of
a system of linear equations with a packed triangular
matrix.

Syntax

call stprfs (uplo, trans, diag, n, nrhs, ap, b, 1db, x, ldx, ferr, berr,
work, iwork, info)

call dtprfs (uplo, trans, diag, n, nrhs, ap, b, 1ldb, x, ldx, ferr, berr,
work, iwork, info)

call ctprfs (uplo, trans, diag, n, nrhs, ap, b, 1db, x, 1ldx, ferr, berr,
work, rwork, info)

call ztprfs (uplo, trans, diag, n, nrhs, ap, b, 1ldb, x, ldx, ferr, berr,
work, rwork, info)

3-113

3 Intel® Math Kernel Library Reference Manual

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or A7X =B
or AX = B with a packed triangular matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ay| < B |ag], 18b;{/|b;] < B |b;| such that (4 + 8A4)x = (b + 8b).

The routine also estimates the component-wise forward error in the computed solution ||x —
Xel|oo/|I¥]|o (here x, is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether 4 is upper or lower triangular:

If uplo= U, then 4 is upper triangular.
If uplo='L", then 4 is lower triangular.
trans CHARACTER*1. Mustbe 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form 4X = B.
If trans = 'T', the system has the form A7X = B.
If trans='C', the system has the form 47X = B.
diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N', A isnot a unit triangular matrix.

If diag='u', A is unit triangular: diagonal elements of 4 are assumed to be
1 and not referenced in the array ap.

n INTEGER. The order of the matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides (nrhs > 0).

ap, b, x, workREAL for strrfs
DOUBLE PRECISION for dtrrfs

COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

Arrays:

ap (*) contains the upper or lower triangular matrix A4, as specified by uplo.
b(1db, *) contains the right-hand side matrix B.

x(1dx,*) contains the solution matrix X.

3-114

LAPACK Routines: Linear Equations 3

1db
1ldx

iwork

rwork

work (*) is a workspace array.

The dimension of ap must be at least max(1,n(n+1)/2);

the second dimension of b and x must be at least max(1,nrhs); the dimension
of work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

INTEGER. The first dimension of b; 1db = max(1, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the

actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately n” floating-point operations for real flavors or 4n* for complex flavors.

3-115

3 Intel® Math Kernel Library Reference Manual

?tbrfs

Estimates the error in the solution of
a system of linear equations with a triangular band
matrix.

Syntax

call stbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, x, 1ldx,
ferr, berr, work, iwork, info)

call dtbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, x, ldx,
ferr, berr, work, iwork, info)

call ctbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1ldb, x, 1ldx,
ferr, berr, work, rwork, info)

call ztbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, 1db, x, ldx,
ferr, berr, work, rwork, info)

Description

This routine estimates the errors in the solution to a system of linear equations AX =B or A7X =B
or A"X = B with a triangular band matrix 4, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error 3. This error is the
smallest relative perturbation in elements of 4 and b such that x is the exact solution of the
perturbed system:

|al/|ag] < B |agl, |8b:/|b;] < B |by] such that (4 + 8A4)x = (b + 8b).

The routine also estimates the component-wise forward error in the computed solution ||x —
Xelloo/|I¥]|o (here x, is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.

3-116

LAPACK Routines: Linear Equations 3

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether 4 is upper or lower triangular:

If uplo='uU", then 4 is upper triangular.
If uplo= 'L, then 4 is lower triangular.

trans CHARACTER*1. Mustbe 'N' or 'T' or 'C".
Indicates the form of the equations:
If trans = 'N', the system has the form 4AX = B.
If trans='T', the system has the form 47X = B.
If trans = 'C', the system has the form Afx=B.
diag CHARACTER*1. Mustbe 'N' or 'U'.
If diag= 'N"', 4 is not a unit triangular matrix.

If diag= 'U"', 4 is unit triangular: diagonal elements of 4 are assumed to be 1
and not referenced in the array ab.

n INTEGER. The order of the matrix 4 (n = 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

nrhs INTEGER. The number of right-hand sides (nrhs > 0).

ab, b, x, workREAL for stbrfs
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs
DOUBLE COMPLEX for ztbrfs.

Arrays:

ab(ldab,*) contains the upper or lower triangular matrix 4, as specified by
uplo, in band storage format.

b(1db, *) contains the right-hand side matrix B.
x(1dx,*) contains the solution matrix X.
work (*) is a workspace array.

The second dimension of a must be at least max(1,n);

the second dimension of b and x must be at least max(1,nrhs).

The dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of the array ab.
(1dab = kd +1).

3-117

3 Intel® Math Kernel Library Reference Manual

3-118

1db INTEGER. The first dimension of b; 1db = max(l, n).
ldx INTEGER. The first dimension of x; 1dx = max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbrfs
DOUBLE PRECISION for ztbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n* kd floating-point operations for real flavors or 8n* kd operations for
complex flavors.

LAPACK Routines: Linear Equations 3

Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix.

In particular, do not attempt to solve a system of equations Ax = b by first computing A7 and then
forming the matrix-vector product x = A~ '5.

Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more
efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse
matrix is needed.

?getri

Computes the inverse of an LU-factored general matrix.

Syntax
call sgetri (n, a, lda, ipiv, work, lwork, info

call dgetri (n, a, lda, ipiv, work, lwork, info

=D D

(
(

call cgetri (n, a, lda, ipiv, work, lwork, info
(

call zgetri (n, a, lda, ipiv, work, lwork, info

Description

This routine computes the inverse (47') of a general matrix 4.
Before calling this routine, call ?2getrf to factorize 4.

Input Parameters
n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for sgetri
DOUBLE PRECISION for dgetri
COMPLEX for cgetri
DOUBLE COMPLEX for zgetri.
Arrays: a(1da, *), work (1work).
a(lda, *) contains the factorization of the matrix 4, as returned by >getrf: 4
=PLU.
The second dimension of a must be at least max(1,n).

work (1work) is a workspace array.

3-119

3 Intel® Math Kernel Library Reference Manual

3-120

lda INTEGER. The first dimension of a; 1da = max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

lwork INTEGER. The size of the work array (1work 2 n)
See Application notes for the suggested value of Iwork.

Output Parameters

a Overwritten by the n by n matrix 4!

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance.
Use this Iwork for subsequent runs.

info INTEGER. If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of the factor U is zero, U is singular, and
the inversion could not be completed.

Application Notes

For better performance, try using 1work = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed inverse X satisfies the following error bound:

|XA- 1| < c(n)e x| P|L]|U]

where c(n) is a modest linear function of n; € is the machine precision;
1 denotes the identity matrix; P, L, and U are the factors of the matrix factorization 4 = PLU.

The total number of floating-point operations is approximately (4/3)n3 for real flavors and
(16/3)n> for complex flavors.

LAPACK Routines: Linear Equations 3

?potri

Computes the inverse of a symmetric (Hermitian)

positive-definite matrix.

Syntax

call spotri
call dpotri
call cpotri

call zpotri

Discussion

uplo, n, a, lda,

(

(uplo, n, a, lda,
(uplo, n, a, lda,
(

uplo, n, a, lda,

info)
info)
info)

info)

This routine computes the inverse (4~') of a symmetric positive definite or, for complex flavors,
Hermitian positive-definite matrix A4.

Before calling this routine, call ?potrf to factorize 4.

Input Parameters

uplo

1da

CHARACTER*1. Mustbe 'U' or 'L".

Indicates how the input matrix 4 has been factored:
If uplo='U", the array a stores the factor U of the Cholesky factorization 4 =

Utu.

If uplo= 'L, the array a stores the factor L of the Cholesky factorization 4 =

LLH.

INTEGER. The order of the matrix 4 (n = 0).

REAL for spotri

DOUBLE PRECISION for dpotri

COMPLEX for cpotri

DOUBLE COMPLEX for zpotri.

Array: a(1da, *).

Contains the factorization of the matrix A4, as returned by ?potrf.

The second dimension of a must be at least max(1,n).

INTEGER. The first dimension of a; 1da > max(1, n).

3-121

3 Intel® Math Kernel Library Reference Manual

Output Parameters
a Overwritten by the n by n matrix 4!

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky factor (and hence the
factor itself) is zero, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

|xA- 1, < c(n)ex, (), [|AX-1I],< c(n)ex,(A)

where ¢(n) is a modest linear function of n, and € is the machine precision;
I denotes the identity matrix.

The 2-norm ||4]|, of a matrix 4 is defined by ||4||, = max,..—1(4x - Ax)"2, and the condition
number Ky(A4) is defined by ky(4) = ||4||, [|[47Y| -

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n’
for complex flavors.

?pptri

Computes the inverse of a packed symmetric
(Hermitian) positive-definite matrix

Syntax

call spptri (uplo, n, ap, info)
call dpptri (uplo, n, ap, info)
call cpptri (uplo, n, ap, info)

3-122

LAPACK Routines: Linear Equations 3

call zpptri (uplo, n, ap, info)

Description

This routine computes the inverse (47') of a symmetric positive definite or, for complex flavors,
Hermitian positive-definite matrix 4 in packed form. Before calling this routine, call ?pptrf to
factorize A.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array ap stores the packed factor U of the Cholesky
factorization 4 = U"U.
If uplo='L", the array ap stores the packed factor L of the Cholesky
factorization 4 = LL".

n INTEGER. The order of the matrix 4 (n = 0).

ap REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSTION at least max(1,n(n+1)/2).

Contains the factorization of the packed matrix 4,
as returned by ?pptrf.

The dimension ap must be at least max(1,n(n+1)/2).

Output Parameters
ap Overwritten by the packed n by n matrix 47"

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of the Cholesky factor (and hence the
factor itself) is zero, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

|xA- 1, < c(n)ex, (), |AX-1I,< c(n)ex,(A)

3-123

3 Intel® Math Kernel Library Reference Manual

where ¢(n) is a modest linear function of n, and € is the machine precision;
I denotes the identity matrix.

The 2-norm ||4]|, of a matrix 4 is defined by ||4||, = max,..—1(4x - Ax)"2, and the condition
number Ky(4) is defined by «(4) = ||A||, ||47"]], -

The total number of floating-point operations is approximately (2/3)3 for real flavors and (8/3)n°
for complex flavors.

?sytri

Computes the inverse of a symmetric matrix.

Syntax

call ssytri (uplo, n, a, lda, ipiv, work, info)
call dsytri (uplo, n, a, lda, ipiv, work, info)
call csytri (uplo, n, a, lda, ipiv, work, info)
call zsytri (uplo, n, a, lda, ipiv, work, info)

Description

This routine computes the inverse (47') of a symmetric matrix 4.
Before calling this routine, call ?sytrf to factorize 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array a stores the Bunch-Kaufman factorization 4 =

PUDUTPT,
If uplo= 'L, the array a stores the Bunch-Kaufman factorization 4 =
PLDLTPT,

n INTEGER. The order of the matrix 4 (n = 0).

a, work REAL for ssytri

DOUBLE PRECISION for dsytri
COMPLEX for csytri

DOUBLE COMPLEX for zsytri.
Arrays:

3-124

LAPACK Routines: Linear Equations 3

a(lda,*) contains the factorization of the matrix 4,
as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

work (*) is a workspace array.
The dimension of work must be at least max(1,2*n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.
Output Parameters
a Overwritten by the n by n matrix 4.

info INTEGER.
If info =0, the execution is successful.
If info=-1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Application Notes
The computed inverse X satisfies the following error bounds:

DU P*xPU- I| < c(n)e (|D||U"| PT|xIP|Ul + |D||D'))
for uplo='U"', and

|IDL"P"xPL - 1| < c(n)e (|D||L7 PT|x] P|L| + |D||D7'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n>
for complex flavors.

3-125

3 Intel® Math Kernel Library Reference Manual

?hetri

Computes the inverse of a complex Hermitian matrix.

Syntax
call chetri (uplo, n, a, lda, ipiv, work, info)

call zhetri (uplo, n, a, lda, ipiv, work, info)

Description

This routine computes the inverse (47') of a complex Hermitian matrix A.
Before calling this routine, call ?hetrf to factorize 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='uU", the array a stores the Bunch-Kaufman factorization 4 =

PUDU"PT,
If uplo= 'L, the array a stores the Bunch-Kaufman factorization 4 =
PLDLYPT,
n INTEGER. The order of the matrix 4 (n = 0).
a, work COMPLEX for chetri
DOUBLE COMPLEX for zhetri.
Arrays:

a(lda,*) contains the factorization of the matrix A,
as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

work (*) is a workspace array.
The dimension of work must be at least max(1,n).

lda INTEGER. The first dimension of a; 1da = max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

3-126

LAPACK Routines: Linear Equations 3

Output Parameters
a Overwritten by the n by n matrix 4!

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Application Notes
The computed inverse X satisfies the following error bounds:

DU P xPU- 1| < c(n)e (|D||U" P'|x| P|Ul + |Dl|D7'])
for uplo='U"', and

|IDL"P"xPL - 1| < c(n)e (|D|| L7 P7|x P|L| + |D||D7'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n’
for complex flavors.

The real counterpart of this routine is ?sytri.

?sptri

Computes the inverse of a symmetric matrix using
packed storage.

Syntax

call ssptri (uplo, n, ap, ipiv, work, info)
call dsptri (uplo, n, ap, ipiv, work, info)
call csptri (uplo, n, ap, ipiv, work, info)

call zsptri (uplo, n, ap, ipiv, work, info)

3-127

3 Intel® Math Kernel Library Reference Manual

Description

This routine computes the inverse (47') of a packed symmetric matrix A.
Before calling this routine, call ?sptrf to factorize 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo='u", the array ap stores the Bunch-Kaufman factorization 4 =

PUDUTPT,
If uplo= 'L, the array ap stores the Bunch-Kaufman factorization 4 =
PLDLTPT.

n INTEGER. The order of the matrix 4 (n = 0).

ap, work REAL for ssptri

DOUBLE PRECISION for dsptri
COMPLEX for csptri

DOUBLE COMPLEX for zsptri.
Arrays:

ap (*) contains the factorization of the matrix 4,
as returned by ?sptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).

work (*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

Output Parameters

ap Overwritten by the n by n matrix 4~! in packed form.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

3-128

LAPACK Routines: Linear Equations 3

Application Notes
The computed inverse X satisfies the following error bounds:

IDU'P"XPU- I| < c(n)e (|D||U7 PY|x| Plt + |D||D7'])
for uplo='U", and

|IDL*P*XPL - 1| < c(n)e (|D||L7 P*|x P|L| + |D||D7'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n’
for complex flavors.

?hptri

Computes the inverse of a complex Hermitian matrix
using packed storage.

Syntax
call chptri (uplo, n, ap, ipiv, work, info)

call zhptri (uplo, n, ap, ipiv, work, info)

Description

This routine computes the inverse (47') of a complex Hermitian matrix 4 using packed storage.
Before calling this routine, call ?hptrf to factorize 4.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates how the input matrix 4 has been factored:
If uplo= 'U", the array ap stores the packed Bunch-Kaufman factorization 4
= PUDU"PT,
If uplo="'L", the array ap stores the packed Bunch-Kaufman factorization 4
= PLDL"PT,

n INTEGER. The order of the matrix 4 (n = 0).

3-129

3 Intel® Math Kernel Library Reference Manual

ap, work COMPLEX for chptri
DOUBLE COMPLEX for zhptri.
Arrays:

ap (*) contains the factorization of the matrix A4,
as returned by ?hptrf.
The dimension of ap must be at least max(1,n(nt+1)/2).

work (*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSTION at least max(1,n).
The ipiv array, as returned by ?hptrf.
Output Parameters
ap Overwritten by the n by n matrix 4!

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Application Notes
The computed inverse X satisfies the following error bounds:

DU P xPU- 1| < c(n)e (|D||U" P\ x| P|Ul + |Dl|D7'])
for uplo='U"', and

|IDL"P"XPL - 1| < c(n)e (|D|| L7 P7|x] P|L| + |D||D'])

for uplo= 'L'. Here c(n) is a modest linear function of n, and € is the machine precision; /
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n> for real flavors and (8/3)n’
for complex flavors.

The real counterpart of this routine is ?sptri.

3-130

LAPACK Routines: Linear Equations 3

?trtri

Computes the inverse of a triangular matrix.

Syntax

call
call
call
call

strtri
dtrtri
ctrtri

ztrtri

Description

(uplo, diag, n, a,
(uplo, diag, n, a,
(uplo, diag, n, a,

(uplo, diag, n, a,

lda,
lda,
I1da,
lda,

info)
info)
info)

info)

This routine computes the inverse (47') of a triangular matrix A.

Input Parameters

uplo

diag

lda

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether 4 is upper or lower triangular:

If uplo='u", then 4 is upper triangular.
If uplo= 'L, then 4 is lower triangular.

CHARACTER*1. Mustbe 'N' or 'U'.

If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U", A4 is unit triangular: diagonal elements of 4 are assumed to be 1
and not referenced in the array a.

INTEGER. The order of the matrix 4 (n = 0).

REAL for strtri

DOUBLE PRECISION for dtrtri

COMPLEX for ctrtri

DOUBLE COMPLEX for ztrtri.

Array: DIMENSION (lda,*).

Contains the matrix 4.

The second dimension of a must be at least max(1,n).

INTEGER. The first dimension of a; 1da = max(1, n).

3-131

3 Intel® Math Kernel Library Reference Manual

Output Parameters
a Overwritten by the n by n matrix 4!

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A4 is zero, A4 is singular, and the
inversion could not be completed.

Application Notes
The computed inverse X satisfies the following error bounds:
|xA- 1| < c(n)e|x]|4]
x-2a7[< e(n)ela’|allx]

where c(n) is a modest linear function of n; € is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n> for real flavors and (4/3)n’
for complex flavors.

?tptri

Computes the inverse of a triangular matrix using
packed storage.

Syntax
call stptri (uplo, diag, n, ap, info
call dtptri (uplo, diag, n, ap, info

call ctptri (uplo, diag, n, ap, info

—~ o~ o~~~
R

call ztptri (uplo, diag, n, ap, info

Description

This routine computes the inverse (47') of a packed triangular matrix A4.

3-132

LAPACK Routines: Linear Equations 3

Input Parameters
uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether 4 is upper or lower triangular:
If uplo='uU", then 4 is upper triangular.
If uplo= 'L, then 4 is lower triangular.
diag CHARACTER*1. Mustbe 'N' or 'U".
If diag= 'N", then 4 is not a unit triangular matrix.

If diag= 'U"', 4 is unit triangular: diagonal elements of 4 are assumed to be 1
and not referenced in the array ap.

n INTEGER. The order of the matrix 4 (n = 0).

ap REAL for stptri
DOUBLE PRECISION for dtptri
COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.

Array: DIMENSION at least max(1,n(n+1)/2).
Contains the packed triangular matrix A4.

Output Parameters
ap Overwritten by the packed n by n matrix 47"

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A4 is zero, A4 is singular, and the
inversion could not be completed.

Application Notes
The computed inverse X satisfies the following error bounds:
|xa- 1| < c(n)e|x]|Al
[x-a"|< c(n)ela’llal|x]

where c(n) is a modest linear function of n; € is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3

for complex flavors.

3-133

3 Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a
matrix. Note that these routines do not actually scale the matrices.

?geequ

Computes row and column scaling factors intended to
equilibrate a matrix and reduce its condition number.

Syntax

call sgeequ
call dgeequ
call cgeequ

call zgeequ

Description

(m, n, a, lda, r, c¢, rowcnd, colcnd, amax, info)
(m, n, a, 1lda, r, c¢, rowcnd, colcnd, amax, 1info)
(m, n, a, lda, r, c¢, rowcnd, colcnd, amax, info)

(m, n, a, 1lda, r, ¢, rowcnd, colcnd, amax, 1info)

This routine computes row and column scalings intended to equilibrate an m-by-n matrix 4 and
reduce its condition number. The output array r returns the row scale factors and the array c the
column scale factors. These factors are chosen to try to make the largest element in each row and
column of the matrix B with elements b;=r(i)*a;* c(j) have absolute value 1.

Input Parameters

m

n

lda

3-134

INTEGER. The number of rows of the matrix A, m 20.

INTEGER. The number of columns of the matrix A,
n =0

REAL for sgeequ

DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ

DOUBLE COMPLEX for zgeequ.

Array: DIMENSION (1da, *).
Contains the m-by-n matrix 4 whose equilibration factors are to be computed.
The second dimension of a must be at least max(1,n).

INTEGER. The leading dimension of a; 1da = max(1, m).

LAPACK Routines: Linear Equations 3

Output Parameters

r, C

rowcnd

colcnd

amax

info

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(m), c(n).

If info=0, or info > m, the array r contains the row scale factors of the
matrix 4.

If info=0, the array c contains the column scale factors of the matrix 4.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0or info> m, rowcnd contains the ratio of the smallest =(i) to the

largest r(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, colcnd contains the ratio of the smallest (i) to the largest c(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1i and
i< m, the ith row of 4 is exactly zero;
1> m, the (i-m)th column of 4 is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number
and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the
condition number of 4 but works well in practice.

If rowend 2 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If
colcend 2 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

3-135

3 Intel® Math Kernel Library Reference Manual

?gbequ

Computes row and column scaling factors intended to
equilibrate a band matrix and reduce its condition
number.

Syntax
call sgbequ (m, n, k1, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info
call dgbequ (m, n, k1, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info

call cgbequ (m, n, k1, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info

= DD

call zgbequ (m, n, k1, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info

Description

This routine computes row and column scalings intended to equilibrate an m-by-n band matrix 4
and reduce its condition number. The output array r returns the row scale factors and the array ¢
the column scale factors. These factors are chosen to try to make the largest element in each row
and column of the matrix B with elements bij=r(i)*aij* c(j) have absolute

value 1.

Input Parameters

m INTEGER. The number of rows of the matrix A, m =0.
n INTEGER. The number of columns of the matrix A,

n 20.
k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 > 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
ab REAL for sgbequ

DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.

Array, DIMENSION (ldab,*).
Contains the original band matrix 4 stored in rows
from 1 to k1+ ku+ 1.

The second dimension of ab must be at least max(1,n);

3-136

LAPACK Routines: Linear Equations 3

ldab

INTEGER. The leading dimension of ab,
ldab 2 kltkutl.

Output Parameters

r, c

rowcnd

colcnd

amax

info

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(m), c(n).

If info=0, or info > m, the array r contains the row scale factors of the
matrix 4.

If info=0, the array c contains the column scale factors of the matrix 4.

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

If info=0or info> m, rowcnd contains the ratio of the smallest =(i) to the
largest r(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, colcnd contains the ratio of the smallest c(i) to the largest c(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.
If info=1 and
i< m, the ith row of 4 is exactly zero;
1> m, the (i-m)th column of 4 is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number
and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the
condition number of 4 but works well in practice.

If rowend 2 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If
colcend 2 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

3-137

3 Intel® Math Kernel Library Reference Manual

?poequ

Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
matrix and reduce its condition number.

3-138

Syntax
call spoequ (n, a, lda, s, scond, amax, info
call dpoequ (n, a, lda, s, scond, amax, info

call cpoequ (n, a, lda, s, scond, amax, info

= D D=

call zpoequ (n, a, lda, s, scond, amax, info

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix 4 and reduce its condition number (with respect to the two-norm). The
output array s returns scale factors computed as

1

a; i

s(i) =

These factors are chosen so that the scaled matrix B with elements b;=s(i)*a;;* s(j) has diagonal
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

Input Parameters
n INTEGER. The order of the matrix A, n =0.

a REAL for spoequ
DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ
DOUBLE COMPLEX for zpoequ.

LAPACK Routines: Linear Equations 3

lda

Array: DIMENSION (1da, *).

Contains the n-by-n symmetric or Hermitian positive definite matrix 4 whose
scaling factors are to be computed. Only diagonal elements of 4 are
referenced.

The second dimension of a must be at least max(1,n).

INTEGER. The leading dimension of a; 1da = max(1, m).

Output Parameters

S

scond

amax

info

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).

If info=0, the array s contains the scale factors for A.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, scond contains the ratio of the smallest s(i) to the largest s(i).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A4.

INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info= i, the ith diagonal element of 4 is nonpositive.

Application Notes

If scond 2 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

3-139

3 Intel® Math Kernel Library Reference Manual

?ppequ
Computes row and column scaling factors intended to

equilibrate a symmetric (Hermitian) positive definite
matrix in packed storage and reduce its condition

number.

3-140

Syntax
call sppequ (uplo, n, ap, s, scond, amax, info
call dppequ (uplo, n, ap, s, scond, amax, info

call cppequ (uplo, n, ap, s, scond, amax, info

R N

call zppequ (uplo, n, ap, s, scond, amax, info

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix 4 in packed storage and reduce its condition number (with respect to the
two-norm). The output array s returns scale factors computed as

1

N

These factors are chosen so that the scaled matrix B with elements b;=s(i)*a;;* s(j) has diagonal
elements equal to 1.

s(i) =

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L".
Indicates whether the upper or lower triangular part of 4 is packed in the array
ap:

If uplo='uU", the array ap stores the upper triangular part of the matrix 4.
If uplo='L", the array ap stores the lower triangular part of the matrix 4.
n INTEGER. The order of matrix A (n = 0).
ap REAL for sppequ
DOUBLE PRECISION for dppequ
COMPLEX for cppequ

LAPACK Routines: Linear Equations 3

DOUBLE COMPLEX for zppequ.

Array, DIMENSION at least max(1,n(n+1)/2).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info=0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, scond contains the ratio of the smallest s(i) to the largest s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= i, the ith diagonal element of 4 is nonpositive.

Application Notes
If scond 2 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

?pbequ
Computes row and column scaling factors intended to

equilibrate a symmetric (Hermitian) positive definite
band matrix and reduce its condition number.

Syntax
call spbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

call dpbequ (uplo, n, kd, ab, ldab, s, scond, amax, 1info)

3-141

3 Intel® Math Kernel Library Reference Manual

call cpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

call zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix 4 in packed storage and reduce its condition number (with respect to the
two-norm). The output array s returns scale factors computed as

1
N8 i

These factors are chosen so that the scaled matrix B with elements b;=s(i)*a;;* s(j) has diagonal
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

s(i) =

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L".
Indicates whether the upper or lower triangular part of 4 is packed in the array
ab:

If uplo='u", the array ab stores the upper triangular part of the matrix 4.
If uplo= 'L, the array ab stores the lower triangular part of the matrix 4.

n INTEGER. The order of matrix A (n=0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix 4
(kd = 0).

ab REAL for spbequ

DOUBLE PRECISION for dpbequ

COMPLEX for cpbequ

DOUBLE COMPLEX for zpbequ.

Array, DIMENSION (1dab,*).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in band storage (see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).

ldab INTEGER. The leading dimension of the array ab.
(1dab > kd +1).

3-142

LAPACK Routines: Linear Equations 3

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info=0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info=0, scond contains the ratio of the smallest s(i) to the largest s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, the ith diagonal element of 4 is nonpositive.

Application Notes
If scond 2 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix 4 should be scaled.

3-143

3 Intel® Math Kernel Library Reference Manual

Driver Routines

Table 3-3 lists the LAPACK driver routines for solving systems of linear equations with real or
complex matrices.

Table 3-3 Driver Routines for Solving Systems of Linear Equations
Matrix type, Simple Driver Expert Driver
storage scheme
general ?gesv ?gesvx
general band ?gbsv ?gbsvx
general tridiagonal 2gtsv ?gtsvx
symmetric/Hermitian ?posv ?pOSVX

positive-definite

symmetric/Hermitian ?ppsv ?PPSVvX
positive-definite,

packed storage

symmetric/Hermitian ?pbsv ?pbsvx
positive-definite,

band

symmetric/Hermitian ?ptsv ?ptsvx
positive-definite,

tridiagonal

symmetric/Hermitian ?gysv/?hesv ?sysvx /?hesvx
indefinite

symmetric/Hermitian ?spsv./?hpsv ?spsvx /?hpsvx
indefinite,

packed storage

complex symmetric ?sysv ?8YysSvx
complex symmetric, ?Spsv ?SpPSVX

packed storage

In this table ? stands for s (single precision real), d (double precision real),
c (single precision complex), or z (double precision complex).

3-144

LAPACK Routines: Linear Equations 3

?gesv

Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides.

Syntax

call sgesv
call dgesv
call cgesv

call zgesv

Description

nrhs, a, lda, ipiv, b, 1db, info)
nrhs, a, lda, ipiv, b, 1db, info)
nrhs, a, lda, ipiv, b, 1db, info)
nrhs, a, lda, ipiv, b, 1db, info)

This routine solves for X the system of linear equations AX = B, where A is an n-by-n matrix, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding

solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor4 as 4=P L
U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The
factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters

INTEGER. The order of 4; the number of rows in B
(n=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for sgesv

DOUBLE PRECISION for dgesv
COMPLEX for cgesv

DOUBLE COMPLEX for zgesv.
Arrays: a(lda,*), b(1db, *).

The array a contains the matrix 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).

3-145

3 Intel® Math Kernel Library Reference Manual

1da
1db

INTEGER. The first dimension of a; 1da > max(1, n).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

a Overwritten by the factors L and U from the factorization of 4 = P L U, the unit
diagonal elements of L are not stored .

b Overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices that define the permutation matrix P; row i of the matrix was
interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -1, the ith parameter had an illegal value.
If info= 1, U(4,1) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, so the solution could not be computed.

?gesvx

Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides,
and provides error bounds on the solution.

Syntax

call sgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,

b, 1ldb, x,

ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,

b, 1db, x,

1dx, rcond, ferr, berr, work, iwork, info)

call cgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,

b, 1ldb, x,

ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,

b, 1db, x,

3-146

1ldx, rcond, ferr, berr, work, rwork, info)

LAPACK Routines: Linear Equations 3

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, where A is an n-by-n matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gesvx performs the following steps:

1. If fact ='E', real scaling factors r and c are computed to equilibrate
the system:

trans='N": diag(r)*A4*diag(c) *diag(c)'*X = diag(r)*B
trans='T" (diag(r)*A4*diag(c))’ *diag(r)'*X = diag(c)*B
trans="'C" (diag(r)*A*diag(c))H *diag(r)'l*X= diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(r)* A *diag(c) and B by diag(r)*B (if trans='N'") or
diag(c)*B (if trans="'T' or 'C").

2.If fact ='N'or 'E', the LU decomposition is used to factor the matrix 4 (after equilibration if

fact ='E'")as 4 = P L U, where P is a permutation matrix, L is a unit lower triangular matrix, and
U is upper triangular.

3. If some U; ; =0, so that U is exactly singular, then the routine returns with info=1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans ='N'") or diag(r) (if
trans ='T' or 'C") so that it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Mustbe 'F', 'N',or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

3-147

3 Intel® Math Kernel Library Reference Manual

3-148

trans

n

nrhs

a,af,b,work

1da

If fact ='F': onentry, af and ipiv contain the factored form of 4. If
equed is not 'N', the matrix 4 has been equilibrated with scaling factors given
by rand c.

a, af, and ipiv are not modified.

If fact = 'N', the matrix 4 will be copied to af and factored.
If fact = ', the matrix 4 will be equilibrated if necessary, then copied to af
and factored.

CHARACTER*1. Mustbe 'N', 'T', or 'C"'.
Specifies the form of the system of equations:

If trans = 'N', the system has the form 4 X=B

(No transpose);

If trans = 'T", the system has the form A" xX=B (Transpose);

If trans='c', the system has the form A" X =B (Conjugate transpose);

INTEGER. The number of linear equations; the order of the matrix 4 (n = 0).

INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs 2 0).

REAL for sgesvx

DOUBLE PRECISION for dgesvx

COMPLEX for cgesvx

DOUBLE COMPLEX for zgesvx.

Arrays: a(1da,*), af(1daf,*), b(1db,*), work(*).

The array a contains the matrix 4. If fact ='F' and equed is not 'N', then 4
must have been equilibrated by the scaling factors in r and/or c. The second
dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'. It contains the factored form
of the matrix 4, i.e., the factors L and U from the factorization A = P L U as
computed by ?getrf. If equed is not 'N', then af is the factored form of the
equilibrated matrix 4. The second dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,4*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of a; 1da > max(1, n).

LAPACK Routines: Linear Equations 3

ldaf
1db

ipiv

equed

1dx

iwork

INTEGER. The first dimension of af; 1daf > max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains the pivot indices from the factorization

A =P L Uascomputed by 2getrf; row i of the matrix was interchanged with
row ipiv(i).

CHARACTER*1. Mustbe 'N', 'R', 'C',Or 'B'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N");

If equed = 'R', row equilibration was done and A4 has been premultiplied by
diag(r);

If equed= ', column equilibration was done and 4 has been postmultiplied
by diag(c);

If equed = 'B"', both row and column equilibration was done; 4 has been
replaced by diag(r)*A4*diag(c).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(n), c(n).

The array r contains the row scale factors for 4, and the array ¢ contains the
column scale factors for 4. These arrays are input arguments if fact ='F' only;
otherwise they are output arguments.

If equed= 'R or 'B', 4 is multiplied on the left by diag(r); if equed = 'N"
or 'C', ris not accessed.

If fact ='F'and equed= 'R' or 'B', each element of r must be positive.

If equed='C' or 'B', 4 is multiplied on the right by diag(c); if equed= 'N'
or 'R', cis not accessed.
If fact ='F'and equed= 'C' or 'B', each element of c must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSTON at least max(1, n); used in real flavors only.

3-149

3 Intel® Math Kernel Library Reference Manual

rwork

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Workspace array, DIMENSION at least max(1, 2#*n); used in complex flavors
only.

Output Parameters

X

af

rcond

3-150

REAL for sgesvx

DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx

DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
original system of equations. Note that 4 and B are modified on exit if equed
'N', and the solution to the equilibrated system is:

diag(c)'l*X, if trans= 'N' and equed="'C"' or 'B"'; diag(r)'l*X, if
trans="'T' or 'C' and equed= 'R' Or 'B"'.

The second dimension of x must be at least max(1,nrhs).

Array a is not modified on exit if fact ='F' or 'N', or if fact ='E' and equed
='N"

If equed # 'N', A is scaled on exit as follows:

equed='R': A=diag(r)*4

equed='C': A= A*diag(c)

equed='B': A =diag(r)*4*diag(c)

If fact ='N'or 'E', then af is an output argument and on exit returns the
factors L and U from the factorization 4 = P L U of the original matrix A(if
fact ='N") or of the equilibrated matrix 4 (if fact ='E"). See the description
of a for the form of the equilibrated matrix.

Overwritten by diag(r)* B if trans="'N' and

equed= 'R' Or 'B';

overwritten by diag(c)*B if trans="'T' and equed= 'C' or 'B';
not changed if equed= 'N".

These arrays are output arguments if fact #'F'.
See the description of r, ¢ in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). The routine sets rcond =0 if the estimate underflows;

LAPACK Routines: Linear Equations 3

ferr, berr

ipiv

equed

work, rwork

info

in this case the matrix is singular (to working precision). However, anytime
rcond is small compared to 1.0,

for the working precision, the matrix may be poorly conditioned or even
singular.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact="N'or 'E', then ipivis an output argument and on exit contains the
pivot indices from the factorization 4 = P L U of the original matrix A(if fact
='N") or of the equilibrated matrix 4 (if fact ='E").

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains
the reciprocal pivot growth factor norm(4)/norm(U). The "max absolute
element" norm is used. If work(1) for real flavors, or rwork(1) for complex
flavors is much less than 1, then the stability of the LU factorization of the
(equilibrated) matrix 4 could be poor. This also means that the solution x,
condition estimator rcond, and forward error bound ferr could be unreliable.
If factorization fails with

0 < info < n, then work(1) for real flavors, or rwork(1) for complex flavors
contains the reciprocal pivot growth factor for the leading info columns of 4.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n,then U(4,1) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.

If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

3-151

3 Intel® Math Kernel Library Reference Manual

?gbsv

Computes the solution to the system of linear equations
with a band matrix A and multiple right-hand sides.

3-152

Syntax

call sgbsv
call dgbsv
call cgbsv
call zgbsv

Description

k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
k1, ku, nrhs, ab, ldab, ipiv, b, 1ldb, info)
k1, ku, nrhs, ab, ldab, ipiv, b, 1db, info)
k1, ku, nrhs, ab, ldab, ipiv, b, 1ldb, info)

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n band matrix with k1 subdiagonals and ku superdiagonals, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding

solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor4 as 4= L U,
where L is a product of permutation and unit lower triangular matrices with k1 subdiagonals, and
U is upper triangular with k1+ku superdiagonals. The factored form of A4 is then used to solve the
system of equations 4X = B.

Input Parameters

n

k1
ku

nrhs

ab, b

INTEGER. The order of 4; the number of rows in B

(n=0).

INTEGER. The number of sub-diagonals within the band of 4 (k1 > 0).
INTEGER. The number of super-diagonals within the band of 4 (ku = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for sgbsv

DOUBLE PRECISION for dgbsv

COMPLEX for cgbsv

DOUBLE COMPLEX for zgbsv.

Arrays: ab(1dab, *), b(ldb,*).

The array ab contains the matrix 4 in band storage
(see Matrix Storage Schemes).

LAPACK Routines: Linear Equations 3

ldab

1db

The second dimension of ab must be at least max(1, n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of the array ab.
(1dab>2k1+ ku+1)

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ab Overwritten by L and U. The diagonal and k1 + ku super-diagonals of U are
stored in the first 1 + k1 + ku rows of ab. The multipliers used to form L are
stored in the next k1 rows.

b Overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: row i was interchanged with row ipiv(1).

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, U(4,1) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, so the solution could not be computed.

?gbsvx

Computes the solution to the real or complex system of
linear equations with a band matrix A and multiple
right-hand sides, and provides error bounds on the

solution.

call sgbsvx
equed,

call dgbsvx
equed,

call cgbsvx
equed,

(fact, trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
c, b, 1db, x, 1dx, rcond, ferr, berr, work, iwork, info)
(fact, trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
c, b, 1db, x, 1dx, rcond, ferr, berr, work, iwork, info)
(fact, trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
c, b, 1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

3-153

3 Intel® Math Kernel Library Reference Manual

3-154

call zgbsvx (fact, trans, n, k1, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, ¢, b, 1ldb, x, 1ldx, rcond, ferr, berr, work, rwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations 4X = B, ATx = B, or Ay = B, where A is a band matrix of order n with k1
subdiagonals and ku superdiagonals, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gbsvx performs the following steps:

1. If fact ='E', real scaling factors r and c are computed to equilibrate
the system:

trans='N": diag(r)*4*diag(c) *diag(c)'*X = diag(r)*B
trans='T" (diag(r)*A4*diag(c))’ *diag(x)'*X = diag(c)*B
trans="'C" (diag(r)*A*diag(c))H *diag(r)'l*X= diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(r)* A *diag(c) and B by diag(r)*B (if trans='N'") or
diag(c)*B (if trans ="T' or 'C").

2.If fact ='N'or 'E', the LU decomposition is used to factor the matrix 4 (after equilibration if
fact ='"E')as A = L U, where L is a product of permutation and unit lower triangular matrices
with k1 subdiagonals, and U is upper triangular with k1+ku superdiagonals.

3. If some U; ; =0, so that U is exactly singular, then the routine returns with info = 1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans ='N'") or diag(r) (if
trans ='T' or 'C") so that it solves the original system before equilibration.

LAPACK Routines: Linear Equations 3

Input Parameters

fact

trans

n

k1
ku

nrhs

ab,afb, b, work

CHARACTER*1. Mustbe 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': onentry, afrb and ipiv contain the factored form of 4. If
equed is not 'N', the matrix 4 has been equilibrated with scaling factors given
by rand c.

ab, afb, and ipiv are not modified.

If fact = 'N', the matrix 4 will be copied to afb and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to
arb and factored.

CHARACTER*1. Mustbe 'N', 'T', or 'C"'.
Specifies the form of the system of equations:

If trans = 'N', the system has the form 4 X=B

(No transpose);

If trans='T', the system has the form A’ X=B (Transpose);

If trans='cC', the system has the form A" X =B (Conjugate transpose);

INTEGER. The number of linear equations; the order of the matrix 4 (n = 0).

INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
INTEGER. The number of super-diagonals within the band of 4 (ku = 0).

INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs 2 0).

REAL for sgesvx

DOUBLE PRECISION for dgesvx

COMPLEX for cgesvx

DOUBLE COMPLEX for zgesvx.

Arrays: a(1da,*), af(1daf,*), b(1db,*), work(*).

The array ab contains the matrix 4 in band storage

(see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n).

If fact ='F' and equed is not 'N', then 4 must have been equilibrated by the
scaling factors in r and/or c.

The array afb is an input argument if fact ='F'.
The second dimension of afb must be at least max(1,n).
It contains the factored form of the matrix A, i.e., the factors L and U from the

3-155

3 Intel® Math Kernel Library Reference Manual

ldab
ldafb

1db

ipiv

equed

3-156

factorization 4 = L U as computed by ?gbtrf. U is stored as an upper triangular
band matrix with k1 + ku super-diagonals in the first

1 + k1 + kurows of arb. The multipliers used during the factorization are
stored in the next k1 rows.

If equed is not 'N', then a£b is the factored form of the equilibrated matrix 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of ab; 1dab = k1+kutl1.

INTEGER. The first dimension of afb;
ldafb 2 2*kl+kutl.

INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains the pivot indices from the factorization

A= L Uas computed by 2gbtrf; row i of the matrix was interchanged with
row ipiv(i).

CHARACTER*1. Mustbe 'N', 'R', 'C', or 'B".

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N");

If equed = 'R', row equilibration was done and A4 has been premultiplied by
diag(x);

If equed= ', column equilibration was done and 4 has been postmultiplied
by diag(c);

If equed = 'B", both row and column equilibration was done; A4 has been
replaced by diag(r)*A4*diag(c).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Arrays: r(n), c(n).

The array r contains the row scale factors for 4, and the array ¢ contains the
column scale factors for 4. These arrays are input arguments if fact ='F' only;

LAPACK Routines: Linear Equations 3

1dx

iwork

rwork

otherwise they are output arguments.

If equed= 'R or 'B', 4 is multiplied on the left by diag(r); if equed = 'N"
or 'C', ris not accessed.

If fact ='F'and equed= 'R' or 'B', each element of r must be positive.
If equed='C' or 'B', 4 is multiplied on the right by diag(c); if equed= 'N'
or 'R', cis not accessed.

If fact ='F'and equed= 'C' or 'B', each element of c must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

ab

arb

REAL for sgbsvx

DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx

DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (1dx, *).

If info=0or info= nt+l, the array x contains the solution matrix X to the
original system of equations. Note that 4 and B are modified on exit if equed
'N', and the solution to the equilibrated system is:

diag(c)'l*X, if trans= 'N' and equed= 'C"' or 'B'; diag(r)'l*X, if
trans="'T' or 'C' and equed= 'R' Or 'B"'.

The second dimension of x must be at least max(1,nrhs).

Array ab is not modified on exit if fact ="F' or 'N', or if fact ='E' and equed
='N".

If equed # 'N', A is scaled on exit as follows:

equed='R': A=diag(r)*4

equed='C': A= Ax*diag(c)

equed='B': A =diag(r)*A*diag(c)

If fact ='N'or 'E', then afb is an output argument and on exit returns
details of the LU factorization of the original matrix A(if fact ='N") or of the

equilibrated matrix 4 (if fact ='E'). See the description of ab for the form of
the equilibrated matrix.

3-157

3 Intel® Math Kernel Library Reference Manual

b

rcond

ferr, berr

ipiv

equed

work, rwork

info

3-158

Overwritten by diag(r)*b if trans='N' and

equed="'R' Or 'B';

overwritten by diag(c)*b if trans="'T' and equed="'C' or 'B';
not changed if equed= 'N".

These arrays are output arguments if fact #'F'.
See the description of r, ¢ in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done).

If rcond is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a return
code of info> 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact="N'or 'E', then ipivis an output argument and on exit contains the
pivot indices from the factorization 4 = L U of the original matrix A(if fact =
'N") or of the equilibrated matrix 4 (if fact ='E").

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains
the reciprocal pivot growth factor norm(4)/norm(U). The "max absolute
element" norm is used. If work(1) for real flavors, or rwork(1) for complex
flavors is much less than 1, then the stability of the LU factorization of the
(equilibrated) matrix 4 could be poor. This also means that the solution x,
condition estimator rcond, and forward error bound ferr could be unreliable.
If factorization fails with

0 < info < n,then work(1) for real flavors, or rwork(1l) for complex flavors
contains the reciprocal pivot growth factor for the leading info columns of A4.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,and i < n,then U(4,1) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.

If info=1i,and i =n +1, then U is nonsingular, but rcond is less than

LAPACK Routines: Linear Equations 3

machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

?gtsv

Computes the solution to the system of linear equations
with a tridiagonal matrix A and multiple right-hand

sides.

Syntax

call sgtsv (n,
call dgtsv (n,
call cgtsv (n,
call zgtsv (n,

Description

nrhs, dl, d, du, b, 1db, info)
nrhs, dl, d, du, b, 1db, info)
nrhs, dl, d, du, b, 1db, info)
nrhs, dl, d, du, b, 1db, info)

This routine solves for X the system of linear equations AX = B, where A is an n-by-n tridiagonal
matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The routine uses Gaussian elimination with partial pivoting.

Note that the equation 47X =B may be solved by interchanging the order of the arguments du

and d1.

Input Parameters

n

nrhs

dl, d, du, b

INTEGER. The order of 4; the number of rows in B
(n=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for sgtsv

DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv

DOUBLE COMPLEX for zgtsv.

3-159

3 Intel® Math Kernel Library Reference Manual

1db

Arrays: d1(n- 1), d(n), du(n - 1), b(1db, *).

The array d1 contains the (n - 1) subdiagonal elements of 4.

The array d contains the diagonal elements of A.

The array du contains the (n - 1) superdiagonal elements of 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

d1 Overwritten by the (n-2) elements of the second superdiagonal of the upper
triangular matrix U from the LU factorization of A. These elements are stored
in d1(1), ..., d1(n-2).

d Overwritten by the n diagonal elements of U.

du Overwritten by the (n-1) elements of the first superdiagonal of U.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info= 1, U(4,1) is exactly zero, and the solution has not been computed.
The factorization has not been completed unless i = n.

?gtsvx

Computes the solution to the real or complex system of
linear equations with a tridiagonal matrix A and
multiple right-hand sides, and provides error bounds on

the solution.

Syntax

call sgtsvx

(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,

1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call dgtsvx
1db, x,

call cgtsvx

(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldx, rcond, ferr, berr, work, iwork, info)

(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,

1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

3-160

LAPACK Routines: Linear Equations 3

call zgtsvx (fact, trans, n, nrhs, dl, d, du, dif, df, duf, du2, ipiv, b,
1db, x, 1ldx, rcond, ferr, berr, work, rwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations 4X = B, ATx = B, or Ay = B, where A is a tridiagonal matrix of order n, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gtsvx performs the following steps:

1. If fact ='N', the LU decomposition is used to factor the matrix 4 as
A = LU, where L is a product of permutation and unit lower bidiagonal matrices and U is an upper
triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.

2.1f some U; ; =0, so that U is exactly singular, then the routine returns with info=i.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, d1f, df, duf, du2, and ipiv contain the factored
form of A4; arrays d1, d, du, d1f, df, duf, du2, and ipiv will not be
modified.

If fact = 'N', the matrix 4 will be copied to d1£, df, and duf and factored.
trans CHARACTER*1. Mustbe 'N', 'T',or 'C'.

Specifies the form of the system of equations:

3-161

3 Intel® Math Kernel Library Reference Manual

3-162

n

nrhs

dl,d,du,dlf,df,

If trans = 'N', the system has the form 4 X=B

(No transpose);

If trans='T', the system has the form A" X=B (Transpose);

If trans='cC', the system has the form A" X =B (Conjugate transpose);

INTEGER. The number of linear equations; the order of the matrix 4 (n = 0).

INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs 2 0).

duf,du2, b, x, work REAL for sgtsvx

1db
1ldx

DOUBLE PRECISION for dgtsvx

COMPLEX for cgtsvx

DOUBLE COMPLEX for zgtsvx.

Arrays:

d1, dimension (n- 1), contains the subdiagonal elements of 4.
d, dimension (n), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal elements of 4.

dlf, dimension (n-1).If fact ='F', then d1f is an input argument and on
entry contains the (n - 1) multipliers that define the matrix L from the LU
factorization of A4 as computed by ?>gttrf.

df, dimension (n).If fact ='F', then df is an input argument and on entry
contains the n diagonal elements of the upper triangular matrix U from the LU
factorization of A.

duf, dimension (n-1).If fact ='F', then duf is an input argument and on
entry contains the (n - 1) elements of the first super-diagonal of U.

du2, dimension (n-2).If fact ='F', then du2 is an input argument and on
entry contains the (n - 2) elements of the second super-diagonal of U.

b(1db, *) contains the right-hand side matrix B. The second dimension of b
must be at least max(1,nrhs).

x(1dx, *) contains the solution matrix X. The second dimension of x must be
at least max(1,nrhs).

work (*) is a workspace array;
the dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

INTEGER. The first dimension of b; 1db = max(1, n).
INTEGER. The first dimension of x; 1dx = max(1, n).

LAPACK Routines: Linear Equations 3

ipiv

iwork

rwork

INTEGER.
Array, DIMENSION at least max(1,n). If fact ='F', then ipivis an input
argument and on entry contains the pivot indices, as returned by ?gttrf.

INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.

REAL for cgtsvx
DOUBLE PRECISION for zgtsvx.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

X

dlf

df

duf

duz

ipiv

rcond

REAL for sgtsvx

DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx

DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (ldx, *).

If info=0or info= ntl, the array x contains the solution matrix X. The
second dimension of x must be at least max(1,nrhs).

If fact ='N', then d1f is an output argument and on exit contains the (n- 1)
multipliers that define the matrix L from the LU factorization of A.

If fact ='N', then df is an output argument and on exit contains the n
diagonal elements of the upper triangular matrix U from the LU factorization
of 4.

If fact ='N', then duf is an output argument and on exit contains the (n- 1)
elements of the first super-diagonal of U.

If fact ='N', then du2 is an output argument and on exit contains the (n - 2)
elements of the second super-diagonal of U.

The array ipivis an output argument if fact ='N' and, on exit, contains the
pivot indices from the factorization

A= L U; row i of the matrix was interchanged with row ipiv(i). The value
of ipiv(i) will always be either i or i+1; ipiwv(i)=1 indicates a row
interchange was not required.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4.

3-163

3 Intel® Math Kernel Library Reference Manual

ferr, berr

info

If rcond is less than the machine precision (in particular, if rcond = 0), the
matrix is singular to working precision. This condition is indicated by a return
code of info> 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,and i < n, then U(4,1) is exactly zero. The factorization has not
been completed unless i = n, but the factor U is exactly singular, so the
solution and error bounds could not be computed; rcond = 0 is returned.

If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

?posv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite matrix
A and multiple right-hand sides.

Syntax

call sposv
call dposv
call cposv

call zposv

Description

—~ o~ o~ o~

uplo, n, nrhs, a, lda, b, 1db, info)
uplo, n, nrhs, a, lda, b, 1db, info)
uplo, n, nrhs, a, lda, b, 1ldb, info)
uplo, n, nrhs, a, lda, b, 1db, info)

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as 4 = UU if uplo="u"

3-164

LAPACK Routines: Linear Equations 3

or A=LL7if uplo='L", where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters

uplo

lda
1db

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as UU.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

INTEGER. The order of matrix 4 (nn=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

REAL for sposv

DOUBLE PRECISION for dposv

COMPLEX for cposv

DOUBLE COMPLEX for zposv.

Arrays: a(1da, *), b(1db, *).

The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).

The second dimension of a must be at least max(1, n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

a

info

If info=0, the upper or lower triangular part of a is overwritten by the
Cholesky factor U or L, as specified by uplo.

Overwritten by the solution matrix X.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.

3-165

3 Intel® Math Kernel Library Reference Manual

?posvx

Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric or
Hermitian positive definite matrix A, and provides error
bounds on the solution.

Syntax

call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1db, x,
1dx, rcond, ferr, berr, work, iwork, info)

call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1ldb, x,
1ldx, rcond, ferr, berr, work, iwork, info)

call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1db, x,
1ldx, rcond, ferr, berr, work, rwork, info)

call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, 1ldb, Xx,
1ldx, rcond, ferr, berr, work, rwork, info)

Description

This routine uses the Cholesky factorization A=U"U or A=LL" to compute the solution to a real
or complex system of linear equations 4AX =B, where A is a n-by-n real symmetric/Hermitian
positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns
of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:

1. If fact ="'E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s) ! *X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact ='N' or 'E', the Cholesky decomposition is used to factor the matrix 4 (after
equilibration if fact ='E') as

3-166

LAPACK Routines: Linear Equations 3

A=U"U, ifuplo= U’ or
A =LLH, ifuplo= T,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info
= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If
the reciprocal of the condition number is less than machine precision, info=n + 1 is returned as
a warning, but the routine still goes on to solve for X and compute error bounds as described
below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER+*1. Mustbe 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': on entry, af contains the factored form of 4. If equed= "Y',
the matrix A4 has been equilibrated with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix 4 will be copied to af and factored.
If fact = ', the matrix 4 will be equilibrated if necessary, then copied to af
and factored.

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as U'U.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

n INTEGER. The order of matrix 4 (nn=0).
nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

3-167

3 Intel® Math Kernel Library Reference Manual

a,af,b,work

lda
ldaf
1db

equed

3-168

REAL for sposvx

DOUBLE PRECISION for dposvx

COMPLEX for cposvx

DOUBLE COMPLEX for zposvx.

Arrays: a(lda,*), af(1daf,*), b(1db,*), work(*).

The array a contains the matrix 4as specified by uplo. If fact ='F' and
equed ="Y', then 4 must have been equilibrated by the scaling factors in s, and
a must contain the equilibrated matrix diag(s)*A4*diag(s). The second
dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'.

It contains the triangular factor U or L from the Cholesky factorization of 4 in
the same storage format as A. If equed is not 'N', then af is the factored form
of the equilibrated matrix diag(s)*A*diag(s). The second dimension of af
must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of af; 1daf > max(1, n).
INTEGER. The first dimension of b; 1db > max(1, n).

CHARACTER*1. Mustbe 'N' or 'Y'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N');

If equed= 'Y, equilibration was done and 4 has been replaced by
diag(s)*A*diag(s).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (n).

The array s contains the scale factors for 4. This array is an input argument if

LAPACK Routines: Linear Equations 3

1dx

iwork

rwork

fact ='F' only; otherwise it is an output argument.
If equed= 'N' , sis not accessed.
If fact ='F' and equed = 'Y, each element of s must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cposvx;

DOUBLE PRECISION for ZPOSVX.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

af

rcond

REAL for sposvx

DOUBLE PRECISION for dposvx
COMPLEX for cposvx

DOUBLE COMPLEX for zposvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
original system of equations. Note that if equed= "Y', 4 and B are modified
on exit, and the solution to the equilibrated system is diag(s)™! *.X.

The second dimension of x must be at least max(1,nrhs).

Array a is not modified on exit if fact ='F' or 'N', or if fact ='E' and equed
— 'N'.

If fact ='E' and equed ="Y', 4 is overwritten by diag(s)*A*diag(s)

If fact ='N'or 'E', then af is an output argument and on exit returns the
triangular factor U or L from the Cholesky factorization A=U"U or A=LL" of
the original matrix A(if fact ='N'), or of the equilibrated matrix 4 (if fact =
'E"). See the description of a for the form of the equilibrated matrix.

Overwritten by diag(s)*B , if equed="'Y";

not changed if equed= 'N".

This array is an output argument if fact #'F' .

See the description of s in Input Arguments section.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix 4 after

3-169

3 Intel® Math Kernel Library Reference Manual

ferr, berr

equed

info

equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info=i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

?ppsv

Computes the solution to the system of linear equations
with a symmetric (Hermitian) positive definite packed
matrix A and multiple right-hand sides.

3-170

Syntax

call sppsv
call dppsv
call cppsv
call zppsv

—~ o~~~

uplo, n, nrhs, ap, b, 1ldb, info)
uplo, n, nrhs, ap, b, 1db, info)
uplo, n, nrhs, ap, b, 1ldb, info)
uplo, n, nrhs, ap, b, 1db, info)

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the real or complex system of linear equations

AX = B, where A is an n-by-n real symmetric/Hermitian positive definite matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The Cholesky decomposition is used to factor A as 4 = UU if uplo="u"

or A=LL"if uplo="1", where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of 4 is then used to solve the system of equations 4AX = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as UU.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LL".

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

ap, b REAL for sppsv

DOUBLE PRECISION for dppsv

COMPLEX for cppsv

DOUBLE COMPLEX for zppsv.

Arrays: ap(*), b(1db, *).

The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).
The dimension of ap must be at least max(1,n(n+1)/2).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ap If info=0, the upper or lower triangular part of 4 in packed storage is
overwritten by the Cholesky factor U or L, as specified by uplo.

3-171

3 Intel® Math Kernel Library Reference Manual

b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.
?ppsvx

Uses the

Cholesky factorization to compute the solution

to the system of linear equations with a symmetric
(Hermitian) positive definite packed matrix A, and

provides error bounds on the solution.

Syntax

call sppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, 1ldb, x, 1ldx,
rcond, ferr, berr, work, iwork, info)

call dppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, 1db, x, 1dx,
rcond, ferr, berr, work, iwork, info)

call cppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, 1ldb, x, 1ldx,
rcond, ferr, berr, work, rwork, info)

call zppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, 1db, x, 1dx,
rcond, ferr, berr, work, rwork, info)

3-172

Description

This routine uses the Cholesky factorization 4=UU or A=LL" to compute the solution to a real
or complex system of linear equations AX =B, where A is a n-by-n symmetric or Hermitian
positive definite matrix stored in packed format, the columns of matrix B are individual right-hand
sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?ppsvx performs the following steps:

1. If fact ="'E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A4*diag(s) *diag(s)'1 * X = diag(s)*B

LAPACK Routines: Linear Equations 3

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact ='N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact ='E'") as

A4=U"U ifupio= v’ or
A =LLH, ifuplo= T,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info
= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If
the reciprocal of the condition number is less than machine precision, info=n + 1 is returned as
a warning, but the routine still goes on to solve for X and compute error bounds as described
below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER+*1. Mustbe 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': onentry, afp contains the factored form of 4. If equed= "Y',
the matrix A4 has been equilibrated with scaling factors given by s.
ap and afp will not be modified.

If fact = 'N', the matrix 4 will be copied to afp and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to
arfp and factored.

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

3-173

3 Intel® Math Kernel Library Reference Manual

3-174

nrhs

ap,afp, b, work

1db

equed

If uplo='uU", the array ap stores the upper triangular part of the matrix 4,
and A is factored as U"U.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as LL.

INTEGER. The order of matrix 4 (nn=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

REAL for sppsvx

DOUBLE PRECISION for dppsvx

COMPLEX for cppsvx

DOUBLE COMPLEX for zppsvx.

Arrays: ap (*), afp(*), b(1db, *), work (*).

The array ap contains the upper or lower triangle of the original
symmetric/Hermitian matrix A in packed storage (see Matrix Storage
Schemes). In case when fact ='F' and equed ='Y', ap must contain the
equilibrated matrix diag(s)*A4*diag(s).

The array afp is an input argument if fact ='F' and contains the triangular
factor U or L from the Cholesky factorization of 4 in the same storage format
as A. If equed is not 'N', then afp is the factored form of the equilibrated
matrix 4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex
flavors.

INTEGER. The first dimension of b; 1db > max(1, n).

CHARACTER*1. Mustbe 'N' or 'Y'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N");

If equed= 'Y, equilibration was done and 4 has been replaced by
diag(s)*A*diag(s).

LAPACK Routines: Linear Equations 3

1dx

iwork

rwork

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (n).

The array s contains the scale factors for 4. This array is an input argument if
fact ="F' only; otherwise it is an output argument.

If equed= 'N' , s is not accessed.

If fact ='F' and equed= 'Y, each element of s must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cppsvx;

DOUBLE PRECISION for zppsvx.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

ap

afp

REAL for sppsvx

DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx

DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (1dx, *).

If info=0or info= nt+l, the array x contains the solution matrix X to the
original system of equations. Note that if equed="'Y"', 4 and B are modified
on exit, and the solution to the equilibrated system is diag(s)'1 * X,

The second dimension of x must be at least max(1,nrhs).

Atrray ap is not modified on exit if fact ="F' or 'N', or if fact ='E' and equed
='N".

If fact ='E' and equed ="Y', 4 is overwritten by diag(s)*4*diag(s)

If fact ='N'or 'E', then afp is an output argument and on exit returns the
triangular factor U or L from the Cholesky factorization A=U"U or A=LL" of

the original matrix A(if fact ='N'), or of the equilibrated matrix 4 (if fact =
'E"). See the description of ap for the form of the equilibrated matrix.

Overwritten by diag(s)*B , if equed="'Y";
not changed if equed= 'N".

This array is an output argument if fact #'F'.
See the description of s in Input Arguments section.

3-175

3 Intel® Math Kernel Library Reference Manual

rcond

ferr, berr

equed

info

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and i =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

?pbsv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite band
matrix A and multiple right-hand sides.

Syntax

call spbsv
call dpbsv
call cpbsv
call zpbsv

3-176

—~ o~~~

uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
uplo, n, kd, nrhs, ab, ldab, b, 1db, info)
uplo, n, kd, nrhs, ab, ldab, b, 1db, info)

b)

uplo, n, kd, nrhs, ab, ldab,

, 1db, info

LAPACK Routines: Linear Equations 3

Description

This routine solves for X the real or complex system of linear equations
AX= B, where A is an n-by-n symmetric/Hermitian positive definite band matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as 4 = UU if uplo="u"

or A=LL" if uplo="1", where U is an upper triangular band matrix and L is a lower triangular
band matrix, with the same number of superdiagonals or subdiagonals as 4. The factored form of
A is then used to solve the system of equations 4X = B.

Input Parameters

uplo CHARACTER+*1. Mustbe 'U' or 'L".
Indicates whether the upper or lower triangular part of 4 is stored in the array
ab, and how 4 is factored:
If uplo='u", the array ab stores the upper triangular part of the matrix A4,
and A is factored as UU.
If uplo= 'L, the array ab stores the lower triangular part of the matrix 4; 4
is factored as LL".

n INTEGER. The order of matrix 4 (n = 0).

kd INTEGER. The number of superdiagonals of the
matrix 4 if uplo = 'U"', or the number of subdiagonals if uplo= 'L
(kd = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

ab, b REAL for spbsv

DOUBLE PRECISION for dpbsv

COMPLEX for cpbsv

DOUBLE COMPLEX for zpbsv.

Arrays: ab(1dab, *), b(1db, *).

The array ab contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in band storage (see Matrix Storage Schemes).

The second dimension of ab must be at least max(1, n). The array b contains
the matrix B whose columns are the right-hand sides for the systems of
equations.

The second dimension of b must be at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(1dab = kd +1)

1db INTEGER. The first dimension of b; 1db = max(1, n).

3-177

3 Intel® Math Kernel Library Reference Manual

Output Parameters

ab The upper or lower triangular part of 4 (in band storage) is overwritten by the
Cholesky factor U or L, as specified by uplo, in the same storage format as 4.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.

?pbsvx

Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric
(Hermitian) positive definite band matrix A, and
provides error bounds on the solution.

Syntax

call spbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
1db, x, 1ldx, rcond, ferr, berr, work, iwork, info)

Description

This routine uses the Cholesky factorization 4=U"U or A=LL to compute the solution to a real
or complex system of linear equations 4X =B, where A is a n-by-n symmetric or Hermitian
positive definite band matrix, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?pbsvx performs the following steps:

3-178

LAPACK Routines: Linear Equations 3

1. If fact ='E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)! *X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix 4, but if
equilibration is used, 4 is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2.If fact ='N' or 'E', the Cholesky decomposition is used to factor the matrix 4 (after
equilibration if fact ='E'") as

A4=U"U, ifuplo= U’ or

A =LLH, ifuplo= T,

where U is an upper triangular band matrix and L is a lower triangular band matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info
= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If
the reciprocal of the condition number is less than machine precision, info=n + 1 is returned as
a warning, but the routine still goes on to solve for X and compute error bounds as described
below.

4. The system of equations is solved for X using the factored form of 4.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Mustbe 'F', 'N',or 'E'.

Specifies whether or not the factored form of the matrix A4 is supplied on entry,
and if not, whether the matrix 4 should be equilibrated before it is factored.

If fact = 'F': onentry, arb contains the factored form of 4. If equed= "Y',
the matrix A4 has been equilibrated with scaling factors given by s.
ab and afb will not be modified.

If fact = 'N', the matrix 4 will be copied to afb and factored.
If fact = 'E', the matrix 4 will be equilibrated if necessary, then copied to
arb and factored.

uplo CHARACTER+*1. Mustbe 'U' or 'L".

3-179

3 Intel® Math Kernel Library Reference Manual

3-180

kad

nrhs

ab,afb, b, work

ldab
ldafb
1db

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is

factored:

If uplo='uU", the array ab stores the upper triangular part of the matrix A4,

and 4 is factored as U"U.

If uplo= 'L, the array ab stores the lower triangular part of the matrix 4; 4

is factored as LL,

INTEGER. The order of matrix A (n=0).

INTEGER. The number of super-diagonals or sub-diagonals in the matrix A
(kd 2 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for spbsvx

DOUBLE PRECISION for dpbsvx

COMPLEX for cpbsvx

DOUBLE COMPLEX for zpbsvx.

Arrays: ab(ldab, *),afb(1ldab,*),b(1db,*), work(*).

The array ab contains the upper or lower triangle of the matrix 4 in band
storage (see Matrix Storage Schemes).

If fact ='F' and equed ='"Y', then ab must contain the equilibrated matrix
diag(s)*A*diag(s). The second dimension of ab must be at least max(1, n).
The array afb is an input argument if fact ="F'.

It contains the triangular factor U or L from the Cholesky factorization of the
band matrix 4 in the same storage format as A. If equed ="Y', then afb is the
factored form of the equilibrated matrix 4.

The second dimension of afb must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(l,nrhs).

work (*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at
least max(1,2*n) for complex flavors.

INTEGER. The first dimension of ab; 1dab > kd+1.
INTEGER. The first dimension of afb; 1dafb = kd+1.

INTEGER. The first dimension of b; 1db = max(1, n).

LAPACK Routines: Linear Equations 3

equed

1dx

iwork

rwork

CHARACTER*1. Mustbe 'N' or 'Y'.

equed is an input argument if fact ='F'. It specifies the form of equilibration
that was done:

If equed = 'N', no equilibration was done (always

true if fact ='N');

If equed= 'Y, equilibration was done and 4 has been replaced by
diag(s)*A*diag(s).

REAL for single precision flavors;

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION (n).

The array s contains the scale factors for 4. This array is an input argument if
fact ='F' only; otherwise it is an output argument.

If equed= 'N' , sis not accessed.

If fact ='F' and equed = 'Y, each element of s must be positive.

INTEGER. The first dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cpbsvx;

DOUBLE PRECISION for zpbsvx.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

ab

arb

REAL for spbsvx

DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx

DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (ldx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
original system of equations. Note that if equed='Y"', 4 and B are modified
on exit, and the solution to the equilibrated system is diag(s)'1 * X,

The second dimension of x must be at least max(1,nrhs).

On exit, if fact ='E' and equed ='Y', 4 is overwritten by diag(s)*A*diag(s)

If fact ='N'or 'E', then afb is an output argument and on exit returns the
triangular factor U or L from the Cholesky factorization A=U"U or A=LL" of
the original matrix A(if fact ='N'), or of the equilibrated matrix 4 (if fact =
'E"). See the description of ab for the form of the equilibrated matrix.

3-181

3 Intel® Math Kernel Library Reference Manual

b

rcond

ferr, berr

equed

info

Overwritten by diag(s)*B , if equed="'Y";
not changed if equed= 'N".

This array is an output argument if fact #'F' .
See the description of s in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

If fact #'F', then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and 1 =n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

?ptsv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite
tridiagonal matrix A and multiple right-hand sides.

Syntax
call sptsv

3-182

(n, nrhs, d, e, b, 1db, info)

LAPACK Routines: Linear Equations 3

call dptsv (n, nrhs, d, e, b, 1ldb, info)
call cptsv (n, nrhs, d, e, b, 1db, info)
call zptsv (n, nrhs, d, e, b, 1db, info)

Description

This routine solves for X the real or complex system of linear equations

AX = B, where A is an n-by-n symmetric/Hermitian positive definite tridiagonal matrix, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

Ais factored as 4 =L D L, and the factored form of 4 is then used to solve the system of
equations AX = B.

Input Parameters

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

d REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Array, dimension at least max(1, n). Contains the diagonal elements of the
tridiagonal matrix A.
e, b REAL for sptsv
DOUBLE PRECISION for dptsv
COMPLEX for cptsv
DOUBLE COMPLEX for zptsv.
Arrays: e(n- 1), b(1db, *).
The array e contains the (n - 1) subdiagonal elements
of A.
The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

1db INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

d Overwritten by the n diagonal elements of the diagonal matrix D from the
LDL™ factorization of A.

3-183

3 Intel® Math Kernel Library Reference Manual

e Overwritten by the (n - 1) subdiagonal elements of the unit bidiagonal factor L
from the factorization of A.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix 4 itself) is not
positive definite, and the solution has not been computed. The factorization
has not been completed unless i = n.

?ptsvx

Uses the factorization A=LDL" to compute

the solution to the system of linear equations with a

symmetric (Hermitian) positive definite tridiagonal

matrix A, and provides error bounds on the solution.

Syntax

call sptsvx (fact, n, nrhs, d, e, df, ef, b, 1db, x, 1ldx, rcond, ferr,
berr, work, info)

call dptsvx (fact, n, nrhs, d, e, df, ef, b, 1db, x, ldx, rcond, ferr,
berr, work, info)

call cptsvx (fact, n, nrhs, d, e, df, ef, b, 1db, x, ldx, rcond, ferr,
berr, work, rwork, 1info)

call zptsvx (fact, n, nrhs, d, e, df, ef, b, 1db, x, 1dx, rcond, ferr,
berr, work, rwork, info)

Description

This routine uses the Cholesky factorization A=L D L to compute the solution to a real or
complex system of linear equations 4X =B, where A is a n-by-n symmetric or Hermitian
positive definite tridiagonal matrix, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ptsvx performs the following steps:

3-184

LAPACK Routines: Linear Equations 3

1. If fact ="'N', the matrix A is factored as A4 = L D L, where L is a unit lower bidiagonal matrix
and D is diagonal. The factorization can also be regarded as having the form 4 = U D U.

2. If the leading i-by-i principal minor is not positive definite, then the routine returns with info
= i. Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If
the reciprocal of the condition number is less than machine precision, info=n + 1 is returned as
a warning, but the routine still goes on to solve for X and compute error bounds as described

below.

3. The system of equations is solved for X using the factored form of 4.

4. Tterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact

n

nrhs

d,df, rwork

e,ef,b,work

CHARACTER*1. Mustbe 'F' or 'N'.
Specifies whether or not the factored form of the matrix 4 is supplied on entry.

If fact ="F': onentry, df and ef contain the factored form of A. Arrays d,
e, df, and ef will not be modified.

If fact = 'N', the matrix 4 will be copied to df and ef and factored.
INTEGER. The order of matrix 4 (n = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors

Arrays: d(n),df(n), rwork(n).

The array d contains the n diagonal elements of the tridiagonal matrix A.
The array df is an input argument if fact = 'F' and on entry contains the n
diagonal elements of the diagonal matrix D from the L D L factorization of 4.
The array rwork is a workspace array used for complex flavors only.

REAL for sptsvx

DOUBLE PRECISION for dptsvx

COMPLEX for cptsvx

DOUBLE COMPLEX for zptsvx.

Arrays: e(n-1), ef(n-1), b(1db, *), work(*).

The array e contains the (n- 1) subdiagonal elements of the tridiagonal
matrix 4.

3-185

3 Intel® Math Kernel Library Reference Manual

1db
1dx

The array ef is an input argument if fact = 'F' and on entry contains the (n
- 1) subdiagonal elements of the unit bidiagonal factor L from the L D L
factorization of A.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The array work is a workspace array. The dimension of work must be at least
2*n for real flavors, and at least n for complex flavors.

INTEGER. The leading dimension of b; 1db = max(1, n).
INTEGER. The leading dimension of x; 1dx = max(1, n).

Output Parameters

X

df, ef

rcond

ferr, berr

info

3-186

REAL for sptsvx

DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx

DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(l,nrhs).

These arrays are output arguments if fact ='N'.
See the description of df, ef in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4 after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n, the leading minor of order i (and hence the matrix 4
itself) is not positive definite, so the factorization could not be completed, and
the solution and error bounds could not be computed; rcond = 0 is returned.
If info=1i,and i = n +1, then U is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.

LAPACK Routines: Linear Equations 3

Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

?sysv

Computes the solution to the system of linear equations
with a real or complex symmetric matrix A and multiple
right-hand sides.

Syntax

call ssysv (uplo, n, nrhs, a, lda, ipiv, , 1ldb, work, lwork, info

~

call csysv 1db, work, lwork, info

(

call dsysv (uplo, n, nrhs, a, lda, ipiv,
(uplo, n, nrhs, a, lda, ipiv,
(

)
1db, work, lwork, info)
)
)

o oo U

call zsysv (uplo, n, nrhs, a, lda, ipiv, , 1ldb, work, lwork, info

Description

This routine solves for X the real or complex system of linear equations
AX= B, where A is an n-by-n symmetric matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor 4 as 4 =UD U” or
A=LDL", where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of 4 is then used to solve the system of equations 4X = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as UDU,
If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LDLT.

n INTEGER. The order of matrix 4 (nn=0).

3-187

3 Intel® Math Kernel Library Reference Manual

3-188

nrhs

a, b, work

lda
1db

1work

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for ssysv

DOUBLE PRECISION for dsysv

COMPLEX for csysv

DOUBLE COMPLEX for zsysv.

Arrays: a(1da, *), b(1db, *), work(Iwork).

The array a contains either the upper or the lower triangular part of the
symmetric matrix 4 (see uplo).

The second dimension of a must be at least max(1, n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

work (1work) is a workspace array.

INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER. The size of the work array (Iwork = 1)
See Application notes for the suggested value of Iwork.

Output Parameters

a

ipiv

work (1)

If info =0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of 4 as
computed by ?sytrf.

If info =0, b is overwritten by the solution matrix X.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D, as
determined by ?sytrf.

Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular, so the solution could not be computed.

Application Notes

For better performance, try using 1work = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array, and no error message related to Iwork is
issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

?sysvx

Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a real
or complex symmetric matrix A, and provides error
bounds on the solution.

Syntax

call ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx (fact, uplo, n, nrhs, a, lda, af, 1ldaf, ipiv, b, 1ldb, x, 1ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1ldb, x, 1ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations AX =B, where A is a n-by-n symmetric matrix, the columns of matrix
B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

3-189

3 Intel® Math Kernel Library Reference Manual

The routine ? sysvx performs the following steps:

1. If fact ='N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorizationis A = UD Ul or A = L D LT, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2.1f some d; ; =0, so that D is exactly singular, then the routine returns with info=1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, af and ipiv contain the factored form of 4. Arrays
a, af, and ipiv will not be modified.

If fact = 'N', the matrix 4 will be copied to af and factored.

uplo CHARACTER+*1. Mustbe 'U' or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the symmetric
matrix 4, and A is factored

as UDU.

If uplo='L", the array a stores the lower triangular part of the symmetric
matrix 4; A is factored as LDL.

n INTEGER. The order of matrix A (n = 0).
nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

3-190

LAPACK Routines: Linear Equations 3

a,af,b,work

lda
ldaf
1db

ipiv

1ldx

1lwork

REAL for ssysvx

DOUBLE PRECISION for dsysvx

COMPLEX for csysvx

DOUBLE COMPLEX for zsysvx.

Arrays: a(lda,*), af(1daf,*), b(1db,*), work(*).

The array a contains either the upper or the lower triangular part of the
symmetric matrix 4 (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'. It contains he block diagonal
matrix D and the multipliers used to obtain the factor U or L from the
factorization 4 =UD Ul orA=LD LT as computed by ?sytrf.

The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(l,nrhs).

work (*) is a workspace array of dimension (1work).
INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of af; 1daf = max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains details of the interchanges and the block structure of D, as
determined by ?sytrf.

If ipiv(i) = k>0, then d;; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns 1 and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L"'and ipiv(i) =ipiv(i+1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. The leading dimension of the output array x; 1dx = max(1, n).

INTEGER. The size of the work array .
See Application notes for the suggested value of Iwork.

3-191

3 Intel® Math Kernel Library Reference Manual

iwork

rwork

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for csysvx;

DOUBLE PRECISION for zsysvx.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

Output Parameters

X

af, ipiv

rcond

ferr, berr

work (1)

info

3-192

REAL for ssysvx

DOUBLE PRECISION for dsysvx
COMPLEX for csysvx

DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (1dx, *).

If info=0or info= n+tl, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(l,nrhs).

These arrays are output arguments if fact ='N'.
See the description of af, ipiv in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4. If rcond is
less than the machine precision (in particular, if rcond = 0), the matrix is
singular to working precision. This condition is indicated by a return code of
info>0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.
If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,and i < n, then d;; is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.

If info=1i,and 1 =n +1, then D is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.

LAPACK Routines: Linear Equations 3

Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

Application Notes

For real flavors, 1work must be at least 3*n, and for complex flavors at least 2*n. For better
performance, try using Iwork = n*blocksize, where blocksize is the optimal block size for
?sytrf.

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array, and no error message related to Iwork is
issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

?hesv

Computes the solution to the system of linear equations
with a Hermitian matrix A and multiple right-hand
sides.

Syntax
call chesv (uplo, n, nrhs, a, lda, ipiv, b, 1db, work, lwork, info)

call zhesv (uplo, n, nrhs, a, lda, ipiv, b, 1db, work, lwork, info)

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor 4 as A= UD U or
A=L DL where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of 4 is then used to solve the system of equations 4X = B.

Input Parameters
uplo CHARACTER*1. Mustbe 'U' or 'L"'.

3-193

3 Intel® Math Kernel Library Reference Manual

3-194

nrhs

a, b,

lda

1db

lwork

work

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo= 'u", the array a stores the upper triangular part of the matrix 4, and
A is factored as UDU.

If uplo= 'L, the array a stores the lower triangular part of the matrix 4; A4 is
factored as LDL!.

INTEGER. The order of matrix A (n=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

COMPLEX for chesv

DOUBLE COMPLEX for zhesv.

Arrays: a(1da, *), b(1db, *), work(1work).

The array a contains either the upper or the lower triangular part of the
Hermitian matrix 4 (see uplo).

The second dimension of a must be at least max(1, n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

work (1work) is a workspace array.

INTEGER. The first dimension of a; 1da = max(1, n).

INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER. The size of the work array (I1work = 1)
See Application notes for the suggested value of 1work.

Output Parameters

a

ipiv

If info =0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of 4 as
computed by ?hetrf.

If info =0, b is overwritten by the solution matrix X.

INTEGER.

Array, DIMENSTION at least max(1,n).

Contains details of the interchanges and the block structure of D, as
determined by ?hetrf.

If ipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.

LAPACK Routines: Linear Equations 3

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.
info INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular, so the solution could not be computed.

Application Notes

For better performance, try using 1work = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array , and no error message related to Iwork is
issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

?hesvx

Uses the diagonal pivoting factorization to compute
the solution to the complex system of linear equations
with a Hermitian matrix A, and provides error bounds
on the solution.

Syntax

call chesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, 1ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, 1db, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

3-195

3 Intel® Math Kernel Library Reference Manual

3-196

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system
of linear equations AX = B, where A is a n-by-n Hermitian matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:

1. If fact ='N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorizationis 4 = UD U or 4 = L D L", where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2. If some d; ; =0, so that D is exactly singular, then the routine returns with info= 1.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Tterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, af and ipiv contain the factored form of 4. Arrays
a, af, and ipiv will not be modified.

If fact = 'N', the matrix 4 will be copied to af and factored.

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='uU", the array a stores the upper triangular part of the Hermitian
matrix 4, and A is factored
as UDU™.
If uplo= 'L, the array a stores the lower triangular part of the Hermitian
matrix A; A is factored as LDLY.

n INTEGER. The order of matrix A (nn=0).

LAPACK Routines: Linear Equations 3

nrhs

a,af,b,work

lda
ldaf
1db

ipiv

1ldx

1lwork

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Arrays: a(lda,*), af(1daf,*), b(1db,*), work(*).

The array a contains either the upper or the lower triangular part of the
Hermitian matrix 4 (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact ='F'. It contains he block diagonal
matrix D and the multipliers used to obtain the factor U or L from the
factorization 4 = UD U or 4 = L D L' as computed by 2hetrf.

The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(l,nrhs).

work (*) is a workspace array of dimension (1work).
INTEGER. The first dimension of a; 1da = max(1, n).
INTEGER. The first dimension of af; 1daf = max(1, n).
INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains details of the interchanges and the block structure of D, as
determined by ?hetrf.

Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns 1 and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L"'and ipiv(i) =ipiv(i+1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. The leading dimension of the output array x; 1dx = max(1, n).

INTEGER. The size of the work array .
See Application notes for the suggested value of Iwork.

3-197

3 Intel® Math Kernel Library Reference Manual

3-198

rwork

REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

X

af, ipiv

rcond

ferr, berr

work (1)

info

COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (1dx, *).

If info=0or info= ntl, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(l,nrhs).

These arrays are output arguments if fact ='N'.
See the description of af, ipiv in Input Arguments section.

REAL for chesvx;

DOUBLE PRECISION for zhesvx.

An estimate of the reciprocal condition number of the matrix 4. If rcond is
less than the machine precision (in particular, if rcond = 0), the matrix is
singular to working precision. This condition is indicated by a return code of
info>0.

REAL for chesvx;

DOUBLE PRECISION for zhesvx.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.
If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=i,and i < n, then d;; is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.

If info=1i,and i = n +1, then D is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

LAPACK Routines: Linear Equations 3

Application Notes

The value of Iwork must be at least 2*n. For better performance, try using 1work = n*blocksize,
where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use Iwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work (1) of the work array , and no error message related to Iwork is
issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

?spsv

Computes the solution to the system of linear equations
with a real or complex symmetric matrix A stored in
packed format, and multiple right-hand sides.

Syntax

call sspsv (uplo, n, nrhs, ap, ipiv, b, 1ldb, info)

call dspsv (uplo, n, nrhs, ap, ipiv, b, 1db, info)

call cspsv (uplo, n, nrhs, ap, ipiv, b, 1ldb, info)
(b

call zspsv (uplo, n, nrhs, ap, ipiv, , 1db, info)

Description

This routine solves for X the real or complex system of linear equations
AX= B, where A is an n-by-n symmetric matrix stored in packed format, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor 4 as 4 =UD U’ or
A=LDL", where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of 4 is then used to solve the system of equations 4X = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

3-199

3 Intel® Math Kernel Library Reference Manual

3-200

nrhs

ap, b

1db

If uplo='uU", the array ap stores the upper triangular part of the matrix A4,
and A is factored as UDU”.

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as LDL”.

INTEGER. The order of matrix 4 (nn=0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 20).

REAL for sspsv

DOUBLE PRECISION for dspsv

COMPLEX for cspsv

DOUBLE COMPLEX for zspsv.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(nt+1)/2).

The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ap

ipiv

The block-diagonal matrix D and the multipliers used to obtain the factor U (or
L) from the factorization of 4 as computed by ?sptrf, stored as a packed
triangular matrix in the same storage format as 4.

If info =0, b is overwritten by the solution matrix X.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D, as
determined by ?sptrf.

If ipiv(i) =k>0,thend,; is a 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L"'and ipiv(i) =ipiv(i+1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

LAPACK Routines: Linear Equations 3

info INTEGER. If info=0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info=1,d;; is 0. The factorization has been completed, but D is exactly
singular, so the solution could not be computed.

?spsvx

Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a real
or complex symmetric matrix A stored in packed
format, and provides error bounds on the solution.

Syntax

call sspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, rcond,
ferr, berr, work, iwork, info)

call dspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, 1ldb, x, 1ldx, rcond,
ferr, berr, work, iwork, info)

call cspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, rcond,

ferr, berr, work, rwork, info)

call zspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, 1ldb, x, 1ldx, rcond,
ferr, berr, work, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations AX = B, where A is a n-by-n symmetric matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ? spsvx performs the following steps:

1. If fact ='N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorizationis A = UD Ul or 4 = L D LT, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

3-201

3 Intel® Math Kernel Library Reference Manual

3-202

2. If somed; ;=

0, so that D is exactly singular, then the routine returns with info=i.

Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact

uplo

n

nrhs

ap,aftp,b,work

CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, afp and ipiv contain the factored form of 4.
Arrays ap, afp, and ipiv will not be modified.

If fact = 'N', the matrix 4 will be copied to afp and factored.

CHARACTER*1. Mustbe 'U' or 'L"'.

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='u", the array ap stores the upper triangular part of the symmetric
matrix 4, and A is factored

as UDU.

If uplo='L", the array ap stores the lower triangular part of the symmetric
matrix 4; A is factored as LDLT.

INTEGER. The order of matrix A (n = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

REAL for sspsvx

DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx

DOUBLE COMPLEX for ZSpPSVX.

Arrays: ap (*), afp(*), b(1db, *), work (*).

The array ap contains the upper or lower triangle of the symmetric matrix A in
packed storage (see Matrix Storage Schemes).

LAPACK Routines: Linear Equations 3

1db

ipiv

1dx

iwork

rwork

The array afp is an input argument if fact ='F' . It contains the block
diagonal matrix D and the multipliers used to obtain the factor U or L from the
factorization

A=UDU"or4=LDL" as computed by ?sptrf, in the same storage
format as A4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b must be at least max(1,nrhs); the dimension of work
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex
flavors.

INTEGER. The first dimension of b; 1db = max(1, n).

INTEGER.

Array, DIMENSION at least max(1,n).

The array ipivis an input argument if fact ='F'.

It contains details of the interchanges and the block structure of D, as
determined by ?sptrf.

Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo='L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. The leading dimension of the output array x; 1dx = max(1, n).

INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors only.

REAL for cspsvx;

DOUBLE PRECISION for zspsvx.

Workspace array, DIMENSION at least max(1, n); used in complex flavors
only.

3-203

3 Intel® Math Kernel Library Reference Manual

3-204

Output Parameters

X

afp, ipiv

rcond

ferr, berr

info

REAL for sspsvx

DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx

DOUBLE COMPLEX for zspsvx.
Array, DIMENSION (1dx, *).

If info=0or info= nt+l, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(1,nrhs).

These arrays are output arguments if fact ='N'.
See the description of afp, ipiv in Input Arguments section.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix 4. If rcond is
less than the machine precision (in particular, if rcond = 0), the matrix is
singular to working precision. This condition is indicated by a return code of
info>0.

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.

Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,and i < n, then d;; is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.

If info=1i,and i =n +1, then D is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

LAPACK Routines: Linear Equations 3

?hpsv

Computes the solution to the system of linear equations
with a Hermitian matrix A stored in packed format, and
multiple right-hand sides.

Syntax
call chpsv (uplo, n, nrhs, ap, ipiv, b, 1ldb, info)
call zhpsv (uplo, n, nrhs, ap, ipiv, b, 1db, info)

Description

This routine solves for X the system of linear equations 4X = B, where A is an n-by-n Hermitian
matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor 4 as 4= UD U or
A=L DL where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of 4 is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='U", the array ap stores the upper triangular part of the matrix A4,
and A is factored as UDU".

If uplo= 'L, the array ap stores the lower triangular part of the matrix 4; 4
is factored as LDL.

n INTEGER. The order of matrix 4 (n = 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

ap, b COMPLEX for chpsv

DOUBLE COMPLEX for zhpsv.

Arrays: ap (*), b(1db, *)

The dimension of ap must be at least max(1,n(n+1)/2).

The array ap contains the factor U or L, as specified by uplo, in packed

3-205

3 Intel® Math Kernel Library Reference Manual

3-206

1db

storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

The second dimension of b must be at least max(1,nrhs).

INTEGER. The first dimension of b; 1db = max(1, n).

Output Parameters

ap

ipiv

info

The block-diagonal matrix D and the multipliers used to obtain the factor U (or
L) from the factorization of 4 as computed by ?hptr£, stored as a packed
triangular matrix in the same storage format as 4.

If info =0, b is overwritten by the solution matrix X.

INTEGER.

Array, DIMENSION at least max(1,n).

Contains details of the interchanges and the block structure of D, as
determined by ?hptrf.

If ipiv(i) =k>0,thend;; is a 1-by-1 block, and the ith row and column of
A was interchanged with the kth row and column.

Ifuplo="'U'and ipiv(i) =ipiv(i-1) = -m<0, then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.

Ifuplo="'L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

INTEGER. If info=0, the execution is successful.

If info = -1, the ith parameter had an illegal value.

If info=1i,d;; is 0. The factorization has been completed, but D is exactly
singular, so the solution could not be computed.

LAPACK Routines: Linear Equations 3

?hpsvx

Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a
Hermitian matrix A stored in packed format, and
provides error bounds on the solution.

Syntax
call chpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, 1db, x, 1ldx, rcond,
ferr, berr, work, rwork, 1info)

call zhpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, 1ldb, x, 1ldx, rcond,
ferr, berr, work, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system
of linear equations AX = B, where A is a n-by-n Hermitian matrix stored in packed format, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hpsvx performs the following steps:

1. If fact ='N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorizationis 4 = UD U or 4 = L D L, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2. If some d; ; =0, so that D is exactly singular, then the routine returns with info=i.
Otherwise, the factored form of 4 is used to estimate the condition number of the matrix 4. If the
reciprocal of the condition number is less than machine precision, info=n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of 4.

4. Tterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

3-207

3 Intel® Math Kernel Library Reference Manual

3-208

Input Parameters

fact

uplo

n

nrhs

ap,afp,b, work

1db

CHARACTER*1. Mustbe 'F' or 'N'.

Specifies whether or not the factored form of the matrix 4 has been supplied on
entry.

If fact="'F': onentry, afp and ipiv contain the factored form of 4.
Arrays ap, afp, and ipiv will not be modified.

If fact = 'N', the matrix 4 will be copied to afp and factored.

CHARACTER*1. Mustbe 'U' or 'L".

Indicates whether the upper or lower triangular part of 4 is stored and how 4 is
factored:

If uplo='u", the array ap stores the upper triangular part of the Hermitian
matrix 4, and A is factored

as UDU™.

If uplo= 'L, the array ap stores the lower triangular part of the Hermitian
matrix 4; A is factored as LDLY

INTEGER. The order of matrix 4 (n = 0).

INTEGER. The number of right-hand sides; the number of columns in B
(nrhs 2 0).

COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Arrays: ap(*),afp(*),b(1ldb,*), work (*).

The array ap contains the upper or lower triangle of the Hermitian matrix A in
packed storage (see Matrix Storage Schemes).

The array afp is an input argument if fact ='F' . It contains the block
diagonal matrix D and the multipliers used to obtain the factor U or L from the
factorization

A=UDU"or4 =L D L" as computed by ?hptrf, in the same storage
format as A4.

The array b contains the matrix B whose columns are the right-hand sides for
the systems of equations.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
second dimension of b must be at least max(1,nrhs); the dimension of work
must be at least max(1, 2*n) .

INTEGER. The first dimension of b; 1db > max(1, n).

LAPACK Routines: Linear Equations 3

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipivis an input argument if fact ="F'.
It contains details of the interchanges and the block structure of D, as
determined by ?hptrf.
Ifipiv(i) = k>0, thend,; is a 1-by-1 diagonal block, and the ith row and
column of 4 was interchanged with the kth row and column.
Ifuplo="'U'and ipiv(i) =ipiv(i-1) =-m<0,then D has a 2-by-2 block
in rows/columns i and i-1, and (i-1) th row and column of 4 was
interchanged with the mth row and column.
Ifuplo="'L'and ipiv(i) =ipiv(i+1) = -m<0,then D has a 2-by-2 block
in rows/columns i and i+1, and (i+1) th row and column of 4 was
interchanged with the mth row and column.

1dx INTEGER. The leading dimension of the output array x; 1dx = max(1, n).

rwork REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION (1dx, *).

If info=0or info= nt+l, the array x contains the solution matrix X to the
system of equations. The second dimension of x must be at least
max(l,nrhs).

afp, ipiv These arrays are output arguments if fact ='N'.
See the description of afp, ipiv in Input Arguments section.

rcond REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the matrix 4. If rcond is
less than the machine precision (in particular, if rcond = 0), the matrix is
singular to working precision. This condition is indicated by a return code of
info>0.

ferr, berr REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution vector.

3-209

3 Intel® Math Kernel Library Reference Manual

3-210

info

INTEGER. If info=0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info=1i,and i < n, then d;; is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.

If info=1i,and 1 =n +1, then D is nonsingular, but rcond is less than
machine precision, meaning that the matrix is singular to working precision.
Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than
the value of rcond would suggest.

LAPACK Routines:

Least Squares and
Eigenvalue Problems 4

This chapter describes the Intel® Math Kernel Library implementation of routines from the
LAPACK package that are used for solving linear least-squares problems, eigenvalue and singular
value problems, as well as performing a number of related computational tasks.

Sections in this chapter include descriptions of LAPACK computational routines and driver
routines.

For full reference on LAPACK routines and related information see [LUG].

Least-Squares Problems. A typical least-squares problem is as follows: given a matrix 4 and
a vector b, find the vector x that minimizes the sum of squares X; ((4x); - b;)* or, equivalently, find
the vector x that minimizes the 2-norm ||4x — b||,.

In the most usual case, 4 is an m by n matrix with m > n and rank(4) = n. This problem is also
referred to as finding the least-squares solution to an overdetermined system of linear equations
(here we have more equations than unknowns). To solve this problem, you can use the OR
factorization of the matrix A (see QR Factorization).

If m <n and rank(4) = m, there exist an infinite number of solutions x which exactly satisfy Ax = b,
and thus minimize the norm ||4x — b||,. In this case it is often useful to find the unique solution that
minimizes |[x||,. This problem is referred to as finding the minimum-norm solution to an
underdetermined system of linear equations (here we have more unknowns than equations). To
solve this problem, you can use the LQ factorization of the matrix A (see LQ Factorization).

In the general case you may have a rank-deficient least-squares problem, with rank(A4) < min(m,
n): find the minimum-norm least-squares solution that minimizes both ||x||, and ||4x — b||,. In this
case (or when the rank of A is in doubt) you can use the QR factorization with pivoting or singular
value decomposition (see Singular Value Decomposition).

4-1

4 Intel® Math Kernel Library Reference Manual

Eigenvalue Problems (from German eigen “own”) are stated as follows: given a matrix A4, find
the eigenvalues A and the corresponding eigenvectors z that satisfy the equation
Az = Az (right eigenvectors z)

or the equation
4 =N (left eigenvectors z).

If 4 is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and
the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems
are described in the section “Symmetric Eigenvalue Problems” .

Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are
described in the section “Nonsymmetric Eigenvalue Problems” .

The library also includes routines that handle generalized symmetric- definite eigenvalue
problems: find the eigenvalues A and the corresponding eigenvectors x that satisfy one of the
following equations:

Az=ABz, ABz=MAz, or BAz= Az

where A4 is symmetric or Hermitian, and B is symmetric positive-definite or Hermitian
positive-definite. Routines for reducing these problems to standard symmetric eigenvalue
problems are described in the section “Generalized Symmetric-Definite Eigenvalue Problems” .

To solve a particular problem, you usually call several computational routines. Sometimes you
need to combine the routines of this chapter with other LAPACK routines described in Chapter 3
as well as with BLAS routines (Chapter 2).

For example, to solve a set of least-squares problems minimizing ||4x — b||, for all columns b of a
given matrix B (where 4 and B are real matrices), you can call ?2geqr£ to form the factorization 4
= OR, then call ?2ormgr to compute C = OB, and finally call the BLAS routine ?trsm to solve for
X the system of equations RX = C.

Another way is to call an appropriate driver routine that performs several tasks in one call. For
example, to solve the least-squares problem the driver routine ?gels can be used.

WARNING. LAPACK routines expect that input matrices do not contain
INF or NaN values. When input data is inappropriate for LAPACK, problems
may arise, including possible hangs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Routine Naming Conventions
For each routine in this chapter, you can use the LAPACK name.
LAPACK names have the structure xyyzzz, which is described below.

The initial letter x indicates the data type:
s real, single precisionc complex, single precision
d real, double precisionz complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
bd bidiagonal matrix

ge general matrix

gb general band matrix

hs upper Hessenberg matrix

or (real) orthogonal matrix

op (real) orthogonal matrix (packed storage)

un (complex) unitary matrix

up (complex) unitary matrix (packed storage)

pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix

sp symmetric matrix (packed storage)

sb (real) symmetric band matrix

st (real) symmetric tridiagonal matrix

he Hermitian matrix

hp Hermitian matrix (packed storage)

hb (complex) Hermitian band matrix

tr triangular or quasi-triangular matrix.

The last three letters zzz indicate the computation performed, for example:
arf form the OR factorization
1gf form the LQ factorization.

Thus, the routine sgeqrf forms the OR factorization of general real matrices in single precision;
the corresponding routine for complex matrices is cgeqrt.

4 Intel® Math Kernel Library Reference Manual

Matrix Storage Schemes

LAPACK routines use the following matrix storage schemes:

® Full storage: a matrix 4 is stored in a two-dimensional array a, with the matrix element a;;

stored in the array element a (1, 7).

Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

Band storage: an m by n band matrix with k1 sub-diagonals and ku super-diagonals is stored
compactly in a two-dimensional array ab with k1+ku+1 rows and n columns. Columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

In Chapters 3 and 4, arrays that hold matrices in packed storage have names ending in p; arrays
with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation

In addition to the mathematical notation used in previous chapters, descriptions of routines in this
chapter use the following notation:

A; Eigenvalues of the matrix 4 (for the definition of eigenvalues, see Eigenvalue
Problems).

C; Singular values of the matrix A. They are equal to square roots of the
eigenvalues of 474. (For more information, see Singular Value
Decomposition).

[o4]p The 2-norm of the vector x: ||x|l, = (Z; [4*) "% = Ml -

1]l The 2-norm (or spectral norm) of the matrix 4.

— 2 _

|4, = max; o;, ||4|z= maxyi—(4x-Ax).

|14]|z The Euclidean norm of the matrix 4: ||4|| 2=) Zj |al-j|2 (for vectors, the
Euclidean norm and the 2-norm are equal: ||x||z = |[x]|)-

q(x, y) The acute angle between vectors x and y:

cos q(x, y) = |-y / (x| yll2)-

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Computational Routines

In the sections that follow, the descriptions of LAPACK computational routines are given. These
routines perform distinct computational tasks that can be used for:

Orthogonal Factorizations

Singular Value Decomposition

Symmetric Eigenvalue Problems

Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems

Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition

See also the respective driver routines.

Orthogonal Factorizations

This section describes the LAPACK routines for the QR (RQ) and LQ (QL) factorization of
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations are
also included.

QR Factorization. Assume that 4 is an m by n matrix to be factored.
If m = n, the OR factorization is given by

A= Q@ = (o, Qz)@

where R is an n by n upper triangular matrix with real diagonal elements, and Q is an m by m
orthogonal (or unitary) matrix.

You can use the QR factorization for solving the following least-squares problem: minimize ||4x —
b||, where A is a full-rank m by n matrix (m = n). After factoring the matrix, compute the solution
x by solving Rx = (Q,)7b.

If m < n, the QR factorization is given by
A = QR = QO(R|R,)
where R is trapezoidal, R; is upper triangular and R, is rectangular.

The LAPACK routines do not form the matrix Q explicitly. Instead, Q is represented as a product
of min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

4 Intel® Math Kernel Library Reference Manual

LQ Factorization. LQ factorization of an m by n matrix 4 is as follows. If m < n,

a=(L00=50(J) =10

where L is an m by m lower triangular matrix with real diagonal elements, and Q is an n by n
orthogonal (or unitary) matrix.

If m > n, the LQ factorization is

a= (7)o

where L, is an n by n lower triangular matrix, L, is rectangular, and Q is an z by » orthogonal (or

unitary) matrix.

You can use the LQ factorization to find the minimum-norm solution of an underdetermined
system of linear equations Ax = b where A is an m by n matrix of rank m (m < n). After factoring
the matrix, compute the solution vector x as follows: solve Ly = b for y, and then compute x =

()2

Table 5-1 lists LAPACK routines that perform orthogonal factorization of matrices.

Table 4-1

Computational Routines for Orthogonal Factorization

Matrix type, factorization

general matrices,
QR factorization

general matrices,
RQ factorization

general matrices,
LQ factorization

general matrices,
QL factorization

trapezoidal matrices,
RZ factorization

pair of matrices, generalized
QR factorization

pair of matrices, generalized
RQ factorization

Factorize
without pivoting
?geqgrf
?gergf
?gelgf
?geqlf
2tzrzf

?gggrf

?ggrgf

Factorize
with pivoting

?gegpf
?gegp3

Generate Apply
matrix Q matrix Q
?orgqr ?ormgr
ungqr 2unmgr
?0rgrg ?ormrg
2ungrg unmrg
?orglg Pormlg
?unglg unmlg
?orggl ?ormgl
ungqgl ?unmgl
?0rmrz
2unmrz

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?geqrf

Computes the QR factorization of a general m by n

martrix.

Syntax

call sgeqgrf
call dgeqrf
call cgeqgrf
call zgeqrf

Description

—~ o~ o~ o~

m, n, a, lda, tau, work, lwork, info

)
m, n, a, lda, tau, work, lwork, info)
m, n, a, lda, tau, work, lwork, info)

)

m, n, a, lda, tau, work, lwork, info

The routine forms the QR factorization of a general m by n matrix 4
(see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m
n

a, work

lda

1lwork

INTEGER. The number of rows in the matrix 4 (m = 0).
INTEGER. The number of columns in 4 (n=0).

REAL for sgeqrf

DOUBLE PRECISION for dgegrf

COMPLEX for cgeqrf

DOUBLE COMPLEX for zgeqgrf.

Arrays:

a(lda,*) contains the matrix 4.

The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.
INTEGER. The first dimension of a; at least max(1, m).

INTEGER. The size of the work array (1work = n)
See Application notes for the suggested value of 1work.

4.7

4 Intel® Math Kernel Library Reference Manual

Output Parameters
a Overwritten by the factorization data as follows:

If m > n, the elements below the diagonal are overwritten by the details of the
unitary matrix Q, and the upper triangle is overwritten by the corresponding
elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of the
unitary matrix Q, and the remaining elements are overwritten by the
corresponding elements of the m by n upper trapezoidal matrix R.

tau REAL for sgeqrf
DOUBLE PRECISION for dgeqgrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max (1, min(m, n)).
Contains additional information on the matrix Q.

work (1) If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix 4 + E, where
IE]l2 = O®) [|4]|2-

The approximate number of floating-point operations for real flavors is
(4/3)n’ if m=n,
(2/3)n*(3m-n) ifm> n,
(2/3)m*(3n-m) ifm<n.

The number of operations for complex flavors is 4 times greater.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

To solve a set of least-squares problems minimizing ||4x — b||, for all columns b of a given matrix
B, you can call the following:

?geqrf (this routine)

?ormgr

unmgr

to factorize 4 = OR;

to compute C = QB (for real matrices);

to compute C = Q"B (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the least-squares solution vectors x.)

To compute the elements of Q explicitly, call

?orgqgr

?ungqgr

(for real matrices)

(for complex matrices).

?geqpf

Computes the QR factorization of a general m by n
matrix with pivoting.

Syntax
call sgeqgpf (m, n,
call dgeqgpf (m, n,
call cgegpf (m, n,
call zgeqgpf (m, n,
Description

lda,
lda,
lda,
lda,

jpvt,
jpvt,
jpvt,
jpvt,

tau,
tau,
tau,

tau,

work,
work,
work,

work,

info)
info)
rwork, info)

rwork, info)

This routine is deprecated and has been replaced by routine ?gegp3.

The routine ?gegpf forms the OR factorization of a general m by n matrix 4 with column
pivoting: AP = OR (see Orthogonal Factorizations). Here P denotes an n by n permutation matrix.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

4.9

4 Intel® Math Kernel Library Reference Manual

Input Parameters

m
n

a, work

1da

1lwork

jpvt

rwork

INTEGER. The number of rows in the matrix 4 (m = 0).
INTEGER. The number of columns in 4 (n=>0).

REAL for sgeqgpf

DOUBLE PRECISION for dgeqpf

COMPLEX for cgeqgpf

DOUBLE COMPLEX for zgegpf.

Arrays:

a (1da, *) contains the matrix 4.

The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m).

INTEGER. The size of the work array; must be at least max(1, 3*n).
INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt (i)> 0, the ith column of 4 is moved to the beginning of AP
before the computation, and fixed in place during the computation.

If jpvt (i) =0, the ith column of A4 is a free column (that is, it may be
interchanged during the computation with any other free column).

REAL for cgeqpf
DOUBLE PRECISION for zgegpf.
A workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

a

tau

Overwritten by the factorization data as follows:

If m > n, the elements below the diagonal are overwritten by the details of the
unitary (orthogonal) matrix Q, and the upper triangle is overwritten by the
corresponding elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of the
matrix @, and the remaining elements are overwritten by the corresponding
elements of the m by n upper trapezoidal matrix R.

REAL for sgeqgpf
DOUBLE PRECISION for dgeqgpf
COMPLEX for cgeqpf

LAPACK Routines: Least Squares and Eigenvalue Problems 4

DOUBLE COMPLEX for zgegpf.
Array, DIMENSION at least max (1, min(m, n)).
Contains additional information on the matrix Q.

jpvt Overwritten by details of the permutation matrix P in the factorization AP =
OR. More precisely, the columns of AP are the columns of 4 in the following
order:
jpvt (1), jpvt(2), ..., jpvt(n).

info INTEGER.

If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes
The computed factorization is the exact factorization of a matrix 4 + E, where ||E]|, = O(€) ||4]}».
The approximate number of floating-point operations for real flavors is
(4/3)n° if m=n,
(2/3)n*(3m-n) if m>n,
(2/3)m*(3n-m) ifm<n.
The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing ||4x — b||, for all columns b of a given matrix
B, you can call the following:

?geqgpf (this routine) to factorize AP = OR;
?ormgr to compute C = Q7B (for real matrices);
2unmgr to compute C = Q"B (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution vectors x; the output
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call
?orgqr (for real matrices)

2ungqr (for complex matrices).

4 Intel® Math Kernel Library Reference Manual

?geqp3

Computes the QR factorization of a general m by n
matrix with column pivoting using Level 3 BLAS.

Syntax

call sgegp3
call dgeqgp3
call cgegp3
call zgeqgp3

Description

a, lda, jpvt, tau, work, lwork, info)
a, lda, jpvt, tau, work, lwork, info)
a, lda, jpvt, tau, work, lwork, rwork, info)

a, lda, jpvt, tau, work, lwork, rwork, info)

The routine forms the QR factorization of a general m by n matrix 4 with column pivoting: AP =
OR (see Orthogonal Factorizations) using Level 3 BLAS. Here P denotes an n by n permutation

matrix.

Use this routine instead of ?gegpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m,
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m

n

a, work

lda

1lwork

4-12

INTEGER. The number of rows in the matrix 4 (m = 0).
INTEGER. The number of columns in 4 (n > 0).

REAL for sgegp3

DOUBLE PRECISION for dgegp3
COMPLEX for cgeqgp3

DOUBLE COMPLEX for zgeqgp3.

Arrays:

a (1da,*) contains the matrix 4.

The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.
INTEGER. The first dimension of a; at least max(1, m).

INTEGER. The size of the work array; must be at least max(1, 3*n+1) for real
flavors, and at least max(1, nt+1) for complex flavors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

jpvt

rwork

INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt (1) # 0, the ith column of 4 is moved to the beginning of 4P
before the computation, and fixed in place during the computation.

If jpvt (i) =0, the ith column of A4 is a free column (that is, it may be
interchanged during the computation with any other free column).

REAL for cgeqgp3

DOUBLE PRECISION for zgeqp3.

A workspace array, DIMENSION at least max(1, 2*n). Used in complex flavors
only.

Output Parameters

a

tau

jpvt

info

Overwritten by the factorization data as follows:

If m > n, the elements below the diagonal are overwritten by the details of the
unitary (orthogonal) matrix Q, and the upper triangle is overwritten by the
corresponding elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of the
matrix @, and the remaining elements are overwritten by the corresponding
elements of the m by n upper trapezoidal matrix R.

REAL for sgeqgp3

DOUBLE PRECISION for dgegp3

COMPLEX for cgeqgp3

DOUBLE COMPLEX for zgegp3.

Array, DIMENSION at least max (1, min(m, n)).

Contains scalar factors of the elementary reflectors for the matrix Q.

Overwritten by details of the permutation matrix P in the factorization AP =
OR. More precisely, the columns of AP are the columns of 4 in the following
order:

jpovt (1), jpvt(2), ..., jpvt(n).

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

To solve a set of least-squares problems minimizing ||4x — b||, for all columns b of a given matrix
B, you can call the following:

?geqp3 (this routine) to factorize AP = OR;

4 Intel® Math Kernel Library Reference Manual

?ormgr to compute C = Q"B (for real matrices);
2unmgr to compute C = Q"B (for complex matrices);
?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution vectors x; the output
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call
?orgqr (for real matrices)

2ungqgr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?orgqr

Generates the real orthogonal matrix Q of the OR
factorization formed by ?geqrt.

Syntax
call sorggqr (m, n, k, a, lda, tau, work, Ilwork, info)

call dorggr (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates the whole or part of m by m orthogonal matrix Q of the QR factorization
formed by the routines sgegrf/dgegrf or sgegpf/dgegpf. Use this routine after a call to
sgeqrf/dgeqrf or sgegpf/dgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix 4 with m > p. To compute
the whole matrix Q, use:

call ?orggr (m, m, p, a, lda, tau, work, lwork, info)
To compute the leading p columns of O (which form an orthonormal basis in the space spanned by
the columns of 4):

call ?orggr (m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the OR factorization of 4’s leading k columns:

call ?orggr (m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned
by A’s leading k columns):

call ?orggr (m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the orthogonal matrix Q (m = 0).
n INTEGER. The number of columns of Q to be computed (0 < n < m).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (0 < k< n).

4-15

4 Intel® Math Kernel Library Reference Manual

a, tau, work REAL for sorggr
DOUBLE PRECISION for dorgqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf or
sgeqgpf / dgeqgpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (1work) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).
lwork INTEGER. The size of the work array (1work 2 n)
See Application notes for the suggested value of Iwork.
Output Parameters
a Overwritten by n leading columns of the m by m orthogonal matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix £ such that ||E]|, = O(¢)
||4||, where € is the machine precision.

The total number of floating-point operations is approximately
4xmrn*k - 2%(m+ n)* K> + (4/3)* K.
If n = k, the number is approximately (2/3)*n2*(3m - n).

The complex counterpart of this routine is ?unggr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?ormqgr

Multiplies a real matrix by the orthogonal matrix Q of the
OR factorization formed by ?geqrf or ?gegpf.

Syntax

call sormgr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormgr (side, trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a real matrix C by Q or Q7, where Q is the orthogonal matrix Q of the OR
factorization formed by the routines sgegrf/dgegrf or sgegpf/dgegpf.

Depending on the parameters side and trans, the routine can form one of the matrix products
0C, O7C, CQ, or COT (overwriting the result on C).

Input Parameters

side

trans

a,work, tau, c

CHARACTER*1. Must be either 'L or 'R".
If side ="1.", Q or Q7 is applied to C from the left.
If side ='R"', Q or Q7 is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='T", the routine multiplies C by Q7.

INTEGER. The number of rows in the matrix C (m = 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0<k<mifside="L";

0<k<n ifside="R".

REAL for sgeqrf

DOUBLE PRECISION for dgeqrf.

Arrays:

a(lda,*) and tau(*) are the arrays returned by sgeqrf / dgeqgrf or

4-17

4 Intel® Math Kernel Library Reference Manual

lda

1dc

1lwork

sgeqgpf / dgeqgpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldec,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (lwork) is a workspace array.

INTEGER. The first dimension of a. Constraints:
lda=max(l, m) if side="L";
lda=max(l, n) if side="R".

INTEGER. The first dimension of c¢. Constraint:
ldc =2 max(1l, m).

INTEGER. The size of the work array. Constraints:
lwork 2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of 1work.

Output Parameters

(e}

work (1)

info

Overwritten by the product QC, Q'C, CQ, or CQT
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = n*blocksize (if side ='L") or lwork = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of 1work for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmgr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?ungqr

Generates the complex unitary matrix Q of the OR
factorization formed by ?geqrt.

Syntax
call cunggr (m, n, k, a, lda, tau, work, lwork, info)

call zunggr (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates the whole or part of m by m unitary matrix Q of the QR factorization formed
by the routines cgeqgrf/zgegrf or cgegpf/zgegpf. Use this routine after a call to
cgeqrf/zgeqrf or cgeqgpf/zgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix 4 with m> p. To compute
the whole matrix Q, use:

call ?ungqgr (m, m, p, a, lda, tau, work, lwork, info)
To compute the leading p columns of O (which form an orthonormal basis in the space spanned by
the columns of 4):

call ?ungqgr (m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the OR factorization of 4’s leading k columns:

call ?unggr (m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned
by A’s leading k columns):

call ?ungqgr (m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the unitary matrix Q (m = 0).
n INTEGER. The number of columns of Q to be computed (0 < n < m).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (0 < k< n).

4-19

4 Intel® Math Kernel Library Reference Manual

4-20

a, tau, work COMPLEX for cunggr
DOUBLE COMPLEX for zungqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf/zgegrf or
cgeqpf/zgeqgpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (1work) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).
lwork INTEGER. The size of the work array (1work 2 n)
See Application notes for the suggested value of Iwork.
Output Parameters
a Overwritten by n leading columns of the m by m unitary matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||, = O(e) ||4||,
where € is the machine precision.

The total number of floating-point operations is approximately
16*m*n*k - 8%(m+ n)*k* + (16/3)*K>.
If n = k, the number is approximately (8/3)*n2*(3m - n).

The real counterpart of this routine is ?orggr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

2unmaqr

Multiplies a complex matrix by the unitary matrix Q of the
OR factorization formed by ?geqgrt.

Syntax
call cunmgr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmgr (side, trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a rectangular complex matrix C by Q or O, where Q is the unitary matrix
0 of the QR factorization formed by the routines cgegrf/zgegrf or cgegpf/zgegpf.

Depending on the parameters side and trans, the routine can form one of the matrix products
0C, 0C, CQ, or CO" (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L or 'R".
If side ='1.', Q or Q' is applied to C from the left.
If side ='R", Q or Q" is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='C", the routine multiplies C by 0.

m INTEGER. The number of rows in the matrix C (m = 0).
n INTEGER. The number of columns in C (n=0).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q. Constraints:
0<k<mifside="L";
0<k<n ifside="R".

a,work,tau,c COMPLEX for cgeqgrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf / zgeqrf or

4-21

4 Intel® Math Kernel Library Reference Manual

4-22

lda

1dc

1lwork

cgeqgpf / zgeqgpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldec,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (lwork) is a workspace array.

INTEGER. The first dimension of a. Constraints:
lda=>max(l, m) if side="L";
lda=max(l, n) if side="R".

INTEGER. The first dimension of ¢. Constraint:
ldc =2 max(1l, m).

INTEGER. The size of the work array. Constraints:
lwork2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, QC, CQ, or CQ"
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = n*blocksize (if side ='L") or lwork = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of 1work for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormgr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?gelqgf

Computes the LQ factorization of a general m by n

martrix.

Syntax

call
call
call
call

sgelqf
dgelqgf
cgelgf
zgelqgf

Description

—~ o~ o~ o~

m, n, a, lda, tau, work, lwork, info

)
m, n, a, lda, tau, work, lwork, info)
m, n, a, lda, tau, work, lwork, info)

)

m, n, a, lda, tau, work, lwork, info

The routine forms the LQ factorization of a general m by n matrix 4
(see Orthogonal Factorizations on page 4-5). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m,
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m

n

a, wo

lda

1lwork

rk

INTEGER. The number of rows in the matrix 4 (m = 0).
INTEGER. The number of columns in 4 (n=0).

REAL for sgelqgf

DOUBLE PRECISION for dgelqf

COMPLEX for cgelqgf

DOUBLE COMPLEX for zgelgf.

Arrays:

a(lda,*) contains the matrix 4.

The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m).

INTEGER. The size of the work array; at least max(1, m).

See Application notes for the suggested value of 1work.

4-23

4 Intel® Math Kernel Library Reference Manual

4-24

Output Parameters

a

tau

work (1)

info

Overwritten by the factorization data as follows:

If m < n, the elements above the diagonal are overwritten by the details of the
unitary (orthogonal) matrix O, and the lower triangle is overwritten by the
corresponding elements of the lower triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by the details of the
matrix Q, and the remaining elements are overwritten by the corresponding
elements of the m by n lower trapezoidal matrix L.

REAL for sgelqgf

DOUBLE PRECISION for dgelqgf

COMPLEX for cgelqgf

DOUBLE COMPLEX for zgelgt.

Array, DIMENSION at least max(1, min(m, n)).
Contains additional information on the matrix Q.

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of I1work for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix 4 + E, where ||E||, = O(¢) ||4||,-

LAPACK Routines: Least Squares and Eigenvalue Problems 4

The approximate number of floating-point operations for real flavors is
(4/3)n° if m=n,
(2/3)n*(Bm-n) ifm>n,
(2/3)m2(3n—m) ifm<n.

The number of operations for complex flavors is 4 times greater.

To find the minimum-norm solution of an underdetermined least-squares problem minimizing ||4x
— b||, for all columns b of a given matrix B, you can call the following:

?gelqf (this routine) to factorize 4 = LQ;
?trsm (a BLAS routine) to solve LY = B for ¥,
?ormlg to compute X = (Q,)”Y (for real matrices);

?2unmlg to compute X = (Q,)"Y (for complex matrices).

(The columns of the computed X are the minimum-norm solution vectors x. Here 4 is an m by n
matrix with m < n; O denotes the first m columns of Q).

To compute the elements of O explicitly, call
?orglg (for real matrices)

?unglg (for complex matrices).

4-25

4 Intel® Math Kernel Library Reference Manual

?orglq

Generates the real orthogonal matrix Q of the LQ
factorization formed by ?gelgf.

4-26

Syntax
call sorglg (m, n, k, a, lda, tau, work, lwork, info)

call dorglg (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates the whole or part of n by n orthogonal matrix Q of the LQ factorization
formed by the routines sgelgf/dgelgf. Use this routine after a call to sgelgf/dgelgf.

Usually Q is determined from the LQ factorization of an p by n matrix 4 with n > p. To compute
the whole matrix Q, use:

call ?orglg (n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of O (which form an orthonormal basis in the space spanned by the
rows of A):

call ?orglg (p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of 4’s leading k rows:

call ?orglg (n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk (which form an orthonormal basis in the space spanned by
A’s leading k rows):

call ?orggr (k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows of Q to be computed
(0<m< n).
n INTEGER. The order of the orthogonal matrix Q (n = m).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (0 £ k < m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, tau, work REAL for sorglg
DOUBLE PRECISION for dorglqg
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgelgf/dgelgt.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (1work) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).
lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of Iwork.
Output Parameters
a Overwritten by m leading rows of the n by n orthogonal matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix £ such that ||E]|, = O(¢)
||4||, where € is the machine precision.

The total number of floating-point operations is approximately
4xmrn*k - 2%(m+ n)* K> + (4/3)* K.
If m = k, the number is approximately (2/3)*m**(3n - m).

The complex counterpart of this routine is ?unglqg.

4-27

4 Intel® Math Kernel Library Reference Manual

?ormliq

Multiplies a real matrix by the orthogonal matrix Q of the
LQ factorization formed by ?gelgt.

Syntax

call sormlg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormlg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

4-28

Description

The routine multiplies a real m-by-n matrix C by O or O, where Q is the orthogonal matrix Q of
the LQ factorization formed by the routine sgelgf/dgelgf.

Depending on the parameters side and trans, the routine can form one of the matrix products
0C, O7C, CQ, or COT (overwriting the result on C).

Input Parameters

side

trans

a,work, tau, c

CHARACTER*1. Must be either 'L or 'R".
If side ="1.', Q or Q7 is applied to C from the left.
If side ='R"', Q or Q7 is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='T", the routine multiplies C by Q7.

INTEGER. The number of rows in the matrix C (m > 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0<k<mifside="L";

0<k<n ifside="R".

REAL for sormlg

DOUBLE PRECISIONfbrdormlq.

Arrays:

a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

at least max(1, m) if side="L";
at least max(1, n) if side ="'R".
The dimension of tau must be at least max(1, k).

c(ldec,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.

lda INTEGER. The first dimension of a; 1da = max(1, k).
ldc INTEGER. The first dimension of ¢; 1dc = max(1, m).
lwork INTEGER. The size of the work array. Constraints:

lwork2max(l, n) if side="L";
lwork 2max(l, m) if side='R".
See Application notes for the suggested value of Iwork.

Output Parameters

c Overwritten by the product QC, Q'C, CQ, or CO”
(as specified by side and trans).

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = n*blocksize (if side ='L") or lwork = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The complex counterpart of this routine is unmlg.

4-29

4 Intel® Math Kernel Library Reference Manual

?unglq

Generates the complex unitary matrix Q of the LQ
factorization formed by ?gelgf.

4-30

Syntax
call cunglg (m, n, k, a, lda, tau, work, lwork, info)

call zunglg (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates the whole or part of n by n unitary matrix Q of the LQ factorization formed
by the routines cgelgf/zgelgf. Use this routine after a call to cgelgf/zgelgf.

Usually Q is determined from the LQ factorization of an p by n matrix 4 with n > p. To compute
the whole matrix Q, use:

call ?unglg (n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of O (which form an orthonormal basis in the space spanned by the
rows of A):

call ?unglg (p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of 4’s leading k rows:

call ?unglg (n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk (which form an orthonormal basis in the space spanned by
A’s leading k rows):

call ?ungqgr (k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows of Q to be computed
(0<m< n).
n INTEGER. The order of the unitary matrix Q (n = m).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (0 £ k < m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, tau, work COMPLEX for cunglg
DOUBLE COMPLEX for zunglg
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgelgf/dgelgt.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (1work) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).
lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of Iwork.
Output Parameters
a Overwritten by m leading rows of the n by n unitary matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||, = O(e) ||4||,
where € is the machine precision.

The total number of floating-point operations is approximately
16*m*n*k - 8%(m+ n)*k* + (16/3)*K>.
If m= k, the number is approximately (8/3)*m**(3n - m).

The real counterpart of this routine is ?orglg.

4-31

4 Intel® Math Kernel Library Reference Manual

?2unmiq

Multiplies a complex matrix by the unitary matrix Q of the
LQ factorization formed by ?gelgt.

Syntax

call cunmlg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmlg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

4-32

Description

The routine multiplies a real m-by-n matrix C by Q or O, where Q is the unitary matrix Q of the
LQ factorization formed by the routine cgelgf/zgelgf.

Depending on the parameters side and trans, the routine can form one of the matrix products
0C, 0FC, CQ, or CO" (overwriting the result on C).

Input Parameters

side

trans

a,work, tau, c

CHARACTER*1. Must be either 'L or 'R".
If side ='1.', Q or Q" is applied to C from the left.
If side ='R", Q or Q" is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='C"', the routine multiplies C by Q.

INTEGER. The number of rows in the matrix C (m > 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0<k<mifside="L";

0<k<n ifside="R".

COMPLEX for cunmlqg

DOUBLE COMPLEXibrzunmlq

Arrays:

a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

at least max(1, m) if side="L";
at least max(1, n) if side ='R".
The dimension of tau must be at least max(1, k).

c(ldec,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.

lda INTEGER. The first dimension of a; 1da = max(1, k).
ldc INTEGER. The first dimension of ¢; 1dc = max(1, m).
lwork INTEGER. The size of the work array. Constraints:

lwork2max(l, n) if side="L";
lwork 2max(l, m) if side="R".
See Application notes for the suggested value of Iwork.

Output Parameters

c Overwritten by the product QC, Q"'C, CQ, or CQ"
(as specified by side and trans).

work (1) If info=0, on exit work (1) contains the minimum value of I1work required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = n*blocksize (if side ='L") or lwork = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormlg.

4-33

4 Intel® Math Kernel Library Reference Manual

?geqlf

Computes the QL factorization of a general m by n
matrix.

Syntax
call sgeqglf
call dgeqlf

m, n, a, lda, tau, work, lwork, info

call cgeqlf m, n, a, lda, tau, work, lwork, info

~ o~~~
N
3
N
QL
N

)
lda, tau, work, lwork, info)
)
)

call zgeqlf m, n, a, lda, tau, work, lwork, info

Description

The routine forms the QL factorization of a general m-by-n matrix A4.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m,
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m = 0).
n INTEGER. The number of columns in 4 (n=0).
a, work REAL for sgeqlf

DOUBLE PRECISION for dgeglf

COMPLEX for cgeqlf

DOUBLE COMPLEX for zgeqlf.

Arrays:

a(lda,*) contains the matrix 4.

The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of 1work.

4-34

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters
a Overwritten on exit by the factorization data as follows:

if m2 n, the lower triangle of the subarray

a(m-nt1:m, 1:n) contains the n-by-n lower triangular matrix L;

if m < n, the elements on and below the (n-m)th superdiagonal contain the
m-by-n lower trapezoidal matrix L,

in both cases, the remaining elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors.

tau REAL for sgeqlf
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqglf.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors for the matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

Related routines include:

?orggl to generate matrix Q (for real matrices);
?unggl to generate matrix Q (for complex matrices);
?ormgl to apply matrix Q (for real matrices);
?unmgl to apply matrix Q (for complex matrices).

4-35

4 Intel® Math Kernel Library Reference Manual

?orgql

Generates the real matrix Q of the QL factorization formed
by ?geqlf.

4-36

Syntax
call sorggql (m, n, k, a, lda, tau, work, lwork, info)

call dorggl (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates an m-by-n real matrix Q with orthonormal columns, which is defined as the
last n columns of a product of k elementary reflectors H; of order m: O =H, --- H,H; as returned
by the routines sgeglf/dgegl £ . Use this routine after a call to sgeqlf/dgeqlf.

Input Parameters

m INTEGER. The number of rows of the matrix O
(m=0).
n INTEGER. The number of columns of the matrix O
(m2n2=0).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (n 2=k =0).

a, tau, work REAL for sorgql
DOUBLE PRECISION for dorggl
Arrays: a(1da,*), tau(*), work(lwork).

On entry, the (n - k + 1)th column of a must contain the vector which defines
the elementary reflector H;, fori=1,2,...,k, as returned by sgeqlf/dgeqlf in
the last k columns of its array argument a;

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by sgeqglf/dgeqlf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of Iwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is unggl.

4-37

4 Intel® Math Kernel Library Reference Manual

?ungql

Generates the complex matrix Q of the QL factorization
formed by ?geqlf.

4-38

Syntax

call cunggl (m, n, k, a, lda, tau, work, lwork, info)
call zunggl (m, n, k, a, lda, tau, work, lwork, info)
Description

The routine generates an m-by-n complex matrix Q with orthonormal columns, which is defined
as the last n columns of a product of k elementary reflectors H; of order m: Q= H, - H, H; as
returned by the routines cgeglf/zgegl £ . Use this routine after a call to cgeqlf/zgeglf.

Input Parameters

m INTEGER. The number of rows of the matrix O
(m=0).
n INTEGER. The number of columns of the matrix O
(m2n2=0).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (n 2=k =0).

a, tau, work COMPLEX for cunggl
DOUBLE COMPLEX for zunggl
Arrays: a(1da,*), tau(*), work(lwork).

On entry, the (n - k + 1)th column of a must contain the vector which defines
the elementary reflector H;, fori=1,2,...,k, as returned by cgeqlf/zgeqlf in
the last k columns of its array argument a;

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by cgeqlf/zgeqlf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of Iwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?orggl.

4-39

4 Intel® Math Kernel Library Reference Manual

?ormql

Multiplies a real matrix by the orthogonal matrix Q of the
QL factorization formed by ?geqlf.

Syntax

call sormgl (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormgl (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

This routine multiplies a real m-by-n matrix C by Q or O, where Q is the orthogonal matrix Q of
the QL factorization formed by the routine sgeglf/dgeglf .

Depending on the parameters side and trans, the routine 2ormgl can form one of the matrix
products QC, Q'C, CQ, or CQT (overwriting the result over C).

Input Parameters

side

trans

a, tau, c,work

4-40

CHARACTER*1. Must be either 'L or 'R".
If side ="1.", Q or Q7 is applied to C from the left.
If side ='R"', Q or Q7 is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='T", the routine multiplies C by Q7.

INTEGER. The number of rows in the matrix C (m = 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0<k<mifside="L";

0<k<n ifside="R".

REAL for sormgl
DOUBLE PRECISIONibrdorqu
Arrays: a(1da,*), tau(*), c(ldc,*), work(lwork).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

1da

1dc

1lwork

On entry, the ith column of a must contain the vector which defines the
elementary reflector H;, fori=1,2,...,k, as returned by sgeqlf/dgeqlf in the
last k columns of its array argument a.

The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by sgeqglf/dgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.
INTEGER. The first dimension of a;

if side ='L', 1da= max(l, m);
if side="R', 1da = max(l, n).

INTEGER. The first dimension of ¢; 1dc = max(1, m).

INTEGER. The size of the work array. Constraints:
lwork2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, Q'C, CQ, or CQT
(as specified by side and trans).

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = n*blocksize (if side ='L") or 1work = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The complex counterpart of this routine is unmgl.

4-41

4 Intel® Math Kernel Library Reference Manual

?2unmql

Multiplies a complex matrix by the unitary matrix Q of the
QL factorization formed by ?geqlf.

Syntax

call cunmgl (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmgl (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a complex m-by-n matrix C by O or O, where Q is the unitary matrix Q of
the QL factorization formed by the routine cgeglf/zgeglf .

Depending on the parameters side and trans, the routine ?unmgl can form one of the matrix
products QC, Q"'C, CQ, or CQ" (overwriting the result over C).

Input Parameters

side

trans

a, tau, c,work

4-42

CHARACTER*1. Must be either 'L or 'R".
If side ='L.', Q or Q' is applied to C from the left.
If side ='R", Q or Q" is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='C", the routine multiplies C by 0.

INTEGER. The number of rows in the matrix C (m = 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0<k<mifside="L";

0<k<n ifside="R".

COMPLEX for cunmgl
DOUBLE COMPLEXibrzunqu
Arrays: a(1da,*), tau(*), c(ldc,*), work(lwork).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

1da

1dc

1lwork

On entry, the ith column of a must contain the vector which defines the
elementary reflector H;, fori=1,2,...,k, as returned by cgeqlf/zgeqlf in the
last k columns of its array argument a.

The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by cgeqlf/zgeqglf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.
INTEGER. The first dimension of a;

if side ='L', 1da= max(l, m);
if side="R', 1da = max(l, n).

INTEGER. The first dimension of ¢; 1dc = max(1, m).

INTEGER. The size of the work array. Constraints:
lwork2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, Q”C, CQ, or CO"
(as specified by side and trans).

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = n*blocksize (if side ='L") or 1work = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The real counterpart of this routine is 2ormgl.

4-43

4 Intel® Math Kernel Library Reference Manual

?gerqf

Computes the RQ factorization of a general m by n
matrix.

Syntax
call sgerqgf m, n, a, lda, tau, work, lwork, info
call dgerqgf

call cgerqgf m, n, a, lda, tau, work, lwork, info

~ o~~~
N
3
N
QL
N

)
lda, tau, work, lwork, info)
)
)

call zgerqgf m, n, a, lda, tau, work, lwork, info

Description

The routine forms the RQ factorization of a general m-by-n matrix 4.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m = 0).
n INTEGER. The number of columns in 4 (n=0).
a, work REAL for sgerqgf

DOUBLE PRECISION for dgerqf

COMPLEX for cgergf

DOUBLE COMPLEX for zgergf.

Arrays:

a(lda,*) contains the m-by-n matrix 4.

The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array;
Iwork = max(1, m).
See Application notes for the suggested value of 1work.

4-44

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

a Overwritten on exit by the factorization data as follows:
if m< n, the upper triangle of the subarray
a(l:m, n-mt1:n) contains the m-by-mupper triangular matrix R;
if m> n, the elements on and above the (m-n)th subdiagonal contain the
m-by-n upper trapezoidal matrix R;
in both cases, the remaining elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of min(m,n) elementary reflectors.

tau REAL for sgerqgf
DOUBLE PRECISION for dgergf
COMPLEX for cgergf
DOUBLE COMPLEX for zgergf.
Array, DIMENSION at least max (1, min(m, nn)).
Contains scalar factors of the elementary reflectors for the matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

Related routines include:

?orgrg to generate matrix Q (for real matrices);
?2ungrg to generate matrix Q (for complex matrices);
2ormrg to apply matrix Q (for real matrices);
2unmrq to apply matrix Q (for complex matrices).

4-45

4 Intel® Math Kernel Library Reference Manual

?orgrq

Generates the real matrix Q of the RQ factorization formed
by ?gerqf.

4-46

Syntax
call sorgrg (m, n, k, a, lda, tau, work, Ilwork, info)

call dorgrg (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates an m-by-n real matrix Q with orthonormal rows, which is defined as the last
mrows of a product of k elementary reflectors H; of order n: Q= H| H, --- Hy as returned by the
routines sgergf/dgergf. Use this routine after a call to sgergf/dgergt.

Input Parameters

m INTEGER. The number of rows of the matrix O
(m=0).
n INTEGER. The number of columns of the matrix O
(n=2m).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (m= k = 0).

a, tau, work REAL for sorgrg
DOUBLE PRECISION for dorgrg
Arrays: a(1da,*), tau(*), work(lwork).

On entry, the (m - k + 1)th row of a must contain the vector which defines the
elementary reflector H;, fori=1,2,...,k, as returned by sgerqgf/dgerqf in the
last k rows of its array argument a;

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by sgerqgf/dgergft;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of Iwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungrg.

4-47

4 Intel® Math Kernel Library Reference Manual

?ungrq

Generates the complex matrix Q of the RQ factorization
formed by ?gerqf.

Syntax
call cungrg (m, n, k, a, lda, tau, work, Ilwork, info)

call zungrqg (m, n, k, a, lda, tau, work, lwork, info)

Description

The routine generates an m-by-n complex matrix O with orthonormal rows, which is defined as
the last m rows of a product of k elementary reflectors H; of order n: Q=H," Hy!! .- H, /! as
returned by the routines sgergf/dgergf. Use this routine after a call to sgerqgf/dgergf.

Input Parameters

m INTEGER. The number of rows of the matrix O
(m=0).
n INTEGER. The number of columns of the matrix O
(n=2m).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q (m= k = 0).

a, tau, work REAL for cungrg
DOUBLE PRECISION for zungrg
Arrays: a(1da,*), tau(*), work(lwork).

On entry, the (m - k + 1)th row of a must contain the vector which defines the
elementary reflector H;, fori=1,2,...,k, as returned by sgerqgf/dgerqf in the
last k rows of its array argument a;

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by sgerqgf/dgergft;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

4-48

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of Iwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgrg.

4-49

4 Intel® Math Kernel Library Reference Manual

?ormrq

Multiplies a real matrix by the orthogonal matrix Q of the
RQ factorization formed by ?gerqf.

Syntax

call sormrg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormrqg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a real m-by-n matrix C by Q or O, where Q is the real orthogonal matrix
defined as a product of k elementary reflectors H;: Q = H; H, --- H, as returned by the RQ
factorization routine sgergf/dgergf .

Depending on the parameters side and trans, the routine can form one of the matrix products
0C, 0'C, CQ, or CQT (overwriting the result over C).

Input Parameters

side

trans

a, tau, c,work

4-50

CHARACTER*1. Must be either 'L' or 'R".
If side ='1.', Q or Q7 is applied to C from the left.
If side ='R"', Q or Q7 is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T", the routine multiplies C by Q7.

INTEGER. The number of rows in the matrix C (m = 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0< k <m, ifside="L";

0<k<n, ifside="'R".

REAL for sormrqg
DOUBLE PRECISION1brdormrq.
Arrays: a(1da,*), tau(*), c(ldc,*), work(lwork).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lda
ldc

1lwork

On entry, the ith row of a must contain the vector which defines the elementary
reflector H;, fori=1,2,...,k, as returned by sgerqgf/dgerqgf in the last k rows
of its array argument a.

The second dimension of a must be at least max(1, m) if side ='L', and at
least max(1, n) if side ='R".

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by sgergf/dgergf.
The dimension of tau must be at least max(1, k).

c(1ldc,*) contains the m-by-n matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.
INTEGER. The first dimension of a; 1da = max(l, k) .
INTEGER. The first dimension of ¢; 1dc = max(1, m).

INTEGER. The size of the work array. Constraints:
lwork2max(l, n) if side="L";

lwork2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, O'C, CQ, or CQT
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using I1work = n*blocksize (if side ='L") or 1work = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmrg.

4-51

4 Intel® Math Kernel Library Reference Manual

unmrq

Multiplies a complex matrix by the unitary matrix Q of the
RQ factorization formed by ?gerqf.

Syntax

call cunmrg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmrqg (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a complex m-by-n matrix C by Q or O, where Q is the complex unitary
matrix defined as a product of k elementary reflectors H; : Q = H," H,' --- H, ' as returned by the
RQ factorization routine cgergf/zgergf .

Depending on the parameters side and trans, the routine can form one of the matrix products
0cC, 0"C, CQ, or CO" (overwriting the result over C).

Input Parameters

side

trans

a, tau, c,work

4-52

CHARACTER*1. Must be either 'L' or 'R".
If side ='L', Q or Q" is applied to C from the left.
If side ='R", Q or Q" is applied to C from the right.

CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C", the routine multiplies C by 0.

INTEGER. The number of rows in the matrix C (m = 0).
INTEGER. The number of columns in C (n=0).

INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:

0< k <m, ifside="L";

0<k<n, ifside="'R".

COMPLEX for cunmrg
DOUBLE COMPLEXibrzunmrq
Arrays: a(1da,*), tau(*), c(ldc,*), work(lwork).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lda
ldc

1lwork

On entry, the ith row of a must contain the vector which defines the elementary
reflector H;, fori=1,2,...,k, as returned by cgerqgf/zgerqgf in the last k rows
of its array argument a.

The second dimension of a must be at least max(1, m) if side ='L', and at
least max(1, n) if side ='R".

tau(i) must contain the scalar factor of the elementary reflector H;, as returned
by cgerqgf/zgergf.
The dimension of tau must be at least max(1, k).

c(1ldc,*) contains the m-by-n matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.
INTEGER. The first dimension of a; 1da = max(l, k) .
INTEGER. The first dimension of ¢; 1dc = max(1, m).

INTEGER. The size of the work array. Constraints:
lwork2max(l, n) if side="L";

lwork2max(l, m) if side="R".

See Application notes for the suggested value of 1work.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, Q”C, CQ, or CO"
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using I1work = n*blocksize (if side ='L") or 1work = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormrg.

4-53

4 Intel® Math Kernel Library Reference Manual

?tzrzf

Reduces the upper trapezoidal matrix A to upper
triangular form.

Syntax
call stzrzf m, n, a, lda, tau, work, lwork, info
call dtzrzf

call ctzrzf m, n, a, lda, tau, work, lwork, info

~ o~~~
N
3
N
QL
N

)
lda, tau, work, lwork, info)
)
)

call ztzrzf m, n, a, lda, tau, work, lwork, info

Description

This routine reduces the m-by-n (m < n) real/complex upper trapezoidal matrix 4 to upper
triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix 4
is factored as

A=(R0)*Z

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

m INTEGER. The number of rows in the matrix 4 (m= 0).
n INTEGER. The number of columns in 4 (n = m).
a, work REAL for stzrzf

DOUBLE PRECISION for dtzrzf

COMPLEX for ctzrzf

DOUBLE COMPLEX for ztzrzf.

Arrays: a(1da,*), work(lwork) .

The leading m-by-n upper trapezoidal part of the array a contains the matrix A4
to be factorized.

The second dimension of a must be at least max(1, n).

work is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, m).

Iwork INTEGER. The size of the work array;

4-54

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lwork = max(1, m).
See Application notes for the suggested value of Iwork.

Output Parameters
a Overwritten on exit by the factorization data as follows:

the leading m-by-m upper triangular part of a contains the upper triangular
matrix R, and elements m +1 to n of the first mrows of a, with the array tau,
represent the orthogonal matrix Z as a product of m elementary reflectors.

tau REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSTION at least max (1, m).
Contains scalar factors of the elementary reflectors for the matrix Z.

work (1) If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

Related routines include:

?ormrz to apply matrix Q (for real matrices);

2unmrz to apply matrix Q (for complex matrices).

4-55

4 Intel® Math Kernel Library Reference Manual

ormrz

Multiplies a real matrix by the orthogonal matrix defined
from the factorization formed by ?tzrzf.

Syntax
call sormrz (side,trans,m,n,k,1,a,lda,tau,c,ldc,work,lwork,info)

call dormrz (side,trans,m,n,k,1,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a real m-by-n matrix C by Q or O, where Q is the real orthogonal matrix
defined as a product of k elementary reflectors H;: Q = H; H, --- H, as returned by the
factorization routine stzrzf/dtzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products
0C, 0'C, CQ, or CQT (overwriting the result over C).

The matrix Q is of order mif side ='L' and of order nif side ='R".

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='1.', Q or QT is applied to C from the left.
If side ='R", Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N"', the routine multiplies C by Q.
If trans =' T, the routine multiplies C by O”.

m INTEGER. The number of rows in the matrix C (m = 0).
n INTEGER. The number of columns in C (n = 0).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q. Constraints:
0< k <m, if side="L";
0<k<n, ifside="R".

1 INTEGER.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, tau, c,work

lda
ldc

1lwork

The number of columns of the matrix 4 containing the meaningful part of the
Householder reflectors. Constraints:

0<1<m, ifside="L";

0<1<n, ifside="'R".

REAL for sormrz
DOUBLE PRECISION for dormrz.
Arrays: a(1da,*), tau(*), c(ldc,*), work(Ilwork).

On entry, the ith row of a must contain the vector which defines the elementary
reflector H;, fori=1,2,...,k, as returned by stzrzf/dtzrzf in the last k rows
of its array argument a.

The second dimension of a must be at least max(1, m) if side ='L', and at
least max(1, n) if side ='R".

tau(i) must contain the scalar factor of the elementary reflector Hj, as returned
by stzrzf/dtzrzf.
The dimension of tau must be at least max(1, k).

c(1ldc,*) contains the m-by-n matrix C.
The second dimension of ¢ must be at least max(1, n)

work (1work) is a workspace array.
INTEGER. The first dimension of a; 1da > max(l, k).
INTEGER. The first dimension of ¢; 1dc = max(1, m).

INTEGER. The size of the work array. Constraints:
lwork2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product QC, Q'C, CQ, or CO”
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

4-57

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using Iwork = n*blocksize (if side ='L") or lwork = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of 1work for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmrz.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

2unmrz

Multiplies a complex matrix by the unitary matrix defined
from the factorization formed by ?tzrzf.

Syntax
call cunmrz (side,trans,m,n,k,1,a,lda,tau,c,ldc,work,lwork,info)

call zunmrz (side,trans,m,n,k,1,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a complex m-by-n matrix C by Q or O, where Q is the unitary matrix
defined as a product of k elementary reflectors H; :
O =H" Hy" - H; M as returned by the factorization routine ctzrzf/ztzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products
0cC, 0"C, CQ, or CO" (overwriting the result over C).

The matrix Q is of order mif side ='L' and of order nif side ='R".

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R"'.
If side ='1.', Q or O is applied to C from the left.
If side ="R", Q or O is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N"', the routine multiplies C by Q.
If trans ='C", the routine multiplies C by 0.

m INTEGER. The number of rows in the matrix C (m = 0).
n INTEGER. The number of columns in C (n = 0).
k INTEGER. The number of elementary reflectors whose product defines the

matrix Q. Constraints:
0< k <m, ifside="L";
0<k<n, ifside="R".

1 INTEGER.

4-59

4 Intel® Math Kernel Library Reference Manual

4-60

a, tau, c,work

lda
ldc

1lwork

The number of columns of the matrix 4 containing the meaningful part of the
Householder reflectors. Constraints:

0<1<m, ifside="L";

0<1<n, ifside="'R".

COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(1da,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the elementary
reflector H;, fori=1,2,...,k, as returned by ctzrzf/ztzrzf in the last k rows
of its array argument a.

The second dimension of a must be at least max(1, m) if side ='L', and at
least max(1, n) if side ='R".

tau(i) must contain the scalar factor of the elementary reflector Hj, as returned
by ctzrzf/ztzrzf.
The dimension of tau must be at least max(1, k).

c(1ldc,*) contains the m-by-n matrix C.
The second dimension of ¢ must be at least max(1, n)

work (lwork) is a workspace array.
INTEGER. The first dimension of a; 1da > max(l, k).
INTEGER. The first dimension of ¢; 1dc = max(1, m).

INTEGER. The size of the work array. Constraints:
lwork 2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product QC, Q"'C, CQ, or CQ"
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using Iwork = n*blocksize (if side ='L") or lwork = m*blocksize (if
side ='R") where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of 1work for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormrz.

4-61

4 Intel® Math Kernel Library Reference Manual

?9gqrf

Computes the generalized QR factorization of two
matrices.

1db, taub, work, lwork, info)
1db, taub, work, lwork, info)
1db, taub, work, lwork, info)
1db, taub, work, lwork, info)

call sgggrf (n, m, p, a, lda, taua,

~

N

call cgggrf (n, m, p, a, lda, taua,

~

(

call dgggrf (n, m, p, a, lda, taua,
(
(

o o o o

call zggqrf (n, m, p, a, lda, taua,

N

Description

The routine forms the generalized OR factorization of an n-by-m matrix 4 and an n-by-p matrix B
as A=QR, B=Q0TZ,

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R
and T assume one of the forms:

m
R = m Rll , ifn>2m
n-m 0
or
n m-—n
R=n (Ry; Ry) , ifn<m,

where Ry is upper triangular, and
p—-n n

T =n (0 le) 5 lfnSp , Or

p
T = n-p Tll s ifn>p

4-62

LAPACK Routines: Least Squares and Eigenvalue Problems 4

where T, or T5; is a p-by-p upper triangular matrix.

In particular, if B is square and nonsingular, the GOR factorization of 4 and B implicitly gives the
OR factorization of B4 as:

Bla=7H(T"R)

Input Parameters

n INTEGER. The number of rows of the matrices 4 and B (n = 0).
m INTEGER. The number of columns in 4 (m=0).

o) INTEGER. The number of columns in B (p = 0).

a, b, work REAL for sggqrf

DOUBLE PRECISION for dgggrf

COMPLEX for cggqrf

DOUBLE COMPLEX for zgggrf.

Arrays:

a(lda,*) contains the matrix 4.

The second dimension of a must be at least max(1, m).

b(1db,*) contains the matrix B.
The second dimension of b must be at least max(1, p).

work (1work) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).
1db INTEGER. The first dimension of b; at least max(1, n).
lwork INTEGER. The size of the work array; must be at least max(1, n, m, p)

See Application notes for the suggested value of Iwork.

Output Parameters
a, b Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the array a contain the
min(n,m)-by-m upper trapezoidal matrix R (R is upper triangular if n > m); the
elements below the diagonal, with the array taua, represent the
orthogonal/unitary matrix Q as a product of min(zn,m) elementary reflectors ;

4-63

4 Intel® Math Kernel Library Reference Manual

4-64

taua, taub

work (1)

info

if n < p, the upper triangle of the subarray

b(1:n, p-nt+1:p) contains the n-by-n upper triangular matrix 7;

if n> p, the elements on and above the (n-p)th subdiagonal contain the n-by-p
upper trapezoidal matrix 7; the remaining elements, with the array taub,
represent the orthogonal/unitary matrix Z as a product of elementary reflectors.

REAL for sggqrf

DOUBLE PRECISION for dgggrf

COMPLEX for cggqrf

DOUBLE COMPLEX for zgggrf.

Arrays, DIMENSION at least max (1, min(zn, m)) for taua and at least max (1,
min(zn, p)) for taub.

The array taua contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Z.

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using

lwork 2max(n,m,p)*max(nbl,nb2,nb3),
where nb1 is the optimal blocksize for the QR factorization of an n-by-m matrix, nb2 is the

optimal blocksize for the RQ factorization of an n-by-p matrix, and nb3 is the optimal blocksize

for a call of ?ormgr/?unmgr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?ggrgf

Computes the generalized RQ factorization of two
matrices.

call sggrgf (m, p, n, a, lda, taua, b, 1ldb, taub, work, lwork, info)

1db, taub, work, lwork, info)

~

m, p, n, a, lda, taua, b, 1ldb, taub, work, lwork, info)

(

call dggrqgf (m, p, n, a, lda, taua,
call cggrgf (
(

o o o o

~

call zggrqgf (m, p, n, a, lda, taua, 1db, taub, work, lwork, info)

Description

The routine forms the generalized RQ factorization of an m-by-n matrix 4 and an p-by-n matrix B
as A=RQ, B=ZTQ,

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R
and T assume one of the forms:

n—-m m

or
n
ARy

where Ry or R, is upper triangular, and

Il
T = n T11 , ifp>2n
p—-n \(Q

or

4-65

4 Intel® Math Kernel Library Reference Manual

b 1nn-p
where 7; is upper triangular.

In particular, if B is square and nonsingular, the GRQ factorization of 4 and B implicitly gives the
RO factorization of AB! as:

AB-' = (R THZ!

Input Parameters

m INTEGER. The number of rows of the matrix 4 (m = 0).

Je) INTEGER. The number of rows in B (p = 0).

n INTEGER. The number of columns of the matrices 4 and B (n = 0).
a, b, work REAL for sggrqgf

DOUBLE PRECISION for dggrgf

COMPLEX for cggrgf

DOUBLE COMPLEX for zggrgf.

Arrays:

a(lda,*) contains the m-by-n matrix 4.

The second dimension of a must be at least max(1, n).

b(1db, *) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).
1db INTEGER. The first dimension of b; at least max(1, p).
lwork INTEGER. The size of the work array; must be at least max(1, n, m, p)

See Application notes for the suggested value of Iwork.

Output Parameters

a, b Overwritten by the factorization data as follows:

4-66

LAPACK Routines: Least Squares and Eigenvalue Problems 4

taua, taub

work (1)

info

on exit, if m < n, the upper triangle of the subarray

a(l:m, n-mt1:n) contains the m-by-mupper triangular matrix R;

if m> n, the elements on and above the (m-n)th subdiagonal contain the m-by-n
upper trapezoidal matrix R; the remaining elements, with the array taua,
represent the orthogonal/unitary matrix Q as a product of elementary
reflectors;

the elements on and above the diagonal of the array b contain the
min(p,n)-by-n upper trapezoidal matrix 7 (7 is upper triangular if p > n); the
elements below the diagonal, with the array taub, represent the
orthogonal/unitary matrix Z as a product of elementary reflectors.

REAL for sggrgf

DOUBLE PRECISION for dggrqgf

COMPLEX for cggrgf

DOUBLE COMPLEX for zggrgf.

Arrays, DIMENSION at least max (1, min(m, n)) for taua and at least max (1,
min(p, n)) for taub.

The array taua contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Z.

If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using
lwork 2= max(n,mp)*max(nbl,nb2,nb3),

where nb! is the optimal blocksize for the RQ factorization of an m-by-n matrix, nb2 is the
optimal blocksize for the QR factorization of an p-by-n matrix, and nb3 is the optimal blocksize
for a call of ?ormrqg/?unmrqg.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

4-67

4 Intel® Math Kernel Library Reference Manual

Singular Value Decomposition

This section describes LAPACK routines for computing the singular value decomposition (SVD)
of a general m by n matrix 4:

A=UzV.

In this decomposition, U and ¥ are unitary (for complex A) or orthogonal (for real 4); X is an m by
n diagonal matrix with real diagonal elements G;:

012022 e Zcmin(m,n)zo'

The diagonal elements ©; are singular values of A. The first min(m, n) columns of the matrices U
and V are, respectively, left and right singular vectors of A. The singular values and singular
vectors satisfy

AVI' =OU; and AHui =0v;
where u; and v; are the ith columns of U and ¥, respectively.

To find the SVD of a general matrix 4, call the LAPACK routine ?gebrd or ?gbbrd for reducing
A to a bidiagonal matrix B by a unitary (orthogonal) transformation: 4 = OBP'!. Then call ?bdsqr,
which forms the SVD of a bidiagonal matrix: B = U, V1.

Thus, the sought-for SVD of 4 is given by 4 = UZV = (QU,) T (V{'P").

Table 4-2 Computational Routines for Singular Value Decomposition (SVD)
Operation Real matrices Complex matrices
Reduce A to a bidiagonal matrix B: ?gebrd ?gebrd
A = QBP" (full storage)

Reduce A to a bidiagonal matrix B: ?gbbrd ?gbbrd
A = QBPH (band storage)

Generate the orthogonal (unitary) 2orgbr ?ungbr
matrix Q or P

Apply the orthogonal (unitary) ?ormbr ?unmbr
matrix Q or P

Form singular value decomposition ?bdsqgr ?bdsgr
of the bidiagonal matrix B: ?bdsdc

B=UzW

4-68

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Figure 4-1 Decision Tree: Singular Value Decomposition
yes o Are singular yes
IsAa Cr’omplex Is A banded? values only 9GEBRD ?BDSQR
matrix required?
yes
no
2GBBRD
o IBDSQR 2GEBRD 7UNGBR
7BDSQR
yes
Is A bidiagonal? ?BDSQR
no
es 2GBBRD
Is A banded? Y G
7BDSQR
no
Arle smgL;lar yes 9GEBRD
val U?S only 7BDSQR
required?
no

9GEBRD ?0RGBR
7BDSQR

Figure 4-1 presents a decision tree that helps you choose the right sequence of routines for SVD,
depending on whether you need singular values only or singular vectors as well, whether 4 is real
or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least-squares
problem of minimizing ||4x — b||,. The effective rank k of the matrix 4 can be determined as the
number of singular values which exceed a suitable threshold. The minimum-norm solution is

x=ViZp e

where X is the leading k by & submatrix of X, the matrix V}, consists of the first k£ columns of V' =
PV, and the vector c consists of the first k elements of U"b = U'Q"b.

4-69

4 Intel® Math Kernel Library Reference Manual

?gebrd

Reduces a general matrix to bidiagonal form.

call
call
call
call

Syntax
sgebrd (m, n, a, 1lda, d, e, taug, taup, work, Ilwork, info)
dgebrd (m, n, a, lda, d, e, tauqg, taup, work, lwork, info)
cgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)
zgebrd (m, n, a, lda, d, e, tauqg, taup, work, lwork, info)

Description

The routine reduces a general m by n matrix 4 to a bidiagonal matrix B by an orthogonal (unitary)
transformation.

If m > n, the reduction is givenby A = OB p' = Q(]?)l) P = 0, B, PH,

where B, is an n by n upper diagonal matrix, Q and P are orthogonal or, for a complex 4, unitary
matrices; O, consists of the first n columns of Q.

If m < n, the reduction is given by

A = 0BP" = Q(B,0)P" = Q,B, P},

where B, is an m by m lower diagonal matrix, Q and P are orthogonal or, for a complex 4, unitary
matrices; P; consists of the first m rows of P.

The routine does not form the matrices Q and P explicitly, but represents them as products of
elementary reflectors. Routines are provided to work with the matrices Q and P in this
representation:

If the matrix A is real,

* to compute Q and P explicitly, call orgbr.

* to multiply a general matrix by Q or P, call ?ormbr.

If the matrix A4 is complex,

* to compute Q and P explicitly, call 2ungbr.
® to multiply a general matrix by Q or P, call 2unmbr.

4-70

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

m
n

a, work

1da

1lwork

INTEGER. The number of rows in the matrix 4 (m= 0).
INTEGER. The number of columns in 4 (n=>0).

REAL for sgebrd

DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd

DOUBLE COMPLEX for zgebrd.

Arrays:
a(lda,*) contains the matrix 4.
The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.
INTEGER. The first dimension of a; at least max(1, m).

INTEGER. The dimension of work; at least max(1, m, n).
See Application notes for the suggested value of Iwork.

Output Parameters

a

taugqg, taup

If m > n, the diagonal and first super-diagonal of a are overwritten by the upper
bidiagonal matrix B. Elements below the diagonal are overwritten by details of
0, and the remaining elements are overwritten by details of P.

If m < n, the diagonal and first sub-diagonal of a are overwritten by the lower
bidiagonal matrix B. Elements above the diagonal are overwritten by details of
P, and the remaining elements are overwritten by details of Q.

REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least
max(1l, min(m, n)).

Contains the diagonal elements of B.

REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least
max(1, min(m, n) — 1).

Contains the off-diagonal elements of B.

REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd

4-71

4 Intel® Math Kernel Library Reference Manual

4-72

DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max (1, min(m, nn)).
Contain further details of the matrices O and P.

work (1) If info=0, on exit work (1) contains the minimum value of I1work required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = (m+ n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed matrices Q, B, and P satisfy QBP = A + E, where
IIE|l> = c(n)e ||4||p, c(n) is a modestly increasing function of #, and
€ is the machine precision.

The approximate number of floating-point operations for real flavors is
(4/3)*n**(3*m—n) form> n,

(4/3)*m**(3*n—m) for m< n.

The number of operations for complex flavors is four times greater.

If nn is much less than m, it can be more efficient to first form the QR factorization of 4 by calling
?geqgrf and then reduce the factor R to bidiagonal form. This requires approximately 2* n?*(m+
n) floating-point operations.

If m is much less than n, it can be more efficient to first form the LQ factorization of 4 by calling
?gelgf and then reduce the factor L to bidiagonal form. This requires approximately 2* m?*(m +
n) floating-point operations.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

2gbbrd

Reduces a general band matrix to bidiagonal form.

Syntax

call sgbbrd (vect, m, n, ncc, k1, ku, ab, ldab, d, e, g, ldg, pt,
1dpt, ¢, 1ldc, work, info)

call dgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, g, 1ldqg, pt,
ldpt, ¢, ldc, work, info)

call cgbbrd (vect, m, n, ncc, k1, ku, ab, ldab, d, e, g, ldg, pt,
1dpt, ¢, 1ldc, work, rwork, info)

call zgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, g, 1ldqg, pt,
l1dpt, ¢, ldc, work, rwork, info)

Description

This routine reduces an m by n band matrix 4 to upper bidiagonal matrix B: 4 = QBP". Here the
matrices Q and P are orthogonal (for real 4) or unitary (for complex A4). They are determined as
products of Givens rotation matrices, and may be formed explicitly by the routine if required. The
routine can also update a matrix C as follows: C = QC.

Input Parameters

vect CHARACTER*1. Mustbe 'N' or 'Q' or 'P' or 'B'.
If vect = 'N', neither Q nor P is generated.
If vect = 'Q', the routine generates the matrix Q.
If vect = ' P, the routine generates the matrix P/,
If vect = 'B', the routine generates both Q and P

m INTEGER. The number of rows in the matrix 4 (m = 0).

n INTEGER. The number of columns in 4 (n=0).

ncc INTEGER. The number of columns in C (ncc = 0).

k1 INTEGER. The number of sub-diagonals within the band of 4 (k1 = 0).
ku INTEGER. The number of super-diagonals within the band of 4 (ku = 0).
ab, c, work REAL for sgbbrd

DOUBLE PRECISION for dgbbrd
COMPLEX for cgbbrd
DOUBLE COMPLEX for zgbbrd.

4-73

4 Intel® Math Kernel Library Reference Manual

4-74

ldab

ldg

ldpt

ldc

rwork

Arrays:

ab(ldab,*) contains the matrix 4 in band storage
(see Matrix Storage Schemes).

The second dimension of a must be at least max(1, n).

c(1ldc,*) contains an m by ncc matrix C.
If ncc =0, the array c is not referenced. The second dimension of ¢ must be at
least max(1, ncc).

work (*) is a workspace array.
The dimension of work must be at least 2*max(m, n) for real flavors, or max(m,
n) for complex flavors.

INTEGER. The first dimension of the array ab
(1dab>k1+ ku+1).

INTEGER. The first dimension of the output array g.
ldg=2max(l, m) if vect="'Q"' or 'B",
1dg = 1 otherwise.

INTEGER. The first dimension of the output array pt.
ldpt 2max(1l, n) if vect='"P' or 'B’,
1dpt 2 1 otherwise.

INTEGER. The first dimension of the array c.
ldc=2max(l, m) if ncc>0; 1dc=1 if ncc=0.

REAL for cgbbrd
DOUBLE PRECISION for zgbbrd.
A workspace array, DIMENSION at least max(m, nn).

Output Parameters

ab
d

Overwritten by values generated during the reduction.

REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least
max(1, min(m, n)).

Contains the diagonal elements of the matrix B.

REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least
max(1, min(m, n) — 1).

Contains the off-diagonal elements of B.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

g, pt REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:

g(1ldg, *) contains the output m by m matrix Q.
The second dimension of g must be at least max(1, m).

p(1dpt, *) contains the output n by n matrix P”.
The second dimension of pt must be at least max(1, n).

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrices Q, B, and P satisfy OBP" = A + E, where
||E||, = c(n)e ||4]|5, c(n) is a modestly increasing function of n, and
€ is the machine precision.

If m = n, the total number of floating-point operations for real flavors is approximately the sum of:
6*n’*(k1 + ku) if vect = 'N' and ncc =0,
3*n’*nce*(k1+ ku—1)/(k1 + ku) if C is updated, and

3*md*(k1+ ku—1)/(k1+ ku) ifeither Q or P is generated
(double this if both).

To estimate the number of operations for complex flavors, use the same formulas with the
coefficients 20 and 10 (instead of 6 and 3).

4-75

4 Intel® Math Kernel Library Reference Manual

?orgbr

Generates the real orthogonal matrix Q or PT
determined by ?gebrd.

Syntax

call sorgbr (vect, m, n, k, a, lda, tau, work, lwork, info)

call dorgbr (vect, m, n, k, a, lda, tau, work, lwork, info)

4-76

Description

The routine generates the whole or part of the orthogonal matrices O and P’ formed by the
routines sgebrd/dgebrd . Use this routine after a call to sgebrd/dgebrd. All valid combinations
of arguments are described in Input parameters. In most cases you’ll need the following:

To compute the whole m by m matrix Q:
call ?orgbr ('Q', m, m, n, a ...)
(note that the array a must have at least m columns).

To form the n leading columns of Q if m> n:
call ?orgbr ('Q', m, n, n, a ...)

To compute the whole n by n matrix P:
call ?orgbr ('P', n, n, m, a ...)
(note that the array a must have at least n rows).

To form the m leading rows of P7 if m < n:
call ?orgbr ('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Mustbe 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q.
If vect = P, the routine generates the matrix P7.

m INTEGER. The number of required rows of Q or PT.
n INTEGER. The number of required columns of Q or P’.
k INTEGER. One of the dimensions of 4 in ?gebrd:

If vect = 'Q', the number of columns in 4;
If vect = 'p', the number of rows in 4.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, work

1da

tau

lwork

Constraints: m>0,n2>0, k> 0.
For vect='Q': k<n<mifm>k, or m=n if m< k.
Forvect='P': k<m<n ifn>k, or m=n ifn<k

REAL for sorgbr

DOUBLE PRECISION for dorgbr.

Arrays:

a(lda,*) isthe array a as returned by ?gebrd.

The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.
INTEGER. The first dimension of a; at least max(1, m).

REAL for sorgbr

DOUBLE PRECISION for dorgbr.

For vect = 'Q", the array taugq as returned by ?gebrd. For vect = 'P', the
array taup as returned by ?gebrd.

The dimension of tau must be at least max(1, min(m,k))

for vect ='Q', or max(1, min(m, k)) for vect="'p"'.

INTEGER. The size of the work array.
See Application notes for the suggested value of 1work.

Output Parameters

a

work (1)

info

Overwritten by the orthogonal matrix Q or P7 (or the leading rows or columns
thereof) as specified by vect, m, and n.

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = min(m, n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked

algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

4-71

4 Intel® Math Kernel Library Reference Manual

The computed matrix Q differs from an exactly orthogonal matrix by a matrix £ such that ||E]|, =

O(e).

The approximate numbers of floating-point operations for the cases listed in Description are as

follows:

To form the whole of Q:
(4/3)n(3n’ - 3m*n + n) if m> n;
(4/3)m’ ifm< n.

To form the n leading columns of Q when m> n:
(2/3)n*(3m - n%) if m> n.

To form the whole of P:
(4/3)n° ifm>n;
(4/3)m(3n% - 3m*n +) ifm< n.

To form the m leading columns of P” when m < n:
(2/3)n*(3m - n?) if m> n.

The complex counterpart of this routine is ?ungbr.

4-78

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?2ormbr

Multiplies an arbitrary real matrix by the real
orthogonal matrix Q or PT determined by ?gebrd.

Syntax
call sormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

Given an arbitrary real matrix C, this routine forms one of the matrix products OC, 0'C, CO, CO’,
PC, PTC, CP, or CPT, where Q and P are orthogonal matrices computed by a call to
sgebrd/dgebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PT:
If side='L', r=m; if side='R', r=n.

vect CHARACTER*1. Mustbe 'Q' or 'P"'.
If vect ='Q", then Q or Q7 is applied to C.
If vect ='p', then P or P! is applied to C.

side CHARACTER*1. Mustbe 'L' or 'R'.
If side ='L', multipliers are applied to C from the left.
If side ='R", they are applied to C from the right.

trans CHARACTER*1. Mustbe 'N' or 'T'.
If trans='N", then Q or P is applied to C.
If trans="T", then Q7 or P is applied to C.

m INTEGER. The number of rows in C.
n INTEGER. The number of columns in C.
k INTEGER. One of the dimensions of 4 in ?gebrd:

If vect = 'Q', the number of columns in 4;
If vect = 'p', the number of rows in 4.

Constraints: m>0,n2>0, k> 0.

4-79

4 Intel® Math Kernel Library Reference Manual

4-80

a, c¢, work

1da

ldc

tau

1lwork

REAL for sormbr

DOUBLE PRECISION for dormbr.

Arrays:

a(lda,*) isthe array a as returned by ?gebrd.

Its second dimension must be at least max(1, min(zr,k)) for vect = 'Q"', or
max(1, r)) for vect = 'p".

c(ldec, *) holds the matrix C.
Its second dimension must be at least max(1, n).

work (1work) is a workspace array.

INTEGER. The first dimension of a. Constraints:
lda=2max(l, r) if vect="Q";
lda =2 max(l, min(r,k)) if vect = 'P".

INTEGER. The first dimension of ¢; 1dc = max(1, m).

REAL for sormbr

DOUBLE PRECISION for dormbr.

Array, DIMENSION at least max (1, min(z, k)).

For vect = 'Q", the array taugq as returned by ?gebrd. For vect = 'P', the
array taup as returned by ?gebrd.

INTEGER. The size of the work array. Constraints:
lwork=>2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, QT C, CQ, CQT, PC, PTC, CP, or CPT, as
specified by vect, side, and trans.

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using

lwork = n*blocksize for side='L", or

lwork = m*blocksize for side='R",
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix £ such that ||E||, = O(€) ||C]|».

The total number of floating-point operations is approximately

2*n*k(2*m - k) if side="'L" and m= k;
2*m*k(2*n - k) if side='R' and n2k;
2*m*n if side='L' and m< k;
2%n’*m if side='R' and n< k.

The complex counterpart of this routine is ?unmbr.

4-81

4 Intel® Math Kernel Library Reference Manual

?ungbr

Generates the complex unitary matrix Q or P"
determined by ?gebrd.

Syntax

call cungbr (vect, m, n, k, a, lda, tau, work, lwork, info)

call zungbr (vect, m, n, k, a, lda, tau, work, lwork, info)

4-82

Description

The routine generates the whole or part of the unitary matrices Q and P formed by the routines
cgebrd/zgebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of
arguments are described in Input Parameters; in most cases you’ll need the following:

To compute the whole m by m matrix Q:
call ?2ungbr ('Q', m, m, n, a ...)
(note that the array a must have at least m columns).

To form the n leading columns of Q if m> n:
call ?ungbr ('Q', m, n, n, a ...)

To compute the whole n by n matrix P/
call ?2ungbr ('P', n, n, m, a ...)
(note that the array a must have at least n rows).

To form the m leading rows of P if m < n:
call ?ungbr ('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Mustbe 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q.
If vect = ' P, the routine generates the matrix P,

m INTEGER. The number of required rows of Q or P,
n INTEGER. The number of required columns of Q or P,
k INTEGER. One of the dimensions of 4 in ?gebrd:

If vect = 'Q', the number of columns in 4;
If vect = 'p', the number of rows in 4.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, work

1da

tau

lwork

Constraints: m>0,n2>0, k> 0.
For vect='Q': k<n<mifm>k, or m=n if m< k.
Forvect='P': k<m<n ifn>k, or m=n ifn<k

COMPLEX for cungbr

DOUBLE COMPLEX for zungbr.

Arrays:

a(lda,*) isthe array a as returned by ?gebrd.

The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.
INTEGER. The first dimension of a; at least max(1, m).

COMPLEX for cungbr

DOUBLE COMPLEX for zungbr.

For vect = 'Q", the array taugq as returned by ?gebrd. For vect = 'p', the
array taup as returned by ?gebrd.

The dimension of tau must be at least max(1, min(m,k))

for vect ='Q', or max(1, min(m, k)) for vect="'p"'.

INTEGER. The size of the work array.
Constraint: Iwork = max(1, min(m, n)).
See Application notes for the suggested value of 1work.

Output Parameters

a

work (1)

info

Overwritten by the orthogonal matrix Q or P7 (or the leading rows or columns
thereof) as specified by vect, m, and n.

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = min(m, n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked

algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

4-83

4 Intel® Math Kernel Library Reference Manual

The computed matrix Q differs from an exactly orthogonal matrix by a matrix £ such that ||E]|, =

0(e).
The approximate numbers of floating-point operations for the cases listed in Description are as
follows:
To form the whole of Q:
(16/3)n(3u? - 3mn+n?) ifm>n
(16/3)m’ ifm< n.

To form the n leading columns of Q when m> n:
(8/3)n*(3m - %) if m> n.

To form the whole of P:
(16/3)n° if m>n;
(16/3)m(3n? - 3m*n+m?) ifm<n.

To form the m leading columns of P” when m < n:
(8/3)n’(3m - n?) if m>n.

The real counterpart of this routine is 2orgbr.

4-84

LAPACK Routines: Least Squares and Eigenvalue Problems 4

2unmbr

Multiplies an arbitrary complex matrix by the unitary
matrix Q or P determined by ?gebrd.

Syntax
call cunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

Given an arbitrary complex matrix C, this routine forms one of the matrix products OC, 0"C, CO,
co", pc, PC, CP, or CP!, where O and P are orthogonal matrices computed by a call to
cgebrd/zgebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or P:
If side='L', r=m; if side='R', r=n.

vect CHARACTER*1. Mustbe 'Q' or 'P"'.
If vect ='Q, then O or 0" is applied to C.
If vect =' P, then P or P is applied to C.

side CHARACTER*1. Mustbe 'L' or 'R'.
If side ='L', multipliers are applied to C from the left.
If side ='R", they are applied to C from the right.

trans CHARACTER*1. Mustbe 'N' or 'C'.
If trans='N", then Q or P is applied to C.
If trans='c, then O or P is applied to C.

m INTEGER. The number of rows in C.
n INTEGER. The number of columns in C.
k INTEGER. One of the dimensions of 4 in ?gebrd:

If vect = 'Q', the number of columns in 4;
If vect = 'p', the number of rows in 4.

Constraints: m>0,n2>0, k> 0.

4-85

4 Intel® Math Kernel Library Reference Manual

4-86

a, c¢, work

1da

ldc

tau

1lwork

COMPLEX for cunmbr

DOUBLE COMPLEX for zunmbr.

Arrays:

a(lda,*) isthe array a as returned by ?gebrd.

Its second dimension must be at least max(1, min(zr,k)) for vect = 'Q"', or
max(1, r)) for vect = 'p".

c(ldc, *) holds the matrix C.
Its second dimension must be at least max(1, n).

work (1work) is a workspace array.

INTEGER. The first dimension of a. Constraints:
lda=2max(l, r) if vect="Q";
lda =2 max(l, min(r,k)) if vect = 'P".

INTEGER. The first dimension of c; 1dc = max(1, m).

COMPLEX for cunmbr

DOUBLE COMPLEX for zunmbr.

Array, DIMENSION at least max (1, min(z, k)).

For vect = 'Q", the array taugq as returned by ?gebrd. For vect = 'P', the
array taup as returned by ?gebrd.

INTEGER. The size of the work array. Constraints:
lwork=>2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product OC, QH C, CQ, CQH, PC, PHC, CP, or CPH, as
specified by vect, side, and trans.

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, try using

lwork = n*blocksize for side='L", or

lwork = m*blocksize for side='R",
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix £ such that ||E||, = O(€) ||C]|».

The total number of floating-point operations is approximately

8*n*k(2*m - k) if side='L' and m=> k;
8*m*k(2*n - k) if side='R' and n2k;
8*m*n if side='L' and m< k;
8*n’*m if side='R' and n< k.

The real counterpart of this routine is ?ormbr.

4-87

4 Intel® Math Kernel Library Reference Manual

?bdsqr

Computes the singular value decomposition of a general
matrix that has been reduced to bidiagonal form.

Syntax

call sbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call dbdsqgr (uplo, n, ncvt, nru, ncc, d, e, vt, 1ldvt, u, I1du,
c, ldc, work, info)

call cbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call zbdsqgr (uplo, n, ncvt, nru, ncc, d, e, vt, 1ldvt, u, I1du,
c, ldc, work, info)

Description

This routine computes the singular values and, optionally, the right and/or left singular vectors
from the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower) bidiagonal matrix
B using the implicit zero-shift OR algorithm. The SVD of B has the form B = Q *S * P/ where S
is the diagonal matrix of singular values, Q is an orthogonal matrix of left singular vectors, and P
is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this
subroutine actually returns U *Q instead of Q, and, if right singular vectors are requested, this
subroutine returns
P «pT instead of P, for given real/complex input matrices U and VT, When U and V'T are the
orthogonal/unitary matrices that reduce a general matrix 4 to bidiagonal form: 4 =U *B *V'T, as
computed by ?gebrd, then

A=(U*Q) *S *(P xvT)
is the SVD of 4. Optionally, the subroutine may also compute O *C for a given real/complex
input matrix C.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
If uplo='u"', B is an upper bidiagonal matrix.
If uplo="'L", Bis a lower bidiagonal matrix.

n INTEGER. The order of the matrix B (n = 0).

4-88

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ncvt

nru

ncc

d, e, work

vt, u, c

INTEGER. The number of columns of the matrix V7, that is, the number of
right singular vectors (ncvt = 0).
Set ncvt = 0 if no right singular vectors are required.

INTEGER. The number of rows in U, that is, the number of left singular
vectors (nru = 0).
Set nru = 0 if no left singular vectors are required.

INTEGER. The number of columns in the matrix C
used for computing the product 0'C (ncc = 0).
Set ncc = 0 if no matrix C is supplied.

REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors.
Arrays:

d(*) contains the diagonal elements of B.

The dimension of d must be at least max(1, n).

e (*) contains the (n-1) off-diagonal elements of B.
The dimension of e must be at least max(1, n).
e(n) isused for workspace.

work (*) is a workspace array.

The dimension of work must be at least
max(1, 2*n) if ncvt = nru=ncc=0;
max(1, 4*(n-1)) otherwise.

REAL for sbdsgr

DOUBLE PRECISION for dbdsqr

COMPLEX for cbdsqr

DOUBLE COMPLEX for zbdsgr.

Arrays:

vt (1dvt,*) contains an n by ncvt matrix V'T.
The second dimension of vt must be at least
max(1, ncvt).

vt is not referenced if ncvt = 0.

u(ldu, *) contains an nru by n unit matrix U.
The second dimension of u must be at least max(1, n).
u is not referenced if nru= 0.

c(1de, *) contains the matrix C for computing the product QH *C. The
second dimension of ¢ must be at least max(1,ncc). The array is not referenced
if ncc=0.

4-89

4 Intel® Math Kernel Library Reference Manual

4-90

ldvt

1du

ldc

INTEGER. The first dimension of vt. Constraints:
ldvt 2 max(l, n) if ncvt >0;
ldvt 21 if ncvt =0.

INTEGER. The first dimension of u. Constraint:
1du=max(1l, nru).

INTEGER. The first dimension of c. Constraints:
ldc = max(1l, n) if ncc>0;
ldc =1 otherwise.

Output Parameters

d

vt

info

On exit, if info = 0, overwritten by the singular values in decreasing order
(see info).

On exit, if info=0, e is destroyed. See also info below.
Overwritten by the product 07 *C.

On exit, this array is overwritten by P/ V'T.

On exit, this array is overwritten by U *Q .

INTEGER.

If info =0, the execution is successful.

If info= -1, the ith parameter had an illegal value.

If info = i, the algorithm failed to converge;

i specifies how many off-diagonals did not converge.

In this case, d and e contain on exit the diagonal and off-diagonal elements,
respectively, of a bidiagonal matrix orthogonally equivalent to B.

Application Notes

Each singular value and singular vector is computed to high relative accuracy. However, the
reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the
small singular values of the original matrix if its singular values vary widely in magnitude.

If 6; is an exact singular value of B, and s; is the corresponding computed value, then

|s; - ©i < p(m, n)ec;

where p(m, n) is a modestly increasing function of m and n, and € is the machine precision. If only
singular values are computed, they are computed more accurately than when some singular vectors
are also computed (that is, the function p(m, n) is smaller).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

If u; is the corresponding exact left singular vector of B, and w; is the corresponding computed left
singular vector, then the angle 6(u;, w;) between them is bounded as follows:

e(ui, Wi) Sp(m, n)s / miniij(|6i - GJ|/|GI + Gjl)
Here min(|o; - 6j|/|o; + ©})) is the relative gap between o, and the other singular values. A

similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to n? if only the singular
values are computed. About 6n”*nru additional operations (12n**nru for complex flavors) are
required to compute the left singular vectors and about 6n**ncvt operations (12n** ncvt for
complex flavors) to compute the right singular vectors.

4-91

4 Intel® Math Kernel Library Reference Manual

?bdsdc

Computes the singular value decomposition of a real
bidiagonal matrix using a divide and conquer method.

Syntax
call sbdsdc (uplo, compg, n, d, e, u, ldu, vt, ldvt, q, iq, work,

iwork, info)

call dbdsdc (uplo, compg, n, d, e, u, 1ldu, vt, 1ldvt, g, iq, work,
iwork, info)

Description

This routine computes the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower)
bidiagonal matrix B: B= U X V', using a divide and conquer method, where X is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and U and V are orthogonal
matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all
singular values, and optionally, singular vectors or singular vectors in compact form.

Input Parameters
uplo CHARACTER*1. Mustbe 'U" or 'L".
If uplo='u"', B is an upper bidiagonal matrix.
If uplo='L", B is a lower bidiagonal matrix.
compg CHARACTER*1. Mustbe 'N', 'P',or 'I'.
If compg= 'N', compute singular values only.
If compg = 'P', compute singular values and compute singular vectors in

compact form.
If compg = '1', compute singular values and singular vectors.

n INTEGER. The order of the matrix B (n = 0).
d, e, work REAL for sbdsdc

DOUBLE PRECISION for sbdsdc.

Arrays:

d(*) contains the n diagonal elements of the bidiagonal matrix B. The
dimension of d must be at least max(1, n).

4-92

LAPACK Routines: Least Squares and Eigenvalue Problems 4

1du

ldvt

iwork

e (*) contains the off-diagonal elements of the bidiagonal matrix B. The
dimension of e must be at least max(1, n).

work (*) is a workspace array.

The dimension of work must be at least:
max(1, 4*n), if compg= 'N';

max(1, 6*n), if compg="P"';

max(1, 3*n2+4*n), if compg="'1".

INTEGER. The first dimension of the output array u; 1du = 1. If singular
vectors are desired, then
1du=max(l, n).

INTEGER. The first dimension of the output array vt; 1dvt 2 1. If singular
vectors are desired, then
ldvt 2max(l, n).

INTEGER.
Workspace array, dimension at least max(1, 8*n).

Output Parameters

d
e

u, vt, g

ig

If info =0, overwritten by the singular values of B.
On exit, e 1s overwritten.

REAL for sbdsdc

DOUBLE PRECISION for sbdsdc.

Arrays: u(1du, *), vt(1ldvt,*), g(*).

If compg= "1, then on exit u contains the left singular vectors of the
bidiagonal matrix B, unless info # 0 (see info). For other values of compq,
u is not referenced. The second dimension of u must be at least max(1,n).

If compg = "1, then on exit vt contains the right singular vectors of the
bidiagonal matrix B, unless

info# 0 (see info). For other values of compg, vt is not referenced. The
second dimension of vt must be at least max(1,n).

If compg = 'P', then on exit, if info =0, gand ig contain the left and right
singular vectors in a compact form. Specifically, g contains all the REAL (for

sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for singular vectors. For
other values of compq, g is not referenced. See Application notes for details.

INTEGER.
Array: ig(*).
If compg= 'P', then on exit, if info =0, gand ig contain the left and right

4-93

4 Intel® Math Kernel Library Reference Manual

singular vectors in a compact form. Specifically, i g contains all the INTEGER
data for singular vectors. For other values of compg, 1gis not referenced. See
Application notes for details.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.
If info = i, the algorithm failed to compute a singular value. The update
process of divide and conquer failed.

4-94

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Symmetric Eigenvalue Problems

Symmetric eigenvalue problems are posed as follows: given an r by n real symmetric or complex
Hermitian matrix 4, find the eigenvalues A and the corresponding eigenvectors z that satisfy the
equation

Az =)z (or, equivalently, z//4 = Az").

In such eigenvalue problems, all n eigenvalues are real not only for real symmetric but also for
complex Hermitian matrices A, and there exists an orthonormal system of n eigenvectors. If 4 is a
symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to
tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained.
LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or
unitary) similarity transformation 4 = QTQ as well as for solving tridiagonal symmetric
eigenvalue problems. These routines are listed in Table 4-3.

There are different routines for symmetric eigenvalue problems, depending on whether you need
all eigenvectors or only some of them or eigenvalues only, whether the matrix 4 is positive-definite
or not, and so on.

These routines are based on three primary algorithms for computing eigenvalues and eigenvectors
of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection
followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is
recommended for computing all eigenvalues and eigenvectors.

Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to
call only one routine. In general, more than one routine has to be called if the QR algorithm or
bisection followed by inverse iteration is used.

Decision tree in Figure 4-2 will help you choose the right routine or sequence of routines for
eigenvalue problems with real symmetric matrices. A similar decision tree for complex Hermitian
matrices is presented in Figure 4-3.

4-95

4 Intel® Math Kernel Library Reference Manual

Figure 4-2

4-96

Decision Tree: Real Symmetric Eigenvalue Problems

Are eigenvalues
only required?

yes

Are all the
eigenvalues
required?

yes

no

Is A tridiagonal?

yes
?STEBZ

yes | o
Is A tridiagonal? PSTERE or
2STEVD
no
?SBTRD
yes | (
Is At a bj“d 9STERF) or
matnx - 2SBEVD
no
Is one triangle yes | (?SPTRD
of A stored as a ?STERF) or
linear array? ?SPEVD

no

(?SYTRD
?STERF) or
?SYEVD

of A stored as a
linear array?

no

?SYTRD ?STEBZ
?STEIN ?0RMTR

?STEIN OPMTR

no
Is A a band Y% | 2SBTRD
matrix? 7STEBZ
no
no
Is one triangle yes | 2SPTRD
of A stored as a 9STEBZ
linear array?
?SYTRD ?STEBZ
Are all
eigenvalues and yes es
Leenval Is A tridiagonal? Y ?STEQR or
eigenvectors I?STEVD
required? no
N
Is A a band yes ‘('SBTRD
K ’STEQR) or
matrix?
?SBEVD
no
) (?SPTRD
Is one triangle
A ¥es | 20PGTR
of A stored as a
. ?STEQR) or]
no linear array? .
’SPEVD
no
(?SYTRD ?0RGTR
?7STEQR) or
2SYEVD
- yes
Is A tridiagonal? ?STEBZ ?STEIN
| no
Is one triangle yes | 9SPTRD ?STEBZ

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Figure 4-3 Decision Tree: Complex Hermitian Eigenvalue Problems
Are yes | Are all the yes Is A aband yes (?HBTRD
eigenvalues eigenvalues Atrix? ?STERF) or
only required? required? matox 7HBEVD
| | no
no
. Is one triangle (HPTRD
IsA z!band yes PHBTRD of A stored as a yes ?STERF) or
matrix? 7STEBZ linear array? 9HPEVD
| no |
no
I triangl
o s one triangle yes 9HPTRD (?HETRD
of A stored as a 9STEBZ 9STERF) or
linear array? ‘;HEEVD
?HETRD ?STEBZ
Are all
eigenvalues and yes | Is A aband ¥es | ("HBTRD
eigenvectors matrix? 7STEQR) or
required? ’HBEVD
no
I trianel os (?’HPTRD
sone rangle) Ve |y jp
Do ?STEQR) or
inear array? YHPEVD
o | no
(?HETRD 7UNGTR
?STEQR) or
"HEEVD
Is one triangle
yes ?HPTRD ?STEBZ

of A stored as a
linear array?

no

?7HETRD ?STEBZ
?STEIN 2UNMTR

?STEIN ?UPMTR

4-97

4 Intel® Math Kernel Library Reference Manual

Table 4-3 Computational Routines for Solving Symmetric Eigenvalue Problems

Operation Real symmetric Complex Hermitian
matrices matrices

Reduce to tridiagonal form ?sytrd ?hetrd

A = QTQ" (full storage)

Reduce to tridiagonal form ?sptrd ?hptrd

A = QTQ" (packed storage)

Reduce to tridiagonal form ?sbtrd ?hbtrd

A = QTQ" (band storage).

Generate matrix Q ?orgtr 2ungtr

(full storage)

Generate matrix Q ?opgtr ?upgtr

(packed storage)

Apply matrix Q ?ormtr unmtr

(full storage)

Apply matrix Q ?opmtr 2upmtr

(packed storage)

Find all eigenvalues of ?sterf

a tridiagonal matrix T

Find all eigenvalues and eigenvectors ?steqgr ?stedc ?steqr ?stedc

of a tridiagonal matrix T

Find all eigenvalues and eigenvectors ?pteqr ?pteqgr

of a tridiagonal positive-definite

matrix T.

Find selected eigenvalues of a ?stebz

tridiagonal matrix T ?stegr ?stegr

Find selected eigenvectors of a ?stein ?stein

tridiagonal matrix T ?stegr ?stegr

Compute the reciprocal condition ?disna ?disna

numbers for the eigenvectors

4-98

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?sytrd

Reduces a real symmetric matrix to tridiagonal form.

Syntax
call ssytrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

call dsytrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

Description

This routine reduces a real symmetric matrix 4 to symmetric tridiagonal form 7 by an orthogonal
similarity transformation: 4 = OTQ”. The orthogonal matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided for working with Q
in this representation. (They are described later in this section.)

Input Parameters

uplo CHARACTER+*1. Mustbe 'U' or 'L".
If uplo="'uU', a stores the upper triangular part of 4.
If uplo="'L', a stores the lower triangular part of 4.

n INTEGER. The order of the matrix 4 (n=0).

a, work REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower triangular part of the
matrix A4, as specified by uplo.
The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, n).
lwork INTEGER. The size of the work array (1work = n)

See Application notes for the suggested value of 1work.
Output Parameters

a Overwritten by the tridiagonal matrix 7" and details of the orthogonal matrix Q,
as specified by uplo.

4-99

4 Intel® Math Kernel Library Reference Manual

4-100

d, e, tau REAL for ssytrd
DOUBLE PRECISION for dsytrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau (*) stores further details of the orthogonal matrix Q. The dimension of
tau must be at least max(1, n-1).

work (1) If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of 1work for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed matrix 7'is exactly similar to a matrix 4 + E, where
IE|l> = c(n)e ||4||p, c(n) is a modestly increasing function of #, and € is the machine precision.

The approximate number of floating-point operations is (4/3)n>.
After calling this routine, you can call the following:

?orgtr to form the computed matrix Q explicitly;
?ormtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hetxrd.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?orgtr

Generates the real orthogonal matrix Q determined by

?sytrd.

Syntax
call sorgtr

call dorgtr

Description

(uplo, n, a, lda, tau, work, lwork, info)

uplo, n, a, lda, tau, work, lwork, info)

The routine explicitly generates the n by n orthogonal matrix Q formed by ? sytrd when reducing
a real symmetric matrix 4 to tridiagonal form: 4 = OTQ". Use this routine after a call to ?sytrd.

Input Parameters

uplo

a, tau, work

lda

lwork

CHARACTER*1. Mustbe 'U' or 'L"'.
Use the same uplo as supplied to ?sytrd.

INTEGER. The order of the matrix Q (n = 0).

REAL for sorgtr

DOUBLE PRECISION for dorgtr.

Arrays:

a(lda,*) isthe array a as returned by ?sytrd.

The second dimension of a must be at least max(1, n).

tau (*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1, n-1).

work (1lwork) is a workspace array.
INTEGER. The first dimension of a; at least max(1, n).

INTEGER. The size of the work array (1work = n)
See Application notes for the suggested value of 1work.

Output Parameters

a

work (1)

Overwritten by the orthogonal matrix Q.

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

4-101

4 Intel® Math Kernel Library Reference Manual

4-102

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = (n-1)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix £ such that
||E||, = O(e), where € is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?ungtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?2ormtr

Multiplies a real matrix by the real orthogonal matrix Q

determined by ?sytrd.

Syntax

call sormtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

call dormtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a real matrix C by O or Q7, where Q is the orthogonal matrix Q formed by
?sytrd when reducing a real symmetric matrix A to tridiagonal form: 4 = QTQ”. Use this routine

after a call to ?sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
0cC, 0'C, CQ, or CQOT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side='L'",r=m; if side='R', r=n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or Q7 is applied to C from the left.
If side ='R", Q or QT is applied to C from the right.

uplo CHARACTER*1. Mustbe 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.

trans CHARACTER*1. Must be either 'N' or 'T"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='T", the routine multiplies C by Q7.

m INTEGER. The number of rows in the matrix C (m = 0).

n INTEGER. The number of columns in C (n 2 0).

a,work, tau,c REAL for sormtr

DOUBLE PRECISION for dormtr.
a(lda,*) and tau are the arrays returned by ?sytrd.

4-103

4 Intel® Math Kernel Library Reference Manual

4-104

lda

ldc

1lwork

The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(1ldc,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (lwork) is a workspace array.
INTEGER. The first dimension of a; 1da = max(1, r).
INTEGER. The first dimension of c¢; 1dc = max(1, n).

INTEGER. The size of the work array. Constraints:
lwork=2max(l, n) if side="L";

lwork 2max(l, m) if side="R".

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

Overwritten by the product QC, Q'C, CQ, or CO”
(as specified by side and trans).

If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize for side='L", or

lwork = m*blocksize for side="'R", where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of Iwork for the first run. On exit, examine work (1)
and use this value for subsequent runs.

The computed product differs from the exact product by a matrix £ such that |

|Ell = O(®) [|C] |-

The total number of floating-point operations is approximately 2%mP*nif side="L"
or 2*n**m if side="R".

The complex counterpart of this routine is ?unmtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hetrd

Reduces a complex Hermitian matrix to tridiagonal form.

Syntax
call chetrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

call zhetrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

Description

This routine reduces a complex Hermitian matrix 4 to symmetric tridiagonal form 7T by a unitary
similarity transformation: 4 = QTO". The unitary matrix O is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided to work with Q in
this representation. (They are described later in this section.)

Input Parameters

uplo CHARACTER+*1. Mustbe 'U' or 'L".
If uplo="'uU', a stores the upper triangular part of 4.
If uplo="'L', a stores the lower triangular part of 4.

n INTEGER. The order of the matrix 4 (n=0).

a, work COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
a(lda,*) is an array containing either upper or lower triangular part of the
matrix A4, as specified by uplo.
The second dimension of a must be at least max(1, n).

work (1work) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, n).
lwork INTEGER. The size of the work array (1work = n)

See Application notes for the suggested value of 1work.
Output Parameters

a Overwritten by the tridiagonal matrix 7 and details of the unitary matrix Q, as
specified by uplo.

4-105

4 Intel® Math Kernel Library Reference Manual

4-106

d, e REAL for chetrd
DOUBLE PRECISION for zhetrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
Array, DIMENSION at least max(1, n-1).
Stores further details of the unitary matrix Q.

work (1) If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of 1work for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed matrix 7 is exactly similar to a matrix 4 + E, where
||E||, = c(n)e ||4]|5, c(n) is a modestly increasing function of n, and € is the machine precision.

The approximate number of floating-point operations is (16/3)n>.
After calling this routine, you can call the following:

?ungtr to form the computed matrix Q explicitly;
2unmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ? sytrd.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?ungtr

Generates the complex unitary matrix Q determined by

?hetrd

Syntax
call cungtr

call zungtr

Description

(uplo, n, a, lda, tau, work, lwork, info)

uplo, n, a, lda, tau, work, lwork, info)

The routine explicitly generates the n by n unitary matrix Q formed by ?hetrd when reducing a
complex Hermitian matrix A to tridiagonal form: 4 = QTO". Use this routine after a call to

?hetrd.

Input Parameters

uplo

n

a, tau, work

lda

1lwork

CHARACTER*1. Mustbe 'U' or 'L"'.
Use the same uplo as supplied to ?hetrd.

INTEGER. The order of the matrix Q (n = 0).

COMPLEX for cungtr

DOUBLE COMPLEX for zungtr.

Arrays:

a(lda,*) isthe array a as returned by ?hetrd.

The second dimension of a must be at least max(1, n).

tau (*) is the array tau as returned by ?hetrd.
The dimension of tau must be at least max(1, n-1).

work (1lwork) is a workspace array.
INTEGER. The first dimension of a; at least max(1, n).

INTEGER. The size of the work array (1work = n)
See Application notes for the suggested value of 1work.

Output Parameters

a

work (1)

Overwritten by the unitary matrix Q.

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

4-107

4 Intel® Math Kernel Library Reference Manual

4-108

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = (n-1)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run.
On exit, examine work (1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly unitary matrix by a matrix £ such that
||E||, = O(e), where € is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?orgtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

2unmtr

Multiplies a complex matrix by the complex unitary matrix

Q determined by ?hetrd.

Syntax

call cunmtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

call zunmtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

Description

The routine multiplies a complex matrix C by Q or O, where Q is the unitary matrix Q formed by
?hetrd when reducing a complex Hermitian matrix 4 to tridiagonal form: 4 = QTQ". Use this

routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
0cC, 0"C, CQ, or CQ" (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side='L'",r=m; if side='R', r=n.

side CHARACTER*1. Must be either 'L' or 'R"'.
If side ='L', Q or Q" is applied to C from the left.
If side ="R"', Q or O is applied to C from the right.
uplo CHARACTER*1. Mustbe 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.

trans CHARACTER*1. Must be either 'N' or 'T"'.
If trans ='N"', the routine multiplies C by Q.
If trans ='T", the routine multiplies C by Q"

m INTEGER. The number of rows in the matrix C (m = 0).

n INTEGER. The number of columns in C (n 2 0).

a,work,tau,c COMPLEX for cunmtr

DOUBLE COMPLEX for zunmtr.
a(lda,*) and tau are the arrays returned by ?hetrd.

4-109

4 Intel® Math Kernel Library Reference Manual

4-110

The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(1ldc,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; 1da = max(1, r).
ldc INTEGER. The first dimension of c¢; 1dc = max(1, n).
lwork INTEGER. The size of the work array. Constraints:

lwork=2max(l, n) if side="L";
lwork 2max(l, m) if side="R".
See Application notes for the suggested value of Iwork.

Output Parameters

c Overwritten by the product QC, Q"'C, CQ, or CQ"
(as specified by side and trans).

work (1) If info=0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this 1work for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (for side ='L") or Iwork = m*blocksize
(for side ='R ') where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of Iwork for the first run. On exit, examine work (1) and use this
value for subsequent runs.

The computed product differs from the exact product by a matrix £ such that
lE]l2 = O€) ||C||o, where € is the machine precision.

The total number of floating-point operations is approximately 8*m’*n if side="L"
or 8*n?*m if side="R".

The real counterpart of this routine is ?ormtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?sptrd

Reduces a real symmetric matrix to tridiagonal form using
packed storage.

Syntax
call ssptrd (uplo,n,ap,d,e,tau,info)
call dsptrd (uplo,n,ap,d,e,tau,info)

Description

This routine reduces a packed real symmetric matrix 4 to symmetric tridiagonal form 7 by an
orthogonal similarity transformation: 4 = OTQ”. The orthogonal matrix Q is not formed explicitly
but is represented as a product of n-1 elementary reflectors. Routines are provided for working
with Q in this representation. (They are described later in this section.)

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
If uplo='U", ap stores the packed upper triangle of 4.
If uplo='L", ap stores the packed lower triangle of 4.

n INTEGER. The order of the matrix 4 (n >0).

ap REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of 4 (as specified by uplo) in packed
form.

Output Parameters

ap Overwritten by the tridiagonal matrix 7" and details of the orthogonal matrix Q,
as specified by uplo.

d, e, tau REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Arrays:
d(*) contains the diagonal elements of the matrix 7.
The dimension of d must be at least max(1, n).

4-111

4 Intel® Math Kernel Library Reference Manual

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the matrix Q.
The dimension of tau must be at least max(1, n-1).

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrix 7 is exactly similar to a matrix 4 + E, where
IEll> = c(n)e ||4||, c(n) is a modestly increasing function of n, and € is the machine precision.

The approximate number of floating-point operations is (4/3)n’>.

After calling this routine, you can call the following:
?opgtr to form the computed matrix Q explicitly;
?opmtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hptrd.

4-112

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?opgtr

Generates the real orthogonal matrix Q determined by

?sptrd.

Syntax

call sopgtr (uplo, n, ap, tau,
call dopgtr (uplo, n, ap, tau,

Description

g, 1ldg, work, info)
g, 1ldg, work, info)

The routine explicitly generates the n by n orthogonal matrix Q formed by ?sptrd when
reducing a packed real symmetric matrix A to tridiagonal form: 4 = QTQ”. Use this routine after a

call to ?sptrd.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.

Use the same uplo as supplied to ?sptrd.
n INTEGER. The order of the matrix Q (n=>0).
ap, tau REAL for sopgtr

DOUBLE PRECISION for dopgtr.

Arrays ap and tau, as returned by ?sptrd.

The dimension of ap must be at least max(1, n(z+1)/2).
The dimension of tau must be at least max(1, n-1).

ldg INTEGER. The first dimension of the output array g;

at least max(1, n).

work REAL for sopgtr

DOUBLE PRECISION for dopgtr.
Workspace array, DIMENSION at least max(1, n-1).

Output Parameters

q REAL for sopgtr

DOUBLE PRECISION for dopgtr.

Array, DIMENSION (1dg, *).

Contains the computed matrix Q.

The second dimension of g must be at least max(1, n).

4-113

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix £ such that
||E||, = O(e), where € is the machine precision.

The approximate number of floating-point operations is (4/3)n>.

The complex counterpart of this routine is ?upgtr.

?opmtr

Multiplies a real matrix by the real orthogonal matrix Q
determined by ?sptrd.

Syntax
call sopmtr (side,uplo, trans,m,n,ap,tau,c,ldc,work,info)

call dopmtr (side,uplo, trans,m,n,ap,tau,c,ldc,work,info)

Description

The routine multiplies a real matrix C by O or Q7, where Q is the orthogonal matrix Q formed by
?sptrd when reducing a packed real symmetric matrix 4 to tridiagonal form: 4 = QTQ. Use this
routine after a call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
0cC, 0'C, CQ, or CQOT (overwriting the result on C).
Input Parameters

In the descriptions below, r denotes the order of Q:
If side='L'",r=m; if side='R', r=n.

side CHARACTER*1. Must be either 'L' or 'R"'.
If side ='L', Q or Q7 is applied to C from the left.
If side ='R", Q or QT is applied to C from the right.

4-114

LAPACK Routines: Least Squares and Eigenvalue Problems 4

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Use the same uplo as supplied to ?sptrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N", the routine multiplies C by Q.
If trans =' T, the routine multiplies C by O”.

m INTEGER. The number of rows in the matrix C (m = 0).
n INTEGER. The number of columns in C (n = 0).

ap, work, tau, ¢ REAL for sopmtr
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(1ldc,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (*) is a workspace array.

The dimension of work must be at least
max(1, n) if side="L";

max(1, m) if side="R".

ldc INTEGER. The first dimension of c¢; 1dc = max(1, n).

Output Parameters

c Overwritten by the product OC, Q'C, CQ, or CQT
(as specified by side and trans).

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix £ such that
||E]|> = OC€) ||C||o, where € is the machine precision.

The total number of floating-point operations is approximately 2* m’*nif side="1
or 2%n’*m if side='R".

The complex counterpart of this routine is ?upmtr.

4-115

4 Intel® Math Kernel Library Reference Manual

?hptrd

Reduces

a complex Hermitian matrix to tridiagonal form

using packed storage.

4-116

Syntax
call chptrd (uplo,n,ap,d,e,tau,info)
call zhptrd (uplo,n,ap,d,e,tau,info)

Description

This routine reduces a packed complex Hermitian matrix 4 to symmetric tridiagonal form 7 by a
unitary similarity transformation: 4 = QTO". The unitary matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided for working with O
in this representation. (They are described later in this section.)

Input Parameters

uplo CHARACTER*1. Mustbe 'U" or 'L".
If uplo='U", ap stores the packed upper triangle of 4.
If uplo='L", ap stores the packed lower triangle of A.

n INTEGER. The order of the matrix 4 (n > 0).

ap COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of 4 (as specified by uplo) in packed
form.

Output Parameters

ap Overwritten by the tridiagonal matrix 7" and details of the orthogonal matrix Q,
as specified by uplo.

d, e REAL for chptrd
DOUBLE PRECISION for zhptrd.
Arrays:
d(*) contains the diagonal elements of the matrix 7.
The dimension of d must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Arrays, DIMENSION at least max(1, n-1).
Contains further details of the orthogonal matrix Q.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrix 7 is exactly similar to a matrix 4 + E, where
IE|l> = c(n)e ||4||p, c(n) is a modestly increasing function of #, and € is the machine precision.

The approximate number of floating-point operations is (16/3)x>.

After calling this routine, you can call the following:
2upgtr to form the computed matrix Q explicitly;
2upmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ? sptrd.

4-117

4 Intel® Math Kernel Library Reference Manual

?upgtr

Generates the complex unitary matrix Q determined by
?hptrd.

Syntax

call cupgtr (uplo, n, ap, tau, g, ldg, work, info)
call zupgtr (uplo, n, ap, tau, g, ldg, work, info)

Description

The routine explicitly generates the n by n unitary matrix Q formed by ?hptrd when reducing a
packed complex Hermitian matrix A to tridiagonal form: 4 = QTQ". Use this routine after a call to
?hptrd.

Input Parameters

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
Use the same uplo as supplied to ?sptrd.

n INTEGER. The order of the matrix Q (n=>0).

ap, tau COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least max(1, n(zt+1)/2).
The dimension of tau must be at least max(1, n-1).

ldg INTEGER. The first dimension of the output array g;
at least max(1, n).

work COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1, n-1).

Output Parameters

q COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION (ldg, *).
Contains the computed matrix Q.
The second dimension of g must be at least max(1, n).

4-118

LAPACK Routines: Least Squares and Eigenvalue Problems 4

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix £ such that ||E]|, =
O(¢g), where € is the machine precision.

The approximate number of floating-point operations is (16/3)n>.

The real counterpart of this routine is ?opgtr.

2upmtr

Multiplies a complex matrix by the unitary matrix Q
determined by ?>hptrd.

Syntax
call cupmtr (side,uplo, trans,m,n,ap,tau,c,ldc,work,info)

call zupmtr (side,uplo, trans,m,n,ap,tau,c,ldc,work,info)

Description

The routine multiplies a complex matrix C by Q or O, where Q is the unitary matrix Q formed by
?hptrd when reducing a packed complex Hermitian matrix 4 to tridiagonal form: 4 = QTQ". Use
this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
0cC, 0"C, CQ, or CQ" (overwriting the result on C).
Input Parameters

In the descriptions below, r denotes the order of Q:
If side='L'",r=m; if side='R', r=n.

side CHARACTER*1. Must be either 'L' or 'R"'.
If side ='L', Q or Q" is applied to C from the left.
If side ="R"', Q or O is applied to C from the right.

4-119

4 Intel® Math Kernel Library Reference Manual

4-120

uplo

trans

m
n

ap, tau, c, work

ldc

CHARACTER+*1. Mustbe 'U' or 'L'.
Use the same uplo as supplied to ?hptrd.

CHARACTER*1. Must be either 'N' or 'T"'.
If trans ='N"', the routine multiplies C by Q.
If trans =' T, the routine multiplies C by 0.

INTEGER. The number of rows in the matrix C (m = 0).
INTEGER. The number of columns in C (n = 0).

COMPLEX for cupmtr
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.

The dimension of ap must be at least max(1, r(z+1)/2).
The dimension of tau must be at least max(1, r-1).

c(1ldc,*) contains the matrix C.
The second dimension of ¢ must be at least max(1, n)

work (*) is a workspace array.

The dimension of work must be at least
max(1, n) if side="L";
max(1, m) if side ='R"

INTEGER. The first dimension of c¢; 1dc = max(1, n).

Output Parameters

C

info

Overwritten by the product OC, Q”C, CQ, or CO"
(as specified by side and trans).

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix £ such that ||E||, = O(€) ||C||»,
where € is the machine precision.

The total number of floating-point operations is approximately 8 * m’*nif side="L' or 8*n’*m

if side='R".

The real counterpart of this routine is ?opmtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?sbtrd

Reduces a real symmetric band matrix to tridiagonal form.

Syntax

call ssbtrd
call dsbtrd

Description

(vect,uplo,n,kd, ab,ldab,d, e, q, 1dg, work, info)
(vect,uplo,n,kd,ab,ldab,d, e, q, 1dg, work, info)

This routine reduces a real symmetric band matrix 4 to symmetric tridiagonal form 7 by an
orthogonal similarity transformation: 4 = QTQ”. The orthogonal matrix Q is determined as a
product of Givens rotations. If required, the routine can also form the matrix Q explicitly.

Input Parameters

vect

uplo

n

kd

ab, work

ldab

ldg

CHARACTER*1. Mustbe 'V' or 'N'.

If vect = v, the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.
CHARACTER*1. Mustbe 'U' or 'L".

If uplo="'U', ab stores the upper triangular part of 4.
Ifuplo="'L', ab stores the lower triangular part of 4.

INTEGER. The order of the matrix 4 (n > 0).

INTEGER. The number of super- or sub-diagonals in 4
(kd = 0).

REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.

ab (1dab, *) is an array containing either upper or lower triangular part of the

matrix A4 (as specified by upIo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

INTEGER. The first dimension of ab; at least kd+1.

INTEGER. The first dimension of g. Constraints:
ldg=max(l, n) if vect="V"';
ldg=>1 if vect="'N".

4-121

4 Intel® Math Kernel Library Reference Manual

Output Parameters

ab On exit, the array ab is overwritten.
d, e, q REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
Arrays:

d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

g(ldg, *) is not referenced if vect = 'N'.
If vect ='v', g contains the n by n matrix Q.
The second dimension of g must be:

at least max(1, n) if vect = "'v"';

at least 1 if vect = 'N'.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrix 7'is exactly similar to a matrix 4 + E, where
||E||, = c(n)e ||4]|5, c(n) is a modestly increasing function of n, and € is the machine precision. The
computed matrix Q differs from an exactly orthogonal matrix by a matrix £ such that ||E||, = O(¢).

The total number of floating-point operations is approximately 6n’*kd if vect ='N', with
3n* (kd-1)/kd additional operations if vect ='v".

The complex counterpart of this routine is ?hbtrd.

4-122

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hbtrd

Reduces a complex Hermitian band matrix to tridiagonal

form.

Syntax

call chbtrd
call zhbtrd

Description

(vect,uplo,n,kd, ab,ldab,d, e, q, 1dg, work, info)
(vect,uplo,n,kd,ab,ldab,d, e, q, 1dg, work, info)

This routine reduces a complex Hermitian band matrix 4 to symmetric tridiagonal form 7' by a
unitary similarity transformation: 4 = QTQ". The unitary matrix Q is determined as a product of
Givens rotations. If required, the routine can also form the matrix Q explicitly.

Input Parameters

vect

uplo

kd

ab, work

ldab

ldg

CHARACTER*1. Mustbe 'V' or 'N'.

If vect = 'v', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.
CHARACTER*1. Mustbe 'U' or 'L".

If uplo="'U", ab stores the upper triangular part of 4.
Ifuplo="'L', ab stores the lower triangular part of 4.

INTEGER. The order of the matrix 4 (n > 0).

INTEGER. The number of super- or sub-diagonals in 4
(kd =z 0).

COMPLEX for chbtrd

DOUBLE COMPLEX for zhbtrd.

ab (1dab, *) is an array containing either upper or lower triangular part of the
matrix A4 (as specified by uplo) in band storage format.

The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

INTEGER. The first dimension of ab; at least kd+1.

INTEGER. The first dimension of g. Constraints:
ldg=max(l, n) if vect="V"';
ldg=>1 if vect="'N".

4-123

4 Intel® Math Kernel Library Reference Manual

Output Parameters

ab On exit, the array ab is overwritten.
d, e REAL for chbtrd
DOUBLE PRECISION for zhbtrd.
Arrays:

d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

q COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION (1dg,*).
If vect ='N', gis not referenced.
If vect ='v', g contains the n by n matrix Q.
The second dimension of g must be:
at least max(1, n) if vect="'v";
at least 1 if vect = 'N'.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed matrix 7 is exactly similar to a matrix 4 + E, where
lIEll> = c(n)e ||4||5, c(n) is a modestly increasing function of n, and € is the machine precision. The
computed matrix Q differs from an exactly unitary matrix by a matrix £ such that ||E||, = O(e).

The total number of floating-point operations is approximately 20n’*kd if vect ='N', with
10m3* (kd-1)/kd additional operations if vect ='V'.

The real counterpart of this routine is ?sbtrd.

4-124

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?sterf

Computes all eigenvalues of a real symmetric tridiagonal
matrix using QR algorithm.

Syntax

call ssterf (n, d, e, info)
call dsterf (n, d, e, info)
Description

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix 7' (which can be
obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a
square-root-free variant of the QR algorithm.

If you need not only the eigenvalues but also the eigenvectors, call ?stegr.

Input Parameters

n INTEGER. The order of the matrix 7 (n = 0).
d, e REAL for ssterf

DOUBLE PRECISION for dsterf.

Arrays:

d(*) contains the diagonal elements of 7.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).
Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

info INTEGER.
If info =0, the execution is successful.
If info= i, the algorithm failed to find all the eigenvalues after 30n iterations:
i off-diagonal elements have not converged to zero. On exit, d and e contain,

4-125

4 Intel® Math Kernel Library Reference Manual

4-126

respectively, the diagonal and off-diagonal elements of a tridiagonal matrix
orthogonally similar to T.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix 7'+ E such that ||E]|, = O(¢)
||7]]>, where € is the machine precision.

If A; is an exact eigenvalue, and |; is the corresponding computed value, then
i - A < e(me |17
where c(n) is a modestly increasing function of n.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about 14n>.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?steqr

Computes all eigenvalues and eigenvectors of a
symmetric or Hermitian matrix reduced to tridiagonal

form

(OR algorithm).
Syntax
call ssteqr (compz, n, d, e, z, 1ldz, work, info)
call dsteqr (compz, n, d, e, z, 1ldz, work, info)
call csteqr (compz, n, d, e, z, 1dz, work, info)
call zsteqr (compz, n, d, e, z, 1dz, work, info)

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric
tridiagonal matrix 7. In other words, the routine can compute the spectral factorization: 7= ZAZ.
Here A is a diagonal matrix whose diagonal elements are the eigenvalues A;; Z is an orthogonal
matrix whose columns are eigenvectors. Thus,

TZl':A’l.Zl' fOI‘i= 1,2, I o
(The routine normalizes the eigenvectors so that ||z||, = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real
symmetric (or complex Hermitian) matrix 4 reduced to tridiagonal form 7: 4 = QTQ". In this case,
the spectral factorization is as follows: 4 = QTQ" = (QZ)A(QZ)!. Before calling ?steqr, you
must reduce A4 to tridiagonal form and generate the explicit matrix Q by calling the following
routines:

for real matrices: for complex matrices:
full storage ?sytrd, ?orgtr ?hetrd, ungtr
packed storage ?sptrd, ?opgtr ?hptrd, ?upgtr
band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

If you need eigenvalues only, it’s more efficient to call ?sterf. If T is positive-definite, ?ptegr
can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines ?stevd,
?syevd, ?spevd, or ?sbevd for real symmetric matrices or ?heevd, ?hpevd, or ?hbevd for
complex Hermitian matrices.

4-127

4 Intel® Math Kernel Library Reference Manual

Input Parameters

compz CHARACTER*1. Mustbe 'N' or 'I' or 'V'.
If compz ='N", the routine computes eigenvalues only.
If compz ='1"', the routine computes the eigenvalues and eigenvectors of the
tridiagonal matrix 7.
If compz ='v', the routine computes the eigenvalues and eigenvectors of 4
(and the array z must contain the matrix Q on entry).

n INTEGER. The order of the matrix 7 (n = 0).

d, e, work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:

d(*) contains the diagonal elements of 7.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

work (*) is a workspace array.

The dimension of work must be:

at least 1 if compz = 'N";

at least max(1, 2*n-2) if compz='v' or '1'.

z REAL for sstegr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqgr
DOUBLE COMPLEX for zstegr.
Array, DIMENSION (1dz, *)
If compz='N" or 'I', z need not be set.
If vect ='v', z must contain the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N";
at least max(1, n) if compz='v'or 'I'.

work (1lwork) is a workspace array.

ldz INTEGER. The first dimension of z. Constraints:
1dz2>1 if compz="'N";
1dz 2max(l, n) if compz='Vv'or 'I'.

4-128

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

z If info =0, contains the n orthonormal eigenvectors, stored by columns. (The
ith column corresponds to the ith eigenvalue.)

info INTEGER.
If info =0, the execution is successful.
If info= i, the algorithm failed to find all the eigenvalues after 30n iterations:
1 off-diagonal elements have not converged to zero. On exit, d and e contain,
respectively, the diagonal and off-diagonal elements of a tridiagonal matrix
orthogonally similar to 7.
If info= -1, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix 7'+ E such that ||E]|, = O(¢)
|| 71|, where € is the machine precision.

If A, is an exact eigenvalue, and |; is the corresponding computed value, then
u; - Al < c(m)e |7
where c(n) is a modestly increasing function of n.

If z; is the corresponding exact eigenvector, and w; is the corresponding computed vector, then the
angle 6(z;, w;) between them is bounded as follows:
e(Zl', Wi) < C(n)g ||T”2 / min#jp\.l- - 7\.]|

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about

24n% if compz = 'N";

7 (for complex flavors, 141'13) if compz='v'or 'I1'.

4-129

4 Intel® Math Kernel Library Reference Manual

?stedc

Computes all eigenvalues and eigenvectors of a
symmetric tridiagonal matrix using the divide and

conquer method.

call
call
call

call

Syntax
sstedc (compz,
dstedc (compz,

cstedc (compz,
iwork,

zstedc (compz,
iwork,

Description

n, d, e, z,
n, d, e, z,

n, d, e, z,

n, d, e, z,

1ldz,
1ldz,

1ldz,
liwork, info)

ldz,
liwork, info)

work, lwork, iwork, liwork,info)

work, lwork, iwork, liwork,info)

work, Ilwork, rwork, lrwork,

work, lwork, rwork, lrwork,

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method.

The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found
if ?sytrd/?hetrd or ?sptrd/?hptrd or ?sbtrd/?hbtrd has been used to reduce this matrix
to tridiagonal form.

Input Parameters

compz

d, e,

4-130

rwork

CHARACTER*1. Mustbe 'N' or 'I' or 'V'.

If compz ='N", the routine computes eigenvalues only.

If compz ='1"', the routine computes the eigenvalues and eigenvectors of the
tridiagonal matrix.

If compz ='v', the routine computes the eigenvalues and eigenvectors of
original symmetric/Hermitian matrix. On entry, the array z must contain the
orthogonal/unitary matrix used to reduce the original matrix to tridiagonal
form.

INTEGER. The order of the symmetric tridiagonal matrix (n = 0).

REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors.

Arrays:

d(*) contains the diagonal elements of the tridiagonal matrix. The dimension
of d must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

z, work

1ldz

lwork

lrwork

iwork

liwork

e (*) contains the subdiagonal elements of the tridiagonal matrix. The
dimension of e must be at least max(1, n-1).

rwork (1rwork) is a workspace array used in complex flavors only.

REAL for sstedc

DOUBLE PRECISION for dstedc

COMPLEX for cstedc

DOUBLE COMPLEX for zstedc.

Arrays: z(1dz, *), work (*).

If compz ='v"', then, on entry, z must contain the orthogonal/unitary matrix
used to reduce the original matrix to tridiagonal form.

The second dimension of z must be at least max(1, n).

work (1lwork) is a workspace array.

INTEGER. The first dimension of z. Constraints:
1dz2>1 if compz="'N";
1dz 2max(l, n) if compz='Vv'or 'I'.

INTEGER. The dimension of the array work.
See Application Notes for the required value of Iwork.

INTEGER. The dimension of the array rwork (used for complex flavors only).
See Application Notes for the required value of 1rwork.

INTEGER. Workspace array, DIMENSION (1iwork).

INTEGER. The dimension of the array iwork.
See Application Notes for the required value of 1iwork.

Output Parameters

d

work (1)

rwork (1)

The n eigenvalues in ascending order, unless info # 0.
See also info.

On exit, the array is overwritten; see info.

If info=0, then if compz='V"', z contains the orthonormal eigenvectors of
the original symmetric/Hermitian matrix, and if compz ='1', z contains the
orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz='N",
z is not referenced.

On exit, if info =0, then work (1) returns the optimal Iwork.

On exit, if info =0, then rwork (1) returns the optimal 1rwork (for
complex flavors only).

4-131

4 Intel® Math Kernel Library Reference Manual

iwork (1) On exit, if info =0, then iwork (1) returns the optimal 1iwork.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.If info = i, the algorithm
failed to compute an eigenvalue while working on the submatrix lying in rows
and columns i/(n+1) through mod(:, n+1).

Application Notes
The required size of workspace arrays must be as follows.
For sstedc/dstedc:

If compz="N' or n < 1 then Iwork must be at least 1.
If compz='Vv' and n > 1 then Iwork must be at least
(1+3n+2nlgn+ 3n2), where 1g(n) = smallest integer k such that 2> .

If compz='1' and n> 1 then Iwork must be at least (1 + 4n + nz).

If compz="N' or n < 1 then 1iwork must be at least 1.
If compz='v' and n > 1 then 1iwork must be at least (6 + 6n + Sn-lgn).
If compz='1"'" and n> 1 then 1iwork must be at least (3 + 5n).

For cstedc/zstedc:

If compz='N'or'1',orn< 1, Iwork must be at least 1.
If compz='v' and n> 1, Iwork must be at least n’.

If compz='N' orn< 1, Irwork must be at least 1.
If compz='Vv' and n> 1, 1rwork must be at least
(1+3n+2nlgn+ 3n%), where lg(n') = smallest integer k such that 2> n,

If compz='1' and n> 1, 1rwork must be at least(l + 4n + 2n2).

The required value of 1iwork for complex flavors is the same as for real flavors.

4-132

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?stegr

Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.

call

call

call

call

Syntax
sstegr (jobz,
1ldz,
dstegr (jobz,
1dz,
cstegr (jobz,
1ldz,
zstegr (jobz,
1dz,
Description

range, n, d, e, vl, vu, 1il, iu, abstol, m, w, z,
isuppz, work, lwork, iwork, liwork, info)
range, n, d, e, vl, vu, il, iu, abstol, m, w, 2z,
isuppz, work, lwork, iwork, liwork, info)
range, n, d, e, vl, vu, 1il, iu, abstol, m, w, z,
isuppz, work, lwork, iwork, liwork, info)
range, n, d, e, vl, vu, il, iu, abstol, m, w, 2z,
isuppz, work, lwork, iwork, liwork, info)

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix 7. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues. The eigenvalues are computed by the dgds
algorithm, while orthogonal eigenvectors are computed from various “good" LDL! representations
(also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as
far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th
unreduced block of 7,

(a)

Compute T - ©; = L; D; LiT, such that L; D; LiT is a relatively robust

representation;

(b)

Compute the eigenvalues, Xj, of L; D; LiT to high relative accuracy by the dgds

algorithm;

()

If there is a cluster of close eigenvalues, "choose" O; close to the cluster, and go

to step (a);

(d) Given the approximate eigenvalue 7\.j of L; D; LiT, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

4-133

4 Intel® Math Kernel Library Reference Manual

Input Parameters

jobz

range

d, e, work

vl, vu

i1, iu

abstol

4-134

CHARACTER+*1. Mustbe 'N' or 'V'.
If job='N", then only eigenvalues are computed.
If job='v", then eigenvalues and eigenvectors are computed.

CHARACTER*1. Mustbe 'A' or 'V' or 'I'.

If range ='A", the routine computes all eigenvalues.

If range ='Vv', the routine computes eigenvalues A; in the half-open interval:
vi<A; < vu.

If range ='1', the routine computes eigenvalues with indices 11 to iu.

INTEGER. The order of the matrix 7 (n = 0).

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.
Arrays:

d(*) contains the diagonal elements of 7.

The dimension of d must be at least max(1, n).

e (*) contains the subdiagonal elements of 7 in elements 1 to n-1; e (n) need
not be set.
The dimension of e must be at least max(1, n).

work (1work) is a workspace array.

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.

If range ='v', the lower and upper bounds of the interval to be searched for
eigenvalues.

Constraint: vI< vu.

If range='A" or 'I', vl and vu are not referenced.

INTEGER.

If range ='1', the indices in ascending order of the smallest and largest
eigenvalues to be returned.

Constraint: 1 £ i1 <iu<n,ifn>0; 11=1 and 1u=0

ifn=0.

If range='A" or 'v', i1 and iu are not referenced.

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.

The absolute tolerance to which each eigenvalue/eigenvector is required.
If jobz = 'v', the eigenvalues and eigenvectors output have residual norms

LAPACK Routines: Least Squares and Eigenvalue Problems 4

1ldz

1lwork

iwork

liwork

bounded by abstol, and the dot products between different eigenvectors are
bounded by abstol. If abstol < ng||T]|;, then ng||7]|; will be used in its place,
where € is the machine precision. The eigenvalues are computed to an
accuracy of €||7]|; irrespective of abstol. If high relative accuracy is
important, set abstol to ?1lamch ('Safe minimum').

INTEGER. The leading dimension of the output array z. Constraints:
1dz=>1 if jobz='N"';
1ldz 2max(l, n) if jobz='Vv".

INTEGER. The dimension of the array work,
lwork 2 max(l, 18n).

INTEGER.
Workspace array, DIMENSION (I1iwork).

INTEGER. The dimension of the array iwork,
lwork 2 max(1, 10n).

Output Parameters

d, e

m

On exit, d and e are overwritten.

INTEGER. The total number of eigenvalues found,
0<m<n Ifrange='A',m=n, and if range="'1",
m = iu-11+l.

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.

Array, DIMENSION at least max(1, n).

The selected eigenvalues in ascending order, stored in w(1) to w(m).

REAL for sstegr

DOUBLE PRECISION for dstegr

COMPLEX for cstegr

DOUBLE COMPLEX for zstegr.

Array z(1dz, *), the second dimension of z must be at least max(1, m).

If jobz='v", then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix T corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector associated with
w(i). If jobz='N", then z is not referenced.

Note: you must ensure that at least max(1,m) columns are supplied in the array
z ; if range ='Vv', the exact value of m is not known in advance and an upper
bound must be used.

4-135

4 Intel® Math Kernel Library Reference Manual

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the nonzero
elements in z. The i-th eigenvector is nonzero only in elements i suppz(2i-1
) through isuppz(2i).

work (1) On exit, if info =0, then work (1) returns the required minimal size of
Iwork.

iwork (1) On exit, if info =0, then iwork (1) returns the required minimal size of
liwork.

info INTEGER.

If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

If info=1, internal error in slarre occurred,
If info=2, internal error in ? larrv occurred.
Application Notes

Currently ?stegr is only set up to find a/l the n eigenvalues and eigenvectors of 7 in O(n?) time,
that is, only range='A"' is supported.

Currently the routine ?stein is called when an appropriate O; cannot be chosen in step (c) above.
?stein invokes modified Gram-Schmidt when eigenvalues are close.

?stegr works only on machines which follow IEEE-754 floating-point standard in their handling
of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not conform to the
IEEE-754 standard.

4-136

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?pteqr

Computes all eigenvalues and (optionally) all eigenvectors
of a real symmetric positive-definite tridiagonal matrix.

Syntax

call spteqr (compz, n, d, e, z, 1dz, work, info)
call dpteqr (compz, n, d, e, z, 1ldz, work, info)
call cpteqr (compz, n, d, e, z, 1ldz, work, info)
call zpteqgr (compz, n, d, e, z, 1ldz, work, info)

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric
positive-definite tridiagonal matrix 7. In other words, the routine can compute the spectral
factorization: T= ZAZ".

Here A is a diagonal matrix whose diagonal elements are the eigenvalues A;; Z is an orthogonal
matrix whose columns are eigenvectors. Thus,

TZl':A’l.Zl' fOI‘i= 1,2, I o
(The routine normalizes the eigenvectors so that ||z)||, = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or
complex Hermitian) positive-definite matrices 4 reduced to tridiagonal form T: 4 = QTQ". In this
case, the spectral factorization is as follows: 4 = QTQ" = (QZ)A(QZ)". Before calling ?pteqr,

you must reduce 4 to tridiagonal form and generate the explicit matrix Q by calling the following

routines:

for real matrices: for complex matrices:
full storage ?sytrd, ?orgtr ?hetrd, ?ungtr
packed storage ?sptrd, ?opgtr ?hptrd, upgtr
band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

The routine first factorizes 7'as LDL where L is a unit lower bidiagonal matrix, and D is a
diagonal matrix. Then it forms the bidiagonal matrix

B=LD"? and calls ?bdsgr to compute the singular values of B, which are the same as the
eigenvalues of 7.

4-137

4 Intel® Math Kernel Library Reference Manual

Input Parameters

compz CHARACTER*1. Mustbe 'N' or 'I' or 'V'.
If compz ='N", the routine computes eigenvalues only.
If compz ='1"', the routine computes the eigenvalues and eigenvectors of the
tridiagonal matrix 7.
If compz ='v', the routine computes the eigenvalues and eigenvectors of 4
(and the array z must contain the matrix Q on entry).

n INTEGER. The order of the matrix 7 (n = 0).

d, e, work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:

d(*) contains the diagonal elements of 7.
The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

work (*) is a workspace array.

The dimension of work must be:

at least 1 if compz = 'N";

at least max(1, 4*n-4) if compz='v' or '1'.

z REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zptegr.
Array, DIMENSION (1dz, *)
If compz='N" or 'I', z need not be set.
If vect ='v', z must contains the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N";
at least max(1, n) if compz='v'or 'I'.

1dz INTEGER. The first dimension of z. Constraints:
1dz2>1 if compz="'N";
1dz 2max(l, n) if compz='Vv'or 'I'.
Output Parameters

d The n eigenvalues in descending order, unless info > 0.
See also info.

4-138

LAPACK Routines: Least Squares and Eigenvalue Problems 4

e On exit, the array is overwritten.

z If info =0, contains the n orthonormal eigenvectors, stored by columns. (The
ith column corresponds to the ith eigenvalue.)

info INTEGER.
If info =0, the execution is successful.
If info = i, the leading minor of order i (and hence T itself) is not
positive-definite.
If info=n+ i, the algorithm for computing singular values failed to
converge; i off-diagonal elements have not converged to zero.
If info= -1, the ith parameter had an illegal value.

Application Notes
If A; is an exact eigenvalue, and |; is the corresponding computed value, then
u; - A < c(m)eKh;

where c(n) is a modestly increasing function of n, € is the machine precision, and K = ||DTD||,
((DTD) |5, D is diagonal with dj; = 1;;” 2

If z; is the corresponding exact eigenvector, and w; is the corresponding computed vector, then the
angle 0(z;, w;) between them is bounded as follows:
G(ul-, Wi) < C(}’I)EK/ min#j(Pul- - }\']l/P\‘l + 7\‘j|)

Here ming(|A; - AjJ/[A; + &) is the relative gap between A; and the other eigenvalues.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about

30n? if compz = 'N';

60> (for complex flavors, 12n3) if compz='Vv'or 'I'.

4-139

4 Intel® Math Kernel Library Reference Manual

?stebz

Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.

Syntax
call sstebz (range, order, n, vl, vu, il, iu, abstol,

d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
call dstebz (range, order, n, vl, vu, il, iu, abstol,

d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

Description

This routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix 7 by
bisection. The routine searches for zero or negligible off-diagonal elements to see if 7 splits into
block-diagonal form

T'=diag(T}, T, ...). Then it performs bisection on each of the blocks 7 and returns the block index
of each computed eigenvalue, so that a subsequent call to ?stein can also take advantage of the
block structure.

Input Parameters

range CHARACTER*1. Mustbe 'A' or 'V' or 'I'.
If range ='A", the routine computes all eigenvalues.
If range ='Vv', the routine computes eigenvalues A; in the half-open interval:

vi<h; < vu.
If range =' 1, the routine computes eigenvalues with indices i1 to iu.
order CHARACTER*1. Mustbe 'B' or 'E"'.

If order="B", the eigenvalues are to be ordered from smallest to largest
within each split-off block.

If order ="E", the eigenvalues for the entire matrix are to be ordered from
smallest to largest.

n INTEGER. The order of the matrix 7 (n = 0).

vl, vu REAL for sstebz
DOUBLE PRECISION for dstebz.
If range ='Vv"', the routine computes eigenvalues A; in the half-open interval:
vi<A; < vu.

If range='A" or 'I', v1 and vu are not referenced.

4-140

LAPACK Routines: Least Squares and Eigenvalue Problems 4

il, iu

abstol

d, e, work

iwork

INTEGER. Constraint: 1 £ i1 <iu<n.
If range ='1"', the routine computes eigenvalues A; such that 11<i < iu
(assuming that the eigenvalues A; are in ascending order).

If range='A" or 'v', i1 and iu are not referenced.

REAL for sstebz

DOUBLE PRECISION for dstebz.

The absolute tolerance to which each eigenvalue is required. An eigenvalue (or
cluster) is considered to have converged if it lies in an interval of width
abstol. If abstol < 0.0, then the tolerance is taken as €||7]|;, where € is the
machine precision.

REAL for sstebz

DOUBLE PRECISION for dstebz.

Arrays:

d(*) contains the diagonal elements of 7.

The dimension of d must be at least max(1, n).

e (*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

work (*) is a workspace array.
The dimension of work must be at least max(1, 4n).

INTEGER. Workspace.
Array, DIMENSION at least max(1, 3n).

Output Parameters

m
nsplit

w

iblock, isplit

INTEGER. The actual number of eigenvalues found.
INTEGER. The number of diagonal blocks detected in 7.

REAL for sstebz

DOUBLE PRECISION for dstebz.

Array, DIMENSION at least max(1, n).

The computed eigenvalues, stored in w(1) to w(m).

INTEGER.

Arrays, DIMENSION at least max(1, n).

A positive value iblock (i) is the block number of the eigenvalue stored in
w(i) (see also info).

The leading nsplit elements of isplit contain points at which 7 splits into

4-141

4 Intel® Math Kernel Library Reference Manual

4-142

info

blocks 7; as follows: the block
T, contains rows/columns 1 to isplit (1) ;the block
T, contains rows/columns isplit(1)+1to isplit(2), and so on.

INTEGER.
If info =0, the execution is successful.
If info=1, for range ='A" or 'V', the algorithm failed to compute some of
the required eigenvalues to the desired accuracy; iblock (1) <0 indicates that
the eigenvalue stored in w (i) failed to converge.
If info=2, for range ='1", the algorithm failed to compute some of the
required eigenvalues. Try calling the routine again with range ='A".
If info=3:

for range='A" or 'V', same as info=1;

for range='1"', same as info=2.
If info=4, no eigenvalues have been computed. The floating-point arithmetic
on the computer is not behaving as expected.
If info= -1, the ith parameter had an illegal value.

Application Notes

The eigenvalues of T are computed to high relative accuracy which means that if they vary widely
in magnitude, then any small eigenvalues will be computed more accurately than, for example,
with the standard QR method. However, the reduction to tridiagonal form (prior to calling the
routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of
the original matrix if its eigenvalues vary widely in magnitude.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?stein

Computes the eigenvectors corresponding to specified
eigenvalues of a real symmetric tridiagonal matrix.

Syntax

call sstein (n, d, e, m, w, iblock, isplit, =z, ldz,
work, iwork, ifailv, info)

call dstein (n, d, e, m, w, iblock, isplit, z, 1ldz,
work, iwork, ifailv, info)

call cstein (n, d, e, m, w, iblock, isplit, =z, ldz,
work, iwork, ifailv, info)

call zstein (n, d, e, m, w, iblock, isplit, z, 1ldz,
work, iwork, ifailv, info)

Description

This routine computes the eigenvectors of a real symmetric tridiagonal matrix 7 corresponding to
specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified
eigenvalues have been computed by ?stebz with order ='B', but may also be used when the
eigenvalues have been computed by other routines. If you use this routine after ?stebz, it can take
advantage of the block structure by performing inverse iteration on each block 7; separately, which
is more efficient than using the whole matrix 7.

If T has been formed by reduction of a full symmetric or Hermitian matrix 4 to tridiagonal form,
you can transform eigenvectors of 7 to eigenvectors of 4 by calling ?ormtr or ?opmtr (for real
flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

Input Parameters

n INTEGER. The order of the matrix 7 (n = 0).
m INTEGER. The number of eigenvectors to be returned.
d, e, w REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:

d(*) contains the diagonal elements of 7.
The dimension of d must be at least max(1, n).

4-143

4 Intel® Math Kernel Library Reference Manual

4-144

iblock, isplit

1dz

work

iwork

e (*) contains the off-diagonal elements of 7.
The dimension of e must be at least max(1, n-1).

w(*) contains the eigenvalues of 7, stored in w(1)

to w(m) (as returned by ?stebz). Eigenvalues of 7', must be supplied first, in
non-decreasing order; then those of 75, again in non-decreasing order, and so
on. Constraint:

if iblock (i) = iblock(i+1), w(i) Sw(i+l).

The dimension of w must be at least max(1, n).

INTEGER.
Arrays, DIMENSION at least max(1, n).
The arrays iblock and isplit, as returned by ?stebz with order="'B".

If you did not call ?stebz with order="B", set all elements of iblockto 1,
and isplit (1) ton.)

INTEGER. The first dimension of the output array z; 1dz = max(1, n).

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Workspace array,
DIMENSION at least max(1, 5n).

INTEGER.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

p4

ifailv

info

REAL for sstein

DOUBLE PRECISION for dstein

COMPLEX for cstein

DOUBLE COMPLEX for zstein.

Array, DIMENSION (1dz, *).

If info =0, z contains the m orthonormal eigenvectors, stored by columns.
(The ith column corresponds to the ith specified eigenvalue.)

INTEGER. Array, DIMENSION at least max(1, m).
If info= 1> 0, the first i elements of i failv contain the indices of any
eigenvectors that failed to converge.

INTEGER.
If info =0, the execution is successful.
If info= i, then i eigenvectors (as indicated by the parameter i failv) each

LAPACK Routines: Least Squares and Eigenvalue Problems 4

failed to converge in 5 iterations. The current iterates are stored in the
corresponding columns of the array z.
If info= -1, the ith parameter had an illegal value.

Application Notes

Each computed eigenvector z; is an exact eigenvector of a matrix 7'+ E;, where ||E}||, = O(¢) ||T]|,-
However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree
of accuracy as those computed by ?steqgr.

?disna

Computes the reciprocal condition numbers for the
eigenvectors of a symmetric/ Hermitian matrix or for the left or
right singular vectors of a general matrix.

Syntax

call sdisna (job, m, n, d, sep, info)
call ddisna (job, m, n, d, sep, info)
Description

This routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric
or complex Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular
value and the nearest other one.

The bound on the error, measured by angle in radians, in the i-th computed vector is given by
slamch('E') * (anorm/ sep(i))

where anorm= ||4||, = max(|d(j)|). sep(1)is not allowed to be smaller than slamch('E'
)* anorm in order to limit the size of the error bound.

?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric
definite eigenproblem.

4-145

4 Intel® Math Kernel Library Reference Manual

4-146

Input Parameters

job

CHARACTER*1. Mustbe 'E','L', or 'R"'.

Specifies for which problem the reciprocal condition numbers should be
computed:

job='E": for the eigenvectors of a symmetric/Hermitian matrix ;
job='L": for the left singular vectors of a general matrix;

job='R": for the right singular vectors of a general matrix .

INTEGER. The number of rows of the matrix (m = 0).

INTEGER. If job='L", or 'R', the number of columns of the matrix (n = 0).
Ignored if job="E".
REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job="'E", and at least max(1,
min(m, n)) if job='L'or 'R".
This array must contain the eigenvalues (if job="'E") or singular values
(if job='L' or 'R') of the matrix, in either increasing or decreasing
order. If singular values, they must be non-negative.

Output Parameters

sep

info

REAL for sdisna

DOUBLE PRECISION for ddisna.

Array, dimension at least max(1,m) if job="'E", and at least max(1, min(m, n))
if job='L'or 'R'.

The reciprocal condition numbers of the vectors.

INTEGER.

If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Generalized Symmetric-Definite Eigenvalue Problems

Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues A and the
corresponding eigenvectors z that satisfy one of these equations:

Az =MABz, ABz=M\z, or BAz= Az

where A4 is an n by n symmetric or Hermitian matrix, and B is an n by n symmetric
positive-definite or Hermitian positive-definite matrix.

In these problems, there exist n real eigenvectors corresponding to real eigenvalues (even for
complex Hermitian matrices 4 and B).

Routines described in this section allow you to reduce the above generalized problems to standard
symmetric eigenvalue problem Cy =2y,
which you can solve by calling LAPACK routines described earlier in this chapter (see page 4-95).

Different routines allow the matrices to be stored either conventionally or in packed storage. Prior
to reduction, the positive-definite matrix B must first be factorized using either ?potrf or
?pptrf.

The reduction routine for the banded matrices 4 and B uses a split Cholesky factorization for
which a specific routine ?pbstf is provided. This refinement halves the amount of work required
to form matrix C.

Table 4-4 Computational Routines for Reducing Generalized Eigenproblems to Standard
Problems
Reduce to standard Reduce to standard Reduce to standard Factorize
Matrix problems problems problems band
type (full storage) (packed storage) (band matrices) matrix
real ?sygst ?spgst ?sbgst ?pbstf
symmetric
matrices
complex ?hegst / *hpgst ?hbgst ?pbstf
Hermitian
matrices

4-147

4 Intel® Math Kernel Library Reference Manual

?sygst

Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.

4-148

Syntax
call ssygst (itype, uplo, n, a, lda, b, 1ldb, info)
call dsygst (itype, uplo, n, a, lda, b, 1db, info)

Description
This routine reduces real symmetric-definite generalized eigenproblems
Az=MABz, ABz=M\z, or BAz=\z

to the standard form Cy = Ay. Here 4 is a real symmetric matrix, and B is a real symmetric
positive-definite matrix. Before calling this routine, call ?potrf to compute the Cholesky
factorization: B = U'U or B = LLT.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.

If itype = 1, the generalized eigenproblem is Az = ABz;
for uplo="'U':C= U'TAU'l, z= U'ly;
foruplo='1:C=L"'4L"T z=L"T

If itype =2, the generalized eigenproblem is 4Bz = Az;
for uplo=10': C=UAU’, z=U"ly;
for uplo='L': C=L"AL, z=L".

If itype =3, the generalized eigenproblem is BAz = Az;
for uplo="'U':C= UAUT, z= UT;
for uplo="L"': C=LTAL, z=1Ly.

uplo CHARACTER*1. Mustbe 'U' or 'L".
If uplo= 'U", the array a stores the upper triangle of 4; you must supply B in
the factored form B = UTU.
If uplo="'L", the array a stores the lower triangle of 4; you must supply B in
the factored form B = LLT,

n INTEGER. The order of the matrices A and B (n = 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, b REAL for ssygst
DOUBLE PRECISION for dsygst.
Arrays:
a(lda,*) contains the upper or lower triangle of 4.
The second dimension of a must be at least max(1, n).

b(1db, *) contains the Cholesky-factored matrix B:
B=U'UorB =LL" (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

1db INTEGER. The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of 4 is overwritten by the upper or lower triangle
of C, as specified by the arguments itype and uplo.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B! (if itype=1) or B (if itype =2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is .

4-149

4 Intel® Math Kernel Library Reference Manual

?hegst

Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form.

4-150

Syntax
call chegst
call zhegst

Description

(itype, uplo, n, a, lda, b, 1ldb, info)
(itype, uplo, n, a, lda, b, 1db, info)

This routine reduces complex Hermitian-definite generalized eigenvalue problems

Az =MABz, ABz=M\z, or BAz= Az

to the standard form Cy = Ay. Here the matrix 4 is complex Hermitian, and B is complex Hermitian
positive-definite. Before calling this routine, you must call ?potrf to compute the Cholesky
factorization: B = U"U or B = LL!.

Input Parameters

itype

uplo

INTEGER. Must be 1 or 2 or 3.

If itype = 1, the generalized eigenproblem is Az = ABz;
for uplo="'U':C= U'HAU'l, z= U'ly;
foruplo='1': C=L"'AL™" z=L"H)

If i type =2, the generalized eigenproblem is 4Bz = Az;
for uplo=10': C=UAUY, z=U"1y;
for uplo='L': C=LHAL, z=L"y.

If itype =3, the generalized eigenproblem is BAz = Az;
for uplo="'U':C= UAUH, z=U ;
for uplo="L"': C=LHAL, z=1Ly.

CHARACTER*1. Mustbe 'U' or 'L".

If uplo= 'U", the array a stores the upper triangle of 4; you must supply B in

the factored form B = U"U.

If uplo="'L", the array a stores the lower triangle of 4; you must supply B in
the factored form B = LL,

INTEGER. The order of the matrices A and B (n = 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

a, b COMPLEX for chegst
DOUBLE COMPLEX for zhegst.
Arrays:
a(lda,*) contains the upper or lower triangle of 4.
The second dimension of a must be at least max(1, n).

b(1db, *) contains the Cholesky-factored matrix B:
B=U"Uor B =LL" (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

1db INTEGER. The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of 4 is overwritten by the upper or lower triangle
of C, as specified by the arguments itype and uplo.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B! (if itype=1) or B (if itype =2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is .

4-151

4 Intel® Math Kernel Library Reference Manual

?spgst

Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form using packed
storage.

Syntax
call sspgst (itype, uplo, n, ap, bp, info)
call dspgst (itype, uplo, n, ap, bp, info)

Description
This routine reduces real symmetric-definite generalized eigenproblems
Az=MABz, ABz=M\z, or BAz= Az

to the standard form Cy = Ay, using packed matrix storage. Here A is a real symmetric matrix, and
B is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute
the Cholesky factorization: B = U'U or B = LL”.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.

If itype = 1, the generalized eigenproblem is 4z = ABz;
foruplo= 10" C=UT4U!, z=U"y;
foruplo='1:C=L"'4L"T z=L"T

If itype =2, the generalized eigenproblem is 4Bz = Az;
for uplo=10': C=UAU", z=U"ly;
for uplo='L': C=L"AL, z=L"".

If itype = 3, the generalized eigenproblem is BAz = Az;
for uplo='U':C= UAUT, z= UT;
for uplo="L"': C=LTAL, z=1Ly.

uplo CHARACTER*1. Mustbe 'U' or 'L"'.
If uplo='U"', ap stores the packed upper triangle of 4;
you must supply B in the factored form B = u'u.

If uplo="'L", ap stores the packed lower triangle of 4;
you must supply B in the factored form B = LLT.

n INTEGER. The order of the matrices A and B (n = 0).

4-152

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ap, bp REAL for sspgst
DOUBLE PRECISION for dspgst.
Arrays:
ap (*) contains the packed upper or lower triangle of 4.
The dimension of ap must be at least max(1, n*(n+1)/2).

bp (*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of bp must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of 4 is overwritten by the upper or lower triangle
of C, as specified by the arguments i type and uplo.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B™! (if itype = 1) or B (if i type =2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is .

4-153

4 Intel® Math Kernel Library Reference Manual

?hpgst

Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form using packed

storage.

4-154

Syntax
call chpgst
call zhpgst

Description

(itype, uplo, n, ap, bp, info)
(itype, uplo, n, ap, bp, info)

This routine reduces real symmetric-definite generalized eigenproblems

Az=MABz, ABz=M\z, or BAz= Az

to the standard form Cy = Ay, using packed matrix storage. Here A is a real symmetric matrix, and
B is a real symmetric positive-definite matrix. Before calling this routine, you must call ?pptrf to
compute the Cholesky factorization: B = UU or B = LL".

Input Parameters

itype

uplo

INTEGER. Must be 1 or 2 or 3.

If itype = 1, the generalized eigenproblem is Az = ABz;
foruplo=10': C=UM4U™!, z=Uy;
foruplo='1': C=L"'AL™" z=L"H)

If itype =2, the generalized eigenproblem is 4Bz = Az;
for uplo=10': C=UAU", z=U"1y;
for uplo='L': C=LHAL, z=L"y.

If itype =3, the generalized eigenproblem is BAz = Az;
for uplo='U':C= UAUH, z= U ;
for uplo="L"': C=LHAL, z=1Ly.

CHARACTER*1. Mustbe 'U' or 'L"'.

If uplo= 'u', ap stores the packed upper triangle of 4; you must supply B in

the factored form B = U"U.

If uplo='L", ap stores the packed lower triangle of 4; you must supply B in
the factored form B = LL".

INTEGER. The order of the matrices A and B (n = 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ap, bp COMPLEX for chpgst
DOUBLE COMPLEX for zhpgst.
Arrays:
ap (*) contains the packed upper or lower triangle of 4.
The dimension of a must be at least max(1, n*(n+1)/2).

bp (*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of b must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of 4 is overwritten by the upper or lower triangle

of C, as specified by the arguments i type and uplo.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication

by B™! (if itype = 1) or B (if i type =2 or 3). When the routine is used as a step in the

computation of eigenvalues and eigenvectors of the original problem, there may be a significant

loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is .

?sbgst

Reduces a real symmetric-definite generalized
eigenproblem for banded matrices to the standard form
using the factorization performed by ?pbstf.

Syntax
call ssbgst (vect, uplo, n, ka, kb, ab, ldab, bb, 1ldbb, x, 1dx,
work, info)
call dsbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, 1ldx,
work, info)

4-155

4 Intel® Math Kernel Library Reference Manual

Description

To reduce the real symmetric-definite generalized eigenproblem A4z = ABz to the standard form
Cy=MAy, where 4, B and C are banded, this routine must be preceded by a call to
spbstf/dpbstf, which computes the split Cholesky factorization of the positive-definite matrix
B: B = S'S. The split Cholesky factorization, compared with the ordinary Cholesky factorization,
allows the work to be approximately halved.

This routine overwrites 4 with C = X?AX, where X =S 1Q and Q is an orthogonal matrix chosen
(implicitly) to preserve the bandwidth of 4.
The routine also has an option to allow the accumulation of X, and then, if z is an eigenvector of C,
Xz is an eigenvector of the original system.

Input Parameters

vect CHARACTER*1. Mustbe 'N' or 'vV'.
If vect = 'N', then matrix X is not returned;
If vect = 'v', then matrix X is returned.
uplo CHARACTER*1. Mustbe 'U" or 'L'.
If uplo="'U', ab stores the upper triangular part of 4.
If uplo="'L", ab stores the lower triangular part of A.

n INTEGER. The order of the matrices 4 and B (n = 0).

ka INTEGER. The number of super- or sub-diagonals in 4
(ka=0).

kb INTEGER. The number of super- or sub-diagonals in B
(kaz kb= 0).

ab, bb, work REAL for ssbgst

DOUBLE PRECISION for dsbgst

ab (1dab, *) is an array containing either upper or lower triangular part of the
symmetric matrix 4 (as specified by upIo) in band storage format. The second
dimension of the array ab must be at least max(1, n).

bb (1dbb, *) is an array containing the banded split Cholesky factor of B as
specified by uplo, n and kb and returned by spbstf/dpbstf. The second
dimension of the array bb must be at least max(1, n).

work (*) is a workspace array, DIMENSION at least max(1, 2*n)

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

1dbb INTEGER. The first dimension of the array bb; must be at least kb+1.

4-156

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ldx The first dimension of the output array x. Constraints:
if vect ='N' ,then 1dx2>1;
if vect ='v' ,then 1dx > max(l, n).

Output Parameters

ab On exit, this array is overwritten by the upper or lower triangle of C as
specified by uplo.

x REAL for ssbgst
DOUBLE PRECISION for dsbgst
Array.
If vect ='v', then x (1dx,*) contains the n by n matrix X = S'IQ.
If vect ='N', then x is not referenced.
The second dimension of x must be:
at least max(1, n), if vect ='v";
atleast 1, if vect ='N".

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B"!. When the routine is used as
a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a
significant loss of accuracy if B is ill-conditioned with respect to inversion.

The total number of floating-point operations is approximately 6n°*kb, when vect ='N'.
Additional (3/2)n> *(kb/ka) operations are required when vect ='v'. All these estimates
assume that both ka and kb are much less than n.

4-157

4 Intel® Math Kernel Library Reference Manual

?hbgst

Reduces a complex Hermitian-definite generalized
eigenproblem for banded matrices to the standard form
using the factorization performed by ?pbst£.

Syntax
call chbgst (vect, uplo, n, ka, kb, ab, ldab, bb, 1ldbb, x, 1ldx,
work, rwork, info)
call zhbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, 1ldx,
work, rwork, info)

Description

To reduce the complex Hermitian-definite generalized eigenproblem Az =ABz to the standard
form Cy = Ay , where 4, B and C are banded, this routine must be preceded by a call to
cpbstf/zpbstf, which computes the split Cholesky factorization of the positive-definite matrix
B: B = S"S. The split Cholesky factorization, compared with the ordinary Cholesky factorization,
allows the work to be approximately halved.

This routine overwrites 4 with C = X"4X, where X =§ 1Q and Q is a unitary matrix chosen
(implicitly) to preserve the bandwidth of 4.

The routine also has an option to allow the accumulation of X, and then, if z is an eigenvector of C,
Xz is an eigenvector of the original system.

Input Parameters

vect CHARACTER*1. Mustbe 'N' or 'vV'.
If vect = 'N', then matrix X is not returned;
If vect = 'v', then matrix X is returned.
uplo CHARACTER*1. Mustbe 'U" or 'L".
If uplo="'U', ab stores the upper triangular part of 4.
If uplo="'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrices 4 and B (n > 0).

ka INTEGER. The number of super- or sub-diagonals in 4
(ka=0).

kb INTEGER. The number of super- or sub-diagonals in B
(ka2 kb=0).

4-158

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ab, bb, work

ldab
1dbb

1dx

rwork

COMPLEX for chbgst

DOUBLE COMPLEX for zhbgst

ab (1dab, *) is an array containing either upper or lower triangular part of the
Hermitian matrix 4 (as specified by uplo) in band storage format. The second
dimension of the array ab must be at least max(1, n).

bb (1dbb, *) is an array containing the banded split Cholesky factor of B as
specified by uplo, n and kb and returned by cpbstf/zpbstf. The second
dimension of the array bb must be at least max(1, n).

work (*) is a workspace array, DIMENSTION at least max(1, n)

INTEGER. The first dimension of the array ab; must be at least ka+1.
INTEGER. The first dimension of the array bb; must be at least kb+1.

The first dimension of the output array x. Constraints:
if vect ='N' ,then 1dx2>1;
if vect ='v' ,then 1dx > max(l, n).

REAL for chbgst
DOUBLE PRECISION for zhbgst
Workspace array, DIMENSION at least max(1, n)

Output Parameters

ab

info

On exit, this array is overwritten by the upper or lower triangle of C as
specified by uplo.

COMPLEX for chbgst

DOUBLE COMPLEX for zhbgst

Array.

If vect ='v', then x (1dx,*) contains the n by n matrix X = S'IQ.
If vect ='N', then x is not referenced.

The second dimension of x must be:

at least max(1, n), if vect ='v";

at least 1, if vect ='N"'.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-'. When the routine is used as
a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a
significant loss of accuracy if B is ill-conditioned with respect to inversion.

4-159

4 Intel® Math Kernel Library Reference Manual

The total number of floating-point operations is approximately 20n® *kb, when vect ='N'.
Additional 5n> *(kb/ka) operations are required when vect ='v'. All these estimates assume

that both ka and kb are much less than n.

?pbstf

Computes a split Cholesky factorization of a real
symmetric or complex Hermitian positive-definite
banded matrix used in ?sbgst/?hbgst .

Syntax

call spbstf
call dpbstf
call cpbstf
call zpbstf

Description

~ o~ o~ —~

uplo, n, kb,
uplo, n, kb,
uplo, n, kb,
uplo, n, kb,

bb,
bb,
bb,
bb,

1dbb,
1dbb,
1dbb,
1dbb,

info
info
info
info

—_ — — —

This routine computes a split Cholesky factorization of a real symmetric or complex Hermitian
positive-definite band matrix B. It is to be used in conjunction with ?sbgst/?hbgst.

The factorization has the form B =SS (or B = S™S for complex flavors), where S is a band matrix
of the same bandwidth as B and the following structure: S is upper triangular in the first (n+kb)/2

rows and lower triangular in the remaining rows.

Input Parameters

uplo

kb

bb

4-160

CHARACTER*1. Mustbe 'U' or 'L".

If uplo="'U', bb stores the upper triangular part of B.
If uplo="'L", bb stores the lower triangular part of B.

INTEGER. The order of the matrix B (n = 0).

INTEGER. The number of super- or sub-diagonals in B

(kb = 0).

REAL for spbstf
DOUBLE PRECISION for dpbstf

COMPLEX for cpbstf

DOUBLE COMPLEX for zpbstf.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

bb (1dbb, *) is an array containing either upper or lower triangular part of the
matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).

1dbb INTEGER. The first dimension of bb; must be at least kb+1.

Output Parameters

bb On exit, this array is overwritten by the elements of the split Cholesky factor S.

info INTEGER.
If info =0, the execution is successful.
If info = i, then the factorization could not be completed, because the
updated element b ; would be the square root of a negative number; hence the
matrix B is not positive-definite.
If info = -1, the ith parameter had an illegal value.

Application Notes

The computed factor S is the exact factor of a perturbed matrix B + E,
where

H
1B < c(xb+ 1)gsf|5l, |eij| < c(kp+ 1)€/by bss
c(n) is a modest linear function of n, and € is the machine precision.

The total number of floating-point operations for real flavors is approximately n(kb+1)%. The
number of operations for complex flavors is 4 times greater. All these estimates assume that kb is
much less than n.

After calling this routine, you can call ?sbgst/?hbgst to solve the generalized eigenproblem Az
= ABz , where 4 and B are banded and B is positive-definite.

4-161

4 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems

4-162

This section describes LAPACK routines for solving nonsymmetric eigenvalue problems,
computing the Schur factorization of general matrices, as well as performing a number of related
computational tasks.

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian)
matrix 4, find the eigenvalues A and the corresponding eigenvectors z that satisfy the equation

Az =)z (right eigenvectors z)
or the equation
M4 =Nz (left eigenvectors z).

Nonsymmetric eigenvalue problems have the following properties:

® The number of eigenvectors may be less than the matrix order (but is not less than the number
of distinct eigenvalues of A).

* Eigenvalues may be complex even for a real matrix A4.

¢ [fareal nonsymmetric matrix has a complex eigenvalue a+bi corresponding to an eigenvector
z, then a- bi is also an eigenvalue.
The eigenvalue a-bi corresponds to the eigenvector whose elements are complex conjugate to
the elements of z.

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg
matrix obtained. Table 4-5 lists LAPACK routines for reducing the matrix to the upper Hessenberg
form by an orthogonal (or unitary) similarity transformation A = QHQO" as well as routines for
solving eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such
matrices and computing the corresponding condition numbers.

Decision tree in Figure 4-4 helps you choose the right routine or sequence of routines for an
eigenvalue problem with a real nonsymmetric matrix.

If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision
tree shown in Figure 4-5.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Table 4-5 Computational Routines for Solving Nonsymmetric Eigenvalue Problems
Operation performed Routines for real matrices Routines for complex matrices
Reduce to Hessenberg ?gehrd, ?gehrd
form A = QHQH
Generate the matrix Q ?orghr ?2unghr
Apply the matrix Q ?ormhr ?unmhr
Balance matrix ?gebal ?gebal
Transform eigenvectors of ?gebak ?gebak

balanced matrix to those
of the original matrix

Find eigenvalues and ?hseqr ?hseqgr
Schur factorization
(QR algorithm)

Find eigenvectors from ?hsein ?hsein
Hessenberg form (inverse
iteration)

Find eigenvectors from ?trevce ?treve
Schur factorization

Estimate sensitivities of ?trsna ?trsna
eigenvalues and
eigenvectors

Reorder Schur ?trexc ?trexc
factorization
Reorder Schur ?trsen ?trsen

factorization, find the
invariant subspace and
estimate sensitivities

Solves Sylvester's ?trsyl ?trsyl
equation.

4-163

4 Intel® Math Kernel Library Reference Manual

Figure 4-4

Decision Tree: Real Nonsymmetric Eigenvalue Problems

Is A an upper
Hessenberg matrix?

no

9GEBAL ?GEHRD
7HSEQR

Is A an upper
Hessenberg matrix?

no

?GEBAL
?GEHRD ?0RGHR
7HSEQR ?GEBAK

Are eigenvalues yes
only required?
no
Is the Schur yes
factorization of A
required?
no
Are all eigenvectors yes
required?
no
Is A an upper yes

Hessenberg matrix?

Is A an upper
Hessenberg matrix?

yes
PHSEQR
yes
PHSEQR
yes

no

9GEBAL ?GEHRD
20RGHR ?HSEQR
9TREVC ?GEBAK

no

7GEBAL ?GEHRD
PHSEQR ?HSEIN
?70RMHR ?GEBAK

4-164

THSEQR ?HSEIN

PHSEQR ?TREVC

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Figure 4-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems
Are eigenvalues only yes Is A an upper Hessenberg yes
o i PHSEQR
required? matrix?
no
no
7GEBAL ?GEHRD ?HSEQR
Is the Schur
yes yes
factorization of A IsA z?n upper Hessenberg ?HSEQR
c 19 matrix?
required?
no
?GEBAL ?GEHRD ?UNGHR
no PHSEQR ?GEBAK
Are all eigenvectors yes Is A an upper Hessenberg yes
. . ?HSEQR ?TREVC
required? matrix?
no
o ?GEBAL ?GEHRD ?UNGHR
7HSEQR ?TREVC ?GEBAK
Is A an upper yes
. 7HSEQR ?HSEIN
Hessenberg matrix?

no

?GEBAL ?GEHRD
7HSEQR ?HSEIN
7UNMHR ?GEBAK

4-165

4 Intel® Math Kernel Library Reference Manual

?gehrd

Reduces a general matrix to upper Hessenberg form.

Syntax
call sgehrd (n, ilo,
call dgehrd (n, ilo,
call cgehrd (n, ilo,
call zgehrd (n, ilo,
Description

ihi, a, lda, tau, work, lwork, info)
ihi, a, lda, tau, work, lwork, info)
ihi, a, lda, tau, work, lwork, info)

ihi, a, lda, tau, work, lwork, info)

The routine reduces a general matrix 4 to upper Hessenberg form H by an orthogonal or unitary
similarity transformation 4 = QHQ. Here H has real subdiagonal elements.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

n

ilo, ihi

a, work

lda

1lwork

4-166

INTEGER. The order of the matrix A (n = 0).

INTEGER. If A has been output by ?gebal, then

iloand ihi must contain the values returned by that routine. Otherwise i 1o =
land ihi=n. (If n>0,then 1 <ilo<ihi<n;ifn=0,ilo=1and ihi=
0.)

REAL for sgehrd

DOUBLE PRECISION for dgehrd

COMPLEX for cgehrd

DOUBLE COMPLEX for zgehrd.

Arrays:

a (lda,*) contains the matrix A.

The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.
INTEGER. The first dimension of a; at least max(1, n).

INTEGER. The size of the work array; at least max(1,n).
See Application notes for the suggested value of Iwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Output Parameters

a

tau

work (1)

info

Overwritten by the upper Hessenberg matrix H and details of the matrix Q. The
subdiagonal elements of H are real.

REAL for sgehrd

DOUBLE PRECISION for dgehrd

COMPLEX for cgehrd

DOUBLE COMPLEX for zgehrd.

Array, DIMENSTION at least max (1, n-1).
Contains additional information on the matrix Q.

If info=0, on exit work (1) contains the minimum value of I1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using Iwork = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of Iwork for the first run. On exit,
examine work (1) and use this value for subsequent runs.

The computed Hessenberg matrix H is exactly similar to a nearby matrix
A + E, where ||E||; < c(n)€g]|A||p, ¢(n) is a modestly increasing function of n, and € is the machine

precision.

The approximate number of floating-point operations for real flavors is (2/3)(ihi - i10)*(2ihi +
2ilo + 3n); for complex flavors it is 4 times greater.

4-167

4 Intel® Math Kernel Library Reference Manual

?orghr

Generates the real orthogonal matrix Q determined by
?gehrd.

Syntax
call sorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

call dorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

Description

This routine explicitly generates the orthogonal matrix Q that has been determined by a preceding
call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix 4 to upper
Hessenberg form H by an orthogonal similarity transformation, 4 = QHQT, and represents the
matrix Q as a product of 1hi-1ilo elementary reflectors. Here 110 and ihi are values determined
by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, 110 =1 and
ihi=n.)

The matrix Q generated by ?orghr has the structure:

100
=100, 0
0 0 I

where 05, occupies rows and columns iloto ihi.

Input Parameters

n INTEGER. The order of the matrix Q (n=0).

ilo, ihi INTEGER. These must be the same parameters i 1o and ihi, respectively, as
supplied to ?gehrd. If n>0,then | £ ilo<ihi<n;ifn=0,ilo=1and
ihi=0.)

a, tau, work REAL for sorghr
DOUBLE PRECISION for dorghr
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

4-168

LAPACK Routines: Least Squares and Eigenvalue Problems 4

lda

lwork

tau(*) contains further details of the elementary reflectors, as returned by
?gehrd.
The dimension of tau must be at least max (1, n-1).

work (1work) is a workspace array.
INTEGER. The first dimension of a; at least max(1, n).

INTEGER. The size of the work array;
Iwork 2 max(l,ihi—ilo).
See Application notes for the suggested value of Iwork.

Output Parameters

a

work (1)

info

Overwritten by the n by n orthogonal matrix Q.

If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work =(ihi—ilo)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of Iwork for
the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix £ such that ||E||, = O(¢), where €
is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi—1 lo)3 .

The complex counterpart of this routine is ?unghr.

4-169

4 Intel® Math Kernel Library Reference Manual

?2ormhr

Multiplies an arbitrary real matrix C by the real
orthogonal matrix Q determined by ?gehrd.

Syntax
call sormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

call dormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, 1ldc,
work, lwork, info)

Description

This routine multiplies a matrix C by the orthogonal matrix Q that has been determined by a
preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix 4 to upper
Hessenberg form H by an orthogonal similarity transformation, 4 = QHQ?, and represents the
matrix Q as a product of ihi-ilo elementary reflectors. Here iloand ihi are values determined
by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, 110 =1 and
ihi=n.)

With ?ormhr, you can form one of the matrix products OC, Q7C, CQ, or CQ’, overwriting the
result on C (which may be any real rectangular matrix).

A common application of ?ormhr is to transform a matrix ¥ of eigenvectors of H to the matrix QV
of eigenvectors of 4.
Input Parameters

side CHARACTER*1. Mustbe 'L' or 'R'.
If side = 'L", then the routine forms QC or QTC.
If side = 'R, then the routine forms CQ or CQT.

trans CHARACTER*1. Mustbe 'N' or 'T'.
If trans = 'N', then Q is applied to C.
If trans='T"', then QTis applied to C.

m INTEGER. The number of rows in C (m = 0).

n INTEGER. The number of columns in C (n = 0).

4-170

LAPACK Routines: Least Squares and Eigenvalue Problems 4

ilo, ihi

a, tau, c,work

lda

1dc

1lwork

INTEGER. These must be the same parameters i1o and ihi, respectively, as
supplied to ?gehrd.

If m>0and side='L',thenl1 <ilo<ihi<m

Ifm=0and side='L"',then ilo=1and ihi =0.

Ifn>0and side='R',then1 < ilo<ihi<n.

Ifn=0and side='R',then ilo=1and ihi =0.

REAL for sormhr

DOUBLE PRECISION for dormhr

Arrays:

a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.

The second dimension of a must be at least max(1, m) if side= 'L' and at
least max(1, n) if side="'R".

tau (*) contains further details of the elementary reflectors, as returned by
?gehrd.

The dimension of tau must be at least max (1, m-1)

if side="L' and at least max (1, n-1) if side="'R".

c(1ldc, *) contains the m by n matrix C.
The second dimension of ¢ must be at least max(1, n).

work (1work) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m) if side='L" and at
least max (1, n) if side='R".

INTEGER. The first dimension of c; at least max(1, m).
INTEGER. The size of the work array.
If side='L", lwork = max(1,n).

If side="'R"', Iwork = max(1,m).
See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

C is overwritten by OC or O7C or CO” or CQ as specified by side and trans.

If info=0, on exit work (1) contains the minimum value of I1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info = -1, the ith parameter had an illegal value.

4-171

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, 1work should be at least n*blocksize if side='L" and at least
m*blocksize if side ='R', where blocksize is a machine-dependent value (typically, 16 to 64)
required for optimum performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of 1work for the first run. On exit, examine work (1)
and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix £ such that ||E||, = O(¢)||C||,,
where € is the machine precision.

The approximate number of floating-point operations is
2n(ihi-ilo)’ if side='L";
2m(ihi—ilo)’ if side='R".

The complex counterpart of this routine is ?unmhr.

4-172

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?unghr

Generates the complex unitary matrix Q determined by

?gehrd.

Syntax

call cunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

call zunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

Description

This routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex
matrix A4 to upper Hessenberg form H by a unitary similarity transformation: 4 = QHO!. 2gehrd
represents the matrix O as a product of ihi—ilo elementary reflectors. Here i1o and ihi are
values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been
balanced, ilo=1and ihi =n.

Use the routine ?unghr to generate Q explicitly as a square matrix. The matrix Q has the
structure:

I 00
=100, 0
0 0 I

where Q,, occupies rows and columns iloto ihi.

Input Parameters

n INTEGER. The order of the matrix Q (n = 0).

ilo, ihi INTEGER. These must be the same parameters i1o and 1hi, respectively, as
supplied to ?gehrd. If n>0,then 1 <ilo<ihi<n Ifn=0,then ilo=1
and 1hi =0.)

a, tau, work COMPLEX for cunghr
DOUBLE COMPLEX for zunghr.
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

4-173

4 Intel® Math Kernel Library Reference Manual

4-174

tau (*) contains further details of the elementary reflectors, as returned by
?gehrd.
The dimension of tau must be at least max (1, n-1).

work (Iwork) is a workspace array.
lda INTEGER. The first dimension of a; at least max(1, n).

Iwork INTEGER. The size of the work array;

Iwork 2 max(l, ihi—ilo).

See Application notes for the suggested value of Iwork.
Output Parameters
a Overwritten by the n by n unitary matrix Q.

work (1) If info =0, on exit work (1) contains the minimum value of Iwork required
for optimum performance. Use this Iwork for subsequent runs.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes

For better performance, try using 1work = (ihi—1ilo)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of Iwork for
the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix £ such that ||E||, = O(¢), where €
is the machine precision.

The approximate number of real floating-point operations is (16/3)(ihi—1i1 o)3.

The real counterpart of this routine is ?orghr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

2unmhr

Multiplies an arbitrary complex matrix C by the

complex unitary matrix Q determined by ?gehrd.

Syntax

call cunmhr (side,
work,

call zunmhr (side,
work,

Description

trans, m, n, ilo,

lwork, info)

trans, m, n, ilo,

lwork, info)

ihi, a, lda, tau, c, ldc,

ihi, a, lda, tau, c, ldc,

This routine multiplies a matrix C by the unitary matrix Q that has been determined by a preceding
call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix 4 to upper
Hessenberg form H by an orthogonal similarity transformation, 4 = QHO", and represents the
matrix Q as a product of ihi-ilo elementary reflectors. Here iloand ihi are values determined
by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, 110 =1 and

ihi=n.)

With ?unmhr, you can form one of the matrix products OC, 0''C, CQ, or CO", overwriting the
result on C (which may be any complex rectangular matrix). A common application of this routine
is to transform a matrix V of eigenvectors of H to the matrix QV of eigenvectors of 4.

Input Parameters

side

trans

ilo, ihi

CHARACTER*1. Mustbe 'L' or 'R'.
If side = 'L, then the routine forms QC or QHC.
If side = 'R, then the routine forms CQ or CQH.

CHARACTER*1. Mustbe 'N' or 'C"'.
If trans = 'N"', then Q is applied to C.
If trans='T', then Q is applied to C.

INTEGER. The number of rows in C (m = 0).

INTEGER. The number of columns in C (n = 0).

INTEGER. These must be the same parameters ilo and 1hi, respectively, as

supplied to ?gehrd.
If m>0and side="L"',thenl1 < ilo<ihi<m

4-175

4 Intel® Math Kernel Library Reference Manual

4-176

a, tau, c,work

lda

ldc

1lwork

If m=0and side="L',then ilo=1and ihi =0.
Ifn>0and side='R',then1 < ilo<ihi<n.
Ifn=0and side='R', then ilo=1and ihi =0.

COMPLEX for cunmhr

DOUBLE COMPLEX for zunmhr.

Arrays:

a (lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.

The second dimension of a must be at least max(1, m) if side= 'L' and at
least max(1, n) if side="'R".

tau(*) contains further details of the elementary reflectors, as returned by
?gehrd.

The dimension of tau must be at least max (1, m-1)

if side="L" and at least max (1, n-1) if side="'R".

¢ (1dc, *) contains the m by n matrix C.
The second dimension of ¢ must be at least max(1, n).

work (1work) is a workspace array.

INTEGER. The first dimension of a; at least max(1, m) if side='L' and at
least max (1, n) if side= 'R"'.

INTEGER. The first dimension of c; at least max(1, m).

INTEGER. The size of the work array.

If side="'L", Iwork =2 max(l,n).

If side="'R', Iwork =2 max(1,m).

See Application notes for the suggested value of Iwork.

Output Parameters

(e}

work (1)

info

C is overwritten by OC or 0"C or CO" or CQ as specified by side and

trans.

If info=0, on exit work (1) contains the minimum value of 1work required
for optimum performance. Use this 1work for subsequent runs.

INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Application Notes

For better performance, 1work should be at least n*blocksize if side='L" and at least
m*blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64)
required for optimum performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of 1work for the first run. On exit, examine work (1)
and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix £ such that ||E||, = O(€) ||C]|».
where € is the machine precision.

The approximate number of floating-point operations is
8n(ihi—ilo) if side='L';
8m(ihi—ilo) if side='R'.

The real counterpart of this routine is ?ormhr.

4-177

4 Intel® Math Kernel Library Reference Manual

?gebal

Balances a general matrix to improve the accuracy of
computed eigenvalues and eigenvectors.

4-178

Syntax

call sgebal (job, n, a, lda, ilo, ihi, scale, info)
call dgebal (job, n, a, lda, ilo, ihi, scale, info)
call cgebal (job, n, a, lda, ilo, ihi, scale, info)
call zgebal (job, n, a, lda, ilo, ihi, scale, info)

Description

This routine balances a matrix 4 by performing either or both of the following two similarity
transformations:

(1) The routine first attempts to permute 4 to block upper triangular form:

’ ’ ’
All 'Al2 A13

T _— [’ ’
PAP- = A = 0 A, A,
’

0 0 &

where P is a permutation matrix, and 47, and 4%, are upper triangular. The diagonal elements of
A’ and A5; are eigenvalues of A. The rest of the eigenvalues of 4 are the eigenvalues of the central
diagonal block A43,, in rows and columns iloto ihi. Subsequent operations to compute the
eigenvalues of 4 (or its Schur factorization) need only be applied to these rows and columns; this
can save a significant amount of work if 110> 1 and ihi < n. If no suitable permutation exists (as
is often the case), the routine sets i1o=1 and ihi = n, and 45, is the whole of 4.

(2) The routine applies a diagonal similarity transformation to A’, to make the rows and columns of
A%, as close in norm as possible:

00| |A, A&, A, |I 00
All — DA’D—l = 0 -DZ2 0 X 0 A;z A;3 X O D;zl 0
00 I 0 0 a,] [0 0 I

This scaling can reduce the norm of the matrix (that is, ||4%|| < ||4%,]|), and hence reduce the effect
of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

Input Parameters

job CHARACTER*1. Mustbe 'N' or 'P' or 'S' or 'B'.
If job='N", then A is neither permuted nor scaled (but 110, 1hi, and scale
get their values).
If job="P', then A is permuted but not scaled.
If job='s", then A is scaled but not permuted.
If job="B", then A is both scaled and permuted.

n INTEGER. The order of the matrix A (n = 0).

a REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (1da, *) contains the matrix 4.
The second dimension of a must be at least max(1, n).
a is not referenced if job="'N".

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a Overwritten by the balanced matrix (a is not referenced if job= 'N").

ilo, ihi INTEGER. The values ilo and ihi such that on exit a(i, j) is zeroif i > §
and 1 £ j<iloorihi<i<nIf job='N'or'S',then ilo=1and ihi =
n.

scale REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).

Contains details of the permutations and scaling factors.

More precisely, if p; is the index of the row and column interchanged with row
and column j, and d; is the scaling factor used to balance row and column j,
then

scale(j)=p; forj=1,2,...,ilo-1, ihi+l,.. ., n;

scale(j)= d] forj=ilo, ilo+1,..., ihi.

The order in which the interchanges are made is

nto ihi+l, then1to ilo-1.

4-179

4 Intel® Math Kernel Library Reference Manual

4-180

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes
The errors are negligible, compared with those in subsequent computations.

If the matrix 4 is balanced by this routine, then any eigenvectors computed subsequently are
eigenvectors of the matrix A” and hence you must call 2gebak to transform them back to
eigenvectors of 4.

If the Schur vectors of 4 are required, do not call this routine with

job="'5" or 'B', because then the balancing transformation is not orthogonal (not unitary for
complex flavors). If you call this routine with job= 'P', then any Schur vectors computed
subsequently are Schur vectors of the matrix 4”, and you’ll need to call 2gebak (with side
='R"') to transform them back to Schur vectors of 4.

The total number of floating-point operations is proportional to n’.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?gebak

Transforms eigenvectors of a balanced matrix to those
of the original nonsymmetric matrix.

Syntax

call sgebak
call dgebak
call cgebak
call zgebak

Description

job,side,n,ilo,ihi, scale,m,v,1dv, info)
job,side,n,ilo,ihi,scale,m,v,1dv,info)
job,side,n,ilo,ihi,scale,m,v,1dv,info)

job,side,n,ilo,ihi,scale,m,v,1dv,info)

This routine is intended to be used after a matrix 4 has been balanced by

a call to 2gebal, and eigenvectors of the balanced matrix 45, have subsequently been computed.
For a description of balancing, see ?gebal. The balanced matrix 4” is obtained as A”’=
DPAP™D™!, where Pis a permutation matrix and D is a diagonal scaling matrix. This routine
transforms the eigenvectors as follows:

if x is a right eigenvector of A4, then PD™!x is a right eigenvector of 4;

if x is a left eigenvector of A”, then PTDy is a left eigenvector of A.

Input Parameters

job

side

ilo, ihi

scale

CHARACTER*1. Mustbe 'N' or 'P' or 'S' or 'B'.
The same parameter job as supplied to ?gebal.

CHARACTER*1. Mustbe 'L' or 'R'.
If side = 'L, then left eigenvectors are transformed.
If side = 'R, then right eigenvectors are transformed.

INTEGER. The number of rows of the matrix of eigenvectors (n = 0).

INTEGER. The values iloand ihi, as returned by ?gebal. (If n> 0, then 1 <
iloL ihi < n;
ifn=0,then ilo=1and ihi =0.)

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).

4-181

4 Intel® Math Kernel Library Reference Manual

Contains details of the permutations and/or the scaling factors used to balance
the original general matrix, as returned by »gebal.

m INTEGER. The number of columns of the matrix of eigenvectors (m= 0).

v REAL for sgebak
DOUBLE PRECISION for dgebak
COMPLEX for cgebak
DOUBLE COMPLEX for zgebak.
Arrays:
v (1dv, *) contains the matrix of left or right eigenvectors to be transformed.
The second dimension of v must be at least max(1, m).

ldv INTEGER. The first dimension of v; at least max(1, n).

Output Parameters
v Overwritten by the transformed eigenvectors.

info INTEGER.
If info =0, the execution is successful.
If info= -1, the ith parameter had an illegal value.

Application Notes
The errors in this routine are negligible.

The approximate number of floating-point operations is approximately proportional to m* n.

4-182

LAPACK Routines: Least Squares and Eigenvalue Problems 4

?hseqr

Computes all eigenvalues and (optionally) the Schur
factorization of a matrix reduced to Hessenberg form.

call
call
call
call

Syntax

shseqr (job,compz,n,ilo,ihi,h,1dh,wr,wi,z,1dz, work, lwork,