
XL

Fortran

Enterprise

Edition

for

AIX

User’s

Guide

Version

9.1

SC09-7898-00

���

XL

Fortran

Enterprise

Edition

for

AIX

User’s

Guide

Version

9.1

SC09-7898-00

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

427.

First

Edition

(August

2004)

This

edition

applies

to

IBM

XL

Fortran

Enterprise

Edition

(Program

5724-I08),

Version

9.1,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

IBM

welcomes

your

comments.

You

can

send

your

comments

electronically

to

the

network

ID

listed

below.

Be

sure

to

include

your

entire

network

address

if

you

wish

a

reply.

v

Internet:

compinfo@ca.ibm.com

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1990,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

What’s

New

for

XL

Fortran

.

.

.

.

.

. xi

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 1

How

to

Use

This

Document

.

.

.

.

.

.

.

.

. 1

How

to

Read

the

Syntax

Diagrams

and

Statements

2

Notes

on

the

Examples

in

This

Document

.

.

. 4

Notes

on

the

Terminology

in

This

Document

.

. 4

Typographical

Conventions

.

.

.

.

.

.

.

. 4

Related

Documentation

.

.

.

.

.

.

.

.

.

.

. 4

XL

Fortran

and

Operating

System

Publications

.

. 4

Other

Publications

.

.

.

.

.

.

.

.

.

.

. 5

Standards

Documents

.

.

.

.

.

.

.

.

.

. 5

Overview

of

XL

Fortran

Features

.

.

.

. 7

Hardware

and

Operating-System

Support

.

.

.

. 7

Language

Support

.

.

.

.

.

.

.

.

.

.

.

. 7

Migration

Support

.

.

.

.

.

.

.

.

.

.

.

. 8

Source-Code

Conformance

Checking

.

.

.

.

.

. 8

Highly

Configurable

Compiler

.

.

.

.

.

.

.

. 8

Diagnostic

Listings

.

.

.

.

.

.

.

.

.

.

.

. 9

Symbolic

Debugger

Support

.

.

.

.

.

.

.

.

. 9

Program

Optimization

.

.

.

.

.

.

.

.

.

.

. 9

Documentation

and

Online

Help

.

.

.

.

.

.

. 9

Setting

Up

and

Customizing

XL

Fortran

11

Where

to

Find

Installation

Instructions

.

.

.

.

. 11

Using

the

Compiler

on

a

Network

File

System

.

. 11

Correct

Settings

for

Environment

Variables

.

.

.

. 12

Environment

Variable

Basics

.

.

.

.

.

.

.

. 12

Environment

Variables

for

National

Language

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

LIBPATH:Setting

Library

Search

Paths

.

.

.

. 14

PDFDIR:

Specifying

the

Directory

for

PDF

Profile

Information

.

.

.

.

.

.

.

.

.

.

.

.

. 14

TMPDIR:

Specifying

a

Directory

for

Temporary

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

XLFSCRATCH_unit:

Specifying

Names

for

Scratch

Files

.

.

.

.

.

.

.

.

.

.

.

.

. 15

XLFUNIT_unit:

Specifying

Names

for

Implicitly

Connected

Files

.

.

.

.

.

.

.

.

.

.

.

. 15

Customizing

the

Configuration

File

.

.

.

.

.

. 15

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

What

a

Configuration

File

Looks

Like

.

.

.

. 18

Determining

Which

Level

of

XL

Fortran

Is

Installed

24

Upgrading

to

XL

Fortran

Version

9

.

.

.

.

.

. 24

Things

to

Note

in

XL

Fortran

Version

9

.

.

.

. 24

Avoiding

or

Fixing

Upgrade

Problems

.

.

.

.

. 25

Running

Two

Levels

of

XL

Fortran

.

.

.

.

.

. 28

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

.

.

.

. 29

Editing

XL

Fortran

Source

Files

.

.

.

.

.

.

.

. 29

Compiling

XL

Fortran

Programs

.

.

.

.

.

.

. 29

Compiling

XL

Fortran

Version

2

Programs

.

.

. 31

Compiling

Fortran

90

or

Fortran

95

Programs

.

. 31

Compiling

XL

Fortran

SMP

Programs

.

.

.

. 32

Compilation

Order

for

Fortran

Programs

.

.

. 33

Canceling

a

Compilation

.

.

.

.

.

.

.

.

. 33

XL

Fortran

Input

Files

.

.

.

.

.

.

.

.

.

. 33

XL

Fortran

Output

Files

.

.

.

.

.

.

.

.

. 34

Scope

and

Precedence

of

Option

Settings

.

.

. 36

Specifying

Options

on

the

Command

Line

.

.

. 36

Specifying

Options

in

the

Source

File

.

.

.

.

. 37

Passing

Command-Line

Options

to

the

″ld″

or

″as″

Commands

.

.

.

.

.

.

.

.

.

.

.

. 38

Tracking

Use

of

the

Compiler

.

.

.

.

.

.

. 38

Compiling

for

Specific

Architectures

.

.

.

.

. 39

Passing

Fortran

Files

through

the

C

Preprocessor

40

cpp

Directives

for

XL

Fortran

Programs

.

.

.

. 41

Passing

Options

to

the

C

Preprocessor

.

.

.

. 41

Avoiding

Preprocessing

Problems

.

.

.

.

.

. 41

Linking

XL

Fortran

Programs

.

.

.

.

.

.

.

. 42

Compiling

and

Linking

in

Separate

Steps

.

.

. 42

Linking

32–Bit

SMP

Object

Files

Using

the

ld

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Linking

64–Bit

SMP

Object

Files

Using

the

ld

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Linking

32–Bit

Non-SMP

Object

Files

Using

the

ld

Command

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Linking

64-Bit

Non-SMP

Object

Files

Using

the

ld

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Passing

Options

to

the

ld

Command

.

.

.

.

. 45

Checking

for

Interface

Errors

at

Link

Time

.

.

. 45

Linking

New

Objects

with

Existing

Ones

.

.

. 45

Relinking

an

Existing

Executable

File

.

.

.

.

. 46

Dynamic

and

Static

Linking

.

.

.

.

.

.

. 46

Avoiding

Naming

Conflicts

during

Linking

.

.

. 47

Running

XL

Fortran

Programs

.

.

.

.

.

.

.

. 48

Canceling

Execution

.

.

.

.

.

.

.

.

.

. 48

Running

Previously

Compiled

Programs

.

.

. 48

Compiling

and

Executing

on

Different

Systems

49

POSIX

Pthreads

Binary

Compatibility

.

.

.

.

. 49

Run-Time

Libraries

for

POSIX

Pthreads

Support

50

Selecting

the

Language

for

Run-Time

Messages

50

Setting

Run-Time

Options

.

.

.

.

.

.

.

. 51

OpenMP

Environment

Variables

.

.

.

.

.

. 64

Other

Environment

Variables

That

Affect

Run-Time

Behavior

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

XL

Fortran

Run-Time

Exceptions

.

.

.

.

.

.

. 66

XL

Fortran

Compiler-Option

Reference

67

Summary

of

the

XL

Fortran

Compiler

Options

.

.

. 67

Options

That

Control

Input

to

the

Compiler

.

. 68

Options

That

Specify

the

Locations

of

Output

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Options

for

Performance

Optimization

.

.

.

. 70

Options

for

Error

Checking

and

Debugging

.

. 75

©

Copyright

IBM

Corp.

1990,

2004

iii

Options

That

Control

Listings

and

Messages

.

. 77

Options

for

Compatibility

.

.

.

.

.

.

.

. 79

Options

for

Floating-Point

Processing

.

.

.

.

. 86

Options

That

Control

Linking

.

.

.

.

.

.

. 86

Options

That

Control

Other

Compiler

Operations

87

Options

That

Are

Obsolete

or

Not

Recommended

88

Detailed

Descriptions

of

the

XL

Fortran

Compiler

Options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

-#

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

-1

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

-B

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

-b64

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 94

-bdynamic,

-bshared,

and

-bstatic

Options

.

.

. 95

-bhalt

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 97

-bloadmap

Option

.

.

.

.

.

.

.

.

.

.

. 98

-bmaxdata,

-bmaxstack

Options

.

.

.

.

.

.

. 99

-brtl

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 100

-bshared

Option

.

.

.

.

.

.

.

.

.

.

. 101

-bstatic

Option

.

.

.

.

.

.

.

.

.

.

.

. 102

-C

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 103

-c

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

-D

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 105

-d

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

-F

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

-g

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

-I

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 109

-k

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

-L

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

-l

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

-N

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 113

-O

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 114

-o

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

-P

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

-p

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

-Q

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 119

-q32

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 120

-q64

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 121

-qalias

Option

.

.

.

.

.

.

.

.

.

.

.

. 122

-qalign

Option

.

.

.

.

.

.

.

.

.

.

.

. 125

-qarch

Option

.

.

.

.

.

.

.

.

.

.

.

. 127

-qassert

Option

.

.

.

.

.

.

.

.

.

.

.

. 132

-qattr

Option

.

.

.

.

.

.

.

.

.

.

.

. 133

-qautodbl

Option

.

.

.

.

.

.

.

.

.

.

. 134

-qcache

Option

.

.

.

.

.

.

.

.

.

.

.

. 137

-qcclines

Option

.

.

.

.

.

.

.

.

.

.

. 139

-qcheck

Option

.

.

.

.

.

.

.

.

.

.

.

. 140

-qci

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 141

-qcompact

Option

.

.

.

.

.

.

.

.

.

.

. 142

-qcr

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 143

-qctyplss

Option

.

.

.

.

.

.

.

.

.

.

. 144

-qdbg

Option

.

.

.

.

.

.

.

.

.

.

.

. 146

-qddim

Option

.

.

.

.

.

.

.

.

.

.

.

. 147

-qdirective

Option

.

.

.

.

.

.

.

.

.

.

. 148

-qdirectstorage

Option

.

.

.

.

.

.

.

.

. 150

-qdlines

Option

.

.

.

.

.

.

.

.

.

.

.

. 151

-qdpc

Option

.

.

.

.

.

.

.

.

.

.

.

. 152

-qdpcl

Option

.

.

.

.

.

.

.

.

.

.

.

. 153

-qescape

Option

.

.

.

.

.

.

.

.

.

.

. 154

-qessl

Option

.

.

.

.

.

.

.

.

.

.

.

. 155

-qextchk

Option

.

.

.

.

.

.

.

.

.

.

. 156

-qextern

Option

.

.

.

.

.

.

.

.

.

.

. 157

-qextname

Option

.

.

.

.

.

.

.

.

.

.

. 158

-qfdpr

Option

.

.

.

.

.

.

.

.

.

.

.

. 160

-qfixed

Option

.

.

.

.

.

.

.

.

.

.

.

. 161

-qflag

Option

.

.

.

.

.

.

.

.

.

.

.

. 162

-qfloat

Option

.

.

.

.

.

.

.

.

.

.

.

. 163

-qflttrap

Option

.

.

.

.

.

.

.

.

.

.

. 165

-qfree

Option

.

.

.

.

.

.

.

.

.

.

.

. 168

-qfullpath

Option

.

.

.

.

.

.

.

.

.

.

. 169

-qhalt

Option

.

.

.

.

.

.

.

.

.

.

.

. 170

-qhot

Option

.

.

.

.

.

.

.

.

.

.

.

. 171

-qhsflt

Option

.

.

.

.

.

.

.

.

.

.

.

. 173

-qhssngl

Option

.

.

.

.

.

.

.

.

.

.

. 174

-qieee

Option

.

.

.

.

.

.

.

.

.

.

.

. 175

-qinit

Option

.

.

.

.

.

.

.

.

.

.

.

. 176

-qinitauto

Option

.

.

.

.

.

.

.

.

.

.

. 177

-qintlog

Option

.

.

.

.

.

.

.

.

.

.

.

. 179

-qintsize

Option

.

.

.

.

.

.

.

.

.

.

. 180

-qipa

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 182

-qkeepparm

Option

.

.

.

.

.

.

.

.

.

. 188

-qlanglvl

Option

.

.

.

.

.

.

.

.

.

.

. 189

-qlargepage

Option

.

.

.

.

.

.

.

.

.

. 191

-qlibansi

Option

.

.

.

.

.

.

.

.

.

.

. 192

-qlibessl

Option

.

.

.

.

.

.

.

.

.

.

. 193

-qlibposix

Option

.

.

.

.

.

.

.

.

.

.

. 194

-qlist

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 195

-qlistopt

Option

.

.

.

.

.

.

.

.

.

.

. 196

-qlm

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 197

-qlog4

Option

.

.

.

.

.

.

.

.

.

.

.

. 198

-qmaxmem

Option

.

.

.

.

.

.

.

.

.

. 199

-qmbcs

Option

.

.

.

.

.

.

.

.

.

.

.

. 201

-qmixed

Option

.

.

.

.

.

.

.

.

.

.

. 202

-qmoddir

Option

.

.

.

.

.

.

.

.

.

.

. 203

-qmodule

Option

.

.

.

.

.

.

.

.

.

.

. 204

-qnoprint

Option

.

.

.

.

.

.

.

.

.

.

. 205

-qnullterm

Option

.

.

.

.

.

.

.

.

.

.

. 206

-qobject

Option

.

.

.

.

.

.

.

.

.

.

.

. 207

-qonetrip

Option

.

.

.

.

.

.

.

.

.

.

. 208

-qoptimize

Option

.

.

.

.

.

.

.

.

.

.

. 209

-qpdf

Option

.

.

.

.

.

.

.

.

.

.

.

. 210

-qphsinfo

Option

.

.

.

.

.

.

.

.

.

.

. 214

-qpic

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 216

-qport

Option

.

.

.

.

.

.

.

.

.

.

.

. 217

-qposition

Option

.

.

.

.

.

.

.

.

.

.

. 219

-qprefetch

Option

.

.

.

.

.

.

.

.

.

.

. 220

-qqcount

Option

.

.

.

.

.

.

.

.

.

.

. 221

-qrealsize

Option

.

.

.

.

.

.

.

.

.

.

. 222

-qrecur

Option

.

.

.

.

.

.

.

.

.

.

.

. 224

-qreport

Option

.

.

.

.

.

.

.

.

.

.

.

. 225

-qsaa

Option

.

.

.

.

.

.

.

.

.

.

.

. 227

-qsave

Option

.

.

.

.

.

.

.

.

.

.

.

. 228

-qsaveopt

Option

.

.

.

.

.

.

.

.

.

.

. 229

-qsclk

Option

.

.

.

.

.

.

.

.

.

.

.

. 230

-qshowpdf

Option

.

.

.

.

.

.

.

.

.

.

. 231

-qsigtrap

Option

.

.

.

.

.

.

.

.

.

.

. 232

-qsmallstack

Option

.

.

.

.

.

.

.

.

.

. 233

-qsmp

Option

.

.

.

.

.

.

.

.

.

.

.

. 234

-qsource

Option

.

.

.

.

.

.

.

.

.

.

. 239

-qspillsize

Option

.

.

.

.

.

.

.

.

.

.

. 240

-qstrict

Option

.

.

.

.

.

.

.

.

.

.

.

. 241

-qstrictieeemod

Option

.

.

.

.

.

.

.

.

. 242

-qstrict_induction

Option

.

.

.

.

.

.

.

. 243

iv

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qsuffix

Option

.

.

.

.

.

.

.

.

.

.

.

. 244

-qsuppress

Option

.

.

.

.

.

.

.

.

.

.

. 245

-qswapomp

Option

.

.

.

.

.

.

.

.

.

. 247

-qtbtable

Option

.

.

.

.

.

.

.

.

.

.

. 249

-qthreaded

Option

.

.

.

.

.

.

.

.

.

.

. 250

-qtune

Option

.

.

.

.

.

.

.

.

.

.

.

. 251

-qundef

Option

.

.

.

.

.

.

.

.

.

.

.

. 254

-qunroll

Option

.

.

.

.

.

.

.

.

.

.

.

. 255

-qunwind

Option

.

.

.

.

.

.

.

.

.

.

. 256

-qversion

Option

.

.

.

.

.

.

.

.

.

.

. 257

-qwarn64

Option

.

.

.

.

.

.

.

.

.

.

. 258

-qxflag=oldtab

Option

.

.

.

.

.

.

.

.

. 259

-qxflag=xalias

Option

.

.

.

.

.

.

.

.

.

. 260

-qxlf77

Option

.

.

.

.

.

.

.

.

.

.

.

. 261

-qxlf90

Option

.

.

.

.

.

.

.

.

.

.

.

. 263

-qxlines

Option

.

.

.

.

.

.

.

.

.

.

.

. 265

-qxref

Option

.

.

.

.

.

.

.

.

.

.

.

. 267

-qzerosize

Option

.

.

.

.

.

.

.

.

.

.

. 268

-S

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

-t

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

-U

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 271

-u

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

-v

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

-V

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 274

-W

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 275

-w

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 277

-y

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

Using

XL

Fortran

in

a

64-Bit

Environment

.

.

.

.

.

.

.

.

.

.

.

. 279

64-Bit

Large

Data

Type

Support

.

.

.

.

.

.

. 279

64-Bit

Thread

Support

.

.

.

.

.

.

.

.

.

. 280

Compiler

Options

for

the

64-Bit

Environment

.

. 280

-q32

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 281

-q64

Option

.

.

.

.

.

.

.

.

.

.

.

.

. 282

-qwarn64

Option

.

.

.

.

.

.

.

.

.

.

. 284

Default

Bit

Mode

.

.

.

.

.

.

.

.

.

.

.

. 285

Module

Support

.

.

.

.

.

.

.

.

.

.

. 285

XL

Fortran

Floating-Point

Processing

287

IEEE

Floating-Point

Overview

.

.

.

.

.

.

.

. 287

Compiling

for

Strict

IEEE

Conformance

.

.

. 287

IEEE

Single-

and

Double-Precision

Values

.

.

. 288

IEEE

Extended-Precision

Values

.

.

.

.

.

. 288

Infinities

and

NaNs

.

.

.

.

.

.

.

.

.

. 288

Exception-Handling

Model

.

.

.

.

.

.

.

. 289

Hardware-Specific

Floating-Point

Overview

.

.

. 290

Single-

and

Double-Precision

Values

.

.

.

.

. 290

Extended-Precision

Values

.

.

.

.

.

.

.

. 291

How

XL

Fortran

Rounds

Floating-Point

Calculations

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Selecting

the

Rounding

Mode

.

.

.

.

.

.

. 292

Minimizing

Rounding

Errors

.

.

.

.

.

.

. 294

Minimizing

Overall

Rounding

.

.

.

.

.

.

. 294

Delaying

Rounding

until

Run

Time

.

.

.

.

. 294

Ensuring

that

the

Rounding

Mode

is

Consistent

294

Duplicating

the

Floating-Point

Results

of

Other

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Maximizing

Floating-Point

Performance

.

.

.

. 295

Detecting

and

Trapping

Floating-Point

Exceptions

296

Compiler

Features

for

Trapping

Floating-Point

Exceptions

.

.

.

.

.

.

.

.

.

.

.

.

. 297

Operating

System

Features

for

Trapping

Floating-Point

Exceptions

.

.

.

.

.

.

.

. 297

Installing

an

Exception

Handler

.

.

.

.

.

. 298

Producing

a

Core

File

.

.

.

.

.

.

.

.

. 299

Controlling

the

Floating-Point

Status

and

Control

Register

.

.

.

.

.

.

.

.

.

.

. 299

xlf_fp_util

Procedures

.

.

.

.

.

.

.

.

. 300

fpgets

and

fpsets

Subroutines

.

.

.

.

.

.

. 300

Sample

Programs

for

Exception

Handling

.

.

. 302

Causing

Exceptions

for

Particular

Variables

.

. 302

Minimizing

the

Performance

Impact

of

Floating-Point

Exception

Trapping

.

.

.

.

. 302

Floating-Point

Processing

on

the

POWER

and

POWER2

Architectures

.

.

.

.

.

.

.

.

.

. 303

Precision

of

Computations

.

.

.

.

.

.

.

. 303

Invalid

Operation

Exceptions

for

SQRT

Operations

on

POWER

Processors

.

.

.

.

. 304

Optimizing

XL

Fortran

Programs

.

.

. 305

The

Philosophy

of

XL

Fortran

Optimizations

.

.

. 305

Summary

of

Compiler

Options

for

Optimization

307

Choosing

an

Optimization

Level

.

.

.

.

.

.

. 307

Optimization

Level

-O2

.

.

.

.

.

.

.

.

. 308

Optimization

Level

-O3

.

.

.

.

.

.

.

.

. 308

Getting

the

Most

out

of

-O2

and

-O3

.

.

.

. 309

The

-O4

and

-O5

Options

.

.

.

.

.

.

.

. 309

Optimizing

for

a

Target

Machine

or

Class

of

Machines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

Getting

the

Most

out

of

Target

Machine

Options

310

Optimizing

Floating-Point

Calculations

.

.

.

.

. 311

High-order

Transformations

(-qhot)

.

.

.

.

.

. 311

Getting

the

Most

out

of

-qhot

.

.

.

.

.

.

. 312

Optimizing

Loops

and

Array

Language

.

.

. 312

Profile-directed

Feedback

(PDF)

.

.

.

.

.

.

. 315

Using

Profile-directed

Feedback

(PDF)

.

.

.

. 315

Optimizing

Conditional

Branching

.

.

.

.

. 316

Interprocedural

Analysis

(-qipa)

.

.

.

.

.

.

. 316

Getting

the

Most

from

-qipa

.

.

.

.

.

.

. 317

Optimizing

Subprogram

Calls

.

.

.

.

.

.

.

. 317

Finding

the

Right

Level

of

Inlining

.

.

.

.

. 318

Shared-memory

Parallelism

(-qsmp)

.

.

.

.

.

. 319

Getting

the

Most

out

of

-qsmp

.

.

.

.

.

. 319

Other

Program

Behavior

Options

.

.

.

.

.

.

. 320

Other

Performance

Options

.

.

.

.

.

.

.

. 320

Debugging

Optimized

Code

.

.

.

.

.

.

.

. 321

Different

Results

in

Optimized

Programs

.

.

. 322

Compiler-friendly

Programming

.

.

.

.

.

.

. 322

Implementation

Details

of

XL

Fortran

Input/Output

.

.

.

.

.

.

.

.

.

.

.

. 325

Implementation

Details

of

File

Formats

.

.

.

.

. 325

File

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

Preconnected

and

Implicitly

Connected

Files

.

.

. 326

File

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

. 327

Preserving

the

XL

Fortran

Version

2.3

File

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

. 328

I/O

Redirection

.

.

.

.

.

.

.

.

.

.

.

. 328

Contents

v

How

XLF

I/O

Interacts

with

Pipes,

Special

Files,

and

Links

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Default

Record

Lengths

.

.

.

.

.

.

.

.

.

. 330

File

Permissions

.

.

.

.

.

.

.

.

.

.

.

. 330

Selecting

Error

Messages

and

Recovery

Actions

330

Flushing

I/O

Buffers

.

.

.

.

.

.

.

.

.

.

. 331

Choosing

Locations

and

Names

for

Input/Output

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

Naming

Files

That

Are

Connected

with

No

Explicit

Name

.

.

.

.

.

.

.

.

.

.

.

. 331

Naming

Scratch

Files

.

.

.

.

.

.

.

.

.

. 332

Increasing

Throughput

with

Logical

Volume

I/O

and

Data

Striping

.

.

.

.

.

.

.

.

.

.

.

. 333

Logical

Volume

I/O

.

.

.

.

.

.

.

.

.

. 334

Data

Striping

.

.

.

.

.

.

.

.

.

.

.

. 334

Asynchronous

I/O

.

.

.

.

.

.

.

.

.

.

. 335

Execution

of

an

Asychronous

Data

Transfer

Operation

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Performance

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Compiler-Generated

Temporary

I/O

Items

.

. 338

System

Setup

.

.

.

.

.

.

.

.

.

.

.

. 339

Linking

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Error

Handling

.

.

.

.

.

.

.

.

.

.

.

. 340

XL

Fortran

Thread-Safe

I/O

Library

.

.

.

.

. 340

Use

of

I/O

Statements

in

Signal

Handlers

.

.

. 343

Asynchronous

Thread

Cancellation

.

.

.

.

. 344

Interlanguage

Calls

.

.

.

.

.

.

.

.

. 345

Conventions

for

XL

Fortran

External

Names

.

.

. 345

Mixed-Language

Input

and

Output

.

.

.

.

.

. 346

Mixing

Fortran

and

C++

.

.

.

.

.

.

.

.

. 347

Making

Calls

to

C

Functions

Work

.

.

.

.

.

. 348

Passing

Data

From

One

Language

to

Another

.

. 349

Passing

Arguments

between

Languages

.

.

. 349

Passing

Global

Variables

between

Languages

350

Passing

Character

Types

between

Languages

351

Passing

Arrays

between

Languages

.

.

.

.

. 352

Passing

Pointers

between

Languages

.

.

.

. 353

Passing

Arguments

By

Reference

or

By

Value

353

Returning

Values

from

Fortran

Functions

.

.

. 355

Arguments

with

the

OPTIONAL

Attribute

.

. 355

Arguments

with

the

INTENT

Attribute

.

.

.

. 355

Type

Encoding

and

Checking

.

.

.

.

.

.

. 355

Assembler-Level

Subroutine

Linkage

Conventions

355

The

Stack

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

The

Link

Area

.

.

.

.

.

.

.

.

.

.

.

. 359

The

Input

Parameter

Area

.

.

.

.

.

.

.

. 360

The

Register

Save

Area

.

.

.

.

.

.

.

.

. 360

The

Local

Stack

Area

.

.

.

.

.

.

.

.

.

. 360

The

Output

Parameter

Area

.

.

.

.

.

.

. 360

Linkage

Convention

for

Argument

Passing

.

.

. 361

Argument

Passing

Rules

(by

Value)

.

.

.

.

. 363

Order

of

Arguments

in

Argument

List

.

.

.

. 365

Linkage

Convention

for

Function

Calls

.

.

.

.

. 365

Pointers

to

Functions

.

.

.

.

.

.

.

.

.

. 365

Function

Values

.

.

.

.

.

.

.

.

.

.

. 366

The

Stack

Floor

.

.

.

.

.

.

.

.

.

.

.

. 366

Stack

Overflow

.

.

.

.

.

.

.

.

.

.

.

. 366

Prolog

and

Epilog

.

.

.

.

.

.

.

.

.

.

.

. 366

Traceback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

THREADLOCAL

Common

Blocks

and

ILC

with

C

367

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

Problem

Determination

and

Debugging

.

.

.

.

.

.

.

.

.

.

.

. 369

Understanding

XL

Fortran

Error

Messages

.

.

. 369

Error

Severity

.

.

.

.

.

.

.

.

.

.

.

. 369

Compiler

Return

Code

.

.

.

.

.

.

.

.

. 370

Run-Time

Return

Code

.

.

.

.

.

.

.

.

. 370

Understanding

XL

Fortran

Messages

.

.

.

. 370

Limiting

the

Number

of

Compile-Time

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

Selecting

the

Language

for

Messages

.

.

.

. 371

Fixing

Installation

or

System

Environment

Problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

Fixing

Compile-Time

Problems

.

.

.

.

.

.

. 373

Duplicating

Extensions

from

Other

Systems

.

. 374

Isolating

Problems

with

Individual

Compilation

Units

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Compiling

with

Thread-safe

Commands

.

.

. 374

Running

out

of

Machine

Resources

.

.

.

.

. 374

Fixing

Link-Time

Problems

.

.

.

.

.

.

.

.

. 374

Fixing

Run-Time

Problems

.

.

.

.

.

.

.

.

. 375

Duplicating

Extensions

from

Other

Systems

.

. 375

Mismatched

Sizes

or

Types

for

Arguments

.

. 375

Working

around

Problems

when

Optimizing

375

Input/Output

Errors

.

.

.

.

.

.

.

.

.

. 376

Tracebacks

and

Core

Dumps

.

.

.

.

.

.

. 376

Debugging

a

Fortran

90

or

Fortran

95

Program

.

. 376

A

Sample

dbx

Session

for

an

XL

Fortran

Program

377

Problem

with

Dynamic

Memory

Allocation

.

. 377

Using

Debug

Memory

Routines

for

XL

Fortran

.

. 381

The

libhm.a

Library

.

.

.

.

.

.

.

.

.

. 381

The

libhmd.a

Library

.

.

.

.

.

.

.

.

.

. 383

Environment

Variables

.

.

.

.

.

.

.

.

. 385

Understanding

XL

Fortran

Compiler

Listings

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Header

Section

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Options

Section

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Source

Section

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Error

Messages

.

.

.

.

.

.

.

.

.

.

.

. 390

Transformation

Report

Section

.

.

.

.

.

.

.

. 391

Attribute

and

Cross-Reference

Section

.

.

.

.

. 392

Object

Section

.

.

.

.

.

.

.

.

.

.

.

.

. 393

File

Table

Section

.

.

.

.

.

.

.

.

.

.

.

. 393

Compilation

Unit

Epilogue

Section

.

.

.

.

.

. 393

Compilation

Epilogue

Section

.

.

.

.

.

.

.

. 393

Fortran-Related

AIX

Commands

.

.

. 395

Working

with

Object-Code

Archives

(ar)

.

.

.

. 395

Printing

Output

Files

with

Fortran

ASA

Carriage

Controls

(asa)

.

.

.

.

.

.

.

.

.

.

.

.

. 395

Splitting

Subprograms

into

Individual

Files

(fsplit)

395

Automating

Large,

Complex

Compilations

(make)

396

Run-Time

Profiling

(prof,

gprof)

.

.

.

.

.

.

. 396

Translating

Programs

into

RATFOR

(struct)

.

.

. 396

Displaying

Information

inside

Binary

Files

(what)

396

Porting

Programs

to

XL

Fortran

.

.

. 397

vi

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Outline

of

the

Porting

Process

.

.

.

.

.

.

.

. 397

Maintaining

FORTRAN

77

Source

and

Object

Code

397

Portability

of

Directives

.

.

.

.

.

.

.

.

.

. 397

NEW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Common

Industry

Extensions

That

XL

Fortran

Supports

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

Mixing

Data

Types

in

Statements

.

.

.

.

.

. 400

Date

and

Time

Routines

.

.

.

.

.

.

.

.

. 400

Other

libc

Routines

.

.

.

.

.

.

.

.

.

. 400

Changing

the

Default

Sizes

of

Data

Types

.

.

. 401

Name

Conflicts

between

Your

Procedures

and

XL

Fortran

Intrinsic

Procedures

.

.

.

.

.

. 401

Reproducing

Results

from

Other

Systems

.

.

. 401

Finding

Nonstandard

Extensions

.

.

.

.

.

. 401

Answers

to

Frequently

Asked

Questions

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Finding

the

Date

and

Time

.

.

.

.

.

.

.

.

. 403

Efficient

Static

Linking

.

.

.

.

.

.

.

.

.

. 403

Appendix

A.

Sample

Fortran

Programs

.

.

.

.

.

.

.

.

.

.

.

.

. 405

Example

1

-

XL

Fortran

Source

File

.

.

.

.

.

. 405

Execution

Results

.

.

.

.

.

.

.

.

.

.

. 405

Example

2

-

Valid

C

Routine

Source

File

.

.

.

. 406

Example

3

-

Valid

Fortran

SMP

Source

File

.

.

. 408

Example

4

-

Invalid

Fortran

SMP

Source

File

.

.

. 408

Programming

Examples

Using

the

Pthreads

Library

Module

.

.

.

.

.

.

.

.

.

.

.

. 409

Appendix

B.

XL

Fortran

Technical

Information

.

.

.

.

.

.

.

.

.

.

.

. 411

The

Compiler

Phases

.

.

.

.

.

.

.

.

.

.

. 411

External

Names

in

theXL

FortranShared

Libraries

411

The

XL

Fortran

Run-Time

Environment

.

.

.

.

. 411

External

Names

in

the

Run-Time

Environment

412

Technical

Details

of

the

-qfloat=hsflt

Option

.

.

. 412

Implementation

Details

for

-qautodbl

Promotion

and

Padding

.

.

.

.

.

.

.

.

.

.

.

.

. 413

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

. 413

Examples

of

Storage

Relationships

for

-qautodbl

Suboptions

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Appendix

C.

Using

the

Mathematical

Acceleration

Subsystem

(MASS)

.

.

. 419

Using

the

Scalar

Library

.

.

.

.

.

.

.

.

.

. 419

Using

the

Vector

Libraries

.

.

.

.

.

.

.

.

. 420

Consistency

of

MASS

Vector

Functions

.

.

.

. 422

Compiling

and

Linking

a

Program

with

MASS

.

. 423

Using

libmass.a

with

the

Standard

Intrinsic

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

Appendix

D.

XL

Fortran

Internal

Limits

425

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

Programming

Interface

Information

.

.

.

.

.

. 429

Trademarks

and

Service

Marks

.

.

.

.

.

.

. 429

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 431

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

Contents

vii

viii

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Figures

1.

Main

Fortran

Program

That

Calls

C++

(main1.f)

.

.

.

.

.

.

.

.

.

.

.

.

. 347

2.

C

Wrapper

Functions

for

Calling

C++

(cfun.C)

.

.

.

.

.

.

.

.

.

.

.

.

. 347

3.

C++

Code

Called

from

Fortran

(cplus.h)

348

4.

Storage

Mapping

of

Parm

Area

On

the

Stack

in

32-Bit

Environment

.

.

.

.

.

.

.

.

. 364

5.

Storage

Mapping

of

Parm

Area

On

the

Stack

in

64-Bit

Environment

.

.

.

.

.

.

.

.

. 364

6.

Storage

Relationships

without

the

-qautodbl

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

7.

Storage

Relationships

with

-qautodbl=dbl

415

8.

Storage

Relationships

with

-qautobl=dbl4

416

9.

Storage

Relationships

with

-qautodbl=dbl8

416

10.

Storage

Relationships

with

-qautodbl=dblpad4

.

.

.

.

.

.

.

.

.

. 417

11.

Storage

Relationships

with

-qautodbl=dblpad8

.

.

.

.

.

.

.

.

.

. 417

12.

Storage

Relationships

with

-qautodbl=dblpad

418

©

Copyright

IBM

Corp.

1990,

2004

ix

x

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

What’s

New

for

XL

Fortran

XL

Fortran

Version

9.1

provides

the

following

new

and

changed

features:

New

or

changed

compiler

options

and

suboptions:

v

The

-qflttrap=nanq

suboption

detects

all

NaN

values

handled

or

generated

by

floating

point

instructions,

including

those

not

created

by

invalid

operations.

v

The

-qport=nullarg

suboption

treats

an

empty

argument,

which

is

delimited

by

a

left

parenthesis

and

a

comma,

two

commas,

or

a

comma

and

a

right

parenthesis,

as

a

null

argument.

v

The

-qmodule=mangle81

option

provides

compatibility

with

Version

8.1

module

naming

conventions

for

non-intrinsic

modules.

v

The

-qsaveopt

option

saves

the

command-line

options

used

for

compiling

a

source

file

in

the

corresponding

object

file.

v

The

-qversion

option

provides

the

version

and

release

for

the

invoking

compiler.

The

following

XL

Fortran

enhancements

adapted

from

the

Fortran

2003

draft

standard:

v

The

2003std

and

2003pure

run-time

options

provide

conformance

checking

of

code

for

adherence

to

the

draft

standard.

v

The

ISO_C_BINDING

intrinsic

module,

BIND

attribute

and

statement,

module

variables,

common

block,

subroutine/function

and

-qalign=bindc

compiler

suboption

provide

support

for

interoperability

with

C.

v

PUBLIC/PRIVATE

attribute

on

derived

type

components.

v

The

ASSOCIATE

construct

associates

an

entity

with

either

a

variable

or

the

value

of

an

expression.

v

Command-line

argument

intrinsics:

–

COMMAND_ARGUMENT_COUNT

–

GET_COMMAND_ARGUMENT

–

GET_ENVIRONMENT_VARIABLE

v

The

FLUSH

statement

makes

data

from

an

external

file

available

to

other

processes.

v

The

IOMSG=

specifier

on

the

data-transfer

operation,

file-positioning,

FLUSH,

and

file

inquiry

statements.

v

The

ISO_FORTRAN_ENV

intrinsic

module

provides

public

entities

relating

to

the

Fortran

environment.

v

The

NEW_LINE

intrinsic

returns

a

new

line

character.

v

The

IMPORT

statement

makes

named

entities

from

the

host

scoping

unit

accessible

in

the

interface

body

by

host

association.

v

The

PROCEDURE

statement

declares

a

dummy

procedure

or

external

procedure.

©

Copyright

IBM

Corp.

1990,

2004

xi

The

following

performance-related

directives

and

compiler

options/suboptions

have

been

added:

v

-qarch

and

-qtune

compiler

suboptions

that

provide

support

for

POWER5

and

PowerPC

970

architectures

(ppc64gr,

ppc64grsq,

pwr5,

and

ppc970).

v

The

-qshowpdf

option,

used

together

with

-qpdf1,

provides

additional

call

and

block

count

profiling

information

to

an

executable.

v

Optimization

utilities

showpdf

and

mergepdf

provide

enhanced

information

about

PDF-directed

compilation

v

The

-qdirectstorage

option

informs

the

compiler

that

a

given

compilation

unit

may

reference

write-through-enabled

or

cache-inhibited

storage.

v

Directives

NOVECTOR,

NOSIMD,

and

the

ALIGNX

built-in

subroutine

provide

fine-grain

control

of

the

auto-vectorization

and

auto-SIMD

vectorization

features

in

the

compiler.

v

The

LOOPID

directive

marks

a

loop

with

a

scope-unique

identifier.

The

identifier

can

be

used

by

the

BLOCK_LOOP

and

other

directives

to

control

loop-specific

transformations.

Information

on

the

loop

transformations

can

be

shown

in

using

the

-qreport

compiler

of

option

.

v

The

EIEIO

directive

helps

in

with

cache

and

memory

management.

v

The

PROTECTED

STREAM

directives

allow

for

management

of

protected

streams

so

they

are

not

replaced

by

any

hardware-detected

streams.

v

The

SWDIV

and

SWDIV_NOCHK

intrinsics

provide

software

floating-point

division

algorithms.

Other

features:

v

The

FRE

and

FRSQRTES

PowerPC

floating-point

intrinsic

functions.

v

The

POPCNT,

and

POPCNTB

intrinsics

provide

set

bit

counts

in

registers

for

data

objects,

and

the

POPPAR

intrinsic

determines

the

parity

for

a

data

object.

v

32-bit

and

64-bit

modules

are

now

included

in

one

file.

v

Allowing

multiple

include

paths

v

Availability

of

the

MASS

vector

libraries

for

use

with

vectorized

applications.

v

A

man

page

is

provided

for

the

compiler

invocation

commands

and

for

each

command-line

utility.

The

man

page

for

compiler

invocations

replaces

the

help

file,

which

was

provided

in

previous

versions.

xii

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Introduction

This

document

describes

Version

9.1

of

IBM®

XL

Fortran

Enterprise

Edition

and

explains

how

to

compile,

link,

and

run

programs

that

are

written

in

the

Fortran

language.

How

to

Use

This

Document

This

document

is

for

anyone

who

wants

to

work

with

the

XL

Fortran

compiler,

who

is

familiar

with

the

AIX

operating

system,

and

who

has

some

previous

Fortran

programming

experience.

This

document

can

help

you

understand

what

the

features

of

the

compiler

are,

especially

the

options,

and

how

to

use

them

for

effective

software

development.

This

document

is

not

the

place

to

find

help

on:

Installation,

which

is

covered

in

the

documents

that

are

listed

in

“XL

Fortran

and

Operating

System

Publications”

on

page

4.

Writing

Fortran

programs,

which

is

covered

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

The

first

part

of

this

document

is

organized

according

to

the

steps

necessary

to

compile,

link,

and

run

a

program,

followed

by

information

on

particular

features

of

the

XL

Fortran

compiler

and

the

programs

it

produces.

The

second

part

discusses

more

general

software-development

topics.

Depending

on

your

level

of

experience

and

what

you

want

to

do,

you

may

need

to

start

reading

at

a

particular

point

or

read

in

a

particular

sequence.

If

you

want

to:

Set

up

the

compiler

for

yourself

or

someone

else,

read

“Where

to

Find

Installation

Instructions”

on

page

11.

Upgrade

from

an

earlier

version

of

the

XL

Fortran

compiler,

read

“Avoiding

or

Fixing

Upgrade

Problems”

on

page

25.

Create

customized

compiler

defaults,

read

“Customizing

the

Configuration

File”

on

page

15.

Understand

what

all

the

compiler

options

are

for

and

how

they

relate

to

each

other,

browse

through

“Summary

of

the

XL

Fortran

Compiler

Options”

on

page

67.

Look

up

a

particular

option

by

name,

scan

alphabetically

through

“Detailed

Descriptions

of

the

XL

Fortran

Compiler

Options”

on

page

90.

Port

a

program

to

XL

Fortran,

read

“Options

for

Compatibility”

on

page

79

to

see

what

options

you

may

need;

then

read

“Porting

Programs

to

XL

Fortran”

on

page

397

for

other

porting

information.

©

Copyright

IBM

Corp.

1990,

2004

1

How

to

Read

the

Syntax

Diagrams

and

Statements

This

document

uses

notation

often

referred

to

as

“railroad

tracks”

to

illustrate

syntax

for

Fortran

statements

and

AIX

commands.

Syntax

for

compiler

options

is

illustrated

through

statements

using

notation

often

referred

to

as

“braces

and

brackets”.

Fortran

keywords

are

shown

in

uppercase:

for

example,

OPEN,

COMMON,

and

END.

You

must

spell

them

exactly

as

they

are

shown,

although

they

are

not

case-sensitive.

Variable

names

and

user-specified

names

appear

in

lowercase

italics;

for

example,

array_element_name.

If

a

variable

or

user-specified

name

ends

in

_list,

it

means

that

you

can

provide

a

list

of

terms

that

are

separated

by

commas.

You

must

enter

punctuation

marks,

parentheses,

arithmetic

operators,

and

other

special

characters

as

part

of

the

syntax.

Syntax

Diagrams

v

Read

syntax

diagrams

from

left

to

right

and

from

top

to

bottom,

following

the

path

of

the

line:

–

The

��───

symbol

indicates

the

beginning

of

a

command.

–

The

───�

symbol

indicates

that

the

command

syntax

continues

on

the

next

line.

–

The

�───

symbol

indicates

that

a

command

is

continued

from

the

previous

line.

–

The

───��

symbol

indicates

the

end

of

a

command.

–

Diagrams

of

syntactical

units

smaller

than

complete

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

–

Constructs,

interface

blocks

and

derived

type

definitions

consist

of

several

individual

statements.

For

such

items,

individual

syntax

diagrams

show

the

required

order

for

the

equivalent

Fortran

statements.
v

Required

items

appear

on

the

main

path

(the

main

path):

��

command_name

required_argument

��

v

Optional

items

appear

below

the

main

path:

��

command_name

optional_argument

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path:

��

command_name

required_argument

required_argument

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path:

2

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

��

command_name

optional_argument

optional_argument

��

v

An

arrow

returning

to

the

left

above

the

main

line

(a

″repeat

arrow″)

indicates

an

item

that

can

be

repeated

and

the

separator

character

if

it

is

other

than

a

blank:

��

�

:

command_name

repeatable_argument

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items.

Example

of

a

Syntax

Diagram

��

�

�

,

,

EXAMPLE

char_constant

a

e

b

c

name_list

d

��

Interpret

the

diagram

as

follows:

v

Enter

the

keyword

EXAMPLE.

v

Enter

a

value

for

char_constant.

v

Enter

a

value

for

a

or

b,

but

not

for

both.

v

Optionally,

enter

a

value

for

c

or

d.

v

Enter

at

least

one

value

for

e.

If

you

enter

more

than

one

value,

you

must

put

a

comma

between

each.

v

Optionally,

enter

the

value

of

at

least

one

name

for

name_list.

If

you

enter

more

than

one

value,

you

must

put

a

comma

between

each

name.

Syntax

Statements

Syntax

statements

are

read

from

left

to

right:

v

Individual

required

arguments

are

shown

with

no

special

notation.

v

When

you

must

make

a

choice

between

a

set

of

alternatives,

they

are

enclosed

by

{

and

}

symbols.

v

Optional

arguments

are

enclosed

by

[

and

]

symbols.

v

When

you

can

select

from

a

group

of

choices,

they

are

separated

by

|

characters.

v

Arguments

that

you

can

repeat

are

followed

by

ellipses

(...).

Example

of

a

Syntax

Statement

EXAMPLE

char_constant

{a|b}[c|d]e[,e]...

name_list{name_list}...

The

following

list

explains

the

syntax

statement:

v

Enter

the

keyword

EXAMPLE.

v

Enter

a

value

for

char_constant.

v

Enter

a

value

for

a

or

b,

but

not

for

both.

v

Optionally,

enter

a

value

for

c

or

d.

v

Enter

at

least

one

value

for

e.

If

you

enter

more

than

one

value,

you

must

put

a

comma

between

each.

Introduction

3

v

Optionally,

enter

the

value

of

at

least

one

name

for

name_list.

If

you

enter

more

than

one

value,

you

must

put

a

comma

between

each

name.

Note:

The

same

example

is

used

in

both

the

syntax-statement

and

syntax-diagram

representations.

Notes

on

the

Examples

in

This

Document

v

The

examples

in

this

document

are

coded

in

a

simple

style

that

does

not

try

to

conserve

storage,

check

for

errors,

achieve

fast

performance,

or

demonstrate

all

possible

ways

to

do

something.

v

The

examples

in

this

document

use

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

xlf,

xlf_r,

xlf_r7,

f77,

fort77,

f90,

and

f95

compiler

invocation

commands

interchangeably.

For

more

substantial

source

files,

one

of

these

commands

may

be

more

suitable

than

the

others,

as

explained

in

“Compiling

XL

Fortran

Programs”

on

page

29.

v

Some

sample

programs

from

this

document

and

some

other

programs

that

illustrate

ideas

presented

in

this

document

are

in

the

directory

/usr/lpp/xlf/samples.

Notes

on

the

Terminology

in

This

Document

Some

of

the

terminology

in

this

document

is

shortened,

as

follows:

v

The

term

free

source

form

format

will

often

appear

as

free

source

form.

v

The

term

fixed

source

form

format

will

often

appear

as

fixed

source

form.

v

The

term

XL

Fortran

will

often

appear

as

XLF.

Typographical

Conventions

This

document

uses

the

following

methods

to

differentiate

text:

v

Fortran

keywords,

commands,

statements,

directives,

intrinsic

procedures,

compiler

options,

and

filenames

are

shown

in

bold.

For

example,

COMMON,

END,

and

OPEN.

v

References

to

other

sources

of

information

appear

in

italics.

v

Variable

names

and

user-specified

names

appear

in

lowercase

italics.

For

example,

array_element_name.

Related

Documentation

You

can

refer

to

the

following

publications

for

additional

information:

XL

Fortran

and

Operating

System

Publications

v

IBM

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

describes

the

XL

Fortran

programming

language.

v

The

AIX

Installation

Guide

covers

all

aspects

of

the

standard

AIX

installation

procedure.

XL

Fortran

supplies

brief

installation

instructions

that

explain

how

the

general-purpose

installation

procedures

apply

to

this

licensed

program.

v

AIX

Commands

Reference

(mutivolume

set)

contains

extensive

examples,

as

well

as

detailed

descriptions

of

the

AIX

commands

and

their

available

flags.

In

particular,

it

describes

the

ld

command

(linker

invocation).

v

AIX

Performance

Management

Guide

explains

how

to

maximize

the

performance

of

components

of

the

AIX

operating

system.

v

AIX

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1

describes

the

Basic

Linear

Algebra

Subroutines

(BLAS),

AIX

subroutines,

and

AIX

system

calls.

4

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

General

Programming

Concepts:

Writing

and

Debugging

Programs

tells

you

how

to

write

software

that

works

properly

in

different

countries

and

national

languages.

Other

Publications

These

documents

are

also

relevant

to

XL

Fortran

features:

v

Engineering

and

Scientific

Subroutine

Library

Guide

and

Reference

gives

information

about

the

Engineering

and

Scientific

Subroutine

Library

(ESSL)

routines.

v

Parallel

Engineering

and

Scientific

Subroutine

Library

Guide

and

Reference

gives

information

about

the

Parallel

Engineering

and

Scientific

Subroutine

Library

(PESSL)

routines.

Standards

Documents

You

may

want

to

refer

to

these

standards

for

precise

definitions

of

some

of

the

features

referred

to

in

this

document:

v

American

National

Standard

Programming

Language

FORTRAN,

ANSI

X3.9-1978.

v

American

National

Standard

Programming

Language

Fortran

90,

ANSI

X3.198-1992.

(Referred

to

in

this

document

by

its

informal

name,

Fortran

90.)

v

Federal

(USA)

Information

Processing

Standards

Publication

Fortran,

FIPS

PUB

69-1.

v

ANSI/IEEE

Standard

for

Binary

Floating-Point

Arithmetic,

ANSI/IEEE

Std

754-1985.

v

Information

technology

-

Programming

languages

-

Fortran,

ISO/IEC

1539-1:1991(E).

v

Information

technology

-

Programming

languages

-

Fortran

-

Part

1:

Base

language,

ISO/IEC

1539-1:1997.

(Referred

to

in

this

document

by

its

informal

name,

Fortran

95.)

v

Information

technology

-

Programming

Languages

-

Fortran

-

Floating-Point

Exception

Handling,

ISO/IEC

JTC1/SC22/WG5

N1379.

v

Information

technology

-

Programming

Languages

-

Fortran

-

Enhanced

Data

Type

Facilities,

ISO/IEC

JTC1/SC22/WG5

N1378.

v

Military

Standard

Fortran

DOD

Supplement

to

ANSI

X3.9-1978,

MIL-STD-1753

(United

States

of

America,

Department

of

Defence

standard).

Note

that

XL

Fortran

supports

only

those

extensions

that

have

been

subsequently

incorporated

into

the

Fortran

90

and

Fortran

95

standards.

v

OpenMP

Fortran

Application

Program

Interface,

Version

2.0,

(Nov

2000).

(Referred

to

in

this

document

by

its

informal

name,

OpenMP

Fortran

API.)

Introduction

5

6

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Overview

of

XL

Fortran

Features

This

section

discusses

the

features

of

the

XL

Fortran

compiler,

language,

and

development

environment

at

a

high

level.

It

is

intended

for

people

who

are

evaluating

XL

Fortran

and

for

new

users

who

want

to

find

out

more

about

the

product.

Hardware

and

Operating-System

Support

The

XL

Fortran

Enterprise

Edition

Version

9.1

compiler

is

supported

on

the

Version

5.1,

or

higher,

AIX

operating

system.

See

the

XL

Fortran

Enterprise

Edition

for

AIX

Installation

Guide

and

README

file

for

a

list

of

requirements.

The

compiler,

its

generated

object

programs,

and

run-time

library

will

run

on

all

RISC

System/6000®

(RS/6000®)

or

pSeries®

systems

with

the

required

software,

disk

space,

and

virtual

storage.

The

POWER3,

POWER4,

or

POWER5

processor

is

a

type

of

PowerPC.

In

this

document,

any

statement

or

reference

to

the

PowerPC

also

applies

to

the

POWER3,

POWER4,

or

POWER5

processor.

To

take

maximum

advantage

of

different

hardware

configurations,

the

compiler

provides

a

number

of

options

for

performance

tuning

based

on

the

configuration

of

the

machine

used

for

executing

an

application.

Language

Support

The

XL

Fortran

language

consists

of

the

following:

v

The

full

American

National

Standard

Fortran

90

language

(referred

to

as

Fortran

90

or

F90),

defined

in

the

documents

American

National

Standard

Programming

Language

Fortran

90,

ANSI

X3.198-1992

and

Information

technology

-

Programming

languages

-

Fortran,

ISO/IEC

1539-1:1991(E).

This

language

has

a

superset

of

the

features

found

in

the

FORTRAN

77

standard.

It

adds

many

more

features

that

are

intended

to

shift

more

of

the

tasks

of

error

checking,

array

processing,

memory

allocation,

and

so

on

from

the

programmer

to

the

compiler.

v

The

full

ISO

Fortran

95

language

standard

(referred

to

as

Fortran

95

or

F95),

defined

in

the

document

Information

technology

-

Programming

languages

-

Fortran

-

Part

1:

Base

language,

ISO/IEC

1539-1:1997.

v

Extensions

to

the

Fortran

95

standard:

–

Industry

extensions

that

are

found

in

Fortran

products

from

various

compiler

vendors

–

Extensions

specified

in

SAA

Fortran

In

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference,

extensions

to

the

Fortran

95

language

are

marked

as

described

in

the

Typographical

Conventions

topic.

©

Copyright

IBM

Corp.

1990,

2004

7

Migration

Support

The

XL

Fortran

compiler

helps

you

to

port

or

to

migrate

source

code

among

Fortran

compilers

by

providing

full

Fortran

90

and

Fortran

95

language

support

and

selected

language

extensions

(intrinsic

functions,

data

types,

and

so

on)

from

many

different

compiler

vendors.

Throughout

this

document,

we

will

refer

to

these

extensions

as

“industry

extensions”.

To

protect

your

investment

in

FORTRAN

77

source

code,

you

can

easily

invoke

the

compiler

with

a

set

of

defaults

that

provide

backward

compatibility

with

earlier

versions

of

XL

Fortran.

The

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

provide

maximum

compatibility

with

existing

FORTRAN

77

programs.

The

default

options

provided

with

the

xlf90,

xlf90_r,

and

xlf90_r7commands

give

access

to

the

full

range

of

Fortran

90

language

features.

The

default

options

provided

with

the

xlf95,

xlf95_r,

and

xlf95_r7

commands

give

access

to

the

full

range

of

Fortran

95

language

features.

To

protect

your

investments

in

FORTRAN

77

object

code,

you

can

link

Fortran

90

and

Fortran

95

programs

with

existing

FORTRAN

77

object

modules

and

libraries.

See

“Linking

New

Objects

with

Existing

Ones”

on

page

45

for

details.

Source-Code

Conformance

Checking

To

help

you

find

anything

in

your

programs

that

might

cause

problems

when

you

port

to

or

from

different

FORTRAN

77,

Fortran

90,

or

Fortran

95

compilers,

the

XL

Fortran

compiler

provides

options

that

warn

you

about

features

that

do

not

conform

to

certain

Fortran

definitions.

If

you

specify

the

appropriate

compiler

options,

the

XL

Fortran

compiler

checks

source

statements

for

conformance

to

the

following

Fortran

language

definitions:

v

Full

American

National

Standard

FORTRAN

77

(-qlanglvl=77std

option),

full

American

National

Standard

Fortran

90

(-qlanglvl=90std

option),

and

full

Fortran

95

standard

(-qlanglvl=95std

option)

v

Fortran

90,

less

any

obsolescent

features

(-qlanglvl=90pure

option)

v

Fortran

95,

less

any

obsolescent

features

(-qlanglvl=95pure

option)

v

IBM

SAA®

FORTRAN

(-qsaa

option)

You

can

also

use

the

langlvl

environment

variable

for

conformance

checking.

Highly

Configurable

Compiler

You

can

invoke

the

compiler

by

using

thexlf,

xlf_r,

xlf_r7,

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f77,

or

fort77

command.

The

xlf,

xlf_r,

xlf_r7,

and

f77

commands

maintain

maximum

compatibility

with

the

behavior

and

I/O

formats

of

XL

Fortran

Version

2.

The

xlf90,

xlf90_r,

and

xlf90_r7

commands

provide

more

Fortran

90

conformance

and

some

implementation

choices

for

efficiency

and

usability.

The

xlf95,

xlf95_r,

and

xlf95_r7

commands

provide

more

Fortran

95

conformance

and

some

implementation

choices

for

efficiency

and

usability.

The

fort77

command

provides

maximum

compatibility

with

the

XPG4

behavior.

The

main

difference

between

the

set

of

xlf_r,

xlf90_r,

xlf90_r7,

xlf95_r,

and

xlf95_r7

commands

and

the

set

of

xlf,

xlf90,

xlf95,

f77,

and

fort77

commands

is

that

the

first

set

links

and

binds

the

object

files

to

the

thread-safe

components

(libraries,

8

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

crt0_r.o,

and

so

on).

You

can

have

this

behavior

with

the

second

set

of

commands

by

using

the

-F

compiler

option

to

specify

the

configuration

file

stanza

to

use.

For

example:

xlf

-F/etc/xlf.cfg:xlf_r

You

can

control

the

actions

of

the

compiler

through

a

set

of

options.

The

different

categories

of

options

help

you

to

debug,

to

optimize

and

tune

program

performance,

to

select

extensions

for

compatibility

with

programs

from

other

platforms,

and

to

do

other

common

tasks

that

would

otherwise

require

changing

the

source

code.

To

simplify

the

task

of

managing

many

different

sets

of

compiler

options,

you

can

customize

the

single

file

/etc/xlf.cfg

instead

of

creating

many

separate

aliases

or

shell

scripts.

For

information

on:

v

The

configuration

file,

see

“Customizing

the

Configuration

File”

on

page

15

v

The

invocation

commands,

see

“Compiling

XL

Fortran

Programs”

on

page

29

v

The

compiler

options,

see

“Summary

of

the

XL

Fortran

Compiler

Options”

on

page

67

and

“Detailed

Descriptions

of

the

XL

Fortran

Compiler

Options”

on

page

90

v

Compiler

return

codes,

see

“Understanding

XL

Fortran

Messages”

on

page

370

Diagnostic

Listings

The

compiler

output

listing

has

optional

sections

that

you

can

include

or

omit.

For

information

about

the

applicable

compiler

options

and

the

listing

itself,

refer

to

“Options

That

Control

Listings

and

Messages”

on

page

77

and

“Understanding

XL

Fortran

Compiler

Listings”

on

page

389.

The

-S

option

gives

you

a

true

assembler

source

file.

Symbolic

Debugger

Support

You

can

use

dbx,

the

IBM

Distributed

Debugger

(a

technology

preview

version),

and

other

symbolic

debuggers

for

your

programs.

Program

Optimization

The

XL

Fortran

compiler

helps

you

control

the

optimization

of

your

programs:

v

You

can

select

different

levels

of

compiler

optimizations.

v

You

can

turn

on

separate

optimizations

for

loops,

floating

point,

and

other

categories.

v

You

can

optimize

a

program

for

a

particular

class

of

machines

or

for

a

very

specific

machine

configuration,

depending

on

where

the

program

will

run.

“Optimizing

XL

Fortran

Programs”

on

page

305

is

a

road

map

to

these

features.

Documentation

and

Online

Help

XL

Fortran

provides

product

documentation

in

the

following

formats:

v

Readme

files

v

Installable

man

pages

v

A

searchable,

HTML-based

help

system

v

Portable

Document

Format

(PDF)

documents

Overview

of

XL

Fortran

Features

9

These

items

are

located,

or

accessed

as

follows:

Readme

files

The

readme

files

are

located

in

/usr/xlf/

and

in

the

root

directory

of

the

installation

CD.

Man

pages

Man

pages

are

provided

for

the

compiler

invocations

and

all

command-line

utilities

provided

with

the

product.

HTML-based

help

system

An

Information

Center

of

searchable

HTML

files

which

can

be

installed

on

an

intranet

and

accessed

by

pointing

the

browser

to

http:

server_name:5312/help/index.jsp.

The

product

help

system

is

also

viewable

online

at

http://www.ibm.com/software/awdtools/fortran/xlfortran/library.

PDF

documents

The

PDF

files

are

located

in

the

/usr/xlf/pdf

directory.

They

are

viewable

and

printable

from

the

Adobe

Acrobat

Reader.

If

you

do

not

have

the

Adobe

Acrobat

Reader

installed,

you

can

download

it

from

http://www.adobe.com.

Cross

references

between

important

User’s

Guide

and

Language

Reference

topics

are

linked.

While

viewing

a

given

document,

you

can

access

a

linked

topic

in

the

other

document

by

clicking

the

link.

You

do

not

need

to

close

the

document

you

are

viewing

to

access

the

linked

information

in

the

other

documnent.

For

the

latest

information

about

XL

Fortran

Enterprise

Edition,

visit

the

product

web

sitessites:

v

The

Help

Center

at

http://www.ibm.com/software/awdtools/fortran/xlfortran/library.

v

The

product

support

site

at

http://www.ibm.com/software/awdtools/fortran/xlfortran/support.

10

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/support

Setting

Up

and

Customizing

XL

Fortran

This

section

explains

how

to

customize

XL

Fortran

settings

for

yourself

or

all

users

and

how

to

set

up

a

user

account

to

use

XL

Fortran.

The

full

installation

procedure

is

beyond

the

scope

of

this

section,

which

refers

you

to

the

documents

that

cover

the

procedure

in

detail.

This

section

can

also

help

you

to

diagnose

problems

that

relate

to

installing

or

configuring

the

compiler.

Some

of

the

instructions

require

you

to

be

a

superuser,

and

so

they

are

only

applicable

if

you

are

a

system

administrator.

Where

to

Find

Installation

Instructions

To

install

the

compiler,

refer

to

these

documents

(preferably

in

this

order):

1.

Read

the

file

called

/usr/lpp/xlf/DOC/README.FIRST,

and

follow

any

directions

it

gives.

It

contains

information

that

you

should

know

and

possibly

distribute

to

other

people

who

use

XL

Fortran.

2.

Read

any

Installation

Guide

document

that

comes

with

the

compiler

to

see

if

there

are

any

important

notices

you

should

be

aware

of

or

any

updates

you

might

need

to

apply

to

your

system

before

doing

the

installation.

3.

Read

the

AIX

Installation

Guide

to

understand

the

full

procedure

for

installing

optional

software

from

the

distribution

medium.

This

document

provides

good

step-by-step

instructions

that

should

answer

all

your

questions

and

should

help

you

to

solve

any

installation

problems.

If

you

are

already

experienced

with

AIX

software

installation,

you

can

use

the

installp

or

smit

installp

command

to

install

all

the

images

from

the

distribution

medium.

Using

the

Compiler

on

a

Network

File

System

If

you

want

to

use

the

XL

Fortran

compiler

on

a

Network

File

System

server

for

a

networked

cluster

of

machines,

use

the

Network

Install

Manager.

The

following

directories

under

/usr

contain

XL

Fortran

components:

v

/usr/bin

contains

the

compiler

invocation

commands.

v

/usr/lib

contains

the

libraries.

v

/usr/lpp/xlf

contains

executables

and

files

that

the

compiler

needs.

v

/usr/include

contains

the

include

files,

some

of

which

contain

definitions

that

XL

Fortran

uses.

v

/usr/lib/nls/msg

contains

the

message

catalog

files

that

XL

Fortran

uses.

v

/usr/lpp/xlfrtemsg

contains

the

default

message

catalog

files

that

are

used

by

XL

Fortran

programs.

v

/usr/share/man/cat1

contains

the

compiler

man

pages.

v

/usr/share/man/info/en_US/xlf/pdf

contains

the

PDF

format

of

the

English

XL

Fortran

publications.

v

/usr/share/man/info/en_US/xlf/html

contains

the

HTML

format

of

the

English

XL

Fortran

publications.

©

Copyright

IBM

Corp.

1990,

2004

11

v

/usr/share/man/info/en_US/xlf/postscript

contains

the

PostScript

format

of

the

English

XL

Fortran

publications.

You

must

also

copy

the

/etc/xlf.cfg

file

from

the

server

to

the

client.

The

/etc

directory

contains

the

configuration

files

specific

to

a

machine,

and

it

should

not

be

mounted

from

the

server.

Correct

Settings

for

Environment

Variables

You

can

set

and

export

a

number

of

environment

variables

for

use

with

the

operating

system.

The

following

sections

deal

with

the

environment

variables

that

have

special

significance

to

the

XL

Fortran

compiler,

application

programs,

or

both.

Environment

Variable

Basics

You

can

set

the

environment

variables

from

shell

command

lines

or

from

within

shell

scripts.

If

you

are

not

sure

which

shell

is

in

use,

a

quick

way

to

find

out

is

to

issue

an

echo

$0.

This

provides

a

different

result

in

each

shell:

$

sh

$

echo

$0

sh

$

ksh

$

echo

$0

ksh

$

csh

%

echo

$0

No

file

for

$0.

%

The

Bourne

shell

path

is

/bin/sh,

the

Korn

shell

path

is

/bin/ksh,

and

the

C

shell

path

is

/bin/csh.

To

set

the

environment

variables

so

that

everyone

on

the

system

has

access

to

them,

set

the

variables

in

the

file

/etc/profile

(for

the

Bourne

or

the

Korn

shell),

or

set

the

variables

in

the

file

/etc/csh.login

or

in

the

file

/etc/csh.cshrc

(for

the

C

shell).

To

set

them

for

a

specific

user

only,

add

the

appropriate

commands

to

the

appropriate

.profile

or

.cshrc

file

in

the

user’s

home

directory.

The

variables

are

set

the

next

time

the

user

logs

on.

For

more

information

about

setting

environment

variables,

see

the

AIX

Commands

Reference.

The

following

examples

show

how

to

set

environment

variables

from

various

shells.

From

the

Bourne

or

Korn

shell:

NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

LANG=en_US

TMPDIR=/home/joe/temp

export

LANG

NLSPATH

TMPDIR

From

the

C

shell:

setenv

LANG

en_US

setenv

NLSPATH

/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

setenv

TMPDIR

/home/joe/temp

To

display

the

contents

of

an

environment

variable,

enter

the

command

echo

$var_name.

12

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Note:

For

the

remainder

of

this

document,

most

examples

of

shell

commands

use

ksh

notation

instead

of

repeating

the

syntax

for

all

shells.

Environment

Variables

for

National

Language

Support

Diagnostic

messages

and

the

listings

from

the

compiler

appear

in

the

default

language

that

was

specified

at

installation

of

the

operating

system.

If

you

want

the

messages

and

listings

to

appear

in

another

language,

you

can

set

and

export

the

following

environment

variables

before

executing

the

compiler:

LANG

Specifies

the

locale.

A

locale

is

divided

into

categories.

Each

category

contains

a

specific

aspect

of

the

locale

data.

Setting

LANG

may

change

the

national

language

for

all

the

categories.

NLSPATH

Refers

to

a

list

of

directory

names

where

the

message

catalogs

may

be

found.

For

example,

to

specify

the

Japanese

locale

with

the

IBM_eucJP

code

page,

use

the

following

commands

from

the

Bourne

or

Korn

shell:

LANG=ja_JP

NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

export

LANG

NLSPATH

Substitute

any

valid

national

language

code

for

ja_JP,

provided

the

associated

message

catalogs

are

installed.

These

environment

variables

are

initialized

when

the

operating

system

is

installed

and

may

be

different

from

the

ones

that

you

want

to

use

with

the

compiler.

Each

category

has

an

environment

variable

associated

with

it.

If

you

want

to

change

the

national

language

for

a

specific

category

but

not

for

other

categories,

you

can

set

and

export

the

corresponding

environment

variable.

For

example:

LC_MESSAGES

Specifies

the

national

language

for

the

messages

that

are

issued.

It

affects

messages

from

the

compiler

and

XLF-compiled

programs,

which

may

be

displayed

on

the

screen

or

stored

in

a

listing,

module,

or

other

compiler

output

file.

LC_TIME

Specifies

the

national

language

for

the

time

format

category.

It

primarily

affects

the

compiler

listings.

LC_CTYPE

Defines

character

classification,

case

conversion,

and

other

character

attributes.

For

XL

Fortran,

it

primarily

affects

the

processing

of

multibyte

characters.

LC_NUMERIC

Specifies

the

format

to

use

for

input

and

output

of

numeric

values.

Setting

this

variable

in

the

shell

does

not

affect

either

the

compiler

or

XLF-compiled

programs.

The

first

I/O

statement

in

a

program

sets

the

LC_NUMERIC

category

to

POSIX.

Therefore,

programs

that

require

a

different

setting

must

reset

it

after

this

point

and

should

restore

the

setting

to

POSIX

for

all

I/O

statements.

Setting

Up

and

Customizing

XL

Fortran

13

Notes:

1.

Specifying

the

LC_ALL

environment

variable

overrides

the

value

of

the

LANG

and

other

LC_

environment

variables.

2.

If

the

XL

Fortran

compiler

or

application

programs

cannot

access

the

message

catalogs

or

retrieve

a

specific

message,

the

message

appears

in

U.S.

English.

3.

The

backslash

character,

\,

has

the

same

hexadecimal

code,

X'5C',

as

the

Yen

symbol

and

can

appear

as

the

Yen

symbol

on

the

display

if

the

locale

is

Japanese.

Related

Information:

“Selecting

the

Language

for

Run-Time

Messages”

on

page

50.

See

General

Programming

Concepts:

Writing

and

Debugging

Programs

for

more

information

about

National

Language

Support

environment

variables

and

locale

concepts.

LIBPATH:Setting

Library

Search

Paths

Under

normal

circumstances,

you

only

need

LIBPATH

if

libraries

are

located

in

different

directories

at

run

time

from

those

that

they

are

in

at

compile

time.

To

use

LIBPATH,

set

it

at

run

time

to

the

names

of

any

directories

that

contain

required

user

libraries,

plus

/usr/lib:

#

Compile

and

link

xlf95

-L/usr/lib/mydir1

-L/usr/lib/mydir2

-lmylib1

-lmylib2

test.f

#

When

the

libraries

are

in

the

same

directories

as

at

compile

#

time,

the

program

finds

them.

a.out

#

If

libmylib1.a

and

libmylib2.a

are

moved

to

/usr/lib/mydir3,

#

you

must

set

the

LIBPATH

variable:

export

LIBPATH=/usr/lib/mydir3:/usr/lib

a.out

When

running

the

compiler,

ensure

that

the

library

libxlf90.a

is

in

/usr/lib

or

is

in

a

directory

named

in

the

LIBPATH

setting.

Otherwise,

you

cannot

run

the

compiler,

because

it

is

dynamically

linked

with

the

libxlf90.a

library.

PDFDIR:

Specifying

the

Directory

for

PDF

Profile

Information

When

you

compile

a

Fortran

90

program

with

the

-qpdf

compiler

option,

you

can

specify

the

directory

where

profiling

information

is

stored

by

setting

the

PDFDIR

environment

variable

to

the

name

of

the

directory.

The

compiler

creates

the

files

to

hold

the

profile

information.

XL

Fortran

updates

the

files

when

you

run

an

application

that

is

compiled

with

the

-qpdf1

option.

Because

problems

can

occur

if

the

profiling

information

is

stored

in

the

wrong

place

or

is

updated

by

more

than

one

application,

you

should

follow

these

guidelines:

v

Always

set

the

PDFDIR

variable

when

using

the

-qpdf

option.

v

Store

the

profiling

information

for

each

application

in

a

different

directory,

or

use

the

-qipa=pdfname=[filename]

option

to

explicitly

name

the

temporary

profiling

files

according

to

the

template

provided.

v

Leave

the

value

of

the

PDFDIR

variable

the

same

until

you

have

completed

the

PDF

process

(compiling,

running,

and

compiling

again)

for

the

application.

14

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

TMPDIR:

Specifying

a

Directory

for

Temporary

Files

The

XL

Fortran

compiler

creates

a

number

of

temporary

files

for

use

during

compilation.

An

XL

Fortran

application

program

creates

a

temporary

file

at

run

time

for

a

file

opened

with

STATUS=’SCRATCH’.

By

default,

these

files

are

placed

in

the

directory

/tmp.

If

you

want

to

change

the

directory

where

these

files

are

placed,

perhaps

because

/tmp

is

not

large

enough

to

hold

all

the

temporary

files,

set

and

export

the

TMPDIR

environment

variable

before

running

the

compiler

or

the

application

program.

If

you

explicitly

name

a

scratch

file

by

using

the

XLFSCRATCH_unit

method

described

below,

the

TMPDIR

environment

variable

has

no

effect

on

that

file.

XLFSCRATCH_unit:

Specifying

Names

for

Scratch

Files

To

give

a

specific

name

to

a

scratch

file,

you

can

set

the

run-time

option

scratch_vars=yes;

then

set

one

or

more

environment

variables

with

names

of

the

form

XLFSCRATCH_unit

to

file

names

to

use

when

those

units

are

opened

as

scratch

files.

See

“Naming

Scratch

Files”

on

page

332

for

examples.

XLFUNIT_unit:

Specifying

Names

for

Implicitly

Connected

Files

To

give

a

specific

name

to

an

implicitly

connected

file

or

a

file

opened

with

no

FILE=

specifier,

you

can

set

the

run-time

option

unit_vars=yes;

then

set

one

or

more

environment

variables

with

names

of

the

form

XLFUNIT_unit

to

file

names.

See

“Naming

Files

That

Are

Connected

with

No

Explicit

Name”

on

page

331

for

examples.

Customizing

the

Configuration

File

The

configuration

file

specifies

information

that

the

compiler

uses

when

you

invoke

it.

XL

Fortran

provides

the

default

configuration

file

/etc/xlf.cfg

at

installation

time.

If

you

are

running

on

a

single-user

system,

or

if

you

already

have

a

compilation

environment

with

compilation

scripts

or

makefiles,

you

may

want

to

leave

the

default

configuration

file

as

it

is.

Otherwise,

especially

if

you

want

many

users

to

be

able

to

choose

among

several

sets

of

compiler

options,

you

may

want

to

add

new

named

stanzas

to

the

configuration

file

and

to

create

new

commands

that

are

links

to

existing

commands.

For

example,

you

could

specify

something

similar

to

the

following

to

create

a

link

to

the

xlf95

command:

ln

-s

/bin/xlf95

/home/lisa/bin/my_xlf95

When

you

run

the

compiler

under

another

name,

it

uses

whatever

options,

libraries,

and

so

on,

that

are

listed

in

the

corresponding

stanza.

Notes:

1.

The

configuration

file

contains

other

named

stanzas

to

which

you

may

want

to

link.

2.

If

you

make

any

changes

to

the

default

configuration

file

and

then

move

or

copy

your

makefiles

to

another

system,

you

will

also

need

to

copy

the

changed

configuration

file.

Setting

Up

and

Customizing

XL

Fortran

15

3.

Installing

a

compiler

program

temporary

fix

(PTF)

or

an

upgrade

may

overwrite

the

/etc/xlf.cfg

file.

Therefore,

be

sure

to

save

a

copy

of

any

modifications

you

have

made

before

doing

such

an

installation.

4.

If

you

upgrade

the

operating

system,

you

must

change

the

symbolic

link

in

/etc/xlf.cfg

to

point

to

the

correct

version

of

the

configuration

file.

5.

You

cannot

use

tabs

as

separator

characters

in

the

configuration

file.

If

you

modify

the

configuration

file,

make

sure

that

you

use

spaces

for

any

indentation.

6.

The

xlf_r,

xlf90_r,

and

xlf95_r

stanzas

support

the

operating

system

default

thread

interface:

that

is,

the

POSIX1003.1-1996

standard

for

AIX

Version

5.1

and

higher

levels

of

the

AIX

operating

system.

7.

If

you

are

mixing

Message-Passing

Interface

(MPI)

and

threaded

programming,

use

the

appropriate

stanza

in

the

xlf.cfg

file

to

link

in

the

proper

libraries

and

to

set

the

correct

default

behavior:

mpxlf

Specifies

xlf

and

f77

behavior

when

using

MPI.

mpxlf_r

Specifies

xlf_r

behavior

when

mixing

MPI

and

threaded

programming.

You

access

this

stanza

by

specifying

the

mpxlf_r

command.

mpxlf_r7

Specifies

xlf_r7

behavior

when

mixing

MPI

and

threaded

programming.

You

access

this

stanza

by

specifying

the

mpxlf_r

command

with

the

-d7

option.

The

level

of

POSIX

pthreads

API

support

is

Draft

7.

mpxlf90

Specifies

xlf90

behavior

when

using

MPI.

mpxlf90_r

Specifies

xlf90_r

behavior

when

mixing

MPI

and

threaded

programming.

You

access

this

stanza

by

specifying

the

mpxlf90_r

command.

mpxlf90_r7

Specifies

xlf90_r7

behavior

when

mixing

MPI

and

threaded

programming.

You

access

this

stanza

by

specifying

the

mpxlf90_r

command

with

the

-d7

option.

The

level

of

POSIX

pthreads

API

support

is

Draft

7.

mpxlf95

Specifies

xlf95

behavior

when

using

MPI.

mpxlf95_r

Specifies

xlf95_r

behavior

when

mixing

MPI

and

threaded

programming.

You

access

this

stanza

by

specifying

the

mpxlf95_r

command.

mpxlf95_r7

Specifies

xlf95_r7

behavior

when

mixing

MPI

and

threaded

programming.

You

access

this

stanza

by

specifying

the

mpxlf95_r

command

with

the

-d7

option.

The

level

of

POSIX

pthreads

API

support

is

Draft

7.

Attributes

The

configuration

file

contains

the

following

attributes:

use

The

named

and

local

stanzas

provide

the

values

for

attributes.

For

single-valued

attributes,

values

in

the

use

attribute

apply

if

there

is

no

value

in

the

local,

or

default,

stanza.

For

comma-separated

lists,

the

values

from

the

use

attribute

are

added

to

the

values

from

the

local

stanza.

You

can

only

use

a

single

level

of

the

use

attribute.

Do

not

specify

a

use

attribute

that

names

a

stanza

with

another

use

attribute.

crt

When

invoked

in

32-bit

mode,

the

default

(which

is

the

path

name

of

the

object

file

that

contains

the

startup

code),

passed

as

the

first

parameter

to

the

linkage

editor.

crt_64

When

invoked

in

64-bit

mode,

using

-q64

for

example,

the

path

16

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

name

of

the

object

file

that

contains

the

startup

code,

passed

as

the

first

parameter

to

the

linkage

editor.

mcrt

Same

as

for

crt,

but

the

object

file

contains

profiling

code

for

the

-p

option.

mcrt_64

Same

as

for

crt_64,

but

the

object

file

contains

profiling

code

for

the

-p

option.

gcrt

Same

as

crt,

but

the

object

file

contains

profiling

code

for

the

-pg

option.

gcrt_64

Same

as

crt_64,

but

the

object

file

contains

profiling

code

for

the

-pg

option.

cpp

The

absolute

path

name

of

the

C

preprocessor,

which

is

automatically

called

for

files

ending

with

a

specific

suffix

(usually

.F).

xlf

The

absolute

path

name

of

the

main

compiler

executable

file.

The

compiler

commands

are

driver

programs

that

execute

this

file.

code

The

absolute

path

name

of

the

optimizing

code

generator.

xlfopt

Lists

names

of

options

that

are

assumed

to

be

compiler

options,

for

cases

where,

for

example,

a

compiler

option

and

a

linker

option

use

the

same

letter.

The

list

is

a

concatenated

set

of

single-letter

flags.

Any

flag

that

takes

an

argument

is

followed

by

a

colon,

and

the

whole

list

is

enclosed

by

double

quotation

marks.

as

The

absolute

path

name

of

the

assembler.

asopt

Lists

names

of

options

that

are

assumed

to

be

assembler

options

for

cases

where,

for

example,

a

compiler

option

and

an

assembler

option

use

the

same

letter.

The

list

is

a

concatenated

set

of

single-letter

flags.

Any

flag

that

takes

an

argument

is

followed

by

a

colon,

and

the

whole

list

is

enclosed

by

double

quotation

marks.

You

may

find

it

more

convenient

to

set

up

this

attribute

than

to

pass

options

to

the

assembler

through

the

-W

compiler

option.

ld

The

absolute

path

name

of

the

linker.

ldopt

Lists

names

of

options

that

are

assumed

to

be

linker

options

for

cases

where,

for

example,

a

compiler

option

and

a

linker

option

use

the

same

letter.

The

list

is

a

concatenated

set

of

single-letter

flags.

Any

flag

that

takes

an

argument

is

followed

by

a

colon,

and

the

whole

list

is

enclosed

by

double

quotation

marks.

You

may

find

it

more

convenient

to

set

up

this

attribute

than

to

pass

options

to

the

linker

through

the

-W

compiler

option.

However,

most

unrecognized

options

are

passed

to

the

linker

anyway.

options

A

string

of

options

that

are

separated

by

commas.

The

compiler

processes

these

options

as

if

you

entered

them

on

the

command

line

before

any

other

option.

This

attribute

lets

you

shorten

the

command

line

by

including

commonly

used

options

in

one

central

place.

cppoptions

A

string

of

options

that

are

separated

by

commas,

to

be

processed

by

cpp

(the

C

preprocessor)

as

if

you

entered

them

on

the

command

line

before

any

other

option.

This

attribute

is

needed

because

some

cpp

options

are

usually

required

to

produce

output

Setting

Up

and

Customizing

XL

Fortran

17

that

can

be

compiled

by

XL

Fortran.

The

default

option

is

-C,

which

preserves

any

C-style

comments

in

the

output.

fsuffix

The

allowed

suffix

for

Fortran

source

files.

The

default

is

f.

The

compiler

requires

that

all

source

files

in

a

single

compilation

have

the

same

suffix.

Therefore,

to

compile

files

with

other

suffixes,

such

as

f95,

you

must

change

this

attribute

in

the

configuration

file

or

use

the

-qsuffix

compiler

option.

For

more

information

on

-qsuffix,

see

“-qsuffix

Option”

on

page

244.

cppsuffix

The

suffix

that

indicates

a

file

must

be

preprocessed

by

the

C

preprocessor

(cpp)

before

being

compiled

by

XL

Fortran.

The

default

is

F.

osuffix

The

suffix

used

to

recognize

object

files

that

are

specified

as

input

files.

The

default

is

o.

ssuffix

The

suffix

used

to

recognize

assembler

files

that

are

specified

as

input

files.

The

default

is

s.

libraries

-l

options,

which

are

separated

by

commas,

that

specify

the

libraries

used

to

link

all

programs.

proflibs

-L

options,

which

are

separated

by

commas,

that

specify

the

path

where

the

linker

searches

for

additional

libraries

for

profiled

programs.

smplibraries

Specifies

the

libraries

that

are

used

to

link

programs

that

you

compiled

with

the

-qsmp

compiler

option.

hot

Absolute

path

name

of

the

program

that

does

array

language

transformations.

ipa

Absolute

path

name

of

the

program

that

performs

interprocedural

optimizations,

loop

optimizations,

and

program

parallelization.

bolt

Absolute

path

name

of

the

binder.

defaultmsg

Absolute

path

name

of

the

default

message

files.

include

Indicates

the

search

path

that

is

used

for

compilation

include

files

and

module

files.

include_32

Indicates

the

search

path

that

is

used

for

32-bit

compilation

include

files.

include_64

Indicates

the

search

path

that

is

used

for

64-bit

compilation

include

files.

Note:

To

specify

multiple

search

paths

for

compilation

include

files,

separate

each

path

location

with

a

comma

as

follows:

include

=

-l/path1,

-l/path2,

...

What

a

Configuration

File

Looks

Like

The

following

is

an

example

of

a

configuration

file:

*

Standard

Fortran

compiler

xlf95:

use

=

DEFLT

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qfree=f90

*

Alias

for

standard

Fortran

compiler

18

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

f95:

use

=

DEFLT

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qfree=f90

fsuffix

=

f95

*

Fortran

90

compiler

xlf90:

use

=

DEFLT

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qxlf90=noautodealloc:nosignedzero,-qfree=f90

*

Alias

for

Fortran

90

compiler

f90:

use

=

DEFLT

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qxlf90=noautodealloc:nosignedzero,-qfree=f90

fsuffix

=

f90

*

Original

Fortran

compiler

xlf:

use

=

DEFLT

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,

-qxlf90=noautodealloc:nosignedzero,-qxlf77=intarg:intxor:

persistent:noleadzero:gedit77:noblankpad:oldboz:softeof

*

Alias

for

original

Fortran

compiler

f77:

use

=

DEFLT

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,

-qxlf90=noautodealloc:nosignedzero,-qxlf77=intarg:intxor:

persistent:noleadzero:gedit77:noblankpad:oldboz:softeof

*

Alias

for

original

Fortran

compiler,

used

for

XPG4

compliance

fort77:

use

=

DEFLT

libraries

=

-lf,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,

-qxlf90=noautodealloc:nosignedzero,-qxlf77=intarg:intxor:

persistent:noleadzero:gedit77:noblankpad:oldboz:softeof

*

xlf

with

links

to

thread-safe

components

xlf_r:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lpthreads,-lm,-lc

smplibraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlsmp,

-lpthreads,-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qthreaded,-qnozerosize,-qsave,-qalias=intptr,

-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,

-qxlf77=intarg:intxor:persistent:noleadzero:gedit77:

noblankpad:oldboz:softeof

*

xlf90

with

links

to

thread-safe

components

xlf90_r:

use

=

DEFLT

crt

=

/lib/crt0_r.o

Setting

Up

and

Customizing

XL

Fortran

19

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lpthreads,-lm,-lc

smplibraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlsmp,

-lpthreads,-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qxlf90=noautodealloc:nosignedzero,-qfree=f90,-qthreaded

*

xlf95

with

links

to

thread-safe

components

xlf95_r:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lpthreads,-lm,-lc

smplibraries

=

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlsmp,

-lpthreads,-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

options

=

-qfree=f90,-qthreaded

*

xlf

with

links

to

thread-safe

components

(51

POSIX

Draft

7

Threads)

xlf_r7:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlomp_ser,-lpthreads_compat,-lpthreads,-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

smplibraries

=

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlsmp,-lpthreads_compat,-lpthreads,-lm,-lc

options

=

-qthreaded,-qnozerosize,-qsave,-qalias=intptr,

-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,

-qxlf77=intarg:intxor:persistent:noleadzero:gedit77:

noblankpad:oldboz:softeof

include_32

=

-I/usr/lpp/xlf/include_d7

*

xlf90

with

links

to

thread-safe

components

(51

POSIX

Draft

7

Threads)

xlf90_r7:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlomp_ser,-lpthreads_compat,-lpthreads,-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

smplibraries

=

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlsmp,-lpthreads_compat,-lpthreads,-lm,-lc

options

=

-qxlf90=noautodealloc:nosignedzero,-qfree=f90,-qthreaded

include_32

=

-I/usr/lpp/xlf/include_d7

*

xlf95

with

links

to

thread-safe

components

(51

POSIX

Draft

7

Threads)

xlf95_r7:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlomp_ser,-lpthreads_compat,-lpthreads,-lm,-lc

proflibs

=

-L/lib/profiled,-L/usr/lib/profiled

smplibraries

=

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlsmp,-lpthreads_compat,-lpthreads,-lm,-lc

options

=

-qfree=f90,-qthreaded

include_32

=

-I/usr/lpp/xlf/include_d7

*

PE

Fortran,

with

Fortran

95

behavior

mpxlf95:

use

=

DEFLT

libraries

=

-L/usr/lpp/ppe.poe/lib,-L/usr/lpp/ppe.poe/lib/ip,-lmpi,

-lvtd,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

20

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-lxlomp_ser,-lm,-lc

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

options

=

-qfree=f90,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

*

PE

Fortran,

with

Fortran

90

behavior

mpxlf90:

use

=

DEFLT

libraries

=

-L/usr/lpp/ppe.poe/lib,-L/usr/lpp/ppe.poe/lib/ip,-lmpi,

-lvtd,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

-lxlomp_ser,-lm,-lc

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

options

=

-qxlf90=noautodealloc:nosignedzero,-qfree=f90,-binitfini:

poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

*

PE

Fortran,

with

FORTRAN

77

behavior

mpxlf:

use

=

DEFLT

libraries

=

-L/usr/lpp/ppe.poe/lib,-L/usr/lpp/ppe.poe/lib/ip,-lmpi,

-lvtd,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

-lxlomp_ser,-lm,-lc

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

options

=

-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,

-qxlf90=noautodealloc:nosignedzero,-qxlf77=intarg:intxor:

persistent:noleadzero:gedit77:noblankpad:oldboz:softeof,

-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

*

PE

Fortran,

with

Fortran

95

behavior,

and

links

to

thread-safe

components

mpxlf95_r:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/

lib,-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

-lxlomp_ser,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled/threads,

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

smplibraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/

lib,-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

-lxlsmp,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

options

=

-qthreaded,-qfree=f90,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

*

PE

Fortran,

with

Fortran

90

behavior,

and

links

to

thread-safe

components

mpxlf90_r:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

-lxlomp_ser,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled/threads,

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

smplibraries

=

-L/usr/lpp/ppe.poe/lib/threads,

-L/usr/lpp/ppe.poe/lib,-L/usr/lpp/ppe.poe/lib/ip,

-L/lib/threads,-lmpi_r,-lvtd_r,-lxlf90,

Setting

Up

and

Customizing

XL

Fortran

21

-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlsmp,-lpthreads,

-lm_r,-lm,-lc_r,-lc,/usr/lpp/ppe.poe/lib/libc.a

options

=

-qxlf90=noautodealloc:nosignedzero,-qthreaded,

-qfree=f90,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

*

PE

Fortran,

with

FORTRAN

77

behavior,

and

links

to

thread-safe

components

mpxlf_r:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,-lvtd_r,

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled/threads,

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

smplibraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,

-lxlsmp,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

options

=

-qthreaded,-qnozerosize,-qsave,-qalias=intptr,

-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,

-qxlf77=intarg:intxor:persistent:noleadzero:gedit77:

noblankpad:oldboz:softeof,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

*

mpxlf95_r,

links

to

thread-safe

components

(51

POSIX

Draft

7

Threads)

mpxlf95_r7:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlfpthrds_compat,-lxlf90,

-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlomp_ser,

-lpthreads_compat,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled/threads,

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

smplibraries

=

-L/usr/lpp/ppe.poe/lib/threads,

-L/usr/lpp/ppe.poe/lib,-L/usr/lpp/ppe.poe/lib/ip,

-L/lib/threads,-lmpi_r,-lvtd_r,-lxlfpthrds_compat,

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlsmp,

-lpthreads_compat,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

options

=

-qthreaded,-qfree=f90,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

include_32

=

-I/usr/lpp/xlf/include_d7

*

mpxlf90_r,

links

to

thread-safe

components

(51

POSIX

Draft

7

Threads)

mpxlf90_r7:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,

-lxlopt,-lxlf,-lxlomp_ser,-lpthreads_compat,-lpthreads,

-lm_r,-lm,-lc_r,-lc,/usr/lpp/ppe.poe/lib/libc.a

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled/threads,

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

22

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

smplibraries

=

-L/usr/lpp/ppe.poe/lib/threads,

-L/usr/lpp/ppe.poe/lib,-L/usr/lpp/ppe.poe/lib/ip,

-L/lib/threads,-lmpi_r,-lvtd_r,-lxlfpthrds_compat,

-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,-lxlf,-lxlsmp,

-lpthreads_compat,-lpthreads,-lm_r,-lm,-lc_r,-lc,

/usr/lpp/ppe.poe/lib/libc.a

options

=

-qxlf90=noautodealloc:nosignedzero,-qthreaded,

-qfree=f90,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

include_32

=

-I/usr/lpp/xlf/include_d7

*

mpxlf_r,

links

to

thread-safe

components

(51

POSIX

Draft

7

Threads)

mpxlf_r7:

use

=

DEFLT

crt

=

/lib/crt0_r.o

mcrt

=

/lib/mcrt0_r.o

gcrt

=

/lib/gcrt0_r.o

libraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,-lvtd_r,

-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,-lxlopt,

-lxlf,-lxlomp_ser,-lpthreads_compat,-lpthreads,-lm_r,-lm,

-lc_r,-lc,/usr/lpp/ppe.poe/lib/libc.a

proflibs

=

-L/usr/lpp/ppe.poe/lib/profiled/threads,

-L/usr/lpp/ppe.poe/lib/profiled,-L/lib/profiled,

-L/usr/lib/profiled

smplibraries

=

-L/usr/lpp/ppe.poe/lib/threads,-L/usr/lpp/ppe.poe/lib,

-L/usr/lpp/ppe.poe/lib/ip,-L/lib/threads,-lmpi_r,

-lvtd_r,-lxlfpthrds_compat,-lxlf90,-L/usr/lpp/xlf/lib,

-lxlopt,-lxlf,-lxlsmp,-lpthreads_compat,-lpthreads,

-lm_r,-lm,-lc_r,-lc,/usr/lpp/ppe.poe/lib/libc.a

options

=

-qthreaded,-qnozerosize,-qsave,-qalias=intptr,

-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,

-qxlf77=intarg:intxor:persistent:noleadzero:gedit77:

noblankpad:oldboz:softeof,-binitfini:poe_remote_main

include

=

-I/usr/lpp/ppe.poe/include

include_32

=

-I/usr/lpp/xlf/include_d7

*

Common

definitions

DEFLT:

xlf

=

/usr/lpp/xlf/bin/xlfentry

crt

=

/lib/crt0.o

mcrt

=

/lib/mcrt0.o

gcrt

=

/lib/gcrt0.o

crt_64

=

/lib/crt0_64.o

mcrt_64

=

/lib/mcrt0_64.o

gcrt_64

=

/lib/gcrt0_64.o

include_32

=

-I/usr/lpp/xlf/include

include_64

=

-I/usr/lpp/xlf/include

fppv

=

/usr/lpp/xlf/bin/fppv

fppk

=

/usr/lpp/xlf/bin/fppk

dis

=

/usr/lpp/xlf/bin/dis

code

=

/usr/lpp/xlf/bin/xlfcode

hot

=

/usr/lpp/xlf/bin/xlfhot

ipa

=

/usr/lpp/xlf/bin/ipa

bolt

=

/usr/lpp/xlf/bin/bolt

defaultmsg

=

/usr/lpp/xlf/bin/default_msg

as

=

/bin/as

ld

=

/bin/ld

cppoptions

=

-C

options

=

-bh:4,-bpT:0x10000000,-bpD:0x20000000

oslevel

=

5.1

XL

Fortran

provides

the

library

libxlf90_r.a

in

addition

to

libxlf90_t.a.

The

library

libxlf90_r.a

is

a

superset

of

libxlf90_t.a,

which

is

a

partial

thread-support

run-time

library.

The

file

xlf.cfg

has

been

set

up

to

link

to

libxlf90_r.a

automatically

when

you

use

the

xlf90_r,

xlf90_r7,

xlf95_r,

xlf95_r7,

xlf_r,

and

xlf_r7

commands.

Setting

Up

and

Customizing

XL

Fortran

23

Related

Information:

You

can

use

the

“-F

Option”

on

page

107

to

select

a

different

configuration

file,

a

specific

stanza

in

the

configuration

file,

or

both.

Determining

Which

Level

of

XL

Fortran

Is

Installed

Sometimes,

you

may

not

be

sure

which

level

of

XL

Fortran

is

installed

on

a

particular

machine.

You

would

need

to

know

this

information

before

contacting

software

support.

To

check

whether

the

latest

level

of

the

product

has

been

installed

through

the

system

installation

procedure,

issue

the

command:

lslpp

-h

"*xlf*"

The

result

includes

the

version,

release,

modification,

and

fix

level

of

the

compiler

image

installed

on

the

system.

To

check

the

level

of

the

compiler

executable

itself,

issue

the

command:

what

/usr/lpp/xlf/bin/xlfentry

If

the

compiler

is

installed

in

a

different

directory,

use

the

appropriate

path

name

for

the

xlfentry

file.

You

can

also

use

the

-qversion

compiler

option

to

see

the

version

and

release

for

the

compiler.

Upgrading

to

XL

Fortran

Version

9

Here

is

some

advice

to

help

make

the

transition

from

an

earlier

version

of

the

XL

Fortran

compiler

as

fast

and

simple

as

possible.

Things

to

Note

in

XL

Fortran

Version

9

Because

XL

Fortran

Version

9.1

is

highly

compatible

with

XL

Fortran

Versions

8

through

3

inclusive,

most

of

the

advice

in

this

section

applies

to

upgrades

from

Version

2,

or

earlier

levels

of

XL

Fortran.

v

The

xlf90,

xlf90_r,

and

xlf90_r7

commands

provide

Fortran

90

conformance,

and

the

xlf95,

xlf95_r,

and

xlf95_r7

commands

provide

Fortran

95

conformance.

However,

these

commands

may

cause

some

problems

with

existing

FORTRAN

77

programs.

The

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

avoid

some

of

these

problems

by

keeping

the

old

behavior

wherever

possible.

v

Fortran

90

introduced

the

idea

of

kind

parameters

for

types.

Except

for

the

types

complex

and

character,

XL

Fortran

uses

numeric

kind

parameters

that

correspond

to

the

lengths

of

the

types.

For

the

type

complex,

the

kind

parameter

is

equal

to

the

length

of

the

real

portion,

which

is

half

of

the

overall

length.

For

the

type

character,

the

kind

parameter

is

equal

to

the

number

of

bytes

that

are

required

to

represent

each

character,

and

this

value

is

1.

A

FORTRAN

77

declaration

that

is

written

using

the

*

extension

for

length

specifiers

can

now

be

rewritten

with

a

kind

parameter:

INTEGER*4

X

!

F77

notation

with

extension.

INTEGER(4)

X

!

F90

standard

notation.

COMPLEX*8

Y

!

*n

becomes

(n)

for

all

types

except

COMPLEX(4)

Y

!

COMPLEX,

where

the

value

is

halved.

This

new

form

is

the

one

we

use

consistently

throughout

the

XL

Fortran

manuals.

24

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Because

the

values

of

kind

parameters

may

be

different

for

different

compilers,

you

may

want

to

use

named

constants,

placed

in

an

include

file

or

a

module,

to

represent

the

kind

parameters

used

in

your

programs.

The

SELECTED_INT_KIND

and

SELECTED_REAL_KIND

intrinsic

functions

also

let

you

determine

kind

values

in

a

portable

way.

v

Fortran

90

introduced

a

standardized

free

source

form

for

source

code,

which

is

different

from

the

XL

Fortran

Version

2

free

source

form.

The

-qfree

and

-k

options

now

use

the

Fortran

90

free

source

form;

the

Version

2

free

source

form

is

available

through

the

option

-qfree=ibm.

v

The

libraries

that

provide

Fortran

90

and

Fortran

95

support

are

libxlf90_r.a

and

libxlf90.a,

located

in

/usr/lib.

A

libxlf.a

library

of

stub

routines

is

provided

in

/usr/lib,

but

it

is

only

used

for

linking

existing

Version

1

or

2

object

files

or

running

existing

executables.

When

a

Version

1

or

Version

2

object

file

calls

entry

points

in

libxlf.a,

those

entry

points

then

call

equivalent

entry

points

in

libxlf90.a

(for

single-threaded

programs)

or

libxlf90_r.a

(for

multi-threaded

programs).

If

you

recompile

such

object

files,

the

result

could

be

improved

I/O

performance,

because

the

entry

points

in

libxlf90.a

or

libxlf90_r.a

are

called

directly.

Fortran

provides

the

library

libxlf90_r.a,

in

addition

to

libxlf90_t.a.

The

library

libxlf90_r.a

is

a

superset

of

libxlf90_t.a,

which

is

a

partial

thread-support

run-time

library.

The

file

xlf.cfg

has

been

set

up

to

link

to

libxlf90_r.a

automatically

when

you

use

the

xlf90_r,

xlf90_r7,

xlf95_r,

xlf95_r7,

xlf_r,

or

xlf_r7

command.

A

single,

combined

thread-safe

library,

libxlf90_r.a,

is

provided

to

support

both

single-

and

multiple-threaded

applications.

The

libxlf90.a

library

is

a

symbolic

link

to

libxlf90_r.a.

Avoiding

or

Fixing

Upgrade

Problems

Although

XL

Fortran

is

generally

backward-compatible

with

FORTRAN

77

programs,

there

are

some

changes

in

XL

Fortran

and

the

Fortran

90

and

Fortran

95

languages

that

you

should

be

aware

of.

To

preserve

the

behavior

of

existing

compilation

environments,

the

xlf,

and

f77

commands

both

work

as

they

did

in

earlier

XL

Fortran

versions

wherever

possible.

As

you

write

entirely

new

Fortran

90

or

Fortran

95

programs

or

adapt

old

programs

to

avoid

potential

problems,

you

can

begin

using

the

xlf90

and

xlf95

commands,

which

use

Fortran

90

and

Fortran

95

conventions

for

source-code

format.

Note

that

in

the

following

table,

you

can

substitute

xlf_r

or

xlf_r7

for

xlf,

xlf90_r

or

xlf90_r7

for

xlf90,

and

xlf95_r

or

xlf95_r7

for

xlf95.

Table

1.

Potential

Problems

Migrating

Programs

to

XL

Fortran

Version

9.

The

column

on

the

right

shows

which

problems

you

can

avoid

by

using

the

xlf

or

f77

command.

Potential

Problem

Solution

or

Workaround

xlf

Avoids?

Compilation

Problems

New

intrinsic

procedure

names

may

conflict

with

external

procedure

names.

The

intrinsic

procedure

is

called

instead

of

the

external

procedure.

Use

the

-qextern

option,

or

insert

EXTERNAL

statements

to

avoid

the

ambiguity.

Consider

switching

to

the

Fortran

90

or

Fortran

95

procedure

if

it

does

what

you

want.

Setting

Up

and

Customizing

XL

Fortran

25

Table

1.

Potential

Problems

Migrating

Programs

to

XL

Fortran

Version

9

(continued).

The

column

on

the

right

shows

which

problems

you

can

avoid

by

using

the

xlf

or

f77

command.

Potential

Problem

Solution

or

Workaround

xlf

Avoids?

The

.XOR.

intrinsic

is

not

recognized.

Use

the

option

-qxlf77=intxor.

U

Zero-sized

objects

are

not

allowed

by

the

compiler.

Use

the

xlf90

or

xlf95

command,

or

use

the

-qzerosize

option

with

the

xlf

or

f77

command.

Performance

/

Optimization

Problems

Existing

programs

or

programs

linked

with

older

XL

Fortran

object

files

run

more

slowly

or

do

not

show

expected

performance

improvements

on

new

hardware.

Recompile

everything.

Programs

compiled

with

-O3

or

-qhot

optimization

behave

differently

from

those

unoptimized

(different

results,

exceptions,

or

compilation

messages).

Try

adding

the

-qstrict

option.

The

option

combination

-O

and

-1

cannot

be

abbreviated

-O1,

to

avoid

misunderstandings.

(There

are

-O2,

-O3,

-O4,

and

-O5

optimization

levels,

but

there

is

no

-O1.)

Specify

-O

and

-1

as

separate

options.

Programs

that

use

integer

POINTERs

produce

incorrect

results

when

optimized.

Specify

the

option

-qalias=intptr

with

the

xlf90

or

xlf95

command,

or

use

the

xlf

command.

U

26

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

1.

Potential

Problems

Migrating

Programs

to

XL

Fortran

Version

9

(continued).

The

column

on

the

right

shows

which

problems

you

can

avoid

by

using

the

xlf

or

f77

command.

Potential

Problem

Solution

or

Workaround

xlf

Avoids?

Run-Time

Problems

Programs

that

read

to

the

end

of

the

file

and

then

try

to

append

records

without

first

executing

a

BACKSPACE

statement

do

not

work

correctly.

The

write

requests

generate

error

messages.

To

compile

existing

programs,

specify

the

option

-qxlf77=softeof

with

the

xlf90

or

xlf95

command,

or

use

the

xlf

command.

For

new

programs,

add

the

BACKSPACE

statement

before

writing

past

the

endfile

record.

U

Uninitialized

variables

are

not

necessarily

set

to

zero,

and

programs

that

ran

before

may

exceed

the

user

stack

limit.

The

reason

is

that

the

default

storage

class

is

now

AUTOMATIC,

rather

than

STATIC

(an

implementation

choice

allowed

by

the

language).

Ensure

that

you

explicitly

initialize

your

variables,

use

the

-qsave

option

with

the

xlf90

or

xlf95

command,

or

add

SAVE

statements

where

needed

in

the

source.

U

Writing

data

to

some

files

opened

without

a

POSITION=

specifier

overwrites

the

files,

instead

of

appending

the

data.

Use

the

option

-qposition=appendold,

or

add

POSITION=

specifiers

where

needed.

U

Newly

compiled

programs

are

unable

to

read

existing

data

files

containing

NAMELIST

data.

The

reason

is

that

the

Fortran

90

and

Fortran

95

standards

define

a

namelist

format

that

is

different

from

that

used

on

AIX

in

the

past.

Set

the

environment

variable

XLFRTEOPTS

to

the

string

namelist=old.

The

programs

that

produced

the

old

NAMELIST

data

must

be

recompiled.

Some

I/O

statements

and

edit

descriptors

accept

or

produce

slightly

different

input

and

output.

For

example,

real

output

now

has

a

leading

zero

when

appropriate.

The

changes

to

I/O

formats

are

intended

to

be

more

usable

and

typical

of

industry

practice,

so

you

should

try

to

use

the

defaults

for

any

new

data

you

produce.

When

you

need

to

maintain

compatibility

with

existing

data

files,

compile

with

the

xlf

command.

If

the

incompatibility

is

due

to

a

single

specific

I/O

change,

see

if

the

-qxlf77

option

has

a

suboption

for

backward

compatibility.

If

so,

you

can

switch

to

the

xlf90

or

xlf95

command

and

use

the

-qxlf77

option

on

programs

that

use

the

old

data

files.

U

Numeric

results

and

I/O

output

are

not

always

exactly

identical

with

XL

Fortran

Version

2.

Certain

implementation

details

of

I/O,

such

as

spacing

in

list-directed

output

and

the

meanings

of

some

IOSTAT

values,

have

changed

since

XL

Fortran

Version

2.

(This

entry

is

similar

to

the

previous

one

except

that

these

differences

have

no

backward-compatibility

switches.)

You

may

need

to

generate

existing

data

files

again

or

to

change

any

programs

that

depend

on

these

details.

When

no

backward-compatibility

switch

is

provided

by

the

-qxlf77

compiler

option

or

XLFRTEOPTS

run-time

options,

there

is

no

way

to

get

the

old

behavior

back.

Setting

Up

and

Customizing

XL

Fortran

27

Table

1.

Potential

Problems

Migrating

Programs

to

XL

Fortran

Version

9

(continued).

The

column

on

the

right

shows

which

problems

you

can

avoid

by

using

the

xlf

or

f77

command.

Potential

Problem

Solution

or

Workaround

xlf

Avoids?

SIGN(A,B)

now

returns

-|A|

when

B=-0.0.

Prior

to

XL

Fortran

Version

7.1,

it

returned

|A|.

This

behavior

conforms

with

the

Fortran

95

standard

and

is

consistent

with

the

IEEE

standard

for

binary

floating-point

arithmetic.

It

occurs

because

the

-qxlf90=signedzero

option

is

turned

on.

Turn

it

off,

or

specify

a

command

that

does

not

use

this

option

by

default.

U

A

minus

sign

is

printed

for

a

negative

zero

in

formatted

output.

A

minus

sign

is

printed

for

negative

values

that

have

an

outputted

form

of

zero

(that

is,

in

the

case

where

trailing

non-zero

digits

are

truncated

from

the

output

so

that

the

resulting

output

looks

like

zero).

Prior

to

XL

Fortran

Version

7.1,

minus

signs

were

not

printed

in

these

situations.

This

behavior

conforms

with

the

Fortran

95

standard

and

occurs

because

the

-qxlf90=signedzero

option

is

turned

on.

Turn

it

off,

or

specify

a

command

that

does

not

use

this

option

by

default.

U

Related

Information:

v

“Compiling

for

Specific

Architectures”

on

page

39

v

“Setting

Run-Time

Options”

on

page

51

v

“-qalias

Option”

on

page

122

v

“-qextern

Option”

on

page

157

v

“-qposition

Option”

on

page

219

v

“-qsave

Option”

on

page

228

v

“-qxlf77

Option”

on

page

261

Running

Two

Levels

of

XL

Fortran

It

is

possible

for

two

different

levels

of

the

XL

Fortran

compiler

to

coexist

on

one

system.

This

allows

you

to

invoke

one

level

by

default

and

to

invoke

the

other

one

whenever

you

explicitly

choose

to.

To

do

this,

consult

the

XL

Fortran

Enterprise

Edition

for

AIX

Installation

Guide

for

details.

28

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

Most

Fortran

program

development

consists

of

a

repeating

cycle

of

editing,

compiling

and

linking

(which

is

by

default

a

single

step),

and

running.

If

you

encounter

problems

at

some

part

of

this

cycle,

you

may

need

to

refer

to

the

sections

that

follow

this

one

for

help

with

optimizing,

debugging,

and

so

on.

Prerequisite

Information:

1.

Before

you

can

use

the

compiler,

all

the

required

AIX

settings

(for

example,

certain

environment

variables

and

storage

limits)

must

be

correct

for

your

user

ID;

for

details,

see

“Correct

Settings

for

Environment

Variables”

on

page

12.

2.

Before

using

the

compiler

for

a

specialized

purpose,

such

as

porting

or

performance

tuning,

look

at

the

categories

of

options

in

“Summary

of

the

XL

Fortran

Compiler

Options”

on

page

67

to

see

if

XL

Fortran

already

provides

a

solution.

3.

To

learn

more

about

writing

Fortran

programs,

refer

to

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Note

that

you

can

substitute

references

to

libxlf90_r.a

in

this

section

with

references

to

libxlf90.a.

This

is

because

a

link

is

provided

from

the

libxlf90.a

library

to

the

libxlf90_r.a

library.

You

do

not

need

to

manually

link

with

separate

libraries

depending

on

whether

you

are

creating

a

threaded

or

a

non-threaded

application.

XL

Fortran

determines

at

run

time

whether

your

application

is

threaded.

Editing

XL

Fortran

Source

Files

To

create

Fortran

source

programs,

you

can

use

any

of

the

available

text

editors,

such

as

vi

or

emacs.

Source

programs

must

have

a

suffix

of

.f

unless

the

fsuffix

attribute

in

the

configuration

file

specifies

a

different

suffix

or

the

-qsuffix

compiler

option

is

used.

You

can

also

use

a

suffix

of

.F

if

the

program

contains

C

preprocessor

(cpp)

directives

that

must

be

processed

before

compilation

begins.

For

the

Fortran

source

program

to

be

a

valid

program,

it

must

conform

to

the

language

definition

that

is

specified

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Compiling

XL

Fortran

Programs

To

compile

a

source

program,

use

one

of

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

xlf,

xlf_r,

xlf_r7,

f77,

fort77,

f90,

or

f95

commands,

which

have

the

form:

©

Copyright

IBM

Corp.

1990,

2004

29

��

xlf90

xlf90_r

xlf90_r7

xlf95

xlf95_r

xlf95_r7

xlf

xlf_r

xlf_r7

f77

fort77

f90

f95

�

input_file

cmd_line_opt

��

These

commands

all

accept

essentially

the

same

Fortran

language.

The

main

difference

is

that

they

use

different

default

options

(which

you

can

see

by

reading

the

file

/etc/xlf.cfg).

The

invocation

command

performs

the

necessary

steps

to

compile

the

Fortran

source

files,

assemble

any

.s

files,

and

link

the

object

files

and

libraries

into

an

executable

program.

In

particular,

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

and

xlf95_r7

commands

use

the

thread-safe

components

(libraries,

crt0_r.o,

and

so

on)

to

link

and

bind

object

files.

The

following

table

summarizes

the

invocation

commands

that

you

can

use:

Table

2.

XL

Fortran

Invocation

Commands

Driver

Invocation

Path

or

Location

Chief

Functionality

Linked

Libraries

xlf90

/usr/bin

Fortran

90

libxlf90.a

xlf90_r

/usr/bin

Threadsafe

Fortran

90,

operating

system

default

POSIX

pthreads

API

libxlf90_r.a

xlf90_r7

/usr/bin

Threadsafe

Fortran

90,

Draft

7

POSIX

pthreads

API

libxlf90_r.a

xlf95

/usr/bin

Fortran

95

libxlf90.a

xlf95_r

/usr/bin

Threadsafe

Fortran

95,

operating

system

default

POSIX

pthreads

API

libxlf90_r.a

xlf95_r7

/usr/bin

Threadsafe

Fortran

95,

Draft

7

POSIX

pthreads

API

libxlf90_r.a

xlf

/usr/bin

FORTRAN

77

libxlf90.a

xlf_r

/usr/bin

Threadsafe

FORTRAN

77,

operating

system

default

POSIX

pthreads

API

libxlf90_r.a

xlf_r7

/usr/bin

Threadsafe

FORTRAN

77,

Draft

7

POSIX

pthreads

API

libxlf90_r.a

f77

or

fort77

/usr/bin

FORTRAN

77

libxlf90.a

f90

/usr/bin

Fortran

90

libxlf90.a

f95

/usr/bin

Fortran

95

libxlf90.a

30

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

The

invocation

commands

have

the

following

implications

for

directive

triggers:

v

For

f77,

fort77,

f90,

f95,

xlf,

xlf90,

and

xlf95,

the

directive

trigger

is

IBM*

by

default.

v

For

all

other

commands,

the

directive

triggers

are

IBM*

and

IBMT

by

default.

If

you

specify

-qsmp,

the

compiler

also

recognizes

the

IBMP,

SMP$,

and

$OMP

trigger

constants.

If

you

specify

the

-qsmp=omp

option,

the

compiler

only

recognizes

the

$OMP

trigger

constant.

If

you

specify

the

-qsmp

compiler

option,

the

following

occurs:

v

The

compiler

turns

on

automatic

parallelization.

v

The

compiler

recognizes

the

IBMP,

IBMT,

IBM*,

SMP$,

and

$OMP

directive

triggers.

XL

Fortran

provides

the

library

libxlf90_r.a,

in

addition

to

libxlf90_t.a.

The

library

libxlf90_r.a

is

a

superset

of

libxlf90_t.a.

The

file

xlf.cfg

is

set

up

to

link

to

libxlf90_r.a

automatically

when

you

use

the

xlf90_r,

xlf90_r7,

xlf95_r,

xlf95_r7,

xlf_r,

and

xlf_r7

commands.

libxlf90_t.a

is

a

partial

thread-support

run-time

library.

It

will

be

installed

as

/usr/lib/libxlf90_t.a

with

one

restriction

on

its

use:

because

routines

in

the

library

are

not

thread-reentrant,

only

one

Fortran

thread

at

a

time

can

perform

I/O

operations

or

invoke

Fortran

intrinsics

in

a

multi-threaded

application

that

uses

the

library.

To

avoid

the

thread

synchronization

overhead

in

libxlf90_r.a,

you

can

use

libxlf90_t.a

in

multi-threaded

applications

where

there

is

only

one

Fortran

thread.

When

you

bind

a

multi-threaded

executable

with

multiple

Fortran

threads,

to

link

in

routines

in

libxlf90_r.a,

-lxlf90_r

should

appear

instead

of

either

-lxlf90_t

or

-lxlf90

in

the

command

line.

Note

that

using

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

or

xlf95_r7

invocation

command

ensures

the

proper

linking.

Compiling

XL

Fortran

Version

2

Programs

xlf

maintains,

wherever

possible,

compatibility

with

existing

programs

by

using

the

same

I/O

formats

as

earlier

versions

of

XL

Fortran

and

some

implementation

behavior

compatible

with

FORTRAN

77.

f77

is

identical

to

xlf

(assuming

that

the

configuration

file

has

not

been

customized).

You

may

find

that

you

need

to

continue

using

these

commands

for

compatibility

with

existing

makefiles

and

build

environments.

However,

be

aware

that

programs

that

you

compile

with

these

commands

may

not

conform

to

the

Fortran

90

or

Fortran

95

standard

in

subtle

ways.

Compiling

Fortran

90

or

Fortran

95

Programs

The

f90,

xlf90,

xlf90_r,

and

xlf90_r7

commands

make

your

programs

conform

more

closely

to

the

Fortran

90

standard

than

do

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands.

The

f95,

xlf95,

xlf95_r,

and

xlf95_r7

commands

make

your

programs

conform

more

closely

to

the

Fortran

95

standard

than

do

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands.

f90,

xlf90,

xlf90_r,

xlf90_r7,

f95,

xlf95,

xlf95_r,

and

xlf95_r7

are

the

preferred

commands

for

compiling

any

new

programs.

They

all

accept

Fortran

90

free

source

form

by

default;

to

use

them

for

fixed

source

form,

you

must

use

the

-qfixed

option.

I/O

formats

are

slightly

different

between

these

commands

and

the

other

commands.

I/O

formats

also

differ

between

the

set

of

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

31

xlf90,

xlf90_r,

and

xlf90_r7

commands

and

the

set

of

xlf95,

xlf95_r,

and

xlf95_r7

commands.

We

recommend

that

you

switch

to

the

Fortran

95

formats

for

data

files

whenever

possible.

By

default,

the

xlf90,

xlf90_r,

and

xlf90_r7

commands

do

not

conform

completely

to

the

Fortran

90

standard.

Also,

by

default,

the

xlf95,

xlf95_r,

and

xlf95_r7

commands

do

not

conform

completely

to

the

Fortran

95

standard.

If

you

need

full

compliance,

compile

with

any

of

the

following

additional

compiler

options

(and

suboptions):

-qnodirective

-qnoescape

-qextname

-qfloat=nomaf:rndsngl:nofold

-qnoswapomp

-qlanglvl=90std

-qlanglvl=95std

Also,

specify

the

following

run-time

options

before

running

the

program,

with

a

command

similar

to

the

following:

export

XLFRTEOPTS="err_recovery=no:langlvl=90std"

The

default

settings

are

intended

to

provide

the

best

combination

of

performance

and

usability.

Therefore,

it

is

usually

a

good

idea

to

change

them

only

when

required.

Some

of

the

options

above

are

only

required

for

compliance

in

very

specific

situations.

For

example,

you

only

need

to

specify

-qextname

when

an

external

symbol,

such

as

a

common

block

or

subprogram,

is

named

main.

Compiling

XL

Fortran

SMP

Programs

You

can

use

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

or

xlf95_r7

command

to

compile

XL

Fortran

SMP

programs.

The

xlf_r

and

xlf_r7

commands

are

similar

to

the

xlf

command,

the

xlf90_r

and

xlf90_r7

commands

are

similar

to

the

xlf90

command,

and

the

xlf95_r

and

xlf95_r7

commands

are

similar

to

the

xlf95

command.

The

main

difference

is

that

the

thread-safe

components

(libraries,

crt0_r.o,

and

so

on)

are

used

to

link

and

bind

the

object

files

if

you

specify

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

or

xlf95_r7

command.

Note

that

using

any

of

these

commands

alone

does

not

imply

parallelization.

For

the

compiler

to

recognize

the

SMP

directives

and

activate

parallelization,

you

must

also

specify

-qsmp.

In

turn,

you

can

only

specify

the

-qsmp

option

in

conjunction

with

one

of

these

six

invocation

commands.

When

you

specify

-qsmp,

the

driver

links

in

the

libraries

specified

on

the

smplibraries

line

in

the

active

stanza

of

the

configuration

file.

Levels

of

POSIX

pthreads

API

Support

On

AIX

Version

5.1

and

higher,

XL

Fortran

supports

64-bit

thread

programming

with

the

1003.1-1996

(POSIX)

standard

pthreads

API.

It

also

supports

32-bit

programming

with

both

the

Draft

7

and

the

1003.1-1996

standard

APIs.

You

can

use

invocation

commands

(which

use

corresponding

stanzas

in

the

xlf.cfg

configuration

file)

to

compile

and

then

link

your

programs

with

either

the

1003.1-1996

standard

or

the

Draft

7

interface

libraries.

v

To

compile

and

then

link

your

program

with

the

1003.1-1996

standard

interface

libraries,

use

the

xlf_r,

xlf90_r,

or

xlf95_r

command.

For

example,

you

could

specify:

xlf95_r

test.f

v

To

compile

and

then

link

your

program

with

the

Draft

7

interface

libraries,

use

the

xlf_r7,

xlf90_r7,

or

xlf95_r7

command.

For

example,

you

could

specify:

xlf95_r7

test.f

32

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Apart

from

the

level

of

thread

support,

the

xlf_r7,

xlf90_r7,

and

xlf95_r7

commands

and

the

corresponding

stanzas

in

the

xlf.cfg

configuration

file

provide

the

same

support

as

the

xlf_r,

xlf90_r,

and

xlf95_r

commands

and

the

corresponding

stanzas.

Compilation

Order

for

Fortran

Programs

If

you

have

a

program

unit,

subprogram,

or

interface

body

that

uses

a

module,

you

must

first

compile

the

module.

If

the

module

and

the

code

that

uses

the

module

are

in

separate

files,

you

must

first

compile

the

file

that

contains

the

module.

If

they

are

in

the

same

file,

the

module

must

come

before

the

code

that

uses

it

in

the

file.

If

you

change

any

entity

in

a

module,

you

must

recompile

any

files

that

use

that

module.

Canceling

a

Compilation

To

stop

the

compiler

before

it

finishes

compiling,

press

Ctrl+C

in

interactive

mode,

or

use

the

kill

command.

XL

Fortran

Input

Files

The

input

files

to

the

compiler

are:

Source

Files

(.f

or

.F

suffix)

All

.f

and

.F

files

are

source

files

for

compilation.

When

using

the

f90

and

f95

invocations,

.f

is

not

allowed

by

default;

use

.f90

and

.f95,

instead.

The

compiler

compiles

source

files

in

the

order

you

specify

on

the

command

line.

If

it

cannot

find

a

specified

source

file,

the

compiler

produces

an

error

message

and

proceeds

to

the

next

file,

if

one

exists.

Files

with

a

suffix

of

.F

are

passed

through

the

C

preprocessor

(cpp)

before

being

compiled.

Include

files

also

contain

source

and

often

have

different

suffixes

from

.f.

Related

Information:

See

“Passing

Fortran

Files

through

the

C

Preprocessor”

on

page

40.

The

fsuffix

and

cppsuffix

attributes

in

“Customizing

the

Configuration

File”

on

page

15

and

the

“-qsuffix

Option”

on

page

244

let

you

select

a

different

suffix.

Object

Files

(.o

suffix)

All

.o

files

are

object

files.

After

the

compiler

compiles

the

source

files,

it

uses

the

ld

command

to

link-edit

the

resulting

.o

files,

any

.o

files

that

you

specify

as

input

files,

and

some

of

the

.o

and

.a

files

in

the

product

and

system

library

directories.

It

then

produces

a

single

executable

output

file.

Related

Information:

See

“Options

That

Control

Linking”

on

page

86

and

“Linking

XL

Fortran

Programs”

on

page

42.

The

osuffix

attribute,

which

is

described

in

“Customizing

the

Configuration

File”

on

page

15

and

the

“-qsuffix

Option”

on

page

244,

lets

you

select

a

different

suffix.

Assembler

Source

Files

(.s

suffix)

The

compiler

sends

any

specified

.s

files

to

the

assembler

(as).

The

assembler

output

consists

of

object

files

that

are

sent

to

the

linker

at

link

time.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

33

Related

Information:

The

ssuffix

attribute,

which

is

described

in

“Customizing

the

Configuration

File”

on

page

15

and

the

“-qsuffix

Option”

on

page

244,

lets

you

select

a

different

suffix.

Archive

or

Library

Files

(.a

suffix)

The

compiler

sends

any

specified

library

files

(.a

files)

to

the

linker

at

link

time.

There

are

also

AIX

and

XL

Fortran

library

files

in

the

/usr/lib

directory

that

are

linked

in

automatically.

Related

Information:

See

“-l

Option”

on

page

112,

“-L

Option”

on

page

111,

and

“LIBPATH:Setting

Library

Search

Paths”

on

page

14.

Shared

Object

Files

(.so

suffix)

These

are

object

files

that

can

be

loaded

and

shared

by

multiple

processes

at

run

time.

When

a

shared

object

is

specified

during

linking,

information

about

the

object

is

recorded

in

the

output

file,

but

no

code

from

the

shared

object

is

actually

included

in

the

output

file.

Related

Information:

See

“-brtl

Option”

on

page

100

and

“-bdynamic,

-bshared,

and

-bstatic

Options”

on

page

95.

Configuration

Files

(.cfg

suffix)

The

contents

of

the

configuration

file

determine

many

aspects

of

the

compilation

process,

most

commonly

the

default

options

for

the

compiler.

You

can

use

it

to

centralize

different

sets

of

default

compiler

options

or

to

keep

multiple

levels

of

the

XL

Fortran

compiler

present

on

a

system.

The

default

configuration

file

is

/etc/xlf.cfg.

Related

Information:

See

“Customizing

the

Configuration

File”

on

page

15

and

“-F

Option”

on

page

107

for

information

about

selecting

the

configuration

file.

Module

Symbol

Files:

modulename.mod

A

module

symbol

file

is

an

output

file

from

compiling

a

module

and

is

an

input

file

for

subsequent

compilations

of

files

that

USE

that

module.

One

.mod

file

is

produced

for

each

module,

so

compiling

a

single

source

file

may

produce

multiple

.mod

files.

Related

Information:

See

“-I

Option”

on

page

109,

“-qmoddir

Option”

on

page

203,

and

“Displaying

Information

inside

Binary

Files

(what)”

on

page

396.

Profile

Data

Files

The

-qpdf1

option

produces

run-time

profile

information

for

use

in

subsequent

compilations.

This

information

is

stored

in

one

or

more

hidden

files

with

names

that

match

the

pattern

“.*pdf*”.

Related

Information:

See

“-qpdf

Option”

on

page

210.

XL

Fortran

Output

Files

The

output

files

that

XL

Fortran

produces

are:

Executable

Files:

a.out

By

default,

XL

Fortran

produces

an

executable

file

that

is

named

a.out

in

the

current

directory.

34

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Related

Information:

See

“-o

Option”

on

page

116

for

information

on

selecting

a

different

name

and

“-c

Option”

on

page

104

for

information

on

generating

only

an

object

file.

Object

Files:

filename.o

If

you

specify

the

-c

compiler

option,

instead

of

producing

an

executable

file,

the

compiler

produces

an

object

file

for

each

specified

.f

source

file,

and

the

assembler

produces

an

object

file

for

each

specified

.s

source

file.

By

default,

the

object

files

have

the

same

file

name

prefixes

as

the

source

files

and

appear

in

the

current

directory.

Related

Information:

See

“-c

Option”

on

page

104

and

“Linking

XL

Fortran

Programs”

on

page

42.

For

information

on

renaming

the

object

file,

see

“-o

Option”

on

page

116.

Assembler

Source

Files:

filename.s

If

you

specify

the

-S

compiler

option,

instead

of

producing

an

executable

file,

the

XL

Fortran

compiler

produces

an

equivalent

assembler

source

file

for

each

specified

.f

source

file.

By

default,

the

assembler

source

files

have

the

same

file

name

prefixes

as

the

source

files

and

appear

in

the

current

directory.

Related

Information:

See

“-S

Option”

on

page

269

and

“Linking

XL

Fortran

Programs”

on

page

42.

For

information

on

renaming

the

assembler

source

file,

see

“-o

Option”

on

page

116.

Compiler

Listing

Files:

filename.lst

By

default,

no

listing

is

produced

unless

you

specify

one

or

more

listing-related

compiler

options.

The

listing

file

is

placed

in

the

current

directory,

with

the

same

file

name

prefix

as

the

source

file

and

an

extension

of

.lst.

Related

Information:

See

“Options

That

Control

Listings

and

Messages”

on

page

77.

Module

Symbol

Files:

modulename.mod

Each

module

has

an

associated

symbol

file

that

holds

information

needed

by

program

units,

subprograms,

and

interface

bodies

that

USE

that

module.

By

default,

these

symbol

files

must

exist

in

the

current

directory.

Related

Information:

For

information

on

putting

.mod

files

in

a

different

directory,

see

“-qmoddir

Option”

on

page

203.

cpp-Preprocessed

Source

Files:

Ffilename.f

If

you

specify

the

-d

option

when

compiling

a

file

with

a

.F

suffix,

the

intermediate

file

created

by

the

C

preprocessor

(cpp)

is

saved

rather

than

deleted.

Related

Information:

See

“Passing

Fortran

Files

through

the

C

Preprocessor”

on

page

40

and

“-d

Option”

on

page

106.

Profile

Data

Files

(.*pdf*)

These

are

the

files

that

the

-qpdf1

option

produces.

They

are

used

in

subsequent

compilations

to

tune

optimizations

that

are

based

on

actual

execution

results.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

35

Related

Information:

See

“-qpdf

Option”

on

page

210.

Scope

and

Precedence

of

Option

Settings

You

can

specify

compiler

options

in

any

of

three

locations.

Their

scope

and

precedence

are

defined

by

the

location

you

use.

(XL

Fortran

also

has

comment

directives,

such

as

SOURCEFORM,

that

can

specify

option

settings.

There

is

no

general

rule

about

the

scope

and

precedence

of

such

directives.)

Location

Scope

Precedence

In

a

stanza

of

the

configuration

file.

All

compilation

units

in

all

files

compiled

with

that

stanza

in

effect.

Lowest

On

the

command

line.

All

compilation

units

in

all

files

compiled

with

that

command.

Medium

In

an

@PROCESS

directive.

(XL

Fortran

also

has

comment

directives,

such

as

SOURCEFORM,

that

can

specify

option

settings.

There

is

no

general

rule

about

the

scope

and

precedence

of

such

directives.)

The

following

compilation

unit.

Highest

If

you

specify

an

option

more

than

once

with

different

settings,

the

last

setting

generally

takes

effect.

Any

exceptions

are

noted

in

the

individual

descriptions

in

the

“Detailed

Descriptions

of

the

XL

Fortran

Compiler

Options”

on

page

90

and

are

indexed

under

“conflicting

options”.

Specifying

Options

on

the

Command

Line

XL

Fortran

supports

the

traditional

UNIX

method

of

specifying

command-line

options,

with

one

or

more

letters

(known

as

flags)

following

a

minus

sign:

xlf95

-c

file.f

You

can

often

concatenate

multiple

flags

or

specify

them

individually:

xlf95

-cv

file.f

#

These

forms

xlf95

-c

-v

file.f

#

are

equivalent

(There

are

some

exceptions,

such

as

-pg,

which

is

a

single

option

and

not

the

same

as

-p

-g.)

Some

of

the

flags

require

additional

argument

strings.

Again,

XL

Fortran

is

flexible

in

interpreting

them;

you

can

concatenate

multiple

flags

as

long

as

the

flag

with

an

argument

appears

at

the

end.

The

following

example

shows

how

you

can

specify

flags:

#

All

of

these

commands

are

equivalent.

xlf95

-g

-v

-o

montecarlo

-p

montecarlo.f

xlf95

montecarlo.f

-g

-v

-o

montecarlo

-p

xlf95

-g

-v

montecarlo.f

-o

montecarlo

-p

xlf95

-g

-v

-omontecarlo

-p

montecarlo.f

#

Because

-o

takes

a

blank-delimited

argument,

#

the

-p

cannot

be

concatenated.

xlf95

-gvomontecarlo

-p

montecarlo.f

#

Unless

we

switch

the

order.

xlf95

-gvpomontecarlo

montecarlo.f

36

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

If

you

are

familiar

with

other

compilers,

particularly

those

in

the

XL

family

of

compilers,

you

may

already

be

familiar

with

many

of

these

flags.

You

can

also

specify

many

command-line

options

in

a

form

that

is

intended

to

be

easy

to

remember

and

make

compilation

scripts

and

makefiles

relatively

self-explanatory:

��

�

�

-q

option_keyword

:

=

suboption

,

=

argument

��

This

format

is

more

restrictive

about

the

placement

of

blanks;

you

must

separate

individual

-q

options

by

blanks,

and

there

must

be

no

blank

between

a

-q

option

and

a

following

argument

string.

Unlike

the

names

of

flag

options,

-q

option

names

are

not

case-sensitive

except

that

the

q

must

be

lowercase.

Use

an

equal

sign

to

separate

a

-q

option

from

any

arguments

it

requires,

and

use

colons

to

separate

suboptions

within

the

argument

string.

For

example:

xlf95

-qddim

-qXREF=full

-qfloat=nomaf:rsqrt

-O3

-qcache=type=c:level=1

file.f

Specifying

Options

in

the

Source

File

By

putting

the

@PROCESS

compiler

directive

in

the

source

file,

you

can

specify

compiler

options

to

affect

an

individual

compilation

unit.

The

@PROCESS

compiler

directive

can

override

options

specified

in

the

configuration

file,

in

the

default

settings,

or

on

the

command

line.

��

�

,

@PROCESS

option

(

suboption_list

)

��

option

is

the

name

of

a

compiler

option

without

the

-q.

suboption

is

a

suboption

of

a

compiler

option.

In

fixed

source

form,

@PROCESS

can

start

in

column

1

or

after

column

6.

In

free

source

form,

the

@PROCESS

compiler

directive

can

start

in

any

column.

You

cannot

place

a

statement

label

or

inline

comment

on

the

same

line

as

an

@PROCESS

compiler

directive.

By

default,

option

settings

you

designate

with

the

@PROCESS

compiler

directive

are

effective

only

for

the

compilation

unit

in

which

the

statement

appears.

If

the

file

has

more

than

one

compilation

unit,

the

option

setting

is

reset

to

its

original

state

before

the

next

unit

is

compiled.

Trigger

constants

specified

by

the

DIRECTIVE

option

are

in

effect

until

the

end

of

the

file

(or

until

NODIRECTIVE

is

processed).

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

37

The

@PROCESS

compiler

directive

must

usually

appear

before

the

first

statement

of

a

compilation

unit.

The

only

exceptions

are

when

specifying

SOURCE

and

NOSOURCE;

you

can

put

them

in

@PROCESS

directives

anywhere

in

the

compilation

unit.

Passing

Command-Line

Options

to

the

″ld″

or

″as″

Commands

Because

the

compiler

automatically

executes

other

commands,

such

as

ld

and

as,

as

needed

during

compilation,

you

usually

do

not

need

to

concern

yourself

with

the

options

of

those

commands.

If

you

want

to

choose

options

for

these

individual

commands,

you

can

do

one

of

the

following:

v

Include

linker

options

on

the

compiler

command

line.

When

the

compiler

does

not

recognize

a

command-line

option

other

than

a

-q

option,

it

passes

the

option

on

to

the

linker:

xlf95

-berok

file.f

#

-berok

is

passed

to

ld

v

Use

the

-W

compiler

option

to

construct

an

argument

list

for

the

command:

xlf95

-Wl,-berok

file.f

#

-berok

is

passed

to

ld

In

this

example,

the

ld

option

-berok

is

passed

to

the

linker

(which

is

denoted

by

the

l

in

the

-Wl

option)

when

the

linker

is

executed.

This

form

is

more

general

than

the

previous

one

because

it

works

for

the

as

command

and

any

other

commands

called

during

compilation,

by

using

different

letters

after

the

-W

option.

v

Edit

the

configuration

file

/etc/xlf.cfg,

or

construct

your

own

configuration

file.

You

can

customize

particular

stanzas

to

allow

specific

command-line

options

to

be

passed

through

to

the

assembler

or

linker.

For

example,

if

you

include

these

lines

in

the

xlf95

stanza

of

/etc/xlf.cfg:

asopt

=

"w"

ldopt

=

"m"

and

issue

this

command:

xlf95

-wm

-Wa,-x

-Wl,-s

produces_warnings.s

uses_many_symbols.f

the

file

produces_warnings.s

is

assembled

with

the

options

-w

and

-x

(issue

warnings

and

produce

cross-reference),

and

the

object

files

are

linked

with

the

options

-m

and

-s

(write

list

of

object

files

and

strip

final

executable

file).

.

Related

Information:

See

“-W

Option”

on

page

275

and

“Customizing

the

Configuration

File”

on

page

15.

Tracking

Use

of

the

Compiler

For

customers

who

need

to

audit

the

use

of

the

compiler,

the

XL

Fortran

compiler

can

be

license

management

(LM)

controlled

using

LUM

(License

Use

Management).

This

was

previously

known

as

the

NetLS**

/

iFOR/LS**

product.

The

system

administrator

can

track

the

number

of

concurrent

users

who

are

logged

onto

a

set

of

client

machines.

The

compiler

has

a

default

of

LM

enabled,

and

all

features

of

LUM

will

be

available.

LUM

can

be

disabled

using

the

-qnolm

compiler

option.

Use

this

option

on

the

command

line

to

disable

LUM

during

a

specific

compile,

or

place

the

option

in

your

config

file

(xlf.cfg)

if

you

want

LUM

disabled

by

default.

38

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

The

XLF

software

license

allows

a

specific

number

of

users

to

operate

the

compiler.

LM,

which

is

on

by

default,

tracks

the

number

of

users

if

the

enabling

password

has

been

installed

as

described

in

Using

LUM

Runtime

and

the

XL

Fortran

Installation

Guide

accompanying

XL

Fortran

Version

9.1.

Depending

on

the

way

XL

Fortran

users

are

distributed

across

a

network,

you

may

want

to

use

concurrent

network

licenses,

concurrent

nodelock

licenses,

or

a

combination

of

both:

Concurrent

network

licenses

Available

to

any

authorized

user

on

any

machine

in

an

LUM

“cell”.

Depending

on

your

configuration,

they

may

require

that

the

LUM

client

software

be

running

on

the

same

machine

as

the

compiler.

They

can

result

in

performance

overhead

during

compilation.

Users

can

be

denied

access

to

the

compiler

depending

upon

the

authority

provided

by

their

user

ID.

Concurrent

nodelock

licenses

Restricted

to

a

single

machine,

but

they

do

not

require

the

LUM

client

software

or

impose

as

much

compilation

performance

overhead

as

concurrent

network

licenses.

Users

can

be

denied

access

to

the

compiler

depending

upon

the

authority

provided

by

their

user

ID.

Related

Information:

See

“-qlm

Option”

on

page

197,

the

Using

LUM

User’s

Guide,

and

the

Using

LUM

Runtime.

Compiling

for

Specific

Architectures

You

can

use

-qarch

and

-qtune

to

target

your

program

to

instruct

the

compiler

to

generate

code

specific

to

a

particular

architecture.

This

allows

the

compiler

to

take

advantage

of

machine-specific

instructions

that

can

improve

performance.

The

-qarch

option

determines

the

architectures

on

which

the

resulting

programs

can

run.

The

-qtune

and

-qcache

options

refine

the

degree

of

platform-specific

optimization

performed.

By

default,

the

-qarch

setting

produces

code

using

only

instructions

common

to

all

supported

architectures,

with

resultant

settings

of

-qtune

and

-qcache

that

are

relatively

general.

To

tune

performance

for

a

particular

processor

set

or

architecture,

you

may

need

to

specify

different

settings

for

one

or

more

of

these

options.

The

natural

progression

to

try

is

to

use

-qarch,

and

then

add

-qtune,

and

then

add

-qcache.

Because

the

defaults

for

-qarch

also

affect

the

defaults

for

-qtune

and

-qcache,

the

-qarch

option

is

often

all

that

is

needed.

If

the

compiling

machine

is

also

the

target

architecture,

-qarch=auto

will

automatically

detect

the

setting

for

the

compiling

machine.

For

more

information

on

this

compiler

option

setting,

see

“-qarch

Option”

on

page

127

and

also

-O4

and

-O5

under

the

“-O

Option”

on

page

114.

If

your

programs

are

intended

for

execution

mostly

on

particular

architectures,

you

may

want

to

add

one

or

more

of

these

options

to

the

configuration

file

so

that

they

become

the

default

for

all

compilations.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

39

Passing

Fortran

Files

through

the

C

Preprocessor

A

common

programming

practice

is

to

pass

files

through

the

C

preprocessor

(cpp).

cpp

can

include

or

omit

lines

from

the

output

file

based

on

user-specified

conditions

(“conditional

compilation”).

It

can

also

perform

string

substitution

(“macro

expansion”).

XL

Fortran

can

use

cpp

to

preprocess

a

file

before

compiling

it.

If

you

are

also

using

one

of

the

optimizing

preprocessors,

cpp

is

called

before

any

of

the

other

preprocessors.

To

call

cpp

for

a

particular

file,

use

a

file

suffix

of

.F.

If

you

specify

the

-d

option,

each

.F

file

filename.F

is

preprocessed

into

an

intermediate

file

Ffilename.f,

which

is

then

compiled.

If

you

do

not

specify

the

-d

option,

the

intermediate

file

name

is

/tmpdir/F8xxxxxx,

where

x

is

an

alphanumeric

character

and

tmpdir

is

the

contents

of

the

TMPDIR

environment

variable

or,

if

you

have

not

specified

a

value

for

TMPDIR,

/tmp.

You

can

save

the

intermediate

file

by

specifying

the

-d

compiler

option;

otherwise,

the

file

is

deleted.

If

you

only

want

to

preprocess

and

do

not

want

to

produce

object

or

executable

files,

specify

the

-qnoobject

option

also.

When

XL

Fortran

uses

cpp

for

a

file,

the

preprocessor

will

emit

#line

directives

unless

you

also

specify

the

-d

option.

The

#line

directive

associates

code

that

is

created

by

cpp

or

any

other

Fortran

source

code

generator

with

input

code

that

you

create.

The

preprocessor

may

cause

lines

of

code

to

be

inserted

or

deleted.

Therefore,

the

#line

directives

that

it

emits

can

be

useful

in

error

reporting

and

debugging,

because

they

identify

the

source

statements

found

in

the

preprocessed

code

by

listing

the

line

numbers

that

were

used

in

the

original

source.

The

_OPENMP

C

preprocessor

macro

can

be

used

to

conditionally

include

code.

This

macro

is

defined

when

the

C

preprocessor

is

invoked

and

when

you

specify

the

-qsmp=omp

compiler

option.

An

example

of

using

this

macro

follows:

program

par_mat_mul

implicit

none

integer(kind=8)

::i,j,nthreads

integer(kind=8),parameter

::N=60

integer(kind=8),dimension(N,N)

::Ai,Bi,Ci

integer(kind=8)

::Sumi

#ifdef

_OPENMP

integer

omp_get_num_threads

#endif

common/data/

Ai,Bi,Ci

!$OMP

threadprivate

(/data/)

!$omp

parallel

forall(i=1:N,j=1:N)

Ai(i,j)

=

(i-N/2)**2+(j+N/2)

forall(i=1:N,j=1:N)

Bi(i,j)

=

3-((i/2)+(j-N/2)**2)

!$omp

master

#ifdef

_OPENMP

nthreads=omp_get_num_threads()

#else

nthreads=8

#endif

!$omp

end

master

!$omp

end

parallel

!$OMP

parallel

default(private),copyin(Ai,Bi),shared(nthreads)

!$omp

do

do

i=1,nthreads

call

imat_mul(Sumi)

enddo

40

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

!$omp

end

do

!$omp

end

parallel

end

See

Conditional

Compilation

in

the

Language

Elements

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

more

information

on

conditional

compilation.

To

customize

cpp

preprocessing,

the

configuration

file

accepts

the

attributes

cpp,

cppsuffix,

and

cppoptions.

The

letter

F

denotes

the

C

preprocessor

with

the

-t

and

-W

options.

Related

Information:

See

“-d

Option”

on

page

106,

“-t

Option”

on

page

270,

“-W

Option”

on

page

275,

and

“Customizing

the

Configuration

File”

on

page

15.

cpp

Directives

for

XL

Fortran

Programs

Macro

expansion

can

have

unexpected

consequences

that

are

difficult

to

debug,

such

as

modifying

a

FORMAT

statement

or

making

a

line

longer

than

72

characters

in

fixed

source

form.

Therefore,

we

recommend

using

cpp

primarily

for

conditional

compilation

of

Fortran

programs.

The

cpp

directives

that

are

most

often

used

for

conditional

compilation

are

#if,

#ifdef,

#ifndef,

#elif,

#else,

and

#endif.

Passing

Options

to

the

C

Preprocessor

Because

the

compiler

does

not

recognize

cpp

options

other

than

-I

directly

on

the

command

line,

you

must

pass

them

through

the

-W

option.

For

example,

if

a

program

contains

#ifdef

directives

that

test

the

existence

of

a

symbol

named

AIXV4,

you

can

define

that

symbol

to

cpp

by

compiling

with

a

command

like:

xlf95

conditional.F

-WF,-DAIXV4

Avoiding

Preprocessing

Problems

Because

Fortran

and

C

differ

in

their

treatment

of

some

sequences

of

characters,

be

careful

when

using

/*

or

*/.

These

might

be

interpreted

as

C

comment

delimiters,

possibly

causing

problems

even

if

they

occur

inside

Fortran

comments.

Also

be

careful

when

using

three-character

sequences

that

begin

with

??

(which

might

be

interpreted

as

C

trigraphs).

Consider

the

following

example:

program

testcase

character

a

character*4

word

a

=

’?’

word(1:2)

=

’??’

print

*,

word(1:2)

end

program

testcase

If

the

preprocessor

matches

your

character

combination

with

the

corresponding

trigraph

sequence,

your

output

may

not

be

what

you

expected.

If

your

code

does

not

require

the

use

of

the

XL

Fortran

compiler

option

-qnoescape,

a

possible

solution

is

to

replace

the

character

string

with

an

escape

sequence

word(1:2)

=

’\?\?’.

However,

if

you

are

using

the

-qnoescape

compiler

option,

this

solution

will

not

work.

In

this

case,

you

require

a

cpp

that

will

ignore

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

41

the

trigraph

sequence.

XL

Fortran

uses

the

cpp

that

is

found

in

/usr/ccs/lib/cpp.

This

is

the

standard

cpp.

It

is

ISO

C

compliant

and

therefore

recognizes

trigraph

sequences.

On

the

AIX

operating

system,

cpp

has

the

option

-qlanglvl=classic.

Therefore,

compile

the

trigraph

example

by

using

the

following

command:

xlf95

tst.F

-d

-v

-WF,-qlanglvl=classic

This

invokes

cpp

tst.F

-qlanglvl=classic.

Linking

XL

Fortran

Programs

By

default,

you

do

not

need

to

do

anything

special

to

link

an

XL

Fortran

program.

The

compiler

invocation

commands

automatically

call

the

linker

to

produce

an

executable

output

file.

For

example,

running

the

following

command:

xlf95

file1.f

file2.o

file3.f

compiles

and

produces

object

files

file1.o

and

file3.o,

then

all

object

files

are

submitted

to

the

linker

to

produce

one

executable.

After

linking,

follow

the

instructions

in

“Running

XL

Fortran

Programs”

on

page

48

to

execute

the

program.

Compiling

and

Linking

in

Separate

Steps

To

produce

object

files

that

can

be

linked

later,

use

the

-c

option.

xlf95

-c

file1.f

#

Produce

one

object

file

(file1.o)

xlf95

-c

file2.f

file3.f

#

Or

multiple

object

files

(file1.o,

file3.o)

xlf95

file1.o

file2.o

file3.o

#

Link

object

files

with

appropriate

libraries

It

is

often

best

to

execute

the

linker

through

the

compiler

invocation

command,

because

it

passes

some

extra

ld

options

and

library

names

to

the

linker

automatically.

Linking

32–Bit

SMP

Object

Files

Using

the

ld

Command

To

use

the

ld

command

to

link

an

SMP

program,

follow

these

guidelines:

v

Do

not

specify

the

-e

flag.

v

Do

not

change

the

default

starting

point

of

the

executable

output

file

(__start).

If

you

use

other

starting

points,

your

results

will

be

unpredictable.

v

Specify

the

following

options

and

files

with

the

ld

command:

–

-bh:4,

-bpT:0x10000000,

-bpD:0x20000000.

–

-lxlf

before

any

other

libraries

or

files

on

the

command

line

if

you

are

linking

any

object

files

compiled

by

XL

Fortran

Version

2.

–

The

object

file

that

contains

the

system

startup

routine:

-

crt0_r.o

for

a

program

that

was

not

profiled.

-

mcrt0_r.o

for

a

program

that

was

profiled

with

the

-p

option.

-

gcrt0_r.o

for

a

program

that

was

profiled

with

the

-pg

option.

-

Link

with

the

startup

files

in

/usr/lib.
–

Compiler

and

system

libraries,

in

the

following

order:

-

-lxlfpthrds_compat

(for

POSIX

pthreads

Draft

7

support),

-lxlf90_r,

-lxlf,

-lxlsmp,

-lm_r,

-lc_r,

-lc,

and

either:

v

-lpthreads

(for

POSIX

pthreads

1003.1-1996

standard

support).

v

-lpthreads_compat

followed

by

-lpthreads

(for

POSIX

pthreads

Draft

7

support).
-

You

only

need

to

specify

-lxlsmp

if

you

are

compiling

with

-qsmp.

42

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-

If

you

use

the

-qautodbl

option,

specify

some

extra

libraries

that

are

listed

in

“-qautodbl

Option”

on

page

134.

-

If

you

use

the

-qpdf1

compiler

option,

specify

-lxlopt.

-

If

you

use

the

-qhot=vector

suboption,

specify

-lxlopt.

On

AIX

Version

5.1

and

higher,

the

default

POSIX

pthreads

API

is

the

1003.1-1996

standard.

If

you

had

a

program

called

mytest

and

you

wanted

to

obtain

access

to

the

functions

in

the

1003.1-1996

standard

POSIX

pthreads

API

on

AIX

Version

5.1,

you

would

link

with

the

libpthreads.a

library,

using

something

similar

to

the

following

command:

ld

-bh:4

-bpT:0x10000000

-bpD:0x20000000

/lib/crt0_r.o

mytest.o

-lxlf90_r

-lxlf

-lxlsmp

-lm_r

-lm

-lc_r

-lc

-lpthreads

-o

mytest

The

1003.1-1996

standard

is

not

fully

compatible

with

Draft

7.

If

you

have

programs

that

require

the

Draft

7

interface,

link

your

programs

with

the

libpthreads_compat.a

and

libxlfpthrds_compat.a

libraries

(which

provide

compatibility

support)

followed

by

the

libpthreads.a

library.

For

example,

if

you

have

a

program

called

mytest

that

was

written

to

use

the

Draft

7

interface,

on

AIX

Version

5.1,

you

would

use

something

similar

to

the

following

command:

ld

-bh:4

-bpT:0x10000000

-bpD:0x20000000

/lib/crt0_r.o

mytest.o

-lxlfpthrds_compat

-lxlf90_r

-lxlf

-lxlsmp

-lm_r

-lm

-lc_r

-lc

-lpthreads_compat

-lpthreads

-o

mytest

The

configuration

file

/etc/xlf.cfg

lists

these

default

libraries

and

linker

options.

By

doing

a

sample

compilation

with

the

-#

option,

you

can

see

exactly

how

the

compiler

would

run

the

linker.

See

the

AIX

Commands

Reference

for

a

description

of

the

linker

options.

Linking

64–Bit

SMP

Object

Files

Using

the

ld

Command

To

use

the

ld

command

to

link

a

64-bit

SMP

program,

follow

these

guidelines:

v

Do

not

specify

the

-e

flag.

v

Do

not

change

the

default

starting

point

of

the

executable

output

file

(__start).

If

you

use

other

starting

points,

your

results

will

be

unpredictable.

v

Specify

the

following

options

and

files

with

the

ld

command:

–

On

AIX

5.1,

-bh:4,

-bpT:0x10000000,

-bpD:0x20000000,

-b64.

–

The

object

file

that

contains

the

system

startup

routine:

-

crt0_64.o

for

a

program

that

was

not

profiled.

-

mcrt0_64.o

for

a

program

that

was

profiled

with

the

-p

option.

-

gcrt0_64.o

for

a

program

that

was

profiled

with

the

-pg

option.
–

Link

with

the

startup

files

in

/usr/lib.

–

Compiler

and

system

libraries:

-

-lxlf90,

-lxlsmp,

-lm,

-lc,

and

-lpthreads,

in

that

order

(you

only

need

-lxlsmp

if

you

compile

with

the

-qsmp

option).

-

If

you

use

the

-qautodbl

option,

specify

some

extra

libraries

that

are

listed

in

the

“-qautodbl

Option”

on

page

134.

-

If

you

use

the

-qpdf1

compiler

option,

specify

-lxlopt.

-

If

you

use

the

-qhot=vector

suboption,

specify

-lxlopt.

For

example,

to

link

the

object

files

smpfile1.o

and

smpfile2.o

on

AIX

5.1,

you

could

specify

the

following:

ld

-bh:4

-bpT:0x10000000

-bpD:0x20000000

-b64

/lib/crt0_64.o

-lxlf90

-lxlsmp

-lm

-lc

smpfile1.o

smpfile2.o

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

43

The

configuration

file

/etc/xlf.cfg

lists

these

default

libraries

and

linker

options.

By

doing

a

sample

compilation

with

the

-#

option,

you

can

see

exactly

how

the

compiler

would

run

the

linker.

See

the

AIX

Commands

Reference

for

a

description

of

the

linker

options.

Linking

32–Bit

Non-SMP

Object

Files

Using

the

ld

Command

To

use

the

ld

command

to

link

non-SMP

object

files

in

a

32-bit

environment,

follow

these

guidelines:

v

Do

not

specify

the

-e

flag.

v

Do

not

change

the

default

starting

point

of

the

executable

output

file

(__start).

If

you

use

other

starting

points,

your

results

will

be

unpredictable.

v

Specify

the

following

options

and

files

with

the

ld

command:

–

-bh:4,

-bpT:0x10000000,

-bpD:02x0000000.

–

-lxlf

before

any

other

libraries

or

files

on

the

command

line

if

any

object

files

compiled

by

XL

Fortran

Version

2

are

being

linked.

–

The

object

file

that

contains

the

system

startup

routine:

-

crt0.o

for

a

program

that

was

not

profiled.

-

mcrt0.o

for

a

program

that

was

profiled

with

the

-p

option.

-

gcrt0.o

for

a

program

that

was

profiled

with

the

-pg

option.

-

Link

with

the

startup

files

in

/usr/lib.
–

Compiler

and

system

libraries:

-

-lxlf90,

-lm,

and

-lc

in

that

order.

-

If

you

use

the

-qautodbl

option,

specify

some

extra

libraries

that

are

listed

in

“-qautodbl

Option”

on

page

134.

-

If

you

use

the

-qpdf1

compiler

option,

specify

-lxlopt.

-

If

you

use

the

-qhot=vector

suboption,

specify

-lxlopt.

For

example,

to

link

the

object

files

file1.o

and

file2.o,

you

could

specify

the

following:

ld

-bh:4

-bpT:0x10000000

-bpD:0x20000000

/lib/crt0.o

-lxlf90

-lm

-lc

file1.o

file2.o

The

configuration

file

/etc/xlf.cfg

lists

these

default

libraries

and

linker

options.

By

doing

a

sample

compilation

with

the

-#

option,

you

can

see

exactly

how

the

compiler

would

run

the

linker.

See

the

AIX

Commands

Reference

for

a

description

of

the

linker

options.

Linking

64-Bit

Non-SMP

Object

Files

Using

the

ld

Command

To

use

the

ld

command

to

link

non-SMP

object

files

in

a

64-bit

environment,

follow

these

guidelines:

v

Do

not

specify

the

-e

flag.

v

Do

not

change

the

default

starting

point

of

the

executable

output

file

(__start).

If

you

use

other

starting

points,

your

results

will

be

unpredictable.

v

Specify

the

following

options

and

files

with

the

ld

command:

–

On

AIX

5.1,

-bh:4,

-bpT:0x10000000,

-bpD:0x20000000,

-b64.

–

The

object

file

that

contains

the

system

startup

routine:

-

crt0_64.o

for

a

program

that

was

not

profiled.

-

mcrt0_64.o

for

a

program

that

was

profiled

with

the

-p

option.

-

gcrt0_64.o

for

a

program

that

was

profiled

with

the

-pg

option.

-

Link

with

the

startup

files

in

/usr/lib.
–

Compiler

and

system

libraries:

-

-lxlf90,

-lm,

and

-lc

in

that

order.

44

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-

If

you

use

the

-qautodbl

option,

specify

some

extra

libraries

that

are

listed

in

“-qautodbl

Option”

on

page

134.

-

If

you

use

the

-qpdf1

compiler

option,

specify

-lxlopt.

-

If

you

use

the

-qhot=vector

suboption,

specify

-lxlopt.

For

example,

to

link

the

object

files

file1.o

and

file2.o

on

AIX

5.1,

you

could

specify

the

following:

ld

-bh:4

-bpT:0x10000000

-bpD:0x20000000

-b64

/lib/crt0_64.o

-lxlf90

-lm

-lc

file1.o

file2.o

The

configuration

file

/etc/xlf.cfg

lists

these

default

libraries

and

linker

options.

By

doing

a

sample

compilation

with

the

-#

option,

you

can

see

exactly

how

the

compiler

would

run

the

linker.

See

the

AIX

Commands

Reference

for

a

description

of

the

linker

options.

Passing

Options

to

the

ld

Command

If

you

need

to

link

with

ld

options

that

are

not

part

of

the

XL

Fortran

default,

you

can

include

those

options

on

the

compiler

command

line:

xlf95

-bhalt:2

-K

-r

file.f

#

xlf95

passes

all

these

options

to

ld

The

compiler

passes

unrecognized

options,

except

-q

options,

to

the

ld

command.

Checking

for

Interface

Errors

at

Link

Time

If

you

specify

the

-qextchk

compiler

option,

the

linker

may

refuse

to

link

object

files

containing

mismatching

procedure

interfaces

or

common

block

definitions,

allowing

you

to

find

these

errors

at

link

time,

instead

of

trying

to

debug

incorrect

results.

If

the

linking

problem

can

be

isolated

to

a

few

names

that

do

not

resolve,

perhaps

because

of

uppercase

letters

in

C

names

or

trailing

underscores

added

by

the

-qextname

option,

you

can

use

the

-brename

linker

option

to

change

just

those

names:

xlf95

-brename:Old_Link_Name,new_link_name

fort_prog.o

c_prog.o

Related

Information:

See

“-qextchk

Option”

on

page

156,

“-U

Option”

on

page

271,

and

“-qextname

Option”

on

page

158.

Linking

New

Objects

with

Existing

Ones

If

you

have

.o

or

other

object

files

that

you

compiled

with

an

earlier

version

of

XL

Fortran,

you

can

link

them

with

object

files

that

you

compile

with

XL

Fortran

Version

9,

subject

to

the

following

notes.

The

main

XL

Fortran

libraries

are

libxlf90.a

and

libxlf90_r.a,

but

calls

to

older

entry

points

in

libxlf.a

are

still

possible;

the

calls

are

passed

to

the

new

entry

points

in

the

main

libraries,

which

makes

the

resulting

programs

slower

than

if

everything

is

recompiled.

Notes:

1.

You

must

explicitly

specify

the

XL

Fortran

libxlf.a

library

as

part

of

the

link

step,

preferably

by

including

the

option

-lxlf.

2.

For

safety,

always

put

-lxlf

as

the

first

option

after

the

compiler

command

so

that

the

library

is

linked

before

any

user

object

files.

Doing

so

ensures

that

the

new

I/O

routines

override

any

existing

ones

in

statically

linked

object

files.

3.

When

you

relink

old

object

files,

the

I/O

routines

in

the

resulting

program

differ

in

some

ways

from

the

behavior

of

XL

Fortran

Version

2.

To

make

the

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

45

resulting

program

work

as

you

expect,

you

may

need

to

change

some

of

the

run-time

settings

in

“Setting

Run-Time

Options”

on

page

51

(particularly

the

namelist

setting)

or

to

recompile

the

source

files

with

the

“-qxlf77

Option”

on

page

261.

Some

changed

I/O

details

cannot

be

switched

to

the

old

behavior

at

all.

4.

You

cannot

link

files

that

you

compiled

with

the

XL

Fortran

Version

4

level

of

IPA

with

files

that

you

compiled

with

the

XL

Fortran

Version

6

level

or

later

of

IPA.

5.

You

cannot

link

64-bit

objects

compiled

with

XL

Fortran

version

7.1.0.1,

or

lower.

The

object

format

has

changed

on

AIX

Version

5.1.

6.

You

cannot

link

pdf

files

that

you

created

with

-qpdf1

and

Version

5.1.0

or

earlier

levels

of

XL

Fortran

with

pdf

files

that

you

created

with

-qpdf1

and

XL

Fortran

Version

7.1

or

higher.

However,

you

can

link

object

files

that

you

created

with

-qpdf2

and

XL

Fortran

Version

7.1

or

higher

with

object

files

that

you

created

with

-qpdf2

and

earlier

levels

of

XL

Fortran.

Relinking

an

Existing

Executable

File

Because

the

linker

accepts

executable

files

as

input,

you

can

link

an

existing

executable

file

with

updated

object

files.

You

cannot,

however,

relink

executable

files

that

were

previously

linked

using

the

-qipa

option.

If

you

have

a

program

consisting

of

several

source

files

and

only

make

localized

changes

to

some

of

the

source

files,

you

do

not

necessarily

have

to

compile

each

file

again.

Instead,

you

can

include

the

executable

file

as

the

last

input

file

when

compiling

the

changed

files:

xlf95

-omansion

front_door.f

entry_hall.f

parlor.f

sitting_room.f

\

master_bath.f

kitchen.f

dining_room.f

pantry.f

utility_room.f

vi

kitchen.f

#

Fix

problem

in

OVEN

subroutine

xlf95

-o

newmansion

kitchen.f

mansion

Limiting

the

number

of

files

to

compile

and

link

the

second

time

reduces

the

compile

time,

disk

activity,

and

memory

use.

Note:

If

this

type

of

linking

is

done

incorrectly,

it

can

result

in

interface

errors

and

other

problems.

Therefore,

you

should

not

try

it

unless

you

are

experienced

with

linking.

Dynamic

and

Static

Linking

XL

Fortran

allows

your

programs

to

take

advantage

of

the

operating

system

facilities

for

both

dynamic

and

static

linking:

v

Dynamic

linking

means

that

the

code

for

some

external

routines

is

located

and

loaded

when

the

program

is

first

run.

When

you

compile

a

program

that

uses

shared

libraries,

the

shared

libraries

are

dynamically

linked

to

your

program

by

default.

Dynamically

linked

programs

take

up

less

disk

space

and

less

virtual

memory

if

more

than

one

program

uses

the

routines

in

the

shared

libraries.

During

linking,

they

do

not

require

any

special

precautions

to

avoid

naming

conflicts

with

library

routines.

They

may

perform

better

than

statically

linked

programs

if

several

programs

use

the

same

shared

routines

at

the

same

time.

They

also

allow

you

to

upgrade

the

routines

in

the

shared

libraries

without

relinking.

Because

this

form

of

linking

is

the

default,

you

need

no

additional

options

to

turn

it

on.

46

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Static

linking

means

that

the

code

for

all

routines

called

by

your

program

becomes

part

of

the

executable

file.

Statically

linked

programs

can

be

moved

to

and

run

on

systems

without

the

XL

Fortran

libraries.

They

may

perform

better

than

dynamically

linked

programs

if

they

make

many

calls

to

library

routines

or

call

many

small

routines.

They

do

require

some

precautions

in

choosing

names

for

data

objects

and

routines

in

the

program

if

you

want

to

avoid

naming

conflicts

with

library

routines

(as

explained

in

“Avoiding

Naming

Conflicts

during

Linking”).

They

also

may

not

work

if

you

compile

them

on

one

level

of

the

operating

system

and

run

them

on

a

different

level

of

the

operating

system.

You

can

use

-b

linker

options

on

the

compiler

command

line

to

create

statically

linked

object

files:

xlf95

-bnso

-bI:/usr/lib/syscalls.exp

file1.f

file2.f

You

must

also

specify

-bI:/usr/lib/threads.exp

when

you

are

statically

linking

with

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

or

xlf95_r7

command.

If

you

are

using

Asynchronous

I/O,

you

must

also

specify

-bI:/usr/lib/aio.exp.

The

-bnso

option

places

the

library

procedures

that

your

program

references

into

the

program’s

object

file.

Files

with

a

suffix

of

.exp

specify

the

names

of

system

routines

that

must

be

imported

to

your

program

from

the

system.

An

alternative

that

requires

less

disk

space

is

to

link

any

XL

Fortran

libraries

statically

but

to

leave

references

to

other

system

libraries

dynamic.

This

example

statically

links

just

the

XL

Fortran

libraries:

#

Build

a

temporary

object

from

the

Fortran

library:

ld

-r

-o

libtmp.o

-bnso

-lxlf90

#

Build

the

application

with

this

object

on

the

command

line:

xlf95

-o

appl

appl1.o

appl2.o

libtmp.o

Avoiding

Naming

Conflicts

during

Linking

If

you

define

an

external

subroutine,

external

function,

or

common

block

with

the

same

name

as

a

run-time

subprogram,

your

definition

of

that

name

may

be

used

in

its

place,

or

it

may

cause

a

link-edit

error.

Try

the

following

general

solution

to

help

avoid

these

kinds

of

naming

conflicts:

v

Compile

all

files

with

the

-qextname

option.

It

adds

an

underscore

to

the

end

of

the

name

of

each

global

entity,

making

it

distinct

from

any

names

in

the

system

libraries.

Note:

When

you

use

this

option,

you

do

not

need

to

use

the

final

underscore

in

the

names

of

Service

and

Utility

Subprograms,

such

as

dtime_

and

flush_.

v

Link

your

programs

dynamically,

which

is

the

default.

Many

naming

conflicts

only

apply

to

statically

linked

programs.

v

Order

the

names

of

libraries

and

object

files

on

the

command

line

so

that

the

one

that

should

take

precedence

comes

first.

For

example,

to

make

names

in

libxlf90.a

take

precedence

over

duplicate

names

in

an

object

file,

specify

-lxlf90

first

on

the

command

line.

If

you

do

not

use

the

-qextname

option,

you

must

take

the

following

extra

precautions

to

avoid

conflicts

with

the

names

of

the

external

symbols

in

the

XL

Fortran

and

system

libraries:

v

Do

not

name

a

subroutine

or

function

main,

because

XL

Fortran

defines

an

entry

point

main

to

start

your

program.

v

Do

not

use

any

global

names

that

begin

with

an

underscore.

In

particular,

the

XL

Fortran

libraries

reserve

all

names

that

begin

with

_xl.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

47

v

Do

not

use

names

that

are

the

same

as

names

in

the

XL

Fortran

library

or

one

of

the

system

libraries.

To

determine

which

names

are

not

safe

to

use

in

your

program,

run

the

nm

command

on

any

libraries

that

are

linked

into

the

program

and

search

the

output

for

names

you

suspect

might

also

be

in

your

program.

v

If

your

program

calls

certain

XLF-provided

routines,

some

restrictions

apply

to

the

common

block

and

subprogram

names

that

you

can

use:

XLF-Provided

Function

Name

Common

Block

or

Subprogram

Name

You

Cannot

Use

mclock

times

rand

irand

Be

careful

not

to

use

the

names

of

subroutines

or

functions

without

defining

the

actual

routines

in

your

program.

If

the

name

conflicts

with

a

name

from

one

of

the

libraries,

the

program

could

use

the

wrong

version

of

the

routine

and

not

produce

any

compile-time

or

link-time

errors.

If

different

versions

of

a

routine

occur

in

more

than

one

library

or

object

file,

be

careful

to

use

the

specific

version

that

you

want.

Specify

the

file

with

the

correct

version

as

the

first

file

on

the

command

line

or

in

the

configuration

file.

If

the

file

is

a

library,

specify

the

appropriate

-l

option

first

on

the

command

line.

This

technique

does

not

apply

to

references

between

routines

that

are

in

the

same

shared

library

or

to

routines

that

are

explicitly

imported

from

one

shared

library

to

another.

Running

XL

Fortran

Programs

The

default

file

name

for

the

executable

program

is

a.out.

You

can

select

a

different

name

with

the

-o

compiler

option.

You

should

avoid

giving

your

programs

the

same

names

as

system

or

shell

commands

(such

as

test

or

cp),

as

you

could

accidentally

execute

the

wrong

command.

If

a

name

conflict

does

occur,

you

can

execute

the

program

by

specifying

a

path

name,

such

as

./test.

You

can

run

a

program

by

entering

the

path

name

and

file

name

of

an

executable

object

file

along

with

any

run-time

arguments

on

the

command

line.

Canceling

Execution

To

suspend

a

running

program,

press

the

Ctrl+Z

key

while

the

program

is

in

the

foreground.

Use

the

fg

command

to

resume

running.

To

cancel

a

running

program,

press

the

Ctrl+C

key

while

the

program

is

in

the

foreground.

Running

Previously

Compiled

Programs

Statically

linked

programs

that

you

compiled

with

levels

of

XL

Fortran

prior

to

Version

9.1

should

continue

to

run

with

no

change

in

performance

or

behavior.

They

may

not

run

on

a

system

with

a

level

of

the

operating

system

different

from

the

system

on

which

they

were

compiled.

If

you

have

dynamically

linked

programs

compiled

by

XL

Fortran

Versions

2

through

8,

you

can

run

them

on

systems

with

the

XL

Fortran

Version

9

libraries.

The

programs

will

use

the

current

compiler

data

formats

and

I/O

behavior,

which

are

somewhat

different

from

those

of

XL

Fortran

Version

2.

48

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Compiling

and

Executing

on

Different

Systems

If

you

want

to

move

an

XL

Fortran

executable

file

to

a

different

system

for

execution,

you

can

link

statically

and

copy

the

program,

and

optionally

the

run-time

message

catalogs.

Alternatively,

you

can

link

dynamically

and

copy

the

program

as

well

as

the

XL

Fortran

libraries

if

needed

and

optionally

the

run-time

message

catalogs.

For

non-SMP

programs,

libxlf90.a

is

usually

the

only

XL

Fortran

library

needed.

For

SMP

programs,

you

will

usually

need

at

least

the

libxlf90_r.a

and

libxlsmp.a

libraries.

libxlf.a

is

only

needed

if

the

program

has

any

XL

Fortran

Version

1

or

2

object

files

linked

in.

libxlfpmt*.a

and

libxlfpad.a

are

only

needed

if

the

program

is

compiled

with

the

-qautodbl

option.

If

your

application

has

dependencies

on

libhmd.a,

refer

to

“Using

Debug

Memory

Routines

for

XL

Fortran”

on

page

381

for

more

details

on

library

dependencies.

For

a

dynamically

linked

program

to

work

correctly,

the

XL

Fortran

libraries

and

the

operating

system

on

the

execution

system

must

be

at

either

the

same

level

or

a

more

recent

level

than

on

the

compilation

system.

For

a

statically

linked

program

to

work

properly,

the

operating-system

level

may

need

to

be

the

same

on

the

execution

system

as

it

is

on

the

compilation

system.

Related

information:

See

“Dynamic

and

Static

Linking”

on

page

46.

POSIX

Pthreads

Binary

Compatibility

The

XL

Fortran

compiler

and

run-time

library

provide

binary

compatibility

in

the

following

areas:

v

Executable

file

binary

compatibility.

If

you

created

an

executable

file

that

had

dependencies

on

the

pthreads

Draft

7

API

(for

example,

you

used

XL

Fortran

Version

5.1.0

or

AIX

Version

4.2.1),

you

can

upgrade

your

system

to

use

XL

Fortran

Version

9.1.0

or

AIX

Version

5.1

and

run

your

executable

file

without

first

recompiling

and

relinking

your

program.

v

Object

file

or

archive

library

binary

compatibility.

If

you

created

an

object

file

or

archive

library

that

had

dependencies

on

the

Draft

7

pthreads

API,

you

can

continue

to

use

that

object

file

or

archive

library

with

the

Draft

7

interface

if

you

move

from

AIX

Version

4.2.1

to

AIX

Version

5.1.

For

example,

if

you

have

a

source

file

called

test.f

that

uses

a

shared

or

static

archive

library

called

libmy_utility.a

(which

was

created

with

the

Draft

7

interface),

you

would

enter

something

similar

to

the

following

command

on

AIX

Version

5.1:

xlf95_r7

test.f

-lmy_utility

-o

a.out

You

do

not

need

to

regenerate

libmy_utility.a

before

using

it

on

AIX

Version

5.1.

There

are,

however,

restrictions

on

binary

compatibility.

XL

Fortran

supports

combinations

of

Draft

7

and

1003.1-1996

standard

object

files

in

some

instances.

For

example,

if

you

used

XL

Fortran

Version

5.1.0

to

create

a

library,

that

library

uses

the

Draft

7

pthreads

API.

An

application

that

you

build

with

that

library

can

use

either

the

Draft

7

pthreads

API

or

the

1003.1-1996

standard

pthreads

API

as

long

as

the

portions

of

the

complete

application

built

with

the

Draft

7

pthreads

API

do

not

share

any

pthreads

data

objects

(such

as

mutexes

or

condition

variables)

with

the

portions

built

with

the

1003.1-1996

standard

pthreads

API.

If

any

such

objects

need

to

be

used

across

portions

of

an

application

that

are

compiled

with

different

levels

of

the

pthreads

API,

the

final

application

needs

to

use

either

the

Draft

7

pthreads

API

or

the

1003.1-1996

standard

pthreads

API

across

the

entire

application.

You

can

do

this

in

one

of

two

ways:

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

49

v

Build

the

application

by

using

the

xlf_r7,

xlf90_r7,

or

xlf95_r7

command,

so

that

it

uses

the

Draft

7

pthreads

API.

v

Build

both

the

library

and

the

rest

of

the

application

by

using

the

xlf_r,

xlf90_r,

or

xlf95_r

command.

Run-Time

Libraries

for

POSIX

Pthreads

Support

There

are

three

run-time

libraries

that

are

connected

with

POSIX

thread

support.

The

libxlf90_r.a

library

is

a

multiprocessor-enabled

version

of

the

Fortran

run-time

library.

The

libxlsmp.a

library

is

the

SMP

run-time

library.

The

following

libraries

are

used:

/lib/libxlf90.a

Provides

1003.1-1996

standard

32-bit

and

64-bit

support.

This

library

is

linked

to

libxlf90_r.a.

/lib/libxlsmp.a

Provides

1003.1-1996

standard

32-bit

and

64-bit

support.

/lib/libxlfpthrds_compat.a

Provides

Draft

7

32-bit

support.

XL

Fortran

supplies

the

following

directories

for

.mod

files:

/usr/lpp/xlf/include_d7

Provides

Draft

7

32-bit

support.

/usr/lpp/xlf/include

Provides

1003.1-1996

standard

32-bit

and

64–bit

support.

Depending

on

the

invocation

command,

and

in

some

cases,

the

compiler

option,

the

appropriate

set

of

libraries

and

include

files

for

thread

support

is

bound

in.

For

example:

Cmd.

Libraries

Used

Include

Files

Used

POSIX

Pthreads

API

Level

Supported

xlf90_r

xlf95_r

xlf_r

/lib/libxlf90.a

/lib/libxlsmp.a

/lib/libpthreads.a

/usr/lpp/xlf/include

1003.1-1996

standard

xlf90_r7

xlf95_r7

xlf_r7

/lib/libxlf90.a

/lib/libxlsmp.a

/lib/libxlfpthrds_compat.a

/lib/libpthreads.a

/usr/lpp/xlf/include_d7

Draft

7

Selecting

the

Language

for

Run-Time

Messages

To

select

a

language

for

run-time

messages

that

are

issued

by

an

XL

Fortran

program,

set

the

LANG

and

NLSPATH

environment

variables

before

executing

the

program.

In

addition

to

setting

environment

variables,

your

program

should

call

the

C

library

routine

setlocale

to

set

the

program’s

locale

at

run

time.

For

example,

the

following

program

specifies

the

run-time

message

category

to

be

set

according

to

the

LC_ALL,

LC_MESSAGES,

and

LANG

environment

variables:

PROGRAM

MYPROG

PARAMETER(LC_MESSAGES

=

5)

EXTERNAL

SETLOCALE

CHARACTER

NULL_STRING

/Z’00’/

CALL

SETLOCALE

(%VAL(LC_MESSAGES),

NULL_STRING)

END

50

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Related

Information:

See

“Environment

Variables

for

National

Language

Support”

on

page

13.

The

C

library

routine

setlocale

is

defined

in

the

AIX

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

Setting

Run-Time

Options

Internal

switches

in

an

XL

Fortran

program

control

run-time

behavior,

similar

to

the

way

compiler

options

control

compile-time

behavior.

You

can

set

the

run-time

options

through

either

environment

variables

or

a

procedure

call

within

the

program.

You

can

specify

all

XL

Fortran

run-time

option

settings

by

using

one

of

two

environment

variables:

XLFRTEOPTS

and

XLSMPOPTS.

The

XLFRTEOPTS

Environment

Variable

The

XLFRTEOPTS

environment

variable

allows

you

to

specify

options

that

affect

I/O,

EOF

error-handling,

and

the

specification

of

random-number

generators.

You

can

declare

XLFRTEOPTS

by

using

the

following

ksh

command

format:

��

�

:

XLFRTEOPTS=

runtime_option_name

=

option_setting

"

"

��

You

can

specify

option

names

and

settings

in

uppercase

or

lowercase.

You

can

add

blanks

before

and

after

the

colons

and

equal

signs

to

improve

readability.

However,

if

the

XLFRTEOPTS

option

string

contains

imbedded

blanks,

you

must

enclose

the

entire

option

string

in

double

quotation

marks

(").

The

environment

variable

is

checked

when

the

program

first

encounters

one

of

the

following

conditions:

v

An

I/O

statement

is

executed.

v

The

RANDOM_SEED

procedure

is

executed.

v

An

ALLOCATE

statement

needs

to

issue

a

run-time

error

message.

v

A

DEALLOCATE

statement

needs

to

issue

a

run-time

error

message.

v

The

multi-threaded

implementation

of

the

MATMUL

procedure

is

executed.

Changing

the

XLFRTEOPTS

environment

variable

during

the

execution

of

a

program

has

no

effect

on

the

program.

The

SETRTEOPTS

procedure

(which

is

defined

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference)

accepts

a

single-string

argument

that

contains

the

same

name-value

pairs

as

the

XLFRTEOPTS

environment

variable.

It

overrides

the

environment

variable

and

can

be

used

to

change

settings

during

the

execution

of

a

program.

The

new

settings

remain

in

effect

for

the

rest

of

the

program

unless

changed

by

another

call

to

SETRTEOPTS.

Only

the

settings

that

you

specified

in

the

procedure

call

are

changed.

You

can

specify

the

following

run-time

options

with

the

XLFRTEOPTS

environment

variable

or

the

SETRTEOPTS

procedure:

buffering={enable

|

disable_preconn

|

disable_all}

Determines

whether

the

XL

Fortran

run-time

library

performs

buffering

for

I/O

operations.

The

library

reads

data

from,

or

writes

data

to

the

file

system

in

chunks

for

READ

or

WRITE

statements,

instead

of

piece

by

piece.

The

major

benefit

of

buffering

is

performance

improvement.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

51

If

you

have

applications

in

which

Fortran

routines

work

with

routines

in

other

languages

or

in

which

a

Fortran

process

works

with

other

processes

on

the

same

data

file,

the

data

written

by

Fortran

routines

may

not

be

seen

immediately

by

other

parties

(and

vice

versa),

because

of

the

buffering.

Also,

a

Fortran

READ

statement

may

read

more

data

than

it

needs

into

the

I/O

buffer

and

cause

the

input

operation

performed

by

a

routine

in

other

languages

or

another

process

that

is

supposed

to

read

the

next

data

item

to

fail.

In

these

cases,

you

can

use

the

buffering

run-time

option

to

disable

the

buffering

in

the

XL

Fortran

run-time

library.

As

a

result,

a

READ

statement

will

read

in

exactly

the

data

it

needs

from

a

file

and

the

data

written

by

a

WRITE

statement

will

be

flushed

out

to

the

file

system

at

the

completion

of

the

statement.

Note:

I/O

buffering

is

always

enabled

for

files

on

sequential

access

devices

(such

as

pipes,

terminals,

sockets,

and

tape

drives).

The

setting

of

the

buffering

option

has

no

effect

on

these

types

of

files.

If

you

disable

I/O

buffering

for

a

logical

unit,

you

do

not

need

to

call

the

Fortran

service

routine

flush_

to

flush

the

contents

of

the

I/O

buffer

for

that

logical

unit.

The

suboptions

for

buffering

are

as

follows:

enable

The

Fortran

run-time

library

maintains

an

I/O

buffer

for

each

connected

logical

unit.

The

current

read-write

file

pointers

that

the

run-time

library

maintains

might

not

be

synchronized

with

the

read-write

pointers

of

the

corresponding

files

in

the

file

system.

disable_preconn

The

Fortran

run-time

library

does

not

maintain

an

I/O

buffer

for

each

preconnected

logical

unit

(0,

5,

and

6).

However,

it

does

maintain

I/O

buffers

for

all

other

connected

logical

units.

The

current

read-write

file

pointers

that

the

run-time

library

maintains

for

the

preconnected

units

are

the

same

as

the

read-write

pointers

of

the

corresponding

files

in

the

file

system.

disable_all

The

Fortran

run-time

library

does

not

maintain

I/O

buffers

for

any

logical

units.

You

should

not

specify

the

buffering=disable_all

option

with

Fortran

programs

that

perform

asynchronous

I/O.

In

the

following

example,

Fortran

and

C

routines

read

a

data

file

through

redirected

standard

input.

First,

the

main

Fortran

program

reads

one

integer.

Then,

the

C

routine

reads

one

integer.

Finally,

the

main

Fortran

program

reads

another

integer.

Fortran

main

program:

integer(4)

p1,p2,p3

print

*,’Reading

p1

in

Fortran...’

read(5,*)

p1

call

c_func(p2)

print

*,’Reading

p3

in

Fortran...’

read(5,*)

p3

print

*,’p1

p2

p3

Read:

’,p1,p2,p3

end

52

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

C

subroutine

(c_func.c):

#include

<stdio.h>

void

c_func(int

*p2)

{

int

n1

=

-1;

printf("Reading

p2

in

C...\n");

setbuf(stdin,

NULL);

/*

Specifies

no

buffering

for

stdin

*/

fscanf(stdin,"%d",&n1);

*p2=n1;

}

Input

data

file

(infile):

11111

22222

33333

44444

The

main

program

runs

by

using

infile

as

redirected

standard

input,

as

follows:

$

main

<

infile

If

you

turn

on

buffering=disable_preconn,

the

results

are

as

follows:

Reading

p1

in

Fortran...

Reading

p2

in

C...

Reading

p3

in

Fortran...

p1

p2

p3

Read:

11111

22222

33333

If

you

turn

on

buffering=enable,

the

results

are

unpredictable.

cnverr={yes

|

no}

If

you

set

this

run-time

option

to

no,

the

program

does

not

obey

the

IOSTAT=

and

ERR=

specifiers

for

I/O

statements

that

encounter

conversion

errors.

Instead,

it

performs

default

recovery

actions

(regardless

of

the

setting

of

err_recovery)

and

may

issue

warning

messages

(depending

on

the

setting

of

xrf_messages).

Related

Information:

For

more

information

about

conversion

errors,

see

Data

Transfer

Statements

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

For

more

information

about

IOSTAT

values,

see

Conditions

and

IOSTAT

Values

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

cpu_time_type={usertime

|

systime

|

alltime

|

total_usertime

|

total_systime

|

total_alltime}

Determines

the

measure

of

time

returned

by

a

call

to

CPU_TIME(TIME).

The

suboptions

for

cpu_time_type

are

as

follows:

usertime

Returns

the

user

time

of

a

process.

(For

a

definition

of

user

time,

see

the

AIX

Performance

Management

Guide).

systime

Returns

the

system

time

of

a

process.

(For

a

definition

of

system

time,

see

the

AIX

Performance

Management

Guide).

alltime

Returns

the

sum

of

the

user

and

system

time

of

a

process.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

53

total_usertime

Returns

the

total

user

time

of

a

process.

The

total

user

time

is

the

sum

of

the

user

time

of

a

process

and

the

total

user

times

of

its

child

processes,

if

any.

total_systime

Returns

the

total

system

time

of

a

process.

The

total

system

time

is

the

sum

of

the

system

time

of

the

current

process

and

the

total

system

times

of

its

child

processes,

if

any.

total_alltime

Returns

the

total

user

and

system

time

of

a

process.

The

total

user

and

system

time

is

the

sum

of

the

user

and

system

time

of

the

current

process

and

the

total

user

and

system

times

of

their

child

processes,

if

any.

default_recl={64

|

32}

Allows

you

to

determine

the

default

record

size

for

sequential

files

opened

without

a

RECL=

specifier.

The

suboptions

are

as

follows:

64

Uses

a

64-bit

value

as

the

default

record

size.

32

Uses

a

32-bit

value

as

the

default

record

size.

The

default_recl

run-time

option

applies

only

in

64-bit

mode.

In

32-bit

mode,

default_recl

is

ignored

and

the

record

size

is

32-bit.

Use

default_recl

when

porting

32-bit

programs

to

64-bit

mode

where

a

64-bit

record

length

will

not

fit

into

the

specified

integer

variable.

Consider

the

following:

INTEGER(4)

I

OPEN

(11)

INQUIRE

(11,

RECL=i)

A

run-time

error

occurs

in

the

above

code

sample

in

64-bit

mode

when

default_recl=64,

since

the

default

record

length

of

2**63-1

does

not

fit

into

the

4-byte

integer

I.

Specifying

default_recl=32

ensures

a

default

record

size

of

2**31-1,

which

fits

into

I.

For

more

information

on

the

RECL=

specifier,

see

the

OPEN

statement

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

erroreof={yes

|

no}

Determines

whether

the

label

specified

by

the

ERR=

specifier

is

to

be

branched

to

if

no

END=

specifier

is

present

when

an

end-of-file

condition

is

encountered.

err_recovery={yes

|

no}

If

you

set

this

run-time

option

to

no,

the

program

stops

if

there

is

a

recoverable

error

while

executing

an

I/O

statement

with

no

IOSTAT=

or

ERR=

specifiers.

By

default,

the

program

takes

some

recovery

action

and

continues

when

one

of

these

statements

encounters

a

recoverable

error.

Setting

cnverr

to

yes

and

err_recovery

to

no

can

cause

conversion

errors

to

halt

the

program.

iostat_end={extended

|

2003std}

Sets

the

IOSTAT

values

based

on

the

XL

Fortran

definition

or

the

Fortran

2003

Draft

Standard

when

end-of-file

and

end-of-record

conditions

occur.

The

suboptions

are

as

follows:

extended

Sets

the

IOSTAT

variables

based

on

XL

Fortran’s

definition

of

values

and

conditions.

54

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

2003std

Sets

the

IOSTAT

variables

based

on

Fortran

2003’s

definition

of

values

and

conditions.

For

example,

setting

the

iostat_end=2003std

run-time

option

results

in

a

different

IOSTAT

value

from

extensions

being

returned

for

the

end-of-file

condition

export

XLFRTEOPTS=iostat_end=2003std

character(10)

ifl

integer(4)

aa(3),

ios

ifl

=

"12344321

"

read(ifl,

’(3i4)’,

iostat=ios)

aa

!

end-of-file

condition

occurs

and

!

ios

is

set

to

-1

instead

of

-2.

For

more

information

on

setting

and

using

IOSTAT

values,

see

the

READ,

WRITE,

and

Conditions

and

IOSTAT

Values

sections

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

intrinthds={num_threads}

Specifies

the

number

of

threads

for

parallel

execution

of

the

MATMUL

and

RANDOM_NUMBER

intrinsic

procedures.

The

default

value

for

num_threads

when

using

the

MATMUL

intrinsic

equals

the

number

of

processors

online.

The

default

value

for

num_threads

when

using

the

RANDOM_NUMBER

intrinsic

is

equal

to

the

number

of

processors

online*2.

Changing

the

number

of

threads

available

to

the

MATMUL

and

RANDOM_NUMBER

intrinsic

procedures

can

influence

performance.

langlvl={extended

|

90ext|

90std

|

95std

|

2003std}

Determines

the

level

of

support

for

Fortran

standards

and

extensions

to

the

standards.

The

values

of

the

suboptions

are

as

follows:

90std

Specifies

that

the

compiler

should

flag

any

extensions

to

the

Fortran

90

standard

I/O

statements

and

formats

as

errors.

90ext

Currently,

provides

the

same

level

of

support

as

the

extended

suboption.

90ext

was

the

default

suboption

prior

to

XL

Fortran

Version

7.1.

However,

this

suboption

is

now

obsolete,

and

to

avoid

problems

in

the

future,

you

should

start

using

the

extended

suboption

as

soon

as

possible.

95std

Specifies

that

the

compiler

should

flag

any

extensions

to

the

Fortran

95

standard

I/O

statements

and

formats

as

errors.

2003std

Specifies

that

the

compiler

should

accept

all

standard

I/O

statements

and

formats

that

the

Fortran

95

standard

specifies,

as

well

as

those

Fortran

2003

formats

that

XL

Fortran

supports.

Anything

else

is

flagged

as

an

error.

For

example,

setting

the

langlvl=2003std

run-time

option

results

in

a

run-time

error

message.

integer(4)

aa(100)

call

setrteopts("langlvl=2003std")

...

!

Write

to

a

unit

without

explicitly

...

!

connecting

the

unit

to

a

file.

write(10,

*)

aa

!

The

implicit

connection

to

a

file

does

not

...

!

comform

with

Fortran

2003

behavior.

extended

Specifies

that

the

compiler

should

accept

the

Fortran

95

language

standard,

Fortran

2003

features

supported

by

XL

Fortran,

and

extensions,

effectively

turning

off

language-level

checking.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

55

To

obtain

support

for

items

that

are

part

of

the

Fortran

95

standard

and

are

available

in

XL

Fortran

as

of

Version

9.1

(such

as

namelist

comments),

you

must

specify

one

of

the

following

suboptions:

v

95std

v

2003std

v

extended

The

following

example

contains

a

Fortran

95

extension

(the

file

specifier

is

missing

from

the

OPEN

statement):

program

test1

call

setrteopts("langlvl=95std")

open(unit=1,access="sequential",form="formatted")

10

format(I3)

write(1,fmt=10)

123

end

Specifying

langlvl=95std

results

in

a

run-time

error

message.

The

following

example

contains

a

Fortran

95

feature

(namelist

comments)

that

was

not

part

of

Fortran

90:

program

test2

INTEGER

I

LOGICAL

G

NAMELIST

/TODAY/G,

I

call

setrteopts("langlvl=95std:namelist=new")

open(unit=2,file="today.new",form="formatted",

&

&

access="sequential",

status="old")

read(2,nml=today)

close(2)

end

today.new:

&TODAY

!

This

is

a

comment

I

=

123,

G=.true.

/

If

you

specify

langlvl=95std,

no

run-time

error

message

is

issued.

However,

if

you

specify

langlvl=90std,

a

run-time

error

message

is

issued.

The

err_recovery

setting

determines

whether

any

resulting

errors

are

treated

as

recoverable

or

severe.

multconn={yes

|

no}

Enables

you

to

access

the

same

file

through

more

than

one

logical

unit

simultaneously.

With

this

option,

you

can

read

more

than

one

location

within

a

file

simultaneously

without

making

a

copy

of

the

file.

You

can

only

use

multiple

connections

within

the

same

program

for

files

on

random-access

devices,

such

as

disk

drives.

In

particular,

you

cannot

use

multiple

connections

within

the

same

program

for:

v

Files

have

been

connected

for

write-only

(ACTION=’WRITE’)

v

Asynchronous

I/O

56

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Files

on

sequential-access

devices

(such

as

pipes,

terminals,

sockets,

and

tape

drives)

To

avoid

the

possibility

of

damaging

the

file,

keep

the

following

points

in

mind:

v

The

second

and

subsequent

OPEN

statements

for

the

same

file

can

only

be

for

reading.

v

If

you

initially

opened

the

file

for

both

input

and

output

purposes

(ACTION=’READWRITE’),

the

unit

connected

to

the

file

by

the

first

OPEN

becomes

read-only

(ACCESS=’READ’)

when

the

second

unit

is

connected.

You

must

close

all

of

the

units

that

are

connected

to

the

file

and

reopen

the

first

unit

to

restore

write

access

to

it.

v

Two

files

are

considered

to

be

the

same

file

if

they

share

the

same

device

and

i-node

numbers.

Thus,

linked

files

are

considered

to

be

the

same

file.

multconnio={tty

|

nulldev

|

combined

|

no

}

Enables

you

to

connect

a

device

to

more

than

one

logical

unit.

You

can

then

write

to,

or

read

from,

more

than

one

logical

unit

that

is

attached

to

the

same

device.

The

suboptions

are

as

follows:

combined

Enables

you

to

connect

a

combination

of

null

and

TTY

devices

to

more

than

one

logical

unit.

nulldev

Enables

you

to

connect

the

null

device

to

more

than

one

logical

unit.

tty

Enables

you

to

connect

a

TTY

device

to

more

than

one

logical

unit.

Note:

Using

this

option

can

produce

unpredictable

results.

In

your

program,

you

can

now

specify

multiple

OPEN

statements

that

contain

different

values

for

the

UNIT

parameters

but

the

same

value

for

the

FILE

parameters.

For

example,

if

you

have

a

symbolic

link

called

mytty

that

is

linked

to

TTY

device

/dev/tty,

you

can

run

the

following

program

when

you

specify

the

multconnio=tty

option:

PROGRAM

iotest

OPEN(UNIT=3,

FILE=’mytty’,

ACTION="WRITE")

OPEN(UNIT=7,

FILE=’mytty’,

ACTION="WRITE")

END

PROGRAM

iotest

Fortran

preconnects

units

0,

5,

and

6

to

the

same

TTY

device.

Normally,

you

cannot

use

the

OPEN

statement

to

explicitly

connect

additional

units

to

the

TTY

device

that

is

connected

to

units

0,

5,

and

6.

However,

this

is

possible

if

you

specify

the

multconnio=tty

option.

For

example,

if

units

0,

5,

and

6

are

preconnected

to

TTY

device

/dev/tty,

you

can

run

the

following

program

if

you

specify

the

multconnio=tty

option:

PROGRAM

iotest

!

/dev/pts/2

is

your

current

tty,

as

reported

by

the

’tty’

command.

!

(This

changes

every

time

you

login.)

CALL

SETRTEOPTS

(’multconnio=tty’)

OPEN

(UNIT=3,

FILE=’/dev/pts/2’)

WRITE

(3,

*)

’hello’

!

Display

’hello’

on

your

screen

END

PROGRAM

namelist={new

|

old}

Determines

whether

the

program

uses

the

XL

Fortran

new

or

old

(Version

1)

NAMELIST

format

for

input

and

output.

The

Fortran

90

and

Fortran

95

standards

require

the

new

format.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

57

Note:

You

may

need

the

old

setting

to

read

existing

data

files

that

contain

NAMELIST

output.However,

use

the

standard-compilant

new

format

in

writing

any

new

data

files.

With

namelist=old,

the

nonstandard

NAMELIST

format

is

not

considered

an

error

by

the

langlvl=95std,

langlvl=90std,

or

langlvl=2003std

setting.

Related

Information:

For

more

information

about

NAMELIST

I/O,

see

Namelist

Formatting

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

nlwidth=record_width

By

default,

a

NAMELIST

write

statement

produces

a

single

output

record

long

enough

to

contain

all

of

the

written

NAMELIST

items.

To

restrict

NAMELIST

output

records

to

a

given

width,

use

the

nlwidth

run-time

option.

Note:

The

RECL=

specifier

for

sequential

files

has

largely

made

this

option

obsolete,

because

programs

attempt

to

fit

NAMELIST

output

within

the

specified

record

length.

You

can

still

use

nlwidth

in

conjunction

with

RECL=

as

long

as

the

nlwidth

width

does

not

exceed

the

stated

record

length

for

the

file.

random={generator1

|

generator2}

Specifies

the

generator

to

be

used

by

RANDOM_NUMBER

if

RANDOM_SEED

has

not

yet

been

called

with

the

GENERATOR

argument.

The

value

generator1

(the

default)

corresponds

to

GENERATOR=1,

and

generator2

corresponds

to

GENERATOR=2.

If

you

call

RANDOM_SEED

with

the

GENERATOR

argument,

it

overrides

the

random

option

from

that

point

onward

in

the

program.

Changing

the

random

option

by

calling

SETRTEOPTS

after

calling

RANDOM_SEED

with

the

GENERATOR

option

has

no

effect.

scratch_vars={yes

|

no}

To

give

a

specific

name

to

a

scratch

file,

set

the

scratch_vars

run-time

option

to

yes,

and

set

the

environment

variable

XLFSCRATCH_unit

to

the

name

of

the

file

you

want

to

be

associated

with

the

specified

unit

number.

See

“Naming

Scratch

Files”

on

page

332

for

examples.

unit_vars={yes

|

no}

To

give

a

specific

name

to

an

implicitly

connected

file

or

to

a

file

opened

with

no

FILE=

specifier,

you

can

set

the

run-time

option

unit_vars=yes

and

set

one

or

more

environment

variables

with

names

of

the

form

XLFUNIT_unit

to

file

names.

See

“Naming

Files

That

Are

Connected

with

No

Explicit

Name”

on

page

331

for

examples.

uwidth={32

|

64}

To

specify

the

width

of

record

length

fields

in

unformatted

sequential

files,

specify

the

value

in

bits.

When

the

record

length

of

an

unformatted

sequential

file

is

greater

than

(2**31

-

1)

bytes

minus

8

bytes

(for

the

record

terminators

surrounding

the

data),

you

need

to

set

the

run-time

option

uwidth=64

to

extend

the

record

length

fields

to

64

bits.

This

allows

the

record

length

to

be

up

to

(2**63

-

1)

minus

16

bytes

(for

the

record

terminators

surrounding

the

data).

The

run-time

option

uwidth

is

only

valid

for

64-bit

mode

applications.

xrf_messages={yes

|

no}

To

prevent

programs

from

displaying

run-time

messages

for

error

conditions

during

I/O

operations,

RANDOM_SEED

calls,

and

ALLOCATE

or

DEALLOCATE

statements,

set

the

xrf_messages

run-time

option

to

no.

Otherwise,

run-time

messages

for

conversion

errors

and

other

problems

are

sent

to

the

standard

error

stream.

58

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

The

following

examples

set

the

cnverr

run-time

option

to

yes

and

the

xrf_messages

option

to

no.

#

Basic

format

XLFRTEOPTS=cnverr=yes:xrf_messages=no

export

XLFRTEOPTS

#

With

imbedded

blanks

XLFRTEOPTS="xrf_messages

=

NO

:

cnverr

=

YES"

export

XLFRTEOPTS

As

a

call

to

SETRTEOPTS,

this

example

could

be:

CALL

setrteopts(’xrf_messages=NO:cnverr=yes’)

!

Name

is

in

lowercase

in

case

-U

(mixed)

option

is

used.

The

XLSMPOPTS

Environment

Variable

The

XLSMPOPTS

environment

variable

allows

you

to

specify

options

that

affect

SMP

execution.

You

can

declare

XLSMPOPTS

by

using

the

following

ksh

command

format:

��

�

:

XLSMPOPTS=

runtime_option_name

=

option_setting

"

"

��

You

can

specify

option

names

and

settings

in

uppercase

or

lowercase.

You

can

add

blanks

before

and

after

the

colons

and

equal

signs

to

improve

readability.

However,

if

the

XLSMPOPTS

option

string

contains

imbedded

blanks,

you

must

enclose

the

entire

option

string

in

double

quotation

marks

(").

You

can

specify

the

following

run-time

options

with

the

XLSMPOPTS

environment

variable:

schedule

Selects

the

scheduling

type

and

chunk

size

to

be

used

as

the

default

at

run

time.

The

scheduling

type

that

you

specify

will

only

be

used

for

loops

that

were

not

already

marked

with

a

scheduling

type

at

compilation

time.

Work

is

assigned

to

threads

in

a

different

manner,

depending

on

the

scheduling

type

and

chunk

size

used.

A

brief

description

of

the

scheduling

types

and

their

influence

on

how

work

is

assigned

follows:

dynamic

or

guided

The

run-time

library

dynamically

schedules

parallel

work

for

threads

on

a

″first-come,

first-do″

basis.

″Chunks″

of

the

remaining

work

are

assigned

to

available

threads

until

all

work

has

been

assigned.

Work

is

not

assigned

to

threads

that

are

asleep.

static

Chunks

of

work

are

assigned

to

the

threads

in

a

″round-robin″

fashion.

Work

is

assigned

to

all

threads,

both

active

and

asleep.

The

system

must

activate

sleeping

threads

in

order

for

them

to

complete

their

assigned

work.

affinity

The

run-time

library

performs

an

initial

division

of

the

iterations

into

number_of_threads

partitions.

The

number

of

iterations

that

these

partitions

contain

is:

CEILING(number_of_iterations

/

number_of_threads)

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

59

These

partitions

are

then

assigned

to

each

of

the

threads.

It

is

these

partitions

that

are

then

subdivided

into

chunks

of

iterations.

If

a

thread

is

asleep,

the

threads

that

are

active

will

complete

their

assigned

partition

of

work.

Choosing

chunking

granularity

is

a

tradeoff

between

overhead

and

load

balancing.

The

syntax

for

this

option

is

schedule=suboption,

where

the

suboptions

are

defined

as

follows:

affinity[=n]

As

described

previously,

the

iterations

of

a

loop

are

initially

divided

into

partitions,

which

are

then

preassigned

to

the

threads.

Each

of

these

partitions

is

then

further

subdivided

into

chunks

that

contain

n

iterations.

If

you

have

not

specified

n,

a

chunk

consists

of

CEILING(number_of_iterations_left_in_local_partition

/

2)

loop

iterations.

When

a

thread

becomes

available,

it

takes

the

next

chunk

from

its

preassigned

partition.

If

there

are

no

more

chunks

in

that

partition,

the

thread

takes

the

next

available

chunk

from

a

partition

preassigned

to

another

thread.

dynamic[=n]

The

iterations

of

a

loop

are

divided

into

chunks

that

contain

n

iterations

each.

If

you

have

not

specified

n,

a

chunk

consists

of

CEILING(number_of_iterations

/

number_of_threads)

iterations.

guided[=n]

The

iterations

of

a

loop

are

divided

into

progressively

smaller

chunks

until

a

minimum

chunk

size

of

n

loop

iterations

is

reached.

If

you

have

not

specified

n,

the

default

value

for

n

is

1

iteration.

The

first

chunk

contains

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Subsequent

chunks

consist

of

CEILING(number_of_iterations_left

/

number_of_threads)

iterations.

static[=n]

The

iterations

of

a

loop

are

divided

into

chunks

that

contain

n

iterations.

Threads

are

assigned

chunks

in

a

″round-robin″

fashion.

This

is

known

as

block

cyclic

scheduling.

If

the

value

of

n

is

1,

the

scheduling

type

is

specifically

referred

to

as

cyclic

scheduling.

If

you

have

not

specified

n,

the

chunks

will

contain

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

thread

is

assigned

one

of

these

chunks.

This

is

known

as

block

scheduling.

If

you

have

not

specified

schedule,

the

default

is

set

to

schedule=static,

resulting

in

block

scheduling.

Related

Information:

For

more

information,

see

the

description

of

the

SCHEDULE

directive

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Parallel

execution

options

The

three

parallel

execution

options,

parthds,

usrthds,

and

stack,

are

as

follows:

parthds=num

Specifies

the

number

of

threads

(num)

to

be

60

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

used

for

parallel

execution

of

code

that

you

compiled

with

the

-qsmp

option.

By

default,

this

is

equal

to

the

number

of

online

processors.

There

are

some

applications

that

cannot

use

more

than

some

maximum

number

of

processors.

There

are

also

some

applications

that

can

achieve

performance

gains

if

they

use

more

threads

than

there

are

processors.

This

option

allows

you

full

control

over

the

number

of

execution

threads.

The

default

value

for

num

is

1

if

you

did

not

specify

-qsmp.

Otherwise,

it

is

the

number

of

online

processors

on

the

machine.

For

more

information,

see

the

NUM_PARTHDS

intrinsic

function

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

usrthds=num

Specifies

the

maximum

number

of

threads

(num)

that

you

expect

your

code

will

explicitly

create

if

the

code

does

explicit

thread

creation.

The

default

value

for

num

is

0.

For

more

information,

see

the

NUM_PARTHDS

intrinsic

function

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

stack=num

Specifies

the

largest

amount

of

space

in

bytes

(num)

that

a

thread’s

stack

will

need.

The

default

value

for

num

is

4194304.

Set

stack=num

so

it

is

within

the

acceptable

upper

limit.

num

can

be

up

to

256

MB

for

32-bit

mode,

or

up

to

the

limit

imposed

by

system

resources

for

64-bit

mode.

An

application

that

exceeds

the

upper

limit

may

cause

a

segmentation

fault.

startproc=cpu_id

Specifies

the

CPU

ID

that

the

first

thread

should

be

bound

to.

If

the

value

provided

is

less

than

0

(zero),

the

SMP

run

time

issues

a

warning

message

and

no

threads

are

bound.

stride=num

num

specifies

the

number

of

processors

to

skip.

This

must

be

greater

than

or

equal

to

1.

If

the

value

provided

is

less

than

1,

a

warning

message

is

issued

and

no

threads

are

bound.

Performance

tuning

options

When

a

thread

completes

its

work

and

there

is

no

new

work

to

do,

it

can

go

into

either

a

″busy-wait″

state

or

a

″sleep″

state.

In

″busy-wait″,

the

thread

keeps

executing

in

a

tight

loop

looking

for

additional

new

work.

This

state

is

highly

responsive

but

harms

the

overall

utilization

of

the

system.

When

a

thread

sleeps,

it

completely

suspends

execution

until

another

thread

signals

it

that

there

is

work

to

do.

This

state

provides

better

utilization

of

the

system

but

introduces

extra

overhead

for

the

application.

The

xlsmp

run-time

library

routines

use

both

″busy-wait″

and

″sleep″

states

in

their

approach

to

waiting

for

work.

You

can

control

these

states

with

the

spins,

yields,

and

delays

options.

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

61

During

the

busy-wait

search

for

work,

the

thread

repeatedly

scans

the

work

queue

up

to

num

times,

where

num

is

the

value

that

you

specified

for

the

option

spins.

If

a

thread

cannot

find

work

during

a

given

scan,

it

intentionally

wastes

cycles

in

a

delay

loop

that

executes

num

times,

where

num

is

the

value

that

you

specified

for

the

option

delays.

This

delay

loop

consists

of

a

single

meaningless

iteration.

The

length

of

actual

time

this

takes

will

vary

among

processors.

If

the

value

spins

is

exceeded

and

the

thread

still

cannot

find

work,

the

thread

will

yield

the

current

time

slice

(time

allocated

by

the

processor

to

that

thread)

to

the

other

threads.

The

thread

will

yield

its

time

slice

up

to

num

times,

where

num

is

the

number

that

you

specified

for

the

option

yields.

If

this

value

num

is

exceeded,

the

thread

will

go

to

sleep.

In

summary,

the

ordered

approach

to

looking

for

work

consists

of

the

following

steps:

1.

Scan

the

work

queue

for

up

to

spins

number

of

times.

If

no

work

is

found

in

a

scan,

then

loop

delays

number

of

times

before

starting

a

new

scan.

2.

If

work

has

not

been

found,

then

yield

the

current

time

slice.

3.

Repeat

the

above

steps

up

to

yields

number

of

times.

4.

If

work

has

still

not

been

found,

then

go

to

sleep.

The

syntax

for

specifying

these

options

is

as

follows:

spins[=num]

where

num

is

the

number

of

spins

before

a

yield.

The

default

value

for

spins

is

100.

yields[=num]

where

num

is

the

number

of

yields

before

a

sleep.

The

default

value

for

yields

is

10.

delays[=num]

where

num

is

the

number

of

delays

while

busy-waiting.

The

default

value

for

delays

is

500.

Zero

is

a

special

value

for

spins

and

yields,

as

it

can

be

used

to

force

complete

busy-waiting.

Normally,

in

a

benchmark

test

on

a

dedicated

system,

you

would

set

both

options

to

zero.

However,

you

can

set

them

individually

to

achieve

other

effects.

For

instance,

on

a

dedicated

8-way

SMP,

setting

these

options

to

the

following:

parthds=8

:

schedule=dynamic=10

:

spins=0

:

yields=0

results

in

one

thread

per

CPU,

with

each

thread

assigned

chunks

consisting

of

10

iterations

each,

with

busy-waiting

when

there

is

no

immediate

work

to

do.

You

can

also

use

the

environment

variables

SPINLOOPTIME

and

YIELDLOOPTIME

to

tune

performance.

Refer

to

the

AIX

Performance

Management

Guide

for

more

information

on

these

variables.

Options

to

enable

and

control

dynamic

profiling

You

can

use

dynamic

profiling

to

reevaluate

the

compiler’s

decision

to

parallelize

loops

in

a

program.

The

three

options

you

can

use

to

do

this

are:

parthreshold,

seqthreshold,

and

profilefreq.

parthreshold=num

Specifies

the

time,

in

milliseconds,

below

which

each

loop

must

execute

serially.

If

you

set

parthreshold

to

0,

every

loop

that

has

been

parallelized

by

the

compiler

will

execute

in

parallel.

The

default

setting

is

0.2

milliseconds,

meaning

that

if

a

loop

requires

fewer

than

0.2

milliseconds

to

execute

in

parallel,

it

should

be

serialized.

62

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Typically,

parthreshold

is

set

to

be

equal

to

the

parallelization

overhead.

If

the

computation

in

a

parallelized

loop

is

very

small

and

the

time

taken

to

execute

these

loops

is

spent

primarily

in

the

setting

up

of

parallelization,

these

loops

should

be

executed

sequentially

for

better

performance.

seqthreshold=num

Specifies

the

time,

in

milliseconds,

beyond

which

a

loop

that

was

previously

serialized

by

the

dynamic

profiler

should

revert

to

being

a

parallel

loop.

The

default

setting

is

5

milliseconds,

meaning

that

if

a

loop

requires

more

than

5

milliseconds

to

execute

serially,

it

should

be

parallelized.

seqthreshold

acts

as

the

reverse

of

parthreshold.

profilefreq=num

Specifies

the

frequency

with

which

a

loop

should

be

revisited

by

the

dynamic

profiler

to

determine

its

appropriateness

for

parallel

or

serial

execution.

Loops

in

a

program

can

be

data

dependent.

The

loop

that

was

chosen

to

execute

serially

with

a

pass

of

dynamic

profiling

may

benefit

from

parallelization

in

subsequent

executions

of

the

loop,

due

to

different

data

input.

Therefore,

you

need

to

examine

these

loops

periodically

to

reevaluate

the

decision

to

serialize

a

parallel

loop

at

run

time.

The

allowed

values

for

this

option

are

the

numbers

from

0

to

32.

If

you

set

profilefreq

to

one

of

these

values,

the

following

results

will

occur.

v

If

profilefreq

is

0,

all

profiling

is

turned

off,

regardless

of

other

settings.

The

overheads

that

occur

because

of

profiling

will

not

be

present.

v

If

profilefreq

is

1,

loops

parallelized

automatically

by

the

compiler

will

be

monitored

every

time

they

are

executed.

v

If

profilefreq

is

2,

loops

parallelized

automatically

by

the

compiler

will

be

monitored

every

other

time

they

are

executed.

v

If

profilefreq

is

greater

than

or

equal

to

2

but

less

than

or

equal

to

32,

each

loop

will

be

monitored

once

every

nth

time

it

is

executed.

v

If

profilefreq

is

greater

than

32,

then

32

is

assumed.

It

is

important

to

note

that

dynamic

profiling

is

not

applicable

to

user-specified

parallel

loops

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

63

(for

example,

loops

for

which

you

specified

the

PARALLEL

DO

directive).

OpenMP

Environment

Variables

The

following

environment

variables,

which

are

included

in

the

OpenMP

standard,

allow

you

to

control

the

execution

of

parallel

code.

Note:

If

you

specify

both

the

XLSMPOPTS

environment

variable

and

an

OpenMP

environment

variable,

the

OpenMP

environment

variable

takes

precedence.

OMP_DYNAMIC

Environment

Variable

The

OMP_DYNAMIC

environment

variable

enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

the

execution

of

parallel

regions.

The

syntax

is

as

follows:

��

OMP_DYNAMIC=

TRUE

FALSE

��

If

you

set

this

environment

variable

to

TRUE,

the

run-time

environment

can

adjust

the

number

of

threads

it

uses

for

executing

parallel

regions

so

that

it

makes

the

most

efficient

use

of

system

resources.

If

you

set

this

environment

variable

to

FALSE,

dynamic

adjustment

is

disabled.

The

default

value

for

OMP_DYNAMIC

is

TRUE.

Therefore,

if

your

code

needs

to

use

a

specific

number

of

threads

to

run

correctly,

you

should

disable

dynamic

thread

adjustment.

The

omp_set_dynamic

subroutine

takes

precedence

over

the

OMP_DYNAMIC

environment

variable.

OMP_NESTED

Environment

Variable

The

OMP_NESTED

environment

variable

enables

or

disables

nested

parallelism.

The

syntax

is

as

follows:

��

OMP_NESTED=

TRUE

FALSE

��

If

you

set

this

environment

variable

to

TRUE,

nested

parallelism

is

enabled.

This

means

that

the

run-time

environment

might

deploy

extra

threads

to

form

the

team

of

threads

for

the

nested

parallel

region.

If

you

set

this

environment

variable

to

FALSE,

nested

parallelism

is

disabled.

The

default

value

for

OMP_NESTED

is

FALSE.

The

omp_set_nested

subroutine

takes

precedence

over

the

OMP_NESTED

environment

variable.

OMP_NUM_THREADS

Environment

Variable

The

OMP_NUM_THREADS

environment

variable

sets

the

number

of

threads

that

a

program

will

use

when

it

runs.

The

syntax

is

as

follows:

��

OMP_NUM_THREADS=

num

��

64

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

num

the

maximum

number

of

threads

that

can

be

used

if

dynamic

adjustment

of

the

number

of

threads

is

enabled.

If

dynamic

adjustment

of

the

number

of

threads

is

not

enabled,

the

value

of

OMP_NUM_THREADS

is

the

exact

number

of

threads

that

can

be

used.

It

must

be

a

positive,

scalar

integer.

The

default

number

of

threads

that

a

program

uses

when

it

runs

is

the

number

of

online

processors

on

the

machine.

If

you

specify

the

number

of

threads

with

both

the

PARTHDS

suboption

of

the

XLSMPOPTS

environment

variable

and

the

OMP_NUM_THREADS

environment

variable,

the

OMP_NUM_THREADS

environment

variable

takes

precedence.

The

omp_set_num_threads

subroutine

takes

precedence

over

the

OMP_NUM_THREADS

environment

variable.

The

following

example

shows

how

you

can

set

the

OMP_NUM_THREADS

environment

variable:

export

OMP_NUM_THREADS=16

OMP_SCHEDULE

Environment

Variable

The

OMP_SCHEDULE

environment

variable

applies

to

PARALLEL

DO

and

work-sharing

DO

directives

that

have

a

schedule

type

of

RUNTIME.

The

syntax

is

as

follows:

��

OMP_SCHEDULE=

sched_type

,

chunk_size

��

sched_type

is

either

DYNAMIC,

GUIDED,

or

STATIC.

chunk_size

is

a

positive,

scalar

integer

that

represents

the

chunk

size.

This

environment

variable

is

ignored

for

PARALLEL

DO

and

work-sharing

DO

directives

that

have

a

schedule

type

other

than

RUNTIME.

If

you

have

not

specified

a

schedule

type

either

at

compile

time

(through

a

directive)

or

at

run

time

(through

the

OMP_SCHEDULE

environment

variable

or

the

SCHEDULE

option

of

the

XLSMPOPTS

environment

variable),

the

default

schedule

type

is

STATIC,

and

the

default

chunk

size

is

set

to

the

following

for

the

first

N

-

1

threads:

chunk_size

=

ceiling(Iters/N)

It

is

set

to

the

following

for

the

Nth

thread,

where

N

is

the

total

number

of

threads

and

Iters

is

the

total

number

of

iterations

in

the

DO

loop:

chunk_size

=

Iters

-

((N

-

1)

*

ceiling(Iters/N))

If

you

specify

both

the

SCHEDULE

option

of

the

XLSMPOPTS

environment

variable

and

the

OMP_SCHEDULE

environment

variable,

the

OMP_SCHEDULE

environment

variable

takes

precedence.

The

following

examples

show

how

you

can

set

the

OMP_SCHEDULE

environment

variable:

export

OMP_SCHEDULE="GUIDED,4"

export

OMP_SCHEDULE="DYNAMIC"

Editing,

Compiling,

Linking,

and

Running

XL

Fortran

Programs

65

Other

Environment

Variables

That

Affect

Run-Time

Behavior

The

LIBPATH

and

TMPDIR

environment

variables

have

an

effect

at

run

time,

as

explained

in

“Correct

Settings

for

Environment

Variables”

on

page

12.

They

are

not

XL

Fortran

run-time

options

and

cannot

be

set

in

either

XLFRTEOPTS

or

XLSMPOPTS.

XL

Fortran

Run-Time

Exceptions

The

following

operations

cause

run-time

exceptions

in

the

form

of

SIGTRAP

signals,

which

typically

result

in

a

“Trace/BPT

trap”

message:

v

Fixed-point

division

by

zero.

v

Character

substring

expression

or

array

subscript

out

of

bounds

after

you

specified

the

-C

option

at

compile

time.

v

Lengths

of

character

pointer

and

target

do

not

match

after

you

specified

the

-C

option

at

compile

time.

v

The

flow

of

control

in

the

program

reaches

a

location

for

which

a

semantic

error

with

severity

of

S

was

issued

when

the

program

was

compiled.

v

Floating-point

exceptions

occur

after

you

specify

the

appropriate

-qflttrap

suboptions

at

compile

time.

v

Floating-point

operations

that

generate

NaN

values

and

loads

of

the

NaN

values

after

you

specify

the

-qfloat=nanq

option

at

compile

time.

If

you

install

one

of

the

predefined

XL

Fortran

exception

handlers

before

the

exception

occurs,

a

diagnostic

message

and

a

traceback

showing

the

offset

within

each

routine

called

that

led

to

the

exception

are

written

to

standard

error

after

the

exception

occurs.

The

file

buffers

are

also

flushed

before

the

program

ends.

If

you

compile

the

program

with

the

-g

option,

the

traceback

shows

source

line

numbers

in

addition

to

the

address

offsets.

You

can

use

a

symbolic

debugger

to

determine

the

error.

dbx

provides

a

specific

error

message

that

describes

the

cause

of

the

exception.

Related

Information:

See

“-C

Option”

on

page

103,

“-qflttrap

Option”

on

page

165,

and

“-qsigtrap

Option”

on

page

232.

See

“Detecting

and

Trapping

Floating-Point

Exceptions”

on

page

296

for

more

details

about

these

exceptions

and

“Controlling

the

Floating-Point

Status

and

Control

Register”

on

page

299

for

a

list

of

exception

handlers.

66

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

XL

Fortran

Compiler-Option

Reference

This

section

contains

the

following:

v

Tables

of

compiler

options.

These

tables

are

organized

according

to

area

of

use

and

contain

high-level

information

about

the

syntax

and

purpose

of

each

option.

v

Detailed

information

about

each

compiler

option

in

“Detailed

Descriptions

of

the

XL

Fortran

Compiler

Options”

on

page

90.

Summary

of

the

XL

Fortran

Compiler

Options

The

following

tables

show

the

compiler

options

available

in

the

XL

Fortran

compiler

that

you

can

enter

in

the

configuration

file,

on

the

command

line,

or

in

the

Fortran

source

code

by

using

the

@PROCESS

compiler

directive.

You

can

enter

compiler

options

that

start

with

-q,

suboptions,

and

@PROCESS

directives

in

either

uppercase

or

lowercase.

However,

note

that

if

you

specify

the

-qmixed

option,

procedure

names

that

you

specify

for

the

-qextern

option

are

case-sensitive.

In

general,

this

document

uses

the

convention

of

lowercase

for

-q

compiler

options

and

suboptions

and

uppercase

for

@PROCESS

directives.

However,

in

the

″Syntax″

sections

of

this

section

and

in

the

″Command-Line

Option″

column

of

the

summary

tables,

we

use

uppercase

letters

in

the

names

of

-q

options,

suboptions,

and

@PROCESS

directives

to

represent

the

minimum

abbreviation

for

the

keyword.

For

example,

valid

abbreviations

for

-qOPTimize

are

-qopt,

-qopti,

and

so

on.

Understanding

the

significance

of

the

options

you

use

and

knowing

the

alternatives

available

can

save

you

considerable

time

and

effort

in

making

your

programs

work

correctly

and

efficiently.

©

Copyright

IBM

Corp.

1990,

2004

67

Options

That

Control

Input

to

the

Compiler

The

following

options

affect

the

compiler

input

at

a

high

level.

They

determine

which

source

files

are

processed

and

select

case

sensitivity,

column

sensitivity,

and

other

global

format

issues.

Related

Information:

See

“XL

Fortran

Input

Files”

on

page

33

and

“Options

That

Specify

the

Locations

of

Output

Files”

on

page

70.

Many

of

the

options

in

“Options

for

Compatibility”

on

page

79

change

the

permitted

input

format

slightly.

Table

3.

Options

That

Control

Input

to

the

Compiler

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-Idir

Adds

a

directory

to

the

search

path

for

include

files

and

.mod

files.

If

XL

Fortran

calls

cpp,

this

option

adds

a

directory

to

the

search

path

for

#include

files.

Before

checking

the

default

directories

for

include

and

.mod

files,

the

compiler

checks

each

directory

in

the

search

path.

For

include

files,

this

path

is

only

used

if

the

file

name

in

an

INCLUDE

line

is

not

provided

with

an

absolute

path.

For

#include

files,

refer

to

the

cpp

documentation

for

the

details

of

the

-I

option.

Default:

The

following

directories

are

searched,

in

the

following

order:

1.

The

current

directory

2.

The

directory

where

the

source

file

is

3.

/usr/include.

109

-qci=numbers

CI(numbers)

Activates

the

specified

INCLUDE

lines.

Default:

No

default

value.

141

-qcr

-qnocr

Allows

you

to

control

how

the

compiler

interprets

the

CR

(carriage

return)

character.

This

allows

you

to

compile

code

written

using

a

Mac

OS

or

DOS/Windows

editor.

Default:

-qcr

143

68

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

3.

Options

That

Control

Input

to

the

Compiler

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qdirective

[=directive_list]

-qnodirective

[=directive_list]

DIRECTIVE

[(directive_list)]

NODIRECTIVE

[(directive_list)]

Specifies

sequences

of

characters,

known

as

trigger

constants,

that

identify

comment

lines

as

compiler

comment

directives.

Default:

Comment

lines

beginning

with

IBM*

are

considered

directives.

If

you

specify

-qsmp=omp,

only

$OMP

is

considered

to

be

a

directive

trigger.

All

other

directive

triggers

are

turned

off

unless

you

explicitly

turn

them

back

on.

If

you

specify

-qsmp=noomp

(noomp

is

the

default

for

-qsmp),

IBMP,

$OMP

and

SMP$

are

considered

directive

triggers,

along

with

any

other

directive

triggers

that

are

turned

on

(such

as

IBM*

and

IBMT).

If

you

have

also

specified

-qthreaded,

comment

lines

beginning

with

IBMT

are

also

considered

directives.

148

-qfixed

[=right_margin]

FIXED

[(right_margin)]

Indicates

that

the

input

source

program

is

in

fixed

source

form

and

optionally

specifies

the

maximum

line

length.

Default:

-qfree=f90

for

the

f90,

f95,

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands

and

-qfixed=72

for

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands.

161

-qfree[={f90|ibm}]

-k

FREE[({F90|

IBM})]

Indicates

that

the

source

code

is

in

free

form.

The

ibm

and

f90

suboptions

specify

compatibility

with

the

free

source

form

defined

for

VS

FORTRAN

and

Fortran

90/Fortran

95,

respectively.

-k

and

-qfree

are

short

forms

for

-qfree=f90.

Default:

-qfree=f90

for

the

f90,

f95,

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands

and

-qfixed=72

for

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands.

168

-qmbcs

-qnombcs

MBCS

NOMBCS

Indicates

to

the

compiler

whether

character

literal

constants,

Hollerith

constants,

H

edit

descriptors,

and

character

string

edit

descriptors

can

contain

Multibyte

Character

Set

(MBCS)

or

Unicode

characters.

Default:

-qnombcs

201

-U

-qmixed

-qnomixed

MIXED

NOMIXED

Makes

the

compiler

sensitive

to

the

case

of

letters

in

names.

Default:

-qnomixed

271

XL

Fortran

Compiler-Option

Reference

69

Table

3.

Options

That

Control

Input

to

the

Compiler

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qsuffix={suboptions}

Specifies

the

source-file

suffix

on

the

command

line.

244

Options

That

Specify

the

Locations

of

Output

Files

The

following

options

specify

names

or

directories

where

the

compile

stores

output

files.

In

the

table,

an

*

indicates

that

the

option

is

processed

by

the

ld

command,

rather

than

by

the

XL

Fortran

compiler;

you

can

find

more

information

about

these

options

in

the

AIX

information

for

the

ld

command.

Related

Information:

See

“XL

Fortran

Output

Files”

on

page

34

and

“Options

That

Control

Input

to

the

Compiler”

on

page

68.

Table

4.

Options

That

Specify

the

Locations

of

Output

Files

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-d

Leaves

preprocessed

source

files

produced

by

cpp,

instead

of

deleting

them.

Default:

Temporary

files

produced

by

cpp

are

deleted.

106

-o

name*

Specifies

a

name

for

the

output

object,

executable,

or

assembler

source

file.

Default:

-o

a.out

116

-qmoddir=directory

Specifies

the

location

for

any

module

(.mod)

files

that

the

compiler

writes.

Default:

.mod

files

are

placed

in

the

current

directory.

203

Options

for

Performance

Optimization

The

following

options

can

help

you

to

speed

up

the

execution

of

your

XL

Fortran

programs

or

to

find

areas

of

poor

performance

that

can

then

be

tuned.

The

most

important

such

option

is

-O.

In

general,

the

other

performance-related

options

work

much

better

in

combination

with

-O;

some

have

no

effect

at

all

without

-O.

Related

Information:

See

“Optimizing

XL

Fortran

Programs”

on

page

305.

Some

of

the

options

in

“Options

for

Floating-Point

Processing”

on

page

86

can

also

improve

performance,

but

you

must

use

them

with

care

to

avoid

error

conditions

and

incorrect

results.

Table

5.

Options

for

Performance

Optimization

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-O[level]

-qoptimize[=level]

-qnooptimize

OPTimize[(level)]

NOOPTimize

Specifies

whether

code

is

optimized

during

compilation

and,

if

so,

at

which

level

(0,

2,

3,

4,

or

5).

Default:

-qnooptimize

114

70

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

5.

Options

for

Performance

Optimization

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-P{v|k}[!]

Invokes

the

selected

optimizing

preprocessor.

Adding

!

prevents

the

compilation

step

from

following

preprocessing.

Note:

The

preprocessors

are

available

as

separate

vendor-logo

products.

Default:

No

preprocessing.

117

-p

-pg

Sets

up

the

object

file

for

profiling.

Default:

No

profiling.

118

-Q

-Q!

-Q+names

-Q-names

Specifies

whether

procedures

are

inlined

and/or

particular

procedures

that

should

or

should

not

be

inlined.

names

is

a

list

of

procedure

names

separated

by

colons.

Default:

No

inlining.

119

-qalias=

{[no]aryovrlp

|

[no]intptr|

[no]pteovrlp|

[no]std}...]

ALIAS(

{[NO]ARYOVRLP

|[NO]INTPTR

|[NO]PTEOVRLP

|[NO]STD}...

)

Indicates

whether

a

program

contains

certain

categories

of

aliasing.

The

compiler

limits

the

scope

of

some

optimizations

when

there

is

a

possibility

that

different

names

are

aliases

for

the

same

storage

locations.

Default:

-
qalias=aryovrlp:nointptr:pteovrlp:std

for

the

xlf90,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90,

and

f95

commands;

-qalias=

aryovrlp:intptr:pteovrlp:std

for

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77,

commands.

122

-qalign={[no]4k|

struct

{=subopt}|

bindc

{=subopt}}

ALIGN(

{[NO]4K|

STRUCT{(subopt)}|

BINDC{(subopt)}})

Specifies

the

alignment

of

data

objects

in

storage,

which

avoids

performance

problems

with

misaligned

data.

The

[no]4k,

bindc,

and

struct

options

can

be

specified

and

are

not

mutually

exclusive.

The

[no]4k

option

is

useful

primarily

in

combination

with

logical

volume

I/O

and

disk

striping.

Default:

-
qalign=no4k:struct=natural:bindc=power

125

-qarch=architecture

Controls

which

instructions

the

compiler

can

generate.

Changing

the

default

can

improve

performance

but

might

produce

code

that

can

only

be

run

on

specific

machines.

The

choices

are

auto,

com,

pwr,

pwr2

(or

pwrx),

pwr2s,

p2sc,

601,

603,

604,

ppc,

ppcgr,

ppc64,

ppc64gr,

ppc64grsq,

rs64a,

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

and

ppc970.

Default:

-qarch=com

if

you

specify

-q32,

which

uses

only

instructions

that

are

common

to

all

platforms.

If

you

specify

-q64,

the

default

is

ppc64,

which

allows

you

to

run

the

executable

file

on

any

64-bit

PowerPC

hardware

platform.

127

-qassert={

deps

|

nodeps

|

itercnt=n}

Provides

information

about

the

characteristics

of

the

files

that

can

help

to

fine-tune

optimizations.

Default:

-qassert=deps:itercnt=1024

132

XL

Fortran

Compiler-Option

Reference

71

Table

5.

Options

for

Performance

Optimization

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qcache={

auto

|

assoc=number

|

cost=cycles

|

level=level

|

line=bytes

|

size=Kbytes

|

type={C|c|D|d|I|i}}[:...]

Specifies

the

cache

configuration

for

a

specific

execution

machine.

The

compiler

uses

this

information

to

tune

program

performance,

especially

for

loop

operations

that

can

be

structured

(or

blocked)

to

process

only

the

amount

of

data

that

can

fit

into

the

data

cache.

Default:

The

compiler

uses

typical

values

based

on

the

-qtune

setting,

the

-qarch

setting,

or

both

settings.

137

-qcompact

-qnocompact

COMPACT

NOCOMPACT

Reduces

optimizations

that

increase

code

size.

Default:

-qnocompact

142

-qdirectstorage

-qnodirectstorage

Informs

the

compiler

that

a

given

compilation

unit

may

reference

write-through-enabled

or

cache-inhibited

storage.

Use

this

option

with

discretion.

It

is

intended

for

programmers

who

know

how

the

memory

and

cache

blocks

work,

and

how

to

tune

their

applications

for

optimal

performance.

Default:

-qnodirectstorage

150

-qessl

Allows

the

use

of

ESSL

routines

in

place

of

Fortran

90

Intrinsic

Procedures.

Use

the

ESSL

Serial

Library

when

linking

with

-lessl.

Use

the

ESSL

SMP

Library

when

linking

with

-lesslsmp.

Default:

-qnoessl

155

-qfdpr

-qnofdpr

Provides

object

files

with

information

needed

for

theAIX

fdpr

(Feedback

Directed

Program

Restructuring)

performance-tuning

utility

to

optimize

the

resulting

executable

file.

Default:

-qnofdpr

160

-qhot[=suboptions]

-qnohot

HOT[=suboptions]

NOHOT

The

-qhot

compiler

option

is

a

powerful

alternative

to

hand

tuning

that

provides

opportunities

to

optimize

loops

and

array

language.

The

-qhot

compiler

option

will

always

attempt

to

optimize

loops,

regardless

of

the

suboptions

you

specify.

Default:

-qnohot

171

-qipa[=suboptions]

|

-qnoipa

Enhances

-O

optimization

by

doing

detailed

analysis

across

procedures

(interprocedural

analysis

or

IPA).

Default:

-O

analyzes

each

subprogram

separately,

ruling

out

certain

optimizations

that

apply

across

subprogram

boundaries.

Note

that

specifying

-O5

is

equivalent

to

specifying

-O4

and

-qipa=level=2.

182

-qkeepparm

-qnokeepparm

Ensures

that

incoming

procedure

parameters

are

stored

on

the

stack

even

when

optimizing.

Default:

-qnokeepparm

188

72

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

5.

Options

for

Performance

Optimization

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qlargepage

-qnolargepage

Indicates

to

the

compiler

that

a

program,

designed

to

execute

in

a

large

page

memory

environment,

can

take

advantage

of

large

16

MB

pages

provided

on

POWER4

and

higher

based

systems.

Default:

-qnolargepage

191

-qmaxmem=

Kbytes

MAXMEM

(Kbytes)

Limits

the

amount

of

memory

that

the

compiler

allocates

while

performing

specific,

memory-intensive

optimizations

to

the

specified

number

of

kilobytes.

A

value

of

-1

allows

optimization

to

take

as

much

memory

as

it

needs

without

checking

for

limits.

Default:

-qmaxmem=2048;

At

-O3,

-O4,

and

-O5,

-qmaxmem=-1.

199

-qOBJect

-qNOOBJect

OBJect

NOOBJect

Specifies

whether

to

produce

an

object

file

or

to

stop

immediately

after

checking

the

syntax

of

the

source

files.

Default:

-qobject

207

-qpdf{1|2}

Tunes

optimizations

through

profile-directed

feedback

(PDF),

where

results

from

sample

program

execution

are

used

to

improve

optimization

near

conditional

branches

and

in

frequently

executed

code

sections.

Default:

Optimizations

use

fixed

assumptions

about

branch

frequency

and

other

statistics.

210

-qprefetch

|

-qnoprefetch

Indicates

whether

or

not

the

prefetch

instructions

should

be

inserted

automatically

by

the

compiler.

Default:

-qprefetch

220

-qsaveopt

-qnosaveopt

Saves

the

command-line

options

used

for

compiling

a

source

file

in

the

corresponding

object

file.

Default:

-qnosaveopt

229

-qshowpdf

-qnoshowpdf

Adds

additional

call

and

block

count

profiling

information

to

an

executable.

This

option

is

used

together

with

the

-qpdf1

option.

Default:

-qnoshowpdf

231

-qsmallstack

-qnosmallstack

Specifies

that

the

compiler

will

minimize

stack

usage

where

possible.

Default:

-qnosmallstack

233

-qsmp[=suboptions]

-qnosmp

When

used

with

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

or

xlf95_r7,

controls

automatic

parallelization

of

loops,

user-directed

parallelization

of

loops

and

other

items,

and

the

choice

of

chunking

algorithm.

Default:

-qnosmp

234

XL

Fortran

Compiler-Option

Reference

73

Table

5.

Options

for

Performance

Optimization

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-NSbytes

-qSPILLsize=

bytes

SPILLsize

(bytes)

Specifies

the

size

of

internal

program

storage

areas.

Default:

-NS512

113

-qstrict

-qnostrict

STRICT

NOSTRICT

Ensures

that

optimizations

done

by

the

-O3,

-O4,

-O5,

-qhot,

and

-qipa

options

do

not

alter

the

semantics

of

a

program.

Default:

With

-O3

and

higher

levels

of

optimization

in

effect,

code

may

be

rearranged

so

that

results

or

exceptions

are

different

from

those

in

unoptimized

programs.

For

-O2,

the

default

is

-qstrict.

This

option

is

ignored

for

-qnoopt.

241

-qstrictieeemod

-qnostrictieeemod

STRICTIEEE-

MOD

NOSTRICTIEEE-

MOD

Specifies

whether

the

compiler

will

adhere

to

the

Fortran

2003

IEEE

arithmetic

rules

for

the

ieee_arithmetic

and

ieee_exceptions

intrinsic

modules.

Default:

-qstrictieeemod

242

-qstrict_induction

-qnostrict_induction

Prevents

the

compiler

from

performing

induction

(loop

counter)

variable

optimizations.

These

optimizations

may

be

unsafe

(may

alter

the

semantics

of

your

program)

when

there

are

integer

overflow

operations

involving

the

induction

variables.

Default:

-qnostrict_induction

243

-qthreaded

Specifies

that

the

compiler

should

generate

thread-safe

code.

This

is

turned

on

by

default

for

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

and

xlf95_r7

commands.

250

-qtune=implementation

Tunes

instruction

selection,

scheduling,

and

other

implementation-dependent

performance

enhancements

for

a

specific

implementation

of

a

hardware

architecture.

The

following

settings

are

valid:

auto,

pwr,

pwr2

(or

pwrx),

pwr2s,

p2sc,

601,

603,

604,

rs64a,

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

or

ppc970.

Default:

-qtune=pwr2,

if

you

specify

-q32

and

enable

the

-qarch=com

option.

If

you

specify

-q64

and

enable

the

-qarch=ppc

option,

the

default

is

-qtune=pwr3.

251

-qunroll

[=auto

|

yes]

-qnounroll

Specifies

whether

the

compiler

is

allowed

to

automatically

unroll

DO

loops.

Default:

-qunroll=auto

255

-qunwind

-qnounwind

UNWIND

NOUNWIND

Specifies

default

behavior

for

saving

and

restoring

from

non-volatile

registers

during

a

procedure

call.

Default:

-qunwind

256

-qversion

-qnoversion

Displays

the

version

and

release

of

the

invoking

compiler.

Default:

-qnoversion

257

74

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

5.

Options

for

Performance

Optimization

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qzerosize

-qnozerosize

ZEROSIZE

NOZEROSIZE

Improves

performance

of

FORTRAN

77

and

some

Fortran

90

and

Fortran

95

programs

by

preventing

checking

for

zero-sized

character

strings

and

arrays.

Default:

-qzerosize

for

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90,

and

f95

commands

and

-qnozerosize

for

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

(meaning

these

commands

cannot

be

used

for

programs

that

contain

zero-sized

objects).

268

Options

for

Error

Checking

and

Debugging

The

following

options

help

you

avoid,

detect,

and

correct

problems

in

your

XL

Fortran

programs

and

can

save

you

having

to

refer

as

frequently

to

“Problem

Determination

and

Debugging”

on

page

369.

In

particular,

-qlanglvl

helps

detect

portability

problems

early

in

the

compilation

process

by

warning

of

potential

violations

of

the

Fortran

standards.

These

can

be

due

to

extensions

in

the

program

or

due

to

compiler

options

that

allow

such

extensions.

Other

options,

such

as

-C

and

-qflttrap,

detect

and/or

prevent

run-time

errors

in

calculations,

which

could

otherwise

produce

incorrect

output.

Because

these

options

require

additional

checking

at

compile

time

and

some

of

them

introduce

run-time

error

checking

that

slows

execution,

you

may

need

to

experiment

to

find

the

right

balance

between

extra

checking

and

slower

compilation

and

execution

performance.

Using

these

options

can

help

to

minimize

the

amount

of

problem

determination

and

debugging

you

have

to

do.

Other

options

you

may

find

useful

while

debugging

include:

v

“-#

Option”

on

page

91,

“-v

Option”

on

page

273,

and

“-V

Option”

on

page

274

v

“-qalias

Option”

on

page

122

v

“-qci

Option”

on

page

141

v

“-qobject

Option”

on

page

207

v

“-qreport

Option”

on

page

225

v

“-qsource

Option”

on

page

239

Table

6.

Options

for

Debugging

and

Error

Checking

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-C

-qcheck

-qnocheck

CHECK

NOCHECK

Checks

each

reference

to

an

array

element,

array

section,

or

character

substring

for

correctness.

Out-of-bounds

references

are

reported

as

severe

errors

if

found

at

compile

time

and

generate

SIGTRAP

signals

at

run

time.

Default:

-qnocheck

103

XL

Fortran

Compiler-Option

Reference

75

Table

6.

Options

for

Debugging

and

Error

Checking

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-D

-qdlines

-qnodlines

DLINES

NODLINES

Specifies

whether

fixed

source

form

lines

with

a

D

in

column

1

are

compiled

or

treated

as

comments.

Default:

-qnodlines

105

-g

-qdbg

-qnodbg

DBG

NODBG

Generates

debug

information

for

use

by

a

symbolic

debugger.

Default:

-qnodbg

108

-qdpcl

-qnodpcl

DPCL

NODPCL

Generates

symbols

that

tools

based

on

the

Dynamic

Probe

Class

Library

(DPCL)

can

use

to

see

the

structure

of

an

executable

file.

Default:

-qnodpcl

153

-qextchk

-qnoextchk

EXTCHK

NOEXTCHK

Sets

up

type-checking

information

for

common

blocks,

procedure

definitions,

procedure

references,

and

module

data.

Later,

the

linker

can

detect

mismatches

across

compilation

units

by

using

this

information.

Default:

-qnoextchk

156

-qflttrap

[=suboptions]

-qnoflttrap

FLTTRAP

[(suboptions)]

NOFLTTRAP

Determines

what

types

of

floating-point

exception

conditions

to

detect

at

run

time.

The

program

receives

a

SIGTRAP

signal

when

the

corresponding

exception

occurs.

Default:

-qnoflttrap

165

-qfullpath

-qnofullpath

Records

the

full,

or

absolute,

path

names

of

source

and

include

files

in

object

files

compiled

with

debugging

information

(-g

option).

Default:

The

relative

path

names

of

source

files

are

recorded

in

the

object

files.

169

-qhalt=sev

HALT(sev)

Stops

before

producing

any

object,

executable,

or

assembler

source

files

if

the

maximum

severity

of

compile-time

messages

equals

or

exceeds

the

specified

severity.

severity

is

one

of

i,

l,

w,

e,

s,

u,

or

q,

meaning

informational,

language,

warning,

error,

severe

error,

unrecoverable

error,

or

a

severity

indicating

“don’t

stop”.

Default:

-qhalt=S

170

-qinitauto[=hex_value]

-qnoinitauto

Initializes

each

byte

or

word

(4

bytes)

of

storage

for

automatic

variables

to

a

specific

value,

depending

on

the

length

of

the

hex_value.

This

helps

you

to

locate

variables

that

are

referenced

before

being

defined.

For

example,

by

using

both

the

-qinitauto

option

to

initialize

REAL

variables

with

a

NaNS

value

and

the

-qflttrap

option,

it

is

possible

to

identify

references

to

uninitialized

REAL

variables

at

run

time.

Default:

-qnoinitauto.

If

you

specify

-qinitauto

without

a

hex_value,

the

compiler

initializes

the

value

of

each

byte

of

automatic

storage

to

zero.

177

76

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

6.

Options

for

Debugging

and

Error

Checking

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qlanglvl={

77std

|

90std

|

90pure

|

90ext

|

95std

|

95pure

|

extended}

LANGLVL({

77STD

|

90STD

|

90PURE

|

90EXT

|

95STD

|

95PURE

|

EXTENDED})

Determines

which

language

standard

(or

superset,

or

subset

of

a

standard)

to

consult

for

nonconformance.

It

identifies

nonconforming

source

code

and

also

options

that

allow

such

nonconformances.

Default:

-qlanglvl=extended

189

-qsaa

-qnosaa

SAA

NOSAA

Checks

for

conformance

to

the

SAA

FORTRAN

language

definition.

It

identifies

nonconforming

source

code

and

also

options

that

allow

such

nonconformances.

Default:

-qnosaa

227

-qsigtrap[=

trap_handler]

Installs

xl__trce

or

a

predefined

or

user-written

trap

handler

in

a

main

program.

Default:

No

trap

handler

installed;

program

core

dumps

when

a

trap

instruction

is

executed.

232

-qtbtable={none

|

small

|

full}

Limits

the

amount

of

debugging

traceback

information

in

object

files,

to

reduce

the

size

of

the

program.

Default:

Full

traceback

information

in

the

object

file

when

compiling

non-optimized

(without

-O)

or

for

debugging

(with

-g).

Otherwise,

a

small

amount

of

traceback

information

in

the

object

file.

249

-qxlines

-qnoxlines

XLINES

NOXLINES

Specifies

whether

fixed

source

form

lines

with

a

X

in

column

1

are

treated

as

source

code

and

compiled,

or

treated

instead

as

comments.

Default:

-qnoxlines

265

Options

That

Control

Listings

and

Messages

The

following

options

determine

whether

the

compiler

produces

a

listing

(.lst

file),

what

kinds

of

information

go

into

the

listing,

and

what

the

compiler

does

about

any

error

conditions

it

detects.

Some

of

the

options

in

“Options

for

Error

Checking

and

Debugging”

on

page

75

can

also

produce

compiler

messages.

Table

7.

Options

That

Control

Listings

and

Messages

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-#

Generates

information

on

the

progress

of

the

compilation

without

actually

running

the

individual

components.

Default:

No

progress

messages

are

produced.

91

XL

Fortran

Compiler-Option

Reference

77

Table

7.

Options

That

Control

Listings

and

Messages

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qattr[=full]

-qnoattr

ATTR[(FULL)]

NOATTR

Specifies

whether

to

produce

the

attribute

component

of

the

attribute

and

cross-reference

section

of

the

listing.

Default:

-qnoattr

133

-qflag=

listing_severity:

terminal_severity

-w

FLAG

(listing_severity,

terminal_severity)

Limits

the

diagnostic

messages

to

those

of

a

specified

level

or

higher.

Only

messages

with

severity

listing_severity

or

higher

are

written

to

the

listing

file.

Only

messages

with

severity

terminal_severity

or

higher

are

written

to

the

terminal.

-w

is

a

short

form

for

-qflag=e:e.

Default:

-qflag=i:i

162

-qlist

-qnolist

LIST

NOLIST

Specifies

whether

to

produce

the

object

section

of

the

listing.

Default:

-qnolist

195

-qlistopt

-qnolistopt

LISTOPT

NOLISTOPT

Determines

whether

to

show

the

setting

of

every

compiler

option

in

the

listing

file

or

only

selected

options.

These

selected

options

include

those

specified

on

the

command

line

or

directives

plus

some

that

are

always

put

in

the

listing.

Default:

-qnolistopt

196

-qnoprint

Prevents

the

listing

file

from

being

created,

regardless

of

the

settings

of

other

listing

options.

Default:

Listing

is

produced

if

you

specify

any

of

-qattr,

-qlist,

-qlistopt,

-qphsinfo,

-qreport,

-qsource,

or

-qxref.

205

-qphsinfo

-qnophsinfo

PHSINFO

NOPHSINFO

Determines

whether

timing

information

is

displayed

on

the

terminal

for

each

compiler

phase.

Default:

-qnophsinfo

214

-qreport[={smplist

|

hotlist}...]

-qnoreport

REPORT

[({SMPLIST

|

HOTLIST}...)]

NOREPORT

Determines

whether

to

produce

transformation

reports

showing

how

the

program

is

parallelized

and

how

loops

are

optimized.

Default:

-qnoreport

225

-qsource

-qnosource

SOURCE

NOSOURCE

Determines

whether

to

produce

the

source

section

of

the

listing.

Default:

-qnosource

239

-qsuppress

[=

nnnn-mmm[:nnnn-mmm...]

|

cmpmsg]

|

-qnosuppress

Specifies

which

messages

to

suppress

from

the

output

stream.

245

-qxref

-qnoxref

-qxref=full

XREF

NOXREF

XREF(FULL)

Determines

whether

to

produce

the

cross-reference

component

of

the

attribute

and

cross-reference

section

of

the

listing.

Default:

-qnoxref

267

78

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

7.

Options

That

Control

Listings

and

Messages

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-S

Produces

one

or

more

.s

files

showing

equivalent

assembler

source

for

each

Fortran

source

file.

Default:

No

equivalent

assembler

source

is

produced.

269

-v

Traces

the

progress

of

the

compilation

by

displaying

the

name

and

parameters

of

each

compiler

component

that

is

executed

by

the

invocation

command.

Default:

No

progress

messages

are

produced.

273

-V

Traces

the

progress

of

the

compilation

by

displaying

the

name

and

parameters

of

each

compiler

component

that

is

executed

by

the

invocation

command.

These

are

displayed

in

a

shell-executable

format.

Default:

No

progress

messages

are

produced.

274

Options

for

Compatibility

The

following

options

help

you

maintain

compatibility

between

your

XL

Fortran

source

code

on

past,

current,

and

future

hardware

platforms

or

help

you

port

programs

to

XL

Fortran

with

a

minimum

of

changes.

Related

Information:

“Porting

Programs

to

XL

Fortran”

on

page

397

discusses

this

subject

in

more

detail.

“Duplicating

the

Floating-Point

Results

of

Other

Systems”

on

page

295

explains

how

to

use

some

of

the

options

in

“Options

for

Floating-Point

Processing”

on

page

86

to

achieve

floating-point

results

compatible

with

other

systems.

The

-qfree=ibm

form

of

the

“-qfree

Option”

on

page

168

also

provides

compatibility

with

VS

FORTRAN

free

source

form.

XL

Fortran

Compiler-Option

Reference

79

Table

8.

Options

for

Compatibility

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qautodbl=setting

AUTODBL(setting)

Provides

an

automatic

means

of

converting

single-precision

floating-point

calculations

to

double-precision

and

of

converting

double-precision

calculations

to

extended-precision.

Use

one

of

the

following

settings:

none,

dbl,

dbl4,

dbl8,

dblpad,

dblpad4,

or

dblpad8.

Default:

-
qautodbl=none

134

-qcclines

-qnocclines

CCLINES

NOCCLINES

Determines

whether

the

compiler

recognizes

conditional

compilation

lines.

Default:

-qcclines

if

you

have

specified

the

-qsmp=omp

option;

otherwise,

-qnocclines.

139

-qctyplss

[=([no]arg)]

-qnoctyplss

CTYPLSS

[([NO]ARG)]

NOCTYPLSS

Specifies

whether

character

constant

expressions

are

allowed

wherever

typeless

constants

may

be

used.

This

language

extension

might

be

needed

when

you

are

porting

programs

from

other

platforms.

Suboption

arg

specifies

that

Hollerith

constants

used

as

actual

arguments

will

be

treated

as

integer

actual

arguments.

Default:

-qnoctyplss

144

-qddim

-qnoddim

DDIM

NODDIM

Specifies

that

the

bounds

of

pointee

arrays

are

re-evaluated

each

time

the

arrays

are

referenced

and

removes

some

restrictions

on

the

bounds

expressions

for

pointee

arrays.

Default:

-qnoddim

147

80

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

8.

Options

for

Compatibility

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qdpc

-qdpc=e

-qnodpc

DPC

DPC(E)

NODPC

Increases

the

precision

of

real

constants,

for

maximum

accuracy

when

assigning

real

constants

to

DOUBLE

PRECISION

variables.

This

language

extension

might

be

needed

when

you

are

porting

programs

from

other

platforms.

Default:

-qnodpc

152

-qescape

-qnoescape

ESCAPE

NOESCAPE

Specifies

how

the

backslash

is

treated

in

character

strings,

Hollerith

constants,

H

edit

descriptors,

and

character

string

edit

descriptors.

It

can

be

treated

as

an

escape

character

or

as

a

backslash

character.

This

language

extension

might

be

needed

when

you

are

porting

programs

from

other

platforms.

Default:

-qescape

154

-qextern=names

Allows

user-written

procedures

to

be

called

instead

of

XL

Fortran

intrinsics.

names

is

a

list

of

procedure

names

separated

by

colons.

The

procedure

names

are

treated

as

if

they

appear

in

an

EXTERNAL

statement

in

each

compilation

unit

being

compiled.

If

any

of

your

procedure

names

conflict

with

XL

Fortran

intrinsic

procedures,

use

this

option

to

call

the

procedures

in

the

source

code

instead

of

the

intrinsic

ones.

Default:

Names

of

intrinsic

procedures

override

user-written

procedure

names

when

they

are

the

same.

157

XL

Fortran

Compiler-Option

Reference

81

Table

8.

Options

for

Compatibility

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qextname[=name:name...]

-qnoextname

EXTNAME[(name:name...)]

NOEXTNAME

Adds

an

underscore

to

the

names

of

all

global

entities,

which

helps

in

porting

programs

from

systems

where

this

is

a

convention

for

mixed-language

programs.

Default:

-qnoextname

158

-qinit=f90ptr

INIT(f90ptr)

Makes

the

initial

association

status

of

pointers

disassociated.

Default:

The

default

association

status

of

pointers

is

undefined.

176

-qintlog

-qnointlog

INTLOG

NOINTLOG

Specifies

that

you

can

mix

integer

and

logical

values

in

expressions

and

statements.

Default:

-qnointlog

179

-qintsize=bytes

INTSIZE(bytes)

Sets

the

size

of

default

INTEGER

and

LOGICAL

values.

Default:

-qintsize=4

180

-qlog4

-qnolog4

LOG4

NOLOG4

Specifies

whether

the

result

of

a

logical

operation

with

logical

operands

is

a

LOGICAL(4)

or

is

a

LOGICAL

with

the

maximum

length

of

the

operands.

Default:

-qnolog4

198

-qmodule=mangle81

Specifies

that

the

compiler

should

use

the

XL

Fortran

Version

8.1

naming

convention

for

non-intrinsic

module

files.

Default:

The

compiler

uses

the

current

naming

convention

for

non-intrinsic

module

names.

This

convention

is

not

compatible

with

that

used

by

previous

versions

of

the

compiler.

204

82

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

8.

Options

for

Compatibility

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qnullterm

-qnonullterm

NULLTERM

NONULLTERM

Appends

a

null

character

to

each

character

constant

expression

that

is

passed

as

a

dummy

argument,

to

make

it

more

convenient

to

pass

strings

to

C

functions.

Default:

-qnonullterm

206

-1

-qonetrip

-qnoonetrip

ONETRIP

NOONETRIP

Executes

each

DO

loop

in

the

compiled

program

at

least

once

if

its

DO

statement

is

executed,

even

if

the

iteration

count

is

0.

Default:

-qnoonetrip

92

-qport

[=suboptions]

-qnoport

PORT

[(suboptions)]

NOPORT

Increases

flexibility

when

porting

programs

to

XL

Fortran

by

providing

a

number

of

options

to

accommodate

other

Fortran

language

extensions.

Default:

-qnoport

217

-qposition=

{appendold

|

appendunknown}

POSITION(

{APPENDOLD

|

APPENDUNKNOWN})

Positions

the

file

pointer

at

the

end

of

the

file

when

data

is

written

after

an

OPEN

statement

with

no

POSITION=

specifier

and

the

corresponding

STATUS=

value

(OLD

or

UNKNOWN)

is

specified.

Default:

Depends

on

the

I/O

specifiers

in

the

OPEN

statement

and

on

the

compiler

invocation

command:

-qposition=appendold

for

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands

and

the

defined

Fortran

90

and

Fortran

95

behaviors

for

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90

and

f95

commands.

219

XL

Fortran

Compiler-Option

Reference

83

Table

8.

Options

for

Compatibility

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qqcount

-qnoqcount

QCOUNT

NOQCOUNT

Accepts

the

Q

character-count

edit

descriptor

(Q)

as

well

as

the

extended-precision

Q

edit

descriptor

(Qw.d).

With

-qnoqcount,

all

Q

edit

descriptors

are

interpreted

as

the

extended-precision

Q

edit

descriptor.

Default:

-qnoqcount

221

-qrealsize=bytes

REALSIZE(bytes)

Sets

the

default

size

of

REAL,

DOUBLE

PRECISION,

COMPLEX,

and

DOUBLE

COMPLEX

values.

Default:

-qrealsize=4

222

-qsave[={all

|

defaultinit}]

-qnosave

SAVE{(ALL

|

DEFAULTINIT)}

NOSAVE

Specifies

the

default

storage

class

for

local

variables.

-qsave,

-qsave=all,

or

-qsave=defaultinit

sets

the

default

storage

class

to

STATIC,

while

-qnosave

sets

it

to

AUTOMATIC.

Default:

-qnosave

-qsave

is

turned

on

by

default

for

xlf,

xlf_r,

xlf_r7,

f77,

or

fort77

to

duplicate

the

behavior

of

FORTRAN77

commands.

228

-qsclk=[centi

|

micro

]

Specifies

that

when

returning

a

value

using

the

SYSTEM_CLOCK

intrinsic

procedure,

the

compiler

will

use

centisecond

resolution.

You

can

specify

a

microsecond

resolution

by

using

–qsclk=micro.

Default:

-qsclk=centi

230

-qswapomp

-qnoswapomp

SWAPOMP

NOSWAPOMP

Specifies

that

the

compiler

should

recognize

and

substitute

OpenMP

routines

in

XL

Fortran

programs.

Default:

-qswapomp

247

84

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

8.

Options

for

Compatibility

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-u

-qundef

-qnoundef

UNDEF

NOUNDEF

Specifies

whether

implicit

typing

of

variable

names

is

permitted.

-u

and

-qundef

have

the

same

effect

as

the

IMPLICIT

NONE

statement

that

appears

in

each

scope

that

allows

implicit

statements.

Default:

-qnoundef

272

-qwarn64

-qnowarn64

Detects

the

truncation

of

an

8-byte

integer

pointer

to

4

bytes.

Identifies,

through

informational

messsages,

statements

that

might

cause

problems

during

the

32-bit

to

64-bit

migration.

Default:

-qnowarn64

-qxflag=oldtab

XFLAG(OLDTAB)

Interprets

a

tab

in

columns

1

to

5

as

a

single

character

(for

fixed

source

form

programs),

for

compatibility

with

XL

Fortran

Version

1.

Default:

Tab

is

interpreted

as

one

or

more

characters.

259

-qxlf77=settings

XLF77(settings)

Provides

backward

compatibility

with

XL

Fortran

for

AIX®

Versions

1

and

2

aspects

of

language

semantics

and

I/O

data

format

that

have

changed.

Most

of

these

changes

are

required

by

the

Fortran

90

standard.

Default:

Default

suboptions

are

blankpad,

nogedit77,

nointarg,

nointxor,

leadzero,

nooldboz,

nopersistent,

and

nosofteof

for

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90,

and

f95

commands

and

are

the

exact

opposite

for

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands.

261

XL

Fortran

Compiler-Option

Reference

85

Table

8.

Options

for

Compatibility

(continued)

Command-Line

Option

@PROCESS

Directive

Description

See

Page

-qxlf90=

{[no]signedzero

|

[no]autodealloc}

XLF90(

{[no]signedzero

|

[no]autodealloc})

Determines

whether

the

compiler

provides

the

Fortran

90

or

the

Fortran

95

level

of

support

for

certain

aspects

of

the

language.

Default:

The

default

suboptions

are

signedzero

and

autodealloc

for

the

xlf95,

xlf95_r,

xlf95_r7,

and

f95

invocation

commands.

For

all

other

invocation

commands,

the

default

suboptions

are

nosignedzero

and

noautodealloc.

263

Options

for

Floating-Point

Processing

To

take

maximum

advantage

of

the

system

floating-point

performance

and

precision,

you

may

need

to

specify

details

of

how

the

compiler

and

XLF-compiled

programs

perform

floating-point

calculations.

Related

Information:

See

“-qflttrap

Option”

on

page

165

and

“Duplicating

the

Floating-Point

Results

of

Other

Systems”

on

page

295.

Table

9.

Options

for

Floating-Point

Processing

Command-
Line

Option

@PROCESS

Directive

Description

See

Page

-qfloat=options

FLOAT(options)

Determines

how

the

compiler

generates

or

optimizes

code

to

handle

particular

types

of

floating-point

calculations.

Default:

Default

suboptions

are

nofltint,

fold,

nohsflt,

nohssngl,

maf,

nonans,

norndsngl,

norrm,

norsqrt,

and

nostrictnmaf;

some

of

these

settings

are

different

with

-O3

optimization

turned

on

or

with

-qarch=ppc.

163

-qieee={

Near

|

Minus

|

Plus

|

Zero}

-y{n|m|p|z}

IEEE({Near

|

Minus

|

Plus

|

Zero})

Specifies

the

rounding

mode

for

the

compiler

to

use

when

evaluating

constant

floating-point

expressions

at

compile

time.

Default:

-qieee=near

175

Options

That

Control

Linking

The

following

options

control

the

way

the

ld

command

processes

object

files

during

compilation.

Some

of

these

options

are

passed

on

to

ld

and

are

not

processed

by

the

compiler

at

all.

You

can

actually

include

ld

options

on

the

compiler

command

line,

because

the

compiler

passes

unrecognized

options

on

to

the

linker.

86

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

In

the

table,

an

*

indicates

that

the

option

is

processed

by

the

ld

command,

rather

than

the

XL

Fortran

compiler;

you

can

find

more

information

about

these

options

in

the

AIX

information

for

the

ld

command.

Related

Information:

The

“-qextchk

Option”

on

page

156

enables

some

extra

consistency

checking

during

linking.

Other

linker

options

you

might

find

helpful

are

the

following:

v

-brename

(to

change

individual

symbol

names

to

avoid

unresolved

references)

v

-bmap

(to

produce

a

map

file

showing

information

such

as

sizes

of

common

blocks)

Table

10.

Options

That

Control

Linking

Command-
Line

Option

@PROCESS

Directive

Description

See

Page

-b64*

Instructs

ld

to

bind

64-bit

objects

in

64-bit

mode.

94

-bdynamic*

-bshared*

-bstatic*

These

options

are

toggles

used

to

control

the

processing

of

-l

options

and

the

way

that

shared

objects

are

processed.

95

-bhalt:error_level*

Specifies

the

maximum

error

level

allowed

before

linker

command

processing

halts.

Default:

-bhalt:4,

as

specified

in

the

configuration

file.

97

-bloadmap:name*

Requests

that

a

log

of

linker

actions

and

messages

be

saved

in

file

name.

Default:

No

log

is

kept.

98

-bmaxdata:bytes*

-bmaxstack:bytes*

Specifies

the

maximum

amount

of

space

to

reserve

for

the

program

data

segment

and

stack

segment

for

programs

where

the

size

of

these

regions

is

a

constraint.

Default:

Combined

stack

and

data

space

is

slightly

less

than

256

MB,

or

lower,

depending

on

the

limits

for

the

user

ID.

99

-brtl*

-bnortl*

Determines

which

algorithm

is

used

to

find

libraries

(specified

with

the

-l

option).

100

-c

Produces

an

object

file

instead

of

an

executable

file.

Default:

Compile

and

link-edit,

producing

an

executable

file.

104

-Ldir*

Looks

in

the

specified

directory

for

libraries

specified

by

the

-l

option.

Default:

/usr/lib

111

-lkey*

Searches

the

specified

library

file,

where

key

selects

the

file

libkey.a.

Default:

Libraries

listed

in

xlf.cfg.

112

-qpic[=large

|

small]

Generates

Position

Independent

Code

(PIC)

that

can

be

used

in

shared

libraries.

Default:

-qpic=small

216

Options

That

Control

Other

Compiler

Operations

These

options

can

help

to

do

the

following:

v

Control

internal

size

limits

for

the

compiler

XL

Fortran

Compiler-Option

Reference

87

v

Determine

names

and

options

for

commands

that

are

executed

during

compilation

v

Determine

the

bit

mode

and

instruction

set

for

the

target

architecture

Table

11.

Options

That

Control

the

Compiler

Internal

Operation

Command-
Line

Option

@PROCESS

Directive

Description

See

Page

-Bprefix

Determines

a

substitute

path

name

for

executable

files

used

during

compilation,

such

as

the

compiler

or

linker.

It

can

be

used

in

combination

with

the

-t

option,

which

determines

which

of

these

components

are

affected

by

-B.

Default:

Paths

for

these

components

are

defined

in

the

configuration

file,

the

$PATH

environment

variable,

or

both.

93

-Fconfig_file

-Fconfig_file:

stanza

-F:stanza

Specifies

an

alternative

configuration

file,

the

stanza

to

use

within

the

configuration

file,

or

both.

Default:

The

configuration

file

is

/etc/xlf.cfg,

and

the

stanza

depends

on

the

name

of

the

command

that

executes

the

compiler.

107

-q32

Sets

the

bit

mode

and

instruction

set

for

a

32-bit

target

architecture.

281

-q64

Sets

the

bit

mode

and

instruction

set

for

a

64-bit

target

architecture.

282

-qlm

-qnolm

Disables

the

license

management

control.

Default:

The

license

management

control

system

(LM)

is

on

by

default.

You

must

specify

the

compiler

option

-qnolm

to

disable

LM.

197

-tcomponents

Applies

the

prefix

specified

by

the

-B

option

to

the

designated

components.

components

can

be

one

or

more

of

p,

F,

c,

d,

I,

a,

h,

b,

z,

or

l,

with

no

separators,

corresponding

to

an

optimizing

preprocessor,

the

C

preprocessor,

the

compiler,

the

-S

disassembler,

the

interprocedural

analysis

(IPA)

tool,

the

assembler,

the

loop

optimizer,

the

code

generator,

the

binder,

and

the

linker,

respectively.

Default:

-B

prefix,

if

any,

applies

to

all

components.

270

-Wcomponent,options

Passes

the

listed

options

to

a

component

that

is

executed

during

compilation.

component

is

p,

F,

c,

d,

I,

a,

z,

or

l,

corresponding

to

an

optimizing

preprocessor,

the

C

preprocessor,

the

compiler,

the

-S

disassembler,

the

interprocedural

analysis

(IPA)

tool,

the

assembler,

the

binder,

and

the

linker,

respectively.

Default:

The

options

passed

to

these

programs

are

as

follows:

v

Those

listed

in

the

configuration

file

v

Any

unrecognized

options

on

the

command

line

(passed

to

the

linker)

275

Options

That

Are

Obsolete

or

Not

Recommended

The

following

options

are

obsolete

for

either

or

both

of

the

following

reasons:

88

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

It

has

been

replaced

by

an

alternative

that

is

considered

to

be

better.

Usually

this

happens

when

a

limited

or

special-purpose

option

is

replaced

by

one

with

a

more

general

purpose

and

additional

features.

v

We

expect

that

few

or

no

customers

use

the

feature

and

that

it

can

be

removed

from

the

product

in

the

future

with

minimal

impact

to

current

users.

Notes:

1.

If

you

do

use

any

of

these

options

in

existing

makefiles

or

compilation

scripts,

you

should

migrate

to

the

new

alternatives

as

soon

as

you

can

to

avoid

any

potential

problems

in

the

future.

2.

The

append

suboption

of

-qposition

has

been

replaced

by

appendunknown.

Table

12.

Options

That

Are

Obsolete

or

Not

Recommended

Command-
Line

Option

@PROCESS

Directive

Description

See

Page

-qcharlen=

length

CHARLEN

(length)

Obsolete.

It

is

still

accepted,

but

it

has

no

effect.

The

maximum

length

for

character

constants

and

subobjects

of

constants

is

32

767

bytes

(32

KB).

The

maximum

length

for

character

variables

is

268

435

456

bytes

(256

MB)

in

32-bit

mode.

The

maximum

length

for

character

variables

is

2**40

bytes

in

64-bit

mode.

These

limits

are

always

in

effect

and

are

intended

to

be

high

enough

to

avoid

portability

problems

with

programs

that

contain

long

strings.

-qrecur

-qnorecur

RECUR

NORECUR

Not

recommended.

Specifies

whether

external

subprograms

may

be

called

recursively.

For

new

programs,

use

the

RECURSIVE

keyword,

which

provides

a

standard-conforming

way

of

using

recursive

procedures.

If

you

specify

the

-qrecur

option,

the

compiler

must

assume

that

any

procedure

could

be

recursive.

Code

generation

for

recursive

procedures

may

be

less

efficient.

Using

the

RECURSIVE

keyword

allows

you

to

specify

exactly

which

procedures

are

recursive.

224

XL

Fortran

Compiler-Option

Reference

89

Detailed

Descriptions

of

the

XL

Fortran

Compiler

Options

The

following

alphabetical

list

of

options

provides

all

the

information

you

should

need

to

use

each

option

effectively.

How

to

read

the

syntax

information:

v

Syntax

is

shown

first

in

command-line

form,

and

then

in

@PROCESS

form

if

applicable.

v

Defaults

for

each

option

are

underlined

and

in

boldface

type.

v

Individual

required

arguments

are

shown

with

no

special

notation.

v

When

you

must

make

a

choice

between

a

set

of

alternatives,

they

are

enclosed

by

{

and

}

symbols.

v

Optional

arguments

are

enclosed

by

[

and

]

symbols.

v

When

you

can

select

from

a

group

of

choices,

they

are

separated

by

|

characters.

v

Arguments

that

you

can

repeat

are

followed

by

ellipses

(...).

90

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-#

Option

Syntax

-#

Generates

information

on

the

progress

of

the

compilation

without

actually

running

the

individual

components.

Rules

At

the

points

where

the

compiler

executes

commands

to

perform

different

compilation

steps,

this

option

displays

a

simulation

of

the

system

calls

it

would

do

and

the

system

argument

lists

it

would

pass,

but

it

does

not

actually

perform

these

actions.

Examining

the

output

of

this

option

can

help

you

quickly

and

safely

determine

the

following

information

for

a

particular

compilation:

v

What

files

are

involved

v

What

options

are

in

effect

for

each

step

It

avoids

the

overhead

of

compiling

the

source

code

and

avoids

overwriting

any

existing

files,

such

as

.lst

files.

(For

those

who

are

familiar

with

the

make

command,

it

is

similar

to

make

-n.)

Note

that

if

you

specify

this

option

with

-qipa,

the

compiler

does

not

display

linker

information

subsequent

to

the

IPA

link

step.

This

is

because

the

compiler

does

not

actually

call

IPA.

Related

Information

The

“-v

Option”

on

page

273

and

“-V

Option”

on

page

274

produce

the

same

output

but

also

performs

the

compilation.

XL

Fortran

Compiler-Option

Reference

91

-1

Option

Syntax

-1

ONETRIP

|

NOONETRIP

Executes

each

DO

loop

in

the

compiled

program

at

least

once

if

its

DO

statement

is

executed,

even

if

the

iteration

count

is

0.

This

option

provides

compatibility

with

FORTRAN

66.

The

default

is

to

follow

the

behavior

of

later

Fortran

standards,

where

DO

loops

are

not

performed

if

the

iteration

count

is

0.

Restrictions

It

has

no

effect

on

FORALL

statements,

FORALL

constructs,

or

array

constructor

implied-DO

loops.

Related

Information

-qonetrip

is

the

long

form

of

-1.

92

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-B

Option

Syntax

-Bprefix

Determines

a

substitute

path

name

for

executable

files

used

during

compilation,

such

as

the

compiler

or

linker.

It

can

be

used

in

combination

with

the

-t

option,

which

determines

which

of

these

components

are

affected

by

-B.

Arguments

prefix

is

the

name

of

a

directory

where

the

alternative

executable

files

reside.

It

must

end

in

a

/

(slash).

Rules

To

form

the

complete

path

name

for

each

component,

the

driver

program

adds

prefix

to

the

standard

program

names.

You

can

restrict

the

components

that

are

affected

by

this

option

by

also

including

one

or

more

-tmnemonic

options.

You

can

also

specify

default

path

names

for

these

commands

in

the

configuration

file.

This

option

allows

you

to

keep

multiple

levels

of

some

or

all

of

the

XL

Fortran

components

or

to

try

out

an

upgraded

component

before

installing

it

permanently.

When

keeping

multiple

levels

of

XL

Fortran

available,

you

might

want

to

put

the

appropriate

-B

and

-t

options

into

a

configuration-file

stanza

and

to

use

the

-F

option

to

select

the

stanza

to

use.

Examples

In

this

example,

an

earlier

level

of

the

XL

Fortran

components

is

installed

in

the

directory

/usr/lpp/xlf/bin.

To

test

the

upgraded

product

before

making

it

available

to

everyone,

the

system

administrator

restores

the

latest

install

image

under

the

directory

/home/jim

and

then

tries

it

out

with

commands

similar

to:

xlf95

-tchbI

-B/home/jim/usr/lpp/xlf/bin/

test_suite.f

Once

the

upgrade

meets

the

acceptance

criteria,

the

system

administrator

installs

it

over

the

old

level

in

/usr/lpp/xlf/bin.

Related

Information

See

“-t

Option”

on

page

270,

“-F

Option”

on

page

107,

“Customizing

the

Configuration

File”

on

page

15,

and

“Running

Two

Levels

of

XL

Fortran”

on

page

28.

XL

Fortran

Compiler-Option

Reference

93

-b64

Option

Syntax

-b64

The

AIX

operating

system

provides

64-bit

shared

object

files

in

both

libc.a

and

libm.a.

In

64-bit

mode,

you

can

use

the

-b64

linker

option

to

instruct

ld

to

bind

with

64-bit

objects.

Related

Information

For

more

information

on

the

64-bit

environment,

see

“Using

XL

Fortran

in

a

64-Bit

Environment”

on

page

279.

For

more

information

on

-b64,

see

AIX

General

Programming

Concepts.

94

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-bdynamic,

-bshared,

and

-bstatic

Options

Syntax

-bdynamic

|

-bshared

|

-bstatic

These

options

are

toggles

that

are

used

to

control

the

processing

of

-l

options

and

the

way

that

shared

objects

are

processed.

The

options

-bdynamic

and

-bshared

are

synonymous.

When

-bstatic

is

in

effect,

shared

objects

are

statically

linked

into

the

output

file.

When

-bdynamic

is

in

effect,

shared

objects

are

linked

dynamically.

When

-brtl

is

used

in

conjunction

with

either

-bdynamic

or

-bshared,

the

search

for

libraries

specified

with

the

-l

option

is

satisfied

by

the

suffix

.so

or

.a.

For

each

directory

searched,

a

file

with

the

suffix

.so

is

looked

for.

If

it

is

not

found,

a

file

with

the

suffix

.a

is

looked

for.

If

neither

file

is

found,

the

search

continues

with

the

next

directory.

Rules

These

options

are

passed

directly

to

the

ld

command

and

are

not

processed

by

XL

Fortran

at

all.

These

options

are

position-significant.

They

affect

all

files

that

are

specified

after

the

option

on

the

command-line.

Table

13

summarizes

how

these

options

interact

with

-brtl

and

-bnortl

to

affect

the

file

suffix

that

is

being

searched.

Table

13.

Interaction

of

New

Linker

Options

Position-significant

-bdynamic

-bshared

(default)

-bstatic

Global

Influence

-brtl

.so

.a

.a

-bnortl

(default)

.a

.a

XL

Fortran

Compiler-Option

Reference

95

Examples

xlf95

f.f

-brtl

-bshared

-lmylib

In

this

case,

the

linker

searches

for

the

library

libmylib.so

first

and

then

the

library

libmylib.a

in

each

directory

in

the

search

path

consecutively

until

either

is

encountered.

xlf95_r

f.f

-bdynamic

-llib1

-bstatic

-llib2

-brtl

In

this

case,

to

satisfy

the

first

library

specification,

the

linker

searches

for

the

library

liblib1.so

first

and

then

the

library

liblib1.a

in

each

directory

(as

described

in

the

previous

example).

However,

at

the

same

time

the

linker

only

searches

for

liblib2.a

in

those

same

libraries.

Related

Information

For

more

information

on

these

options,

see

AIX

General

Programming

Concepts.

See

also

“-brtl

Option”

on

page

100.

96

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-bhalt

Option

Syntax

-bhalt:error_level

Specifies

the

maximum

error

level

that

is

allowed

before

the

linker

(ld)

command

halts.

The

default

value

is

4,

as

specified

in

the

configuration

file.

If

any

linker

command

has

an

error

return

value

greater

than

the

value

that

is

specified

by

the

error_level

variable,

linking

stops.

Rules

This

option

is

passed

directly

to

the

ld

command

and

is

not

processed

by

XL

Fortran

at

all.

XL

Fortran

Compiler-Option

Reference

97

-bloadmap

Option

Syntax

-bloadmap:name

Requests

that

a

log

of

linker

actions

and

messages

be

saved

in

file

name.

You

can

use

the

log

to

help

diagnose

linking

problems.

For

example,

the

log

contains

information

about

type

mismatches

that

the

-qextchk

option

detected.

Rules

This

option

is

passed

directly

to

the

ld

command

and

is

not

processed

by

XL

Fortran

at

all.

98

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-bmaxdata,

-bmaxstack

Options

Syntax

-bmaxdata:bytes

-bmaxstack:bytes

Specifies

the

maximum

amount

of

space

to

reserve

for

the

program

data

segment

and

stack

segment

for

programs

where

the

size

of

these

regions

is

a

constraint.

Background

Information

The

data

segment

holds,

among

other

things,

heap

storage

that

is

used

by

the

program.

If

your

program

allocates

large

arrays,

statically

or

dynamically,

specify

-bmaxdata

when

linking

the

program.

The

resulting

executable

program

uses

the

large

data

model

and

can

have

a

data

region

larger

than

a

single

segment,

up

to

a

maximum

of

2

GB.

Refer

to

the

ld

documentation

in

the

AIX

Commands

Reference

for

allowable

values.

Note

that

since

the

compiler

might

create

temporary

arrays

during

compilation,

it

may

be

useful

to

define

a

value

for

the

-bmaxdata

compiler

option

in

anticipation

of

this.

If

the

program

has

large

amounts

of

automatic

data

or

otherwise

exceeds

the

soft

limit

on

stack

size

for

a

program,

specify

-bmaxstack

when

you

link

the

program.

Use

this

option

to

define

the

soft

limit

up

to

256

MB

for

32-bit

mode

or

up

to

the

limit

imposed

by

system

resources

for

64-bit

mode.

However,

each

main

program

or

subprogram

is

limited

to

256

MB

per

instance.

Arguments

You

can

specify

the

size

as

a

decimal,

octal

(which

is

prefixed

by

0),

or

hexadecimal

value

(which

is

prefixed

by

0x).

Rules

These

options

are

passed

directly

to

the

ld

command

and

are

not

processed

by

XL

Fortran

at

all.

Examples

xlf95

-O3

-qhot

-bmaxdata:0x20000000

huge_data_model.f

xlf95

-O3

-qhot

-bmaxstack:2000000

lots_of_automatic_data.f

Related

Information

For

a

discussion

of

the

issues

involved

in

creating

large

AIX

programs,

see

“Large

Program

Support

Overview”

in

AIX

General

Programming

Concepts.

XL

Fortran

Compiler-Option

Reference

99

-brtl

Option

Syntax

-brtl

|

-bnortl

Determines

which

algorithm

will

be

used

to

find

libraries

that

are

specified

with

the

-l

option.

Background

Information

If

-brtl

is

specified,

run-time

linking

is

enabled.

When

used

in

conjunction

with

either

-bdynamic

or

-bshared,

the

search

for

libraries

that

you

specified

with

the

-l

option

is

satisfied

by

the

suffix

.so

or

.a.

For

each

directory

searched,

a

file

with

the

suffix

.so

is

looked

for.

If

it

is

not

found,

a

file

with

the

suffix

.a

is

looked

for.

If

neither

file

is

found,

the

search

continues

with

the

next

directory.

Table

13

on

page

95

gives

a

graphical

representation

of

how

these

options

combine

to

affect

the

file

suffix

being

searched

for.

Rules

These

options

are

passed

directly

to

the

ld

command

and

are

not

processed

by

XL

Fortran

at

all.

Only

the

last

specified

of

these

options

will

be

used.

These

options

have

a

global

effect;

regardless

of

where

they

appear

on

the

command

line,

they

affect

the

entire

command.

Examples

xlf95

-brtl

f.f

-lmylib

xlf95_r

-bnortl

f.f

-bdynamic

-llib1

-bstatic

-llib2

Note

that

if

you

add

-brtl

to

the

end

of

the

last

example,

it

will

override

the

earlier

occurrence

of

-bnortl.

Related

Information

For

more

information

on

these

options,

see

AIX

General

Programming

Concepts.

See

also

“-bdynamic,

-bshared,

and

-bstatic

Options”

on

page

95.

100

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-bshared

Option

Related

Information

See

“-bdynamic,

-bshared,

and

-bstatic

Options”

on

page

95.

XL

Fortran

Compiler-Option

Reference

101

-bstatic

Option

Related

Information

See

“-bdynamic,

-bshared,

and

-bstatic

Options”

on

page

95.

102

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-C

Option

Syntax

-C

CHECK

|

NOCHECK

Checks

each

reference

to

an

array

element,

array

section,

or

character

substring

for

correctness.

Rules

At

compile

time,

if

the

compiler

can

determine

that

a

reference

goes

out

of

bounds,

the

severity

of

the

error

reported

is

increased

to

S

(severe)

when

this

option

is

specified.

At

run

time,

if

a

reference

goes

out

of

bounds,

the

program

generates

a

SIGTRAP

signal.

By

default,

this

signal

ends

the

program

and

produces

a

core

dump.

This

is

expected

behaviour

and

does

not

indicate

there

is

a

defect

in

the

compiler

product.

Because

the

run-time

checking

can

slow

execution,

you

should

decide

which

is

the

more

important

factor

for

each

program:

the

performance

impact

or

the

possibility

of

incorrect

results

if

an

error

goes

undetected.

You

might

decide

to

use

this

option

only

while

testing

and

debugging

a

program

(if

performance

is

more

important)

or

also

for

compiling

the

production

version

(if

safety

is

more

important).

Related

Information

The

-C

option

prevents

some

of

the

optimizations

that

the

“-qhot

Option”

on

page

171

performs.

You

may

want

to

remove

the

-C

option

after

debugging

of

your

code

is

complete

and

to

add

the

-qhot

option

to

achieve

a

more

thorough

optimization.

The

valid

bounds

for

character

substring

expressions

differ

depending

on

the

setting

of

the

-qzerosize

option.

See

“-qzerosize

Option”

on

page

268.

“-qsigtrap

Option”

on

page

232

and

“Installing

an

Exception

Handler”

on

page

298

describe

how

to

detect

and

recover

from

SIGTRAP

signals

without

ending

the

program.

-qcheck

is

the

long

form

of

-C.

XL

Fortran

Compiler-Option

Reference

103

-c

Option

Syntax

-c

Prevents

the

completed

object

file

from

being

sent

to

the

ld

command

for

link-editing.

With

this

option,

the

output

is

a

.o

file

for

each

source

file.

Using

the

-o

option

in

combination

with

-c

selects

a

different

name

for

the

.o

file.

In

this

case,

you

can

only

compile

one

source

file

at

a

time.

Related

Information

See

“-o

Option”

on

page

116.

104

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-D

Option

Syntax

-D

DLINES

|

NODLINES

Specifies

whether

the

compiler

compiles

fixed

source

form

lines

with

a

D

in

column

1

or

treats

them

as

comments.

If

you

specify

-D,

the

fixed

source

form

lines

that

have

a

D

in

column

1

are

compiled.

The

default

action

is

to

treat

these

lines

as

comment

lines.

They

are

typically

used

for

sections

of

debugging

code

that

need

to

be

turned

on

and

off.

Related

Information

-qdlines

is

the

long

form

of

-D.

XL

Fortran

Compiler-Option

Reference

105

-d

Option

Syntax

-d

Causes

preprocessed

source

files

that

are

produced

by

cpp

to

be

kept

rather

than

to

be

deleted.

Rules

The

files

that

this

option

produces

have

names

of

the

form

Ffilename.f,

derived

from

the

names

of

the

original

source

files.

Related

Information

See

“Passing

Fortran

Files

through

the

C

Preprocessor”

on

page

40.

106

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-F

Option

Syntax

-Fconfig_file

|

-Fconfig_file:stanza

|

-F:stanza

Specifies

an

alternative

configuration

file,

which

stanza

to

use

within

the

configuration

file,

or

both.

The

configuration

file

specifies

different

kinds

of

defaults,

such

as

options

for

particular

compilation

steps

and

the

locations

of

various

files

that

the

compiler

requires.

A

default

configuration

file

(/etc/xlf.cfg)

is

supplied

at

installation

time.

The

default

stanza

depends

on

the

name

of

the

command

used

to

invoke

the

compiler

(xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

xlf,

xlf_r,

xlf_r7,

f77,

or

fort77).

A

simple

way

to

customize

the

way

the

compiler

works,

as

an

alternative

to

writing

complicated

compilation

scripts,

is

to

add

new

stanzas

to

/etc/xlf.cfg,

giving

each

stanza

a

different

name

and

a

different

set

of

default

compiler

options.

You

may

find

the

single,

centralized

file

easier

to

maintain

than

many

scattered

compilation

scripts

and

makefiles.

By

running

the

compiler

with

an

appropriate

-F

option,

you

can

select

the

set

of

options

that

you

want.

You

might

have

one

set

for

full

optimization,

another

set

for

full

error

checking,

and

so

on.

Restrictions

Because

the

default

configuration

file

is

replaced

each

time

a

new

compiler

release

is

installed,

make

sure

to

save

a

copy

of

any

new

stanzas

or

compiler

options

that

you

add.

Examples

#

Use

stanza

debug

in

default

xlf.cfg.

xlf95

-F:debug

t.f

#

Use

stanza

xlf95

in

/home/fred/xlf.cfg.

xlf95

-F/home/fred/xlf.cfg

t.f

#

Use

stanza

myxlf

in

/home/fred/xlf.cfg.

xlf95

-F/home/fred/xlf.cfg:myxlf

t.f

Related

Information

“Customizing

the

Configuration

File”

on

page

15

explains

the

contents

of

a

configuration

file

and

tells

how

to

select

different

stanzas

in

the

file

without

using

the

-F

option.

XL

Fortran

Compiler-Option

Reference

107

-g

Option

Syntax

-g

DBG

|

NODBG

Generates

debug

information

for

use

by

a

symbolic

debugger.

Related

Information

See

“Debugging

a

Fortran

90

or

Fortran

95

Program”

on

page

376,

“A

Sample

dbx

Session

for

an

XL

Fortran

Program”

on

page

377,

and

“Symbolic

Debugger

Support”

on

page

9.

-qdbg

is

the

long

form

of

-g.

108

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-I

Option

Syntax

-Idir

Adds

a

directory

to

the

search

path

for

include

files

and

.mod

files.

If

XL

Fortran

calls

cpp,

this

option

adds

a

directory

to

the

search

path

for

#include

files.

Before

checking

the

default

directories

for

include

and

.mod

files,

the

compiler

checks

each

directory

in

the

search

path.

For

include

files,

this

path

is

only

used

if

the

file

name

in

an

INCLUDE

line

is

not

provided

with

an

absolute

path.

For

#include

files,

refer

to

the

cpp

documentation

for

the

details

of

the

-I

option.

Arguments

dir

must

be

a

valid

path

name

(for

example,

/home/dir,

/tmp,

or

./subdir).

Rules

The

compiler

appends

a

/

to

the

dir

and

then

concatenates

that

with

the

file

name

before

making

a

search.

If

you

specify

more

than

one

-I

option

on

the

command

line,

files

are

searched

in

the

order

of

the

dir

names

as

they

appear

on

the

command

line.

The

following

directories

are

searched,

in

this

order,

after

any

paths

that

are

specified

by

-I

options:

1.

The

current

directory

(from

which

the

compiler

is

executed)

2.

The

directory

where

the

source

file

is

(if

different

from

1)

3.

/usr/include.

Related

Information

The

“-qmoddir

Option”

on

page

203

puts

.mod

files

in

a

specific

directory

when

you

compile

a

file

that

contains

modules.

XL

Fortran

Compiler-Option

Reference

109

-k

Option

Syntax

-k

FREE(F90)

Specifies

that

the

program

is

in

free

source

form.

Applicable

Product

Levels

The

meaning

of

this

option

has

changed

from

XL

Fortran

Version

2.

To

get

the

old

behavior

of

-k,

use

the

option

-qfree=ibm

instead.

Related

Information

See

“-qfree

Option”

on

page

168

and

Free

Source

Form

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

This

option

is

the

short

form

of

-qfree=f90.

110

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-L

Option

Syntax

-Ldir

Looks

in

the

specified

directory

for

libraries

that

are

specified

by

the

-l

option.

If

you

use

libraries

other

than

the

default

ones

in

/usr/lib,

you

can

specify

one

or

more

-L

options

that

point

to

the

locations

of

the

other

libraries.

You

can

also

set

the

LIBPATH

environment

variable,

which

lets

you

specify

a

search

path

for

libraries

at

run

time.

Rules

This

option

is

passed

directly

to

the

ld

command

and

is

not

processed

by

XL

Fortran

at

all.

Related

Information

See

“Options

That

Control

Linking”

on

page

86

and

“Linking

XL

Fortran

Programs”

on

page

42.

XL

Fortran

Compiler-Option

Reference

111

-l

Option

Syntax

-lkey

Searches

the

specified

library

file,

where

key

selects

the

library

libkey.a.

Rules

This

option

is

passed

directly

to

the

ld

command

and

is

not

processed

by

XL

Fortran

at

all.

Related

Information

See

“Options

That

Control

Linking”

on

page

86

and

“Linking

XL

Fortran

Programs”

on

page

42.

112

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-N

Option

Syntax

-NSbytes

SPILLSIZE(bytes)

Specifies

the

size

of

internal

program

storage

areas.

Rules

It

defines

the

number

of

bytes

of

stack

space

to

reserve

in

each

subprogram,

in

case

there

are

too

many

variables

to

hold

in

registers

and

the

program

needs

temporary

storage

for

register

contents.

Defaults

By

default,

each

subprogram

stack

has

512

bytes

of

spill

space

reserved.

If

you

need

this

option,

a

compile-time

message

informs

you

of

the

fact.

Related

Information

-qspillsize

is

the

long

form

of

-NS.

XL

Fortran

Compiler-Option

Reference

113

-O

Option

Syntax

-O[level]

OPTimize[(level)]

|

NOOPTimize

Specifies

whether

to

optimize

code

during

compilation

and,

if

so,

at

which

level:

Arguments

not

specified

Almost

all

optimizations

are

disabled.

This

is

equivalent

to

specifying

-O0

or

-qnoopt.

-O

For

each

release

of

XL

Fortran,

-O

enables

the

level

of

optimization

that

represents

the

best

tradeoff

between

compilation

speed

and

run-time

performance.

If

you

need

a

specific

level

of

optimization,

specify

the

appropriate

numeric

value.

Currently,

-O

is

equivalent

to

-O2.

-O0

Almost

all

optimizations

are

disabled.

This

option

is

equivalent

to

–qnoopt.

-O1

Reserved

for

future

use.

This

form

does

not

currently

do

any

optimization

and

is

ignored.

In

past

releases,

it

was

interpreted

as

a

combination

of

the

-O

and

-1

options,

which

may

have

had

unintended

results.

-O2

Performs

a

set

of

optimizations

that

are

intended

to

offer

improved

performance

without

an

unreasonable

increase

in

time

or

storage

that

is

required

for

compilation.

-O3

Performs

additional

optimizations

that

are

memory

intensive,

compile-time

intensive,

and

may

change

the

semantics

of

the

program

slightly,

unless

-qstrict

is

specified.

We

recommend

these

optimizations

when

the

desire

for

run-time

speed

improvements

outweighs

the

concern

for

limiting

compile-time

resources.

This

level

of

optimization

also

affects

the

setting

of

the

-qfloat

option,

turning

on

the

fltint

and

rsqrt

suboptions

by

default,

and

sets

-qmaxmem=-1.

-O4

Aggressively

optimizes

the

source

program,

trading

off

additional

compile

time

for

potential

improvements

in

the

generated

code.

You

can

specify

the

option

at

compile

time

or

at

link

time.

If

you

specify

it

at

link

time,

it

will

have

no

effect

unless

you

also

specify

it

at

compile

time

for

at

least

the

file

that

contains

the

main

program.

-O4

implies

the

following

other

options:

v

-qhot

v

-qipa

v

-O3

(and

all

the

options

and

settings

that

it

implies)

v

-qarch=auto

v

-qtune=auto

v

-qcache=auto

Note

that

the

auto

setting

of

-qarch,

-qtune,

and

-qcache

implies

that

the

execution

environment

will

be

the

same

as

the

compilation

environment.

This

option

follows

the

″last

option

wins″

conflict

resolution

rule,

so

any

of

the

options

that

are

modified

by

-O4

can

be

subsequently

changed.

Specifying

-O4

-qarch=com

allows

aggressive

intraprocedural

optimization

while

maintaining

code

portability.

114

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-O5

Provides

all

of

the

functionality

of

the

-O4

option,

but

also

provides

the

functionality

of

the

-qipa=level=2

option.

Note:

Combining

-O2

and

higher

optimizations

with

-qsmp=omp

invokes

additional

optimization

algorithms,

including

interprocedural

analysis

(IPA).

IPA

optimizations

provide

opportunities

for

the

compiler

to

generate

additional

fmadd

instructions.

To

obtain

the

same

floating-point

accuracy

for

optimized

and

non-optimized

applications,

you

must

specify

the

-qfloat=nomaf

compiler

option.

In

cases

where

differences

in

floating-point

accuracy

still

occur

after

specifying

-qfloat=nomaf,

the

-qstrict

compiler

option

allows

you

to

exert

greater

control

over

changes

that

optimization

can

cause

in

floating-point

semantics.

Restrictions

Generally,

use

the

same

optimization

level

for

both

the

compile

and

link

steps.

This

is

important

when

using

either

the

-O4

or

-O5

optimization

level

to

get

the

best

run-time

performance.

For

the

-O5

level,

all

loop

transformations

(as

specified

via

the

-qhot

option)

are

done

at

the

link

step.

Increasing

the

level

of

optimization

may

or

may

not

result

in

additional

performance

improvements,

depending

on

whether

the

additional

analysis

detects

any

further

optimization

opportunities.

An

optimization

level

of

-O3

or

higher

can

change

the

behavior

of

the

program

and

potentially

cause

exceptions

that

would

not

otherwise

occur.

Use

of

the

-qstrict

option

can

eliminate

potential

changes

and

exceptions.

If

the

-O

option

is

used

in

an

@PROCESS

statement,

only

an

optimization

level

of

0,

2,

or

3

is

allowed.

Compilations

with

optimization

may

require

more

time

and

machine

resources

than

other

compilations.

The

more

the

compiler

optimizes

a

program,

the

more

difficult

it

is

to

debug

the

program

with

a

symbolic

debugger.

Related

Information

“-qessl

Option”

on

page

155

allows

the

use

of

ESSL

routines.

“-qstrict

Option”

on

page

241

shows

how

to

turn

off

the

effects

of

-O3

that

might

change

the

semantics

of

a

program.

“-qipa

Option”

on

page

182,

“-qhot

Option”

on

page

171,

and

“-qpdf

Option”

on

page

210

turn

on

additional

optimizations

that

may

improve

performance

for

some

programs.

“Optimizing

XL

Fortran

Programs”

on

page

305

discusses

technical

details

of

the

optimization

techniques

the

compiler

uses

and

some

strategies

you

can

use

to

get

maximum

performance

from

your

code.

-qOPTimize

is

the

long

form

of

-O.

XL

Fortran

Compiler-Option

Reference

115

-o

Option

Syntax

-o

name

Specifies

a

name

for

the

output

object,

executable,

or

assembler

source

file.

To

choose

the

name

for

an

object

file,

use

this

option

in

combination

with

the

-c

option.

For

an

assembler

source

file,

use

it

in

combination

with

the

-S

option.

Defaults

The

default

name

for

an

executable

file

is

a.out.

The

default

name

for

an

object

or

assembler

source

file

is

the

same

as

the

source

file

except

that

it

has

a

.o

or

.s

extension.

Rules

Except

when

you

specify

the

-c

or

-S

option,

the

-o

option

is

passed

directly

to

the

ld

command,

instead

of

being

processed

by

XL

Fortran.

Examples

xlf95

t.f

#

Produces

"a.out"

xlf95

-c

t.f

#

Produces

"t.o"

xlf95

-o

test_program

t.f

#

Produces

"test_program"

xlf95

-S

-o

t2.s

t.f

#

Produces

"t2.s"

116

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-P

Option

Syntax

-P{v|k}[!]

Invokes

the

selected

optimizing

preprocessor.

Adding

!

prevents

the

compilation

step

from

following

preprocessing.

You

can

specify

only

one

of

these

preprocessor

options

on

the

command

line:

-Pk

invokes

the

KAP

preprocessor.

-Pv

invokes

the

VAST-2

preprocessor.

Examples

This

example

shows

sets

of

preprocessor

options

that

perform

a

reasonable

amount

of

optimization:

xlf95

test.f

-Pk

-Wp,-r=3

-O

#

Reasonable

set

of

KAP

options

xlf95

test.f

-Pv

-Wp,-ew

-O

#

Reasonable

set

of

VAST-2

options

This

example

shows

how

to

save

the

preprocessed

output

in

a

file

so

that

you

can

see

what

transformations

the

preprocessors

do:

#

Produces

KAP

preprocessor

output

file

Ploops.f

xlf95

-Pk!

-Wp,-f

loops.f

#

Produces

VAST

preprocessor

output

file

Ploops.f

xlf95

-Pv!

-Wp,-o

loops.f

Note:

Because

the

preprocessors

are

not

included

as

part

of

XL

Fortran,

you

must

purchase

them

separately

for

this

example

to

work.

Related

Information

For

information

about

other

kinds

of

preprocessing

(for

conditional

compilation

and

macro

expansion),

see

“Passing

Fortran

Files

through

the

C

Preprocessor”

on

page

40.

XL

Fortran

Compiler-Option

Reference

117

-p

Option

Syntax

-p[g]

Sets

up

the

object

file

for

profiling.

-p

prepares

the

program

for

profiling.

When

you

execute

the

program,

it

produces

a

mon.out

file

with

the

profiling

information.

You

can

then

use

the

prof

command

to

generate

a

run-time

profile.

-pg

is

like

-p,

but

it

produces

more

extensive

statistics.

Running

a

program

compiled

with

-pg

produces

a

gmon.out

file,

which

you

use

with

the

gprof

command

to

generate

a

run-time

profile.

Rules

For

profiling,

the

compiler

produces

monitoring

code

that

counts

the

number

of

times

each

routine

is

called.

The

compiler

replaces

the

startup

routine

of

each

subprogram

with

one

that

calls

the

monitor

subroutine

at

the

start.

When

the

program

ends

normally,

it

writes

the

recorded

information

to

the

mon.out

or

gmon.out

file.

Examples

Related

Information

For

more

information

on

profiling

and

the

prof

and

gprof

commands,

see

the

AIX

Commands

Reference.

$

xlf95

-p

needs_tuning.f

$

a.out

$

prof

.

.

.

profiling

data

.

.

.

$

xlf95

-pg

needs_tuning.f

$

a.out

$

gprof

.

.

.

detailed

and

verbose

profiling

data

.

.

.

118

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-Q

Option

Syntax

-Q+names

|

-Q-names

|

-Q

|

-Q!

Specifies

whether

Fortran

90

or

Fortran

95

procedures

are

inlined

and/or

the

names

of

particular

procedures

that

should

or

should

not

be

inlined.

names

is

a

list

of

procedure

names

that

are

separated

by

colons.

Rules

By

default,

-Q

only

affects

internal

or

module

procedures.

To

turn

on

inline

expansion

for

calls

to

procedures

in

different

scopes,

you

must

also

use

the

-qipa

option.

Arguments

The

-Q

option

without

any

list

inlines

all

appropriate

procedures,

subject

to

limits

on

the

number

of

inlined

calls

and

the

amount

of

code

size

increase

as

a

result.

+names

specifies

the

names,

separated

by

colons,

of

procedures

to

inline

and

raises

these

limits

for

those

procedures.

-names

specifies

the

names,

separated

by

colons,

of

procedures

not

to

inline.

You

can

specify

more

than

one

of

these

options

to

precisely

control

which

procedures

are

most

likely

to

be

inlined.

The

-Q!

option

turns

off

inlining.

A

procedure

is

not

inlined

by

the

basic

-Q

option

unless

it

is

quite

small.

In

general,

this

means

that

it

contains

no

more

than

several

source

statements

(although

the

exact

cutoff

is

difficult

to

determine).

A

procedure

named

by

-Q+

can

be

up

to

approximately

20

times

larger

and

still

be

inlined.

Restrictions

You

must

specify

at

least

an

optimization

level

of

-O2

for

inlining

to

take

effect

with

-Q.

If

you

specify

inlining

for

a

procedure,

the

following

@PROCESS

compiler

directives

are

only

effective

if

they

come

before

the

first

compilation

unit

in

the

file:

ALIAS,

ALIGN,

ATTR,

COMPACT,

DBG,

EXTCHK,

EXTNAME,

FLOAT,

FLTTRAP,

HALT,

IEEE,

LIST,

MAXMEM,

OBJECT,

OPTIMIZE,

PHSINFO,

SPILLSIZE,

STRICT,

and

XREF.

Examples

xlf95

-O

-Q

many_small_subprogs.f

#

Compiler

decides

what

to

inline.

xlf95

-O

-Q+bigfunc:hugefunc

test.f

#

Inline

even

though

these

are

big.

xlf95

-O

-Q

-Q-only_once

pi.f

#

Inline

except

for

this

one

procedure.

Related

Information

See

“-qipa

Option”

on

page

182

and

“Optimizing

Subprogram

Calls”

on

page

317.

XL

Fortran

Compiler-Option

Reference

119

-q32

Option

Related

Information

See

“-q32

Option”

on

page

281.

120

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-q64

Option

Related

Information

See

“-q64

Option”

on

page

282.

XL

Fortran

Compiler-Option

Reference

121

-qalias

Option

Syntax

-qalias={[no]aryovrlp

|

[no]intptr

|

[no]pteovrlp

|

[no]std}...

ALIAS(

{[NO]ARYOVRLP

|

[NO]INTPTR

|

[NO]PTEOVRLP

|

[NO]STD}...

)

Indicates

whether

a

program

contains

certain

categories

of

aliasing.

The

compiler

limits

the

scope

of

some

optimizations

when

there

is

a

possibility

that

different

names

are

aliases

for

the

same

storage

locations.

See

“Optimizing

XL

Fortran

Programs”

on

page

305

for

information

on

aliasing

strategies

you

should

consider.

Arguments

aryovrlp

|

noaryovrlp

Indicates

whether

the

compilation

units

contain

any

array

assignments

between

storage-associated

arrays.

If

not,

specify

noaryovrlp

to

improve

performance.

intptr

|

nointptr

Indicates

whether

the

compilation

units

contain

any

integer

POINTER

statements.

If

so,

specify

INTPTR.

pteovrlp

|

nopteovrlp

Indicates

whether

any

pointee

variables

may

be

used

to

refer

to

any

data

objects

that

are

not

pointee

variables,

or

whether

two

pointee

variables

may

be

used

to

refer

to

the

same

storage

location.

If

not,

specify

NOPTEOVRLP.

std

|

nostd

Indicates

whether

the

compilation

units

contain

any

nonstandard

aliasing

(which

is

explained

below).

If

so,

specify

nostd.

Rules

An

alias

exists

when

an

item

in

storage

can

be

referred

to

by

more

than

one

name.

The

Fortran

90

and

Fortran

95

standards

allow

some

types

of

aliasing

and

disallow

some

others.

The

sophisticated

optimizations

that

the

XL

Fortran

compiler

performs

increase

the

likelihood

of

undesirable

results

when

nonstandard

aliasing

is

present,

as

in

the

following

situations:

v

The

same

data

object

is

passed

as

an

actual

argument

two

or

more

times

in

the

same

subprogram

reference.

The

aliasing

is

not

valid

if

either

of

the

actual

arguments

becomes

defined,

undefined,

or

redefined.

v

A

subprogram

reference

associates

a

dummy

argument

with

an

object

that

is

accessible

inside

the

referenced

subprogram.

The

aliasing

is

not

valid

if

any

part

of

the

object

associated

with

the

dummy

argument

becomes

defined,

undefined,

or

redefined

other

than

through

a

reference

to

the

dummy

argument.

v

A

dummy

argument

becomes

defined,

undefined,

or

redefined

inside

a

called

subprogram,

and

where

the

dummy

argument

was

not

passed

as

an

actual

argument

to

that

subprogram.

v

Subscripting

beyond

the

bounds

of

an

array

within

a

common

block.

Applicable

Product

Levels

-qalias=nostd

replaces

the

option

-qxflag=xalias

and

makes

it

obsolete.

The

introduction

of

the

-qipa

option

does

not

remove

the

need

for

-qalias.

122

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Examples

If

the

following

subroutine

is

compiled

with

-qalias=nopteovrlp,

the

compiler

may

be

able

to

generate

more

efficient

code.

You

can

compile

this

subroutine

with

-qalias=nopteovrlp,

because

the

integer

pointers,

ptr1

and

ptr2,

point

at

dynamically

allocated

memory

only.

subroutine

sub(arg)

real

arg

pointer(ptr1,

pte1)

pointer(ptr2,

pte2)

real

pte1,

pte2

ptr1

=

malloc(%val(4))

ptr2

=

malloc(%val(4))

pte1

=

arg*arg

pte2

=

int(sqrt(arg))

arg

=

pte1

+

pte2

call

free(%val(ptr1))

call

free(%val(ptr2))

end

subroutine

If

most

array

assignments

in

a

compilation

unit

involve

arrays

that

do

not

overlap

but

a

few

assignments

do

involve

storage-associated

arrays,

you

can

code

the

overlapping

assignments

with

an

extra

step

so

that

the

NOARYOVRLP

suboption

is

still

safe

to

use.

@PROCESS

ALIAS(NOARYOVRLP)

!

The

assertion

that

no

array

assignments

involve

overlapping

!

arrays

allows

the

assignment

to

be

done

without

creating

a

!

temporary

array.

program

test

real(8)

a(100)

integer

::

j=1,

k=50,

m=51,

n=100

a(1:50)

=

0.0d0

a(51:100)

=

1.0d0

!

Timing

loop

to

achieve

accurate

timing

results

do

i

=

1,

1000000

a(j:k)

=

a(m:n)

!

Here

is

the

array

assignment

end

do

print

*,

a

end

program

In

Fortran,

this

aliasing

is

not

permitted

if

J

or

K

are

updated,

and,

if

it

is

left

undetected,

it

can

have

unpredictable

results.

!

We

cannot

assert

that

this

unit

is

free

!

of

array-assignment

aliasing

because

of

the

assignments

below.

subroutine

sub1

integer

a(10),

b(10)

equivalence

(a,

b(3))

a

=

b

!

a

and

b

overlap.

a

=

a(10:1:-1)

!

The

elements

of

a

are

reversed.

end

subroutine

!

When

the

overlapping

assignment

is

recoded

to

explicitly

use

a

!

temporary

array,

the

array-assignment

aliasing

is

removed.

!

Although

ALIAS(NOARYOVRLP)

does

not

speed

up

this

assignment,

!

subsequent

assignments

of

non-overlapping

arrays

in

this

unit

!

are

optimized.

@PROCESS

ALIAS(NOARYOVRLP)

subroutine

sub2

integer

a(10),

b(10),

t(10)

XL

Fortran

Compiler-Option

Reference

123

equivalence

(a,

b(3))

t

=

b;

a

=

t

t

=

a(10:1:-1);

a

=

t

end

subroutine

When

SUB1

is

called,

an

alias

exists

between

J

and

K.

J

and

K

refer

to

the

same

item

in

storage.

CALL

SUB1(I,I)

...

SUBROUTINE

SUB1(J,K)

In

the

following

example,

the

program

might

store

5

instead

of

6

into

J

unless

-qalias=nostd

indicates

that

an

alias

might

exist.

INTEGER

BIG(1000)

INTEGER

SMALL(10)

COMMON

//

BIG

EQUIVALENCE(BIG,SMALL)

...

BIG(500)

=

5

SMALL

(I)

=

6

!

Where

I

has

the

value

500

J

=

BIG(500)

Restrictions

Because

this

option

inhibits

some

optimizations

of

some

variables,

using

it

can

lower

performance.

Programs

that

contain

nonstandard

or

integer

POINTER

aliasing

may

produce

incorrect

results

if

you

do

not

compile

them

with

the

correct

-qalias

settings.

The

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90,

and

f95

commands

assume

that

a

program

contains

only

standard

aliasing

(-qalias=aryovrlp:pteovrlp:std:nointptr),

while

the

xlf_r,

xlf_r7,

xlf,

and

f77/fort77

commands,

for

compatibility

with

XL

Fortran

Version

2,

assume

that

integer

POINTERs

may

be

present

(-qalias=aryovrlp:pteovrlp:std:intptr).

124

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qalign

Option

Syntax

-qalign={[no]4k|struct={suboption}|bindc={suboption}}

ALIGN({[NO]4K|STRUCT{(suboption)}|BINDC{(suboption)}})

Specifies

the

alignment

of

data

objects

in

storage,

which

avoids

performance

problems

with

misaligned

data.

The

[no]4k,

bindc,

and

struct

options

can

be

specified

and

are

not

mutually

exclusive.

The

[no]4k

option

is

useful

primarily

in

combination

with

logical

volume

I/O

and

disk

striping.

Defaults

The

default

setting

is

-qalign=no4k:struct=natural:bindc=power.

Arguments

[no]4K

Specifies

whether

to

align

large

data

objects

on

page

(4

KB)

boundaries,

for

improved

performance

with

data-striped

I/O.

Objects

are

affected

depending

on

their

representation

within

the

object

file.

The

affected

objects

are

arrays

and

structures

that

are

4

KB

or

larger

and

are

in

static

or

bss

storage

and

also

CSECTs

(typically

COMMON

blocks)

that

are

8

KB

or

larger.

A

large

COMMON

block,

equivalence

group

containing

arrays,

or

structure

is

aligned

on

a

page

boundary,

so

the

alignment

of

the

arrays

depends

on

their

position

within

the

containing

object.

Inside

a

structure

of

non-sequence

derived

type,

the

compiler

adds

padding

to

align

large

arrays

on

page

boundaries.

bindc={suboption}

Specifies

that

the

alignment

and

padding

for

an

XL

Fortran

derived

type

with

the

BIND(C)

attribute

is

compatible

with

a

C

struct

type

that

is

compiled

with

the

corresponding

XL

C

alignment

option.

The

compatible

alignment

options

include:

XL

Fortran

Option

Corresponding

XL

C

Option

-qalign=bindc=bit_packed

-qalign=bit_packed

-qalign=bindc=full

|

power

-qalign=full

|

power

-qalign=bindc=mac68k

|

twobyte

-qalign=mac68k

|

twobyte

-qalign=bindc=natural

-qalign=natural

-qalign=bindc=packed

-qalign=packed

struct={suboption}

The

struct

option

specifies

how

objects

or

arrays

of

a

derived

type

declared

using

a

record

structure

are

stored,

and

whether

or

not

padding

is

used

between

components.

All

program

units

must

be

compiled

with

the

same

settings

of

the

-qalign=struct

option.

The

three

suboptions

available

are:

packed

If

the

packed

suboption

of

the

struct

option

is

specified,

objects

of

a

derived

type

are

stored

with

no

padding

between

components,

other

than

any

padding

represented

by

%FILL

components.

The

storage

format

is

the

same

as

would

result

for

a

sequence

structure

whose

derived

type

was

declared

using

a

standard

derived

type

declaration.

natural

If

the

natural

suboption

of

the

struct

option

is

specified,

objects

of

XL

Fortran

Compiler-Option

Reference

125

a

derived

type

are

stored

with

sufficient

padding

that

components

will

be

stored

on

their

natural

alignment

boundaries,

unless

storage

association

requires

otherwise.

The

natural

alignment

boundaries

for

objects

of

a

type

that

appears

in

the

left-hand

column

of

the

following

table

is

shown

in

terms

of

a

multiple

of

some

number

of

bytes

in

the

corresponding

entry

in

the

right-hand

column

of

the

table.

Type

Natural

Alignment

(in

multiples

of

bytes)

INTEGER(1),

LOGICAL(1),

BYTE,

CHARACTER

1

INTEGER(2),

LOGICAL(2)

2

INTEGER(4),

LOGICAL(4),

REAL(4)

4

INTEGER(8),

LOGICAL(8),

REAL(8),

COMPLEX(4)

8

REAL(16),

COMPLEX(8),

COMPLEX(16)

16

Derived

Maximum

alignment

of

its

components

If

the

natural

suboption

of

the

struct

option

is

specified,

arrays

of

derived

type

are

stored

so

that

each

component

of

each

element

is

stored

on

its

natural

alignment

boundary,

unless

storage

association

requires

otherwise.

port

If

the

port

suboption

of

the

struct

option

is

specified,

v

Storage

padding

is

the

same

as

described

above

for

the

natural

suboption,

with

the

exception

that

the

alignment

of

components

of

type

complex

is

the

same

as

the

alignment

of

components

of

type

real

of

the

same

kind.

v

The

padding

for

an

object

that

is

immediately

followed

by

a

union

is

inserted

at

the

begining

of

the

first

map

component

for

each

map

in

that

union.

Restrictions

The

port

suboption

does

not

affect

any

arrays

or

structures

with

the

AUTOMATIC

attribute

or

arrays

that

are

allocated

dynamically.

Because

this

option

may

change

the

layout

of

non-sequence

derived

types,

when

compiling

programs

that

read

or

write

such

objects

with

unformatted

files,

use

the

same

setting

for

this

option

for

all

source

files.

You

must

use

-qalign=4k

if

you

are

using

the

I/O

techniques

that

are

described

in

“Increasing

Throughput

with

Logical

Volume

I/O

and

Data

Striping”

on

page

333.

Related

Information

You

can

tell

if

an

array

has

the

AUTOMATIC

attribute

and

is

thus

unaffected

by

-qalign=4k

if

you

look

for

the

keywords

AUTOMATIC

or

CONTROLLED

AUTOMATIC

in

the

listing

of

the

“-qattr

Option”

on

page

133.

This

listing

also

shows

the

offsets

of

data

objects.

126

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qarch

Option

Syntax

-qarch=architecture

Controls

which

instructions

the

compiler

can

generate.

Changing

the

default

can

improve

performance

but

might

produce

code

that

can

only

be

run

on

specific

machines.

In

general,

the

-qarch

option

allows

you

to

target

a

specific

architecture

for

the

compilation.

For

any

given

-qarch

setting,

the

compiler

defaults

to

a

specific,

matching

-qtune

setting,

which

can

provide

additional

performance

improvements.

The

resulting

code

may

not

run

on

other

architectures,

but

it

will

provide

the

best

performance

for

the

selected

architecture.

To

generate

code

that

can

run

on

more

than

one

architecture,

specify

a

-qarch

suboption,

such

as

com,

ppc,

or

ppc64,

that

supports

a

group

of

architectures;

doing

this

will

generate

code

that

runs

on

all

supported

architectures,

PowerPC,

or

64–bit

PowerPC

architectures,

respectively.

When

a

-qarch

suboption

is

specified

with

a

group

argument,

you

can

specify

-qtune

as

either

auto,

or

provide

a

specific

architecture

in

the

group.

In

the

case

of

-qtune=auto,

the

compiler

will

generate

code

that

runs

on

all

architectures

in

the

group

specified

by

the

-qarch

suboption,

but

select

instruction

sequences

that

have

best

performance

on

the

architecture

of

the

machine

used

to

compile.

Alternatively

you

can

target

a

specific

architecture

for

tuning

performance.

Arguments

The

choices

for

architecture

are:

auto

Automatically

detects

the

specific

architecture

of

the

compiling

machine.

It

assumes

that

the

execution

environment

will

be

the

same

as

the

compilation

environment.

com

You

can

run

the

executable

file

that

the

compiler

generated

on

any

hardware

platform

supported

by

the

compiler,

because

the

file

contains

only

instructions

that

are

common

to

all

machines.

This

choice

is

the

default

if

you

specify

-q32.

If

you

specify

the

-q64

and

-qarch=com

options

together,

the

target

platform

is

64-bit,

and

the

-qarch

option

is

silently

upgraded

to

ppc64grsq.

The

instruction

set

will

be

restricted

to

those

instructions

common

to

all

64-bit

machines.

See

“Using

XL

Fortran

in

a

64-Bit

Environment”

on

page

279

for

details.

Also,

the

rndsngl

suboption

of

the

-qfloat

option

is

automatically

turned

on

and

cannot

be

turned

off.

While

this

yields

better

performance

on

PowerPC

systems,

you

may

get

slightly

different

results

than

if

you

compile

with

-qarch=com

and

-q32.

pwr

You

can

run

the

executable

file

on

any

POWER

or

POWER2

hardware

platform.

Because

executable

files

for

these

platforms

may

contain

instructions

that

are

not

available

on

PowerPC

systems,

they

may

be

incompatible

with

those

newer

systems,

or

they

may

run

more

slowly

because

missing

instructions

are

emulated

through

software

traps.

pwr2

You

can

run

the

executable

file

on

any

POWER2

hardware

platform.

Because

executable

files

for

these

platforms

may

contain

instructions

that

are

not

available

on

POWER

and

PowerPC

(including

POWER3)

systems,

they

may

be

incompatible

with

those

systems.

Note

that

pwrx

is

a

synonym

for

pwr2,

but

pwr2

is

preferable.

XL

Fortran

Compiler-Option

Reference

127

pwr2s

You

can

run

the

executable

file

on

any

desktop

implementation

of

the

POWER2

Chip.

This

architecture

belongs

to

the

-qarch=pwr2

group.

p2sc

You

can

run

the

executable

file

on

any

POWER2

Super

Chip

hardware

platform.

The

POWER2

Super

Chip

belongs

to

the

-qarch=pwr2

group.

601

You

can

run

the

executable

file

on

any

PowerPC

601®

hardware

platform.

Because

the

PowerPC

601

processor

implements

some

instructions

that

are

not

present

in

other

PowerPC

implementations,

programs

might

not

run

on

other

PowerPC

processors.

The

rndsngl

suboption

of

the

-qfloat

option

is

automatically

turned

on

and

cannot

be

turned

off.

603

You

can

run

the

executable

file

on

any

PowerPC

603®

hardware

platform.

Because

the

PowerPC

603

processor

implements

some

instructions

that

are

not

present

in

other

PowerPC

implementations,

such

as

the

optional

PowerPC

graphics

instructions,

programs

might

not

run

on

other

PowerPC

processors.

The

rndsngl

suboption

of

the

-qfloat

option

is

automatically

turned

on

and

cannot

be

turned

off.

604

You

can

run

the

executable

file

on

any

PowerPC

604®

hardware

platform.

Because

the

PowerPC

604

processor

implements

some

instructions

that

are

not

present

in

other

PowerPC

implementations,

such

as

the

optional

PowerPC

graphics

instructions,

programs

might

not

run

on

other

PowerPC

processors.

The

rndsngl

suboption

of

the

-qfloat

option

is

automatically

turned

on

and

cannot

be

turned

off.

ppc

You

can

run

the

executable

file

on

any

PowerPC

hardware

platform,

including

those

that

are

based

on

the

RS64I,

RS64II,

RS64III,

601,

603,

604,

POWER3,

POWER4,

POWER5,

PowerPC

970,

and

future

PowerPC

chips.

If

you

specify

the

compiler

option

-q64,

the

target

platform

is

64-bit

PowerPC,

and

the

compiler

silently

upgrades

the

-qarch

setting

to

ppc64.

See

“Using

XL

Fortran

in

a

64-Bit

Environment”

on

page

279

for

details.

The

rndsngl

suboption

of

the

-qfloat

option

is

automatically

turned

on

and

cannot

be

turned

off.

ppcgr

In

32-bit

mode,

produces

object

code

that

may

contain

optional

graphics

instructions

for

PowerPC

hardware

platforms.

In

64-bit

mode,

produces

object

code

containing

optional

graphics

instructions

that

will

run

on

64-bit

PowerPC

platforms,

but

not

on

32-bit-only

platforms,

and

the

-qarch

option

will

be

silently

upgraded

to

-qarch=ppc64gr.

ppc64

You

can

run

the

executable

file

on

any

64-bit

PowerPC

hardware

platform.

This

suboption

can

be

selected

when

compiling

in

32–bit

mode,

but

the

resulting

object

code

may

include

instructions

that

are

not

recognized

or

behave

differently

when

run

on

PowerPC

platforms

that

do

not

support

64-bit

mode.

ppc64gr

You

can

run

the

executable

file

on

any

64-bit

PowerPC

hardware

platform

that

supports

the

optional

graphics

instructions.

ppc64grsq

You

can

run

the

executable

file

on

any

64-bit

PowerPC

hardware

platform

that

supports

the

optional

graphics

and

square

root

instructions.

rs64a

You

can

run

the

executable

file

on

any

RS64I

machine.

rs64b

You

can

run

the

executable

file

on

any

RS64II

machine.

128

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

rs64c

You

can

run

the

executable

file

on

any

RS64III

machine.

pwr3

You

can

run

the

executable

file

on

any

POWER3,

POWER4,

POWER5,

or

PowerPC

970

hardware

platform.

In

previous

releases,

the

pwr3

setting

was

used

to

target

the

POWER3

and

POWER4

group

of

processors.

To

have

your

compilation

target

a

more

general

processor

group,

use

the

ppc64grsq

setting,

which

includes

the

POWER3,

POWER4,

POWER5,

or

PowerPC

970

group

of

processors.

Because

executable

files

for

these

platforms

may

contain

instructions

that

are

not

available

on

POWER,

POWER2,

or

other

PowerPC

systems,

they

may

be

incompatible

with

those

systems.

pwr4

You

can

run

the

executable

file

on

any

POWER4,

POWER5,

or

PowerPC

970

hardware

platform.

Use

of

-qarch=pwr4

will

result

in

binaries

that

will

not

run

on

most

previous

PowerPC

implementations.

pwr5

You

can

run

the

executable

file

on

any

POWER5

hardware

platform.

ppc970

You

can

run

the

executable

file

on

any

PowerPC

970

hardware

platform.

Note:

The

-qarch

setting

determines

the

allowed

choices

and

defaults

for

the

-qtune

setting.You

can

use

-qarch

and

-qtune

to

target

your

program

to

particular

machines.

If

you

intend

your

program

to

run

only

on

a

particular

architecture,

you

can

use

the

-qarch

option

to

instruct

the

compiler

to

generate

code

specific

to

that

architecture.

This

allows

the

compiler

to

take

advantage

of

machine-specific

instructions

that

can

improve

performance.

The

-qarch

option

provides

arguments

for

you

to

specify

certain

chip

models;

for

example,

you

can

specify

-qarch=604

to

indicate

that

your

program

will

be

executed

on

PowerPC

604

hardware

platforms.

For

a

given

application

program,

make

sure

that

you

specify

the

same

-qarch

setting

when

you

compile

each

of

its

source

files.

Although

the

linker

and

loader

may

detect

object

files

that

are

compiled

with

incompatible

-qarch

settings,

you

should

not

rely

on

it.

You

can

further

enhance

the

performance

of

programs

intended

for

specific

machines

by

using

other

perfomance-related

options

like

the

-qcache

and

-qhot

options.

Use

these

guidelines

to

help

you

decide

whether

to

use

this

option:

v

If

your

primary

concern

is

to

make

a

program

widely

distributable,

keep

the

default

(com).

If

your

program

is

likely

to

be

run

on

all

types

of

processors

equally

often,

do

not

specify

any

-qarch

or

-qtune

options.

The

default

supports

only

the

common

subset

of

instructions

of

all

processors.

v

If

you

want

your

program

to

run

on

more

than

one

architecture,

but

to

be

tuned

to

a

particular

architecture,

use

a

combination

of

the

-qarch

and

-qtune

options.

Make

sure

that

your

-qarch

setting

covers

all

the

processor

types

you

intend

your

program

to

run

on.

If

you

run

such

a

program

on

an

unsupported

processor,

your

program

may

fail

at

execution

time.

v

If

the

program

will

only

be

used

on

a

single

machine

or

can

be

recompiled

before

being

used

on

a

different

machine,

specify

the

applicable

-qarch

setting.

Doing

so

might

improve

performance

and

is

unlikely

to

increase

compile

time.

If

you

specify

the

p2sc,

pwr2,

pwr2s,

rs64a,

rs64b,

rs64c,

601,

603,

604,

pwr3,

pwr4,

pwr5,

or

ppc970

suboption,

you

do

not

need

to

specify

a

separate

-qtune

option.

XL

Fortran

Compiler-Option

Reference

129

v

If

your

primary

concern

is

execution

performance,

you

may

see

some

speedup

if

you

specify

the

appropriate

-qarch

suboption

and

perhaps

also

specify

the

-qtune

and

-qcache

options.

In

this

case,

you

may

need

to

produce

different

versions

of

the

executable

file

for

different

machines,

which

might

complicate

configuration

management.

You

will

need

to

test

the

performance

gain

to

see

if

the

additional

effort

is

justified.

v

It

is

usually

better

to

target

a

specific

architecture

so

your

program

can

take

advantage

of

the

targeted

machine’s

characteristics.

For

example,

specifying

-qarch=pwr4

when

targeting

a

POWER4

machine

will

benefit

those

programs

that

are

floating-point

intensive

or

have

integer

multiplies.

On

PowerPC

systems,

programs

that

process

mainly

unpromoted

single-precision

variables

are

more

efficient

when

you

specify

-qarch=ppc.

On

POWER2

and

POWER3

systems,

programs

that

process

mainly

double-precision

variables

(or

single-precision

variables

promoted

to

double

by

one

of

the

-qautodbl

options)

become

more

efficient

with

-qarch=pwr2,

-qarch=pwr3,

-qarch=pwr4

and

-qarch=pwr5.

The

-qautodbl=dblpad4

option

will

improve

POWER

and

POWER2,

but

not

POWER3,

POWER4,

and

POWER5,

which

are

PowerPC

processors.

Other

Considerations

The

PowerPC

instruction

set

includes

two

optional

instruction

groups

that

may

be

implemented

by

a

particular

hardware

platform,

but

are

not

required.

These

two

groups

are

the

graphics

instruction

group

and

the

sqrt

instruction

group.

Code

compiled

with

specific

-qarch

options

(all

of

which

refer

to

specific

PowerPC

machines)

will

run

on

any

equivalent

PowerPC

machine

that

has

an

identical

instruction

group.

The

following

table

illustrates

the

instruction

groups

that

are

included

for

the

various

PowerPC

machines.

Table

14.

Instruction

groups

for

PowerPC

platforms

Processor

Graphics

group

sqrt

group

64-bit

601

no

no

no

603

yes

no

no

604

yes

no

no

ppc

no

no

no

ppcgr

yes

no

no

ppc64

no

no

yes

ppc64gr

yes

no

yes

ppc64grsq

yes

yes

yes

rs64a

no

no

yes

rs64b

yes

yes

yes

rs64c

yes

yes

yes

pwr3

yes

yes

yes

pwr4

yes

yes

yes

pwr5

yes

yes

yes

ppc970

yes

yes

yes

If

you

compile

code

using

the

-qarch=pwr3

option,

the

code

will

run

on

an

RS64B

hardware

platform

but

may

not

run

on

an

RS64A

platform

because

the

instruction

groups

are

not

identical.

Similarily,

code

compiled

with

the

-qarch=603

option

will

run

on

a

POWER3

machine,

but

may

not

run

on

a

RS64A

machine.

130

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Related

Information

See

“Compiling

for

Specific

Architectures”

on

page

39,

“-qtune

Option”

on

page

251,

and

“-qcache

Option”

on

page

137.

XL

Fortran

Compiler-Option

Reference

131

-qassert

Option

Syntax

-qassert={deps

|

nodeps

|

itercnt=n}

Provides

information

about

the

characteristics

of

the

files

that

can

help

to

fine-tune

optimizations.

Arguments

nodeps

Specifies

that

no

loop-carried

dependencies

exist.

itercnt

Specifies

a

value

for

unknown

loop

iteration

counts.

Related

Information

See

“Cost

Model

for

Loop

Transformations”

on

page

313

for

background

information

and

instructions

for

using

these

assertions.

See

also

the

description

of

the

ASSERT

directive

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

132

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qattr

Option

Syntax

-qattr[=full]

|

-qnoattr

ATTR[(FULL)]

|

NOATTR

Specifies

whether

to

produce

the

attribute

component

of

the

attribute

and

cross-reference

section

of

the

listing.

Arguments

If

you

specify

only

-qattr,

only

identifiers

that

are

used

are

reported.

If

you

specify

-qattr=full,

all

identifiers,

whether

referenced

or

not,

are

reported.

If

you

specify

-qattr

after

-qattr=full,

the

full

attribute

listing

is

still

produced.

You

can

use

the

attribute

listing

to

help

debug

problems

caused

by

incorrectly

specified

attributes

or

as

a

reminder

of

the

attributes

of

each

object

while

writing

new

code.

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77

and

“Attribute

and

Cross-Reference

Section”

on

page

392.

XL

Fortran

Compiler-Option

Reference

133

-qautodbl

Option

Syntax

-qautodbl=setting

AUTODBL(setting)

Provides

an

automatic

means

of

converting

single-precision

floating-point

calculations

to

double-precision

and

of

converting

double-precision

calculations

to

extended-precision.

You

might

find

this

option

helpful

in

porting

code

where

storage

relationships

are

significant

and

different

from

the

XL

Fortran

defaults.

For

example,

programs

that

are

written

for

the

IBM

VS

FORTRAN

compiler

may

rely

on

that

compiler’s

equivalent

option.

Rules

Although

the

POWER

and

POWER2

floating-point

units

perform

REAL(4)

calculations

internally

using

fast

REAL(8)

arithmetic,

it

is

often

better

to

have

these

calculations

done

entirely

using

data

entities

that

are

REAL(8)

or

DOUBLE

PRECISION.

If

the

calculations

are

coded

using

REAL

or

REAL(4)

data

entities,

the

REAL(4)-REAL(8)-REAL(4)

conversions

take

away

the

extra

precision

and

range

and

also

lessen

performance,

even

though

the

intermediate

calculations

are

done

in

IEEE

double-precision.

Arguments

The

-qautodbl

suboptions

offer

different

strategies

to

preserve

storage

relationships

between

objects

that

are

promoted

or

padded

and

those

that

are

not.

The

settings

you

can

use

are

as

follows:

none

Does

not

promote

or

pad

any

objects

that

share

storage.

This

setting

is

the

default.

dbl4

Promotes

floating-point

objects

that

are

single-precision

(4

bytes

in

size)

or

that

are

composed

of

such

objects

(for

example,

COMPLEX

or

array

objects):

v

REAL(4)

is

promoted

to

REAL(8).

v

COMPLEX(4)

is

promoted

to

COMPLEX(8).

This

suboption

requires

the

libxlfpmt4.a

library

during

linking.

dbl8

Promotes

floating-point

objects

that

are

double-precision

(8

bytes

in

size)

or

that

are

composed

of

such

objects:

v

REAL(8)

is

promoted

to

REAL(16).

v

COMPLEX(8)

is

promoted

to

COMPLEX(16).

This

suboption

requires

the

libxlfpmt8.a

library

during

linking.

dbl

Combines

the

promotions

that

dbl4

and

dbl8

perform.

This

suboption

requires

the

libxlfpmt4.a

and

libxlfpmt8.a

libraries

during

linking.

dblpad4

Performs

the

same

promotions

as

dbl4

and

pads

objects

of

other

types

(except

CHARACTER)

if

they

could

possibly

share

storage

with

promoted

objects.

This

suboption

requires

the

libxlfpmt4.a

and

libxlfpad.a

libraries

during

linking.

134

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

dblpad8

Performs

the

same

promotions

as

dbl8

and

pads

objects

of

other

types

(except

CHARACTER)

if

they

could

possibly

share

storage

with

promoted

objects.

This

suboption

requires

the

libxlfpmt8.a

and

libxlfpad.a

libraries

during

linking.

dblpad

Combines

the

promotions

done

by

dbl4

and

dbl8

and

pads

objects

of

other

types

(except

CHARACTER)

if

they

could

possibly

share

storage

with

promoted

objects.

This

suboption

requires

the

libxlfpmt4.a,

libxlfpmt8.a,

and

libxlfpad.a

libraries

during

linking.

Rules

If

the

appropriate

-qautodbl

option

is

specified

during

linking,

the

program

is

automatically

linked

with

the

necessary

extra

libraries.

Otherwise,

you

must

link

them

in

manually.

v

When

you

have

both

REAL(4)

and

REAL(8)

calculations

in

the

same

program

and

want

to

speed

up

the

REAL(4)

operations

without

slowing

down

the

REAL(8)

ones,

use

dbl4.

If

you

need

to

maintain

storage

relationships

for

promoted

objects,

use

dblpad4.

If

you

have

few

or

no

REAL(8)

calculations,

you

could

also

use

dblpad.

v

If

you

want

maximum

precision

of

all

results,

you

can

use

dbl

or

dblpad.

dbl4,

dblpad4,

dbl8,

and

dblpad8

select

a

subset

of

real

types

that

have

their

precision

increased.

By

using

dbl4

or

dblpad4,

you

can

increase

the

size

of

REAL(4)

objects

without

turning

REAL(8)

objects

into

REAL(16)s.

REAL(16)

is

less

efficient

in

calculations

than

REAL(8)

is.

The

-qautodbl

option

handles

calls

to

intrinsics

with

arguments

that

are

promoted;

when

necessary,

the

correct

higher-precision

intrinsic

function

is

substituted.

For

example,

if

single-precision

items

are

being

promoted,

a

call

in

your

program

to

SIN

automatically

becomes

a

call

to

DSIN.

Restrictions

v

Because

these

extra

conversions

do

not

apply

to

the

PowerPC

floating-point

unit,

this

option

may

not

produce

any

speedup

on

PowerPC

machines.

However,

programs

that

you

compile

with

it

still

work

and

gain

extra

precision

on

all

machines.

v

Because

character

data

is

not

promoted

or

padded,

its

relationship

with

storage-associated

items

that

are

promoted

or

padded

may

not

be

maintained.

v

If

the

storage

space

for

a

pointee

is

acquired

through

the

system

routine

malloc,

the

size

specified

to

malloc

should

take

into

account

the

extra

space

needed

to

represent

the

pointee

if

it

is

promoted

or

padded.

v

If

an

intrinsic

function

cannot

be

promoted

because

there

is

no

higher-precision

specific

name,

the

original

intrinsic

function

is

used,

and

the

compiler

displays

a

warning

message.

v

You

must

compile

every

compilation

unit

in

a

program

with

the

same

-qautodbl

setting.

To

detect

inconsistent

-qautodbl

settings,

use

the

-qextchk

option

when

compiling

the

source

file.

XL

Fortran

Compiler-Option

Reference

135

Related

Information

For

background

information

on

promotion,

padding,

and

storage/value

relationships

and

for

some

source

examples,

see

“Implementation

Details

for

-qautodbl

Promotion

and

Padding”

on

page

413.

“-qrealsize

Option”

on

page

222

describes

another

option

that

works

like

-qautodbl,

but

it

only

affects

items

that

are

of

default

kind

type

and

does

not

do

any

padding.

If

you

specify

both

the

-qrealsize

and

the

-qautodbl

options,

only

-qautodbl

takes

effect.

Also,

-qautodbl

overrides

the

-qdpc

option.

“Linking

32–Bit

Non-SMP

Object

Files

Using

the

ld

Command”

on

page

44

explains

how

to

manually

link

additional

libraries

with

object

files

that

you

compiled

with

-qautodbl.

136

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qcache

Option

Syntax

-qcache=

{

assoc=number

|

auto

|

cost=cycles

|

level=level

|

line=bytes

|

size=Kbytes

|

type={C|c|D|d|I|i}

}[:...]

Specifies

the

cache

configuration

for

a

specific

execution

machine.

The

compiler

uses

this

information

to

tune

program

performance,

especially

for

loop

operations

that

can

be

structured

(or

blocked)

to

process

only

the

amount

of

data

that

can

fit

into

the

data

cache.

If

you

know

exactly

what

type

of

system

a

program

is

intended

to

be

executed

on

and

that

system

has

its

instruction

or

data

cache

configured

differently

from

the

default

case

(as

governed

by

the

-qtune

setting),

you

can

specify

the

exact

characteristics

of

the

cache

to

allow

the

compiler

to

compute

more

precisely

the

benefits

of

particular

cache-related

optimizations.

For

the

-qcache

option

to

have

any

effect,

you

must

include

the

level

and

type

suboptions

and

specify

at

least

level

2

of

-O.

v

If

you

know

some

but

not

all

of

the

values,

specify

the

ones

you

do

know.

v

If

a

system

has

more

than

one

level

of

cache,

use

a

separate

-qcache

option

to

describe

each

level.

If

you

have

limited

time

to

spend

experimenting

with

this

option,

it

is

more

important

to

specify

the

characteristics

of

the

data

cache

than

of

the

instruction

cache.

v

If

you

are

not

sure

of

the

exact

cache

sizes

of

the

target

systems,

use

relatively

small

estimated

values.

It

is

better

to

have

some

cache

memory

that

is

not

used

than

to

have

cache

misses

or

page

faults

from

specifying

a

cache

that

is

larger

than

the

target

system

has.

Arguments

assoc=number

Specifies

the

set

associativity

of

the

cache:

0

Direct-mapped

cache

1

Fully

associative

cache

n

>

1

n-way

set-associative

cache

auto

Automatically

detects

the

specific

cache

configuration

of

the

compiling

machine.

It

assumes

that

the

execution

environment

will

be

the

same

as

the

compilation

environment.

cost=cycles

Specifies

the

performance

penalty

that

results

from

a

cache

miss

so

that

the

compiler

can

decide

whether

to

perform

an

optimization

that

might

result

in

extra

cache

misses.

level=level

Specifies

which

level

of

cache

is

affected:

1

Basic

cache

XL

Fortran

Compiler-Option

Reference

137

2

Level-2

cache

or

the

table

lookaside

buffer

(TLB)

if

the

machine

has

no

level-2

cache

3

TLB

in

a

machine

that

does

have

a

level-2

cache

Other

levels

are

possible

but

are

currently

undefined.

If

a

system

has

more

than

one

level

of

cache,

use

a

separate

-qcache

option

to

describe

each

level.

line=bytes

Specifies

the

line

size

of

the

cache.

size=Kbytes

Specifies

the

total

size

of

this

cache.

type={C|c|

D|d|I|i}

Specifies

the

type

of

cache

that

the

settings

apply

to,

as

follows:

v

C

or

c

for

a

combined

data

and

instruction

cache

v

D

or

d

for

the

data

cache

v

I

or

i

for

the

instruction

cache

Restrictions

If

you

specify

the

wrong

values

for

the

cache

configuration

or

run

the

program

on

a

machine

with

a

different

configuration,

the

program

may

not

be

as

fast

as

possible

but

will

still

work

correctly.

Remember,

if

you

are

not

sure

of

the

exact

values

for

cache

sizes,

use

a

conservative

estimate.

Currently,

the

-qcache

option

only

has

an

effect

when

you

also

specify

the

-qhot

option.

Examples

To

tune

performance

for

a

system

with

a

combined

instruction

and

data

level-1

cache

where

the

cache

is

two-way

associative,

8

KB

in

size,

and

has

64-byte

cache

lines:

xlf95

-O3

-qhot

-qcache=type=c:level=1:size=8:line=64:assoc=2

file.f

To

tune

performance

for

a

system

with

two

levels

of

data

cache,

use

two

-qcache

options:

xlf95

-O3

-qhot

-qcache=type=D:level=1:size=256:line=256:assoc=4

\

-qcache=type=D:level=2:size=512:line=256:assoc=2

file.f

To

tune

performance

for

a

system

with

two

types

of

cache,

again

use

two

-qcache

options:

xlf95

-O3

-qhot

-qcache=type=D:level=1:size=256:line=256:assoc=4

\

-qcache=type=I:level=1:size=512:line=256:assoc=2

file.f

Related

Information

See

“-qtune

Option”

on

page

251,

“-qarch

Option”

on

page

127,

and

“-qhot

Option”

on

page

171.

138

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qcclines

Option

Syntax

-qcclines

|

-qnocclines

CCLINES

|

NOCCLINES

Determines

whether

the

compiler

recognizes

conditional

compilation

lines

in

fixed

source

form

and

F90

free

source

form.

IBM

free

source

form

is

not

supported.

Defaults

The

default

is

-qcclines

if

the

-qsmp=omp

option

is

turned

on;

otherwise,

the

default

is

-qnocclines.

Related

Information

See

Conditional

Compilation

in

the

Language

Elements

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

139

-qcheck

Option

Syntax

-qcheck

|

-qnocheck

CHECK

|

NOCHECK

-qcheck

is

the

long

form

of

the

“-C

Option”

on

page

103.

140

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qci

Option

Syntax

-qci=numbers

CI(numbers)

Specifies

the

identification

numbers

(from

1

to

255)

of

the

INCLUDE

lines

to

process.

If

an

INCLUDE

line

has

a

number

at

the

end,

the

file

is

only

included

if

you

specify

that

number

in

a

-qci

option.

The

set

of

identification

numbers

that

is

recognized

is

the

union

of

all

identification

numbers

that

are

specified

on

all

occurrences

of

the

-qci

option.

This

option

allows

a

kind

of

conditional

compilation

because

you

can

put

code

that

is

only

sometimes

needed

(such

as

debugging

WRITE

statements,

additional

error-checking

code,

or

XLF-specific

code)

into

separate

files

and

decide

for

each

compilation

whether

to

process

them.

Examples

REAL

X

/1.0/

INCLUDE

’print_all_variables.f’

1

X

=

2.5

INCLUDE

’print_all_variables.f’

1

INCLUDE

’test_value_of_x.f’

2

END

In

this

example,

compiling

without

the

-qci

option

simply

declares

X

and

assigns

it

a

value.

Compiling

with

-qci=1

includes

two

instances

of

an

include

file,

and

compiling

with

-qci=1:2

includes

both

include

files.

Restrictions

Because

the

optional

number

in

INCLUDE

lines

is

not

a

widespread

Fortran

feature,

using

it

may

restrict

the

portability

of

a

program.

Related

Information

See

the

section

on

the

INCLUDE

directive

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

141

-qcompact

Option

Syntax

-qcompact

|

-qnocompact

COMPACT

|

NOCOMPACT

Reduces

optimizations

that

increase

code

size.

By

default,

some

techniques

the

optimizer

uses

to

improve

performance,

such

as

loop

unrolling

and

array

vectorization,

may

also

make

the

program

larger.

For

systems

with

limited

storage,

you

can

use

-qcompact

to

reduce

the

expansion

that

takes

place.

If

your

program

has

many

loop

and

array

language

constructs,

using

the

-qcompact

option

will

affect

your

application’s

overall

performance.

You

may

want

to

restrict

using

this

option

to

those

parts

of

your

program

where

optimization

gains

will

remain

unaffected.

Rules

With

-qcompact

in

effect,

-Q

and

other

optimization

options

still

work;

the

reductions

in

code

size

come

from

limiting

code

replication

that

is

done

automatically

during

optimization.

142

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qcr

Option

Syntax

-qcr

|

-qnocr

Allows

you

to

control

how

the

compiler

interprets

the

CR

(carriage

return)

character.

By

default,

the

CR

(Hex

value

X'0d')

or

LF

(Hex

value

X'0a')

character,

or

the

CRLF

(Hex

value

X'0d0a')

combination

indicates

line

termination

in

a

source

file.

This

allows

you

to

compile

code

written

using

a

Mac

OS

or

DOS/Windows

editor.

If

you

specify

-qnocr,

the

compiler

recognizes

only

the

LF

character

as

a

line

terminator.

You

must

specify

-qnocr

if

you

use

the

CR

character

for

a

purpose

other

than

line

termination.

XL

Fortran

Compiler-Option

Reference

143

-qctyplss

Option

Syntax

-qctyplss[(=[no]arg)]

|

-qnoctyplss

CTYPLSS[([NO]ARG)]|

NOCTYPLSS

Specifies

whether

character

constant

expressions

are

allowed

wherever

typeless

constants

may

be

used.

This

language

extension

might

be

needed

when

you

are

porting

programs

from

other

platforms.

Arguments

arg

|

noarg

Suboptions

retain

the

behavior

of

-qctyplss.

Additionally,

arg

specifies

that

Hollerith

constants

used

as

actual

arguments

will

be

treated

as

integer

actual

arguments.

Rules

With

-qctyplss,

character

constant

expressions

are

treated

as

if

they

were

Hollerith

constants

and

thus

can

be

used

in

logical

and

arithmetic

expressions.

Restrictions

v

If

you

specify

the

-qctyplss

option

and

use

a

character-constant

expression

with

the

%VAL

argument-list

keyword,

a

distinction

is

made

between

Hollerith

constants

and

character

constants:

character

constants

are

placed

in

the

rightmost

byte

of

the

register

and

padded

on

the

left

with

zeros,

while

Hollerith

constants

are

placed

in

the

leftmost

byte

and

padded

on

the

right

with

blanks.

All

of

the

other

%VAL

rules

apply.

v

The

option

does

not

apply

to

character

expressions

that

involve

a

constant

array

or

subobject

of

a

constant

array

at

any

point.

Examples

Example

1:

In

the

following

example,

the

compiler

option

-qctyplss

allows

the

use

of

a

character

constant

expression.

@PROCESS

CTYPLSS

INTEGER

I,J

INTEGER,

PARAMETER

::

K(1)

=

(/97/)

CHARACTER,

PARAMETER

::

C(1)

=

(/’A’/)

I

=

4HABCD

!

Hollerith

constant

J

=

’ABCD’

!

I

and

J

have

the

same

bit

representation

!

These

calls

are

to

routines

in

other

languages.

CALL

SUB(%VAL(’A’))

!

Equivalent

to

CALL

SUB(97)

CALL

SUB(%VAL(1HA))

!

Equivalent

to

CALL

SUB(1627389952)"

!

These

statements

are

not

allowed

because

of

the

constant-array

!

restriction.

!

I

=

C

//

C

!

I

=

C(1)

!

I

=

CHAR(K(1))

END

144

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Example

2:

In

the

following

example,

the

variable

J

is

passed

by

reference.

The

suboption

arg

specifies

that

the

Hollerith

constant

is

passed

as

if

it

were

an

integer

actual

argument.

@PROCESS

CTYPLSS(ARG)

INTEGER

::

J

J

=

3HIBM

!

These

calls

are

to

routines

in

other

languages.

CALL

SUB(J)

CALL

SUB(3HIBM)

!

The

Hollerith

constant

is

passed

as

if

!

it

were

an

integer

actual

argument

Related

Information

See

Hollerith

Constants

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

and

“Passing

Arguments

By

Reference

or

By

Value”

on

page

353.

XL

Fortran

Compiler-Option

Reference

145

-qdbg

Option

Syntax

-qdbg

|

-qnodbg

DBG

|

NODBG

-qdbg

is

the

long

form

of

the

“-g

Option”

on

page

108.

146

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qddim

Option

Syntax

-qddim

|

-qnoddim

DDIM

|

NODDIM

Specifies

that

the

bounds

of

pointee

arrays

are

re-evaluated

each

time

the

arrays

are

referenced

and

removes

some

restrictions

on

the

bounds

expressions

for

pointee

arrays.

Rules

By

default,

a

pointee

array

can

only

have

dimension

declarators

containing

variable

names

if

the

array

appears

in

a

subprogram,

and

any

variables

in

the

dimension

declarators

must

be

dummy

arguments,

members

of

a

common

block,

or

use-

or

host-associated.

The

size

of

the

dimension

is

evaluated

on

entry

to

the

subprogram

and

remains

constant

during

execution

of

the

subprogram.

With

the

-qddim

option:

v

The

bounds

of

a

pointee

array

are

re-evaluated

each

time

the

pointee

is

referenced.

This

process

is

called

dynamic

dimensioning.

Because

the

variables

in

the

declarators

are

evaluated

each

time

the

array

is

referenced,

changing

the

values

of

the

variables

changes

the

size

of

the

pointee

array.

v

The

restriction

on

the

variables

that

can

appear

in

the

array

declarators

is

lifted,

so

ordinary

local

variables

can

be

used

in

these

expressions.

v

Pointee

arrays

in

the

main

program

can

also

have

variables

in

their

array

declarators.

Examples

@PROCESS

DDIM

INTEGER

PTE,

N,

ARRAY(10)

POINTER

(P,

PTE(N))

DO

I=1,

10

ARRAY(I)=I

END

DO

N

=

5

P

=

LOC(ARRAY(2))

PRINT

*,

PTE

!

Print

elements

2

through

6.

N

=

7

!

Increase

the

size.

PRINT

*,

PTE

!

Print

elements

2

through

8.

END

XL

Fortran

Compiler-Option

Reference

147

-qdirective

Option

Syntax

-qdirective[=directive_list]

|

-qnodirective[=directive_list]

DIRECTIVE[(directive_list)]

|

NODIRECTIVE[(directive_list)]

Specifies

sequences

of

characters,

known

as

trigger

constants,

that

identify

comment

lines

as

compiler

comment

directives.

Background

Information

A

compiler

comment

directive

is

a

line

that

is

not

a

Fortran

statement

but

is

recognized

and

acted

on

by

the

compiler.

To

allow

you

maximum

flexibility,

any

new

directives

that

might

be

provided

with

the

XL

Fortran

compiler

in

the

future

will

be

placed

inside

comment

lines.

This

avoids

portability

problems

if

other

compilers

do

not

recognize

the

directives.

Defaults

The

compiler

recognizes

the

default

trigger

constant

IBM*.

Specification

of

-qsmp

implies

-qdirective=smp\$:\$omp:ibmp,

and,

by

default,

the

trigger

constants

SMP$,

$OMP,

and

IBMP

are

also

turned

on.

If

you

specify

-qsmp=omp,

the

compiler

ignores

all

trigger

constants

that

you

have

specified

up

to

that

point

and

recognizes

only

the

$OMP

trigger

constant.

Specification

of

-qthreaded

implies

-qdirective=ibmt,

and,

by

default,

the

trigger

constant

IBMT

is

also

turned

on.

Arguments

The

-qnodirective

option

with

no

directive_list

turns

off

all

previously

specified

directive

identifiers;

with

a

directive_list,

it

turns

off

only

the

selected

identifiers.

-qdirective

with

no

directive_list

turns

on

the

default

trigger

constant

IBM*

if

it

has

been

turned

off

by

a

previous

-qnodirective.

Notes

v

Multiple

-qdirective

and

-qnodirective

options

are

additive;

that

is,

you

can

turn

directive

identifiers

on

and

off

again

multiple

times.

v

One

or

more

directive_lists

can

be

applied

to

a

particular

file

or

compilation

unit;

any

comment

line

beginning

with

one

of

the

strings

in

the

directive_list

is

then

considered

to

be

a

compiler

comment

directive.

v

The

trigger

constants

are

not

case-sensitive.

v

The

characters

(,

),

',

",

:,

=,

comma,

and

blank

cannot

be

part

of

a

trigger

constant.

v

To

avoid

wildcard

expansion

in

trigger

constants

that

you

might

use

with

these

options,

you

can

enclose

them

in

single

quotation

marks

on

the

command

line.

For

example:

xlf95

-qdirective=’dbg*’

-qnodirective=’IBM*’

directives.f

v

This

option

only

affects

Fortran

directives

that

the

XL

Fortran

compiler

provides,

not

those

that

any

preprocessors

provide.

148

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Examples

!

This

program

is

written

in

Fortran

free

source

form.

PROGRAM

DIRECTV

INTEGER

A,

B,

C,

D,

E,

F

A

=

1

!

Begin

in

free

source

form.

B

=

2

!OLDSTYLE

SOURCEFORM(FIXED)

!

Switch

to

fixed

source

form

for

this

include

file.

INCLUDE

’set_c_and_d.inc’

!IBM*

SOURCEFORM(FREE)

!

Switch

back

to

free

source

form.

E

=

5

F

=

6

END

For

this

example,

compile

with

the

option

-qdirective=oldstyle

to

ensure

that

the

compiler

recognizes

the

SOURCEFORM

directive

before

the

INCLUDE

line.

After

processing

the

include-file

line,

the

program

reverts

back

to

free

source

form,

after

the

SOURCEFORM(FREE)

statement.

Related

Information

See

the

section

on

the

SOURCEFORM

directive

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

As

the

use

of

incorrect

trigger

constants

can

generate

warning

messages

or

error

messages

or

both,

you

should

check

the

particular

directive

statement

in

the

Directives

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

the

suitable

associated

trigger

constant.

XL

Fortran

Compiler-Option

Reference

149

-qdirectstorage

Option

Syntax

-qdirectstorage

|

-qnodirectstorage

Informs

the

compiler

that

a

given

compilation

unit

may

reference

write-through-enabled

or

cache-inhibited

storage.

Use

this

option

with

discretion.

It

is

intended

for

programmers

who

know

how

the

memory

and

cache

blocks

work,

and

how

to

tune

their

applications

for

optimal

performance.

For

a

program

to

execute

correctly

on

all

PowerPC

implementations

of

cache

organization,

the

programmer

should

assume

that

separate

instruction

and

data

caches

exist,

and

should

program

to

the

separate

cache

model.

Note:

Using

the

-qdirectstorage

option

together

with

the

CACHE_ZERO

directive

may

cause

your

program

to

fail,

or

to

produce

incorrect

results..

150

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qdlines

Option

Syntax

-qdlines

|

-qnodlines

DLINES

|

NODLINES

-qdlines

is

the

long

form

of

the

“-D

Option”

on

page

105.

XL

Fortran

Compiler-Option

Reference

151

-qdpc

Option

Syntax

-qdpc[=e]

|

-qnodpc

DPC[(E)]

|

NODPC

Increases

the

precision

of

real

constants,

for

maximum

accuracy

when

assigning

real

constants

to

DOUBLE

PRECISION

variables.

This

language

extension

might

be

needed

when

you

are

porting

programs

from

other

platforms.

Rules

If

you

specify

-qdpc,

all

basic

real

constants

(for

example,

1.1)

are

treated

as

double-precision

constants;

the

compiler

preserves

some

digits

of

precision

that

would

otherwise

be

lost

during

the

assignment

to

the

DOUBLE

PRECISION

variable.

If

you

specify

-qdpc=e,

all

single-precision

constants,

including

constants

with

an

e

exponent,

are

treated

as

double-precision

constants.

This

option

does

not

affect

constants

with

a

kind

type

parameter

specified.

Examples

@process

nodpc

subroutine

nodpc

real

x

double

precision

y

data

x

/1.000000000001/

!

The

trailing

digit

is

lost

data

y

/1.000000000001/

!

The

trailing

digit

is

lost

print

*,

x,

y,

x

.eq.

y

!

So

x

is

considered

equal

to

y

end

@process

dpc

subroutine

dpc

real

x

double

precision

y

data

x

/1.000000000001/

!

The

trailing

digit

is

lost

data

y

/1.000000000001/

!

The

trailing

digit

is

preserved

print

*,

x,

y,

x

.eq.

y

!

So

x

and

y

are

considered

different

end

program

testdpc

call

nodpc

call

dpc

end

When

compiled,

this

program

prints

the

following:

1.000000000

1.00000000000000000

T

1.000000000

1.00000000000100009

F

showing

that

with

-qdpc

the

extra

precision

is

preserved.

Related

Information

“-qautodbl

Option”

on

page

134

and

“-qrealsize

Option”

on

page

222

are

more

general-purpose

options

that

can

also

do

what

-qdpc

does.

-qdpc

has

no

effect

if

you

specify

either

of

these

options.

152

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qdpcl

Option

Syntax

-qdpcl

|

-qnodpcl

DPCL

|

NODPCL

Generates

symbols

that

tools

based

on

the

Dynamic

Probe

Class

Library

(DPCL)

can

use

to

see

the

structure

of

an

executable

file.

When

you

specify

the

-qdpcl

option,

the

compiler

emits

symbols

to

define

blocks

of

code

in

a

program.

You

can

then

use

tools

that

use

the

DPCL

interface

to

examine

performance

information,

such

as

memory

usage,

for

object

files

that

you

compiled

with

this

option.

Restrictions

You

must

also

specify

the

-g

option

when

you

specify

-qdpcl.

XL

Fortran

Compiler-Option

Reference

153

-qescape

Option

Syntax

-qescape

|

-qnoescape

ESCAPE

|

NOESCAPE

Specifies

how

the

backslash

is

treated

in

character

strings,

Hollerith

constants,

H

edit

descriptors,

and

character

string

edit

descriptors.

It

can

be

treated

as

an

escape

character

or

as

a

backslash

character.

This

language

extension

might

be

needed

when

you

are

porting

programs

from

other

platforms.

Defaults

By

default,

the

backslash

is

interpreted

as

an

escape

character

in

these

contexts.

If

you

specify

-qnoescape,

the

backslash

is

treated

as

the

backslash

character.

The

default

setting

is

useful

for

the

following:

v

Porting

code

from

another

Fortran

compiler

that

uses

the

backslash

as

an

escape

character.

v

Including

“unusual”

characters,

such

as

tabs

or

newlines,

in

character

data.

Without

this

option,

the

alternative

is

to

encode

the

ASCII

values

(or

EBCDIC

values,

on

mainframe

systems)

directly

in

the

program,

making

it

harder

to

port.

If

you

are

writing

or

porting

code

that

depends

on

backslash

characters

being

passed

through

unchanged,

specify

-qnoescape

so

that

they

do

not

get

any

special

interpretation.

You

could

also

write

\\

to

mean

a

single

backslash

character

under

the

default

setting.

Examples

In

the

first

compilation,

with

the

default

setting

of

-qescape,

\b

is

printed

as

a

backspace,

and

\f

is

printed

as

a

formfeed

character.

With

the

-qnoescape

option

specified,

the

backslashes

are

printed

like

any

other

character.

Related

Information

The

list

of

escape

sequences

that

XL

Fortran

recognizes

is

shown

in

Table

25

on

page

351.

$

#

Demonstrate

how

backslashes

can

affect

the

output

$

cat

escape.f

PRINT

*,’a\bcde\fg’

END

$

xlf95

escape.f

**

_main

===

End

of

Compilation

1

===

1501-510

Compilation

successful

for

file

escape.f.

$

a.out

cde

g

$

xlf95

-qnoescape

escape.f

**

_main

===

End

of

Compilation

1

===

1501-510

Compilation

successful

for

file

escape.f.

$

a.out

a\bcde\fg

154

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qessl

Option

Syntax

-qessl

|

-qnoessl

Allows

the

use

of

ESSL

routines

in

place

of

Fortran

90

intrinsic

procedures.

The

Engineering

and

Scientific

Subroutine

Library

(ESSL)

is

a

collection

of

subroutines

that

provides

a

wide

range

of

mathematical

functions

for

various

scientific

and

engineering

applications.

The

subroutines

are

tuned

for

performance

on

the

RS/6000

workstations.

Some

of

the

Fortran

90

intrinsic

procedures

have

similar

counterparts

in

ESSL.

Performance

is

improved

when

these

Fortran

90

intrinsic

procedures

are

linked

with

ESSL.

In

this

case,

you

can

keep

the

interface

of

Fortran

90

intrinsic

procedures,

and

get

the

added

benefit

of

improved

performance

using

ESSL.

Rules

Use

the

ESSL

Serial

Library

when

linking

with

-lessl.

Use

the

ESSL

SMP

Library

when

linking

with

-lesslsmp.

Either

-lessl

or

-lesslsmp

must

be

used

whenever

code

is

being

compiled

with

-qessl.

ESSL

v3.1.2

or

above

is

recommended.

It

supports

both

32-bit

and

64-bit

environments.

The

following

MATMUL

function

calls

may

use

ESSL

routines

when

-qessl

is

enabled:

real

a(10,10),

b(10,10),

c(10,10)

c=MATMUL(a,b)

Examples

Related

Information

The

ESSL

libraries

are

not

shipped

with

the

XL

Fortran

compiler.

For

more

information

on

these

two

libraries,

see

the

Engineering

and

Scientific

Subroutine

Library

for

AIX

Guide

and

Reference.

XL

Fortran

Compiler-Option

Reference

155

-qextchk

Option

Syntax

-qextchk

|

-qnoextchk

EXTCHK

|

NOEXTCHK

Sets

up

type-checking

information

for

common

blocks,

procedure

definitions,

procedure

references,

and

module

data.

Later,

the

linker

can

detect

mismatches

across

compilation

units

by

using

this

information.

Rules

At

compile

time,

-qextchk

verifies

the

consistency

of

procedure

definitions

and

references

and

module

data.

At

link

time,

-qextchk

verifies

that

actual

arguments

agree

in

type,

shape,

passing

mode,

and

class

with

the

corresponding

dummy

arguments

and

that

declarations

of

common

blocks

and

modules

are

consistent.

If

null

arguments

are

used

in

a

procedure

reference,

the

compiler

will

not

verify

that

the

actual

arguments

agree

with

the

corresponding

dummy

arguments

at

both

compile

and

link

time.

156

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qextern

Option

Syntax

-qextern=names

Allows

user-written

procedures

to

be

called

instead

of

XL

Fortran

intrinsics.

names

is

a

list

of

procedure

names

separated

by

colons.

The

procedure

names

are

treated

as

if

they

appear

in

an

EXTERNAL

statement

in

each

compilation

unit

being

compiled.

If

any

of

your

procedure

names

conflict

with

XL

Fortran

intrinsic

procedures,

use

this

option

to

call

the

procedures

in

the

source

code

instead

of

the

intrinsic

ones.

Arguments

Separate

the

procedure

names

with

colons.

Applicable

Product

Levels

Because

of

the

many

Fortran

90

and

Fortran

95

intrinsic

functions

and

subroutines,

you

might

need

to

use

this

option

even

if

you

did

not

need

it

for

FORTRAN

77

programs.

Examples

SUBROUTINE

GETENV(VAR)

CHARACTER(10)

VAR

PRINT

*,VAR

END

CALL

GETENV(’USER’)

END

Compiling

this

program

with

no

options

fails

because

the

call

to

GETENV

is

actually

calling

the

intrinsic

subroutine,

not

the

subroutine

defined

in

the

program.

Compiling

with

-qextern=getenv

allows

the

program

to

be

compiled

and

run

successfully.

XL

Fortran

Compiler-Option

Reference

157

-qextname

Option

Syntax

-qextname[=name1[:name2...]]

|

-qnoextname

EXTNAME[(name1:

name2:...)]

|

NOEXTNAME

Adds

an

underscore

to

the

names

of

all

global

entities,

which

helps

in

porting

programs

from

systems

where

this

is

a

convention

for

mixed-language

programs.

Use

-qextname=name1[:name2...]

to

identify

a

specific

global

entity

(or

entities).

For

a

list

of

named

entities,

separate

each

name

with

a

colon.

The

name

of

a

main

program

is

not

affected.

The

-qextname

option

helps

to

port

mixed-language

programs

to

XL

Fortran

without

modifications.

Use

of

this

option

avoids

naming

problems

that

might

otherwise

be

caused

by:

v

Fortran

subroutines,

functions,

or

common

blocks

that

are

named

main,

MAIN,

or

have

the

same

name

as

a

system

subroutine

v

Non-Fortran

routines

that

are

referenced

from

Fortran

and

contain

an

underscore

at

the

end

of

the

routine

name

Note:

XL

Fortran

Service

and

Utility

Procedures,

such

as

flush_

and

dtime_,

have

these

underscores

in

their

names

already.

By

compiling

with

the

-qextname

option,

you

can

code

the

names

of

these

procedures

without

the

trailing

underscores.

v

Non-Fortran

routines

that

call

Fortran

procedures

and

use

underscores

at

the

end

of

the

Fortran

names

v

Non-Fortran

external

or

global

data

objects

that

contain

an

underscore

at

the

end

of

the

data

name

and

are

shared

with

a

Fortran

procedure

If

your

program

has

only

a

few

instances

of

the

naming

problems

that

-qextname

solves,

you

may

prefer

to

select

new

names

with

the

-brename

option

of

the

ld

command.

Restrictions

You

must

compile

all

the

source

files

for

a

program,

including

the

source

files

of

any

required

module

files,

with

the

same

-qextname

setting.

If

you

use

the

xlfutility

module

to

ensure

that

the

Service

and

Utility

subprograms

are

correctly

declared,

you

must

change

the

name

to

xlfutility_extname

when

compiling

with

-qextname.

If

there

is

more

than

one

Service

and

Utility

subprogram

referenced

in

a

compilation

unit,

using

-qextname

with

no

names

specified

and

the

xlfutility_extname

module

may

cause

the

procedure

declaration

check

not

to

work

accurately.

158

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Examples

@PROCESS

EXTNAME

SUBROUTINE

STORE_DATA

CALL

FLUSH(10)

!

Using

EXTNAME,

we

can

drop

the

final

underscore.

END

SUBROUTINE

@PROCESS(EXTNAME(sub1))

program

main

external

::

sub1,

sub2

call

sub1()

!

An

underscore

is

added.

call

sub2()

!

No

underscore

is

added.

end

program

Related

Information

This

option

also

affects

the

names

that

are

specified

in

several

other

options,

so

you

do

not

have

to

include

underscores

in

their

names

on

the

command

line.

The

affected

options

are

“-qextern

Option”

on

page

157,

“-Q

Option”

on

page

119,

and

“-qsigtrap

Option”

on

page

232.

XL

Fortran

Compiler-Option

Reference

159

-qfdpr

Option

Syntax

-qfdpr

|

-qnofdpr

Provides

object

files

with

information

that

the

AIX

Feedback

Directed

Program

Restructuring

(fdpr)

performance-tuning

utility

needs

to

optimize

the

resulting

executable

file.

Restrictions

The

fdpr

performance-tuning

utility

has

its

own

set

of

restrictions,

and

it

is

not

guaranteed

to

speed

up

all

programs

or

produce

executables

that

produce

exactly

the

same

results

as

the

original

programs.

If

you

use

the

-qfdpr

compiler

option,

only

those

object

files

that

are

built

with

this

flag

will

be

reordered.

Therefore,

if

you

use

-qfdpr,

you

should

use

it

for

all

object

files

in

a

program.

Static

linking

will

not

improve

performance

if

you

use

the

-qfdpr

compiler

option.

When

you

use

-qfdpr

on

some

of

the

objects

that

are

built

into

an

executable,

fdpr

will

only

perform

some

optimizations

on

the

objects

that

are

built

with

fdpr.

This

can

mean

that

fdpr

has

less

benefit

on

programs

compiled

using

-qfdpr,

because

library

code

is

not

optimized

(since

it

has

not

been

compiled

with

-qfdpr).

The

optimizations

that

the

fdpr

command

performs

are

similar

to

those

that

the

-qpdf

option

performs.

Related

Information

For

more

information,

see

the

fdpr

man

page

and

the

AIX

Commands

Reference.

160

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qfixed

Option

Syntax

-qfixed[=right_margin]

FIXED[(right_margin)]

Indicates

that

the

input

source

program

is

in

fixed

source

form

and

optionally

specifies

the

maximum

line

length.

The

source

form

specified

when

executing

the

compiler

applies

to

all

of

the

input

files,

although

you

can

switch

the

form

for

a

compilation

unit

by

using

a

FREE

or

FIXED

@PROCESS

directive

or

switch

the

form

for

the

rest

of

the

file

by

using

a

SOURCEFORM

comment

directive

(even

inside

a

compilation

unit).

For

source

code

from

some

other

systems,

you

may

find

you

need

to

specify

a

right

margin

larger

than

the

default.

This

option

allows

a

maximum

right

margin

of

132.

Defaults

-qfixed=72

is

the

default

for

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands.

-qfree=f90

is

the

default

for

the

f90,

f95,

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands.

Related

Information

See

“-qfree

Option”

on

page

168.

For

the

precise

specifications

of

this

source

form,

see

Fixed

Source

Form

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

161

-qflag

Option

Syntax

-qflag=listing_severity:terminal_severity

FLAG(listing_severity,terminal_severity)

You

must

specify

both

listing_severity

and

terminal_severity.

Limits

the

diagnostic

messages

to

those

of

a

specified

level

or

higher.

Only

messages

with

severity

listing_severity

or

higher

are

written

to

the

listing

file.

Only

messages

with

severity

terminal_severity

or

higher

are

written

to

the

terminal.

-w

is

a

short

form

for

-qflag=e:e.

Arguments

The

severity

levels

(from

lowest

to

highest)

are:

i

Informational

messages.

They

explain

things

that

you

should

know,

but

they

usually

do

not

require

any

action

on

your

part.

l

Language-level

messages,

such

as

those

produced

under

the

-qlanglvl

option.

They

indicate

possible

nonportable

language

constructs.

w

Warning

messages.

They

indicate

error

conditions

that

might

require

action

on

your

part,

but

the

program

is

still

correct.

e

Error

messages.

They

indicate

error

conditions

that

require

action

on

your

part

to

make

the

program

correct,

but

the

resulting

program

can

probably

still

be

executed.

s

Severe

error

messages.

They

indicate

error

conditions

that

require

action

on

your

part

to

make

the

program

correct,

and

the

resulting

program

will

fail

if

it

reaches

the

location

of

the

error.

You

must

change

the

-qhalt

setting

to

make

the

compiler

produce

an

object

file

when

it

encounters

this

kind

of

error.

u

Unrecoverable

error

messages.

They

indicate

error

conditions

that

prevent

the

compiler

from

continuing.

They

require

action

on

your

part

before

you

can

compile

your

program.

q

No

messages.

A

severity

level

that

can

never

be

generated

by

any

defined

error

condition.

Specifying

it

prevents

the

compiler

from

displaying

messages,

even

if

it

encounters

unrecoverable

errors.

The

-qflag

option

overrides

any

-qlanglvl

or

-qsaa

options

specified.

Defaults

The

default

for

this

option

is

i:i

so

that

you

do

not

miss

any

important

informational

messages.

Related

Information

See

“-qlanglvl

Option”

on

page

189

and

“Understanding

XL

Fortran

Error

Messages”

on

page

369.

162

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qfloat

Option

Syntax

-qfloat=options

FLOAT(options)

Selects

different

strategies

for

speeding

up

or

improving

the

accuracy

of

floating-point

calculations.

This

option

replaces

several

separate

options.

For

any

new

code,

you

should

use

it

instead

of

-qfold,

-qmaf,

or

related

options.

You

should

be

familiar

with

the

information

in

“XL

Fortran

Floating-Point

Processing”

on

page

287

and

the

IEEE

standard

before

attempting

to

change

any

-qfloat

settings.

Defaults

The

default

setting

uses

the

suboptions

nofltint,

fold,

nohsflt,

nohssngl,

maf,

nonans,

norndsngl,

norrm,

norsqrt,

and

nostrictnmaf.

Some

options

change

this

default,

as

explained

below.

The

default

setting

of

each

suboption

remains

in

effect

unless

you

explicitly

change

it.

For

example,

if

you

select

-qfloat=nofold,

the

settings

for

nohsflt,

nohssngl,

or

related

options

are

not

affected.

Arguments

The

available

suboptions

each

have

a

positive

and

negative

form,

such

as

fold

and

nofold,

where

the

negative

form

is

the

opposite

of

the

positive.

The

suboptions

are

as

follows:

fltint

|

nofltint

Speeds

up

floating-point-to-integer

conversions

by

using

an

inline

sequence

of

code

instead

of

a

call

to

a

library

function.

The

library

function,

which

is

called

by

default

if

-qfloat=fltint

is

not

specified

or

implied

by

another

option,

checks

for

floating-point

values

outside

the

representable

range

of

integers

and

returns

the

minimum

or

maximum

representable

integer

if

passed

an

out-of-range

floating-point

value.

The

Fortran

language

does

not

require

checking

for

floating-point

values

outside

the

representable

range

of

integers.

In

order

to

improve

efficiency,

the

inline

sequence

used

by

-qfloat=fltint

does

not

perform

this

check.

If

passed

a

value

that

is

out

of

range,

the

inline

sequence

will

produce

undefined

results.

Although

this

suboption

is

turned

off

by

default,

it

is

turned

on

by

the

-O3

optimization

level

unless

you

also

specify

-qstrict.

fold

|

nofold

Evaluates

constant

floating-point

expressions

at

compile

time,

which

may

yield

slightly

different

results

from

evaluating

them

at

run

time.

The

compiler

always

evaluates

constant

expressions

in

specification

statements,

even

if

you

specify

nofold.

hsflt

|

nohsflt

Speeds

up

calculations

by

preventing

rounding

for

single-precision

expressions

and

by

replacing

floating-point

division

by

multiplication

with

XL

Fortran

Compiler-Option

Reference

163

the

reciprocal

of

the

divisor.

It

also

uses

the

same

technique

as

the

fltint

suboption

for

floating-point-to-integer

conversions.

Notes:

1.

This

suboption

is

intended

for

specific

applications

in

which

floating-point

calculations

have

known

characteristics.

In

particular,

all

floating-point

results

must

be

within

the

defined

range

of

representation

of

single

precision.

The

use

of

this

option

when

compiling

other

application

programs

may

produce

incorrect

results

without

warning.

See

“Technical

Details

of

the

-qfloat=hsflt

Option”

on

page

412

for

details.

hssngl

|

nohssngl

Speeds

up

calculations

in

a

safer

way

than

hsflt,

by

rounding

single-precision

expressions

only

when

the

results

are

stored

into

REAL(4)

memory

locations.

maf

|

nomaf

Makes

floating-point

calculations

faster

and

more

accurate

by

using

multiply-add

instructions

where

appropriate.

The

possible

disadvantage

is

that

results

may

not

be

exactly

equivalent

to

those

from

similar

calculations

that

are

performed

at

compile

time

or

on

other

types

of

computers.

Also,

negative

zero

may

be

produced.

nans

|

nonans

Allows

you

to

use

the

-qflttrap=invalid:enable

option

to

detect

and

deal

with

exception

conditions

that

involve

signaling

NaN

(not-a-number)

values.

Use

this

suboption

only

if

your

program

explicitly

creates

signaling

NaN

values,

because

these

values

never

result

from

other

floating-point

operations.

rndsngl

|

norndsngl

Rounds

the

result

of

each

single-precision

(REAL(4))

operation

to

single-precision,

rather

than

waiting

until

the

full

expression

is

evaluated.

It

sacrifices

speed

for

consistency

with

results

from

similar

calculations

on

other

types

of

computers.

This

setting

is

always

in

effect

for

programs

that

you

compile

with

any

of

the

-qarch

PowerPC

suboptions

,

because

of

the

way

the

PowerPC

floating-point

unit

works.

The

rndsngl

suboption

is

also

turned

on

if

you

specify

-q64

and

-qarch=com

together.

rrm

|

norrm

Turns

off

compiler

optimizations

that

require

the

rounding

mode

to

be

the

default,

round-to-nearest,

at

run

time.

Use

this

option

if

your

program

changes

the

rounding

mode

by

any

means,

such

as

by

calling

the

fpsets

procedure.

Otherwise,

the

program

may

compute

incorrect

results.

rsqrt

|

norsqrt

Speeds

up

some

calculations

by

replacing

division

by

the

result

of

a

square

root

with

multiplication

by

the

reciprocal

of

the

square

root.

Although

this

suboption

is

turned

off

by

default,

specifying

-O3

turns

it

on

unless

you

also

specify

-qstrict.

strictnmaf

|

nostrictnmaf

Turns

off

floating-point

transformations

that

are

used

to

introduce

negative

MAF

instructions,

as

these

transformations

do

not

preserve

the

sign

of

a

zero

value.

By

default,

the

compiler

enables

these

types

of

transformations.

To

ensure

strict

semantics,

specify

both

-qstrict

and

-qfloat=strictnmaf.

164

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qflttrap

Option

Syntax

-qflttrap[=suboptions]

|

-qnoflttrap

FLTTRAP[(suboptions)]

|

NOFLTTRAP

Determines

what

types

of

floating-point

exception

conditions

to

detect

at

run

time.

The

program

receives

a

SIGTRAP

signal

when

the

corresponding

exception

occurs.

Arguments

ENable

Turn

on

checking

for

the

specified

exceptions

in

the

main

program

so

that

the

exceptions

generate

SIGTRAP

signals.

You

must

specify

this

suboption

if

you

want

to

turn

on

exception

trapping

without

modifying

your

source

code.

IMPrecise

Only

check

for

the

specified

exceptions

on

subprogram

entry

and

exit.

This

suboption

improves

performance,

but

it

can

make

the

exact

spot

of

the

exception

difficult

to

find.

INEXact

Detect

and

trap

on

floating-point

inexact

if

exception-checking

is

enabled.

Because

inexact

results

are

very

common

in

floating-point

calculations,

you

usually

should

not

need

to

turn

this

type

of

exception

on.

INValid

Detect

and

trap

on

floating-point

invalid

operations

if

exception-checking

is

enabled.

NANQ

Detect

and

trap

all

quiet

not-a-number

values

(NaNQs)

and

signaling

not-a-number

values

(NaNSs).

Trapping

code

is

generated

regardless

of

specifying

the

enable

or

imprecise

suboption.

This

suboption

detects

all

NaN

values

handled

by

or

generated

by

floating

point

instructions,

including

those

not

created

by

invalid

operations.

This

option

can

impact

performance.

OVerflow

Detect

and

trap

on

floating-point

overflow

if

exception-checking

is

enabled.

UNDerflow

Detect

and

trap

on

floating-point

underflow

if

exception-checking

is

enabled.

ZEROdivide

Detect

and

trap

on

floating-point

division

by

zero

if

exception-checking

is

enabled.

Defaults

The

-qflttrap

option

without

suboptions

is

equivalent

to

-qflttrap=ov:und:zero:inv:inex.

However,

because

this

default

does

not

include

enable,

it

is

probably

only

useful

if

you

already

use

fpsets

or

similar

subroutines

in

your

source.

If

you

specify

-qflttrap

more

than

once,

both

with

and

without

suboptions,

the

-qflttrap

without

suboptions

is

ignored.

Restrictions

On

AIX

Version

5.1

and

above,

if

you

use

-qflttrap=inv:en

to

compile

a

program

containing

an

IEEE

invalid

SQRT

operation

and

then

run

that

program,

the

expected

SIGTRAP

signal

may

not

occur

on

PowerPC

machines

and

does

not

occur

at

all

on

POWER

machines.

You

can

only

fix

this

problem

for

AIX

Version

5.1

and

subsequent

levels

of

the

operating

system.

Specify

the

following

command:

XL

Fortran

Compiler-Option

Reference

165

export

SQRT_EXCEPTION=3.1

166

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Examples

When

you

compile

this

program:

REAL

X,

Y,

Z

DATA

X

/5.0/,

Y

/0.0/

Z

=

X

/

Y

PRINT

*,

Z

END

with

the

command:

xlf95

-qflttrap=zerodivide:enable

-qsigtrap

divide_by_zero.f

the

program

stops

when

the

division

is

performed.

The

zerodivide

suboption

identifies

the

type

of

exception

to

guard

against.

The

enable

suboption

causes

a

SIGTRAP

signal

when

the

exception

occurs.

The

-qsigtrap

option

produces

informative

output

when

the

signal

stops

the

program.

Related

Information

See

“-qsigtrap

Option”

on

page

232.

See

“Detecting

and

Trapping

Floating-Point

Exceptions”

on

page

296

for

full

instructions

on

how

and

when

to

use

the

-qflttrap

option,

especially

if

you

are

just

starting

to

use

it.

XL

Fortran

Compiler-Option

Reference

167

-qfree

Option

Syntax

-qfree[={f90|ibm}]

FREE[({F90|IBM})]

Indicates

that

the

source

code

is

in

free

source

form.

The

ibm

and

f90

suboptions

specify

compatibility

with

the

free

source

form

defined

for

VS

FORTRAN

and

Fortran

90,

respectively.

Note

that

the

free

source

form

defined

for

Fortran

90

also

applies

to

Fortran

95.

The

source

form

specified

when

executing

the

compiler

applies

to

all

of

the

input

files,

although

you

can

switch

the

form

for

a

compilation

unit

by

using

a

FREE

or

FIXED

@PROCESS

directive

or

for

the

rest

of

the

file

by

using

a

SOURCEFORM

comment

directive

(even

inside

a

compilation

unit).

Defaults

-qfree

by

itself

specifies

Fortran

90

free

source

form.

-qfixed=72

is

the

default

for

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands.

-qfree=f90

is

the

default

for

the

f90,

f95,

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands.

Related

Information

See

“-qfixed

Option”

on

page

161.

-k

is

equivalent

to

-qfree=f90.

Fortran

90

free

source

form

is

explained

in

Free

Source

Form

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

It

is

the

format

to

use

for

maximum

portability

across

compilers

that

support

Fortran

90

and

Fortran

95

features

now

and

in

the

future.

IBM

free

source

form

is

equivalent

to

the

free

format

of

the

IBM

VS

FORTRAN

compiler,

and

it

is

intended

to

help

port

programs

from

the

z/OS®

platform.

It

is

explained

in

IBM

Free

Source

Form

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

168

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qfullpath

Option

Syntax

-qfullpath

|

-qnofullpath

Records

the

full,

or

absolute,

path

names

of

source

and

include

files

in

object

files

compiled

with

debugging

information

(-g

option).

If

you

need

to

move

an

executable

file

into

a

different

directory

before

debugging

it

or

have

multiple

versions

of

the

source

files

and

want

to

ensure

that

the

debugger

uses

the

original

source

files,

use

the

-qfullpath

option

in

combination

with

the

-g

option

so

that

source-level

debuggers

can

locate

the

correct

source

files.

Defaults

By

default,

the

compiler

records

the

relative

path

names

of

the

original

source

file

in

each

.o

file.

It

may

also

record

relative

path

names

for

include

files.

Restrictions

Although

-qfullpath

works

without

the

-g

option,

you

cannot

do

source-level

debugging

unless

you

also

specify

the

-g

option.

Examples

In

this

example,

the

executable

file

is

moved

after

being

created,

but

the

debugger

can

still

locate

the

original

source

files:

Related

Information

See

“-g

Option”

on

page

108.

$

xlf95

-g

-qfullpath

file1.f

file2.f

file3.f

-o

debug_version

...

$

mv

debug_version

$HOME/test_bucket

$

cd

$HOME/test_bucket

$

dbx

debug_version

XL

Fortran

Compiler-Option

Reference

169

-qhalt

Option

Syntax

-qhalt=severity

HALT(severity)

Stops

before

producing

any

object,

executable,

or

assembler

source

files

if

the

maximum

severity

of

compile-time

messages

equals

or

exceeds

the

specified

severity.

severity

is

one

of

i,

l,

w,

e,

s,

u,

or

q,

meaning

informational,

language,

warning,

error,

severe

error,

unrecoverable

error,

or

a

severity

indicating

“don’t

stop”.

Arguments

The

severity

levels

(from

lowest

to

highest)

are:

i

Informational

messages.

They

explain

things

that

you

should

know,

but

they

usually

do

not

require

any

action

on

your

part.

l

Language-level

messages,

such

as

those

produced

under

the

-qlanglvl

option.

They

indicate

possible

nonportable

language

constructs.

w

Warning

messages.

They

indicate

error

conditions

that

might

require

action

on

your

part,

but

the

program

is

still

correct.

e

Error

messages.

They

indicate

error

conditions

that

require

action

on

your

part

to

make

the

program

correct,

but

the

resulting

program

can

probably

still

be

executed.

s

Severe

error

messages.

They

indicate

error

conditions

that

require

action

on

your

part

to

make

the

program

correct,

and

the

resulting

program

will

fail

if

it

reaches

the

location

of

the

error.

You

must

change

the

-qhalt

setting

to

make

the

compiler

produce

an

object

file

when

it

encounters

this

kind

of

error.

u

Unrecoverable

error

messages.

They

indicate

error

conditions

that

prevent

the

compiler

from

continuing.

They

require

action

on

your

part

before

you

can

compile

your

program.

q

No

messages.

A

severity

level

that

can

never

be

generated

by

any

defined

error

condition.

Specifying

it

prevents

the

compiler

from

displaying

messages,

even

if

it

encounters

unrecoverable

errors.

Defaults

The

default

is

-qhalt=s,

which

prevents

the

compiler

from

generating

an

object

file

when

compilation

fails.

Restrictions

The

-qhalt

option

can

override

the

-qobject

option,

and

-qnoobject

can

override

-qhalt.

170

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qhot

Option

Syntax

-qhot[=suboptions]

|

-qnohot

HOT[=suboptions]

|

NOHOT

The

-qhot

compiler

option

is

a

powerful

alternative

to

hand

tuning

that

provides

opportunities

to

optimize

loops

and

array

language.

The

-qhot

compiler

option

will

always

attempt

to

optimize

loops,

regardless

of

the

suboptions

you

specify.

If

you

do

not

specify

an

optimization

level

of

2

or

higher

when

using

-O

and

-qhot,

the

compiler

assumes

-O2.

For

additional

information

on

loop

unrolling,

see

the

Directives

for

Loop

Optimization

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Array

Padding:

In

XL

Fortran,

array

dimensions

that

are

powers

of

two

can

lead

to

a

decrease

in

cache

utilization.

The

arraypad

suboption

allows

the

compiler

to

increase

the

dimensions

of

arrays

where

doing

so

could

improve

the

efficiency

of

array-processing

loops.

This

can

reduce

cache

misses

and

page

faults

that

slow

your

array

processing

programs.

Specify

-qhot=arraypad

when

your

source

includes

large

arrays

with

dimensions

that

are

powers

of

2.

This

can

be

particularly

effective

when

the

first

dimension

is

a

power

of

2.

The

-C

option

turns

off

some

array

optimizations.

Vectorization:

The

-qhot

compiler

option

supports

the

vector

suboption

that

can

optimize

loops

in

source

code

for

operations

on

array

data,

by

ensuring

that

operations

run

in

parallel

where

applicable.

The

compiler

uses

standard

registers

with

no

vector

size

restrictions.

Supporting

single

and

double-precision

floating-point

mathematics,

users

can

typically

see

benefit

when

applying

–qhot=vector

to

applications

with

significant

mathematical

requirements.

Arguments

arraypad

The

compiler

pads

any

arrays

where

there

could

be

an

increase

in

cache

utilization.

Not

all

arrays

will

necessarily

be

padded,

and

the

compiler

can

pad

different

arrays

by

different

amounts.

arraypad=n

The

compiler

pads

each

array

in

the

source.

The

pad

amount

must

be

a

positive

integer

value.

Each

array

will

be

padded

by

an

integral

number

of

elements.

The

integral

value

n

must

be

multiples

of

the

largest

array

element

size

for

effective

use

of

arraypad.

This

value

is

typically

4,

8,

or

16.

When

you

specify

the

arraypad

and

arraypad=n

options,

the

compiler

does

not

check

for

reshaping

or

equivalences.

If

padding

takes

place,

your

program

can

produce

unexpected

results.

vector

|

novector

The

compiler

converts

certain

operations

in

a

loop

that

apply

to

successive

elements

of

an

array

into

a

call

to

a

routine

that

is

in

the

libxlopt.a

library.

This

call

calculates

several

results

at

one

time,

which

is

faster

than

calculating

each

result

sequentially.

XL

Fortran

Compiler-Option

Reference

171

If

you

specify

-qhot=novector,

the

compiler

performs

optimizations

on

loops

and

arrays,

but

avoids

replacing

certain

code

with

calls

to

vector

library

routines.

The

-qhot=vector

option

can

affect

the

precision

of

your

program’s

results

so

you

should

specify

either

-qhot=novector

or

-qstrict

if

the

change

in

precision

is

unacceptable

to

you.

Defaults

v

The

-qhot=vector

suboption

is

on

by

default

when

you

specify

the

-qhot,

-qsmp,

-O4,

or

-O5

options.

Examples

The

following

example

turns

on

the

-qhot=vector

option

but

then

turns

it

off

before

the

compiler

processes

the

code.

xlf95

-qhot=vector

t.f

-qhot=novector

Related

Information

“Optimizing

Loops

and

Array

Language”

on

page

312

lists

the

transformations

that

are

performed.

172

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qhsflt

Option

Syntax

-qhsflt

|

-qnohsflt

HSFLT

|

NOHSFLT

Obsolete.

Replaced

by

the

hsflt

and

nohsflt

suboptions

of

the

“-qfloat

Option”

on

page

163.

Related

Information

Be

sure

to

read

“Maximizing

Floating-Point

Performance”

on

page

295

and

“Technical

Details

of

the

-qfloat=hsflt

Option”

on

page

412

for

information

about

the

intended

purpose

and

restrictions

of

this

option.

XL

Fortran

Compiler-Option

Reference

173

-qhssngl

Option

Syntax

-qhssngl

|

-qnohssngl

HSSNGL

|

NOHSSNGL

Obsolete.

Replaced

by

the

hssngl

and

nohssngl

suboptions

of

the

“-qfloat

Option”

on

page

163.

174

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qieee

Option

Syntax

-qieee={Near

|

Minus

|

Plus

|

Zero}

IEEE({Near

|

Minus

|

Plus

|

Zero})

Specifies

the

rounding

mode

for

the

compiler

to

use

when

it

evaluates

constant

floating-point

expressions

at

compile

time.

Arguments

The

choices

are:

Near

Round

to

nearest

representable

number.

Minus

Round

toward

minus

infinity.

Plus

Round

toward

plus

infinity.

Zero

Round

toward

zero.

This

option

is

intended

for

use

in

combination

with

the

XL

Fortran

subroutine

fpsets

or

some

other

method

of

changing

the

rounding

mode

at

run

time.

It

sets

the

rounding

mode

that

is

used

for

compile-time

arithmetic

(for

example,

evaluating

constant

expressions

such

as

2.0/3.5).

By

specifying

the

same

rounding

mode

for

compile-time

and

run-time

operations,

you

can

avoid

inconsistencies

in

floating-point

results.

Note:

Compile-time

arithmetic

is

most

extensive

when

you

also

specify

the

-O

option.

If

you

change

the

rounding

mode

to

other

than

the

default

(round-to-nearest)

at

run

time,

be

sure

to

also

specify

-qfloat=rrm

to

turn

off

optimizations

that

only

apply

in

the

default

rounding

mode.

Related

Information

See

“Selecting

the

Rounding

Mode”

on

page

292,

“-O

Option”

on

page

114,

and

“-qfloat

Option”

on

page

163.

XL

Fortran

Compiler-Option

Reference

175

-qinit

Option

Syntax

-qinit=f90ptr

INIT(F90PTR)

Makes

the

initial

association

status

of

pointers

disassociated.

Note

that

this

applies

to

Fortran

95

as

well

as

Fortran

90,

and

above.

You

can

use

this

option

to

help

locate

and

fix

problems

that

are

due

to

using

a

pointer

before

you

define

it.

Related

Information

See

Pointer

Association

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

176

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qinitauto

Option

Syntax

-qinitauto[=hex_value]

|

-qnoinitauto

Initializes

each

byte

or

word

(4

bytes)

of

storage

for

automatic

variables

to

a

specific

value,

depending

on

the

length

of

the

hex_value.

This

helps

you

to

locate

variables

that

are

referenced

before

being

defined.

For

example,

by

using

both

the

-qinitauto

option

to

initialize

REAL

variables

with

a

NaNS

value

and

the

-qflttrap

option,

it

is

possible

to

identify

references

to

uninitialized

REAL

variables

at

run

time.

Prior

to

XL

Fortran

Version

5.1.1,

you

could

only

use

this

option

to

initialize

each

byte

of

storage.

Setting

hex_value

to

zero

ensures

that

all

automatic

variables

are

cleared

before

being

used.

Some

programs

assume

that

variables

are

initialized

to

zero

and

do

not

work

when

they

are

not.

Other

programs

may

work

if

they

are

not

optimized

but

fail

when

they

are

optimized.

Typically,

setting

all

the

variables

to

all

zero

bytes

prevents

such

run-time

errors.

It

is

better

to

locate

the

variables

that

require

zeroing

and

insert

code

in

your

program

to

do

so

than

to

rely

on

this

option

to

do

it

for

you.

Using

this

option

will

generally

zero

more

things

than

necessary

and

may

result

in

slower

programs.

To

locate

and

fix

these

errors,

set

the

bytes

to

a

value

other

than

zero,

which

will

consistently

reproduce

incorrect

results.

This

method

is

especially

valuable

in

cases

where

adding

debugging

statements

or

loading

the

program

into

a

symbolic

debugger

makes

the

error

go

away.

Setting

hex_value

to

FF

(255)

gives

REAL

and

COMPLEX

variables

an

initial

value

of

“negative

not

a

number”,

or

-NaNQ.

Any

operations

on

these

variables

will

also

result

in

NaNQ

values,

making

it

clear

that

an

uninitialized

variable

has

been

used

in

a

calculation.

This

option

can

help

you

to

debug

programs

with

uninitialized

variables

in

subprograms;

for

example,

you

can

use

it

to

initialize

REAL

variables

with

a

NaNS

value.

You

can

initialize

8-byte

REAL

variables

to

double-precision

NaNS

values

by

specifying

an

8-digit

hexadecimal

number,

that,

when

repeated,

has

a

double-precision

NaNS

value.

For

example,

you

could

specify

a

number

such

as

7FBFFFFF,

that,

when

stored

in

a

REAL(4)

variable,

has

a

single-precision

NaNS

value.

The

value

7FF7FFFF,

when

stored

in

a

REAL(4)

variable,

has

a

single-precision

NaNQ

value.

If

the

same

number

is

stored

twice

in

a

REAL(8)

variable

(7FF7FFFF7FF7FFFF),

it

has

a

double-precision

NaNS

value.

Arguments

v

The

hex_value

is

a

1-digit

to

8-digit

hexadecimal

(0-F)

number.

v

To

initialize

each

byte

of

storage

to

a

specific

value,

specify

1

or

2

digits

for

the

hex_value.

If

you

specify

only

1

digit,

the

compiler

pads

the

hex_value

on

the

left

with

a

zero.

v

To

initialize

each

word

of

storage

to

a

specific

value,

specify

3

to

8

digits

for

the

hex_value.

If

you

specify

more

than

2

but

fewer

than

8

digits,

the

compiler

pads

the

hex_value

on

the

left

with

zeros.

v

In

the

case

of

word

initialization,

if

automatic

variables

are

not

a

multiple

of

4

bytes

in

length,

the

hex_value

may

be

truncated

on

the

left

to

fit.

For

example,

if

you

specify

5

digits

for

the

hex_value

and

an

automatic

variable

is

only

1

byte

long,

the

compiler

truncates

the

3

digits

on

the

left-hand

side

of

the

hex_value

and

assigns

the

two

right-hand

digits

to

the

variable.

XL

Fortran

Compiler-Option

Reference

177

v

You

can

specify

alphabetic

digits

as

either

upper-

or

lower-case.

Defaults

v

By

default,

the

compiler

does

not

initialize

automatic

storage

to

any

particular

value.

However,

it

is

possible

that

a

region

of

storage

contains

all

zeros.

v

If

you

do

not

specify

a

hex_value

suboption

for

-qinitauto,

the

compiler

initializes

the

value

of

each

byte

of

automatic

storage

to

zero.

Restrictions

v

Equivalenced

variables,

structure

components,

and

array

elements

are

not

initialized

individually.

Instead,

the

entire

storage

sequence

is

initialized

collectively.

Examples

The

following

example

shows

how

to

perform

word

initialization

of

automatic

variables:

subroutine

sub()

integer(4),

automatic

::

i4

character,

automatic

::

c

real(4),

automatic

::

r4

real(8),

automatic

::

r8

end

subroutine

When

you

compile

the

code

with

the

following

option,

the

compiler

performs

word

initialization,

as

the

hex_value

is

longer

than

2

digits:

-qinitauto=0cf

The

compiler

initializes

the

variables

as

follows,

padding

the

hex_value

with

zeros

in

the

cases

of

the

i4,

r4,

and

r8

variables

and

truncating

the

first

hexadecimal

digit

in

the

case

of

the

c

variable:

Variable

Value

i4

000000CF

c

CF

r4

000000CF

r8

000000CF000000CF

Related

Information

See

“-qflttrap

Option”

on

page

165

and

the

section

on

the

AUTOMATIC

directive

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

178

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qintlog

Option

Syntax

-qintlog

|

-qnointlog

INTLOG

|

NOINTLOG

Specifies

that

you

can

mix

integer

and

logical

data

entities

in

expressions

and

statements.

Logical

operators

that

you

specify

with

integer

operands

act

upon

those

integers

in

a

bit-wise

manner,

and

integer

operators

treat

the

contents

of

logical

operands

as

integers.

Restrictions

The

following

operations

do

not

allow

the

use

of

logical

variables:

v

ASSIGN

statement

variables

v

Assigned

GOTO

variables

v

DO

loop

index

variables

v

Implied-DO

loop

index

variables

in

DATA

statements

v

Implied-DO

loop

index

variables

in

either

input

and

output

or

array

constructors

v

Index

variables

in

FORALL

constructs

Examples

INTEGER

I,

MASK,

LOW_ORDER_BYTE,

TWOS_COMPLEMENT

I

=

32767

MASK

=

255

!

Find

the

low-order

byte

of

an

integer.

LOW_ORDER_BYTE

=

I

.AND.

MASK

!

Find

the

twos

complement

of

an

integer.

TWOS_COMPLEMENT

=

.NOT.

I

END

Related

Information

You

can

also

use

the

intrinsic

functions

IAND,

IOR,

IEOR,

and

NOT

to

perform

bitwise

logical

operations.

XL

Fortran

Compiler-Option

Reference

179

-qintsize

Option

Syntax

-qintsize=bytes

INTSIZE(bytes)

Sets

the

size

of

default

INTEGER

and

LOGICAL

data

entities

(that

is,

those

for

which

no

length

or

kind

is

specified).

Background

Information

The

specified

size1

applies

to

these

data

entities:

v

INTEGER

and

LOGICAL

specification

statements

with

no

length

or

kind

specified.

v

FUNCTION

statements

with

no

length

or

kind

specified.

v

Intrinsic

functions

that

accept

or

return

default

INTEGER

or

LOGICAL

arguments

or

return

values

unless

you

specify

a

length

or

kind

in

an

INTRINSIC

statement.

Any

specified

length

or

kind

must

agree

with

the

default

size

of

the

return

value.

v

Variables

that

are

implicit

integers

or

logicals.

v

Integer

and

logical

literal

constants

with

no

kind

specified.

If

the

value

is

too

large

to

be

represented

by

the

number

of

bytes

that

you

specified,

the

compiler

chooses

a

size

that

is

large

enough.

The

range

for

2-byte

integers

is

-(2**15)

to

2**15-1,

for

4-byte

integers

is

-(2**31)

to

2**31-1,

and

for

8-byte

integers

is

-(2**63)

to

2**63-1.

v

Typeless

constants

in

integer

or

logical

contexts.

Allowed

sizes

for

bytes

are:

v

2

v

4

(the

default)

v

8
This

option

is

intended

to

allow

you

to

port

programs

unchanged

from

systems

that

have

different

default

sizes

for

data.

For

example,

you

might

need

-qintsize=2

for

programs

that

are

written

for

a

16-bit

microprocessor

or

-qintsize=8

for

programs

that

are

written

for

a

CRAY

computer.

The

default

value

of

4

for

this

option

is

suitable

for

code

that

is

written

specifically

for

many

32-bit

computers.

Note

that

specifying

the

-q64

compiler

option

does

not

affect

the

default

setting

for

-qintsize.

Restrictions

This

option

is

not

intended

as

a

general-purpose

method

for

increasing

the

sizes

of

data

entities.

Its

use

is

limited

to

maintaining

compatibility

with

code

that

is

written

for

other

systems.

You

might

need

to

add

PARAMETER

statements

to

give

explicit

lengths

to

constants

that

you

pass

as

arguments.

1. In

Fortran

90/95

terminology,

these

values

are

referred

to

as

kind

type

parameters.

180

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Examples

In

the

following

example,

note

how

variables,

literal

constants,

intrinsics,

arithmetic

operators,

and

input/output

operations

all

handle

the

changed

default

integer

size.

@PROCESS

INTSIZE(8)

PROGRAM

INTSIZETEST

INTEGER

I

I

=

-9223372036854775807

!

I

is

big

enough

to

hold

this

constant.

J

=

ABS(I)

!

So

is

implicit

integer

J.

IF

(I

.NE.

J)

THEN

PRINT

*,

I,

’.NE.’,

J

END

IF

END

The

following

example

only

works

with

the

default

size

for

integers:

CALL

SUB(17)

END

SUBROUTINE

SUB(I)

INTEGER(4)

I

!

But

INTSIZE

may

change

"17"

!

to

INTEGER(2)

or

INTEGER(8).

...

END

If

you

change

the

default

value,

you

must

either

declare

the

variable

I

as

INTEGER

instead

of

INTEGER(4)

or

give

a

length

to

the

actual

argument,

as

follows:

@PROCESS

INTSIZE(8)

INTEGER(4)

X

PARAMETER(X=17)

CALL

SUB(X)

!

Use

a

parameter

with

the

right

length,

or

CALL

SUB(17_4)

!

use

a

constant

with

the

right

kind.

END

Related

Information

See

“-qrealsize

Option”

on

page

222

and

Type

Parameters

and

Specifiers

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

181

-qipa

Option

Syntax

-qipa[=suboptions]

|

-qnoipa

Enhances

-O

optimization

by

doing

detailed

analysis

across

procedures

(interprocedural

analysis

or

IPA).

You

must

also

specify

the

-O,

-O2,

-O3,

-O4,

or

-O5

option

when

you

specify

-qipa.

(Specifying

the

-O5

option

is

equivalent

to

specifying

the

-O4

option

plus

-qipa=level=2.)

For

additional

performance

benefits,

you

can

also

specify

the

-Q

option.

The

-qipa

option

extends

the

area

that

is

examined

during

optimization

and

inlining

from

a

single

procedure

to

multiple

procedures

(possibly

in

different

source

files)

and

the

linkage

between

them.

You

can

fine-tune

the

optimizations

that

are

performed

by

specifying

suboptions.

To

use

this

option,

the

necessary

steps

are:

1.

Do

preliminary

performance

analysis

and

tuning

before

compiling

with

the

-qipa

option.

This

is

necessary

because

interprocedural

analysis

uses

a

two-phase

mechanism,

a

compile-time

and

a

link-time

phase,

which

increases

link

time.

(You

can

use

the

noobject

suboption

to

reduce

this

overhead.)

2.

Specify

the

-qipa

option

on

both

the

compile

and

link

steps

of

the

entire

application

or

on

as

much

of

it

as

possible.

Specify

suboptions

to

indicate

what

assumptions

to

make

about

the

parts

of

the

program

that

are

not

compiled

with

-qipa.

(If

your

application

contains

C

or

C++

code

compiled

with

IBM

XL

C/C++

compilers,

you

must

compile

with

the

-qipa

option

to

allow

for

additional

optimization

opportunities

at

link

time.)

During

compilation,

the

compiler

stores

interprocedural

analysis

information

in

the

.o

file.

During

linking,

the

-qipa

option

causes

a

complete

reoptimization

of

the

entire

application.

Note

that

if

you

specify

this

option

with

-#,

the

compiler

does

not

display

linker

information

subsequent

to

the

IPA

link

step.

This

is

because

the

compiler

does

not

actually

call

IPA.

Arguments

IPA

uses

the

following

suboptions

during

its

compile-time

phase:

object

|

noobject

Specifies

whether

to

include

standard

object

code

in

the

object

files.

Specifying

the

noobject

suboption

can

substantially

reduce

overall

compilation

time,

by

not

generating

object

code

during

the

first

IPA

phase.

Note

that

if

you

specify

-S

with

noobject,

noobject

will

be

ignored.

If

compiling

and

linking

are

performed

in

the

same

step

and

you

do

not

specify

the

-S

or

any

listing

option,

-qipa=noobject

is

implied.

If

your

program

contains

object

files

created

with

the

noobject

suboption,

you

must

use

the

-qipa

option

to

compile

any

files

containing

an

entry

point

(the

main

program

for

an

executable

program

or

an

exported

procedure

for

a

library)

before

linking

your

program

with

-qipa.

IPA

uses

the

following

suboptions

during

its

link-time

phase:

exits=procedure_names

Specifies

a

list

of

procedures,

each

of

which

always

ends

the

program.

The

182

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

compiler

can

optimize

calls

to

these

procedures

(for

example,

by

eliminating

save/restore

sequences),

because

the

calls

never

return

to

the

program.

These

procedures

must

not

call

any

other

parts

of

the

program

that

are

compiled

with

-qipa.

inline=inline-options

The

-qipa=inline=

command

can

take

a

colon-separated

list

of

inline

options,

as

listed

below:

inline=auto

|

noauto

Specifies

whether

to

automatically

inline

procedures.

inline=limit=number

Changes

the

size

limits

that

the

-Q

option

uses

to

determine

how

much

inline

expansion

to

do.

This

established

“limit”

is

the

size

below

which

the

calling

procedure

must

remain.

number

is

the

optimizer’s

approximation

of

the

number

of

bytes

of

code

that

will

be

generated.

Larger

values

for

this

number

allow

the

compiler

to

inline

larger

subprograms,

more

subprogram

calls,

or

both.

This

argument

is

implemented

only

when

inline=auto

is

on.

inline=procedure_names

Specifies

a

list

of

procedures

to

try

to

inline.

inline=threshold=number

Specifies

the

upper

size

limit

on

procedures

to

be

inlined,

where

number

is

a

value

as

defined

under

the

inline

suboption

“limit”.

This

argument

is

implemented

only

when

“inline=auto”

is

on.

Note:

By

default,

the

compiler

will

try

to

inline

all

procedures,

not

just

those

that

you

specified

with

the

inline=procedure_names

suboption.

If

you

want

to

turn

on

inlining

for

only

certain

procedures,

specify

inline=noauto

after

you

specify

inline=procedure_names.

(You

must

specify

the

suboptions

in

this

order.)

For

example,

to

turn

off

inlining

for

all

procedures

other

than

for

sub1,

specify

-qipa=inline=sub1:inline=noauto.

isolated=procedure_names

Specifies

a

comma-separated

list

of

procedures

that

are

not

compiled

with

-qipa.

Procedures

that

you

specify

as

“isolated”

or

procedures

within

their

call

chains

cannot

refer

directly

to

any

global

variable.

level=level

Determines

the

amount

of

interprocedural

analysis

and

optimization

that

is

performed:

0

Does

only

minimal

interprocedural

analysis

and

optimization.

1

Turns

on

inlining,

limited

alias

analysis,

and

limited

call-site

tailoring.

2

Full

interprocedural

data

flow

and

alias

analysis.

Specifying

-O5

is

equivalent

to

specifying

-O4

and

-qipa=level=2.

The

default

level

is

1.

list=[filename

|

short

|

long]

Specifies

an

output

listing

file

name

during

the

link

phase,

in

the

event

that

an

object

listing

has

been

requested

using

either

the

-qlist

or

the

-qipa=list

compiler

option

and

allows

the

user

to

direct

the

type

of

output.

If

you

do

not

specify

the

filename

suboption,

the

default

file

name

is

″a.lst″.

XL

Fortran

Compiler-Option

Reference

183

If

you

specify

short,

the

Object

File

Map,

Source

File

Map,

and

Global

Symbols

Map

sections

are

included.

If

you

specify

long,

the

preceding

sections

appear

in

addition

to

the

Object

Resolution

Warnings,

Object

Reference

Map,

Inliner

Report,

and

Partition

Map

sections.

If

you

specify

the

-qipa

and

-qlist

options

together,

IPA

generates

an

a.lst

file

that

overwrites

any

existing

a.lst

file.

If

you

have

a

source

file

named

a.f,

the

IPA

listing

will

overwrite

the

regular

compiler

listing

a.lst.

You

can

use

the

list=filename

suboption

to

specify

an

alternative

listing

file

name.

lowfreq=procedure_names

Specifies

a

list

of

procedures

that

are

likely

to

be

called

infrequently

during

the

course

of

a

typical

program

run.

For

example,

procedures

for

initialization

and

cleanup

might

only

be

called

once,

and

debugging

procedures

might

not

be

called

at

all

in

a

production-level

program.

The

compiler

can

make

other

parts

of

the

program

faster

by

doing

less

optimization

for

calls

to

these

procedures.

missing={unknown

|

safe

|

isolated

|

pure}

Specifies

the

interprocedural

behavior

of

procedures

that

are

not

compiled

with

-qipa

and

are

not

explicitly

named

in

an

unknown,

safe,

isolated,

or

pure

suboption.

The

default

is

to

assume

unknown,

which

greatly

restricts

the

amount

of

interprocedural

optimization

for

calls

to

those

procedures.

noinline=procedure_names

Specifies

a

list

of

procedures

that

are

not

to

be

inlined.

partition={small

|

medium

|

large}

Specifies

the

size

of

the

regions

within

the

program

to

analyze.

Larger

partitions

contain

more

procedures,

which

result

in

better

interprocedural

analysis

but

require

more

storage

to

optimize.

Reduce

the

partition

size

if

compilation

takes

too

long

because

of

paging.

pdfname=[filename]

Specifies

the

name

of

the

profile

data

file

containing

the

PDF

profiling

information.

If

you

do

not

specify

a

filename,

the

default

file

name

is

__pdf.

The

profile

is

placed

in

the

current

working

directory

or

in

the

directory

that

the

PDFDIR

environment

variable

names.

This

allows

the

programmer

to

do

simultaneous

runs

of

multiple

executables

using

the

same

PDFDIR.

This

is

especially

useful

when

tuning

with

PDF

on

dynamic

libraries.

(See

“-qpdf

Option”

on

page

210

for

more

information

on

tuning

optimizations.)

pure=procedure_names

Specifies

a

list

of

procedures

that

are

not

compiled

with

-qipa.

Any

procedure

that

you

specified

as

“pure”

must

be

“isolated”

and

“safe”.

It

must

not

alter

the

internal

state

nor

have

side-effects,

which

are

defined

as

potentially

altering

any

data

object

visible

to

the

caller.

safe=procedure_names

Specifies

a

list

of

procedures

that

are

not

compiled

with

-qipa.

Any

procedure

that

you

specified

as

“safe”

may

modify

global

variables

and

dummy

arguments.

No

calls

to

procedures

that

are

compiled

with

-qipa

may

be

made

from

within

a

“safe”

procedure’s

call

chain.

stdexits

|

nostdexits

Specifies

that

certain

predefined

routines

can

be

optimized

as

with

the

exits

suboption.

The

procedures

are:

abort,

exit,

_exit,

and

_assert.

184

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

threads[=N]

|

nothreads

threads[=N]

runs

the

number

of

parallel

threads

that

are

available,

or

as

specified

by

N.

N

must

be

a

positive

integer.

nothreads

does

not

run

any

parallel

threads.

This

is

equivalent

to

running

one

serial

thread.

unknown=procedure_names

Specifies

a

list

of

procedures

that

are

not

compiled

with

-qipa.

Any

procedure

specified

as

“unknown”

may

make

calls

to

other

parts

of

the

program

compiled

with

-qipa

and

modify

global

variables

and

dummy

arguments.

The

primary

use

of

isolated,

missing,

pure,

safe,

and

unknown

is

to

specify

how

much

optimization

can

safely

be

performed

on

calls

to

library

routines

that

are

not

compiled

with

-qipa.

The

following

compiler

options

have

an

effect

on

the

link-time

phase

of

-qipa:

-qlibansi

|

-qnolibansi

Assumes

that

all

functions

with

the

name

of

an

ANSI

C

defined

library

function

are,

in

fact,

the

library

functions.

-qlibessl

|

-qnolibessl

Assumes

that

all

functions

with

the

name

of

an

ESSL

defined

library

function

are,

in

fact,

the

library

functions.

-qlibposix

|

-qnolibposix

Assumes

that

all

functions

with

the

name

of

a

POSIX

1003.1

defined

library

function

are,

in

fact,

the

system

functions.

-qthreaded

Assumes

that

the

compiler

will

attempt

to

generate

thread-safe

code.

Applicable

Product

Levels

This

option

is

similar

but

not

identical

to

the

-qipa

option

of

XL

Fortran

Version

3.

If

you

have

makefiles

that

already

contain

the

-qipa

option,

modify

them

as

needed

to

use

the

new

suboption

names.

Rules

Regular

expressions

are

supported

for

the

following

suboptions:

exits

inline

lowfreq

noinline

pure

safe

unknown

Syntax

rules

for

regular

expressions

are

described

below.

Table

15.

Regular

expression

syntax

Expression

Description

string

Matches

any

of

the

characters

specified

in

string.

For

example,

test

will

match

testimony,

latest,

intestine.

^string

Matches

the

pattern

specified

by

string

only

if

it

occurs

at

the

beginning

of

a

line.

XL

Fortran

Compiler-Option

Reference

185

Table

15.

Regular

expression

syntax

(continued)

Expression

Description

string$

Matches

the

pattern

specified

by

string

only

if

it

occurs

at

the

end

of

a

line.

str.ing

Matches

any

character.

For

example,

t.st

will

match

test,

tast,

tZst,

and

t1st.

string\.$

The

backslash

(\)

can

be

used

to

escape

special

characters

so

that

you

can

match

for

the

character.

For

example,

if

you

want

to

find

those

lines

ending

with

a

period,

the

expression

.$

would

show

all

lines

that

had

at

least

one

character.

Specify

\.$

to

escape

the

period

(.).

[string]

Matches

any

of

the

characters

specified

in

string.

For

example,

t[a-g123]st

matches

tast

and

test,

but

not

t-st

or

tAst.

[^string]

Does

not

match

any

of

the

characters

specified

in

string.

For

example,

t[^a-zA-Z]st

matches

t1st,

t-st,

and

t,st

but

not

test

or

tYst.

string*

Matches

zero

or

more

occurrences

of

the

pattern

specified

by

string.

For

example,

te*st

will

match

tst,

test,

and

teeeeeest.

string+

Matches

one

or

more

occurrences

of

the

pattern

specified

by

string.

For

example,

t(es)+t

matches

test,

tesest,

but

not

tt.

string?

Matches

zero

or

more

occurrences

of

the

pattern

specified

by

string.

For

example,

te?st

matches

either

tst

or

test.

string{m,n}

Matches

between

m

and

n

occurrence(s)

of

the

pattern

specified

by

string.

For

example,

a{2}

matches

aa,

b{1,4}

matches

b,

bb,

bbb,

and

bbbb.

string1

|

string2

Matches

the

pattern

specified

by

either

string1

or

string2.

For

example,

s

|

o

matches

both

characters

s

and

o.

Since

only

function

names

are

being

considered,

the

regular

expressions

are

automatically

bracketed

with

the

^

and

$

characters.

For

example,

-qipa=noinline=^foo$

is

equivalent

to

-qipa=noinline=foo.

Therefore,

-qipa=noinline=bar

ensures

that

bar

is

never

inlined

but

bar1,

teebar,

and

barrel

may

be

inlined.

Examples

The

following

example

shows

how

you

might

compile

a

set

of

files

with

interprocedural

analysis:

xlf95

-O

-qipa

f.f

xlf95

-c

-O3

*.f

-qipa=noobject

xlf95

-o

product

*.o

-qipa

-O

The

following

example

shows

how

you

might

link

these

same

files

with

interprocedural

analysis,

using

regular

expressions

to

improve

performance.

This

example

assumes

that

function

user_abort

exits

the

program,

and

that

routines

user_trace1,

user_trace2,

and

user_trace3

are

rarely

called.

186

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

xlf95

-o

product

*.o

-qipa=exit=user_abort:lowfreq=user_trace[123]

-O

Related

Information

See

the

“-O

Option”

on

page

114,

“-p

Option”

on

page

118,

and

“-Q

Option”

on

page

119.

XL

Fortran

Compiler-Option

Reference

187

-qkeepparm

Option

Syntax

-qkeepparm

|

-qnokeepparm

Background

Information

A

procedure

usually

stores

its

incoming

parameters

on

the

stack

at

the

entry

point.

When

you

compile

code

with

optimization,

however,

the

optimizer

may

remove

the

stores

into

the

stack

if

it

sees

opportunities

to

do

so.

Specifying

the

-qkeepparm

compiler

option

ensures

that

the

parameters

are

stored

on

the

stack

even

when

optimizing.

This

may

negatively

impact

execution

performance.

This

option

then

provides

access

to

the

values

of

incoming

parameters

to

tools,

such

as

debuggers,

simply

by

preserving

those

values

on

the

stack.

188

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qlanglvl

Option

Syntax

-qlanglvl={suboption}

LANGLVL({suboption})

Determines

which

language

standard

(or

superset,

or

subset

of

a

standard)

to

consult

for

nonconformance.

It

identifies

nonconforming

source

code

and

also

options

that

allow

such

nonconformances.

Rules

The

compiler

issues

a

message

with

severity

code

L

if

it

detects

syntax

that

is

not

allowed

by

the

language

level

that

you

specified.

Arguments

77std

Accepts

the

language

that

the

ANSI

FORTRAN

77

standard

specifies

and

reports

anything

else

as

an

error.

90std

Accepts

the

language

that

the

ISO

Fortran

90

standard

specifies

and

reports

anything

else

as

an

error.

90pure

The

same

as

90std

except

that

it

also

reports

errors

for

any

obsolescent

Fortran

90

features

used.

90ext

Obsolete

suboption

that

is

equivalent

to

extended.

95std

Accepts

the

language

that

the

ISO

Fortran

95

standard

specifies

and

reports

anything

else

as

an

error.

95pure

The

same

as

95std

except

that

it

also

reports

errors

for

any

obsolescent

Fortran

95

features

used.

extended

Accepts

the

full

Fortran

95

language

standard

and

all

extensions,

effectively

turning

off

language-level

checking.

Defaults

The

default

is

-qlanglvl=extended.

Prior

to

XL

Fortran

Version

6.1,

the

default

was

-qlanglvl=90ext.

The

90ext

suboption

accepts

the

full

Fortran

90

language

standard

plus

all

extensions

(now

including

the

Fortran

95

standard)

and

is

equivalent

to

extended.

However,

the

90ext

suboption

is

now

obsolete,

and

to

avoid

problems

in

the

future,

you

should

start

using

the

extended

suboption

as

soon

as

possible.

XL

Fortran

Compiler-Option

Reference

189

Restrictions

The

-qflag

option

can

override

this

option.

Examples

The

following

example

contains

source

code

that

conforms

to

a

mixture

of

Fortran

standards:

!--

!

in

free

source

form

program

tt

integer

::

a(100,100),

b(100),

i

real

::

x,

y

...

goto

(10,

20,

30),

i

10

continue

pause

’waiting

for

input’

20

continue

y=

gamma(x)

30

continue

b

=

maxloc(a,

dim=1,

mask=a

.lt

0)

end

program

!--

The

following

chart

shows

examples

of

how

some

-qlanglvl

suboptions

affect

this

sample

program:

-qlanglvl

Suboption

Specified

Result

Reason

95pure

Flags

PAUSE

statement

Flags

computed

GOTO

statement

Flags

GAMMA

intrinsic

Deleted

feature

in

Fortran

95

Obsolescent

feature

in

Fortran

95

Extension

to

Fortran

95

95std

Flags

PAUSE

statement

Flags

GAMMA

intrinsic

Deleted

feature

in

Fortran

95

Extension

to

Fortran

95

extended

No

errors

flagged

Related

Information

See

“-qflag

Option”

on

page

162,

“-qhalt

Option”

on

page

170,

and

“-qsaa

Option”

on

page

227.

The

langlvl

run-time

option,

which

is

described

in

“Setting

Run-Time

Options”

on

page

51,

helps

to

locate

run-time

extensions

that

cannot

be

checked

for

at

compile

time.

190

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qlargepage

Option

Syntax

–qlargepage

|

–qnolargepage

Indicates

to

the

compiler

that

a

program,

designed

to

execute

in

a

large

page

memory

environment,

can

take

advantage

of

large

16

MB

pages

provided

on

POWER4

and

higher

based

systems.

When

using

–qlargepage

with

a

program

designed

for

a

large

page

environment,

an

increase

in

performance

can

occur.

See

AIX

Performance

Management

Guide

for

more

information

on

using

large

page

support.

Note:

When

using

AIX

5.1,

performance

degradation

can

occur

if

there

are

too

many

programs

attempting

to

access

large

pages

at

the

same

time.

Performance

degradation

can

also

occur

if

you

attempt

to

use

–qlargepage

without

meeting

the

hardware

requirements.

Use

this

option

with

discretion.

The

–qlargepage

compiler

option

only

takes

effect

with

an

optimization

level

that

turns

on

the

optimizer;

a

higher

optimization

level

may

do

more.

XL

Fortran

Compiler-Option

Reference

191

-qlibansi

Option

Related

Information

See

“-qipa

Option”

on

page

182.

192

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qlibessl

Option

Related

Information

See

“-qipa

Option”

on

page

182.

XL

Fortran

Compiler-Option

Reference

193

-qlibposix

Option

Related

Information

See

“-qipa

Option”

on

page

182.

194

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qlist

Option

Syntax

-qlist

|

-qnolist

LIST

|

NOLIST

Specifies

whether

to

produce

the

object

section

of

the

listing.

You

can

use

the

object

listing

to

help

understand

the

performance

characteristics

of

the

generated

code

and

to

diagnose

execution

problems.

If

you

specify

the

-qipa

and

-qlist

options

together,

IPA

generates

an

a.lst

file

that

overwrites

any

existing

a.lst

file.

If

you

have

a

source

file

named

a.f,

the

IPA

listing

will

overwrite

the

regular

compiler

listing

a.lst.

To

avoid

this,

use

the

list=filename

suboption

of

-qipa

to

generate

an

alternative

listing.

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77,

“Object

Section”

on

page

393,

and

“-S

Option”

on

page

269.

XL

Fortran

Compiler-Option

Reference

195

-qlistopt

Option

Syntax

-qlistopt

|

-qnolistopt

LISTOPT

|

NOLISTOPT

Determines

whether

to

show

the

setting

of

every

compiler

option

in

the

listing

file

or

only

selected

options.

These

selected

options

include

those

specified

on

the

command

line

or

directives

plus

some

that

are

always

put

in

the

listing.

You

can

use

the

option

listing

during

debugging

to

check

whether

a

problem

occurs

under

a

particular

combination

of

compiler

options

or

during

performance

testing

to

record

the

optimization

options

in

effect

for

a

particular

compilation.

Rules

Options

that

are

always

displayed

in

the

listing

are:

v

All

“on/off”

options

that

are

on

by

default:

for

example,

-qobject

v

All

“on/off”

options

that

are

explicitly

turned

off

through

the

configuration

file,

command-line

options,

or

@PROCESS

directives

v

All

options

that

take

arbitrary

numeric

arguments

(typically

sizes)

v

All

options

that

have

multiple

suboptions

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77

and

“Options

Section”

on

page

389.

196

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qlm

Option

Syntax

-qlm

|

-qnolm

LM

|

NOLM

Enables

or

disables

the

license

management

control

system

(LM).

If

you

do

not

specify

the

-qnolm

option,

LM

is

enabled

by

default.

Use

the

-qnolm

compiler

option

on

the

command

line

when

compiling

one

program,

or

place

the

option

in

your

configuration

file

(xlf.cfg)

if

you

want

LM

disabled

by

default.

Related

Information

See

“Tracking

Use

of

the

Compiler”

on

page

38.

XL

Fortran

Compiler-Option

Reference

197

-qlog4

Option

Syntax

-qlog4

|

-qnolog4

LOG4

|

NOLOG4

Specifies

whether

the

result

of

a

logical

operation

with

logical

operands

is

a

LOGICAL(4)

or

is

a

LOGICAL

with

the

maximum

length

of

the

operands.

You

can

use

this

option

to

port

code

that

was

originally

written

for

the

IBM

VS

FORTRAN

compiler.

Arguments

-qlog4

makes

the

result

always

a

LOGICAL(4),

while

-qnolog4

makes

it

depend

on

the

lengths

of

the

operands.

Restrictions

If

you

use

-qintsize

to

change

the

default

size

of

logicals,

-qlog4

is

ignored.

198

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qmaxmem

Option

Syntax

-qmaxmem=Kbytes

MAXMEM(Kbytes)

Limits

the

amount

of

memory

that

the

compiler

allocates

while

performing

specific,

memory-intensive

optimizations

to

the

specified

number

of

kilobytes.

A

value

of

-1

allows

optimization

to

take

as

much

memory

as

it

needs

without

checking

for

limits.

Defaults

At

the

-O2

optimization

level,

the

default

-qmaxmem

setting

is

2048

KB.

At

the

-O3

optimization

level,

the

default

setting

is

unlimited

(-1).

Rules

If

the

specified

amount

of

memory

is

insufficient

for

the

compiler

to

compute

a

particular

optimization,

the

compiler

issues

a

message

and

reduces

the

degree

of

optimization.

This

option

has

no

effect

except

in

combination

with

the

-O

option.

When

compiling

with

-O2,

you

only

need

to

increase

the

limit

if

a

compile-time

message

instructs

you

to

do

so.

When

compiling

with

-O3,

you

might

need

to

establish

a

limit

if

compilation

stops

because

the

machine

runs

out

of

storage;

start

with

a

value

of

2048

or

higher,

and

decrease

it

if

the

compilation

continues

to

require

too

much

storage.

Notes:

1.

Reduced

optimization

does

not

necessarily

mean

that

the

resulting

program

will

be

slower.

It

only

means

that

the

compiler

cannot

finish

looking

for

opportunities

to

improve

performance.

2.

Increasing

the

limit

does

not

necessarily

mean

that

the

resulting

program

will

be

faster.

It

only

means

that

the

compiler

is

better

able

to

find

opportunities

to

improve

performance

if

they

exist.

3.

Setting

a

large

limit

has

no

negative

effect

when

compiling

source

files

for

which

the

compiler

does

not

need

to

use

so

much

memory

during

optimization.

4.

As

an

alternative

to

raising

the

memory

limit,

you

can

sometimes

move

the

most

complicated

calculations

into

procedures

that

are

then

small

enough

to

be

fully

analyzed.

5.

Not

all

memory-intensive

compilation

stages

can

be

limited.

6.

Only

the

optimizations

done

for

-O2

and

-O3

can

be

limited;

-O4

and

-O5

optimizations

cannot

be

limited.

7.

The

-O4

and

-O5

optimizations

may

also

use

a

file

in

the

/tmp

directory.

This

is

not

limited

by

the

-qmaxmem

setting.

8.

Some

optimizations

back

off

automatically

if

they

would

exceed

the

maximum

available

address

space,

but

not

if

they

would

exceed

the

paging

space

available

at

that

time,

which

depends

on

machine

workload.

XL

Fortran

Compiler-Option

Reference

199

Restrictions

Depending

on

the

source

file

being

compiled,

the

size

of

subprograms

in

the

source

code,

the

machine

configuration,

and

the

workload

on

the

system,

setting

the

limit

too

high

might

fill

up

the

paging

space.

In

particular,

a

value

of

-1

can

fill

up

the

storage

of

even

a

well-equipped

machine.

Related

Information

See

“-O

Option”

on

page

114

and

“Optimizing

XL

Fortran

Programs”

on

page

305.

200

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qmbcs

Option

Syntax

-qmbcs

|

-qnombcs

MBCS

|

NOMBCS

Indicates

to

the

compiler

whether

character

literal

constants,

Hollerith

constants,

H

edit

descriptors,

and

character

string

edit

descriptors

can

contain

Multibyte

Character

Set

(MBCS)

or

Unicode

characters.

This

option

is

intended

for

applications

that

must

deal

with

data

in

a

multibyte

language,

such

as

Japanese.

To

process

the

multibyte

data

correctly

at

run

time,

set

the

locale

(through

the

LANG

environment

variable

or

a

call

to

the

libc

setlocale

routine)

to

the

same

value

as

during

compilation.

Rules

Each

byte

of

a

multibyte

character

is

counted

as

a

column.

Restrictions

To

read

or

write

Unicode

data,

set

the

locale

value

to

UNIVERSAL

at

run

time.

If

you

do

not

set

the

locale,

you

might

not

be

able

to

interchange

data

with

Unicode-enabled

applications.

XL

Fortran

Compiler-Option

Reference

201

-qmixed

Option

Syntax

-qmixed

|

-qnomixed

MIXED

|

NOMIXED

This

is

the

long

form

of

the

“-U

Option”

on

page

271.

202

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qmoddir

Option

Syntax

-qmoddir=directory

Specifies

the

location

for

any

module

(.mod)

files

that

the

compiler

writes.

Defaults

If

you

do

not

specify

-qmoddir,

the

.mod

files

are

placed

in

the

current

directory.

To

read

the

.mod

files

from

this

directory

when

compiling

files

that

reference

the

modules,

use

the

“-I

Option”

on

page

109.

Related

Information

See

“XL

Fortran

Output

Files”

on

page

34.

Modules

are

a

Fortran

90/95

feature

and

are

explained

in

the

Modules

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

203

-qmodule

Option

Syntax

-qmodule=mangle81

Specifies

that

the

compiler

should

use

the

XL

Fortran

Version

8.1

naming

convention

for

non-intrinsic

module

files.

This

option

allows

you

to

produce

modules

and

their

associated

object

files

with

the

Version

9.1

compiler

and

link

these

object

files

with

others

compiled

with

the

Version

8.1

compiler,

or

earlier.

Related

Information

Modules

are

a

Fortran

90/95

feature

and

are

explained

in

the

Modules

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

See

also

“Conventions

for

XL

Fortran

External

Names”

on

page

345

and

“Avoiding

Naming

Conflicts

during

Linking”

on

page

47.

204

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qnoprint

Option

Syntax

-qnoprint

Prevents

the

compiler

from

creating

the

listing

file,

regardless

of

the

settings

of

other

listing

options.

Specifying

-qnoprint

on

the

command

line

enables

you

to

put

other

listing

options

in

a

configuration

file

or

on

@PROCESS

directives

and

still

prevent

the

listing

file

from

being

created.

Rules

A

listing

file

is

usually

created

when

you

specify

any

of

the

following

options:

-qattr,

-qlist,

-qlistopt,

-qphsinfo,

-qsource,

-qreport,

or

-qxref.

-qnoprint

prevents

the

listing

file

from

being

created

by

changing

its

name

to

/dev/null,

a

device

that

discards

any

data

that

is

written

to

it.

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77.

XL

Fortran

Compiler-Option

Reference

205

-qnullterm

Option

Syntax

-qnullterm

|

-qnonullterm

NULLTERM

|

NONULLTERM

Appends

a

null

character

to

each

character

constant

expression

that

is

passed

as

a

dummy

argument,

to

make

it

more

convenient

to

pass

strings

to

C

functions.

This

option

allows

you

to

pass

strings

to

C

functions

without

having

to

add

a

null

character

to

each

string

argument.

Background

Information

This

option

affects

arguments

that

are

composed

of

any

of

the

following

objects:

basic

character

constants;

concatenations

of

multiple

character

constants;

named

constants

of

type

character;

Hollerith

constants;

binary,

octal,

or

hexadecimal

typeless

constants

when

an

interface

block

is

available;

or

any

character

expression

composed

entirely

of

these

objects.

The

result

values

from

the

CHAR

and

ACHAR

intrinsic

functions

also

have

a

null

character

added

to

them

if

the

arguments

to

the

intrinsic

function

are

initialization

expressions.

Rules

This

option

does

not

change

the

length

of

the

dummy

argument,

which

is

defined

by

the

additional

length

argument

that

is

passed

as

part

of

the

XL

Fortran

calling

convention.

Restrictions

This

option

affects

those

arguments

that

are

passed

with

or

without

the

%REF

built-in

function,

but

it

does

not

affect

those

that

are

passed

by

value.

This

option

does

not

affect

character

expressions

in

input

and

output

statements.

Examples

Here

are

two

calls

to

the

same

C

function,

one

with

and

one

without

the

option:

@PROCESS

NONULLTERM

SUBROUTINE

CALL_C_1

CHARACTER*9,

PARAMETER

::

HOME

=

"/home/luc"

!

Call

the

libc

routine

mkdir()

to

create

some

directories.

CALL

mkdir

("/home/luc/testfiles\0",

%val(448))

!

Call

the

libc

routine

unlink()

to

remove

a

file

in

the

home

directory.

CALL

unlink

(HOME

//

"/.hushlogin"

//

CHAR(0))

END

SUBROUTINE

@PROCESS

NULLTERM

SUBROUTINE

CALL_C_2

CHARACTER*9,

PARAMETER

::

HOME

=

"/home/luc"

!

With

the

option,

there

is

no

need

to

worry

about

the

trailing

null

!

for

each

string

argument.

CALL

mkdir

("/home/luc/testfiles",

%val(448))

CALL

unlink

(HOME

//

"/.hushlogin")

END

SUBROUTINE

!

Related

Information

See

“Passing

Character

Types

between

Languages”

on

page

351.

206

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qobject

Option

Syntax

-qOBJect

|

-qNOOBJect

OBJect

|

NOOBJect

Specifies

whether

to

produce

an

object

file

or

to

stop

immediately

after

checking

the

syntax

of

the

source

files.

When

debugging

a

large

program

that

takes

a

long

time

to

compile,

you

might

want

to

use

the

-qnoobject

option.

It

allows

you

to

quickly

check

the

syntax

of

a

program

without

incurring

the

overhead

of

code

generation.

The

.lst

file

is

still

produced,

so

you

can

get

diagnostic

information

to

begin

debugging.

After

fixing

any

program

errors,

you

can

change

back

to

the

default

(-qobject)

to

test

whether

the

program

works

correctly.

If

it

does

not

work

correctly,

compile

with

the

-g

option

for

interactive

debugging.

Restrictions

The

-qhalt

option

can

override

the

-qobject

option,

and

-qnoobject

can

override

-qhalt.

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77

and

“Object

Section”

on

page

393.

“The

Compiler

Phases”

on

page

411

gives

some

technical

information

about

the

compiler

phases.

XL

Fortran

Compiler-Option

Reference

207

-qonetrip

Option

Syntax

-qonetrip

|

-qnoonetrip

ONETRIP

|

NOONETRIP

This

is

the

long

form

of

the

“-1

Option”

on

page

92.

208

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qoptimize

Option

Syntax

-qOPTimize[=level]

|

-qNOOPTimize

OPTimize[(level)]

|

NOOPTimize

This

is

the

long

form

of

the

“-O

Option”

on

page

114.

XL

Fortran

Compiler-Option

Reference

209

-qpdf

Option

Syntax

-qpdf{1|2}

Tunes

optimizations

through

profile-directed

feedback

(PDF),

where

results

from

sample

program

execution

are

used

to

improve

optimization

near

conditional

branches

and

in

frequently

executed

code

sections.

To

use

PDF,

follow

these

steps:

1.

Compile

some

or

all

of

the

source

files

in

a

program

with

the

-qpdf1

option.

You

need

to

specify

the

-O2

option,

or

preferably

the

-O3,

-O4,

or

-O5

option,

for

optimization.

Pay

special

attention

to

the

compiler

options

that

you

use

to

compile

the

files,

because

you

will

need

to

use

the

same

options

later.

In

a

large

application,

concentrate

on

those

areas

of

the

code

that

can

benefit

most

from

optimization.

You

do

not

need

to

compile

all

of

the

application’s

code

with

the

-qpdf1

option.

2.

Run

the

program

all

the

way

through

using

a

typical

data

set.

The

program

records

profiling

information

when

it

finishes.

You

can

run

the

program

multiple

times

with

different

data

sets,

and

the

profiling

information

is

accumulated

to

provide

an

accurate

count

of

how

often

branches

are

taken

and

blocks

of

code

are

executed.

Important:

Use

data

that

is

representative

of

the

data

that

will

be

used

during

a

normal

run

of

your

finished

program.

3.

Relink

your

program

using

the

same

compiler

options

as

before,

but

change

-qpdf1

to

-qpdf2.

Remember

that

-L,

-l,

and

some

others

are

linker

options,

and

you

can

change

them

at

this

point.

In

this

second

compilation,

the

accumulated

profiling

information

is

used

to

fine-tune

the

optimizations.

The

resulting

program

contains

no

profiling

overhead

and

runs

at

full

speed.

For

best

performance,

use

the

-O3,

-O4,

or

-O5

option

with

all

compilations

when

you

use

PDF

(as

in

the

example

above).

If

your

application

contains

C

or

C++

code

compiled

with

IBM

XL

C/C+

compilers,

you

can

achieve

additional

PDF

optimization

by

specifying

the

-qpdf1

and

-qpdf2

options

available

on

those

compilers.

Combining

-qpdf1/-qpdf2

and

-qipa

or

-O5

options

(that

is,

link

with

IPA)

on

all

Fortran

and

C/C++

code

will

lead

to

maximum

PDF

information

being

available

for

optimization.

Rules

The

profile

is

placed

in

the

current

working

directory

or

in

the

directory

that

the

PDFDIR

environment

variable

names,

if

that

variable

is

set.

To

avoid

wasting

compilation

and

execution

time,

make

sure

that

the

PDFDIR

environment

variable

is

set

to

an

absolute

path.

Otherwise,

you

might

run

the

application

from

the

wrong

directory,

and

it

will

not

be

able

to

locate

the

profile

data

files.

When

that

happens,

the

program

may

not

be

optimized

correctly

or

may

be

stopped

by

a

segmentation

fault.

A

segmentation

fault

might

also

happen

if

you

change

the

value

of

the

PDFDIR

variable

and

execute

the

application

before

finishing

the

PDF

process.

Background

Information

Because

this

option

requires

compiling

the

entire

application

twice,

it

is

intended

to

be

used

after

other

debugging

and

tuning

is

finished,

as

one

of

the

last

steps

before

putting

the

application

into

production.

210

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Restrictions

v

PDF

optimizations

also

require

at

least

the

-O2

optimization

level.

v

You

must

compile

the

main

program

with

PDF

for

profiling

information

to

be

collected

at

run

time.

v

Do

not

compile

or

run

two

different

applications

that

use

the

same

PDFDIR

directory

at

the

same

time,

unless

you

have

used

the

-qipa=pdfname

suboption

to

distinguish

the

sets

of

profiling

information.

v

You

must

use

the

same

set

of

compiler

options

at

all

compilation

steps

for

a

particular

program.

Otherwise,

PDF

cannot

optimize

your

program

correctly

and

may

even

slow

it

down.

All

compiler

settings

must

be

the

same,

including

any

supplied

by

configuration

files.

v

The

-qpdf

option

affects

only

programs

whose

source

files

have

been

compiled

using

XL

Fortran

Version

7.1.1

or

later.

Avoid

mixing

object

files

that

were

compiled

with

the

-qpdf

option

on

previous

compilers,

with

those

compiled

with

the

-qpdf

option

on

XL

Fortran

compilers

at

version

7.1.1

or

later.

v

If

-qipa

is

not

invoked

either

directly

or

through

other

options,

-qpdf1

and

-qpdf2

will

invoke

the

-qipa=level=0

option.

v

If

you

do

compile

a

program

with

-qpdf1,

remember

that

it

will

generate

profiling

information

when

it

runs,

which

involves

some

performance

overhead.

This

overhead

goes

away

when

you

recompile

with

-qpdf2

or

with

no

PDF

at

all.

The

following

commands,

in

the

directory

/usr/lpp/xlf/bin,

are

available

for

managing

the

PDFDIR

directory:

cleanpdf

[pathname]

Removes

all

profiling

information

from

the

pathname

directory;

or

if

pathname

is

not

specified,

from

the

PDFDIR

directory;

or

if

PDFDIR

is

not

set,

from

the

current

directory.

Removing

the

profiling

information

reduces

the

run-time

overhead

if

you

change

the

program

and

then

go

through

the

PDF

process

again.

Run

this

program

after

compiling

with

-qpdf2

or

after

finishing

with

the

PDF

process

for

a

particular

application.

If

you

continue

using

PDF

with

an

application

after

running

cleanpdf,

you

must

recompile

all

the

files

with

-qpdf1.

XL

Fortran

Compiler-Option

Reference

211

mergepdf

Generates

a

single

pdf

record

from

2

or

more

input

pdf

records.

All

pdf

records

must

come

from

the

same

executable.

mergepdf

automatically

scales

each

pdf

record

(that

is,

file)

based

on

its

″weight″.

A

scaling

ratio

can

be

specified

for

each

pdf

record,

so

that

more

important

training

runs

can

be

weighted

heavier

than

less

important

ones.

The

syntax

for

mergepdf

is:

mergepdf

[-r1]

record1

[-r2]

record2

...

-outputrecname

[-n]

[-v]

where:

-r

The

scaling

ratio

for

the

pdf

record.

If

-r

is

not

specified

for

an

input

record,

the

default

ratio

is

1.0

and

no

external

scaling

is

applied.

The

scaling

ratio

must

be

greater

than

or

equal

to

zero,

and

can

be

a

floating

point

number

or

an

integer.

record

The

input

file,

or

the

directory

that

contains

the

pdf

profile.

-o

output_recordname

The

pdf

output

directory

name,

or

a

file

name

that

mergepdf

will

write

the

merged

pdf

record

to.

If

a

directory

is

specified,

it

must

exist

before

you

run

the

command.

-n

Do

not

normalize

the

pdf

records.

By

default,

records

are

normalized

based

on

an

internally

calculated

ratio

for

each

profile

before

applying

any

user-specified

ratio

with

-r.

When

-n

is

specified,

the

pdf

records

are

scaled

by

the

user-specified

ratio

-r.

If

-r

is

not

specified,

the

pdf

records

are

not

scaled

at

all.

-v

Verbose

mode

displays

the

internal

and

user-specified

scaling

ratio

used.

resetpdf

[pathname]

Same

as

cleanpdf

[pathname],

described

above.

This

command

is

provided

for

compatibility

with

the

previous

version.

showpdf

Displays

the

call

and

block

counts

for

all

procedures

executed

in

a

program

run.

To

use

this

command,

you

must

first

compile

your

application

specifying

both

-qpdf1

and

-qshowpdf

compiler

options

Examples

Here

is

a

simple

example:

#

Set

the

PDFDIR

variable.

export

PDFDIR=$HOME/project_dir

#

Compile

all

files

with

-qpdf1.

xlf95

-qpdf1

-O3

file1.f

file2.f

file3.f

#

Run

with

one

set

of

input

data.

a.out

<sample.data

#

Recompile

all

files

with

-qpdf2.

xlf95

-qpdf2

-O3

file1.f

file2.f

file3.f

#

The

program

should

now

run

faster

than

without

PDF

if

#

the

sample

data

is

typical.

Here

is

a

more

elaborate

example:

#

Set

the

PDFDIR

variable.

export

PDFDIR=$HOME/project_dir

#

Compile

most

of

the

files

with

-qpdf1.

xlf95

-qpdf1

-O3

-c

file1.f

file2.f

file3.f

#

This

file

is

not

so

important

to

optimize.

xlf95

-c

file4.f

#

Non-PDF

object

files

such

as

file4.o

can

be

linked

in.

xlf95

-qpdf1

file1.o

file2.o

file3.o

file4.o

212

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

#

Run

several

times

with

different

input

data.

a.out

<polar_orbit.data

a.out

<elliptical_orbit.data

a.out

<geosynchronous_orbit.data

#

Do

not

need

to

recompile

the

source

of

non-PDF

object

files

(file4.f).

xlf95

-qpdf2

-O3

file1.f

file2.f

file3.f

#

Link

all

the

object

files

into

the

final

application.

xlf95

file1.o

file2.o

file3.o

file4.o

Related

Information

See

“XL

Fortran

Input

Files”

on

page

33,

“XL

Fortran

Output

Files”

on

page

34,

“Using

Profile-directed

Feedback

(PDF)”

on

page

315,

and

“Optimizing

Conditional

Branching”

on

page

316.

XL

Fortran

Compiler-Option

Reference

213

-qphsinfo

Option

Syntax

-qphsinfo

|

-qnophsinfo

PHSINFO

|

NOPHSINFO

The

-qphsinfo

compiler

option

displays

timing

information

on

the

terminal

for

each

compiler

phase.

The

output

takes

the

form

number1/number2

for

each

phase

where

number1

represents

the

CPU

time

used

by

the

compiler

and

number2

represents

the

total

of

the

compiler

time

and

the

time

that

the

CPU

spends

handling

system

calls.

Examples

To

compile

app.f,

which

consists

of

3

compilation

units,

and

report

the

time

taken

for

each

phase

of

the

compilation,

enter:

xlf90

app.f

-qphsinfo

The

output

will

look

similar

to:

FORTRAN

phase

1

ftphas1

TIME

=

0.000

/

0.000

**

m_module

===

End

of

Compilation

1

===

FORTRAN

phase

1

ftphas1

TIME

=

0.000

/

0.000

**

testassign

===

End

of

Compilation

2

===

FORTRAN

phase

1

ftphas1

TIME

=

0.000

/

0.010

**

dataassign

===

End

of

Compilation

3

===

HOT

-

Phase

Ends;

0.000/

0.000

HOT

-

Phase

Ends;

0.000/

0.000

HOT

-

Phase

Ends;

0.000/

0.000

W-TRANS

-

Phase

Ends;

0.000/

0.010

OPTIMIZ

-

Phase

Ends;

0.000/

0.000

REGALLO

-

Phase

Ends;

0.000/

0.000

AS

-

Phase

Ends;

0.000/

0.000

W-TRANS

-

Phase

Ends;

0.000/

0.000

OPTIMIZ

-

Phase

Ends;

0.000/

0.000

REGALLO

-

Phase

Ends;

0.000/

0.000

AS

-

Phase

Ends;

0.000/

0.000

W-TRANS

-

Phase

Ends;

0.000/

0.000

OPTIMIZ

-

Phase

Ends;

0.000/

0.000

REGALLO

-

Phase

Ends;

0.000/

0.000

AS

-

Phase

Ends;

0.000/

0.000

1501-510

Compilation

successful

for

file

app.f.

Each

phase

is

invoked

three

times,

corresponding

to

each

compilation

unit.

FORTRAN

represents

front-end

parsing

and

semantic

analysis,

HOT

loop

transformations,

W-TRANS

intermediate

language

translation,

OPTIMIZ

high–level

optimization,

REGALLO

register

allocation

and

low–level

optimization,

and

AS

final

assembly.

214

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Compile

app.f

at

the

-O4

optimization

level

with

-qphsinfo

specified:

xlf90

myprogram.f

-qphsinfo

-O4

The

following

output

results:

FORTRAN

phase

1

ftphas1

TIME

=

0.010

/

0.020

**

m_module

===

End

of

Compilation

1

===

FORTRAN

phase

1

ftphas1

TIME

=

0.000

/

0.000

**

testassign

===

End

of

Compilation

2

===

FORTRAN

phase

1

ftphas1

TIME

=

0.000

/

0.000

**

dataassign

===

End

of

Compilation

3

===

HOT

-

Phase

Ends;

0.000/

0.000

HOT

-

Phase

Ends;

0.000/

0.000

HOT

-

Phase

Ends;

0.000/

0.000

IPA

-

Phase

Ends;

0.080/

0.100

1501-510

Compilation

successful

for

file

app.f.

IPA

-

Phase

Ends;

0.050/

0.070

W-TRANS

-

Phase

Ends;

0.010/

0.030

OPTIMIZ

-

Phase

Ends;

0.020/

0.020

REGALLO

-

Phase

Ends;

0.040/

0.040

AS

-

Phase

Ends;

0.000/

0.000

Note

that

during

the

IPA

(interprocedural

analysis)

optimization

phases,

the

program

has

resulted

in

one

compilation

unit;

that

is,

all

procedures

have

been

inlined.

Related

Information

“The

Compiler

Phases”

on

page

411.

XL

Fortran

Compiler-Option

Reference

215

-qpic

Option

Syntax

-qpic[=suboptions]

The

-qpic

compiler

option

generates

Position

Independent

Code

(PIC)

that

can

be

used

in

shared

libraries.

Arguments

small

|

large

The

small

suboption

tells

the

compiler

to

assume

that

the

size

of

the

Table

Of

Contents

be

at

most,

64K.

The

large

suboption

allows

the

size

of

the

Table

Of

Contents

to

be

larger

than

64K.

This

suboption

allows

more

addresses

to

be

stored

in

the

Table

Of

Contents.

However,

it

does

generate

code

that

is

usually

larger

than

that

generated

by

the

small

suboption.

-qpic=small

is

the

default.

Specifying

-qpic=large

has

the

same

effect

as

passing

-bbigtoc

to

the

ld

command.

216

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qport

Option

Syntax

-qport[=suboptions]|

-qnoport

PORT[(suboptions)]|

NOPORT

The

-qport

compiler

option

increases

flexibility

when

porting

programs

to

XL

Fortran,

providing

a

number

of

options

to

accommodate

other

Fortran

language

extensions.

A

particular

suboption

will

always

function

independently

of

other

-qport

and

compiler

options.

Arguments

hexint

|

nohexint

If

you

specify

this

option,

typeless

constant

hexadecimal

strings

are

converted

to

integers

when

passed

as

an

actual

argument

to

the

INT

intrinsic

function.

Typeless

constant

hexadecimal

strings

not

passed

as

actual

arguments

to

INT

remain

unaffected.

mod

|

nomod

Specifying

this

option

relaxes

existing

constraints

on

the

MOD

intrinsic

function,

allowing

two

arguments

of

the

same

data

type

parameter

to

be

of

different

kind

type

parameters.

The

result

will

be

of

the

same

type

as

the

argument,

but

with

the

larger

kind

type

parameter

value.

nullarg

|

nonullarg

For

an

external

or

internal

procedure

reference,

specifying

this

option

causes

the

compiler

to

treat

an

empty

argument,

which

is

delimited

by

a

left

parenthesis

and

a

comma,

two

commas,

or

a

comma

and

a

right

parenthesis,

as

a

null

argument.

This

suboption

has

no

effect

if

the

argument

list

is

empty.

Examples

of

empty

arguments

are:

call

foo(,,z)

call

foo(x,,z)

call

foo(x,y,)

The

following

program

includes

a

null

argument.

Fortran

program:

program

nularg

real(4)

res/0.0/

integer(4)

rc

integer(4),

external

::

add

rc

=

add(%val(2),

res,

3.14,

2.18,)

!

The

last

argument

is

a

!

null

argument.

if

(rc

==

0)

then

print

*,

"res

=

",

res

else

print

*,

"number

of

arguments

is

invalid."

endif

end

program

C

program:

int

add(int

a,

float

*res,

float

*b,

float

*c,

float

*d)

{

int

ret

=

0;

if

(a

==

2)

*res

=

*b

+

*c;

XL

Fortran

Compiler-Option

Reference

217

else

if

(a

==

3)

*res

=

(*b

+

*c

+

*d);

else

ret

=

1;

return

(ret);

}

sce

|

nosce

By

default,

the

compiler

performs

short

circuit

evaluation

in

selected

logical

expressions

using

XL

Fortran

rules.

Specifying

sce

allows

the

compiler

to

use

non-XL

Fortran

rules.

The

compiler

will

perform

short

circuit

evaluation

if

the

current

rules

allow

it.

typestmt

|

notypestmt

The

TYPE

statement,

which

behaves

in

a

manner

similar

to

the

PRINT

statement,

is

supported

whenever

this

option

is

specified.

typlssarg

|

notyplssarg

Converts

all

typeless

constants

to

default

integers

if

the

constants

are

actual

arguments

to

an

intrinsic

procedure

whose

associated

dummy

arguments

are

of

integer

type.

Dummy

arguments

associated

with

typeless

actual

arguments

of

noninteger

type

remain

unaffected

by

this

option.

Using

this

option

may

cause

some

intrinsic

procedures

to

become

mismatched

in

kinds.

Specify

-qxlf77=intarg

to

convert

the

kind

to

that

of

the

longest

argument.

Related

Information

See

the

section

on

the

INT

and

MOD

intrinsic

functions

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

further

information.

218

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qposition

Option

Syntax

-qposition={appendold

|

appendunknown}

...

POSITION({APPENDOLD

|

APPENDUNKNOWN}

...)

Positions

the

file

pointer

at

the

end

of

the

file

when

data

is

written

after

an

OPEN

statement

with

no

POSITION=

specifier

and

the

corresponding

STATUS=

value

(OLD

or

UNKNOWN)

is

specified.

Rules

The

position

becomes

APPEND

when

the

first

I/O

operation

moves

the

file

pointer

if

that

I/O

operation

is

a

WRITE

or

PRINT

statement.

If

it

is

a

BACKSPACE,

ENDFILE,

READ,

or

REWIND

statement

instead,

the

position

is

REWIND.

Applicable

Product

Levels

The

appendunknown

suboption

is

the

same

as

the

XL

Fortran

Version

2

append

suboption,

but

we

recommend

using

appendunknown

to

avoid

ambiguity.

-qposition=appendold:appendunknown

provides

compatibility

with

XL

Fortran

Version

1

and

early

Version

2

behavior.

-qposition=appendold

provides

compatibility

with

XL

Fortran

Version

2.3

behavior.

Examples

In

the

following

example,

OPEN

statements

that

do

not

specify

a

POSITION=

specifier,

but

specify

STATUS=’old’

will

open

the

file

as

if

POSITION=’append’

was

specified.

xlf95

-qposition=appendold

opens_old_files.f

In

the

following

example,

OPEN

statements

that

do

not

specify

a

POSITION=

specifier,

but

specify

STATUS=’unknown’

will

open

the

file

as

if

POSITION=’append’

was

specified.

xlf95

-qposition=appendunknown

opens_unknown_files.f

In

the

following

example,

OPEN

statements

that

do

not

specify

a

POSITION=

specifier,

but

specify

either

STATUS=’old’

or

STATUS=’unknown’

will

open

the

file

as

if

POSITION=’append’

was

specified.

xlf95

-qposition=appendold:appendunknown

opens_many_files.f

Related

Information

See

“File

Positioning”

on

page

327

and

the

section

on

the

OPEN

statement

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

219

-qprefetch

Option

Syntax

-qprefetch

|

-qnoprefetch

Instructs

the

compiler

to

insert

the

prefetch

instructions

automatically

where

there

are

opportunities

to

improve

code

performance.

Related

Information

For

more

information

on

prefetch

directives,

see

PREFETCH

directives

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

and

The

POWER4

Processor

Introduction

and

Tuning

Guide.

To

selectively

control

prefetch

directives

using

trigger

constants,

see

the

“-qdirective

Option”

on

page

148.

220

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qqcount

Option

Syntax

-qqcount

|

-qnoqcount

QCOUNT

|

NOQCOUNT

Accepts

the

Q

character-count

edit

descriptor

(Q)

as

well

as

the

extended-precision

Q

edit

descriptor

(Qw.d).

With

-qnoqcount,

all

Q

edit

descriptors

are

interpreted

as

the

extended-precision

Q

edit

descriptor.

Rules

The

compiler

interprets

a

Q

edit

descriptor

as

one

or

the

other

depending

on

its

syntax

and

issues

a

warning

if

it

cannot

determine

which

one

is

specified.

Related

Information

See

Q

(Character

Count)

Editing

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

XL

Fortran

Compiler-Option

Reference

221

-qrealsize

Option

Syntax

-qrealsize=bytes

REALSIZE(bytes)

Sets

the

default

size

of

REAL,

DOUBLE

PRECISION,

COMPLEX,

and

DOUBLE

COMPLEX

values.

This

option

is

intended

for

maintaining

compatibility

with

code

that

is

written

for

other

systems.

You

may

find

it

useful

as

an

alternative

to

-qautodbl

in

some

situations.

Rules

The

option

affects

the

sizes2

of

constants,

variables,

derived

type

components,

and

functions

(which

include

intrinsic

functions)

for

which

no

kind

type

parameter

is

specified.

Objects

that

are

declared

with

a

kind

type

parameter

or

length,

such

as

REAL(4)

or

COMPLEX*16,

are

not

affected.

Arguments

The

allowed

values

for

bytes

are:

v

4

(the

default)

v

8

Results

This

option

determines

the

sizes

of

affected

objects

as

follows:

Data

Object

REALSIZE(4)

in

Effect

REALSIZE(8)

in

Effect

1.2

REAL(4)

REAL(8)

1.2e0

REAL(4)

REAL(8)

1.2d0

REAL(8)

REAL(16)

1.2q0

REAL(16)

REAL(16)

REAL

REAL(4)

REAL(8)

DOUBLE

PRECISION

REAL(8)

REAL(16)

COMPLEX

COMPLEX(4)

COMPLEX(8)

DOUBLE

COMPLEX

COMPLEX(8)

COMPLEX(16)

Similar

rules

apply

to

intrinsic

functions:

v

If

an

intrinsic

function

has

no

type

declaration,

its

argument

and

return

types

may

be

changed

by

the

-qrealsize

setting.

v

Any

type

declaration

for

an

intrinsic

function

must

agree

with

the

default

size

of

the

return

value.

This

option

is

intended

to

allow

you

to

port

programs

unchanged

from

systems

that

have

different

default

sizes

for

data.

For

example,

you

might

need

-qrealsize=8

for

programs

that

are

written

for

a

CRAY

computer.

The

default

value

of

4

for

this

option

is

suitable

for

programs

that

are

written

specifically

for

many

32-bit

computers.

Setting

-qrealsize

to

8

overrides

the

setting

of

the

-qdpc

option.

2. In

Fortran

90/95

terminology,

these

values

are

referred

to

as

kind

type

parameters.

222

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Examples

This

example

shows

how

changing

the

-qrealsize

setting

transforms

some

typical

entities:

@PROCESS

REALSIZE(8)

REAL

R

!

treated

as

a

real(8)

REAL(8)

R8

!

treated

as

a

real(8)

DOUBLE

PRECISION

DP

!

treated

as

a

real(16)

DOUBLE

COMPLEX

DC

!

treated

as

a

complex(16)

COMPLEX(4)

C

!

treated

as

a

complex(4)

PRINT

*,DSIN(DP)

!

treated

as

qsin(real(16))

!

Note:

we

cannot

get

dsin(r8)

because

dsin

is

being

treated

as

qsin.

END

Specifying

-qrealsize=8

affects

intrinsic

functions,

such

as

DABS,

as

follows:

INTRINSIC

DABS

!

Argument

and

return

type

become

REAL(16).

DOUBLE

PRECISION

DABS

!

OK,

because

DOUBLE

PRECISION

=

REAL(16)

!

with

-qrealsize=8

in

effect.

REAL(16)

DABS

!

OK,

the

declaration

agrees

with

the

option

setting.

REAL(8)

DABS

!

The

declaration

does

not

agree

with

the

option

!

setting

and

is

ignored.

Related

Information

“-qintsize

Option”

on

page

180

is

a

similar

option

that

affects

integer

and

logical

objects.

“-qautodbl

Option”

on

page

134

is

related

to

-qrealsize,

although

you

cannot

combine

the

options.

When

the

-qautodbl

option

turns

on

automatic

doubling,

padding,

or

both,

the

-qrealsize

option

has

no

effect.

Type

Parameters

and

Specifiers

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

discusses

kind

type

parameters.

XL

Fortran

Compiler-Option

Reference

223

-qrecur

Option

Syntax

-qrecur

|

-qnorecur

RECUR

|

NORECUR

Not

recommended.

Specifies

whether

external

subprograms

may

be

called

recursively.

For

new

programs,

use

the

RECURSIVE

keyword,

which

provides

a

standard-conforming

way

of

using

recursive

procedures.

If

you

specify

the

-qrecur

option,

the

compiler

must

assume

that

any

procedure

could

be

recursive.

Code

generation

for

recursive

procedures

may

be

less

efficient.

Using

the

RECURSIVE

keyword

allows

you

to

specify

exactly

which

procedures

are

recursive.

Examples

!

The

following

RECUR

recursive

function:

@process

recur

function

factorial

(n)

integer

factorial

if

(n

.eq.

0)

then

factorial

=

1

else

factorial

=

n

*

factorial

(n-1)

end

if

end

function

factorial

!

can

be

rewritten

to

use

F90/F95

RECURSIVE/RESULT

features:

recursive

function

factorial

(n)

result

(res)

integer

res

if

(n

.eq.

0)

then

res

=

1

else

res

=

n

*

factorial

(n-1)

end

if

end

function

factorial

Restrictions

If

you

use

the

xlf,

xlf_r,

xlf_r7,

f77,

or

fort77

command

to

compile

programs

that

contain

recursive

calls,

specify

-qnosave

to

make

the

default

storage

class

automatic.

224

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qreport

Option

Syntax

-qreport[={smplist

|

hotlist}...]

-qnoreport

REPORT[({SMPLIST

|

HOTLIST}...)]

NOREPORT

Determines

whether

to

produce

transformation

reports

showing

how

the

program

is

parallelized

and

how

loops

are

optimized.

You

can

use

the

smplist

suboption

to

debug

or

tune

the

performance

of

SMP

programs

by

examining

the

low-level

transformations.

You

can

see

how

the

program

deals

with

data

and

the

automatic

parallelization

of

loops.

Comments

within

the

listing

tell

you

how

the

transformed

program

corresponds

to

the

original

source

code

and

include

information

as

to

why

certain

loops

were

not

parallelized.

You

can

use

the

hotlist

suboption

to

generate

a

report

showing

how

loops

are

transformed.

Arguments

smplist

Produces

a

pseudo-Fortran

listing

that

shows

how

the

program

is

parallelized.

This

listing

is

produced

before

loop

and

other

optimizations

are

performed.

It

includes

messages

that

point

out

places

in

the

program

that

can

be

modified

to

be

more

efficient.

This

report

will

only

be

produced

if

the

-qsmp

option

is

in

effect.

hotlist

Produces

a

pseudo-Fortran

listing

that

shows

how

loops

are

transformed,

to

assist

you

in

tuning

the

performance

of

all

loops.

This

suboption

is

the

default

if

you

specify

-qreport

with

no

suboptions.

In

addition,

if

you

specify

the

-qreport=hotlist

option

when

the

-qsmp

option

is

in

effect,

a

pseudo-Fortran

listing

will

be

produced

that

shows

the

calls

to

the

SMP

runtime

and

the

procedures

created

for

parallel

constructs.

Background

Information

The

transformation

listing

is

part

of

the

compiler

listing

file.

Restrictions

Loop

transformation

and

auto

parallelization

are

done

on

the

link

step

at

a

-O5

(or

-qipa=level=2)

optimization

level.

The

-qreport

option

will

generate

the

report

in

the

listing

file

on

the

link

step.

You

must

specify

the

-qsmp

or

the

-qhot

option

to

generate

a

loop

transformation

listing.

You

must

specify

the

-qsmp

option

to

generate

a

parallel

transformation

listing

or

parallel

performance

messages.

The

code

that

the

listing

shows

is

not

intended

to

be

compilable.

Do

not

include

any

of

this

code

in

your

own

programs

or

explicitly

call

any

of

the

internal

routines

whose

names

appear

in

the

listing.

Examples

To

produce

a

listing

file

that

you

can

use

to

tune

parallelization:

xlf_r

-qsmp

-O3

-qhot

-qreport=smplist

needs_tuning.f

XL

Fortran

Compiler-Option

Reference

225

To

produce

a

listing

file

that

you

can

use

to

tune

both

parallelization

and

loop

performance:

xlf_r

-qsmp

-O3

-qhot

-qreport=smplist:hotlist

needs_tuning.f

To

produce

a

listing

file

that

you

can

use

to

tune

only

the

performance

of

loops:

xlf95_r

-O3

-qhot

-qreport=hotlist

needs_tuning.f

Related

Information

See

“-qpdf

Option”

on

page

210.

226

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qsaa

Option

Syntax

-qsaa

|

-qnosaa

SAA

|

NOSAA

Checks

for

conformance

to

the

SAA

FORTRAN

language

definition.

It

identifies

nonconforming

source

code

and

also

options

that

allow

such

nonconformances.

Rules

These

warnings

have

a

prefix

of

(L),

indicating

a

problem

with

the

language

level.

Restrictions

The

-qflag

option

can

override

this

option.

Related

Information

Use

the

“-qlanglvl

Option”

on

page

189

to

check

your

code

for

conformance

to

international

standards.

XL

Fortran

Compiler-Option

Reference

227

-qsave

Option

Syntax

-qsave[={all|defaultinit}]

|

-qnosave

SAVE[({all|defaultinit})]

NOSAVE

This

specifies

the

default

storage

class

for

local

variables.

If

-qsave=all

is

specified,

the

default

storage

class

is

STATIC;

if

-qnosave

is

specified,

the

default

storage

class

is

AUTOMATIC;

if

-qsave=defaultinit

is

specified,

the

default

storage

class

is

STATIC

for

variables

of

derived

type

that

have

default

initialization

specified,

and

AUTOMATIC

otherwise.

The

default

suboption

for

the

-qsave

option

is

all.

The

two

suboptions

are

mutually

exclusive.

The

default

for

this

option

depends

on

the

invocation

used.

For

example,

you

may

need

to

specify

-qsave

to

duplicate

the

behavior

of

FORTRAN

77

programs.

The

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

have

-qsave

listed

as

a

default

option

in

/etc/xlf.cfg

to

preserve

the

previous

behavior.

The

following

example

illustrates

the

impact

of

the

-qsave

option

on

derived

data

type:

PROGRAM

P

CALL

SUB

CALL

SUB

END

PROGRAM

P

SUBROUTINE

SUB

LOGICAL,

SAVE

::

FIRST_TIME

=

.TRUE.

STRUCTURE

/S/

INTEGER

I/17/

END

STRUCTURE

RECORD

/S/

LOCAL_STRUCT

INTEGER

LOCAL_VAR

IF

(FIRST_TIME)

THEN

LOCAL_STRUCT.I

=

13

LOCAL_VAR

=

19

FIRST_TIME

=

.FALSE.

ELSE

!

Prints

"

13"

if

compiled

with

-qsave

or

-qsave=all

!

Prints

"

13"

if

compiled

with

-qsave=defaultinit

!

Prints

"

17"

if

compiled

with

-qnosave

PRINT

*,

LOCAL_STRUCT

!

Prints

"

19"

if

compiled

with

-qsave

or

-qsave=all

!

Value

of

LOCAL_VAR

is

undefined

otherwise

PRINT

*,

LOCAL_VAR

END

IF

END

SUBROUTINE

SUB

Related

Information

The

-qnosave

option

is

usually

necessary

for

multi-threaded

applications

and

subprograms

that

are

compiled

with

the

“-qrecur

Option”

on

page

224.

See

Storage

Classes

for

Variables

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

information

on

how

this

option

affects

the

storage

class

of

variables.

228

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qsaveopt

Option

Syntax

-qsaveopt

|

-qnosaveopt

Saves

the

command-line

options

used

for

compiling

a

source

file,

and

other

information,

in

the

corresponding

object

file.

The

compilation

must

produce

an

object

file

for

this

option

to

take

effect.

Only

one

copy

of

the

command-line

options

is

saved,

even

though

each

object

may

contain

multiple

compilation

units.

To

list

the

options

used,

issue

the

what

-s

command

on

the

object

file.

The

following

is

listed:

opt

source_type

invocation_used

compilation_options

For

example,

if

the

object

file

is

t.o,

the

what

-s

t.o

command

may

produce

information

similar

to

the

following:

opt

f

/usr/bin/xlf/xlf90

-qlist

-qsaveopt

t.f

where

f

identifies

the

source

used

as

Fortran,

/usr/bin/xlf/xlf90

shows

the

invocation

command

used,

and

-qlist

-qsaveopt

shows

the

compilation

options.

XL

Fortran

Compiler-Option

Reference

229

-qsclk

Option

Syntax

-qsclk[=centi

|

micro]

Specifies

the

resolution

that

the

SYSTEM_CLOCK

intrinsic

procedure

uses

in

a

program.

The

default

is

centisecond

resolution

(–qsclk=centi).

To

use

microsecond

resolution,

specify

–qsclk=micro.

Related

Information

See

SYSTEM_CLOCK

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

more

information

on

returning

integer

data

from

a

real-time

clock.

230

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qshowpdf

Option

Syntax

-qshowpdf

|

-qnoshowpdf

Used

together

with

-qpdf1

to

add

additional

call

and

block

count

profiling

information

to

an

executable.

When

specified

together

with

-qpdf1,

the

compiler

inserts

additional

profiling

information

into

the

compiled

application

to

collect

call

and

block

counts

for

all

procedures

in

the

application.

Running

the

compiled

application

will

record

the

call

and

block

counts

to

the

._pdf

file.

After

you

run

your

application

with

training

data,

you

can

retrieve

the

contents

of

the

._pdf

file

with

the

showpdf

utility.

This

utility

is

described

in

“-qpdf

Option”

on

page

210.

XL

Fortran

Compiler-Option

Reference

231

-qsigtrap

Option

Syntax

-qsigtrap[=trap_handler]

When

you

are

compiling

a

file

that

contains

a

main

program,

this

option

sets

up

the

specified

trap

handler

to

catch

SIGTRAP

exceptions.

This

option

enables

you

to

install

a

handler

for

SIGTRAP

signals

without

calling

the

SIGNAL

subprogram

in

the

program.

Arguments

To

enable

the

xl__trce

trap

handler,

specify

-qsigtrap

without

a

handler

name.

To

use

a

different

trap

handler,

specify

its

name

with

the

-qsigtrap

option.

If

you

specify

a

different

handler,

ensure

that

the

object

module

that

contains

it

is

linked

with

the

program.

Related

Information

The

possible

causes

of

exceptions

are

described

in

“XL

Fortran

Run-Time

Exceptions”

on

page

66.

“Detecting

and

Trapping

Floating-Point

Exceptions”

on

page

296

describes

a

number

of

methods

for

dealing

with

exceptions

that

result

from

floating-point

computations.

“Installing

an

Exception

Handler”

on

page

298

lists

the

exception

handlers

that

XL

Fortran

supplies.

232

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qsmallstack

Option

Syntax

-qsmallstack

|

–qnosmallstack

Specifies

that

the

compiler

will

minimize

stack

usage

where

possible.

XL

Fortran

Compiler-Option

Reference

233

-qsmp

Option

Syntax

-qsmp[=suboptions]

-qnosmp

Indicates

that

code

should

be

produced

for

an

SMP

system.

The

default

is

to

produce

code

for

a

uniprocessor

machine.

When

you

specify

this

option,

the

compiler

recognizes

all

directives

with

the

trigger

constants

SMP$,

$OMP,

and

IBMP

(unless

you

specify

the

omp

suboption).

Only

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

and

xlf95_r7

invocation

commands

automatically

link

in

all

of

the

thread-safe

components.

You

can

use

the

-qsmp

option

with

the

xlf,

xlf90,

xlf95,

f77,

and

fort77

invocation

commands,

but

you

are

responsible

for

linking

in

the

appropriate

components.

For

a

description

of

this,

refer

to

“Linking

32–Bit

SMP

Object

Files

Using

the

ld

Command”

on

page

42.

If

you

use

the

-qsmp

option

to

compile

any

source

file

in

a

program,

then

you

must

specify

the

-qsmp

option

at

link

time

as

well,

unless

you

link

by

using

the

ld

command.

Arguments

auto

|

noauto

This

suboption

controls

automatic

parallelization.

By

default,

the

compiler

will

attempt

to

parallelize

explicitly

coded

DO

loops

as

well

as

those

that

are

generated

by

the

compiler

for

array

language.

If

you

specify

the

suboption

noauto,

automatic

parallelization

is

turned

off,

and

only

constructs

that

are

marked

with

prescriptive

directives

are

parallelized.

If

the

compiler

encounters

the

omp

suboption

and

the

-qsmp

or

-qsmp=auto

suboptions

are

not

explicitly

specified

on

the

command

line,

the

noauto

suboption

is

implied.

Also,

note

that

-qsmp=noopt

implies

-qsmp=noauto.

No

automatic

parallelization

occurs

under

-qsmp=noopt;

only

user-directed

parallelization

will

occur.

nested_par

|

nonested_par

If

you

specify

the

nested_par

suboption,

the

compiler

parallelizes

prescriptive

nested

parallel

constructs

(PARALLEL

DO,

PARALLEL

SECTIONS).

This

includes

not

only

the

loop

constructs

that

are

nested

within

a

scoping

unit

but

also

parallel

constructs

in

subprograms

that

are

referenced

(directly

or

indirectly)

from

within

other

parallel

constructs.

By

default,

the

compiler

serializes

a

nested

parallel

construct.

Note

that

this

option

has

no

effect

on

loops

that

are

automatically

parallelized.

In

this

case,

at

most

one

loop

in

a

loop

nest

(in

a

scoping

unit)

will

be

parallelized.

Note

that

the

implementation

of

the

nested_par

suboption

does

not

comply

with

the

OpenMP

Fortran

API.

If

you

specify

this

suboption,

the

run-time

library

uses

the

same

threads

for

the

nested

PARALLEL

DO

and

PARALLEL

SECTIONS

constructs

that

it

used

for

the

enclosing

PARALLEL

constructs.

omp

|

noomp

If

you

specify

-qsmp=omp,

the

compiler

enforces

compliance

with

the

OpenMP

Fortran

API.

Specifying

this

option

has

the

following

effects:

v

Automatic

parallelization

is

turned

off.

234

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

All

previously

recognized

directive

triggers

are

ignored.

v

The

-qcclines

compiler

option

is

turned

on

if

you

specify

-qsmp=omp.

v

The

-qcclines

compiler

option

is

not

turned

on

if

you

specify

-qnocclines

and

-qsmp=omp.

v

The

only

recognized

directive

trigger

is

$OMP.

However,

you

can

specify

additional

triggers

on

subsequent

-qdirective

options.

v

The

compiler

issues

warning

messages

if

your

code

contains

any

language

constructs

that

do

not

conform

to

the

OpenMP

Fortran

API.

Specifying

this

option

when

the

C

preprocessor

is

invoked

also

defines

the

_OPENMP

C

preprocessor

macro

automatically,

with

the

value

200011,

which

is

useful

in

supporting

conditional

compilation.

This

macro

is

only

defined

when

the

C

preprocessor

is

invoked.

See

Conditional

Compilation

in

the

Language

Elements

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

more

information.

opt

|

noopt

If

the

-qsmp=noopt

suboption

is

specified,

the

compiler

will

do

the

smallest

amount

of

optimization

that

is

required

to

parallelize

the

code.

This

is

useful

for

debugging

because

-qsmp

enables

the

-O2

and

-qhot

options

by

default,

which

may

result

in

the

movement

of

some

variables

into

registers

that

are

inaccessible

to

the

debugger.

However,

if

the

-qsmp=noopt

and

-g

options

are

specified,

these

variables

will

remain

visible

to

the

debugger.

rec_locks

|

norec_locks

This

suboption

specifies

whether

recursive

locks

are

used

to

avoid

problems

associated

with

CRITICAL

constructs.

If

you

specify

the

rec_locks

suboption,

a

thread

can

enter

a

CRITICAL

construct

from

within

the

dynamic

extent

of

another

CRITICAL

construct

that

has

the

same

name.

If

you

specify

norec_locks,

a

deadlock

would

occur

in

such

a

situation.

The

default

is

norec_locks,

or

regular

locks.

schedule=option

The

schedule

suboption

can

take

any

one

of

the

following

subsuboptions:

affinity[=n]

The

iterations

of

a

loop

are

initially

divided

into

number_of_threads

partitions,

containing

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

partition

is

initially

assigned

to

a

thread

and

is

then

further

subdivided

into

chunks

that

each

contain

n

iterations.

If

n

has

not

been

specified,

then

the

chunks

consist

of

CEILING(number_of_iterations_left_in_partition

/

2)

loop

iterations.

When

a

thread

becomes

free,

it

takes

the

next

chunk

from

its

initially

assigned

partition.

If

there

are

no

more

chunks

in

that

partition,

then

the

thread

takes

the

next

available

chunk

from

a

partition

initially

assigned

to

another

thread.

XL

Fortran

Compiler-Option

Reference

235

The

work

in

a

partition

initially

assigned

to

a

sleeping

thread

will

be

completed

by

threads

that

are

active.

dynamic[=n]

The

iterations

of

a

loop

are

divided

into

chunks

containing

n

iterations

each.

If

n

has

not

been

specified,

then

the

chunks

consist

of

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Active

threads

are

assigned

these

chunks

on

a

″first-come,

first-do″

basis.

Chunks

of

the

remaining

work

are

assigned

to

available

threads

until

all

work

has

been

assigned.

If

a

thread

is

asleep,

its

assigned

work

will

be

taken

over

by

an

active

thread

once

that

thread

becomes

available.

guided[=n]

The

iterations

of

a

loop

are

divided

into

progressively

smaller

chunks

until

a

minimum

chunk

size

of

n

loop

iterations

is

reached.

If

n

has

not

been

specified,

the

default

value

for

n

is

1

iteration.

The

first

chunk

contains

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Subsequent

chunks

consist

of

CEILING(number_of_iterations_left

/

number_of_threads)

iterations.

Active

threads

are

assigned

chunks

on

a

″first-come,

first-do″

basis.

runtime

Specifies

that

the

chunking

algorithm

will

be

determined

at

run

time.

static[=n]

The

iterations

of

a

loop

are

divided

into

chunks

containing

n

iterations

each.

Each

thread

is

assigned

chunks

in

a

″round-robin″

fashion.

This

is

known

as

block

cyclic

scheduling.

If

the

value

of

n

is

1,

then

the

scheduling

type

is

specifically

referred

to

as

cyclic

scheduling.

If

you

have

not

specified

n,

the

chunks

will

contain

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

thread

is

assigned

one

of

these

chunks.

This

is

known

as

block

scheduling.

If

a

thread

is

asleep

and

it

has

been

assigned

work,

it

will

be

awakened

so

that

it

may

complete

its

work.

For

more

information

on

chunking

algorithms

and

SCHEDULE,

refer

to

the

Directives

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

threshold=n

Controls

the

amount

of

automatic

loop

parallelization

that

occurs.

The

value

of

n

represents

the

lower

limit

allowed

for

parallelization

of

a

loop,

based

on

the

level

of

″work″

present

in

a

loop.

Currently,

the

calculation

of

″work″

is

weighted

heavily

by

the

number

of

iterations

in

the

loop.

In

general,

the

higher

the

value

specified

for

n,

the

fewer

loops

are

parallelized.

If

this

suboption

is

not

specified,

the

program

will

use

the

default

value

n=100.

236

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Rules

v

If

you

specify

-qsmp

more

than

once,

the

previous

settings

of

all

suboptions

are

preserved,

unless

overridden

by

the

subsequent

suboption

setting.

The

compiler

does

not

override

previous

suboptions

that

you

specify.

The

same

is

true

for

the

version

of

-qsmp

without

suboptions;

the

default

options

are

saved.

v

Specifying

the

omp

suboption

always

implies

noauto,

unless

you

specify

-qsmp

or

-qsmp=auto

on

the

command

line.

v

Specifying

the

noomp

suboption

always

implies

auto.

v

The

omp

and

noomp

suboptions

only

appear

in

the

compiler

listing

if

you

explicitly

set

them.

v

If

-qsmp

is

specified

without

any

suboptions,

-qsmp=opt

becomes

the

default

setting.

If

-qsmp

is

specified

after

the

-qsmp=noopt

suboption

has

been

set,

the

-qsmp=noopt

setting

will

always

be

ignored.

v

If

the

option

-qsmp

with

no

suboptions

follows

the

suboption-qsmp=noopt

on

a

command

line,

the

-qsmp=opt

and

-qsmp=auto

options

are

enabled.

v

Specifying

the

-qsmp=noopt

suboption

implies

that

-qsmp=noauto.

It

also

implies

-qnoopt.

This

option

overrides

performance

options

such

as

-O2,

-O3,

-qhot,

anywhere

on

the

command

line

unless

-qsmp

appears

after

-qsmp=noopt.

v

Object

files

generated

with

the

-qsmp=opt

option

can

be

linked

with

object

files

generated

with

-qsmp=noopt.

The

visibility

within

the

debugger

of

the

variables

in

each

object

file

will

not

be

affected

by

linking.

Restrictions

The

-qsmp=noopt

suboption

may

affect

the

performance

of

the

program.

Within

the

same

-qsmp

specification,

you

cannot

specify

the

omp

suboption

before

or

after

certain

suboptions.

The

compiler

issues

warning

messages

if

you

attempt

to

specify

them

with

omp:

auto

This

suboption

controls

automatic

parallelization,

but

omp

turns

off

automatic

parallelization.

nested_par

Note

that

the

implementation

of

the

nested_par

suboption

does

not

comply

with

the

OpenMP

Fortran

API.

If

you

specify

this

suboption,

the

run-time

library

uses

the

same

threads

for

the

nested

PARALLEL

DO

and

PARALLEL

SECTIONS

constructs

that

it

used

for

the

enclosing

PARALLEL

constructs.

rec_locks

This

suboption

specifies

a

behaviour

for

CRITICAL

constructs

that

is

inconsistent

with

the

OpenMP

Fortran

API.

schedule=affinity=n

The

affinity

scheduling

type

does

not

appear

in

the

OpenMP

Fortran

API

standard.

Examples

The

-qsmp=noopt

suboption

overrides

performance

optimization

options

anywhere

on

the

command

line

unless

-qsmp

appears

after

-qsmp=noopt.

The

following

examples

illustrate

that

all

optimization

options

that

appear

after

-qsmp=noopt

are

processed

according

to

the

normal

rules

of

scope

and

precedence.

Example

1

XL

Fortran

Compiler-Option

Reference

237

xlf90

-qsmp=noopt

-O3...

is

equivalent

to

xlf90

-qsmp=noopt...

Example

2

xlf90

-qsmp=noopt

-O3

-qsmp...

is

equivalent

to

xlf90

-qsmp

-O3...

Example

3

xlf90

-qsmp=noopt

-O3

-qhot

-qsmp

-O2...

is

equivalent

to

xlf90

-qsmp

-qhot

-O2...

If

you

specify

the

following,

the

compiler

recognizes

both

the

$OMP

and

SMP$

directive

triggers

and

issues

a

warning

if

a

directive

specified

with

either

trigger

is

not

allowed

in

OpenMP.

-qsmp=omp

-qdirective=SMP$

If

you

specify

the

following,

the

noauto

suboption

is

used.

The

compiler

issues

a

warning

message

and

ignores

the

auto

suboption.

-qsmp=omp:auto

In

the

following

example,

you

should

specify

-qsmp=rec_locks

to

avoid

a

deadlock

caused

by

CRITICAL

constructs.

program

t

integer

i,

a,

b

a

=

0

b

=

0

!smp$

parallel

do

do

i=1,

10

!smp$

critical

a

=

a

+

1

!smp$

critical

b

=

b

+

1

!smp$

end

critical

!smp$

end

critical

enddo

end

Related

Information

If

you

use

the

xlf,

xlf_r,

xlf_r7,

f77,

or

fort77

command

with

the

-qsmp

option

to

compile

programs,

specify

-qnosave

to

make

the

default

storage

class

automatic,

and

specify

-qthreaded

to

tell

the

compiler

to

generate

thread-safe

code.

238

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qsource

Option

Syntax

-qsource

|

-qnosource

SOURCE

|

NOSOURCE

Determines

whether

to

produce

the

source

section

of

the

listing.

This

option

displays

on

the

terminal

each

source

line

where

the

compiler

detects

a

problem,

which

can

be

very

useful

in

diagnosing

program

errors

in

the

Fortran

source

files.

You

can

selectively

print

parts

of

the

source

code

by

using

SOURCE

and

NOSOURCE

in

@PROCESS

directives

in

the

source

files

around

those

portions

of

the

program

you

want

to

print.

This

is

the

only

situation

where

the

@PROCESS

directive

does

not

have

to

be

before

the

first

statement

of

a

compilation

unit.

Examples

In

the

following

example,

the

point

at

which

the

incorrect

call

is

made

is

identified

more

clearly

when

the

program

is

compiled

with

the

-qsource

option:

$

cat

argument_mismatch.f

subroutine

mult(x,y)

integer

x,y

print

*,x*y

end

program

wrong_args

interface

subroutine

mult(a,b)

!

Specify

the

interface

for

this

integer

a,b

!

subroutine

so

that

calls

to

it

end

subroutine

mult

!

can

be

checked.

end

interface

real

i,j

i

=

5.0

j

=

6.0

call

mult(i,j)

end

$

xlf95

argument_mismatch.f

**

mult

===

End

of

Compilation

1

===

"argument_mismatch.f",

line

16.12:

1513-061

(S)

Actual

argument

attributes

do

not

match

those

specified

by

an

accessible

explicit

interface.

**

wrong_args

===

End

of

Compilation

2

===

1501-511

Compilation

failed

for

file

argument_mismatch.f.

$

xlf95

-qsource

argument_mismatch.f

**

mult

===

End

of

Compilation

1

===

16

|

call

mult(i,j)

............a...

a

-

1513-061

(S)

Actual

argument

attributes

do

not

match

those

specified

by

an

accessible

explicit

interface.

**

wrong_args

===

End

of

Compilation

2

===

1501-511

Compilation

failed

for

file

argument_mismatch.f.

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77

and

“Source

Section”

on

page

390.

XL

Fortran

Compiler-Option

Reference

239

-qspillsize

Option

Syntax

-qspillsize=bytes

SPILLSIZE(bytes)

-qspillsize

is

the

long

form

of

-NS.

See

“-N

Option”

on

page

113.

240

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qstrict

Option

Syntax

-qstrict

|

-qnostrict

STRICT

|

NOSTRICT

Ensures

that

optimizations

done

by

default

with

the

-O3,

-O4,

-O5,

-qhot,

and

-qipa

options,

and

optionally

with

the

-O2

option,

do

not

alter

the

semantics

of

a

program.

Defaults

For

-O3,

-O4,

-O5,

-qhot,

and

-qipa,

the

default

is

-qnostrict.

For

-O2,

the

default

is

-qstrict.

This

option

is

ignored

for

-qnoopt.

With

-qnostrict,

optimizations

may

rearrange

code

so

that

results

or

exceptions

are

different

from

those

of

unoptimized

programs.

This

option

is

intended

for

situations

where

the

changes

in

program

execution

in

optimized

programs

produce

different

results

from

unoptimized

programs.

Such

situations

are

likely

rare

because

they

involve

relatively

little-used

rules

for

IEEE

floating-point

arithmetic.

Rules

With

-qnostrict

in

effect,

the

following

optimizations

are

turned

on,

unless

-qstrict

is

also

specified:

v

Code

that

may

cause

an

exception

may

be

rearranged.

The

corresponding

exception

might

happen

at

a

different

point

in

execution

or

might

not

occur

at

all.

(The

compiler

still

tries

to

minimize

such

situations.)

v

Floating-point

operations

may

not

preserve

the

sign

of

a

zero

value.

(To

make

certain

that

this

sign

is

preserved,

you

also

need

to

specify

-qfloat=rrm,

-qfloat=nomaf,

or

-qfloat=strictnmaf.)

v

Floating-point

expressions

may

be

reassociated.

For

example,

(2.0*3.1)*4.2

might

become

2.0*(3.1*4.2)

if

that

is

faster,

even

though

the

result

might

not

be

identical.

v

The

fltint

and

rsqrt

suboptions

of

the

-qfloat

option

are

turned

on.

You

can

turn

them

off

again

by

also

using

the

-qstrict

option

or

the

nofltint

and

norsqrt

suboptions

of

-qfloat.

With

lower-level

or

no

optimization

specified,

these

suboptions

are

turned

off

by

default.

Related

Information

See

“-O

Option”

on

page

114,

“-qhot

Option”

on

page

171,

and

“-qfloat

Option”

on

page

163.

XL

Fortran

Compiler-Option

Reference

241

-qstrictieeemod

Option

Syntax

-qstrictieeemod

|

-qnostrictieeemod

STRICTIEEEMOD

|

NOSTRICTIEEEMOD

Specifies

whether

the

compiler

will

adhere

to

the

draft

Fortran

2003

IEEE

arithmetic

rules

for

the

ieee_arithmetic

and

ieee_exceptions

intrinsic

modules.

When

you

specify

-qstrictieeemod,

the

compiler

adheres

to

the

following

rules:

v

If

there

is

an

exception

flag

set

on

entry

into

a

procedure

that

uses

the

IEEE

intrinsic

modules,

the

flag

is

set

on

exit.

If

a

flag

is

clear

on

entry

into

a

procedure

that

uses

the

IEEE

intrinsic

modules,

the

flag

can

be

set

on

exit.

v

If

there

is

an

exception

flag

set

on

entry

into

a

procedure

that

uses

the

IEEE

intrinsic

modules,

the

flag

clears

on

entry

into

the

procedure

and

resets

when

returning

from

the

procedure.

v

When

returning

from

a

procedure

that

uses

the

IEEE

intrinsic

modules,

the

settings

for

halting

mode

and

rounding

mode

return

to

the

values

they

had

at

procedure

entry.

v

Calls

to

procedures

that

do

not

use

the

ieee_arithmetic

or

ieee_exceptions

intrinsic

modules

from

procedures

that

do

use

these

modules,

will

not

change

the

floating-point

status

except

by

setting

exception

flags.

Since

the

above

rules

can

impact

performance,

specifying

–qnostrictieeemod

will

relax

the

rules

on

saving

and

restoring

floating-point

status.

This

prevents

any

associated

impact

on

performance.

242

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qstrict_induction

Option

Syntax

-qSTRICT_INDUCtion

|

-qNOSTRICT_INDUCtion

Prevents

the

compiler

from

performing

induction

(loop

counter)

variable

optimizations.

These

optimizations

may

be

unsafe

(may

alter

the

semantics

of

your

program)

when

there

are

integer

overflow

operations

involving

the

induction

variables.

You

should

avoid

specifying

-qstrict_induction

unless

absolutely

necessary,

as

it

may

cause

performance

degradation.

Examples

Consider

the

following

two

examples:

Example

1

integer(1)

::

i,

j

!

Variable

i

can

hold

a

j

=

0

!

maximum

value

of

127.

do

i

=

1,

200

!

Integer

overflow

occurs

when

128th

j

=

j

+

1

!

iteration

of

loop

is

attempted.

enddo

Example

2

integer(1)

::

i

i

=

1_1

!

Variable

i

can

hold

a

maximum

!

value

of

127.

100

continue

if

(i

==

-127)

goto

200

!

Go

to

label

200

once

decimal

overflow

i

=

i

+

1_1

!

occurs

and

i

==

-127.

goto

100

200

continue

print

*,

i

end

If

you

compile

these

examples

with

the

-qstrict_induction

option,

the

compiler

does

not

perform

induction

variable

optimizations,

but

the

performance

of

the

code

may

be

affected.

If

you

compile

the

examples

with

the

-qnostrict_induction

option,

the

compiler

may

perform

optimizations

that

may

alter

the

semantics

of

the

programs.

XL

Fortran

Compiler-Option

Reference

243

-qsuffix

Option

Syntax

-qsuffix=option=suffix

Specifies

the

source-file

suffix

on

the

command

line

instead

of

in

the

xlf.cfg

file.

This

option

saves

time

for

the

user

by

permitting

files

to

be

used

as

named

with

minimal

makefile

modifications

and

removes

the

risk

of

problems

associated

with

modifying

the

xlf.cfg

file.

Only

one

setting

is

supported

at

any

one

time

for

any

particular

file

type.

Arguments

f=suffix

Where

suffix

represents

the

new

source-file-suffix

o=suffix

Where

suffix

represents

the

new

object-file-suffix

s=suffix

Where

suffix

represents

the

new

assembler-source-file-suffix

cpp=suffix

Where

suffix

represents

the

new

preprocessor-source-file-suffix

Rules

v

The

new

suffix

setting

is

case-sensitive.

v

The

new

suffix

can

be

of

any

length.

v

Any

setting

for

a

new

suffix

will

override

the

corresponding

default

setting

in

the

xlf.cfg

file.

v

If

both

-qsuffix

and

-F

are

specified,

-qsuffix

is

processed

last,

so

its

setting

will

override

the

setting

in

the

xlf.cfg

file.

Examples

For

instance,

xlf

a.f90

-qsuffix=f=f90:cpp=F90

will

cause

these

effects:

v

The

compiler

is

invoked

for

source

files

with

a

suffix

of

.f90.

v

cpp

is

invoked

for

files

with

a

suffix

of

.F90.

244

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qsuppress

Option

Syntax

-qsuppress[=nnnn-mmm[:nnnn-mmm

...]

|

cmpmsg]

-qnosuppress

Arguments

nnnn-mmm[:nnnn-mmm

...]

Suppresses

the

display

of

a

specific

compiler

message

(nnnn-mmm)

or

a

list

of

messages

(nnnn-mmm[:nnnn-mmm

...]).

nnnn-mmm

is

the

message

number.

To

suppress

a

list

of

messages,

separate

each

message

number

with

a

colon.

cmpmsg

Suppresses

the

informational

messages

that

report

compilation

progress

and

a

successful

completion.

This

sub-option

has

no

effect

on

any

error

messages

that

are

emitted.

Background

Information

In

some

situations,

users

may

receive

an

overwhelming

number

of

compiler

messages.

In

many

cases,

these

compiler

messages

contain

important

information.

However,

some

messages

contain

information

that

is

either

redundant

or

can

be

safely

ignored.

When

multiple

error

or

warning

messages

appear

during

compilation,

it

can

be

very

difficult

to

distinguish

which

messages

should

be

noted.

By

using

-qsuppress,

you

can

eliminate

messages

that

do

not

interest

you.

v

The

compiler

tracks

the

message

numbers

specified

with

-qsuppress.

If

the

compiler

subsequently

generates

one

of

those

messages,

it

will

not

be

displayed

or

entered

into

the

listing.

v

Only

compiler

and

driver

messages

can

be

suppressed.

Linker

or

operating

system

message

numbers

will

be

ignored

if

specified

on

the

-qextname

compiler

option.

v

If

you

are

also

specifying

the

-qipa

compiler

option,

then

-qipa

must

appear

before

the

-qextname

compiler

option

on

the

command

line

for

IPA

messages

to

be

suppressed.

Restrictions

v

The

value

of

nnnn

must

be

a

four-digit

integer

between

1500

and

1585,

since

this

is

the

range

of

XL

Fortran

message

numbers.

v

The

value

of

mmm

must

be

any

three-digit

integer

(with

leading

zeros

if

necessary).

XL

Fortran

Compiler-Option

Reference

245

Examples

@process

nullterm

i

=

1;

j

=

2;

call

printf("i=%d\n",%val(i));

call

printf("i=%d,

j=%d\n",%val(i),%val(j));

end

Compiling

this

sample

program

would

normally

result

in

the

following

output:

"t.f",

line

4.36:

1513-029

(W)

The

number

of

arguments

to

"printf"

differ

from

the

number

of

arguments

in

a

previous

reference.

You

should

use

the

OPTIONAL

attribute

and

an

explicit

interface

to

define

a

procedure

with

optional

arguments.

**

_main

===

End

of

Compilation

1

===

1501-510

Compilation

successful

for

file

t.f.

When

the

program

is

compiled

with

-qsuppress=1513-029,

the

output

is:

**

_main

===

End

of

Compilation

1

===

1501-510

Compilation

successful

for

file

t.f.

Related

Information

For

another

type

of

message

suppression,

see

“-qflag

Option”

on

page

162.

246

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qswapomp

Option

Syntax

-qswapomp

|

-qnoswapomp

SWAPOMP

|

NOSWAPOMP

Specifies

that

the

compiler

should

recognize

and

substitute

OpenMP

routines

in

XL

Fortran

programs.

The

OpenMP

routines

for

Fortran

and

C

have

different

interfaces.

To

support

multi-language

applications

that

use

OpenMP

routines,

the

compiler

needs

to

recognize

OpenMP

routine

names

and

substitute

them

with

the

XL

Fortran

versions

of

these

routines,

regardless

of

the

existence

of

other

implementations

of

such

routines.

The

compiler

does

not

perform

substitution

of

OpenMP

routines

when

you

specify

the

-qnoswapomp

option.

Restrictions

The

-qswapomp

and

-qnoswapomp

options

only

affect

Fortran

sub-programs

that

reference

OpenMP

routines

that

exist

in

the

program.

Rules

v

If

a

call

to

an

OpenMP

routine

resolves

to

a

dummy

procedure,

module

procedure,

an

internal

procedure,

a

direct

invocation

of

a

procedure

itself,

or

a

statement

function,

the

compiler

will

not

perform

the

substitution.

v

When

you

specify

an

OpenMP

routine,

the

compiler

substitutes

the

call

to

a

different

special

routine

depending

upon

the

setting

of

the

-qintsize

option.

In

this

manner,

OpenMP

routines

are

treated

as

generic

intrinsic

procedures.

v

Unlike

generic

intrinsic

procedures,

if

you

specify

an

OpenMP

routine

in

an

EXTERNAL

statement,

the

compiler

will

not

treat

the

name

as

a

user-defined

external

procedure.

Instead,

the

compiler

will

still

substitute

the

call

to

a

special

routine

depending

upon

the

setting

of

the

-qintsize

option.

v

An

OpenMP

routine

cannot

be

extended

or

redefined,

unlike

generic

intrinsic

procedures.

Examples

In

the

following

example,

the

OpenMP

routines

are

declared

in

an

INTERFACE

statement.

@PROCESS

SWAPOMP

INTERFACE

FUNCTION

OMP_GET_THREAD_NUM()

INTEGER

OMP_GET_THREAD_NUM

END

FUNCTION

OMP_GET_THREAD_NUM

FUNCTION

OMP_GET_NUM_THREADS()

INTEGER

OMP_GET_NUM_THREADS

END

FUNCTION

OMP_GET_NUM_THREADS

END

INTERFACE

IAM

=

OMP_GET_THREAD_NUM()

NP

=

OMP_GET_NUM_THREADS()

PRINT

*,

IAM,

NP

END

XL

Fortran

Compiler-Option

Reference

247

Related

Information

See

the

OpenMP

Execution

Environment

Routines

and

Lock

Routines

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

248

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qtbtable

Option

Syntax

-qtbtable={none

|

small

|

full}

Limits

the

amount

of

debugging

traceback

information

in

object

files,

which

reduces

the

size

of

the

program.

You

can

use

this

option

to

make

your

program

smaller,

at

the

cost

of

making

it

harder

to

debug.

When

you

reach

the

production

stage

and

want

to

produce

a

program

that

is

as

compact

as

possible,

you

can

specify

-qtbtable=none.

Otherwise,

the

usual

defaults

apply:

code

compiled

with

-g

or

without

-O

has

full

traceback

information

(-qtbtable=full),

and

code

compiled

with

-O

contains

less

(-qtbtable=small).

Arguments

none

The

object

code

contains

no

traceback

information

at

all.

You

cannot

debug

the

program,

because

a

debugger

or

other

code-examination

tool

cannot

unwind

the

program’s

stack

at

run

time.

If

the

program

stops

because

of

a

run-time

exception,

it

does

not

explain

where

the

exception

occurred.

small

The

object

code

contains

traceback

information

but

not

the

names

of

procedures

or

information

about

procedure

parameters.

You

can

debug

the

program,

but

some

non-essential

information

is

unavailable

to

the

debugger.

If

the

program

stops

because

of

a

run-time

exception,

it

explains

where

the

exception

occurred

but

reports

machine

addresses

rather

than

procedure

names.

full

The

object

code

contains

full

traceback

information.

The

program

is

debuggable,

and

if

it

stops

because

of

a

run-time

exception,

it

produces

a

traceback

listing

that

includes

the

names

of

all

procedures

in

the

call

chain.

Background

Information

This

option

is

most

suitable

for

programs

that

contain

many

long

procedure

names,

such

as

the

internal

names

constructed

for

module

procedures.

You

may

find

it

more

applicable

to

C++

programs

than

to

Fortran

programs.

Restrictions

To

use

the

performance

tools,

such

as

tprof,

in

the

AIX

Performance

Toolbox,

you

must

compile

the

Fortran

programs

with

-qtbtable=full.

Related

Information

See

“-g

Option”

on

page

108,

“-O

Option”

on

page

114,

“Debugging

Optimized

Code”

on

page

321,

and

“-qcompact

Option”

on

page

142.

XL

Fortran

Compiler-Option

Reference

249

-qthreaded

Option

Syntax

-qthreaded

Used

by

the

compiler

to

determine

when

it

must

generate

thread-safe

code.

The

-qthreaded

option

does

not

imply

the

-qnosave

option.

The

-qnosave

option

specifies

a

default

storage

class

of

automatic

for

user

local

variables.

In

general,

both

of

these

options

need

to

be

used

to

generate

thread-safe

code.

Simply

specifying

these

options

does

not

quarantee

that

your

program

is

thread-safe.

You

should

implement

the

appropriate

locking

mechanisms,

as

well.

Defaults

-qthreaded

is

the

default

for

the

xlf90_r,

xlf90_r7,

xlf95_r,

xlf95_r7,

xlf_r,

and

xlf_r7

commands.

Specifying

the

-qthreaded

option

implies

-qdirective=ibmt,

and

by

default,

the

trigger_constant

IBMT

is

recognized.

250

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qtune

Option

Syntax

-qtune=implementation

Tunes

instruction

selection,

scheduling,

and

other

implementation-dependent

performance

enhancements

for

a

specific

implementation

of

a

hardware

architecture.

The

compiler

will

use

a

-qtune

setting

that

is

compatible

with

the

target

architecture,

which

is

controlled

by

the

-qarch,

-q32,

and

-q64

options.

If

you

want

your

program

to

run

on

more

than

one

architecture,

but

to

be

tuned

to

a

particular

architecture,

you

can

use

a

combination

of

the

-qarch

and

-qtune

options.

These

options

are

primarily

of

benefit

for

floating-point

intensive

programs.

By

arranging

(scheduling)

the

generated

machine

instructions

to

take

maximum

advantage

of

hardware

features

such

as

cache

size

and

pipelining,

-qtune

can

improve

performance.

It

only

has

an

effect

when

used

in

combination

with

options

that

enable

optimization.

Although

changing

the

-qtune

setting

may

affect

the

performance

of

the

resulting

executable,

it

has

no

effect

on

whether

the

executable

can

be

executed

correctly

on

a

particular

hardware

platform.

Arguments

auto

Automatically

detects

the

specific

processor

type

of

the

compiling

machine.

It

assumes

that

the

execution

environment

will

be

the

same

as

the

compilation

environment.

pwr

The

optimizations

are

tuned

for

the

POWER

processors.

pwr2

The

optimizations

are

tuned

for

the

POWER2

processors.

pwrx

is

a

synonym

for

pwr2,

but

pwr2

is

preferred.

pwr2s

The

optimizations

are

tuned

for

the

desktop

implementation

of

the

POWER2

architecture,

which

has

a

narrower

processor-to-memory

bus

than

other

POWER2

implementations.

Quad-word

instructions,

which

are

slower

on

these

machines

than

on

other

POWER2

machines,

are

deemphasized

to

reduce

bus

contention.

That

is,

there

may

be

fewer

of

them

or

none

at

all.

p2sc

The

optimizations

are

tuned

for

the

POWER2

Super

Chip.

601

The

optimizations

are

tuned

for

the

PowerPC

601

processor.

603

The

optimizations

are

tuned

for

the

PowerPC

603

processor.

604

The

optimizations

are

tuned

for

the

PowerPC

604

processor.

rs64a

The

optimizations

are

tuned

for

the

RS64I

processor.

rs64b

The

optimizations

are

tuned

for

the

RS64II

processor.

rs64c

The

optimizations

are

tuned

for

the

RS64III

processor.

pwr3

The

optimizations

are

tuned

for

the

POWER3

processors.

pwr4

The

optimizations

are

tuned

for

the

POWER4

processors.

pwr5

The

optimizations

are

tuned

for

the

POWER5

processors.

ppc970

The

optimizations

are

tuned

for

the

PowerPC

970

processors.

XL

Fortran

Compiler-Option

Reference

251

If

you

do

not

specify

-qtune,

its

setting

is

determined

by

the

setting

of

the

-qarch

option,

as

follows:

-qarch

Setting

Allowed

-qtune

Settings

Default

-qtune

Setting

com

(if

you

specify

-q32)

pwr,

pwr2/pwrx,

pwr3,

pwr4,

pwr2s,

p2sc,

rs64a,

rs64b,

rs64c,

601,

603,

604,

auto

pwr2

(if

you

specify

-q32)

com

(if

you

specify

-q64)

See

the

list

of

acceptable

-qtune

settings

under

the

-qarch=ppc64

entry.

pwr3

(if

you

specify

-q64)

pwr

pwr,

pwr2/pwrx,

pwr2s,

p2sc,

601,

auto

pwr2

pwr2/pwrx

pwr2/pwrx,

p2sc,

pwr2s

pwr2/pwrx

pwr2s

pwr2s,

auto

pwr2s

p2sc

p2sc,

auto

p2sc

601

601,

auto

601

603

603,

auto

603

604

604,

auto

604

ppc

(if

you

specify

-q32)

601,

603,

604,

rs64a,

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

ppc970,

auto

pwr3

(if

you

specify

-q32)

ppc

(if

you

specify

-q64)

See

the

list

of

acceptable

-qtune

settings

under

the

-qarch=ppc64

entry.

pwr3

(if

you

specify

-q64)

ppcgr

(if

you

specify

-q32)

603,

604,

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

ppc970,

auto

pwr3

(if

you

specify

-q32)

ppcgr

(if

you

specify

-q64)

See

the

list

of

acceptable

-qtune

settings

under

the

-qarch=ppc64gr

entry.

pwr3

(if

you

specify

-q64)

ppc64

rs64a,

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

ppc970,

auto

pwr3

ppc64gr

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

ppc970,

auto

pwr3

ppc64grsq

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

ppc970,

auto

pwr3

rs64a

rs64a,

auto

rs64a

rs64b

rs64b,

auto

rs64b

rs64c

rs64c,

auto

rs64c

pwr3

pwr3,

pwr4,

pwr5,

ppc970,

auto

pwr3

pwr4

pwr4,

pwr5,

ppc970,

auto

pwr4

pwr5

pwr5,

auto

pwr5

ppc970

ppc970,

auto

ppc970

Note

that

you

can

specify

any

-qtune

suboption

with

-qarch=auto

as

long

as

you

are

compiling

on

a

machine

that

is

compatible

with

the

-qtune

suboption.

For

example,

if

you

specify

-qarch=auto

and

-qtune=pwr5,

you

must

compile

on

a

POWER3,

POWER4,

or

POWER5

machine.

Restrictions

Because

reducing

quad-word

instructions

may

degrade

performance

on

other

POWER2

models,

we

do

not

recommend

the

pwr2s

suboption

for

programs

that

will

be

run

on

a

number

of

different

POWER2

models.

If

the

program

will

be

run

on

a

set

of

different

POWER2

models,

leave

the

-qtune

setting

as

pwr2.

252

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Related

Information

See

“-qarch

Option”

on

page

127,

“-qcache

Option”

on

page

137,

and

“Compiling

for

Specific

Architectures”

on

page

39.

XL

Fortran

Compiler-Option

Reference

253

-qundef

Option

Syntax

-qundef

|

-qnoundef

UNDEF

|

NOUNDEF

-qundef

is

the

long

form

of

the

“-u

Option”

on

page

272.

254

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qunroll

Option

Syntax

-qunroll[=auto

|

yes]

|

-qnounroll

Specifies

whether

unrolling

a

DO

loop

is

allowed

in

a

program.

Unrolling

is

allowed

on

outer

and

inner

DO

loops.

Arguments

auto

The

compiler

performs

basic

loop

unrolling.

This

is

the

default

if

-qunroll

is

not

specified

on

the

command

line.

yes

The

compiler

looks

for

more

opportunities

to

perform

loop

unrolling

than

that

performed

with

-qunroll=auto.

Specifying

-qunroll

with

no

suboptions

is

equivalent

to

-qunroll=yes.

In

general,

this

suboption

has

more

chances

to

increase

compile

time

or

program

size

than

-qunroll=auto

processing,

but

it

may

also

improve

your

application’s

performance.

If

you

decide

to

unroll

a

loop,

specifying

one

of

the

above

suboptions

does

not

automatically

guarantee

that

the

compiler

will

perform

the

operation.

Based

on

the

performance

benefit,

the

compiler

will

determine

whether

unrolling

will

be

beneficial

to

the

program.

Experienced

compiler

users

should

be

able

to

determine

the

benefit

in

advance.

Rules

The

-qnounroll

option

prohibits

unrolling

unless

you

specify

the

STREAM_UNROLL,

UNROLL,

or

UNROLL_AND_FUSE

directive

for

a

particular

loop.

These

directives

always

override

the

command

line

options.

Examples

In

the

following

example,

the

UNROLL(2)

directive

is

used

to

tell

the

compiler

that

the

body

of

the

loop

can

be

replicated

so

that

the

work

of

two

iterations

is

performed

in

a

single

iteration.

Instead

of

performing

1000

iterations,

if

the

compiler

unrolls

the

loop,

it

will

only

perform

500

iterations.

!IBM*

UNROLL(2)

DO

I

=

1,

1000

A(I)

=

I

END

DO

If

the

compiler

chooses

to

unroll

the

previous

loop,

the

compiler

translates

the

loop

so

that

it

is

essentially

equivalent

to

the

following:

DO

I

=

1,

1000,

2

A(I)

=

I

A(I+1)

=

I

+

1

END

DO

Related

Information

See

the

appropriate

directive

on

unrolling

loops

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

v

STREAM_UNROLL

v

UNROLL

v

UNROLL_AND_FUSE

See

“Optimizing

Loops

and

Array

Language”

on

page

312.

XL

Fortran

Compiler-Option

Reference

255

-qunwind

Option

Syntax

-qunwind

|-qnounwind

UNWIND

|

NOUNWIND

Specifies

that

the

compiler

will

preserve

the

default

behavior

for

saves

and

restores

to

volatile

registers

during

a

procedure

call.

If

you

specify

-qnounwind,

the

compiler

rearranges

subprograms

to

minimize

saves

and

restores

to

volatile

registers.

While

code

semantics

are

preserved,

applications

such

as

exception

handlers

that

rely

on

the

default

behavior

for

saves

and

restores

can

produce

undefined

results.

When

using

-qnounwind

in

conjunction

with

the

-g

compiler

option,

debug

information

regarding

exception

handling

when

unwinding

the

program’s

stack

can

be

inaccurate.

256

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qversion

Option

Syntax

-qversion

|

-qnoversion

Displays

the

version

and

release

of

the

invoking

compiler.

Specify

this

option

on

its

own

with

the

compiler

command.

For

example:

xlf90

-qversion

XL

Fortran

Compiler-Option

Reference

257

-qwarn64

Option

See

“-qwarn64

Option”

on

page

284.

258

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qxflag=oldtab

Option

Syntax

-qxflag=oldtab

XFLAG(OLDTAB)

Interprets

a

tab

in

columns

1

to

5

as

a

single

character

(for

fixed

source

form

programs),

for

compatibility

with

XL

Fortran

Version

1.

Defaults

By

default,

the

compiler

allows

66

significant

characters

on

a

source

line

after

column

6.

A

tab

in

columns

1

through

5

is

interpreted

as

the

appropriate

number

of

blanks

to

move

the

column

counter

past

column

6.

This

default

is

convenient

for

those

who

follow

the

earlier

Fortran

practice

of

including

line

numbers

or

other

data

in

columns

73

through

80.

Rules

If

you

specify

the

option

-qxflag=oldtab,

the

source

statement

still

starts

immediately

after

the

tab,

but

the

tab

character

is

treated

as

a

single

character

for

counting

columns.

This

setting

allows

up

to

71

characters

of

input,

depending

on

where

the

tab

character

occurs.

XL

Fortran

Compiler-Option

Reference

259

-qxflag=xalias

Option

Syntax

-qxflag=xalias

XFLAG(XALIAS)

Obsolete:

replaced

by

-qalias=nostd.

See

“-qalias

Option”

on

page

122

instead.

260

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qxlf77

Option

Syntax

-qxlf77=settings

XLF77(settings)

Provides

backward

compatibility

with

XL

Fortran

for

AIX

Versions

1

and

2

aspects

of

language

semantics

and

I/O

data

format

that

have

changed.

Most

of

these

changes

are

required

by

the

Fortran

90

standard.

Defaults

By

default,

the

compiler

uses

settings

that

apply

to

Fortran

95,

Fortran

90,

and

the

most

recent

compiler

version

in

all

cases;

the

default

suboptions

are

blankpad,

nogedit77,

nointarg,

nointxor,

leadzero,

nooldboz,

nopersistent,

and

nosofteof.

However,

these

defaults

are

only

used

by

the

xlf95,

xlf95_r,

xlf95_r7,

xlf90,

xlf90_r,

xlf90_r7,

f90,

and

f95

commands,

which

you

should

use

to

compile

new

programs.

For

maximum

compatibility

for

programs

and

data

created

for

XL

Fortran

Versions

1

and

2,

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

use

the

opposite

settings

for

this

option.

If

you

only

want

to

compile

and

run

old

programs

unchanged,

you

can

continue

to

use

the

appropriate

invocation

command

and

not

concern

yourself

with

this

option.

You

should

only

use

this

option

if

you

are

using

existing

source

or

data

files

with

Fortran

90

or

Fortran

95

and

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90,

or

f95

command

and

find

some

incompatibility

because

of

behavior

or

data

format

that

has

changed

since

XL

Fortran

Version

2.

Eventually,

you

should

be

able

to

recreate

the

data

files

or

modify

the

source

files

to

remove

the

dependency

on

the

old

behavior.

Arguments

To

get

various

aspects

of

XL

Fortran

Version

2

behavior,

select

the

nondefault

choice

for

one

or

more

of

the

following

suboptions.

The

descriptions

explain

what

happens

when

you

specify

the

nondefault

choices.

blankpad

|

noblankpad

For

internal

,

direct-access,

and

stream-access

files,

uses

a

default

setting

equivalent

to

pad=’no’.

This

setting

produces

conversion

errors

when

reading

from

such

a

file

if

the

format

requires

more

characters

than

the

record

has,

thus

duplicating

the

XL

Fortran

Version

2

behavior.

This

suboption

does

not

affect

direct-access

or

stream-access

files

opened

with

a

pad=

specifier.

gedit77

|

nogedit77

Uses

FORTRAN

77

semantics

for

the

output

of

REAL

objects

with

the

G

edit

descriptor.

Between

FORTRAN

77

and

Fortran

90,

the

representation

of

0

for

a

list

item

in

a

formatted

output

statement

changed,

as

did

the

rounding

method,

leading

to

different

output

for

some

combinations

of

values

and

G

edit

descriptors.

intarg

|

nointarg

Converts

all

integer

arguments

of

an

intrinsic

procedure

to

the

kind

of

the

longest

argument

if

they

are

of

different

kinds.

Under

Fortran

90/95

rules,

some

intrinsics

(for

example,

IBSET)

determine

the

result

type

based

on

the

kind

of

the

first

argument;

others

(for

example,

MIN

and

MAX)

require

that

all

arguments

be

of

the

same

kind.

XL

Fortran

Compiler-Option

Reference

261

intxor

|

nointxor

Treats

.XOR.

as

a

logical

binary

intrinsic

operator.

It

has

a

precedence

equivalent

to

the

.EQV.

and

.NEQV.

operators

and

can

be

extended

with

an

operator

interface.

(Because

the

semantics

of

.XOR.

are

identical

to

those

of

.NEQV.,

.XOR.

does

not

appear

in

the

Fortran

90

or

Fortran

95

language

standard.)

Otherwise,

the

.XOR.

operator

is

only

recognized

as

a

defined

operator.

The

intrinsic

operation

is

not

accessible,

and

the

precedence

depends

on

whether

the

operator

is

used

in

a

unary

or

binary

context.

leadzero

|

noleadzero

Produces

a

leading

zero

in

real

output

under

the

D,

E,

L,

F,

and

Q

edit

descriptors.

oldboz

|

nooldboz

Turns

blanks

into

zeros

for

data

read

by

B,

O,

and

Z

edit

descriptors,

regardless

of

the

BLANK=

specifier

or

any

BN

or

BZ

control

edit

descriptors.

It

also

preserves

leading

zeros

and

truncation

of

too-long

output,

which

is

not

part

of

the

Fortran

90

or

Fortran

95

standard.

persistent

|

nopersistent

Saves

the

addresses

of

arguments

to

subprograms

with

ENTRY

statements

in

static

storage,

for

compatibility

with

XL

Fortran

Version

2.

This

is

an

implementation

choice

that

has

been

changed

for

increased

performance.

softeof

|

nosofteof

Allows

READ

and

WRITE

operations

when

a

unit

is

positioned

after

its

endfile

record

unless

that

position

is

the

result

of

executing

an

ENDFILE

statement.

This

suboption

reproduces

a

FORTRAN

77

extension

of

earlier

versions

of

XL

Fortran

that

some

existing

programs

rely

on.

Related

Information

See

“Avoiding

or

Fixing

Upgrade

Problems”

on

page

25.

262

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qxlf90

Option

Syntax

-qxlf90={settings}

XLF90({settings})

Provides

backward

compatibility

with

XL

Fortran

for

AIX

Version

5

and

the

Fortran

90

standard

for

certain

aspects

of

the

Fortran

language.

Defaults

The

default

suboptions

for

-qxlf90

depend

on

the

invocation

command

that

you

specify.

For

the

xlf95,

xlf95_r

,

or

xlf95_r7

command,

the

default

suboptions

are

signedzero

and

autodealloc.

For

all

other

invocation

commands,

the

defaults

are

nosignedzero

and

noautodealloc.

Arguments

signedzero

|

nosignedzero

Determines

how

the

SIGN(A,B)

function

handles

signed

real

0.0.

Prior

to

XL

Fortran

Version

6.1,

SIGN(A,B)

returned

|A|

when

B=-0.0.

This

behavior

conformed

with

the

Fortran

90

standard.

Now,

if

you

specify

the

-qxlf90=signedzero

compiler

option,

SIGN(A,B)

returns

-|A|

when

B=-0.0.

This

behavior

conforms

to

the

Fortran

95

standard

and

is

consistent

with

the

IEEE

standard

for

binary

floating-point

arithmetic.

Note

that

for

the

REAL(16)

data

type,

XL

Fortran

never

treats

zero

as

negative

zero.

This

suboption

also

determines

whether

a

minus

sign

is

printed

in

the

following

cases:

v

For

a

negative

zero

in

formatted

output.

Again,

note

that

for

the

REAL(16)

data

type,

XL

Fortran

never

treats

zero

as

negative

zero.

v

For

negative

values

that

have

an

output

form

of

zero

(that

is,

where

trailing

non-zero

digits

are

truncated

from

the

output

so

that

the

resulting

output

looks

like

zero).

Note

that

in

this

case,

the

signedzero

suboption

does

affect

the

REAL(16)

data

type;

non-zero

negative

values

that

have

an

output

form

of

zero

will

be

printed

with

a

minus

sign.

autodealloc

|

noautodealloc

Determines

whether

the

compiler

deallocates

allocatable

objects

that

are

declared

locally

without

either

the

SAVE

or

the

STATIC

attribute

and

have

a

status

of

currently

allocated

when

the

subprogram

terminates.

This

behavior

conforms

with

the

Fortran

95

standard

and

did

not

exist

in

XL

Fortran

prior

to

Version

6.1.

If

you

are

certain

that

you

are

deallocating

all

local

allocatable

objects

explicitly,

you

may

wish

to

turn

off

this

suboption

to

avoid

possible

performance

degradation.

XL

Fortran

Compiler-Option

Reference

263

Examples

Consider

the

following

program:

PROGRAM

TESTSIGN

REAL

X,

Y,

Z

X=1.0

Y=-0.0

Z=SIGN(X,Y)

PRINT

*,Z

END

PROGRAM

TESTSIGN

The

output

from

this

example

depends

on

the

invocation

command

and

the

-qxlf90

suboption

that

you

specify.

For

example:

Invocation

Command/xlf90

Suboption

Output

xlf95

-1.0

xlf95

-qxlf90=signedzero

-1.0

xlf95

-qxlf90=nosignedzero

1.0

xlf90

1.0

xlf

1.0

Related

Information

See

the

SIGN

information

in

the

Intrinsic

Procedures

section

and

the

Arrays

Concepts

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

264

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qxlines

Option

Syntax

-qxlines

|

-qnoxlines

XLINES

|

NOXLINES

Specifies

whether

fixed

source

form

lines

with

a

X

in

column

1

are

compiled

or

treated

as

comments.

This

option

is

similar

to

the

recognition

of

the

character

’d’

in

column

1

as

a

conditional

compilation

(debug)

character.

The

-D

option

recognizes

the

character

’x’

in

column

1

as

a

conditional

compilation

character

when

this

compiler

option

is

enabled.

The

’x’

in

column

1

is

interpreted

as

a

blank,

and

the

line

is

handled

as

source

code.

Defaults

This

option

is

set

to

-qnoxlines

by

default,

and

lines

with

the

character

’x’

in

column

1

in

fixed

source

form

are

treated

as

comment

lines.

While

the

-qxlines

option

is

independent

of

-D,

all

rules

for

debug

lines

that

apply

to

using

’d’

as

the

conditional

compilation

character

also

apply

to

the

conditional

compilation

character

’x’.

The

-qxlines

compiler

option

is

only

applicable

to

fixed

source

form.

The

conditional

compilation

characters

’x’

and

’d’

may

be

mixed

both

within

a

fixed

source

form

program

and

within

a

continued

source

line.

If

a

conditional

compilation

line

is

continued

onto

the

next

line,

all

the

continuation

lines

must

have

’x’

or

’d’

in

column

1.

If

the

initial

line

of

a

continued

compilation

statement

is

not

a

debugging

line

that

begins

with

either

’x’

or

’d’

in

column

1,

subsequent

continuation

lines

may

be

designated

as

debug

lines

as

long

as

the

statement

is

syntactically

correct.

The

OMP

conditional

compilation

characters

’!$’,

’C$’,

and

’*$’

may

be

mixed

with

the

conditional

characters

’x’

and

’d’

both

in

fixed

source

form

and

within

a

continued

source

line.

The

rules

for

OMP

conditional

characters

will

still

apply

in

this

instance.

Examples

An

example

of

a

base

case

of

-qxlines:

C2345678901234567890

program

p

i=3

;

j=4

;

k=5

X

print

*,i,j

X

+

,k

end

program

p

<output>:

3

4

5

(if

-qxlines

is

on)

no

output

(if

-qxlines

is

off)

XL

Fortran

Compiler-Option

Reference

265

In

this

example,

conditional

compilation

characters

’x’

and

’d’

are

mixed,

with

’x’

on

the

initial

line:

C2345678901234567890

program

p

i=3

;

j=4

;

k=5

X

print

*,i,

D

+

j,

X

+

k

end

program

p

<output>:

3

4

5

(if

both

-qxlines

and

-qdlines

are

on)

3

5

(if

only

-qxlines

is

turned

on)

Here,

conditional

compilation

characters

’x’

and

’d’

are

mixed,

with

’d’

on

the

initial

line:

C2345678901234567890

program

p

i=3

;

j=4

;

k=5

D

print

*,i,

X

+

j,

D

+

k

end

program

p

<output>:

3

4

5

(if

both

-qxlines

and

-qdlines

are

on)

3

5

(if

only

-qdlines

is

turned

on)

In

this

example,

the

initial

line

is

not

a

debug

line,

but

the

continuation

line

is

interpreted

as

such,

since

it

has

an

’x’

in

column

1:

C2345678901234567890

program

p

i=3

;

j=4

;

k=5

print

*,i

X

+

,j

X

+

,k

end

program

p

<output>:

3

4

5

(if

-qxlines

is

on)

3

(if

-qxlines

is

off)

Related

Information

See

“-D

Option”

on

page

105

and

Conditional

Compilation

in

the

Language

Elements

section

of

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

266

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qxref

Option

Syntax

-qxref[=full]

|

-qnoxref

XREF[(FULL)]

|

NOXREF

Determines

whether

to

produce

the

cross-reference

component

of

the

attribute

and

cross-reference

section

of

the

listing.

If

you

specify

only

-qxref,

only

identifiers

that

are

used

are

reported.

If

you

specify

-qxref=full,

the

listing

contains

information

about

all

identifiers

that

appear

in

the

program,

whether

they

are

used

or

not.

If

-qxref

is

specified

after

-qxref=full,

the

full

cross-reference

listing

is

still

produced.

You

can

use

the

cross-reference

listing

during

debugging

to

locate

problems

such

as

using

a

variable

before

defining

it

or

entering

the

wrong

name

for

a

variable.

Related

Information

See

“Options

That

Control

Listings

and

Messages”

on

page

77

and

“Attribute

and

Cross-Reference

Section”

on

page

392.

XL

Fortran

Compiler-Option

Reference

267

-qzerosize

Option

Syntax

-qzerosize

|

-qnozerosize

ZEROSIZE

|

NOZEROSIZE

Improves

performance

of

FORTRAN

77

and

some

Fortran

90

and

Fortran

95

programs

by

preventing

checking

for

zero-sized

character

strings

and

arrays.

For

Fortran

90

and

Fortran

95

programs

that

might

process

such

objects,

use

-qzerosize.

For

FORTRAN

77

programs,

where

zero-sized

objects

are

not

allowed,

or

for

Fortran

90

and

Fortran

95

programs

that

do

not

use

them,

compiling

with

-qnozerosize

can

improve

the

performance

of

some

array

or

character-string

operations.

Defaults

The

default

setting

depends

on

which

command

invokes

the

compiler:

-qzerosize

for

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

xlf95_r7,

f90,

and

f95

commands

and

-qnozerosize

for

the

xlf,

xlf_r,

xlf_r7,

and

f77/fort77

commands

(for

compatibility

with

FORTRAN

77).

Rules

Run-time

checking

performed

by

the

-C

option

takes

slightly

longer

when

-qzerosize

is

in

effect.

268

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-S

Option

Syntax

-S

Produces

one

or

more

.s

files

that

show

equivalent

assembler

source

for

each

Fortran

source

file.

Rules

When

this

option

is

specified,

the

compiler

produces

the

assembler

source

files

as

output

instead

of

an

object

or

an

executable

file.

Restrictions

The

generated

assembler

files

do

not

include

all

the

data

that

is

included

in

a

.o

file

by

-qipa

or

-g.

Examples

xlf95

-O3

-qhot

-S

test.f

#

Produces

test.s

Related

Information

The

“-o

Option”

on

page

116

can

be

used

to

specify

a

name

for

the

resulting

assembler

source

file.

For

information

about

the

assembler-language

format,

see

the

Assembler

Language

Reference.

XL

Fortran

Compiler-Option

Reference

269

-t

Option

Syntax

-tcomponents

Applies

the

prefix

specified

by

the

-B

option

to

the

designated

components.

components

can

be

one

or

more

of

a,

F,

p,

c,

h,

I,

b,

z,

l,

or

d

with

no

separators,

corresponding

to

the

assembler,

the

C

preprocessor,

an

optimizing

preprocessor,

the

compiler,

the

array

language

optimizer,

the

interprocedural

analysis

(IPA)

tool/loop

optimizer,

the

code

generator,

the

binder,

the

linker,

and

the

-S

disassembler,

respectively.

Rules

If

-t

is

not

specified,

any

-B

prefix

is

applied

to

all

components.

Component

-t

Standard

Program

Name

Mnemonic

assembler

a

as

C

preprocessor

F

cpp

VAST-2

preprocessor

p

fpp

KAP

preprocessor

p

fppk

compiler

front

end

c

xlfentry

array

language

optimizer

h

xlfhot

IPA/loop

optimizer

I

ipa

code

generator

b

xlfcode

binder

z

bolt

linker

l

ld

disassembler

d

dis

Related

Information

See

“-B

Option”

on

page

93

(which

includes

an

example).

270

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-U

Option

Syntax

-U

MIXED

|

NOMIXED

Makes

the

compiler

sensitive

to

the

case

of

letters

in

names.

You

can

use

this

option

when

writing

mixed-language

programs,

because

Fortran

names

are

all

lowercase

by

default,

while

names

in

C

and

other

languages

may

be

mixed-case.

Rules

If

-U

is

specified,

case

is

significant

in

names.

For

example,

the

names

Abc

and

ABC

refer

to

different

objects.

The

option

changes

the

link

names

used

to

resolve

calls

between

compilation

units.

It

also

affects

the

names

of

modules

and

thus

the

names

of

their

.mod

files.

Defaults

By

default,

the

compiler

interprets

all

names

as

if

they

were

in

lowercase.

For

example,

Abc

and

ABC

are

both

interpreted

as

abc

and

so

refer

to

the

same

object.

Restrictions

The

names

of

intrinsics

must

be

all

in

lowercase

when

-U

is

in

effect.

Otherwise,

the

compiler

may

accept

the

names

without

errors,

but

the

compiler

considers

them

to

be

the

names

of

external

procedures,

rather

than

intrinsics.

The

XL

Fortran

Version

2

requirement

that

keywords

be

all

lowercase

no

longer

applies.

Related

Information

This

is

the

short

form

of

-qmixed.

See

“-qmixed

Option”

on

page

202.

XL

Fortran

Compiler-Option

Reference

271

-u

Option

Syntax

-u

UNDEF

|

NOUNDEF

Specifies

that

no

implicit

typing

of

variable

names

is

permitted.

It

has

the

same

effect

as

using

the

IMPLICIT

NONE

statement

in

each

scope

that

allows

implicit

statements.

Defaults

By

default,

implicit

typing

is

allowed.

Related

Information

See

IMPLICIT

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

This

is

the

short

form

of

-qundef.

See

“-qundef

Option”

on

page

254.

272

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-v

Option

Syntax

-v

Generates

information

on

the

progress

of

the

compilation.

Rules

As

the

compiler

executes

commands

to

perform

different

compilation

steps,

this

option

displays

a

simulation

of

the

commands

it

calls

and

the

system

argument

lists

it

passes.

For

a

particular

compilation,

examining

the

output

that

this

option

produces

can

help

you

determine:

v

What

files

are

involved

v

What

options

are

in

effect

for

each

step

v

How

far

a

compilation

gets

when

it

fails

Related

Information

“-#

Option”

on

page

91

is

similar

to

-v,

but

it

does

not

actually

execute

any

of

the

compilation

steps.

XL

Fortran

Compiler-Option

Reference

273

-V

Option

Syntax

-V

This

option

is

the

same

as

-v

except

that

you

can

cut

and

paste

directly

from

the

display

to

create

a

command.

274

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-W

Option

Syntax

-Wcomponent,options

Passes

the

listed

options

to

a

component

that

is

executed

during

compilation.

component

is

one

of

a,

F,

p,

c,

h,

I,

b,

z,

l,

or

d,

corresponding

to

the

assembler,

the

C

preprocessor,

an

optimizing

preprocessor,

the

compiler,

the

array

language

optimizer,

the

interprocedural

analysis

(IPA)

tool/loop

optimizer,

the

code

generator,

the

binder,

the

linker,

and

the

-S

disassembler,

respectively.

Component

-W

Standard

Program

Name

Mnemonic

assembler

a

as

C

preprocessor

F

cpp

VAST-2

preprocessor

p

fpp

KAP

preprocessor

p

fppk

compiler

front

end

c

xlfentry

array

language

optimizer

h

xlfhot

IPA/loop

optimizer

I

ipa

code

generator

b

xlfcode

binder

z

bolt

linker

l

ld

disassembler

d

dis

In

the

string

following

the

-W

option,

use

a

comma

as

the

separator

for

each

option,

and

do

not

include

any

spaces.

For

example:

-Wcomponent,option_1[option_2,...,option_n]

Background

Information

The

primary

purpose

of

this

option

is

to

construct

sequences

of

compiler

options

to

pass

to

one

of

the

optimizing

preprocessors.

It

can

also

be

used

to

fine-tune

the

link-edit

step

by

passing

parameters

to

the

ld

command.

Defaults

You

do

not

need

the

-W

option

to

pass

most

options

to

the

linker:

unrecognized

command-line

options,

except

-q

options,

are

passed

to

it

automatically.

Only

linker

options

with

the

same

letters

as

compiler

options,

such

as

-v

or

-S,

strictly

require

-W

(or

the

ldopts

stanza

in

the

configuration

file).

If

you

need

to

include

a

character

that

is

special

to

the

shell

in

the

option

string,

precede

the

character

with

a

backslash.

Examples

See

“Passing

Command-Line

Options

to

the

″ld″

or

″as″

Commands”

on

page

38.

You

can

use

\,

to

embed

a

literal

comma

in

the

string

supplied

to

the

-W

option.

In

the

following

example,

the

\,

embeds

a

literal

comma

in

the

-WF

string

and

causes

three

arguments,

rather

than

four,

to

be

supplied

to

the

C

preprocessor.

$

xlf

-qfree=f90

’-WF,-Dint1=1,-Dint2=2,-Dlist=3\,4’

a.F

$

cat

a.F

print

*,

int1

print

*,

int2

print

*,

list

end

The

output

from

the

program

will

be:

XL

Fortran

Compiler-Option

Reference

275

$

./a.out

1

2

3

4

276

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-w

Option

Syntax

-w

A

synonym

for

the

“-qflag

Option”

on

page

162.

It

sets

-qflag=e:e,

suppressing

warning

and

informational

messages

and

also

messages

generated

by

language-level

checking.

XL

Fortran

Compiler-Option

Reference

277

-y

Option

Syntax

-y{n

|

m

|

p

|

z}

IEEE(Near

|

Minus

|

Plus

|

Zero)

Specifies

the

rounding

mode

for

the

compiler

to

use

when

evaluating

constant

floating-point

expressions

at

compile

time.

It

is

equivalent

to

the

-qieee

option.

Arguments

n

Round

to

nearest.

m

Round

toward

minus

infinity.

p

Round

toward

plus

infinity.

z

Round

toward

zero.

Related

Information

See

“-O

Option”

on

page

114

and

“-qfloat

Option”

on

page

163.

-y

is

the

short

form

of

“-qieee

Option”

on

page

175.

278

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Using

XL

Fortran

in

a

64-Bit

Environment

The

64-bit

environment

addresses

an

increasing

demand

for

larger

storage

requirements

and

greater

processing

power.

The

AIX

operating

system

provides

an

environment

that

allows

you

to

develop

and

execute

programs

that

exploit

64-bit

processors

through

the

use

of

64-bit

pointers

and

64-bit

integers.

XL

Fortran

only

supports

applications

that

target

the

64-bit

Large

Data

Type

(LDT)

Application

Binary

Interface

(ABI).

Non-LDT

environments,

such

as

AIX

version

4,

are

no

longer

supported.

To

support

larger

executables

that

can

be

fit

within

a

64-bit

address

space,

a

separate,

64-bit

object

form

is

used

to

meet

the

requirements

of

64-bit

executables.

The

binder

binds

64-bit

objects

to

create

64-bit

executables.

Note

that

objects

that

are

bound

together,

statically

or

shared,

must

all

be

of

the

same

object

format.

The

following

scenarios

are

not

permitted

and

will

fail

to

load,

or

execute,

or

both:

v

A

64-bit

object

or

executable

that

has

references

to

symbols

from

a

32-bit

library

or

shared

library

v

A

32-bit

object

or

executable

that

has

references

to

symbols

from

a

64-bit

library

or

shared

library

v

A

64-bit

executable

that

attempts

to

explicitly

load

a

32-bit

module

v

A

32-bit

executable

that

attempts

to

explicitly

load

a

64-bit

module

v

Attempts

to

run

64-bit

applications

on

32-bit

platforms

On

both

64-bit

and

32-bit

platforms,

32-bit

executables

will

continue

to

run

as

they

currently

do

on

a

32-bit

platform.

The

XL

Fortran

compiler

mainly

provides

64-bit

mode

support

through

the

compiler

option

-q64

in

conjunction

with

the

compiler

option

-qarch.

This

combination

determines

the

bit

mode

and

instruction

set

for

the

target

architecture.

The

-q32

and

-q64

options

take

precedence

over

the

setting

of

the

-qarch

option.

The

-q64

option

will

win

over

a

32-bit

mode

only

-qarch

setting,

and

the

compiler

will

upgrade

the

-qarch

setting

to

something

that

will

handle

64-bit

mode.

Conflicts

between

the

-q32

and

-q64

options

are

resolved

by

the

″last

option

wins″

rule.

Setting

-qarch=com

will

ensure

future

compatibility

for

applications

in

32–bit

mode.

For

64-bit

mode

applications,

use

-qarch=ppc64

to

achieve

the

same

effect

for

all

present

or

future

supported

64-bit

mode

systems.

-qarch

settings

that

target

a

specific

architecture,

like

the

603,

604,

rs64a,

rs64b,

rs64c,

pwr3,

pwr4,

pwr5,

ppc970,

and

auto

settings

will

be

more

system-dependent.

64-Bit

Large

Data

Type

Support

The

64-bit

Large

Data

Type

(LDT)

Application

Binary

Interface

(ABI),

or

64-bit

LDT

ABI,

increases

scalability

for

64-bit

applications,

while

maintaining

binary

compatibility

for

existing

32-bit

applications.

To

accomplish

this,

some

system-derived

types

are

increased

from

32-bits

to

64-bits.

In

addition,

a

new

64-bit

magic

number

is

being

introduced

in

the

XCOFF

definition

to

identify

object

code

files

using

the

new

64-bit

ABI.

The

AIX

4.3

64-bit,

non-LDT,

ABI

is

no

longer

supported

on

AIX

5.1.

Object

code

files

with

the

old

64-bit

magic

number

will

not

link,

load,

or

execute.

Pre-AIX

5.1

64-bit

applications

must

be

recomplied

in

order

to

execute

them

on

AIX

5.1.

Binary

compatibility

will

be

preserved

for

32-bit

objects

generated

on

all

earlier

levels

of

AIX,

regardless

of

LDT

support.

©

Copyright

IBM

Corp.

1990,

2004

279

64-Bit

Thread

Support

On

AIX

Version

5.1

with

the

POSIX

1003.1-1996

standard

pthreads

API,

XL

Fortran

,

beginning

with

Version

5.1.1,

supports

64-bit

thread

programming.

You

can

specify

the

-q64

compiler

option

with

the

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

and

xlf95_r7

commands.

For

example,

you

can

specify

the

following

command

to

compile

and

then

link

a

program

in

64-bit

object

mode:

xlf90_r

-q64

-qsmp

test.f

AIX

Version

5.1

supports

the

POSIX

1003.1-1996

standard

interface

in

both

32-bit

and

64-bit

object

mode,

but

supports

the

Draft

7

interface

in

32-bit

object

mode

only.

That

is,

the

libpthreads.a

library

has

a

32-bit

and

a

64-bit

part,

while

the

libpthreads_compat.a

and

libxlfpthrds_compat.a

libraries

have

32-bit

parts

only.

Compiler

Options

for

the

64-Bit

Environment

The

compiler

options

that

are

described

in

this

section

enable

you

to

do

the

following:

v

Develop

applications

for

the

64-bit

environment

v

Help

migrate

source

code

from

the

32-bit

environment

to

a

64-bit

environment

Some

of

these

options

already

exist

in

the

32-bit

environment

but

have

new

settings

particular

to

the

64-bit

architecture.

This

section

only

covers

the

new

settings

for

these

cases.

The

options

that

are

grouped

here

are

primarily

for

developers

who

are

targetting

64-bit

platforms.

280

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-q32

Option

Syntax

-q32

Enables

32-bit

compilation

bit

mode

(or,

more

briefly,

32-bit

mode)

support

in

a

64-bit

environment.

The

-q32

option

indicates

the

compilation

bit

mode

and,

together

with

the

-qarch

option,

determines

the

target

machines

that

the

32-bit

executable

will

run

on.

Rules

v

The

default

integer

and

default

real

size

are

4

bytes

in

32-bit

mode.

v

The

default

integer

pointer

size

is

4

bytes

in

32-bit

mode.

v

32-bit

object

modules

are

created

when

targeting

32-bit

mode.

v

-q32

is

the

default,

if

you

have

not

specified

either

-q32

or

-q64

and

if

you

have

not

set

the

OBJECT_MODE

environment

variable.

For

a

description

of

the

OBJECT_MODE

environment

variable,

see

“Default

Bit

Mode”

on

page

285.

v

-q64

may

override

-q32.

v

All

settings

for

-qarch

are

compatible

with

-q32.

If

you

specify

-q32,

the

default

-qarch

suboption

is

com,

and

the

default

-qtune

suboption

for

-q32

is

pwr2.

v

The

LOC

intrinsic

returns

an

INTEGER(4)

value.

Examples

v

Using

32-bit

compilation

mode

and

targetting

a

generic

PowerPC

architecture:

-qarch=ppc

-q32

v

Now

keep

the

same

compilation

mode,

but

change

the

target

to

RS64II:

-qarch=ppc

-q32

-qarch=rs64b

Notice

that

the

last

setting

for

-qarch

wins.

v

Now

keep

the

same

target,

but

change

the

compilation

mode

to

64-bit:

-qarch=ppc

-q32

-qarch=rs64b

-q64

Notice

that

specifying

-q64

overrides

the

earlier

instance

of

-q32.

Using

XL

Fortran

in

a

64-Bit

Environment

281

-q64

Option

Syntax

-q64[=largetype]

Indicates

the

64-bit

compilation

bit

mode

and,

together

with

the

-qarch

option,

determines

the

target

machines

on

which

the

64-bit

executable

will

run.

The

-q64

option

indicates

that

the

object

module

will

be

created

in

64-bit

object

format

and

that

the

64-bit

instruction

set

will

be

generated.

Note

that

you

may

compile

in

a

32-bit

environment

to

create

64-bit

objects,

but

you

must

link

them

in

a

64-bit

environment

with

the

-q64

option.

Defaults

-q64=largetype

is

always

true

when

compiling

with

-q64

on

AIX

5.1

and

above.

The

-q64=largetype

suboption

is

for

compatiblity

with

older

XL

Fortran

compilers.

It

is

not

necessary

to

specifiy

it

to

generate

the

64-bit

LDT

ABI.

-q64=nolargetype

is

no

longer

a

supported

compiler

option

and

will

generate

a

warning

if

used.

Rules

v

Settings

for

-qarch

that

are

compatible

with

-q64

are

as

follows:

–

-qarch=auto

(if

compiling

on

a

64-bit

system)

–

-qarch=com

(With

-q64

and

-qarch=com,

the

compiler

will

silently

upgrade

the

arch

setting

to

ppc64.)

–

-qarch=ppc

(With

-q64

and

-qarch=ppc,

the

compiler

will

silently

upgrade

the

arch

to

ppc64.)

–

-qarch=ppcgr

(With

-q64

and

-qarch=ppcgr,

the

compiler

will

silently

upgrade

the

arch

to

ppc64gr.)

–

-qarch=ppc64

–

-qarch=ppc64gr

–

-qarch=ppc64grsq

–

-qarch=rs64a

–

-qarch=rs64b

–

-qarch=rs64c

–

-qarch=pwr3

–

-qarch=pwr4

–

-qarch=pwr5

–

-qarch=ppc970
v

The

default

-qarch

setting

for

-q64

is

ppc64.

v

64-bit

object

modules

are

created

when

targeting

64-bit

mode.

v

-q32

may

override

-q64.

v

-q64

will

override

a

conflicting

setting

for

-qarch.

For

example,

-q64

-qarch=604

will

be

changed

to

the

setting

-qarch=ppc64.

v

The

default

tune

setting

for

-q64

is

-qtune=pwr3.

v

The

default

integer

and

default

real

size

is

4

bytes

in

64-bit

mode.

v

The

default

integer

pointer

size

is

8

bytes

in

64-bit

mode.

v

The

maximum

array

size

increases

to

approximately

2**40

bytes

(in

static

storage)

or

2**60

bytes

(in

dynamic

allocation

on

the

heap).

The

maximum

dimension

bound

range

is

extended

to

-2**63,

2**63-1

bytes.

The

maximum

array

size

for

array

constants

has

not

been

extended

and

will

remain

the

same

as

the

maximum

in

32-bit

mode.

The

maximum

array

size

that

you

can

initialize

is

2**28

bytes.

v

The

maximum

iteration

count

for

array

constructor

implied

DO

loops

increases

to

2**63-1

bytes.

282

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

The

maximum

character

variable

length

extends

to

approximately

2**40

bytes.

The

maximum

length

of

character

constants

and

subobjects

of

constants

remains

the

same

as

in

32-bit

mode,

which

is

32

767

bytes

(32

KB).

v

The

LOC

intrinsic

returns

an

INTEGER(8)

value.

v

When

you

use

-qautodbl=dblpad

in

64-bit

mode,

you

should

use

-qintsize=8

to

promote

INTEGER(4)

to

INTEGER(8)

for

8

byte

integer

arithmetic.

Restrictions

v

Objects

that

are

generated

with

the

64-bit

LDT

ABI

are

not

compatible

with

64-bit

non-LDT

ABI

objects.

64-bit

LDT

ABI

objects

cannot

be

linked

with

64-bit

non-LDT

ABI

objects

on

any

level

of

AIX.

XL

Fortran

no

longer

supports

non-LDT

ABI

objects

either

for

producing

them

or

linking

with

them.

v

64-bit

LDT

ABI

objects

must

be

linked

on

AIX

5.1

and

above.

Objects

created

with

the

old

64-bit

non-LDT

ABI

must

be

linked

on

AIX

4.3.3.

XL

Fortran

no

longer

supports

emitting

code

that

executes

on

AIX

version

4.

v

64-bit

LDT

ABI

applications

cannot

be

loaded

or

executed

on

AIX

4.3.3.

64-bit

non-LDT

ABI

applications

cannot

be

loaded

or

executed

on

AIX

5.1

and

above.

Existing

64-bit

applications

must

be

recompiled

to

run

on

AIX

5.1

and

above!

v

64-bit

module

(.mod)

files

created

by

previous

versions

of

XL

Fortran

can

only

be

used

if

they

were

compiled

with

-q64=largetype.

v

The

compiler

no

longer

appends

ldt

to

the

specified

directory

name

at

compilation

time

with

-q64=largetype

if

the

include_64

attribute

is

used

in

the

xlf.cfg

file

to

specify

an

alternate

directory

for

64-bit

include

and

module

files.

As

a

result,

you

may

need

to

change

your

existing

build

environment.

v

Each

of

the

following

situations

will

produce

an

error

message:

1.

Attempting

to

link,

load,

or

execute

conflicting

64-bit

ABI

objects

on

any

level

of

AIX

2.

Attempting

to

link,

load,

or

execute

64-bit

LDT

ABI

objects

on

AIX

4.3.3

3.

Attempting

to

link,

load,

or

execute

64-bit

non-LDT

ABI

objects

on

AIX

5.1

and

above.

Examples

This

example

targets

the

RS64II

(also

known

as

RS64b)

in

64-bit

mode:

-q32

-qarch=rs64b

-q64

In

this

example

64-bit

compilation

that

targets

the

common

group

of

64-bit

architectures

(which

currently

consists

only

of

the

RS64I,RS64II,

RS64III,

POWER3,

POWER4,

POWER5,

and

PowerPC

970):

-q64

-qarch=com

arch

setting

is

silently

upgraded

to

ppc64,

the

most

″common″

64-bit

mode

compilation

target.

In

this

example,

the

-qarch

option

conflicts

with

-q64:

-qarch=604

-q64

which

results

in

a

suboption

setting

of

-q64

-qarch=ppc64

and

a

warning

message.

In

the

example

that

follows,

the

-qarch

option

conflicts

with

-q64:

-q64

-qarch=604

which

results

in

a

suboption

setting

of

-q64

-qarch=ppc64

and

a

warning

message.

Using

XL

Fortran

in

a

64-Bit

Environment

283

-qwarn64

Option

Syntax

-qwarn64

|

-qnowarn64

Aids

in

porting

code

from

a

32-bit

environment

to

a

64-bit

environment

by

detecting

the

truncation

of

an

8-byte

integer

pointer

to

4

bytes.

The

-qwarn64

option

uses

informational

messages

to

identify

statements

that

may

cause

problems

with

the

32-bit

to

64-bit

migration.

Rules

v

The

default

setting

is

-qnowarn64.

v

You

can

use

the

-qwarn64

option

in

both

32-bit

and

64-bit

modes.

v

The

compiler

flags

the

following

situations

with

informational

messages:

–

The

assignment

of

a

reference

to

the

LOC

intrinsic

to

an

INTEGER(4)

variable.

–

The

assignment

between

an

INTEGER(4)

variable

or

INTEGER(4)

constant

and

an

integer

pointer.

–

The

specification

of

an

integer

pointer

within

a

common

block.

We

recommend

the

-qextchk

option

for

common

block

length

changes.

–

The

specification

of

an

integer

pointer

within

an

equivalence

statement.
v

We

additionally

recommend

the

-qextchk

option

and

interface

blocks

for

argument

checking.

284

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Default

Bit

Mode

The

AIX

operating

system

provides

support

for

the

OBJECT_MODE

environment

variable

to

enable

the

user

to

obtain

a

64-bit

development

environment.

AIX

tools

use

the

setting

of

OBJECT_MODE

to

determine

the

type

of

object

to

be

used

or

created.

The

OBJECT_MODE

environment

variable

has

three

recognized

settings:

OBJECT_MODE=32

Works

with

32-bit

objects

OBJECT_MODE=64

Works

with

64-bit

objects

OBJECT_MODE=32_64

Works

with

either

32-bit

or

64-bit

objects

The

XL

Fortran

compiler

determines

the

default

bit

mode

through

the

setting

of

the

OBJECT_MODE

environment

variable

at

the

time

of

invocation.

The

following

table

shows

the

default

bit

mode

and

options

that

are

set

for

each

setting

of

the

OBJECT_MODE

environment

variable:

Table

16.

Default

bit

mode

determined

by

the

setting

of

OBJECT_MODE

OBJECT_MODE

Setting

Default

Bit

Mode

Default

Option

Set

unset

32-bit

-q32

32

32-bit

-q32

64

64-bit

-q64

32_64

Not

permitted

n/a

Specification

of

the

following

options

on

the

command

line

or

in

the

configuration

file

overrides

the

default

option

set:

v

-q64

v

-q32

Important

Note

Using

OBJECT_MODE

to

determine

the

default

bit

mode

can

have

serious

implications

if

you

are

not

aware

of

the

setting

of

OBJECT_MODE

at

the

time

of

invocation.

For

example,

you

may

not

be

aware

that

OBJECT_MODE

has

been

set

to

64,

and

you

may

unexpectedly

obtain

64-bit

object

files.

We

strongly

urge

you

to

be

aware

of

the

setting

of

OBJECT_MODE

at

all

times

and

to

set

OBJECT_MODE

yourself

to

ensure

that

the

compiler

is

invoked

for

the

correct

bit

mode.

Instead,

you

can

always

use

the

-q32

or

-q64

option

to

specify

the

bit

mode.

Module

Support

64-bit

support

is

provided

in

the

Fortran

module

files

that

are

shipped

with

XL

Fortran.

The

64-bit

and

32-bit

Fortran

modules

are

shipped

in

the

/usr/lpp/xlf/include

directory.

Using

XL

Fortran

in

a

64-Bit

Environment

285

286

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

XL

Fortran

Floating-Point

Processing

This

section

answers

some

common

questions

about

floating-point

processing,

such

as:

v

How

can

I

get

predictable,

consistent

results?

v

How

can

I

get

the

fastest

or

the

most

accurate

results?

v

How

can

I

detect,

and

possibly

recover

from,

exception

conditions?

v

Which

compiler

options

can

I

use

for

floating-point

calculations?

Related

Information:

This

section

makes

frequent

reference

to

the

compiler

options

that

are

grouped

together

in

“Options

for

Floating-Point

Processing”

on

page

86,

especially

the

“-qfloat

Option”

on

page

163.

The

XL

Fortran

compiler

also

provides

three

intrinsic

modules

for

exception

handling

and

IEEE

arithmetic

support

to

help

you

write

IEEE

module-compliant

code

that

can

be

more

portable.

See

IEEE

Modules

and

Support

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

details.

The

use

of

the

compiler

options

for

floating-point

calculations

affects

the

accuracy,

performance,

and

possibly

the

correctness

of

floating-point

calculations.

Although

the

default

values

for

the

options

were

chosen

to

provide

efficient

and

correct

execution

of

most

programs,

you

may

need

to

specify

nondefault

options

for

your

applications

to

work

the

way

you

want.

We

strongly

advise

you

to

read

this

section

before

using

these

options.

Note:

The

discussions

of

single-,

double-,

and

extended-precision

calculations

in

this

section

all

refer

to

the

default

situation,

with

-qrealsize=4

and

no

-qautodbl

specified.

If

you

change

these

settings,

keep

in

mind

that

the

size

of

a

Fortran

REAL,

DOUBLE

PRECISION,

and

so

on

may

change,

but

single

precision,

double

precision,

and

extended

precision

(in

lowercase)

still

refer

to

4-,

8-,

and

16-byte

entities

respectively.

The

information

in

this

section

relates

to

floating-point

processing

on

the

PowerPC

family

of

processors.

The

section

“Floating-Point

Processing

on

the

POWER

and

POWER2

Architectures”

on

page

303

describes

the

differences

between

floating-point

processing

on

the

PowerPC

processors

and

floating-point

processing

on

the

POWER

and

POWER2

processors.

IEEE

Floating-Point

Overview

Here

is

a

brief

summary

of

the

IEEE

Standard

for

Floating-Point

Arithmetic

and

the

details

of

how

it

applies

to

XL

Fortran

on

specific

hardware

platforms.

For

information

on

the

draft

Fortran

2003

IEEE

Module

and

arithmetic

support,

see

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Compiling

for

Strict

IEEE

Conformance

By

default,

XL

Fortran

follows

most,

but

not

all

of

the

rules

in

the

IEEE

standard.

To

compile

for

strict

compliance

with

the

standard:

v

Use

the

compiler

option

-qfloat=nomaf.

v

If

the

program

changes

the

rounding

mode

at

run

time,

include

rrm

among

the

-qfloat

suboptions.

©

Copyright

IBM

Corp.

1990,

2004

287

v

If

the

data

or

program

code

contains

signaling

NaN

values

(NaNS),

include

nans

among

the

-qfloat

suboptions.

(A

signaling

NaN

is

different

from

a

quiet

NaN;

you

must

explicitly

code

it

into

the

program

or

data

or

create

it

by

using

the

-qinitauto

compiler

option.)

v

If

compiling

with

-O3,

include

the

option

-qstrict

also.

IEEE

Single-

and

Double-Precision

Values

XL

Fortran

encodes

single-precision

and

double-precision

values

in

IEEE

format.

For

the

range

and

representation,

see

Real

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

IEEE

Extended-Precision

Values

The

IEEE

standard

suggests,

but

does

not

mandate,

a

format

for

extended-precision

values.

XL

Fortran

does

not

use

this

format.

“Extended-Precision

Values”

on

page

291

describes

the

format

that

XL

Fortran

uses.

Infinities

and

NaNs

For

single-precision

real

values:

v

Positive

infinity

is

represented

by

the

bit

pattern

X'7F80

0000'.

v

Negative

infinity

is

represented

by

the

bit

pattern

X'FF80

0000'.

v

A

signaling

NaN

is

represented

by

any

bit

pattern

between

X'7F80

0001'

and

X'7FBF

FFFF'

or

between

X'FF80

0001'

and

X'FFBF

FFFF'.

v

A

quiet

NaN

is

represented

by

any

bit

pattern

between

X'7FC0

0000'

and

X'7FFF

FFFF'

or

between

X'FFC0

0000'

and

X'FFFF

FFFF'.

For

double-precision

real

values:

v

Positive

infinity

is

represented

by

the

bit

pattern

X'7FF00000

00000000'.

v

Negative

infinity

is

represented

by

the

bit

pattern

X'FFF00000

00000000'.

v

A

signaling

NaN

is

represented

by

any

bit

pattern

between

X'7FF00000

00000001'

and

X'7FF7FFFF

FFFFFFFF'

or

between

X'FFF00000

00000001'

and

X'FFF7FFFF

FFFFFFFF'.

v

A

quiet

NaN

is

represented

by

any

bit

pattern

between

X'7FF80000

00000000'

and

X'7FFFFFFF

FFFFFFFF'

or

between

X'FFF80000

00000000'

and

X'FFFFFFFF

FFFFFFFF'.

These

values

do

not

correspond

to

any

Fortran

real

constants.

You

can

generate

all

of

these

by

encoding

the

bit

pattern

directly,

or

by

using

the

ieee_value

function

provided

in

the

ieee_arithmetic

module.

Using

the

ieee_value

function

is

the

preferred

programming

technique,

as

it

is

allowed

by

the

Fortran

2003

draft

standard

and

the

results

are

portable.

Encoding

the

bit

pattern

directly

could

cause

portability

problems

on

machines

using

different

bit

patterns

for

the

different

values.

All

except

signaling

NaN

values

can

occur

as

the

result

of

arithmetic

operations:

288

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Exception-Handling

Model

The

IEEE

standard

defines

several

exception

conditions

that

can

occur:

OVERFLOW

The

exponent

of

a

value

is

too

large

to

be

represented.

UNDERFLOW

A

nonzero

value

is

so

small

that

it

cannot

be

represented

without

an

extraordinary

loss

of

accuracy.

The

value

can

be

represented

only

as

zero

or

a

denormal

number.

ZERODIVIDE

A

finite

nonzero

value

is

divided

by

zero.

INVALID

Operations

are

performed

on

values

for

which

the

results

are

not

defined.

These

include:

v

Operations

on

signaling

NaN

values

v

infinity

-

infinity

v

0.0

*

infinity

v

0.0

/

0.0

v

mod(x,y)

or

ieee_rem(x,y)

(or

other

remainder

functions)

when

x

is

infinite

or

y

is

zero

v

The

square

root

of

a

negative

number

v

Conversion

of

a

floating

point

number

to

an

integer

when

the

converted

value

cannot

be

represented

faithfully

$

cat

fp_values.f

real

plus_inf,

minus_inf,

plus_nanq,

minus_nanq,

nans

real

large

data

plus_inf

/z’7f800000’/

data

minus_inf

/z’ff800000’/

data

plus_nanq

/z’7fc00000’/

data

minus_nanq

/z’ffc00000’/

data

nans

/z’7f800001’/

print

*,

’Special

values:’,

plus_inf,

minus_inf,

plus_nanq,

minus_nanq,

nans

!

They

can

also

occur

as

the

result

of

operations.

large

=

10.0

**

200

print

*,

’Number

too

big

for

a

REAL:’,

large

*

large

print

*,

’Number

divided

by

zero:’,

(-large)

/

0.0

print

*,

’Nonsensical

results:’,

plus_inf

-

plus_inf,

sqrt(-large)

!

To

find

if

something

is

a

NaN,

compare

it

to

itself.

print

*,

’Does

a

quiet

NaN

equal

itself:’,

plus_nanq

.eq.

plus_nanq

print

*,

’Does

a

signaling

NaN

equal

itself:’,

nans

.eq.

nans

!

Only

for

a

NaN

is

this

comparison

false.

end

$

xlf95

-o

fp_values

fp_values.f

**

_main

===

End

of

Compilation

1

===

1501-510

Compilation

successful

for

file

fp_values.f.

$

fp_values

Special

values:

INF

-INF

NaNQ

-NaNQ

NaNS

Number

too

big

for

a

REAL:

INF

Number

divided

by

zero:

-INF

Nonsensical

results:

NaNQ

NaNQ

Does

a

quiet

NaN

equal

itself:

F

Does

a

signaling

NaN

equal

itself:

F

XL

Fortran

Floating-Point

Processing

289

v

Comparisons

involving

NaN

values

INEXACT

A

computed

value

cannot

be

represented

exactly,

so

a

rounding

error

is

introduced.

(This

exception

is

very

common.)

XL

Fortran

always

detects

these

exceptions

when

they

occur,

but

the

default

is

not

to

take

any

special

action.

Calculation

continues,

usually

with

a

NaN

or

infinity

value

as

the

result.

If

you

want

to

be

automatically

informed

when

an

exception

occurs,

you

can

turn

on

exception

trapping

through

compiler

options

or

calls

to

intrinsic

subprograms.

However,

different

results,

intended

to

be

manipulated

by

exception

handlers,

are

produced:

Table

17.

Results

of

IEEE

Exceptions,

with

and

without

Trapping

Enabled

Overflow

Underflow

Zerodivide

Invalid

Inexact

Exceptions

not

enabled

(default)

INF

Denormalized

number

INF

NaN

Rounded

result

Exceptions

enabled

Unnormalized

number

with

biased

exponent

Unnormalized

number

with

biased

exponent

No

result

No

result

Rounded

result

Note:

Because

different

results

are

possible,

it

is

very

important

to

make

sure

that

any

exceptions

that

are

generated

are

handled

correctly.

See

“Detecting

and

Trapping

Floating-Point

Exceptions”

on

page

296

for

instructions

on

doing

so.

Hardware-Specific

Floating-Point

Overview

Single-

and

Double-Precision

Values

The

PowerPC

floating-point

hardware

performs

calculations

in

either

IEEE

single-precision

(equivalent

to

REAL(4)

in

Fortran

programs)

or

IEEE

double-precision

(equivalent

to

REAL(8)

in

Fortran

programs).

Keep

the

following

considerations

in

mind:

v

Double

precision

provides

greater

range

(approximately

10**(-308)

to

10**308)

and

precision

(about

15

decimal

digits)

than

single

precision

(approximate

range

10**(-38)

to

10**38,

with

about

7

decimal

digits

of

precision).

v

Computations

that

mix

single

and

double

operands

are

performed

in

double

precision,

which

requires

conversion

of

the

single-precision

operands

to

double-precision.

These

conversions

do

not

affect

performance.

v

Double-precision

values

that

are

converted

to

single-precision

(such

as

when

you

specify

the

SNGL

intrinsic

or

when

a

double-precision

computation

result

is

stored

into

a

single-precision

variable)

require

rounding

operations.

A

rounding

operation

produces

the

correct

single-precision

value,

which

is

based

on

the

IEEE

rounding

mode

in

effect.

The

value

may

be

less

precise

than

the

original

double-precision

value,

as

a

result

of

rounding

error.

Conversions

from

double-precision

values

to

single-precision

values

may

reduce

the

performance

of

your

code.

v

Programs

that

manipulate

large

amounts

of

floating-point

data

may

run

faster

if

they

use

REAL(4)

rather

than

REAL(8)

variables.

(You

need

to

ensure

that

REAL(4)

variables

provide

you

with

acceptable

range

and

precision.)

The

programs

may

run

faster

because

the

smaller

data

size

reduces

memory

traffic,

which

can

be

a

performance

bottleneck

for

some

applications.

290

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

The

floating-point

hardware

also

provides

a

special

set

of

double-precision

operations

that

multiply

two

numbers

and

add

a

third

number

to

the

product.

These

combined

multiply-add

(MAF)

operations

are

performed

at

the

same

speed

that

either

a

multiply

or

an

add

operation

alone

is

performed.

The

MAF

functions

provide

an

extension

to

the

IEEE

standard

because

they

perform

the

multiply

and

add

with

one

(rather

than

two)

rounding

errors.

The

MAF

functions

are

faster

and

more

accurate

than

the

equivalent

separate

operations.

Extended-Precision

Values

XL

Fortran

extended

precision

is

not

in

the

format

suggested

by

the

IEEE

standard,

which

suggests

extended

formats

using

more

bits

in

both

the

exponent

(for

greater

range)

and

the

fraction

(for

greater

precision).

XL

Fortran

extended

precision,

equivalent

to

REAL(16)

in

Fortran

programs,

is

implemented

in

software.

Extended

precision

provides

the

same

range

as

double

precision

(about

10**(-308)

to

10**308)

but

more

precision

(a

variable

amount,

about

31

decimal

digits

or

more).

The

software

support

is

restricted

to

round-to-nearest

mode.

Programs

that

use

extended

precision

must

ensure

that

this

rounding

mode

is

in

effect

when

extended-precision

calculations

are

performed.

See

“Selecting

the

Rounding

Mode”

on

page

292

for

the

different

ways

you

can

control

the

rounding

mode.

Programs

that

specify

extended-precision

values

as

hexadecimal,

octal,

binary,

or

Hollerith

constants

must

follow

these

conventions:

v

Extended-precision

numbers

are

composed

of

two

double-precision

numbers

with

different

magnitudes

that

do

not

overlap.

That

is,

the

binary

exponents

differ

by

at

least

the

number

of

fraction

bits

in

a

REAL(8).

The

high-order

double-precision

value

(the

one

that

comes

first

in

storage)

must

have

the

larger

magnitude.

The

value

of

the

extended-precision

number

is

the

sum

of

the

two

double-precision

values.

v

For

a

value

of

NaN

or

infinity,

you

must

encode

one

of

these

values

within

the

high-order

double-precision

value.

The

low-order

value

is

not

significant.

Because

an

XL

Fortran

extended-precision

value

can

be

the

sum

of

two

values

with

greatly

different

exponents,

leaving

a

number

of

assumed

zeros

in

the

fraction,

the

format

actually

has

a

variable

precision

with

a

minimum

of

about

31

decimal

digits.

You

get

more

precision

in

cases

where

the

exponents

of

the

two

double

values

differ

in

magnitude

by

more

than

the

number

of

digits

in

a

double-precision

value.

This

encoding

allows

an

efficient

implementation

intended

for

applications

requiring

more

precision

but

no

more

range

than

double

precision.

Notes:

1.

In

the

discussions

of

rounding

errors

because

of

compile-time

folding

of

expressions,

keep

in

mind

that

this

folding

produces

different

results

for

extended-precision

values

more

often

than

for

other

precisions.

2.

Special

numbers,

such

as

NaN

and

infinity,

are

not

fully

supported

for

extended-precision

values.

Arithmetic

operations

do

not

necessarily

propagate

these

numbers

in

extended

precision.

3.

XL

Fortran

does

not

always

detect

floating-point

exception

conditions

(see

“Detecting

and

Trapping

Floating-Point

Exceptions”

on

page

296)

for

extended-precision

values.

If

you

turn

on

floating-point

exception

trapping

in

programs

that

use

extended

precision,

XL

Fortran

may

also

generate

signals

in

cases

where

an

exception

condition

does

not

really

occur.

XL

Fortran

Floating-Point

Processing

291

How

XL

Fortran

Rounds

Floating-Point

Calculations

Understanding

rounding

operations

in

XL

Fortran

can

help

you

get

predictable,

consistent

results.

It

can

also

help

you

make

informed

decisions

when

you

have

to

make

tradeoffs

between

speed

and

accuracy.

In

general,

floating-point

results

from

XL

Fortran

programs

are

more

accurate

than

those

from

other

implementations

because

of

MAF

operations

and

the

higher

precision

used

for

intermediate

results.

If

identical

results

are

more

important

to

you

than

the

extra

precision

and

performance

of

the

XL

Fortran

defaults,

read

“Duplicating

the

Floating-Point

Results

of

Other

Systems”

on

page

295.

Selecting

the

Rounding

Mode

To

change

the

rounding

mode

in

a

program,

you

can

call

the

fpsets

and

fpgets

routines,

which

use

an

array

of

logicals

named

fpstat,

defined

in

the

include

files

/usr/include/fpdt.h

and

/usr/include/fpdc.h.

The

fpstat

array

elements

correspond

to

the

bits

in

the

floating-point

status

and

control

register.

For

floating-point

rounding

control,

the

array

elements

fpstat(fprn1)

and

fpstat(fprn2)

are

set

as

specified

in

the

following

table:

Table

18.

Rounding-Mode

Bits

to

Use

with

fpsets

and

fpgets

fpstat(fprn1)

fpstat(fprn2)

Rounding

Mode

Enabled

.true.

.true.

Round

towards

-infinity.

.true.

.false.

Round

towards

+infinity.

.false.

.true.

Round

towards

zero.

.false.

.false.

Round

to

nearest.

For

example:

program

fptest

include

’fpdc.h’

call

fpgets(

fpstat

)

!

Get

current

register

values.

if

(

(fpstat(fprn1)

.eqv.

.false.)

.and.

+

(fpstat(fprn2)

.eqv.

.false.))

then

print

*,

’Before

test:

Rounding

mode

is

towards

nearest’

print

*,

’

2.0

/

3.0

=

’,

2.0

/

3.0

print

*,

’

-2.0

/

3.0

=

’,

-2.0

/

3.0

end

if

call

fpgets(

fpstat

)

!

Get

current

register

values.

fpstat(fprn1)

=

.TRUE.

!

These

2

lines

mean

round

towards

fpstat(fprn2)

=

.FALSE.

!

+INFINITY.

call

fpsets(

fpstat

)

r

=

2.0

/

3.0

print

*,

’Round

towards

+INFINITY:

2.0

/

3.0=

’,

r

call

fpgets(

fpstat

)

!

Get

current

register

values.

fpstat(fprn1)

=

.TRUE.

!

These

2

lines

mean

round

towards

fpstat(fprn2)

=

.TRUE.

!

-INFINITY.

call

fpsets(

fpstat

)

r

=

-2.0

/

3.0

print

*,

’Round

towards

-INFINITY:

-2.0

/

3.0=

’,

r

end

!

This

block

data

program

unit

initializes

the

fpstat

array,

and

so

on.

292

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

block

data

include

’fpdc.h’

include

’fpdt.h’

end

XL

Fortran

also

provides

several

procedures

that

allow

you

to

control

the

floating-point

status

and

control

register

of

the

processor

directly.

These

procedures

are

more

efficient

than

the

fpsets

and

fpgets

subroutines

because

they

are

mapped

into

inlined

machine

instructions

that

manipulate

the

floating-point

status

and

control

register

(fpscr)

directly.

XL

Fortran

supplies

the

get_round_mode()

and

set_round_mode()

procedures

in

the

xlf_fp_util

module.

These

procedures

return

and

set

the

current

floating-point

rounding

mode,

respectively.

For

example:

program

fptest

use,

intrinsic

::

xlf_fp_util

integer(fpscr_kind)

old_fpscr

if

(

get_round_mode()

==

fp_rnd_rn

)

then

print

*,

’Before

test:

Rounding

mode

is

towards

nearest’

print

*,

’

2.0

/

3.0

=

’,

2.0

/

3.0

print

*,

’

-2.0

/

3.0

=

’,

-2.0

/

3.0

end

if

old_fpscr

=

set_round_mode(

fp_rnd_rp

)

r

=

2.0

/

3.0

print

*,

’Round

towards

+infinity:

2.0

/

3.0

=

’,

r

old_fpscr

=

set_round_mode(

fp_rnd_rm

)

r

=

-2.0

/

3.0

print

*,

’Round

towards

-infinity:

-2.0

/

3.0

=

’,

r

end

XL

Fortran

supplies

the

ieee_get_rounding_mode()

and

ieee_set_rounding_mode()

procedures

in

the

ieee_arithmetic

module.

These

portable

procedures

retrieve

and

set

the

current

floating-point

rounding

mode,

respectively.

For

example:

program

fptest

use,

intrinsic

::

ieee_arithmetic

type(ieee_round_type)

current_mode

call

ieee_get_rounding_mode(

current_mode

)

if

(

current_mode

==

ieee_nearest

)

then

print

*,

’Before

test:

Rounding

mode

is

towards

nearest’

print

*,

’

2.0

/

3.0

=

’,

2.0

/

3.0

print

*,

’

-2.0

/

3.0

=

’,

-2.0

/

3.0

end

if

call

ieee_set_rounding_mode(

ieee_up

)

r

=

2.0

/

3.0

print

*,

’Round

towards

+infinity:

2.0

/

3.0

=

’,

r

call

ieee_set_rounding_mode(

ieee_down

)

r

=

-2.0

/

3.0

print

*,

’Round

towards

-infinity:

-2.0

/

3.0

=

’,

r

end

Notes:

1.

Extended-precision

floating-point

values

must

only

be

used

in

round-to-nearest

mode.

XL

Fortran

Floating-Point

Processing

293

2.

For

thread-safety

and

reentrancy,

the

include

file

/usr/include/fpdc.h

contains

a

THREADLOCAL

directive

that

is

protected

by

the

trigger

constant

IBMT.

The

invocation

commands

xlf_r,

xlf_r7,

xlf90_r,

xlf90_r7,

xlf95_r,

and

xlf95_r7

turn

on

the

-qthreaded

compiler

option

by

default,

which

in

turn

implies

the

trigger

constant

IBMT.

If

you

are

including

the

file

/usr/include/fpdc.h

in

code

that

is

not

intended

to

be

thread-safe,

do

not

specify

IBMT

as

a

trigger

constant.

Related

Information:

For

more

information

about

the

bits

in

the

FPSCR

register

that

correspond

to

the

fpstat

array

elements,

see

the

POWERstation

and

POWERserver®

Hardware

Technical

Reference

-

General

Information.

Minimizing

Rounding

Errors

There

are

several

strategies

for

handling

rounding

errors

and

other

unexpected,

slight

differences

in

calculated

results.

You

may

want

to

consider

one

or

more

of

the

following

strategies:

v

Minimizing

the

amount

of

overall

rounding

v

Delaying

as

much

rounding

as

possible

to

run

time

v

Ensuring

that

if

some

rounding

is

performed

in

a

mode

other

than

round-to-nearest,

all

rounding

is

performed

in

the

same

mode

Minimizing

Overall

Rounding

Rounding

operations,

especially

in

loops,

reduce

code

performance

and

may

have

a

negative

effect

on

the

precision

of

computations.

Consider

using

double-precision

variables

instead

of

single-precision

variables

when

you

store

the

temporary

results

of

double-precision

calculations,

and

delay

rounding

operations

until

the

final

result

is

computed.

You

can

also

specify

the

hssngl

suboption

of

-qfloat

instead

of

converting

a

stored

single-precision

result

back

to

double-precision.

This

suboption

preserves

computed

double-precision

results

so

that

they

can

be

used

again

later.

Delaying

Rounding

until

Run

Time

The

compiler

evaluates

floating-point

expressions

during

compilation

when

it

can,

so

that

the

resulting

program

does

not

run

more

slowly

due

to

unnecessary

run-time

calculations.

However,

the

results

of

the

compiler’s

evaluation

might

not

match

exactly

the

results

of

the

run-time

calculation.

To

delay

these

calculations

until

run

time,

specify

the

nofold

suboption

of

the

-qfloat

option.

The

results

may

still

not

be

identical;

for

example,

calculations

in

DATA

and

PARAMETER

statements

are

still

performed

at

compile

time.

The

differences

in

results

due

to

fold

or

nofold

are

greatest

for

programs

that

perform

extended-precision

calculations

or

are

compiled

with

the

-O

option

or

both.

Ensuring

that

the

Rounding

Mode

is

Consistent

You

can

change

the

rounding

mode

from

its

default

setting

of

round-to-nearest.

(See

for

examples.)

If

you

do

so,

you

must

be

careful

that

all

rounding

operations

for

the

program

use

the

same

mode:

v

Specify

the

equivalent

setting

on

the

-qieee

option,

so

that

any

compile-time

calculations

use

the

same

rounding

mode.

v

Specify

the

rrm

suboption

of

the

-qfloat

option,

so

that

the

compiler

does

not

perform

any

optimizations

that

require

round-to-nearest

rounding

mode

to

work

correctly.

294

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

For

example,

you

might

compile

a

program

like

the

one

in

“Selecting

the

Rounding

Mode”

on

page

292

with

this

command

if

the

program

consistently

uses

round-to-plus-infinity

mode:

xlf95

-qieee=plus

-qfloat=rrm

changes_rounding_mode.f

Duplicating

the

Floating-Point

Results

of

Other

Systems

To

duplicate

the

double-precision

results

of

programs

on

systems

with

different

floating-point

architectures

(without

multiply-add

instructions),

specify

the

nomaf

suboption

of

the

-qfloat

option.

This

suboption

prevents

the

compiler

from

generating

any

multiply-add

operations.

This

results

in

decreased

accuracy

and

performance

but

provides

strict

conformance

to

the

IEEE

standard

for

double-precision

arithmetic.

To

duplicate

the

results

of

programs

where

the

default

size

of

REAL

items

is

different

from

that

on

systems

running

XL

Fortran,

use

the

-qrealsize

option

(page

222)

to

change

the

default

REAL

size

when

compiling

with

XL

Fortran.

If

the

system

whose

results

you

want

to

duplicate

preserves

full

double

precision

for

default

real

constants

that

are

assigned

to

DOUBLE

PRECISION

variables,

use

the

-qdpc

or

-qrealsize

option.

If

results

consistent

with

other

systems

are

important

to

you,

include

norsqrt

and

nofold

in

the

settings

for

the

-qfloat

option.

If

you

specify

the

option

-O3,

include

-qstrict

too.

Maximizing

Floating-Point

Performance

If

performance

is

your

primary

concern

and

you

want

your

program

to

be

relatively

safe

but

do

not

mind

if

results

are

slightly

different

(generally

more

precise)

from

what

they

would

be

otherwise,

optimize

the

program

with

the

-O

option,

and

specify

-qfloat=rsqrt:hssngl:fltint.

The

following

section

describes

the

functions

of

these

suboptions:

v

The

rsqrt

suboption

replaces

division

by

a

square

root

with

multiplication

by

the

reciprocal

of

the

root,

a

faster

operation

that

may

not

produce

precisely

the

same

result.

v

The

hssngl

suboption

is

the

opposite

of

rndsngl;

it

improves

the

performance

of

single-precision

(REAL(4))

floating-point

calculations

by

suppressing

rounding

operations

that

are

required

by

the

Fortran

language

but

are

not

necessary

for

correct

program

execution.

The

results

of

floating-point

expressions

are

kept

in

double

precision

where

the

original

program

would

round

them

to

single-precision.

These

results

are

then

used

in

later

expressions

instead

of

the

rounded

results.

To

detect

single-precision

floating-point

overflows

and

underflows,

rounding

operations

are

still

inserted

when

double-precision

results

are

stored

into

single-precision

memory

locations.

However,

if

optimization

removes

such

a

store

operation,

hssngl

also

removes

the

corresponding

rounding

operation,

possibly

preventing

the

exception.

(Depending

on

the

characteristics

of

your

program,

you

may

or

may

not

care

whether

the

exception

happens.)

The

hssngl

suboption

is

safe

for

all

types

of

programs

because

it

always

only

increases

the

precision

of

floating-point

calculations.

Program

results

may

differ

because

of

the

increased

precision

and

because

of

avoidance

of

some

exceptions.

XL

Fortran

Floating-Point

Processing

295

v

The

fltint

suboption

speeds

up

float-to-integer

conversions

by

reducing

error

checking

for

overflows.

You

should

make

sure

that

any

floats

that

are

converted

to

integers

are

not

outside

the

range

of

the

corresponding

integer

types.

In

cases

where

speed

is

so

important

that

you

can

make

an

informed

decision

to

sacrifice

correctness

at

boundary

conditions,

you

can

replace

hssngl

and

fltint

with

the

hsflt

suboption;

it

does

the

same

thing

as

fltint

and

suppresses

rounding

operations.

In

suppressing

rounding

operations,

hsflt

works

like

hssngl,

but

it

also

suppresses

rounding

operations

when

double-precision

values

are

assigned

to

single-precision

memory

locations.

Single-precision

overflow

is

not

detected

in

such

assignments,

and

the

assigned

value

is

not

correctly

rounded

according

to

the

current

rounding

mode.

Attention:

When

you

use

the

hsflt

suboption,

observe

these

restrictions,

or

your

program

may

produce

incorrect

results

without

warning:

v

Your

program

must

never

convert

overly

large

floats

to

integer.

v

Your

program

must

never

compute

NaNs,

or

values

outside

the

range

of

single

precision.

v

Your

program

must

not

depend

on

results

to

be

correctly

rounded

to

single

precision:

for

example,

by

comparing

two

single-precision

values

for

equality.

Therefore,

we

recommend

that

you

use

this

suboption

only

with

extreme

caution.

It

is

for

use

by

knowledgeable

programmers

in

specific

applications,

such

as

graphics

programs,

where

the

computational

characteristics

are

known.

If

you

are

at

all

unsure

whether

a

program

is

suitable

or

if

the

program

produces

unexpected

results

when

you

use

this

suboption,

use

hssngl

instead.

Related

Information:

“Technical

Details

of

the

-qfloat=hsflt

Option”

on

page

412

provides

additional

technical

information

about

this

suboption.

Detecting

and

Trapping

Floating-Point

Exceptions

As

stated

earlier,

the

IEEE

standard

for

floating-point

arithmetic

defines

a

number

of

exception

(or

error)

conditions

that

might

require

special

care

to

avoid

or

recover

from.

The

following

sections

are

intended

to

help

you

make

your

programs

work

safely

in

the

presence

of

such

exception

conditions

while

sacrificing

the

minimum

amount

of

performance.

The

floating-point

hardware

always

detects

a

number

of

floating-point

exception

conditions

(which

the

IEEE

standard

rigorously

defines):

overflow,

underflow,

zerodivide,

invalid,

and

inexact.

By

default,

the

only

action

that

occurs

is

that

a

status

flag

is

set.

The

program

continues

without

a

problem

(although

the

results

from

that

point

on

may

not

be

what

you

expect).

If

you

want

to

know

when

an

exception

occurs,

you

can

arrange

for

one

or

more

of

these

exception

conditions

to

generate

a

signal.

The

signal

causes

a

branch

to

a

handler

routine.

The

handler

receives

information

about

the

type

of

signal

and

the

state

of

the

program

when

the

signal

occurred.

It

can

produce

a

core

dump,

display

a

listing

showing

where

the

exception

occurred,

modify

the

results

of

the

calculation,

or

carry

out

some

other

processing

that

you

specify.

296

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

The

XL

Fortran

compiler

and

the

operating

system

provide

facilities

for

working

with

floating-point

exception

conditions.

The

compiler

facilities

indicate

the

presence

of

exceptions

by

generating

SIGTRAP

signals.

The

operating-system

facilities

generate

SIGFPE

signals.

Do

not

mix

these

different

facilities

within

a

single

program.

Compiler

Features

for

Trapping

Floating-Point

Exceptions

To

turn

on

XL

Fortran

exception

trapping,

compile

the

program

with

the

-qflttrap

option

and

some

combination

of

suboptions

that

includes

enable.

This

option

uses

trap

operations

to

detect

floating-point

exceptions

and

generates

SIGTRAP

signals

when

exceptions

occur.

-qflttrap

also

has

suboptions

that

correspond

to

the

names

of

the

exception

conditions.

For

example,

if

you

are

only

concerned

with

handling

overflow

and

underflow

exceptions,

you

could

specify

something

similar

to

the

following:

xlf95

-qflttrap=overflow:underflow:enable

compute_pi.f

You

only

need

enable

when

you

are

compiling

the

main

program.

However,

it

is

very

important

and

does

not

cause

any

problems

if

you

specify

it

for

other

files,

so

always

include

it

when

you

use

-qflttrap.

An

advantage

of

this

approach

is

that

performance

impact

is

relatively

low.

To

further

reduce

performance

impact,

you

can

include

the

imprecise

suboption

of

the

-qflttrap

option.

This

suboption

delays

any

trapping

until

the

program

reaches

the

start

or

end

of

a

subprogram.

The

disadvantages

of

this

approach

include

the

following:

v

It

only

traps

exceptions

that

occur

in

code

that

you

compiled

with

-qflttrap,

which

does

not

include

system

library

routines.

v

It

is

generally

not

possible

for

a

handler

to

substitute

results

for

failed

calculations

if

you

use

the

imprecise

suboption

of

-qflttrap.

Notes:

1.

If

your

program

depends

on

floating-point

exceptions

occurring

for

particular

operations,

also

specify

-qfloat

suboptions

that

include

nofold

and

nohssngl.

Otherwise,

the

compiler

might

replace

an

exception-producing

calculation

with

a

constant

NaN

or

infinity

value,

or

it

might

eliminate

an

overflow

in

a

single-precision

operation.

2.

The

suboptions

of

the

-qflttrap

option

replace

an

earlier

technique

that

required

you

to

modify

your

code

with

calls

to

the

fpsets

and

fpgets

procedures.

You

no

longer

require

these

calls

for

exception

handling

if

you

use

the

appropriate

-qflttrap

settings.

Attention:

If

your

code

contains

fpsets

calls

that

enable

checking

for

floating-point

exceptions

and

you

do

not

use

the

-qflttrap

option

when

compiling

the

whole

program,

the

program

will

produce

unexpected

results

if

exceptions

occur,

as

explained

in

Table

17

on

page

290.

Operating

System

Features

for

Trapping

Floating-Point

Exceptions

A

direct

way

to

turn

on

exception

trapping

is

to

call

the

operating

system

routine

fp_trap.

It

uses

the

system

hardware

to

detect

floating-point

exceptions

and

generates

SIGFPE

signals

when

exceptions

occur.

Fortran

definitions

for

the

values

needed

to

call

it

are

in

the

files

/usr/include/fp_fort_c.f,

fp_fort_t.f,

or

the

xlf_fp_util

module.

XL

Fortran

Floating-Point

Processing

297

There

are

other

related

operating

system

routines

that

you

can

locate

by

reading

the

description

of

fp_trap.

The

advantages

of

this

approach

include:

v

It

works

for

any

code,

regardless

of

the

language

and

without

the

need

to

compile

with

any

special

options.

v

It

generates

SIGFPE

signals,

the

same

as

other

popular

Unix

systems.

The

disadvantages

of

this

approach

include:

v

The

program

may

run

much

slower

while

exception

checking

is

turned

on.

v

The

call

to

FP_TRAP

requires

a

source-code

change

and

thus

a

recompilation.

Installing

an

Exception

Handler

When

a

program

that

uses

the

XL

Fortran

or

AIX

exception-detection

facilities

encounters

an

exception

condition,

it

generates

a

signal.

This

causes

a

branch

to

whatever

handler

is

specified

by

the

program.

The

information

in

this

section,

except

the

explanation

of

the

-qsigtrap

option,

applies

both

to

SIGTRAP

and

SIGFPE

signals.

By

default,

the

program

stops

after

producing

a

core

file,

which

you

can

use

with

a

debugger

to

locate

the

problem.

If

you

want

to

install

a

SIGTRAP

signal

handler,

use

the

-qsigtrap

option.

It

allows

you

to

specify

an

XL

Fortran

handler

that

produces

a

traceback

or

to

specify

a

handler

you

have

written:

xlf95

-qflttrap=ov:und:en

pi.f

#

Dump

core

on

an

exception

xlf95

-qflttrap=ov:und:en

-qsigtrap

pi.f

#

Uses

the

xl__trce

handler

xlf95

-qflttrap=ov:und:en

-qsigtrap=return_22_over_7

pi.f

#

Uses

any

other

handler

You

can

also

install

an

alternative

exception

handler,

either

one

supplied

by

XL

Fortran

or

one

you

have

written

yourself,

by

calling

the

SIGNAL

subroutine

(defined

in

/usr/include/fexcp.h):

INCLUDE

’fexcp.h’

CALL

SIGNAL(SIGTRAP,handler_name)

CALL

SIGNAL(SIGFPE,handler_name)

The

XL

Fortran

exception

handlers

and

related

routines

are:

xl__ieee

Produces

a

traceback

and

an

explanation

of

the

signal

and

continues

execution

by

supplying

the

default

IEEE

result

for

the

failed

computation.

This

handler

allows

the

program

to

produce

the

same

results

as

if

exception

detection

was

not

turned

on.

xl__trce

Produces

a

traceback

and

stops

the

program.

xl__trcedump

Produces

a

traceback

and

a

core

file

and

stops

the

program.

xl__sigdump

Provides

a

traceback

that

starts

from

the

point

at

which

it

is

called

and

provides

information

about

the

signal.

You

can

only

call

it

from

inside

a

user-written

signal

handler,

and

it

requires

the

same

parameters

as

other

AIX

signal

handlers.

It

does

not

stop

the

program.

To

successfully

continue,

the

signal

handler

must

perform

some

cleanup

after

calling

this

subprogram.

xl__trbk

Provides

a

traceback

that

starts

from

the

point

at

which

it

is

called.

You

call

it

as

a

subroutine

from

298

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

your

code,

rather

than

specifying

it

with

the

-qsigtrap

option.

It

requires

no

parameters.

It

does

not

stop

the

program.

All

of

these

handler

names

contain

double

underscores

to

avoid

duplicating

names

that

you

declared

in

your

program.

All

of

these

routines

work

for

both

SIGTRAP

and

SIGFPE

signals.

You

can

use

the

-g

compiler

option

to

get

line

numbers

in

the

traceback

listings.

The

file

/usr/include/fsignal.h

defines

a

Fortran

derived

type

similar

to

the

sigcontext

structure

in

/usr/include/sys/signal.h.

You

can

write

a

Fortran

signal

handler

that

accesses

this

derived

type.

Related

Information:

“Sample

Programs

for

Exception

Handling”

on

page

302

lists

some

sample

programs

that

illustrate

how

to

use

these

signal

handlers

or

write

your

own.

For

more

information,

see

SIGNAL,

in

the

Intrinsic

Procedures

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Producing

a

Core

File

To

produce

a

core

file,

do

not

install

an

exception

handler,

or

else

specify

the

xl__trcedump

handler.

Controlling

the

Floating-Point

Status

and

Control

Register

Before

the

-qflttrap

suboptions

or

the

-qsigtrap

options,

most

of

the

processing

for

floating-point

exceptions

required

you

to

change

your

source

files

to

turn

on

exception

trapping

or

install

a

signal

handler.

Although

you

can

still

do

so,

for

any

new

applications,

we

recommend

that

you

use

the

options

instead.

To

control

exception

handling

at

run

time,

compile

without

the

enable

suboption

of

the

-qflttrap

option:

xlf95

-qflttrap

compute_pi.f

#

Check

all

exceptions,

but

do

not

trap.

xlf95

-qflttrap=ov

compute_pi.f

#

Check

one

type,

but

do

not

trap.

Then,

inside

your

program,

manipulate

the

fpstats

array

(defined

in

the

include

file

/usr/include/fpdc.h)

and

call

the

fpsets

subroutine

to

specify

which

exceptions

should

generate

traps.

See

the

sample

program

that

uses

fpsets

and

fpgets

in

“Selecting

the

Rounding

Mode”

on

page

292.

Another

method

is

to

use

the

set_fpscr_flags()

subroutine

in

the

xlf_fp_util

module.

This

subroutine

allows

you

to

set

the

floating-point

status

and

control

register

flags

you

specify

in

the

MASK

argument.

Flags

that

you

do

not

specify

in

MASK

remain

unaffected.

MASK

must

be

of

type

INTEGER(FPSCR_KIND).

For

example:

USE,

INTRINSIC

::

xlf_fp_util

INTEGER(FPSCR_KIND)

SAVED_FPSCR

INTEGER(FP_MODE_KIND)

FP_MODE

SAVED_FPSCR

=

get_fpscr()

!

Saves

the

current

value

of

!

the

fpscr

register.

CALL

set_fpscr_flags(TRP_DIV_BY_ZERO)

!

Enables

trapping

of

!

...

!

divide-by-zero.

SAVED_FPSCR=set_fpscr(SAVED_FPSCR)

!

Restores

fpscr

register.

XL

Fortran

Floating-Point

Processing

299

Another

method

is

to

use

the

ieee_set_halting_mode

subroutine

in

the

ieee_exceptions

module.

This

portable,

elemental

subroutine

allows

you

to

set

the

halting

(trapping)

status

for

any

FPSCR

exception

flags.

For

example:

USE,

INTRINSIC

::

ieee_exceptions

TYPE(IEEE_STATUS_TYPE)

SAVED_FPSCR

CALL

ieee_get_status(SAVED_FPSCR)

!

Saves

the

current

value

of

the

!

fpscr

register

CALL

ieee_set_halting_mode(IEEE_DIVIDE_BY_ZERO,

.TRUE.)

!

Enabled

trapping

!

...

!

of

divide-by-zero.

CALL

IEEE_SET_STATUS(SAVED_FPSCR)

!

Restore

fpscr

register

xlf_fp_util

Procedures

The

xlf_fp_util

procedures

allow

you

to

query

and

control

the

floating-point

status

and

control

register

(fpscr)

of

the

processor

directly.

These

procedures

are

more

efficient

than

the

fpsets

and

fpgets

subroutines

because

they

are

mapped

into

inlined

machine

instructions

that

manipulate

the

floating-point

status

and

control

register

directly.

The

intrinsic

module,

xlf_fp_util,

contains

the

interfaces

and

data

type

definitions

for

these

procedures

and

the

definitions

for

the

named

constants

that

are

needed

by

the

procedures.

This

module

enables

type

checking

of

these

procedures

at

compile

time

rather

than

link

time.

The

following

files

are

supplied

for

the

xlf_fp_util

module:

File

names

File

type

Locations

xlf_fp_util.mod

module

symbol

file

(32–bit)

/usr/lpp/xlf/include_d7

/usr/lpp/xlf/include

module

symbol

file

(64–bit)

/usr/lpp/xlf/include

To

use

the

procedures,

you

must

add

a

USE

XLF_FP_UTIL

statement

to

your

source

file.

For

more

information,

see

USE,

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

When

compiling

with

the

-U

option,

you

must

code

the

names

of

these

procedures

in

all

lowercase.

For

a

list

of

the

xlf_fp_util

procedures,

see

the

Service

and

Utility

Procedures

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

fpgets

and

fpsets

Subroutines

The

fpsets

and

fpgets

subroutines

provide

a

way

to

manipulate

or

query

the

floating-point

status

and

control

register.

Instead

of

calling

the

operating

system

routines

directly,

you

pass

information

back

and

forth

in

fpstat,

an

array

of

logicals.

The

following

table

shows

the

most

commonly

used

array

elements

that

deal

with

exceptions:

Table

19.

Exception

Bits

to

Use

with

fpsets

and

fpgets

Array

Element

to

Set

to

Enable

Array

Element

to

Check

if

Exception

Occurred

Exception

Indicated

When

.TRUE.

n/a

fpstat(fpfx)

Floating-point

exception

summary

300

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

19.

Exception

Bits

to

Use

with

fpsets

and

fpgets

(continued)

Array

Element

to

Set

to

Enable

Array

Element

to

Check

if

Exception

Occurred

Exception

Indicated

When

.TRUE.

n/a

fpstat(fpfex)

Floating-point

enabled

exception

summary

fpstat(fpve)

fpstat(fpvx)

Floating-point

invalid

operation

exception

summary

fpstat(fpoe)

fpstat(fpox)

Floating-point

overflow

exception

fpstat(fpue)

fpstat(fpux)

Floating-point

underflow

exception

fpstat(fpze)

fpstat(fpzx)

Zero-divide

exception

fpstat(fpxe)

fpstat(fpxx)

Inexact

exception

fpstat(fpve)

fpstat(fpvxsnan)

Floating-point

invalid

operation

exception

(NaNS)

fpstat(fpve)

fpstat(fpvxisi)

Floating-point

invalid

operation

exception

(INF-INF)

fpstat(fpve)

fpstat(fpvxidi)

Floating-point

invalid

operation

exception

(INF/INF)

fpstat(fpve)

fpstat(fpvxzdz)

Floating-point

invalid

operation

exception

(0/0)

fpstat(fpve)

fpstat(fpvximz)

Floating-point

invalid

operation

exception

(INF*0)

fpstat(fpve)

fpstat(fpvxvc)

Floating-point

invalid

operation

exception

(invalid

compare)

n/a

fpstat(fpvxsoft)

Floating-point

invalid

operation

exception

(software

request),

PowerPC

only

n/a

fpstat(fpvxsqrt)

Floating-point

invalid

operation

exception

(invalid

square

root),

PowerPC

only

n/a

fpstat(fpvxcvi)

Floating-point

invalid

operation

exception

(invalid

integer

convert),

PowerPC

only

To

explicitly

check

for

specific

exceptions

at

particular

points

in

a

program,

use

fpgets

and

then

test

whether

the

elements

in

fpstat

have

changed.

Once

an

exception

has

occurred,

the

corresponding

exception

bit

(second

column

in

the

preceding

table)

is

set

until

it

is

explicitly

reset,

except

for

fpstat(fpfx),

fpstat(fpvx),

and

fpstat(fpfex),

which

are

reset

only

when

the

specific

exception

bits

are

reset.

An

advantage

of

using

the

fpgets

and

fpsets

subroutines

(as

opposed

to

controlling

everything

with

suboptions

of

the

-qflttrap

option)

includes

control

over

granularity

of

exception

checking.

For

example,

you

might

only

want

to

test

if

an

exception

occurred

anywhere

in

the

program

when

the

program

ends.

The

disadvantages

of

this

approach

include

the

following:

v

You

have

to

change

your

source

code.

v

These

routines

differ

from

what

you

may

be

accustomed

to

on

other

platforms.

For

example,

to

trap

floating-point

overflow

exceptions

but

only

in

a

certain

section

of

the

program,

you

would

set

fpstat(fpoe)

to

.TRUE.

and

call

fpsets.

After

the

exception

occurs,

the

corresponding

exception

bit,

fpstat(fpox),

is

.TRUE.

until

the

program

runs:

XL

Fortran

Floating-Point

Processing

301

call

fpgets(fpstat)

fpstat(fpox)

=

.FALSE.

call

fpsets(fpstat)

!

resetting

fpstat(fpox)

to

.FALSE.

Sample

Programs

for

Exception

Handling

/usr/lpp/xlf/samples/floating_point

contains

a

number

of

sample

programs

to

illustrate

different

aspects

of

exception

handling:

flttrap_handler.c

and

flttrap_test.f

A

sample

exception

handler

that

is

written

in

C

and

a

Fortran

program

that

uses

it.

xl__ieee.F

and

xl__ieee.c

Exception

handlers

that

are

written

in

Fortran

and

C

that

show

how

to

substitute

particular

values

for

operations

that

produce

exceptions.

Even

when

you

use

support

code

such

as

this,

the

implementation

of

XL

Fortran

exception

handling

does

not

fully

support

the

exception-handling

environment

that

is

suggested

by

the

IEEE

floating-point

standard.

check_fpscr.f

and

postmortem.f

Show

how

to

work

with

the

fpsets

and

fpgets

procedures

and

the

fpstats

array.

fhandler.F

Shows

a

sample

Fortran

signal

handler

and

demonstrates

the

xl__sigdump

procedure.

xl__trbk_test.f

Shows

how

to

use

the

xl__trbk

procedure

to

generate

a

traceback

listing

without

stopping

the

program.

The

sample

programs

are

strictly

for

illustrative

purposes

only.

Causing

Exceptions

for

Particular

Variables

To

mark

a

variable

as

“do

not

use”,

you

can

encode

a

special

value

called

a

signaling

NaN

in

it.

This

causes

an

invalid

exception

condition

any

time

that

variable

is

used

in

a

calculation.

If

you

use

this

technique,

use

the

nans

suboption

of

the

-qfloat

option,

so

that

the

program

properly

detects

all

cases

where

a

signaling

NaN

is

used,

and

one

of

the

methods

already

described

to

generate

corresponding

SIGFPE

or

SIGTRAP

signals.

Notes:

1.

Because

a

signaling

NaN

is

never

generated

as

the

result

of

a

calculation

and

must

be

explicitly

introduced

to

your

program

as

a

constant

or

in

input

data,

you

should

not

need

to

use

this

technique

unless

you

deliberately

use

signaling

NaN

values

in

it.

2.

In

previous

XL

Fortran

releases,

the

-qfloat

suboption

was

called

spnans.

In

the

future,

use

nans

instead

(although

spnans

still

works,

for

backward

compatibility).

Minimizing

the

Performance

Impact

of

Floating-Point

Exception

Trapping

If

you

need

to

deal

with

floating-point

exception

conditions

but

are

concerned

that

doing

so

will

make

your

program

too

slow,

here

are

some

techniques

that

can

help

minimize

the

performance

impact:

302

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Consider

using

only

a

subset

of

the

overflow,

underflow,

zerodivide,

invalid,

and

inexact

suboptions

with

the

-qflttrap

option

if

you

can

identify

some

conditions

that

will

never

happen

or

you

do

not

care

about.

In

particular,

because

an

inexact

exception

occurs

for

each

rounding

error,

you

probably

should

not

check

for

it

if

performance

is

important.

v

Include

the

imprecise

suboption

with

the

-qflttrap

option,

so

that

your

compiler

command

looks

similar

to

this:

xlf90

-qflttrap=underflow:enable:imprecise

does_underflows.f

imprecise

makes

the

program

check

for

the

specified

exceptions

only

on

entry

and

exit

to

subprograms

that

perform

floating-point

calculations.

This

means

that

XL

Fortran

will

eventually

detect

any

exception,

but

you

will

know

only

the

general

area

where

it

occurred,

not

the

exact

location.

When

you

specify

-qflttrap

without

imprecise,

a

check

for

exceptions

follows

each

floating-point

operation.

If

all

your

exceptions

occur

during

calls

to

routines

that

are

not

compiled

with

-qflttrap

(such

as

library

routines),

using

imprecise

is

generally

a

good

idea,

because

identifying

the

exact

location

will

be

difficult

anyway.

Note

that

enable

has

no

effect

if

using

the

nanq

suboption.

nanq

generates

trapping

code

after

each

floating

point

arithmetic,

load

instruction

and

procedure

returning

floating

point

values

even

if

imprecise

is

specified.

Floating-Point

Processing

on

the

POWER

and

POWER2

Architectures

The

following

section

provides

information

on

floating-point

processing

on

the

POWER

and

POWER2

processors.

Precision

of

Computations

POWER

and

POWER2

floating-point

hardware

performs

all

calculations

in

IEEE

double-precision

mode.

The

hardware

does

not

directly

perform

single-precision

calculations,

but

it

is

capable

of

generating

single-precision

results

by

using

the

following

sequence

of

operations:

1.

Convert

all

single-precision

operands

of

a

single-precision

operation

to

double-precision.

2.

Perform

the

equivalent

double-precision

operation.

3.

Round

the

result

to

single-precision.

This

sequence

always

produces

exactly

the

same

bit-for-bit

result,

as

if

the

single-precision

IEEE

operation

had

been

performed.

As

on

the

PowerPC

machines,

conversions

from

single-precision

to

double-precision

have

no

negative

performance

impacts,

but

rounding

operations

from

double-precision

to

single-precision

do.

Since

the

performance

penalty

of

rounding

operations

would

normally

impact

all

single-precision

computations

on

a

POWER

or

POWER2

machine,

the

compiler

attempts

to

reduce

the

number

of

rounding

operations.

It

does

this

under

the

control

of

the

norndsngl

suboption

of

the

-qfloat

option.

When

you

specify

the

norndsgnl

suboption,

the

compiler

leaves

all

intermediate

results

of

single-precision

operations

in

double-precision.

That

is,

it

suppresses

the

rounding

operation

in

the

above

sequence.

The

compiler

only

performs

a

rounding

operation

on

the

final

result

of

an

expression,

when

it

stores

that

result

into

a

single-precision

memory

location.

XL

Fortran

Floating-Point

Processing

303

The

following

example

shows

the

difference

between

using

the

norndsngl

and

the

rndsngl

suboptions:

REAL(4)

a,b,c,d

...

a

=

b

+

c

+

d

With

norndsngl,

the

compiler

does

the

following:

1.

Performs

the

intermediate

computation

of

b

+

c

in

double

precision

without

rounding.

2.

Adds

the

double-precision

result

to

d.

3.

Rounds

the

final

double-precision

result

and

then

stores

it

into

variable

a.

With

rndsngl,

the

compiler

follows

the

same

steps

except

that

it

performs

rounding

in

the

first

step.

Note

that

norndsngl

maintains

increased

precision

for

intermediate

results

and

improves

performance,

but

you

may

need

to

specify

rndsngl

to

produce

results

that

are

bit-for-bit

identical

to

those

computed

on

other

systems.

norndsngl

is

the

default

when

you

use

-qarch

to

target

a

POWER,

a

POWER2,

or

a

common

architecture.

rndsngl

is

the

default

when

you

target

a

PowerPC

architecture.

You

can

also

explicitly

set

the

rndsngl

suboption

for

any

target

architecture.

Invalid

Operation

Exceptions

for

SQRT

Operations

on

POWER

Processors

The

POWER

architecture

does

not

include

a

hardware

status

flag

to

indicate

IEEE

invalid

operation

exceptions

that

are

caused

by

attempting

to

compute

the

square

root

of

a

negative

number.

Instead,

the

operating

system

must

handle

those

exceptions

by

using

a

software

mechanism.

Therefore,

using

SQRT

for

a

negative

number

may

not

reliably

generate

invalid

operation

exceptions

on

POWER

platforms,

depending

on

the

level

of

the

operating

system

installed

on

the

computer.

The

POWER2

architecture

and

many

PowerPC

architectures

each

has

a

hardware

status

flag

for

invalid

SQRT

operations,

and

each

reliably

generates

exceptions.

304

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Optimizing

XL

Fortran

Programs

This

section

provides

background

information

on

optimization,

guidance

on

using

XL

Fortran’s

optimization

features,

and

details

of

some

XL

Fortran

optimization

techniques.

Simple

compilation

is

the

translation

or

transformation

of

the

source

code

into

an

executable

or

shared

object.

An

optimizing

transformation

is

one

that

gives

your

application

better

overall

performance

at

run

time.

XL

Fortran

provides

a

portfolio

of

optimizing

transformations

tailored

to

the

IBM

hardware.

These

transformations

can:

v

Reduce

the

number

of

instructions

executed

for

critical

operations.

v

Restructure

the

generated

object

code

to

make

optimal

use

of

the

PowerPC

architecture.

v

Improve

the

usage

of

the

memory

subsystem.

v

Exploit

the

ability

of

the

architecture

to

handle

large

amounts

of

shared

memory

parallelization.

Significant

performance

improvements

are

possible

with

relatively

little

development

effort

because

the

compiler

is

capable

of

widely

applicable

and

sophisticated

program

analysis

and

transformation.

Moreover,

the

compilers

enable

programming

models

such

as

OpenMP,

which

allow

you

to

write

high-performance

code.

Optimizations

are

intended

for

later

phases

of

application

development

cycles,

such

as

product

release

builds.

If

possible,

you

should

test

and

debug

your

code

without

optimization

before

attempting

to

optimize

it.

Optimization

is

controlled

by

compiler

options

and

directives.

However,

compiler-friendly

programming

idioms

can

be

as

useful

to

performance

as

any

of

the

options

or

directives.

It

is

no

longer

necessary

nor

is

it

recommended

to

excessively

hand-optimize

your

code

(for

example,

manually

unrolling

loops).

Unusual

constructs

can

confuse

the

compiler

(and

other

programmers),

and

make

your

application

difficult

to

optimize

for

new

machines.

The

section

Compiler-Friendly

Programming

contains

some

suggested

idioms

and

programming

tips

for

writing

good

optimizable

code.

It

should

be

noted

that

not

all

optimizations

are

beneficial

for

all

applications.

A

trade-off

usually

has

to

be

made

between

an

increase

in

compile

time

accompanied

by

reduced

debugging

capability

and

the

degree

of

optimization

done

by

the

compiler.

The

Philosophy

of

XL

Fortran

Optimizations

XL

Fortran

optimizations

can

be

characterized

according

to

their

aggressiveness,

which

determines

how

much

risk

they

carry.

Only

the

very

highest

optimization

levels

perform

aggressive

optimizations,

and

even

then

the

risk

is

limited

to

slightly

different

results

in

a

small

subset

of

possible

programs.

The

less-aggressive

optimizations

are

intended

to

produce

exactly

the

same

results

as

an

equivalent

unoptimized

program:

©

Copyright

IBM

Corp.

1990,

2004

305

v

Code

that

might

cause

an

exception

is

not

moved

unless

the

exception

is

certain

to

occur

anyway.

In

the

following

example,

the

program

could

evaluate

the

expression

N/K

before

the

loop

because

the

result

is

the

same

for

each

iteration

of

the

loop:

DO

10

J=1,N

...

IF

(K

.NE.

0)

M(J)=N/K

...

10

END

However,

it

is

not

moved

because

K

might

be

0,

and

computing

N/K

results

in

an

exception

where

none

occurs

in

the

unoptimized

program.

v

The

rules

for

IEEE

arithmetic

are

followed

more

closely

than

otherwise.

3

For

example,

X+0.0

is

not

folded

to

X,

because

IEEE

rules

require

that

-0.0+0.0

be

0,

making

X+0

equal

to

-X

in

this

one

case.

v

Floating-point

calculations

are

not

considered

associative.

For

example,

XL

Fortran

evaluates

X*Y*Z

left-to-right,

even

though

the

program

might

already

have

computed

Y*Z,

because

the

results

might

not

be

identical.

As

the

optimization

level

increases,

these

restrictions

are

relaxed

where

there

is

an

opportunity

for

a

performance

improvement:

v

Calculations

like

N/K

in

the

previous

example

and

floating-point

operations

may

be

moved

or

rescheduled

because

they

are

unlikely

to

cause

exceptions.

v

IEEE

conformance

is

not

enforced

for

rules

that

are

unlikely

to

be

needed.

The

sign

of

zero

might

not

be

correctly

preserved,

as

in

the

preceding

example.

However,

this

might

only

be

a

problem

in

an

extreme

case,

such

as

multiplying

the

wrongly

signed

zero

by

infinity

and

ending

up

with

an

infinity

of

the

wrong

sign.

Floating-point

operations

that

might

cause

an

exception

may

be

moved,

rescheduled,

or

processed

so

they

do

not

produce

an

exception.

v

Floating-point

expressions

might

be

reassociated,

so

that

results

might

not

be

identical.

When

you

specify

the

highest

levels

of

optimization,

XL

Fortran

assumes

that

you

are

requesting

speed

even

at

the

possibility

of

some

risk,

as

already

explained.

If

you

want

as

much

optimization

as

possible

without

the

resulting

risk,

you

must

add

the

-qstrict

compiler

option.

The

early

XL

family

of

compilers

adopted

a

conservative

approach

to

optimization.

This

was

intended

to

make

an

optimized

program

work

exactly

the

same

as

an

unoptimized

one,

even

in

extreme

cases

unlikely

to

occur

in

real

life.

For

example,

the

array

reference

A(N)

might

not

be

optimized,

because

N

might

be

a

huge

number

so

that

the

program

causes

a

segmentation

violation

when

the

address

is

referenced,

and

this

behavior

would

be

“preserved”.

With

the

industry

in

general

favoring

a

less

conservative

approach,

XL

Fortran’s

highest

optimization

levels

now

emphasize

performance

over

identical

execution

between

optimized

and

unoptimized

programs.

The

different

levels

of

the

-O

option

incorporate

various

optimization

techniques

that

are

expected

to

improve

performance

for

many

different

kinds

of

programs.

The

specialized

optimization

options,

such

as

-qipa,

-qhot,

and

-Q,

can

improve

performance

in

some

kinds

of

programs

but

degrade

it

in

others.

Therefore,

they

may

require

experimentation

to

determine

whether

they

are

appropriate

for

any

given

program.

3. If

IEEE

compliance

is

a

concern

for

you,

you

should

also

specify

either

the

-qfloat

or

-qstrict

option.

306

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Summary

of

Compiler

Options

for

Optimization

The

following

table

describes

the

compiler

options

that

have

the

most

effect

on

performance.

You

can

experiment

with

different

combinations

of

compiler

options

to

see

which

options

are

most

suitable

for

your

application.

Table

20.

Compiler

options

for

optimization

Option

Overview

-O0

or

-qnoopt

The

compiler

performs

very

limited

optimization.

This

is

the

default

optimization

level.

Before

you

start

optimizing

your

application,

ensure

that

it

compiles

and

executes

successfully

at

optimization

level

0.

-qarch

The

compiler

generates

instructions

for

the

specified

processor

architecture.

This

option

allows

the

compiler

to

take

advantage

of

processor

instructions

that

exist

on

the

specified

architecture

but

do

not

exist

on

other

architectures.

-qtune

The

compiler

optimizes

the

application

for

the

specified

processor

architecture.

The

application

will

run

on

all

of

the

processors

specified

by

the

-qarch

option,

but

its

performance

will

be

tuned

for

the

processors

specified

by

the

-qtune

option.

-O2

The

compiler

performs

basic

optimization.

This

option

provides

a

balance

between

compilation

speed

and

run-time

performance.

-O3

The

compiler

performs

aggressive

optimization,

including

optimizations

that

are

memory-intensive,

compile-time-intensive,

or

both.

-qhot

The

compiler

performs

additional

loop

optimization,

automatic

vectorization,

and

optionally

performs

array

padding.

This

option

is

most

useful

for

scientific

applications

that

contain

numerical

processing.

If

you

want

better

performance

than

-O3

with

less

compile

time

than

-O4,

try

-O3

-qhot.

-qcache

The

compiler

assumes

that

the

processor

will

have

the

specified

cache

configuration.

This

option

can

improve

performance

if

all

of

the

processors

that

execute

the

application

have

the

same

non-default

cache

configuration.

-qipa

The

compiler

performs

interprocedural

analysis

to

optimize

the

entire

application

as

a

unit.

This

option

is

most

useful

for

applications

that

contain

a

large

number

of

frequently

used

routines.

In

many

cases,

this

option

significantly

increases

compilation

time.

-O4

This

is

equivalent

to:

-O3

-qipa

-qhot

-qarch=auto

-qtune=auto

-qcache=auto

-O5

This

is

equivalent

to:

-O4

-qipa=level=2

-qpdf1

-qpdf2

The

compiler

uses

profile-directed

feedback

to

optimize

the

application

based

on

an

analysis

of

how

often

your

application

executes

different

sections

of

code.

Choosing

an

Optimization

Level

Optimization

requires

additional

compilation

time,

but

usually

results

in

a

faster

run

time.

XL

Fortran

allows

you

to

select

whether

you

want

optimization

to

be

performed

at

compile

time.

By

default,

the

compiler

performs

very

limited

optimization

(-O0

or

-qnoopt).

To

enable

compiler

optimization,

specify

the

-O

compiler

option

with

an

optional

digit

that

signifies

the

level.

The

following

table

summarizes

compiler

behavior

at

each

optimization

level.

Optimizing

XL

Fortran

Programs

307

Optimization

levels

Option

Behavior

-qnoopt/-O0

Fast

compilation,

debuggable

code,

conserved

program

semantics.

-O2

Comprehensive

low-level

optimization;

partial

debugging

support.

(This

is

the

same

as

specifying

-O.)

-O3

More

extensive

optimization;

some

precision

trade-offs.

-O4

and

-O5

Interprocedural

optimization;

loop

optimization;

automatic

machine

tuning.

Optimization

Level

-O2

At

optimization

level

-O2

(same

as

-O),

the

compiler

performs

comprehensive

low-level

optimization,

which

includes

the

following

techniques:.

v

Global

assignment

of

user

variables

to

registers,

also

known

as

graph

coloring

register

allocation.

v

Strength

reduction

and

effective

use

of

addressing

modes.

v

Elimination

of

redundant

instructions,

also

known

as

common

subexpression

elimination

v

Elimination

of

instructions

whose

results

are

unused

or

that

cannot

be

reached

by

a

specified

control

flow,

also

known

as

dead

code

elimination.

v

Value

numbering

(algebraic

simplification).

v

Movement

of

invariant

code

out

of

loops.

v

Compile-time

evaluation

of

constant

expressions,

also

known

as

constant

propagation.

v

Control

flow

simplification.

v

Instruction

scheduling

(reordering)

for

the

target

machine.

v

Loop

unrolling

and

software

pipelining.

Minimal

debugging

information

at

optimization

level

-O2

consists

of

the

following

behaviors:

v

Externals

and

parameter

registers

are

visible

at

procedure

boundaries,

which

are

the

entrance

and

exit

to

a

procedure.

You

can

look

at

them

if

you

set

a

breakpoint

at

the

entry

to

a

procedure.

However,

function

inlining

with

-Q

can

eliminate

these

boundaries

and

this

visibility.

This

can

also

happen

when

the

compiler

inlines

very

small

functions.

v

The

SNAPSHOT

directive

creates

additional

program

points

for

storage

visibility

by

flushing

registers

to

memory.

This

allows

you

to

view

and

modify

the

values

of

any

local

or

global

variable,

or

of

any

parameter

in

your

program.

You

can

set

a

breakpoint

at

the

SNAPSHOT

and

look

at

that

particular

area

of

storage

in

a

debugger.

v

The

-qkeepparm

option

forces

parameters

to

memory

on

entry

to

a

procedure

so

that

they

can

be

visible

in

a

stack

trace.

Optimization

Level

-O3

At

optimization

level

-O3,

the

compiler

performs

more

extensive

optimization

than

at

-O2.

The

optimizations

may

be

broadened

or

deepened

in

the

following

ways:

v

Deeper

inner

loop

unrolling.

v

Better

loop

scheduling.

v

Increased

optimization

scope,

typically

to

encompass

a

whole

procedure.

v

Specialized

optimizations

(those

that

might

not

help

all

programs).

v

Optimizations

that

require

large

amounts

of

compile

time

or

space.

v

Implicit

memory

usage

limits

are

eliminated

(equivalent

to

compiling

with

-qmaxmem=-1).

308

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Implies

-qnostrict,

which

allows

some

reordering

of

floating-point

computations

and

potential

exceptions.

Due

to

the

implicit

setting

of

-qnostrict,

some

precision

trade-offs

are

made

by

the

compiler,

such

as

the

following:

v

Reordering

of

floating-point

computations.

v

Reordering

or

elimination

of

possible

exceptions

(for

example,

division

by

zero,

overflow).

-O3

optimizations

may:

v

Require

more

machine

resources

during

compilation

v

Take

longer

to

compile

v

Change

the

semantics

of

the

program

slightly

Use

the

-O3

option

where

run-time

performance

is

a

crucial

factor

and

machine

resources

can

accommodate

the

extra

compile-time

work.

The

exact

optimizations

that

are

performed

depend

on

a

number

of

factors:

v

Whether

the

program

can

be

rearranged

and

still

execute

correctly

v

The

relative

benefit

of

each

optimization

v

The

machine

architecture

Getting

the

Most

out

of

-O2

and

-O3

Here

is

a

recommended

approach

to

using

optimization

levels

-O2

and

-O3

v

If

possible,

test

and

debug

your

code

without

optimization

before

using

-O2.

v

Ensure

that

your

code

complies

with

its

language

standard.

Optimizers

assume

and

rely

on

that

fact

that

code

is

standard

conformant.

Code

that

is

even

subtly

non-conformant

can

cause

an

optimizer

to

perform

incorrect

code

transformations.

Ensure

that

subroutine

parameters

comply

with

aliasing

rules.

v

Mark

all

code

that

accesses

or

manipulates

data

objects

by

independent

input/output

processes

and

independent,

asynchronously

interrupting

processes

as

VOLATILE.

For

example,

mark

code

which

accesses

shared

variables

and

pointers

to

shared

variables.

v

Compile

as

much

of

your

code

as

possible

with

-O2.

v

If

you

encounter

problems

with

-O2,

check

the

code

for

any

nonstandard

use

of

aliasing

rules

before

using

the

-qalias=nostd

option.

v

Next,

use

-O3

on

as

much

code

as

possible.

v

If

you

encounter

problems

or

performance

degradations,

consider

using

-qstrict

or

-qcompact

along

with

-O3

where

necessary.

v

If

you

still

have

problems

with

-O3,

switch

to

-O2

for

a

subset

of

files,

but

consider

using

-qmaxmem=-1

or

-qnostrict,

or

both.

v

If

your

code

works

correctly

with

-O2

or

-O3,

consider

additionally

specifying

-qhot

which

can

perform

additional

optimizations,

especially

on

loops.

Trying

-O3

-qhot

prior

to

trying

-O4

or

-O5

can

improve

your

code

without

the

compile-time

overhead

-qipa

can

have

that

is

implied

when

using

-O4

and

-O5.

The

-O4

and

-O5

Options

Optimization

levels

-O4

and

-O5

automatically

activate

several

other

optimization

options.

Optimization

level

-O4

includes:

v

Everything

from

-O3

v

-qhot

v

-qipa

v

-qarch=auto

v

-qtune=auto

Optimizing

XL

Fortran

Programs

309

v

-qcache=auto

Optimization

level

-O5

includes:

v

Everything

from

-O4

v

-qipa=level=2

If

-O5

is

specified

on

the

compile

step,

then

it

should

be

specified

on

the

link

step,

as

well.

Although

the

-qipa

option

is

not

strictly

another

optimization

level,

it

extends

the

optimizations

across

procedures

(even

if

the

procedures

are

in

different

files).

It

enhances

the

effectiveness

of

the

optimizations

that

are

done

by

other

optimization

options,

particularly

-O

(at

any

level)

and

-Q.

Because

it

can

also

increase

compile

time

substantially,

you

may

want

to

use

it

primarily

for

tuning

applications

that

are

already

debugged

and

ready

to

be

used.

If

your

application

contains

a

mixture

of

Fortran

and

C

or

C++

code

compiled

with

IBM

XL

C/C+

compilers,

you

can

achieve

additional

optimization

by

compiling

and

linking

all

your

code

with

the

-O5

option.

Optimizing

for

a

Target

Machine

or

Class

of

Machines

Target

machine

options

are

options

that

instruct

the

compiler

to

generate

code

for

optimal

execution

on

a

given

processor

or

architecture

family.

By

default,

the

compiler

generates

code

that

runs

on

all

supported

systems,

but

perhaps

suboptimally

on

a

given

system.

By

selecting

appropriate

target

machine

options,

you

can

optimize

your

application

to

suit

the

broadest

possible

selection

of

target

processors,

a

range

of

processors

within

a

given

family,

or

a

specific

processor.

The

following

compiler

options

control

optimizations

affecting

individual

aspects

of

the

target

machine.

Target

machine

options

Option

Behavior

-q32

Generates

code

for

a

32-bit

addressing

model

(32-bit

execution

mode).

-q64

Generates

code

for

a

64-bit

addressing

model

(64-bit

execution

mode).

-qarch

Selects

a

family

of

processor

architectures,

or

a

specific

architecture,

for

which

instruction

code

should

be

generated.

-qtune

Biases

optimization

toward

execution

on

a

given

processor,

without

implying

anything

about

the

instruction

set

architecture

to

use

as

a

target.

-qcache

Defines

a

specific

cache

or

memory

geometry.

The

defaults

are

set

through

-qtune.

Selecting

a

predefined

optimization

level

sets

default

values

for

these

individual

options.

Related

Information:

See

“-qarch

Option”

on

page

127,

“-qtune

Option”

on

page

251,

“-qcache

Option”

on

page

137,

and

“Compiling

for

Specific

Architectures”

on

page

39.

Getting

the

Most

out

of

Target

Machine

Options

Try

to

specify

with

-qarch

the

smallest

family

of

machines

possible

that

will

be

expected

to

run

your

code

reasonably

well.

310

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

-qarch=auto

generates

code

that

may

take

advantage

of

instructions

available

only

on

the

compiling

machine

(or

similar

machines).

v

To

get

sqrt

optimization,

you

need

to

specify

-qarch=ppc64grsq

or

another

-qarch

option

that

supports

the

square

root

instruction

set.

v

Specifying

a

-qarch

option

that

is

not

compatible

with

your

hardware,

even

though

your

program

appears

to

work,

may

cause

undefined

behaviour;

the

compiler

may

emit

instructions

not

available

on

that

hardware.

Try

to

specify

with

-qtune

the

machine

where

performance

should

be

best.

If

you

are

not

sure,

let

the

compiler

determine

how

to

best

tune

for

optimization

for

a

given

-qarch

setting.

Before

using

the

-qcache

option,

look

at

the

options

sections

of

the

listing

using

-qlist

to

see

if

the

current

settings

are

satisfactory.

The

settings

appear

in

the

listing

itself

when

the

-qlistopt

option

is

specified.

Modification

of

cache

geometry

may

be

useful

in

cases

where

the

systems

have

configurable

L2

or

L3

cache

options

or

where

the

execution

mode

reduces

the

effective

size

of

a

shared

level

of

cache

(for

example,

two-core-per-chip

SMP

execution

on

POWER4).

If

you

decide

to

use

-qcache,

use

-qhot

or

-qsmp

along

with

it.

Optimizing

Floating-Point

Calculations

Special

compiler

options

exist

for

handling

floating-point

calculations

efficiently.

By

default,

the

compiler

makes

a

trade-off

to

violate

certain

IEEE

floating-point

rules

in

order

to

improve

performance.

For

example,

multiply-add

instructions

are

generated

by

default

because

they

are

faster

and

produce

a

more

precise

result

than

separate

multiply

and

add

instructions.

Floating-point

exceptions,

such

as

overflow

or

division

by

zero,

are

masked

by

default.

If

you

need

to

catch

these

exceptions,

you

have

the

choice

of

enabling

hardware

trapping

of

these

exceptions

or

using

software-based

checking.

The

option

-qflttrap

enables

software-based

checking.

On

the

POWER4,

POWER5,

or

PowerPC

970

processor,

hardware

trapping

is

recommended.

Options

for

handling

floating-point

calcluations

Option

Description

-qfloat

Provides

precise

control

over

the

handling

of

floating-point

calculations.

-qflttrap

Enables

software

checking

of

IEEE

floating-point

exceptions.

This

technique

is

sometimes

more

efficient

than

hardware

checking

because

checks

can

be

executed

less

frequently.

To

understand

the

performance

considerations

for

floating-point

calculations

with

different

combinations

of

compiler

options,

see

“Maximizing

Floating-Point

Performance”

on

page

295

and

“Minimizing

the

Performance

Impact

of

Floating-Point

Exception

Trapping”

on

page

302.

High-order

Transformations

(-qhot)

High-order

transformations

are

optimizations

that

specifically

improve

the

performance

of

loops

and

array

language.

Optimization

techniques

can

include

interchange,

fusion,

and

unrolling

of

loops,

and

reducing

the

generation

of

temporary

arrays.

The

goals

of

these

optimizations

include:

Optimizing

XL

Fortran

Programs

311

v

Reducing

the

costs

of

memory

access

through

the

effective

use

of

caches

and

translation

look-aside

buffers.

v

Overlapping

computation

and

memory

access

through

effective

utilization

of

the

data

prefetching

capabilities

provided

by

the

hardware.

v

Improving

the

utilization

of

processor

resources

through

reordering

and

balancing

the

usage

of

instructions

with

complementary

resource

requirements.

-qhot=vector

is

the

default

when

-qhot

is

specified.

Compiling

with

-qhot=vector

transforms

some

loops

to

exploit

optimized

versions

of

functions

rather

than

the

standard

versions.

The

optimized

functions

reside

in

a

built-in

library

that

includes

functions

and

operations

such

as

reciprocal,

square

root,

and

so

on.

The

optimized

versions

make

different

trade-offs

with

respect

to

precision

versus

performance.

Usage

of

-qstrict

implies

-qhot=novector.

Getting

the

Most

out

of

-qhot

Try

using

-qhot

along

with

-O3

for

all

of

your

code.

(The

compiler

assumes

at

least

-O2

level

for

-qhot.)

It

is

designed

to

have

a

neutral

effect

when

no

opportunities

for

transformation

exist.

v

If

you

encounter

unacceptably

long

compile

times

(this

can

happen

with

complex

loop

nests)

or

if

your

performance

degrades

with

the

use

of

-qhot,

try

using

-qhot=novector,

or

-qstrict

or

-qcompact

along

with

-qhot.

v

If

necessary,

deactivate

-qhot

selectively,

allowing

it

to

improve

some

of

your

code.

Optimizing

Loops

and

Array

Language

The

-qhot

option

does

the

following

transformations

to

improve

the

performance

of

loops,

array

language,

and

memory

management:

v

Scalar

replacement,

loop

blocking,

distribution,

fusion,

interchange,

reversal,

skewing,

and

unrolling

v

Reducing

generation

of

temporary

arrays

It

requires

at

least

level

2

of

-O.

The

-C

option

inhibits

it.

If

you

have

SMP

hardware,

you

can

enable

automatic

parallelization

of

loops

by

specifying

the

-qsmp

option.

This

optimization

includes

explicitly

coded

DO

loops

as

well

as

DO

loops

that

are

generated

by

the

compiler

for

array

language

(WHERE,

FORALL,

array

assignment,

and

so

on).

The

compiler

can

only

parallelize

loops

that

are

independent

(each

iteration

can

be

computed

independently

of

any

other

iteration).

One

case

where

the

compiler

will

not

automatically

parallelize

loops

is

where

the

loops

contain

I/O,

because

doing

so

could

lead

to

unexpected

results.

In

this

case,

by

using

the

PARALLEL

DO

or

work-sharing

DO

directive,

you

can

advise

the

compiler

that

such

a

loop

can

be

safely

parallelized.

However,

the

type

of

I/O

must

be

one

of

the

following:

v

Direct-access

I/O

where

each

iteration

writes

to

or

reads

from

a

different

record

v

Sequential

I/O

where

each

iteration

writes

to

or

reads

from

a

different

unit

v

Stream-access

I/O

where

each

iteration

uses

the

POS=

specifier

to

write

to,

or

read

from,

a

different

part

of

the

file.

v

Stream-access

I/O

where

each

iteration

writes

to,

or

reads

from,

a

different

unit.

For

more

details,

refer

to

the

description

of

the

PARALLEL

DO

or

work-sharing

DO

directive

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

You

can

use

the

-qhot

and

-qsmp

options

on:

v

Programs

with

performance

bottlenecks

that

are

caused

by

loops

and

structured

memory

accesses

312

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Programs

that

contain

significant

amounts

of

array

language

(which

can

be

optimized

in

the

same

ways

as

FORTRAN

77

loops

for

array

operations)

Cost

Model

for

Loop

Transformations

The

loop

transformations

performed

by

the

-qhot

option

are

controlled

by

a

set

of

assumptions

about

the

characteristics

of

typical

loops

and

the

costs

(in

terms

of

registers

used

and

potential

delays

introduced)

of

performing

particular

transformations.

The

cost

model

takes

into

consideration:

v

The

number

of

available

registers

and

functional

units

that

the

processor

has

v

The

configuration

of

cache

memory

in

the

system

v

The

number

of

iterations

of

each

loop

v

The

need

to

make

conservative

assumptions

to

ensure

correct

results

When

the

compiler

can

determine

information

precisely,

such

as

the

number

of

iterations

of

a

loop,

it

uses

this

information

to

improve

the

accuracy

of

the

cost

model

at

that

location

in

the

program.

If

it

cannot

determine

the

information,

the

compiler

relies

on

the

default

assumptions

of

the

cost

model.

You

can

change

these

default

assumptions,

and

thus

influence

how

the

compiler

optimizes

loops,

by

specifying

compiler

options:

v

-qassert=nodeps

asserts

that

none

of

the

loops

in

the

files

being

compiled

have

dependencies

that

extend

from

one

iteration

to

any

other

iteration

within

the

same

loop.

This

is

known

as

a

loop-carried

dependency.

If

you

can

assert

that

the

computations

performed

during

iteration

n

do

not

require

results

that

are

computed

during

any

other

iteration,

the

compiler

is

better

able

to

rearrange

the

loops

for

efficiency.

v

-qassert=itercnt=n

asserts

that

a

“typical”

loop

in

the

files

that

you

are

compiling

will

iterate

approximately

n

times.

If

this

is

not

specified,

the

assumption

is

that

loops

iterate

approximately

1024

times.

The

compiler

uses

this

information

to

assist

in

transformations

such

as

putting

a

high-iteration

loop

inside

a

low-iteration

one.

It

is

not

crucial

to

get

the

value

exactly

right,

and

the

value

does

not

have

to

be

accurate

for

every

loop

in

the

file.

This

value

is

not

used

if

either

of

the

following

conditions

is

true:

–

The

compiler

can

determine

the

exact

iteration

count.

–

You

specified

the

ASSERT(ITERCNT(n))

directive.
Some

of

the

loop

transformations

only

speed

up

loops

that

iterate

many

times.

For

programs

with

many

such

loops

or

for

programs

whose

hotspots

and

bottlenecks

are

high-iteration

loops,

specify

a

large

value

for

n.

A

program

might

contain

a

variety

of

loops,

some

of

which

are

speeded

up

by

these

options

and

others

unaffected

or

even

slowed

down.

Therefore,

you

might

want

to

determine

which

loops

benefit

most

from

which

options,

split

some

loops

into

different

files,

and

compile

the

files

with

the

set

of

options

and

directives

that

suits

them

best.

Unrolling

Loops

Loop

unrolling

involves

expanding

the

loop

body

to

do

the

work

of

two,

three,

or

more

iterations,

and

reducing

the

iteration

count

proportionately.

Benefits

to

loop

unrolling

include

the

following:

v

Data

dependence

delays

may

be

reduced

or

eliminated

v

Loads

and

stores

may

be

eliminated

in

successive

loop

iterations

v

Loop

overhead

may

be

reduced

Optimizing

XL

Fortran

Programs

313

Loop

unrolling

also

increases

code

sizes

in

the

new

loop

body,

which

can

increase

register

allocation

and

possibly

cause

register

spilling.

For

this

reason,

unrolling

sometimes

does

not

improve

performance.

Related

Information:

See

“-qunroll

Option”

on

page

255.

Describing

the

Hardware

Configuration

The

-qtune

setting

determines

the

default

assumptions

about

the

number

of

registers

and

functional

units

in

the

processor.

For

example,

when

tuning

loops

for

execution

on

a

Power2

architecture,

-qtune=pwr2

may

cause

the

compiler

to

unroll

most

of

the

inner

loops

to

a

depth

of

two

to

take

advantage

of

the

extra

arithmetic

units.

The

-qcache

setting

determines

the

blocking

factor

that

the

compiler

uses

when

it

blocks

loops.

The

more

cache

memory

that

is

available,

the

larger

the

blocking

factor.

Efficiency

of

Different

Array

Forms

In

general,

operations

on

arrays

with

constant

or

adjustable

bounds,

assumed-size

arrays,

and

pointee

arrays

require

less

processing

than

those

on

automatic,

assumed-shape,

or

deferred-shape

arrays

and

are

thus

likely

to

be

faster.

Reducing

Use

of

Temporary

Arrays

If

your

program

uses

array

language

but

never

performs

array

assignments

where

the

array

on

the

left-hand

side

of

the

expression

overlaps

the

array

on

the

right-hand

side,

specifying

the

option

-qalias=noaryovrlp

can

improve

performance

by

reducing

the

use

of

temporary

array

objects.

The

-qhot

option

can

also

eliminate

many

temporary

arrays.

Array

Padding

Because

of

the

implementation

of

the

XL

Fortran-supported

chip

target

cache

architectures,

array

dimensions

that

are

powers

of

2

can

lead

to

decreased

cache

utilization.

The

optional

arraypad

suboption

of

the

-qhot

option

permits

the

compiler

to

increase

the

dimensions

of

arrays

where

doing

so

might

improve

the

efficiency

of

array-processing

loops.

If

you

have

large

arrays

with

some

dimensions

(particularly

the

first

one)

that

are

powers

of

2

or

if

you

find

that

your

array-processing

programs

are

slowed

down

by

cache

misses

or

page

faults,

consider

specifying

-qhot=arraypad

or

-qhot=arraypad=n

rather

than

just

-qhot.

The

padding

that

-qhot=arraypad

performs

is

conservative.

It

also

assumes

that

there

are

no

cases

in

the

source

code

(such

as

those

created

by

an

EQUIVALENCE

statement)

where

storage

elements

have

a

relationship

that

is

broken

by

padding.

You

can

also

manually

pad

array

dimensions

if

you

determine

that

doing

so

does

not

affect

the

program’s

results.

The

additional

storage

taken

up

by

the

padding,

especially

for

arrays

with

many

dimensions,

might

increase

the

storage

overhead

of

the

program

to

the

point

where

it

slows

down

again

or

even

runs

out

of

storage.

For

more

information,

see

“-qhot

Option”

on

page

171.

314

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Profile-directed

Feedback

(PDF)

Profile-directed

feedback

is

a

two-stage

compilation

process

that

lets

you

provide

the

compiler

with

data

characteristic

of

typical

program

behavior.

An

instrumented

executable

is

run

in

a

number

of

different

scenarios

for

an

arbitrary

amount

of

time,

producing

as

a

side

effect

a

profile

data

file.

A

second

compilation

using

the

profile

data

produces

an

optimized

executable.

PDF

should

be

used

mainly

on

code

that

has

rarely

executed

conditional

error

handling

or

instrumentation.

The

technique

has

a

neutral

effect

in

the

absence

of

firm

profile

information,

but

is

not

recommended

if

insufficient

or

uncharacteristic

data

is

all

that

is

available.

The

following

diagram

illustrates

the

PDF

process.

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

The

two

stages

of

the

process

are

controlled

by

the

compiler

options

-qpdf1

and

-qpdf2.

Stage

1

is

a

regular

compilation

using

an

arbitrary

set

of

optimization

options

and

-qpdf1,

that

produces

an

executable

or

shared

object

that

can

be

run

in

a

number

of

different

scenarios

for

an

arbitrary

amount

of

time.

Stage

2

is

a

recompilation

using

the

same

options,

except

-qpdf2

is

used

instead

of

-qpdf1,

during

which

the

compiler

consumes

previously

collected

data

for

the

purpose

of

path-biased

optimization.

Using

Profile-directed

Feedback

(PDF)

You

can

optimize

an

application

based

on

an

analysis

of

how

often

it

executes

different

sections

of

code,

as

follows:

1.

Compile

the

application

with

-qpdf1.

2.

Run

the

application

using

a

typical

data

set

or

several

typical

data

sets.

When

the

application

exits,

it

writes

profiling

information

in

the

PDF

file.

3.

Compile

the

application

with

-qpdf2.

If

you

want

to

see

which

functions

are

used

the

most

often,

do

the

following:

1.

Compile

the

application

with

-qpdf1

-qshowpdf.

2.

Run

the

application

using

a

typical

data

set

or

several

typical

data

sets.

The

application

writes

more

detailed

profiling

information

in

the

PDF

file.

3.

Use

the

showpdf

utility

to

view

the

information

in

the

PDF

file.

You

can

take

more

control

of

the

PDF

file

generation,

as

follows:

1.

Compile

the

application

with

-qpdf1.

Optimizing

XL

Fortran

Programs

315

2.

Run

the

application

using

a

typical

data

set

or

several

typical

data

sets.

This

produces

a

PDF

file

in

the

current

directory.

3.

Copy

the

application

to

another

directory

and

run

it

again.

This

produces

a

PDF

file

in

the

second

directory.

4.

Repeat

the

previous

step

as

often

as

you

want.

5.

Use

the

mergepdf

utility

to

combine

the

PDF

files

into

one

PDF

file.

For

example,

if

you

produce

three

PDF

files

that

represent

usage

patterns

that

will

occur

53%,

32%,

and

15%

of

the

time

respectively,

you

can

use

this

command:

mergepdf

-r

53

path1

-r

32

path2

-r

15

path3

6.

Compile

the

application

with

-qpdf2.

To

erase

the

information

in

the

PDF

directory,

use

the

cleanpdf

or

resetpdf

utility.

Optimizing

Conditional

Branching

The

-qpdf

option

helps

to

fine-tune

the

areas

around

conditional

branches

so

that

the

default

choices

correspond

to

the

most

likely

execution

paths.

Sometimes

instructions

from

the

more

likely

execution

path

run

before

the

branch,

in

parallel

with

other

instructions

so

that

there

is

no

slowdown.

Because

the

-qpdf

option

requires

some

extra

compilation

overhead

and

sample

execution

that

uses

representative

data,

you

should

use

it

mainly

near

the

end

of

the

development

cycle.

Related

Information:

See

“-qpdf

Option”

on

page

210.

Interprocedural

Analysis

(-qipa)

Interprocedural

analysis

(IPA)

enables

the

compiler

to

optimize

across

different

files

(whole-program

analysis),

and

can

result

in

significant

performance

improvements.

Interprocedural

analysis

can

be

specified

on

the

compile

step

only,

or

on

both

compile

and

link

steps

(whole

program

mode).

Whole

program

mode

expands

the

scope

of

optimization

to

an

entire

program

unit,

which

can

be

an

executable

or

shared

object.

Whole

program

IPA

analysis

can

consume

significant

amounts

of

memory

and

time

when

compiling

or

linking

large

programs.

IPA

is

enabled

by

the

-qipa

option.

A

summary

of

the

effects

of

the

most

commonly

used

suboptions

follows.

Commonly

used

-qipa

suboptions

Suboption

Behavior

level=0

Program

partioning

and

simple

interprocedural

optimization,

which

consists

of:

v

Automatic

recognition

of

standard

libraries.

v

Localization

of

statically

bound

variables

and

procedures.

v

Partitioning

and

layout

of

procedures

according

to

their

calling

relationships,

which

is

also

referred

to

as

their

call

affinity.

(Procedures

that

call

each

other

frequently

are

located

closer

together

in

memory.)

v

Expansion

of

scope

for

some

optimizations,

notably

register

allocation.

level=1

Inlining

and

global

data

mapping.

Specifically,

v

Procedure

inlining.

316

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Partitioning

and

layout

of

static

data

according

to

reference

affinity.

(Data

that

is

frequently

referenced

together

will

be

located

closer

together

in

memory.)

This

is

the

default

level

when

-qipa

is

specified.

level=2

Global

alias

analysis,

specialization,

interprocedural

data

flow.

v

Whole-program

alias

analysis.

This

level

includes

the

disambiguation

of

pointer

dereferences

and

indirect

function

calls,

and

the

refinement

of

information

about

the

side

effects

of

a

function

call.

v

Intensive

intraprocedural

optimizations.

This

can

take

the

form

of

value

numbering,

code

propagation

and

simplification,

code

motion

into

conditions

or

out

of

loops,

elimination

of

redundancy.

v

Interprocedural

constant

propagation,

dead

code

elimination,

pointer

analysis.

v

Procedure

specialization

(cloning).

inline=inline-options

Provides

precise

user

control

of

inlining.

fine_tuning

Other

values

for

-qipa=

provide

the

ability

to

specify

the

behavior

of

library

code,

tune

program

partioning,

read

commands

from

a

file,

and

so

on.

Getting

the

Most

from

-qipa

It

is

not

necessary

to

compile

everything

with

-qipa,

but

try

to

apply

it

to

as

much

of

your

program

as

possible.

Here

are

some

suggestions.

v

When

specifying

optimization

options

in

a

makefile,

remember

to

use

the

compiler

command

(xlf,

xlf90,

and

so

on)

to

link,

and

to

include

all

compiler

options

on

the

link

step.

v

-qipa

works

when

building

executables

or

shared

objects,

but

always

compile

main

and

exported

functions

with

-qipa.

v

When

compiling

and

linking

separately,

use

-qipa=noobject

on

the

compile

step

for

faster

compilation.

v

Ensure

that

there

is

enough

space

in

/tmp

(at

least

200

MB),

or

use

the

TMPDIR

environment

variable

to

specify

a

different

directory

with

sufficient

free

space.

v

The

level

suboption

is

a

throttle.

Try

varying

it

if

link

time

is

too

long.

Compiling

with

-qipa=level=0

can

be

very

beneficial

for

little

additional

link

time.

v

Look

at

the

generated

code

after

compiling

with

-qlist

or

-qipa=list.

If

too

few

or

too

many

functions

are

inlined,

consider

using

-qipa=inline

or

-qipa=noinline.

To

control

inlining

of

a

specific

function,

use

-Q+

and

-Q−.

v

If

your

application

contains

a

mixture

of

Fortran

and

C

or

C++

code

compiled

with

IBM

XL

C/C+

compilers,

you

can

achieve

additional

optimization

by

compiling

all

your

code

with

the

-qipa

option.

Optimizing

Subprogram

Calls

If

a

program

has

many

subprogram

calls,

you

can

use

the

-qipa=inline

option

to

turn

on

inlining,

which

reduces

the

overhead

of

such

calls.

Consider

using

the

-p

or

-pg

option

with

prof

or

gprof,

respectively,

to

determine

which

subprograms

are

called

most

frequently

and

to

list

their

names

on

the

command

line.

To

make

inlining

apply

to

calls

where

the

calling

and

called

subprograms

are

in

different

scopes,

include

the

-qipa

option.

Optimizing

XL

Fortran

Programs

317

#

Let

the

compiler

decide

(relatively

cautiously)

what

to

inline.

xlf95

-O3

-qipa=inline

inline.f

#

Encourage

the

compiler

to

inline

particular

subprograms.

xlf95

-O3

-qipa=inline=called_100_times,called_1000_times

inline.f

#

Explicity

extend

the

inlining

to

calls

across

multiple

files.

xlf95

-O3

-qipa=inline=called_100_times,called_1000_times

-qipa

inline.f

Related

Information:

See

“-Q

Option”

on

page

119

and

“-qipa

Option”

on

page

182.

Finding

the

Right

Level

of

Inlining

Getting

the

right

amount

of

inlining

for

a

particular

program

may

require

some

work

on

your

part.

The

compiler

has

a

number

of

safeguards

and

limits

to

avoid

doing

an

excessive

amount

of

inlining.

Otherwise,

it

might

perform

less

overall

optimization

because

of

storage

constraints

during

compilation,

or

the

resulting

program

might

be

much

larger

and

run

slower

because

of

more

frequent

cache

misses

and

page

faults.

However,

these

safeguards

may

prevent

the

compiler

from

inlining

subprograms

that

you

do

want

inlined.

If

this

happens,

you

will

need

to

do

some

analysis

or

rework

or

both

to

get

the

performance

benefit.

As

a

general

rule,

consider

identifying

a

few

subprograms

that

are

called

most

often,

and

inline

only

those

subprograms.

Some

common

conditions

that

prevent

-qipa=inline

from

inlining

particular

subprograms

are:

v

The

calling

and

called

procedures

are

in

different

scopes.

If

so,

you

can

use

the

-qipa

option

to

enable

cross-file

inlining.

v

After

the

compiler

has

expanded

a

subprogram

by

a

certain

amount

as

a

result

of

inlining,

it

does

not

inline

subsequent

calls

from

that

subprogram.

Again,

there

are

different

limits,

which

depend

on

whether

the

subprogram

being

called

is

named

by

a

-qipa=inline

option.

Consider

an

example

with

three

procedures:

A

is

the

caller,

and

B

and

C

are

at

the

upper

size

limit

for

automatic

inlining.

They

are

all

in

the

same

file,

which

is

compiled

like

this:

xlf

-qipa=inline=c

file.f

The

-qipa=inline

means

that

calls

to

C

are

more

likely

to

be

inlined.

If

B

and

C

were

twice

as

large,

calls

to

B

would

not

be

inlined

at

all,

while

some

calls

to

C

could

still

be

inlined.

Although

these

limits

might

prevent

some

calls

from

A

to

B

or

A

to

C

from

being

inlined,

the

process

starts

over

after

the

compiler

finishes

processing

A.

v

Any

interface

errors,

such

as

different

numbers,

sizes,

or

types

of

arguments

or

return

values,

might

prevent

a

call

from

being

inlined.

To

locate

such

errors,

compile

with

the

-qextchk

option,

or

define

Fortran

90/Fortran

95

interface

blocks

for

the

procedures

being

called.

v

Actual

or

potential

aliasing

of

dummy

arguments

or

automatic

variables

might

prevent

a

procedure

from

being

inlined.

For

example,

inlining

might

not

occur

in

the

following

cases:

–

If

you

compile

the

file

containing

either

the

calling

or

called

procedure

with

the

option

-qalias=nostd

and

there

are

any

arguments

to

the

procedure

being

called

–

If

there

are

more

than

approximately

31

arguments

to

the

procedure

being

called

318

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

–

If

any

automatic

variables

in

the

called

procedures

are

involved

in

an

EQUIVALENCE

statement

–

If

the

same

variable

argument

is

passed

more

than

once

in

the

same

call:

for

example,

CALL

SUB(X,Y,X)

v

Some

procedures

that

use

computed

GO

TO

statements,

where

any

of

the

corresponding

statement

labels

are

also

used

in

an

ASSIGN

statement,

might

not

be

inlined.

To

change

the

size

limits

that

control

inlining,

you

can

specify

-qipa=limit=n,

where

n

is

0

through

9.

Larger

values

allow

more

inlining.

It

is

possible

that

C/C++

functions

can

be

inlined

into

Fortran

programs

and

visa-versa

during

link-time

optimizations.

The

C/C++

code

would

have

to

be

compiled

using

the

IBM

XL

C/C++

compilers

with

-qipa

and

a

compatible

option

set

to

that

used

in

the

XLF

compilation.

Shared-memory

Parallelism

(-qsmp)

Some

IBM

processors

are

capable

of

shared-memory

parallel

processing.

Compile

with

-qsmp

to

generate

the

threaded

code

needed

to

exploit

this

capability.

The

option

implies

a

-O2

optimization

level.

The

default

behavior

for

the

option

without

suboptions

is

to

do

automatic

parallelization

with

optimization.

The

most

commonly

used

-qsmp

suboptions

are

summarized

in

the

following

table.

Commonly

used

-qsmp

suboptions

Suboption

Behavior

auto

Instructs

the

compiler

to

automatically

generate

parallel

code

where

possible

without

user

assistance.

This

option

also

recognizes

all

the

SMP

directives.

omp

Enforces

compliance

with

the

OpenMP

Fortran

API

for

specifying

explicit

parallelism.

Note

that

-qsmp=omp

is

currently

incompatible

with

-qsmp=auto.

opt

Instructs

the

compiler

to

optimize

as

well

as

parallelize.

The

optimization

is

equivalent

to

-O2

–qhot

in

the

absence

of

other

optimization

options.

The

default

setting

of

-qsmp

is

-qsmp=auto:noomp:opt.

suboptions

Other

values

for

the

suboption

provide

control

over

thread

scheduling,

nested

parallelism,

locking,

and

so

on.

Getting

the

Most

out

of

-qsmp

v

Use

-qsmp=omp:noauto

if

you

are

compiling

an

OpenMP

program

and

do

not

want

automatic

parallelization.

By

default,

the

parallelization

performed

is

both

explicit

and

automatic.

v

Before

using

-qsmp

with

automatic

parallelization,

test

your

programs

using

optimization

and

-qhot

in

a

single-threaded

manner.

v

Always

use

the

reentrant

compiler

invocations

(the

_r

command

invocations,

like

xlf_r)

when

using

-qsmp.

v

By

default,

the

runtime

uses

all

available

processors.

Do

not

set

the

XLSMPOPTS=PARTHDS

or

OMP_NUM_THREADS

variables

unless

you

want

to

use

fewer

than

the

number

of

available

processors.

You

might

want

to

set

the

number

of

executing

threads

to

a

small

number

or

to

1

to

ease

debugging.

v

If

you

are

using

a

dedicated

machine

or

node,

consider

setting

the

SPINS

and

YIELDS

variables

(suboptions

of

XLSMPOPTS)

to

0.

Doing

so

prevents

the

operating

system

from

intervening

in

the

scheduling

of

threads

across

synchronization

boundaries

such

as

barriers.

v

When

debugging

an

OpenMP

program,

try

using

-qsmp=noopt

(without

-O)

to

make

the

debugging

information

produced

by

the

compiler

more

precise.

You

Optimizing

XL

Fortran

Programs

319

can

also

use

the

SNAPSHOT

directive

to

create

additional

program

points

for

storage

visibility

by

flushing

registers

to

memory.

Other

Program

Behavior

Options

The

precision

of

compiler

analyses

is

significantly

affected

by

instructions

that

can

read

or

write

memory.

Aliasing

pertains

to

alternate

names

for

things,

which

in

this

context

are

references

to

memory.

A

reference

to

memory

can

be

direct,

as

in

the

case

of

a

named

symbol,

or

indirect,

as

in

the

case

of

a

pointer

or

dummy

argument.

A

function

call

might

also

reference

memory

indirectly.

Apparent

references

to

memory

that

are

false,

that

is,

that

do

not

actually

reference

some

location

assumed

by

the

compiler,

constitute

barriers

to

compiler

analysis.

Fortran

defines

a

rule

that

dummy

argument

references

may

not

overlap

other

dummy

arguments

or

externally

visible

symbols

during

the

execution

of

a

subprogram.

The

compiler

performs

sophisticated

analyses,

attempting

to

refine

the

set

of

possible

aliases

for

pointer

dereferences

and

calls.

However,

a

limited

scope

and

the

absence

of

values

at

compile

time

constrain

the

effectiveness

of

these

analyses.

Increasing

the

optimization

level,

in

particular,

applying

interprocedural

analysis

(that

is,

compiling

with

-qipa),

can

contribute

to

better

aliasing.

Programs

that

violate

language

aliasing

rules,

as

summarized

above,

commonly

execute

correctly

without

optimization

or

with

low

optimization

levels,

but

can

begin

to

fail

when

higher

levels

of

optimization

are

attempted.

The

reason

is

that

more

aggressive

optimizations

take

better

advantage

of

aliasing

information

and

can

therefore

expose

subtly

incorrect

program

semantics.

Options

related

to

these

issues

are

-qstrict

and

-qalias.

Their

behaviors

are

summarized

in

the

table

below.

Program

behavior

options

Option

Description

-qstrict,

-qnostrict

Allows

the

compiler

to

reorder

floating-point

calculations

and

potentially

excepting

instructions.

A

potentially

excepting

instruction

is

one

that

may

raise

an

interrupt

due

to

erroneous

execution

(for

example,

floating-point

overflow,

a

memory

access

violation).

The

default

is

-qstrict

with

-qnoopt

and

-O2;

-qnostrict

with

-O3,

-O4,

and

-O5.

-qalias

Allows

the

compiler

to

assume

that

certain

variables

do

not

refer

to

overlapping

storage.

The

focus

is

on

the

overlap

of

dummy

arguments

and

array

assignments

in

Fortran.

Other

Performance

Options

Options

are

provided

to

control

particular

aspects

of

optimization.

They

are

often

enabled

as

a

group

or

given

default

values

when

a

more

general

optimization

option

is

enabled.

Selected

compiler

options

for

optimizing

performance

Option

Description

320

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

-qcompact

Chooses

reduction

of

final

code

size

over

a

reduction

in

execution

time

when

a

choice

is

necessary.

Can

be

used

to

constrain

-O3

and

higher

optimizations.

-qsmallstack

Instructs

the

compiler

to

limit

the

use

of

stack

storage

in

the

program.

Doing

so

may

increase

heap

usage.

-qunroll

Independently

controls

loop

unrolling.

Is

implicitly

activated

under

-O3

and

higher

optimizations.

-qtbtable

Controls

the

generation

of

traceback

table

information.

-qunwind

Informs

the

compiler

that

the

stack

can

be

unwound

while

a

routine

in

this

compilation

is

active.

In

other

words,

the

compiler

is

informed

that

the

application

may

or

does

rely

on

program

stack

unwinding

mechanisms.

-qnounwind

Informs

the

compiler

that

the

stack

will

not

be

unwound

while

any

routine

in

this

compilation

is

active.

The

-qnounwind

option

enables

optimization

prologue

tailoring,

which

reduces

the

number

of

saves

and

restores

of

nonvolatile

registers.

-qlargepage

Supports

large

16M

pages

in

addition

to

the

default

4K

pages,

to

allow

hardware

prefetching

to

be

done

more

efficiently.

Informs

the

compiler

that

heap

and

static

data

will

be

allocated

from

large

pages

at

execution

time.

Debugging

Optimized

Code

Debugging

optimized

programs

presents

special

problems.

Optimization

may

change

the

sequence

of

operations,

add

or

remove

code,

and

perform

other

transformations

that

make

it

difficult

to

associate

the

generated

code

with

the

original

source

statements.

For

example,

the

optimizer

may

remove

all

stores

to

a

variable

and

keep

it

alive

only

in

registers.

Most

debuggers

are

incapable

of

following

this

and

it

will

appear

as

though

that

variable

is

never

updated.

First

debug

your

program,

then

recompile

it

with

any

optimization

options,

and

test

the

optimized

program

before

placing

the

program

into

production.

If

the

optimized

code

does

not

produce

the

expected

results,

isolate

the

specific

optimization

problems

in

another

debugging

session.

The

following

table

presents

options

that

provide

specialized

information,

which

can

be

helpful

during

the

development

of

optimized

code.

Diagnostic

options

Option

Behavior

-qlist

Instructs

the

compiler

to

emit

an

object

listing.

The

object

listing

includes

hex

and

pseudo-assembly

representations

of

the

generated

instructions,

traceback

tables,

and

text

constants.

-qreport

Instructs

the

compiler

to

produce

a

report

of

the

loop

transformations

it

performed

and

how

the

program

was

parallelized.

The

option

is

enabled

when

-qhot

or

-qsmp

is

specified.

-qinitauto

Instructs

the

compiler

to

emit

code

that

initializes

all

automatic

variables

to

a

given

value.

-qextchk

Generates

additional

symbolic

information

to

allow

the

linker

to

do

Optimizing

XL

Fortran

Programs

321

cross-file

type

checking

of

external

variables

and

functions.

This

option

requires

the

linker

-btypchk

option

to

be

active.

-qipa=list

Instructs

the

compiler

to

emit

an

object

listing

that

provides

information

for

IPA

optimization.

Different

Results

in

Optimized

Programs

Here

are

some

reasons

why

an

optimized

program

might

produce

different

results

from

those

of

an

unoptimized

one:

v

Optimized

code

can

fail

if

a

program

contains

code

that

is

not

valid.

For

example,

failure

can

occur

if

the

program

passes

an

actual

argument

that

also

appears

in

a

common

block

in

the

called

procedure,

or

if

two

or

more

dummy

arguments

are

associated

with

the

same

actual

argument.

v

If

a

program

that

worked

without

optimization

fails

when

compiled

with

it,

check

the

cross-reference

listing

and

the

execution

flow

of

the

program

for

variables

that

are

used

before

they

are

initialized.

Compile

with

the

-qinitauto=hex_value

option

to

try

to

produce

the

incorrect

results

consistently.

For

example,

using

-qinitauto=FF

gives

REAL

and

COMPLEX

variables

an

initial

value

of

″negative

not

a

number″

(-NAN).

Any

operations

on

these

variables

will

also

result

in

NAN

values.

Other

bit

patterns

(hex_value)

may

yield

different

results

and

provide

further

clues

as

to

what

is

going

on.

(Programs

with

uninitialized

variables

may

appear

to

work

properly

when

compiled

without

optimization,

because

of

the

default

assumptions

the

compiler

makes,

but

may

fail

when

compiled

with

optimization.

Similarly,

a

program

may

appear

to

execute

correctly

when

optimized,

but

fails

at

lower

optimization

levels

or

when

run

in

a

different

environment.)

v

Use

with

caution

debugging

techniques

that

rely

on

examining

values

in

storage.

The

compiler

might

have

deleted

or

moved

a

common

expression

evaluation.

It

might

have

assigned

some

variables

to

registers,

so

that

they

do

not

appear

in

storage

at

all.

Related

Information:

See

“-g

Option”

on

page

108,

“-qinitauto

Option”

on

page

177,

and

“Problem

Determination

and

Debugging”

on

page

369.

Compiler-friendly

Programming

Compiler-friendly

programming

idioms

can

be

as

useful

to

performance

as

any

of

the

options

or

directives.

Here

are

some

suggestions.

General

v

Where

possible,

use

command

invocations

like

xlf90

or

xlf95

to

enhance

standards

conformance

and

code

portability.

If

this

is

not

possible,

consider

using

the

-qnosave

option

to

have

all

local

variables

be

automatic;

doing

this

provides

more

opportunities

for

optimization.

v

Use

modules

to

group

related

subroutines

and

functions.

v

Consider

using

the

highly

tuned

MASS

and

ESSL

libraries

rather

than

custom

implementations

or

generic

libraries.

Hand-tuning

v

Do

not

excessively

hand-optimize

your

code.

Unusual

constructs

can

confuse

the

compiler

(and

other

programmers),

and

make

your

application

difficult

to

optimize

for

new

machines.

v

Do

limited

hand

tuning

of

small

functions

by

inlining.

322

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Avoid

breaking

your

program

into

too

many

small

functions

as

this

can

increase

the

percentage

of

time

the

program

spends

in

dealing

with

call

overhead.

If

you

choose

to

use

many

small

functions,

seriously

consider

using

-qipa.

Variables

v

Avoid

unnecessary

use

of

global

variables

and

pointers.

When

using

them

in

a

loop,

load

them

into

a

local

variable

before

the

loop

and

store

them

back

after.

v

Use

the

INTENT

statement

to

describe

usage

of

parameters.

Conserving

storage

v

Use

register-sized

integers

(INTEGER(4)

or

INTEGER(8)

data

type)

for

scalars.

v

Use

the

smallest

floating-point

precision

appropriate

to

your

computation.

Use

the

REAL(16),

or

COMPLEX(32)

data

type

only

when

extremely

high

precision

is

required.

v

When

writing

new

code,

use

module

variables

rather

than

common

blocks

for

global

storage.

v

Use

the

CONTAINS

statement

only

to

share

thread

local

storage.

Pointers

v

Obey

all

language

aliasing

rules.

Try

to

avoid

using

–qalias=nostd.

v

Limit

the

use

of

ALLOCATABLE

arrays

and

POINTER

variables

to

situations

which

demand

dynamic

allocation.

Arrays

v

Use

local

variables

wherever

possible

for

loop

index

variables

and

bounds.

v

Keep

array

index

expressions

as

simple

as

possible.

Where

indexing

needs

to

be

indirect,

consider

using

the

PERMUTATION

directive.

v

When

using

array

assignment

or

WHERE

statements,

pay

close

attention

to

the

generated

code

with

-qlist

or

-qreport.

If

performance

is

inadequate,

consider

using

-qhot

or

rewriting

array

language

in

loop

form.

Optimizing

XL

Fortran

Programs

323

324

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Implementation

Details

of

XL

Fortran

Input/Output

This

section

discusses

XL

Fortran

support

(through

extensions

and

platform-specific

details)

for

the

AIX

file

system.

Related

Information:

See

“-qposition

Option”

on

page

219

and

“Mixed-Language

Input

and

Output”

on

page

346.

Implementation

Details

of

File

Formats

XL

Fortran

implements

files

in

the

following

manner:

Sequential-access

unformatted

files:

An

integer

that

contains

the

length

of

the

record

precedes

and

follows

each

record.

The

length

of

the

integer

is

4

bytes

for

32-bit

applications.

It

is

4

bytes

if

you

set

the

uwidth

run-time

option

to

32

(the

default)

and

it

is

8

bytes

if

you

set

uwidth

to

64

for

64-bit

applications.

Sequential-access

formatted

files:

XL

Fortran

programs

break

these

files

into

records

while

reading,

by

using

each

newline

character

(X'0A')

as

a

record

separator.

On

output,

the

input/output

system

writes

a

newline

character

at

the

end

of

each

record.

Programs

can

also

write

newline

characters

for

themselves.

This

practice

is

not

recommended

because

the

effect

is

that

the

single

record

that

appears

to

be

written

is

treated

as

more

than

one

record

when

being

read

or

backspaced

over.

Direct

access

files:

XL

Fortran

simulates

direct-access

files

with

files

whose

length

is

a

multiple

of

the

record

length

of

the

XL

Fortran

file.

You

must

specify,

in

an

OPEN

statement,

the

record

length

(RECL)

of

the

direct-access

file.

XL

Fortran

uses

this

record

length

to

distinguish

records

from

each

other.

For

example,

the

third

record

of

a

direct-access

file

of

record

length

100

bytes

would

start

at

the

201st

byte

of

the

single

record

of

an

AIX

file

and

end

at

the

300th

byte.

If

the

length

of

the

record

of

a

direct-access

file

is

greater

than

the

total

amount

of

data

you

want

to

write

to

the

record,

XL

Fortran

pads

the

record

on

the

right

with

blanks

(X'20').

Stream-access

unformatted

files:

Unformatted

stream

files

are

viewed

as

a

collection

of

file

storage

units.

In

XL

Fortran,

a

file

storage

unit

is

one

byte.

A

file

connected

for

unformatted

stream

access

has

the

following

properties:

v

The

first

file

storage

unit

has

position

1.

Each

subsequent

file

storage

unit

has

a

position

that

is

one

greater

than

that

of

the

preceding

one.

v

For

a

file

that

can

be

positioned,

file

storage

units

need

not

be

read

or

written

in

the

order

of

their

position.

Any

file

storage

unit

may

be

read

from

the

file

while

it

is

connected

to

a

unit,

provided

that

the

file

storage

unit

has

been

written

since

the

file

was

created,

and

if

a

READ

statement

for

the

connection

is

permitted.

©

Copyright

IBM

Corp.

1990,

2004

325

Stream-access

formatted

files:

A

record

file

connected

for

formatted

stream

access

has

the

following

properties:

v

Some

file

storage

units

may

represent

record

markers.

The

record

marker

is

the

newline

character

(X'0A').

v

The

file

will

have

a

record

structure

in

addition

to

the

stream

structure.

v

The

record

structure

is

inferred

from

the

record

markers

that

are

stored

in

the

file.

v

Records

can

have

any

length

up

to

the

internal

limit

allowed

by

XL

Fortran

(See

Appendix

D,

“XL

Fortran

Internal

Limits,”

on

page

425.)

v

There

may

or

may

not

be

a

record

marker

at

the

end

of

the

file.

If

there

is

no

record

marker

at

the

end

of

the

file,

the

final

record

is

incomplete,

but

not

empty.

A

file

connected

for

formatted

stream

access

has

the

following

properties:

v

The

first

file

storage

unit

has

position

1.

Each

subsequent

file

storage

unit

has

a

position

that

is

greater

than

that

of

the

preceding

one.

Unlike

unformatted

stream

access,

the

positions

of

successive

file

storage

units

are

not

always

consecutive.

v

The

position

of

a

file

connected

for

formatted

stream

access

can

be

determined

by

the

POS=

specifier

in

an

INQUIRE

statement.

v

For

a

file

that

can

be

positioned,

the

file

position

can

be

set

to

a

value

that

was

previously

identified

by

the

POS=

specifier

in

INQUIRE.

File

Names

You

can

specify

file

names

as

either

relative

(such

as

file,

dir/file,

or

../file)

or

absolute

(such

as

/file

or

/dir/file).

The

maximum

length

of

a

file

name

(the

full

path

name)

is

1023

characters,

even

if

you

only

specify

a

relative

path

name

in

the

I/O

statement.

The

maximum

length

of

a

file

name

with

no

path

is

255

characters.

You

must

specify

a

valid

file

name

in

such

places

as

the

following:

v

The

FILE=

specifier

of

the

OPEN

and

INQUIRE

statements

v

INCLUDE

lines

Related

Information:

To

specify

a

file

whose

location

depends

on

an

environment

variable,

you

can

use

the

GETENV

intrinsic

procedure

to

retrieve

the

value

of

the

environment

variable:

character(100)

home,

name

call

getenv(’HOME’,

value=home)

!

Now

home

=

$HOME

+

blank

padding.

!

Construct

the

complete

path

name

and

open

the

file.

name=trim(home)

//

’/remainder/of/path’

open

(unit=10,

file=name)

...

end

Preconnected

and

Implicitly

Connected

Files

Units

0,

5,

and

6

are

preconnected

to

standard

error,

standard

input,

and

standard

output,

respectively,

before

the

program

runs.

All

other

units

can

be

implicitly

connected

when

an

ENDFILE,

PRINT,

READ,

REWIND,

or

WRITE

statement

is

performed

on

a

unit

that

has

not

been

opened.

Unit

n

is

connected

to

a

file

that

is

named

fort.n.

These

files

need

not

exist,

and

XL

Fortran

does

not

create

them

unless

you

use

their

units.

326

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Note:

Because

unit

0

is

preconnected

for

standard

error,

you

cannot

use

it

for

the

following

statements:

CLOSE,

ENDFILE,

BACKSPACE,

REWIND,

and

direct

or

stream

input/output.

You

can

use

it

in

an

OPEN

statement

only

to

change

the

values

of

the

BLANK=,

DELIM=,

or

PAD=

specifiers.

You

can

also

implicitly

connect

units

5

and

6

(and

*)

by

using

I/O

statements

that

follow

a

CLOSE:

WRITE

(6,10)

"This

message

goes

to

stdout."

CLOSE

(6)

WRITE

(6,10)

"This

message

goes

in

the

file

fort.6."

PRINT

*,

"Output

to

*

now

also

goes

in

fort.6."

10

FORMAT

(A)

END

The

FORM=

specifier

of

implicitly

connected

files

has

the

value

FORMATTED

before

any

READ,

WRITE,

or

PRINT

statement

is

performed

on

the

unit.

The

first

such

statement

on

such

a

file

determines

the

FORM=

specifier

from

that

point

on:

FORMATTED

if

the

formatting

of

the

statement

is

format-directed,

list-directed,

or

namelist;

and

UNFORMATTED

if

the

statement

is

unformatted.

Preconnected

files

also

have

FORM=’FORMATTED’,

STATUS=’OLD’,

and

ACTION=’READWRITE’

as

default

specifier

values.

The

other

properties

of

a

preconnected

or

implicitly

connected

file

are

the

default

specifier

values

for

the

OPEN

statement.

These

files

always

use

sequential

access.

If

you

want

XL

Fortran

to

use

your

own

file

instead

of

the

fort.n

file,

you

can

either

specify

your

file

for

that

unit

through

an

OPEN

statement

or

create

a

symbolic

link

before

running

the

application.

In

the

following

example,

there

is

a

symbolic

link

between

myfile

and

fort.10:

ln

myfile

fort.10

When

you

run

an

application

that

uses

the

preconnected

file

fort.10

for

input/output,

XL

Fortran

uses

the

file

myfile

instead.

The

file

fort.10

exists,

but

only

as

a

symbolic

link.

The

following

command

will

remove

the

symbolic

link,

but

will

not

affect

the

existence

of

myfile:

rm

fort.10

File

Positioning

Table

21.

Position

of

the

File

Pointer

When

a

File

Is

Opened

with

No

POSITION=

Specifier

-qposition

suboptions

Implicit

OPEN

Explicit

OPEN

STATUS

=

’NEW’

STATUS

=

’OLD’

STATUS

=

’UNKNOWN’

File

exists

File

does

not

exist

File

exists

File

does

not

exist

File

exists

File

does

not

exist

File

exists

File

does

not

exist

option

not

specified

Start

Start

Error

Start

Start

�1�,

�3�

Error

Start

Start

appendold

�2�

Start

Start

Error

Start

End

Error

Start

Start

appendunknown

Start

Start

Error

Start

Start

�3�

Error

End

Start

appendold

and

appendunknown

Start

Start

Error

Start

End

Error

End

Start

Implementation

Details

of

XL

Fortran

Input/Output

327

The

important

things

to

note

are:

�1�

The

behavior

of

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands

when

you

do

not

specify

an

option

is

different

from

XL

Fortran

Version

2.3

in

this

case.

The

Fortran

90

and

Fortran

95

standards

require

this

behavior.

To

minimize

migration

problems,

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

keep

the

same

default

as

XL

Fortran

Version

2.3

and

append

to

the

end

of

the

file.

Attention:

If

your

program

depends

on

the

old

behavior

to

append

to

the

end

of

an

existing

file

with

STATUS=’OLD’,

you

need

to

use

the

option

-qposition=appendold

or

POSITION=

specifiers

when

making

the

switch

to

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

or

xlf95_r7

command.

Otherwise,

when

you

compile

the

program

with

these

commands

and

run

it,

the

new

data

will

overwrite

the

file

instead

of

appending

to

it.

�2�

-qposition=appendold

produces

the

default

XL

Fortran

Version

2.3

behavior

for

positioning

the

file

pointer.

This

option

is

in

the

configuration-file

stanza

for

the

xlf,

xlf_r,

xlf_r7,

f77,

and

fort77

commands

but

is

not

in

the

configuration-file

stanza

for

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands.

�3�

This

file

position

was

not

possible

in

XL

Fortran

Version

2.3.

Preserving

the

XL

Fortran

Version

2.3

File

Positioning

If

you

are

upgrading

from

XL

Fortran

Version

2.3

and

want

the

file

positioning

to

work

the

same

way

as

before,

note

the

following

guidelines:

v

As

long

as

you

continue

to

use

the

xlf_r,

xlf_r7,

xlf,

f77,

and

fort77

commands,

you

do

not

need

to

make

any

changes.

v

When

you

make

the

transition

to

the

xlf90,

xlf90_r,

xlf90_r7,

xlf95,

xlf95_r,

and

xlf95_r7

commands:

–

Add

-qposition=appendold

for

programs

that

were

previously

compiled

without

any

-qposition

option.

–

Add

-qposition=appendold:appendunknown

for

programs

that

were

previously

compiled

with

-qposition=append.

I/O

Redirection

You

can

use

the

redirection

operator

on

the

command

line

to

redirect

input

to

and

output

from

your

XL

Fortran

program.

How

you

specify

and

use

this

operator

depends

on

which

shell

you

are

running.

Here

is

a

ksh

example:

328

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

You

can

refer

to

the

following

sections

of

the

AIX

Commands

Reference

for

more

information

on

redirection:

v

“Input

and

Output

Redirection

in

the

Korn

Shell

(ksh

Command)”

v

“Input

and

Output

Redirection

in

the

Bourne

Shell

(bsh

Command)”

v

“Input

and

Output

Redirection

in

the

C

Shell

(csh

Command)”

How

XLF

I/O

Interacts

with

Pipes,

Special

Files,

and

Links

You

can

access

regular

operating

system

files

and

blocked

special

files

by

using

sequential-access,

direct-access,

or

stream-access

methods.

You

can

only

access

pseudo-devices,

pipes,

and

character

special

files

by

using

sequential-access

methods,

or

stream-access

without

using

the

POS=

specifier.

When

you

link

files

together,

you

can

use

their

names

interchangeably,

as

shown

in

the

following

example:

OPEN

(4,

FILE="file1")

OPEN

(4,

FILE="link_to_file1",

PAD="NO")

!

Modify

connection

Do

not

specify

the

POSITION=

specifier

as

REWIND

or

APPEND

for

pipes.

REWIND

is

allowed

for

tapes,

but

APPEND

is

not.

To

open

a

tape

file

at

a

specific

location,

use

the

tctl

command

to

position

the

tape

before

running

the

Fortran

program,

and

specify

POSITION=’ASIS’

in

the

program.

Do

not

specify

ACTION=’READWRITE’

for

a

pipe.

Do

not

use

the

BACKSPACE

statement

on

files

that

are

pseudo-devices

or

character

special

files

(such

as

tapes).

Do

not

use

the

REWIND

statement

on

files

that

are

pseudo-devices

or

pipes.

If

used

on

a

tape,

it

rewinds

to

the

beginning

of

the

file,

not

the

beginning

of

the

tape.

$

cat

redirect.f

write

(6,*)

’This

goes

to

standard

output’

write

(0,*)

’This

goes

to

standard

error’

read

(5,*)

i

print

*,i

end

$

xlf95

redirect.f

**

_main

===

End

of

Compilation

1

===

1501-510

Compilation

successful

for

file

redirect.f.

$

#

No

redirection.

Input

comes

from

the

terminal.

Output

goes

to

$

#

the

screen.

$

a.out

This

goes

to

standard

output

This

goes

to

standard

error

4

4

$

#

Create

an

input

file.

$

echo

>stdin

2

$

#

Redirect

each

standard

I/O

stream.

$

a.out

>stdout

2>stderr

<stdin

$

cat

stdout

This

goes

to

standard

output

2

$

cat

stderr

This

goes

to

standard

error

Implementation

Details

of

XL

Fortran

Input/Output

329

Default

Record

Lengths

If

a

pseudo-device,

pipe,

or

character

special

file

is

connected

for

formatted

or

unformatted

sequential

access

with

no

RECL=

specifier,

or

for

formatted

stream

access,

the

default

record

length

is

32

768

rather

than

2

147

483

647,

which

is

the

default

for

sequential-access

files

connected

to

random-access

devices.

(See

the

default_recl

run-time

option.)

In

certain

cases,

the

default

maximum

record

length

for

formatted

files

is

larger,

to

accommodate

programs

that

write

long

records

to

standard

output.

If

a

unit

is

connected

to

a

terminal

for

formatted

sequential

access

and

there

is

no

explicit

RECL=

qualifier

in

the

OPEN

statement,

the

program

uses

a

maximum

record

length

of

2

147

483

646

(2**31-2)

bytes,

rather

than

the

usual

default

of

32

768

bytes.

When

the

maximum

record

length

is

larger,

formatted

I/O

has

one

restriction:

WRITE

statements

that

use

the

T

or

TL

edit

descriptors

must

not

write

more

than

32

768

bytes.

This

is

because

the

unit’s

internal

buffer

is

flushed

each

32

768

bytes,

and

the

T

or

TL

edit

descriptors

will

not

be

able

to

move

back

past

this

boundary.

File

Permissions

A

file

must

have

the

appropriate

permissions

(read,

write,

or

both)

for

the

corresponding

operation

being

performed

on

it.

When

a

file

is

created,

the

default

permissions

(if

the

umask

setting

is

000)

are

both

read

and

write

for

user,

group,

and

other.

You

can

turn

off

individual

permission

bits

by

changing

the

umask

setting

before

you

run

the

program.

Selecting

Error

Messages

and

Recovery

Actions

By

default,

an

XLF-compiled

program

continues

after

encountering

many

kinds

of

errors,

even

if

the

statements

have

no

ERR=

or

IOSTAT=

specifiers.

The

program

performs

some

action

that

might

allow

it

to

recover

successfully

from

the

bad

data

or

other

problem.

To

control

the

behavior

of

a

program

that

encounters

errors,

set

the

XLFRTEOPTS

environment

variable,

which

is

described

in

“Setting

Run-Time

Options”

on

page

51,

before

running

the

program:

v

To

make

the

program

stop

when

it

encounters

an

error

instead

of

performing

a

recovery

action,

include

err_recovery=no

in

the

XLFRTEOPTS

setting.

v

To

make

the

program

stop

issuing

messages

each

time

it

encounters

an

error,

include

xrf_messages=no.

v

To

disallow

XL

Fortran

extensions

to

Fortran

90

at

run

time,

include

langlvl=90std.

To

disallow

XL

Fortran

extensions

to

Fortran

95

at

run

time,

include

langlvl=95std.

To

disallow

XL

Fortran

extensions

to

Fortran

2003

behaviour

at

run

time,

include

langlvl=2003std.

These

settings,

in

conjunction

with

the

-qlanglvl

compiler

option,

can

help

you

locate

extensions

when

preparing

to

port

a

program

to

another

platform.

For

example:

#

Switch

defaults

for

some

run-time

settings.

XLFRTEOPTS="err_recovery=no:cnverr=no"

export

XLFRTEOPTS

If

you

want

a

program

always

to

work

the

same

way,

regardless

of

environment-variable

settings,

or

want

to

change

the

behavior

in

different

parts

of

the

program,

you

can

call

the

SETRTEOPTS

procedure:

330

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

PROGRAM

RTEOPTS

USE

XLFUTILITY

CALL

SETRTEOPTS("err_recovery=no")

!

Change

setting.

...

some

I/O

statements

...

CALL

SETRTEOPTS("err_recovery=yes")

!

Change

it

back.

...

some

more

I/O

statements

...

END

Because

a

user

can

change

these

settings

through

the

XLFRTEOPTS

environment

variable,

be

sure

to

use

SETRTEOPTS

to

set

all

the

run-time

options

that

might

affect

the

desired

operation

of

the

program.

Flushing

I/O

Buffers

To

protect

data

from

being

lost

if

a

program

ends

unexpectedly,

you

can

use

the

FLUSH

statement

or

the

flush_

subroutine

to

write

any

buffered

data

to

a

file.

(The

FLUSH

statement

is

recommended

for

better

portability.)

The

following

example

shows

use

of

the

flush_

subroutine:

USE

XLFUTILITY

PARAMETER

(UNIT=10)

DO

I=1,1000000

WRITE

(10,*)

I

CALL

MIGHT_CRASH

!

If

the

program

ends

in

the

middle

of

the

loop,

some

data

!

may

be

lost.

END

DO

DO

I=1,1000000

WRITE

(10,*)

I

CALL

FLUSH_(UNIT)

CALL

MIGHT_CRASH

!

If

the

program

ends

in

the

middle

of

the

loop,

all

data

written

!

up

to

that

point

will

be

safely

in

the

file.

END

DO

END

Related

Information:

See

“Mixed-Language

Input

and

Output”

on

page

346

and

the

FLUSH

statement

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Choosing

Locations

and

Names

for

Input/Output

Files

If

you

need

to

override

the

default

locations

and

names

for

input/output

files,

you

can

use

the

following

methods

without

making

any

changes

to

the

source

code.

Naming

Files

That

Are

Connected

with

No

Explicit

Name

To

give

a

specific

name

to

a

file

that

would

usually

have

a

name

of

the

form

fort.unit,

you

must

set

the

run-time

option

unit_vars

and

then

set

an

environment

variable

with

a

name

of

the

form

XLFUNIT_unit

for

each

scratch

file.

The

association

is

between

a

unit

number

in

the

Fortran

program

and

a

path

name

in

the

file

system.

For

example,

suppose

that

the

Fortran

program

contains

the

following

statements:

OPEN

(UNIT=1,

FORM=’FORMATTED’,

ACCESS=’SEQUENTIAL’,

RECL=1024)

...

OPEN

(UNIT=12,

FORM=’UNFORMATTED’,

ACCESS=’DIRECT’,

RECL=131072)

...

OPEN

(UNIT=123,

FORM=’UNFORMATTED’,

ACCESS=’SEQUENTIAL’,

RECL=997)

Implementation

Details

of

XL

Fortran

Input/Output

331

XLFRTEOPTS="unit_vars=yes"

#

Allow

overriding

default

names.

XLFUNIT_1="/tmp/molecules.dat"

#

Use

this

named

file.

XLFUNIT_12="../data/scratch"

#

Relative

to

current

directory.

XLFUNIT_123="/home/user/data"

#

Somewhere

besides

/tmp.

export

XLFRTEOPTS

XLFUNIT_1

XLFUNIT_12

XLFUNIT_123

Notes:

1.

The

XLFUNIT_number

variable

name

must

be

in

uppercase,

and

number

must

not

have

any

leading

zeros.

2.

unit_vars=yes

might

be

only

part

of

the

value

for

the

XLFRTEOPTS

variable,

depending

on

what

other

run-time

options

you

have

set.

See

“Setting

Run-Time

Options”

on

page

51

for

other

options

that

might

be

part

of

the

XLFRTEOPTS

value.

3.

If

the

unit_vars

run-time

option

is

set

to

no

or

is

undefined

or

if

the

applicable

XLFUNIT_number

variable

is

not

set

when

the

program

is

run,

the

program

uses

a

default

name

(fort.unit)

for

the

file

and

puts

it

in

the

current

directory.

Naming

Scratch

Files

To

place

all

scratch

files

in

a

particular

directory,

set

the

TMPDIR

environment

variable

to

the

name

of

the

directory.

The

program

then

opens

the

scratch

files

in

this

directory.

You

might

need

to

do

this

if

your

/tmp

directory

is

too

small

to

hold

the

scratch

files.

To

give

a

specific

name

to

a

scratch

file,

you

must

do

the

following:

1.

Set

the

run-time

option

scratch_vars.

2.

Set

an

environment

variable

with

a

name

of

the

form

XLFSCRATCH_unit

for

each

scratch

file.

The

association

is

between

a

unit

number

in

the

Fortran

program

and

a

path

name

in

the

file

system.

In

this

case,

the

TMPDIR

variable

does

not

affect

the

location

of

the

scratch

file.

For

example,

suppose

that

the

Fortran

program

contains

the

following

statements:

OPEN

(UNIT=1,

STATUS=’SCRATCH’,

&

FORM=’FORMATTED’,

ACCESS=’SEQUENTIAL’,

RECL=1024)

...

OPEN

(UNIT=12,

STATUS=’SCRATCH’,

&

FORM=’UNFORMATTED’,

ACCESS=’DIRECT’,

RECL=131072)

...

OPEN

(UNIT=123,

STATUS=’SCRATCH’,

&

FORM=’UNFORMATTED’,

ACCESS=’SEQUENTIAL’,

RECL=997)

XLFRTEOPTS="scratch_vars=yes"

#

Turn

on

scratch

file

naming.

XLFSCRATCH_1="/tmp/molecules.dat"

#

Use

this

named

file.

XLFSCRATCH_12="../data/scratch"

#

Relative

to

current

directory.

XLFSCRATCH_123="/home/user/data"

#

Somewhere

besides

/tmp.

export

XLFRTEOPTS

XLFSCRATCH_1

XLFSCRATCH_12

XLFSCRATCH_123

Notes:

1.

The

XLFSCRATCH_number

variable

name

must

be

in

uppercase,

and

number

must

not

have

any

leading

zeros.

2.

scratch_vars=yes

might

be

only

part

of

the

value

for

the

XLFRTEOPTS

variable,

depending

on

what

other

run-time

options

you

have

set.

See

“Setting

Run-Time

Options”

on

page

51

for

other

options

that

might

be

part

of

the

XLFRTEOPTS

value.

3.

If

the

scratch_vars

run-time

option

is

set

to

no

or

is

undefined

or

if

the

applicable

XLFSCRATCH_number

variable

is

not

set

when

the

program

is

run,

the

program

chooses

a

unique

file

name

for

the

scratch

file

and

puts

it

in

the

directory

named

by

the

TMPDIR

variable

or

in

the

/tmp

directory

if

the

TMPDIR

variable

is

not

set.

332

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Increasing

Throughput

with

Logical

Volume

I/O

and

Data

Striping

For

performance-critical

applications,

the

overhead

of

the

Journaled

File

System

(JFS)

for

I/O

operations

might

slow

down

the

program.

If

your

program

generates

large

scratch

files,

you

might

find

that

I/O

bandwidth

also

limits

its

performance.

Performing

I/O

directly

to

a

logical

volume

rather

than

to

a

file

system

can

eliminate

the

JFS

overhead.

Using

data

striping

on

the

logical

volume

can

further

improve

throughput

or

processor

utilization

or

both.

Related

Information:

Because

data-striped

I/O

runs

much

faster

for

data

items

that

are

aligned

more

strictly

than

normal,

be

sure

to

use

the

“-qalign

Option”

on

page

125

when

compiling

any

programs

that

perform

logical

volume

I/O

or

data

striping.

Implementation

Details

of

XL

Fortran

Input/Output

333

Logical

Volume

I/O

To

use

a

logical

volume

as

a

file,

do

the

following:

v

Set

up

the

logical

volume

with

permissions

that

allow

you

to

read

or

write

it.

v

Specify

the

name

of

the

special

file

(for

example,

/dev/rlv99)

in

the

OPEN

statement.

Attention:

Do

not

perform

this

kind

of

I/O

with

any

logical

volume

that

already

contains

a

file

system;

doing

so

will

destroy

the

file

system.

You

must

also

take

any

precautions

necessary

to

ensure

that

multiple

users

or

programs

do

not

write

to

the

same

logical

volume

or

write

to

a

logical

volume

while

someone

else

is

reading

from

it.

Notes:

1.

A

logical

volume

can

only

be

opened

as

a

single

direct-access

file

with

a

record

length

that

is

a

multiple

of

the

logical

volume’s

sector

size

(usually

512

bytes).

2.

I/O

operations

are

not

guaranteed

to

detect

attempts

to

read

or

write

past

the

end

of

the

logical

volume.

Therefore,

make

sure

that

the

program

keeps

track

of

the

extent

of

the

logical

volume.

The

maximum

amount

of

data

that

can

be

stored

this

way

on

logical

volume

is

the

size

of

the

logical

volume

minus

the

size

of

one

stripe.

The

XL

Fortran

I/O

routines

use

this

stripe

for

bookkeeping.

3.

For

optimal

performance

of

data

striping,

ensure

that

any

data

items

that

you

specified

in

the

read

or

write

lists

for

a

logical

volume

are

aligned

on

64-byte

boundaries.

The

simplest

way

to

ensure

this

alignment

for

large

static

arrays

and

common

blocks

is

to

specify

the

option

-qalign=4k.

4.

Regardless

of

any

STATUS=’SCRATCH’

or

STATUS=’DELETE’

specifiers,

neither

the

data

in

a

logical

volume

nor

the

special

file

in

/dev

is

destroyed

by

an

OPEN

or

CLOSE

statement.

Related

Information:

See

“-qalign

Option”

on

page

125.

Data

Striping

Data

striping

is

primarily

useful

for

increasing

I/O

throughput

for

large,

direct-access

scratch

files.

The

performance

benefit

is

greatest

when

a

program

reads

and

writes

large

objects.

When

you

make

use

of

data

striping,

you

perform

I/O

to

a

logical

volume

as

described

in

“Logical

Volume

I/O”

and

set

up

the

logical

volume

especially

for

high-performance

striped

I/O

through

the

smit

or

mklv

commands.

You

can

then

use

the

technique

that

is

described

in

“Naming

Scratch

Files”

on

page

332

to

place

a

scratch

file

on

a

striped

logical

volume.

For

example,

consider

a

Fortran

program

that

contains

the

following

statements:

OPEN

(UNIT=42,

STATUS=’SCRATCH’,

+

FORM=’UNFORMATTED’,

ACCESS=’DIRECT’,

RECL=131072)

...

OPEN

(UNIT=101,

STATUS=’SCRATCH’,

+

FORM=’UNFORMATTED’,

ACCESS=’DIRECT’,

RECL=131072)

You

could

place

the

scratch

files

for

units

42

and

101

on

the

raw

logical

volumes

/dev/rlv30

and

/dev/rlv31

by

setting

environment

variables

before

running

the

program,

as

follows:

XLFRTEOPTS="scratch_vars=yes"

XLFSCRATCH_42="/dev/rlv30"

XLFSCRATCH_101="/dev/rlv31"

export

XLFRTEOPTS

XLFSCRATCH_42

XLFSCRATCH_101

334

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Related

Information:

AIX

Performance

Management

Guide

discusses

the

performance

of

data

striping.

Asynchronous

I/O

You

may

need

to

use

asynchronous

I/O

for

speed

and

efficiency

in

scientific

programs

that

perform

I/O

for

large

amounts

of

data.

Synchronous

I/O

blocks

the

execution

of

an

application

until

the

I/O

operation

completes.

Asynchronous

I/O

allows

an

application

to

continue

processing

while

the

I/O

operation

is

performed

in

the

background.

You

can

modify

applications

to

take

advantage

of

the

ability

to

overlap

processing

and

I/O

operations.

Multiple

asynchronous

I/O

operations

can

also

be

performed

simultaneously

on

multiple

files

that

reside

on

independent

devices.

For

a

complete

description

of

the

syntax

and

language

elements

that

you

require

to

use

this

feature,

see

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

under

the

topics:

v

INQUIRE

Statement

v

READ

Statement

v

WAIT

Statement

v

WRITE

Statement

Execution

of

an

Asychronous

Data

Transfer

Operation

The

effect

of

executing

an

asynchronous

data

transfer

operation

will

be

as

if

the

following

steps

were

performed

in

the

order

specified,

with

steps

(6)-(9)

possibly

occurring

asynchronously:

1.

Determine

the

direction

of

the

data

transfer.

2.

Identify

the

unit.

3.

Establish

the

format

if

one

is

present.

4.

Determine

whether

an

error

condition,

end-of-file

condition,

or

end-of-record

condition

has

occurred.

5.

Cause

the

variable

that

you

specified

in

the

IOSTAT=

specifier

in

the

data

transfer

statement

to

become

defined.

6.

Position

the

file

before

you

transfer

data.

7.

Transfer

data

between

the

file

and

the

entities

that

you

specified

by

the

input/output

list

(if

any).

8.

Determine

whether

an

error

condition,

end-of-file

condition,

or

end-of-record

condition

has

occurred.

9.

Position

the

file

after

you

transfer

data.

10.

Cause

any

variables

that

you

specified

in

the

IOSTAT=

and

SIZE=

specifiers

in

the

WAIT

statement

to

become

defined.

Usage

You

can

use

Fortran

asynchronous

READ

and

WRITE

statements

to

initiate

asynchronous

data

transfers

in

Fortran.

Execution

continues

after

the

asynchronous

I/O

statement,

regardless

of

whether

the

actual

data

transfer

has

completed.

A

program

may

synchronize

itself

with

a

previously

initiated

asynchronous

I/O

statement

by

using

a

WAIT

statement.

There

are

two

forms

of

the

WAIT

statement:

1.

In

a

WAIT

statement

without

the

DONE=

specifier,

the

WAIT

statement

halts

execution

until

the

corresponding

asynchronous

I/O

statement

has

completed:

integer

idvar

integer,

dimension(1000)::

a

....

Implementation

Details

of

XL

Fortran

Input/Output

335

READ(unit_number,ID=idvar)

a

....

WAIT(ID=idvar)

....

2.

In

a

WAIT

statement

with

the

DONE=

specifier,

the

WAIT

statement

returns

the

completion

status

of

an

asynchronous

I/O

statement:

integer

idvar

logical

done

integer,

dimension(1000)::

a

....

READ(unit_number,ID=idvar)

a

....

WAIT(ID=idvar,

DONE=done)

....

The

variable

you

specified

in

the

DONE=

specifier

is

set

to

″true″

if

the

corresponding

asynchronous

I/O

statement

completes.

Otherwise,

it

is

set

to

″false″.

The

actual

data

transfer

can

take

place

in

the

following

cases:

v

During

the

asynchronous

READ

or

WRITE

statement

v

At

any

time

before

the

execution

of

the

corresponding

WAIT

statement

v

During

the

corresponding

WAIT

statement

Because

of

the

nature

of

asynchronous

I/O,

the

actual

completion

time

of

the

request

cannot

be

predicted.

You

specify

Fortran

asynchronous

READ

and

WRITE

statements

by

using

the

ID=

specifier.

The

value

set

for

the

ID=

specifier

by

an

asynchronous

READ

or

WRITE

statement

must

be

the

same

value

specified

in

the

ID=

specifier

in

the

corresponding

WAIT

statement.

You

must

preserve

this

value

until

the

associated

asynchronous

I/O

statement

has

completed.

The

following

program

shows

a

valid

asynchronous

WRITE

statement:

program

sample0

integer,

dimension(1000)::

a

integer

idvar

a

=

(/(i,i=1,1000)/)

WRITE(10,ID=idvar)

a

WAIT(ID=idvar)

end

The

following

program

is

not

valid,

because

XL

Fortran

destroys

the

value

of

the

asynchronous

I/O

identifier

before

the

associated

WAIT

statement:

program

sample1

integer,

dimension(1000)::

a

integer

idvar

a

=

(/(i,i=1,1000)/)

WRITE(10,ID=idvar)

a

idvar

=

999

!

Valid

id

is

destroyed.

WAIT(ID=idvar)

end

An

application

that

uses

asynchronous

I/O

typically

improves

performance

by

overlapping

processing

with

I/O

operations.

The

following

is

a

simple

example:

program

sample2

integer

(kind=4),

parameter

::

isize=1000000,

icol=5

integer

(kind=4)

::

i,

j,

k

integer

(kind=4),

dimension(icol)

::

handle

336

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

integer

(kind=4),

dimension(isize,icol),

static

::

a,

a1

!

!

Opens

the

file

for

both

synchronous

and

asynchronous

I/O.

!

open(20,form="unformatted",access="direct",

&

status="scratch",

recl=isize*4,asynch="yes")

!

!

This

loop

overlaps

the

initialization

of

a(:,j)

with

!

asynchronous

write

statements.

!

!

NOTE:

The

array

is

written

out

one

column

at

a

time.

!

Since

the

arrays

in

Fortran

are

arranged

in

column

!

major

order,

each

WRITE

statement

writes

out

a

!

contiguous

block

of

the

array.

!

do

200

j

=

1,

icol

a(:,j)

=

(/

(i*j,i=1,isize)

/)

write(20,

id=handle(j),

rec=j)

a(:,j)

200

end

do

!

!

Wait

for

all

writes

to

complete

before

reading.

!

do

300

j

=

1,

icol

wait(id=handle(j))

300

end

do

!

!

Reads

in

the

first

record.

!

read(20,

id=handle(1),

rec=1)

a1(:,1)

do

400

j

=

2,

icol

k

=

j

-

1

!

!

Waits

for

a

previously

initiated

read

to

complete.

!

wait(id=handle(k))

!

!

Initiates

the

next

read

immediately.

!

read(20,

id=handle(j),

rec=j)

a1(:,j)

!

!

While

the

next

read

is

going

on,

we

do

some

processing

here.

!

do

350

i

=

1,

isize

if

(a(i,k)

.ne.

a1(i,k))

then

print

*,

"(",i,",",k,")

&

&

expected

",

a(i,k),

"

got

",

a1(i,k)

end

if

350

end

do

400

end

do

!

!

Finish

the

last

record.

!

wait(id=handle(icol))

do

450

i

=

1,

isize

if

(a(i,icol)

.ne.

a1(i,icol))

then

print

*,

"(",i,",",icol,")

&

&

expected

",

a(i,icol),

"

got

",

a1(i,icol)

end

if

Implementation

Details

of

XL

Fortran

Input/Output

337

450

end

do

close(20)

end

Performance

To

maximize

the

benefits

of

asynchronous

I/O,

you

should

only

use

it

for

large

contiguous

data

items.

It

is

possible

to

perform

asynchronous

I/O

on

a

large

number

of

small

items,

but

the

overall

performance

will

suffer.

This

is

because

extra

processing

overhead

is

required

to

maintain

each

item

for

asynchronous

I/O.

Performing

asynchronous

I/O

on

a

larger

number

of

small

items

is

strongly

discouraged.

The

following

are

two

examples:

1.

WRITE(unit_number,

ID=idvar)

a1(1:100000000:2)

2.

WRITE(unit_number,

ID=idvar)

(a2(i,j),j=1,100000000)

Performing

asynchronous

I/O

on

unformatted

sequential

files

is

less

efficient.

This

is

because

each

record

might

have

a

different

length,

and

these

lengths

are

stored

with

the

records

themselves.

You

should

use

unformatted

direct

access

or

unformatted

stream

access,

if

possible,

to

maximize

the

benefits

of

asynchronous

I/O.

Compiler-Generated

Temporary

I/O

Items

There

are

situations

when

the

compiler

must

generate

a

temporary

variable

to

hold

the

result

of

an

I/O

item

expression.

In

such

cases,

synchronous

I/O

is

performed

on

the

temporary

variable,

regardless

of

the

mode

of

transfer

that

you

specified

in

the

I/O

statement.

The

following

are

examples

of

such

cases:

1.

For

READ,

when

an

array

with

vector

subscripts

appears

as

an

input

item:

a.

integer

a(5),

b(3)

b

=

(/1,3,5/)

read(99,

id=i)

a(b)

b.

real

a(10)

read(99,id=i)

a((/1,3,5/))

2.

For

WRITE,

when

an

output

item

is

an

expression

that

is

a

constant

or

a

constant

of

certain

derived

types:

a.

write(99,id=i)

1000

b.

integer

a

parameter(a=1000)

write(99,id=i)

a

338

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

c.

type

mytype

integer

a

integer

b

end

type

mytype

write(99,id=i)

mytype(4,5)

3.

For

WRITE,

when

an

output

item

is

a

temporary

variable:

a.

write(99,id=i)

99+100

b.

write(99,id=i)

a+b

c.

external

ff

real(8)

ff

write(99,id=i)

ff()

4.

For

WRITE,

when

an

output

item

is

an

expression

that

is

an

array

constructor:

write(99,id=i)

(/1,2,3,4,5/)

5.

For

WRITE,

when

an

output

item

is

an

expression

that

is

a

scalarized

array:

integer

a(5),b(5)

write(99,id=i)

a+b

System

Setup

Before

a

Fortran

application

that

is

using

asynchronous

I/O

can

run

on

an

AIX

system,

you

must

enable

AIX

asynchronous

I/O.

If

you

did

not

enable

AIX

asynchronous

I/O,

a

Fortran

program

using

asynchronous

I/O

statements

cannot

be

loaded.

This

will

result

in

the

following

messages

being

displayed:

Could

not

load

program

asyncio

Symbol

kaio_rdwr

in

ksh

is

undefined

Symbol

listio

in

ksh

is

undefined

Symbol

acancel

in

ksh

is

undefined

Symbol

iosuspend

in

ksh

is

undefined

Error

was:

Exec

format

error

For

information

on

how

to

configure

your

system

for

asynchronous

I/O,

see

″Changing

Attributes

for

Asynchronous

I/O″

in

AIX

Version

4

Kernel

Extensions

and

Device

Support

Programming

Concepts.

If

a

Fortran

program

is

not

using

Fortran

asynchronous

I/O

statements,

it

will

run

regardless

of

the

availability

of

AIX

asynchronous

I/O.

Linking

If

there

are

no

asynchronous

I/O

statements

in

an

application,

there

is

no

change

in

the

way

you

build

an

application.

For

example,

for

dynamic

linking,

you

specify:

xlf95

-o

t

t.f

For

static

linking,

you

specify:

xlf95

-o

t

t.f

-bnso

-bnodelcsect

-bI:/lib/syscalls.exp

If

there

are

asynchronous

I/O

statements

in

an

application,

you

need

additional

command-line

options

for

static

linking.

For

example:

xlf95

-o

t

t.f

-lc

-bnso

-bnodelcsect

\

-bI:/lib/syscalls.exp

-bI:/lib/aio.exp

Note

that

the

additional

options

are

-lc

and

-bI:/lib/aio.exp.

The

following

table

summarizes

the

options

that

you

need

to

bind

applications

in

different

situations:

Implementation

Details

of

XL

Fortran

Input/Output

339

Table

22.

Table

for

Binding

an

Application

Written

Only

in

Fortran

Fortran

program

using

asynchronous

I/O

statements

Type

of

Linking

Yes

No

Dynamic

xlf95

-o

t

t.f

xlf95

-o

t

t.f

Static

xlf95

-o

t

t.f

-bnso

-bnodelcsect

-bI:/lib/syscalls.exp

-lc

-bI:/lib/aio.exp

xlf95

-o

t

t.f

-bnso

-bnodelcsect

-bI:/lib/syscalls.exp

Table

23.

Table

for

Binding

an

Application

Written

in

Both

Fortran

and

C,

Where

the

C

Routines

Call

the

libc

Asynchronous

I/O

Routines

Fortran

program

using

asynchronous

I/O

statements

Type

of

Linking

Yes

No

Dynamic

xlf95

-o

t

t.f

c.o

-lc

xlf95

-o

t

t.f

c.o

-lc

Static

xlf95

-o

t

t.f

c.o

-bnso

-bnodelcsect

-bI:/lib/syscalls.exp

-lc

-bI:/lib/aio.exp

xlf95

-o

t

t.f

c.o

-bnso

-bnodelcsect

-bI:/lib/syscalls.exp

-lc

-bI:/lib/aio.exp

Note:

c.o

is

an

object

file

of

routines

written

in

C.

You

can

bind

an

application

that

uses

asynchronous

I/O

on

a

system

with

AIX

asynchronous

I/O

disabled.

However,

you

must

run

the

resulting

executable

on

a

system

with

AIX

asynchronous

I/O

enabled.

Error

Handling

For

an

asynchronous

data

transfer,

errors

or

end-of-file

conditions

might

occur

either

during

execution

of

the

data

transfer

statement

or

during

subsequent

data

transfer.

If

these

conditions

do

not

result

in

the

termination

of

the

program,

you

can

detect

these

conditions

via

ERR=,

END=

and

IOSTAT=

specifiers

in

the

data

transfer

or

in

the

matching

WAIT

statement.

Execution

of

the

program

terminates

if

an

error

condition

occurs

during

execution

or

during

subsequent

data

transfer

of

an

input/output

statement

that

contains

neither

an

IOSTAT=

nor

an

ERR=

specifier.

In

the

case

of

a

recoverable

error,

if

the

IOSTAT=

and

ERR=

specifiers

are

not

present,

the

program

terminates

if

you

set

the

err_recovery

run-time

option

to

no.

If

you

set

the

err_recovery

run-time

option

to

yes,

recovery

action

occurs,

and

the

program

continues.

If

an

asynchronous

data

transfer

statement

causes

either

of

the

following

events,

a

matching

WAIT

statement

cannot

run,

because

the

ID=

value

is

not

defined:

v

A

branch

to

the

label

that

you

specified

by

ERR=

or

END=

v

The

IOSTAT=

specifier

to

be

set

to

a

non-zero

value

XL

Fortran

Thread-Safe

I/O

Library

The

XL

Fortran

thread-safe

I/O

library

libxlf90_r.a

provides

support

for

parallel

execution

of

Fortran

I/O

statements.

For

Fortran

programs

that

contain

I/O

statements

in

a

parallelized

loop

or

that

create

multiple

threads

and

execute

I/O

340

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

statements

from

different

threads

at

the

same

time,

you

must

use

this

library.

In

other

words,

to

perform

Fortran

I/O

in

parallel,

you

must

link

applications

with

this

library

to

get

expected

results.

However,

note

that

on

AIX

operating

system

levels

Version

4.3

and

higher,

a

link

is

provided

from

the

libxlf90.a

library

to

the

libxlf90_r.a

library.

You

do

not

need

to

link

with

separate

libraries

depending

on

whether

you

are

creating

a

threaded

or

a

non-threaded

application.

XL

Fortran

determines

at

run

time

whether

your

application

is

threaded.

Synchronization

of

I/O

Operations

During

parallel

execution,

multiple

threads

might

perform

I/O

operations

on

the

same

file

at

the

same

time.

If

they

are

not

synchronized,

the

results

of

these

I/O

operations

could

be

shuffled

or

merged

or

both,

and

the

application

might

produce

incorrect

results

or

even

terminate.

The

XL

Fortran

thread-safe

I/O

library

synchronizes

I/O

operations

for

parallel

applications.

It

performs

the

synchronization

within

the

I/O

library,

and

it

is

transparent

to

application

programs.

The

purpose

of

the

synchronization

is

to

ensure

the

integrity

and

correctness

of

each

individual

I/O

operation.

However,

the

thread-safe

I/O

library

does

not

have

control

over

the

order

in

which

threads

execute

I/O

statements.

Therefore,

the

order

of

records

read

in

or

written

out

is

not

predictable

under

parallel

I/O

operations.

Refer

to

“Parallel

I/O

Issues”

for

details.

External

Files:

For

external

files,

the

synchronization

is

performed

on

a

per-unit

basis.

The

XL

Fortran

thread-safe

I/O

library

ensures

that

only

one

thread

can

access

a

particular

logical

unit

to

prevent

several

threads

from

interfering

with

each

other.

When

a

thread

is

performing

an

I/O

operation

on

a

unit,

other

threads

attempting

to

perform

I/O

operations

on

the

same

unit

must

wait

until

the

first

thread

finishes

its

operation.

Therefore,

the

execution

of

I/O

statements

by

multiple

threads

on

the

same

unit

is

serialized.

However,

the

thread-safe

I/O

library

does

not

prevent

threads

from

operating

on

different

logical

units

in

parallel.

In

other

words,

parallel

access

to

different

logical

units

is

not

necessarily

serialized.

Functionality

of

I/O

under

Synchronization:

The

XL

Fortran

thread-safe

I/O

library

sets

its

internal

locks

to

synchronize

access

to

logical

units.

This

should

not

have

any

functional

impact

on

the

I/O

operations

performed

by

a

Fortran

program.

Also,

it

will

not

impose

any

additional

restrictions

to

the

operability

of

Fortran

I/O

statements

except

for

the

use

of

I/O

statements

in

a

signal

handler

that

is

invoked

asynchronously.

Refer

to

“Use

of

I/O

Statements

in

Signal

Handlers”

on

page

343

for

details.

The

Fortran

standard

prohibits

a

function

reference

from

appearing

in

an

expression

anywhere

in

an

I/O

statement

if

such

a

reference

causes

another

I/O

statement

to

run.

This

restriction

still

applies

with

the

XL

Fortran

thread-safe

I/O

library.

Parallel

I/O

Issues

The

order

in

which

parallel

threads

perform

I/O

operations

is

not

predictable.

The

XL

Fortran

thread-safe

I/O

library

does

not

have

control

over

the

ordering.

It

will

allow

whichever

thread

that

executes

an

I/O

statement

on

a

particular

logical

unit

and

obtains

the

lock

on

it

first

to

proceed

with

the

operation.

Therefore,

only

use

parallel

I/O

in

cases

where

at

least

one

of

the

following

is

true:

v

Each

thread

performs

I/O

on

a

predetermined

record

in

direct-access

files.

v

Each

thread

performs

I/O

on

a

different

part

of

a

stream-access

file.

Different

I/O

statements

cannot

use

the

same,

or

overlapping,

areas

of

a

file.

Implementation

Details

of

XL

Fortran

Input/Output

341

v

The

result

of

an

application

does

not

depend

on

the

order

in

which

records

are

written

out

or

read

in.

v

Each

thread

performs

I/O

on

a

different

file.

In

these

cases,

results

of

the

I/O

operations

are

independent

of

the

order

in

which

threads

execute.

However,

you

might

not

get

the

performance

improvements

that

you

expect,

since

the

I/O

library

serializes

parallel

access

to

the

same

logical

unit

from

multiple

threads.

Examples

of

these

cases

are

as

follows:

v

Each

thread

performs

I/O

on

a

pre-determined

record

in

a

direct-access

file:

do

i

=

1,

10

write(4,

’(i4)’,

rec

=

i)

a(i)

enddo

v

Each

thread

performs

I/O

on

a

different

part

of

a

stream-access

file.

Different

I/O

statements

cannot

use

the

same,

or

overlapping,

areas

of

a

file.

do

i

=

1,

9

write(4,

’(i4)’,

pos

=

1

+

5

*

(i

-

1))

a(i)

!

We

use

5

above

because

i4

takes

4

file

storage

!

units

+

1

file

storage

unit

for

the

record

marker.

enddo

v

In

the

case

that

each

thread

operates

on

a

different

file,

since

threads

share

the

status

of

the

logical

units

connected

to

the

files,

the

thread

still

needs

to

obtain

the

lock

on

the

logical

unit

for

either

retrieving

or

updating

the

status

of

the

logical

unit.

However,

the

thread-safe

I/O

library

allows

threads

to

perform

the

data

transfer

between

the

logical

unit

and

the

I/O

list

item

in

parallel.

If

an

application

contains

a

large

number

of

small

I/O

requests

in

a

parallel

region,

you

might

not

get

the

expected

performance

because

of

the

lock

contention.

Consider

the

following

example:

program

example

use

omp_lib

integer,

parameter

::

num_of_threads

=

4,

max

=

5000000

character*10

file_name

integer

i,

file_unit,

thread_id

integer,

dimension(max,

2

*

num_of_threads)

::

aa

call

omp_set_num_threads(num_of_threads)

!$omp

parallel

private(file_name,

thread_id,

file_unit,

i)

shared(aa)

thread_id

=

omp_get_thread_num()

file_name

=

’file_’

file_name(6:6)

=

char(ichar(’0’)

+

thread_id)

file_unit

=

10

+

thread_id

open(file_unit,

file

=

file_name,

status

=

’old’,

action

=

’read’)

do

i

=

1,

max

read(file_unit,

*)

aa(i,

thread_id

*

2

+

1),

aa(i,

thread_id

*

2

+

2)

end

do

close(file_unit)

!$omp

end

parallel

end

The

I/O

library

synchronizes

retrieving

and

updating

the

status

of

the

logical

units

while

performing

data

transfer

in

parallel.

In

order

to

maximize

the

parallelism

the

I/O

library

provides,

it

is

recommanded

to

increase

the

size

of

data

transfer

per

I/O

request.

The

do

loop,

therefore,

should

be

rewritten

as

follows:

342

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

read(file_unit,

*)

a(:,

thread_id

*

2

+

1

:

thread_id

*

2

+

2)

do

i

=

1,

max

!

Do

something

for

each

element

of

array

’aa’.

end

do

v

The

result

does

not

depend

on

the

order

in

which

records

are

written

out

or

read

in:

real

a(100)

do

i

=

1,

10

read(4)

a(i)

enddo

call

qsort_(a)

v

Each

thread

performs

I/O

on

a

different

logical

unit

of

direct

access,

sequential

access,

or

stream

access:

do

i

=

11,

20

write(i,

’(i4)’)

a(i

-

10)

enddo

For

multiple

threads

to

write

to

or

read

from

the

same

sequential-access

file,

or

to

write

to

or

read

from

the

same

stream-access

file

without

using

the

POS=

specifier,

the

order

of

records

written

out

or

read

in

depends

on

the

order

in

which

the

threads

execute

the

I/O

statement

on

them.

This

order,

as

stated

previously,

is

not

predictable.

Therefore,

the

result

of

an

application

could

be

incorrect

if

it

assumes

records

are

sequentially

related

and

cannot

be

arbitrarily

written

out

or

read

in.

For

example,

if

the

following

loop

is

parallelized,

the

numbers

printed

out

will

no

longer

be

in

the

sequential

order

from

1

to

500

as

the

result

of

a

serial

execution:

do

i

=

1,

500

print

*,

i

enddo

Applications

that

depend

on

numbers

being

strictly

in

the

specified

order

will

not

work

correctly.

The

XL

Fortran

run-time

option

multconn=yes

allows

connection

of

the

same

file

to

more

than

one

logical

unit

simultaneously.

Since

such

connections

can

only

be

made

for

reading

(ACCESS=’READ’),

access

from

multiple

threads

to

logical

units

that

are

connected

to

the

same

file

will

produce

predictable

results.

Use

of

I/O

Statements

in

Signal

Handlers

There

are

basically

two

kinds

of

signals

in

the

POSIX

signal

model:

synchronously

and

asynchronously

generated

signals.

Signals

caused

by

the

execution

of

some

code

of

a

thread,

such

as

a

reference

to

an

unmapped,

protected,

or

bad

memory

(SIGSEGV

or

SIGBUS),

floating-point

exception

(SIGFPE),

execution

of

a

trap

instruction

(SIGTRAP),

or

execution

of

illegal

instructions

(SIGILL)

are

said

to

be

synchronously

generated.

Signals

may

also

be

generated

by

events

outside

the

process:

for

example,

SIGINT,

SIGHUP,

SIGQUIT,

SIGIO,

and

so

on.

Such

events

are

referred

to

as

interrupts.

Signals

that

are

generated

by

interrupts

are

said

to

be

asynchronously

generated.

The

XL

Fortran

thread-safe

I/O

library

is

asynchronous

signal

unsafe.

This

means

that

the

XL

Fortran

I/O

statements

cannot

be

used

in

a

signal

handler

that

is

entered

because

of

an

asynchronously

generated

signal.

The

behavior

of

the

system

is

undefined

when

an

XL

Fortran

I/O

statement

is

called

from

a

signal

handler

that

interrupts

an

I/O

statement.

However,

it

is

safe

to

use

I/O

statements

in

signal

handlers

for

synchronous

signals.

Implementation

Details

of

XL

Fortran

Input/Output

343

Sometimes

an

application

can

guarantee

that

a

signal

handler

is

not

entered

asynchronously.

For

example,

an

application

might

mask

signals

except

when

it

runs

certain

known

sections

of

code.

In

such

situations,

the

signal

will

not

interrupt

any

I/O

statements

and

other

asynchronous

signal

unsafe

functions.

Therefore,

you

can

still

use

Fortran

I/O

statements

in

an

asynchronous

signal

handler.

A

much

easier

and

safer

way

to

handle

asynchronous

signals

is

to

block

signals

in

all

threads

and

to

explicitly

wait

(using

sigwait())

for

them

in

one

or

more

separate

threads.

The

advantage

of

this

approach

is

that

the

handler

thread

can

use

Fortran

I/O

statements

as

well

as

other

asynchronous

signal

unsafe

routines.

Asynchronous

Thread

Cancellation

When

a

thread

enables

asynchronous

thread

cancellability,

any

cancellation

request

is

acted

upon

immediately.

The

XL

Fortran

thread-safe

I/O

library

is

not

asynchronous

thread

cancellation

safe.

The

behavior

of

the

system

is

undefined

if

a

thread

is

cancelled

asynchronously

while

it

is

in

the

XL

Fortran

thread-safe

I/O

library.

344

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Interlanguage

Calls

This

section

gives

details

about

performing

interlanguage

calls

from

your

Fortran

program:

that

is,

calling

routines

that

were

written

in

a

language

other

than

Fortran.

It

assumes

that

you

are

familiar

with

the

syntax

of

all

applicable

languages.

Conventions

for

XL

Fortran

External

Names

To

assist

you

in

writing

mixed-language

programs,

XL

Fortran

follows

a

consistent

set

of

rules

when

translating

the

name

of

a

global

entity

into

an

external

name

that

the

linker

can

resolve:

v

Both

the

underscore

(_)

and

the

dollar

sign

($)

are

valid

characters

anywhere

in

names.

Because

names

that

begin

with

an

underscore

are

reserved

for

the

names

of

library

routines,

do

not

use

an

underscore

as

the

first

character

of

a

Fortran

external

name.

To

avoid

conflicts

between

Fortran

and

non-Fortran

function

names,

you

can

compile

the

Fortran

program

with

the

-qextname

option.

This

option

adds

an

underscore

to

the

end

of

the

Fortran

names.

Then

use

an

underscore

as

the

last

character

of

any

non-Fortran

procedures

that

you

want

to

call

from

Fortran.

v

Names

can

be

up

to

250

characters

long.

v

Program

and

symbolic

names

are

interpreted

as

all

lowercase

by

default.

If

you

are

writing

new

non-Fortran

code,

use

all-lowercase

procedure

names

to

simplify

calling

the

procedures

from

Fortran.

You

can

use

the

-U

option

or

the

@PROCESS

MIXED

directive

if

you

want

the

names

to

use

both

uppercase

and

lowercase:

@process

mixed

external

C_Func

!

With

MIXED,

we

can

call

C_Func,

not

just

c_func.

integer

aBc,

ABC

!

With

MIXED,

these

are

different

variables.

common

/xYz/

aBc

!

The

same

applies

to

the

common

block

names.

common

/XYZ/

ABC

!

xYz

and

XYZ

are

external

names

that

are

!

visible

during

linking.

end

v

Names

for

module

procedures

are

formed

by

concatenating

__

(two

underscores),

the

module

name,

IMOD

(for

intrinsc

modules)

or

NMOD

(for

non-intrinsic

modules),

and

the

name

of

the

module

procedure.

For

example,

module

procedure

MYPROC

in

module

MYMOD

has

the

external

name

__mymod_NMOD_myproc.

©

Copyright

IBM

Corp.

1990,

2004

345

v

The

XL

compilers

generate

code

that

uses

main

as

an

external

entry

point

name.

You

can

only

use

main

as

an

external

name

in

these

contexts:

–

A

Fortran

program

or

local-variable

name.

(This

restriction

means

that

you

cannot

use

main

for

the

name

of

an

external

function,

external

subroutine,

block

data

program

unit,

or

common

block.

References

to

such

an

object

use

the

compiler-generated

main

instead

of

your

own.)

–

The

name

of

the

top-level

main

function

in

a

C

program.

–

The

name

of

a

Pascal

program

unit.
v

Some

other

potential

naming

conflicts

may

occur

when

linking

a

program.

For

instructions

on

avoiding

them,

see

“Linking

New

Objects

with

Existing

Ones”

on

page

45

and

“Avoiding

Naming

Conflicts

during

Linking”

on

page

47.

If

you

are

porting

your

application

from

another

system

and

your

application

does

encounter

naming

conflicts

like

these,

you

may

need

to

use

the

“-qextname

Option”

on

page

158.

Or

you

can

use

the

-brename

linker

option

to

rename

the

symbol

if

there

are

not

too

many

names

to

change:

xlf90

-brename:old_name,new_name

interlanguage_calls.f

Mixed-Language

Input

and

Output

To

improve

performance,

the

XL

Fortran

run-time

library

has

its

own

buffers

and

its

own

handling

of

these

buffers.

This

means

that

mixed-language

programs

cannot

freely

mix

I/O

operations

on

the

same

file

from

the

different

languages.

To

maintain

data

integrity

in

such

cases:

v

If

the

file

position

is

not

important,

open

and

explicitly

close

the

file

within

the

Fortran

part

of

the

program

before

performing

any

I/O

operations

on

that

file

from

subprograms

written

in

another

language.

v

To

open

a

file

in

Fortran

and

manipulate

the

open

file

from

another

language,

call

the

flush_

procedure

to

save

any

buffer

for

that

file,

and

then

use

the

getfd

procedure

to

find

the

corresponding

file

descriptor

and

pass

it

to

the

non-Fortran

subprogram.

As

an

alternative

to

calling

the

flush_

procedure,

you

can

use

the

buffering

run-time

option

to

disable

the

buffering

for

I/O

operations.

When

you

specify

buffering=disable_preconn,

XL

Fortran

disables

the

buffering

for

preconnected

units.

When

you

specify

buffering=disable_all,

XL

Fortran

disables

the

buffering

for

all

logical

units.

Note:

After

you

call

flush_

to

flush

the

buffer

for

a

file,

do

not

do

anything

to

the

file

from

the

Fortran

part

of

the

program

except

to

close

it

when

the

non-Fortran

processing

is

finished.

v

If

any

XL

Fortran

subprograms

containing

WRITE

statements

are

called

from

a

non-Fortran

main

program,

explicitly

CLOSE

the

data

file,

or

use

the

flush_

subroutine

in

the

XL

Fortran

subprograms

to

ensure

that

the

buffers

are

flushed.

Alternatively,

you

can

use

the

buffering

run-time

option

to

disable

buffering

for

I/O

operations.

Related

Information:

For

more

information

on

the

flush_

and

getfd

procedures,

see

the

Service

and

Utility

Procedures

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

For

more

information

on

the

buffering

run-time

option,

see

“Setting

Run-Time

Options”

on

page

51.

346

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Mixing

Fortran

and

C++

Most

of

the

information

in

this

section

applies

to

Fortran,

C,

and

Pascal

—

languages

with

similar

data

types

and

naming

schemes.

However,

to

mix

Fortran

and

C++

in

the

same

program,

you

must

add

an

extra

level

of

indirection

and

pass

the

interlanguage

calls

through

C

wrapper

functions.

Because

the

C++

compiler

mangles

the

names

of

some

C++

objects,

you

must

use

the

xlC

command

to

link

the

final

program

and

include

-L

and

-l

options

for

the

XL

Fortran

library

directories

and

libraries

as

shown

in

“Linking

32–Bit

Non-SMP

Object

Files

Using

the

ld

Command”

on

page

44.

program

main

integer

idim,idim1

idim

=

35

idim1=

45

write(6,*)

’Inside

Fortran

calling

first

C

function’

call

cfun(idim)

write(6,*)

’Inside

Fortran

calling

second

C

function’

call

cfun1(idim1)

write(6,*)

’Exiting

the

Fortran

program’

end

Figure

1.

Main

Fortran

Program

That

Calls

C++

(main1.f)

#include

<stdio.h>

#include

"cplus.h"

extern

"C"

void

cfun(int

*idim);

extern

"C"

void

cfun1(int

*idim1);

void

cfun(int

*idim){

printf("%%%Inside

C

function

before

creating

C++

Object\n");

int

i

=

*idim;

junk<int>*

jj=

new

junk<int>(10,30);

jj->store(idim);

jj->print();

printf("%%%Inside

C

function

after

creating

C++

Object\n");

delete

jj;

return;

}

void

cfun1(int

*idim1)

{

printf("%%%Inside

C

function

cfun1

before

creating

C++

Object\n");

int

i

=

*idim1;

temp<double>

*tmp

=

new

temp<double>(40,

50.54);

tmp->print();

printf("%%%Inside

C

function

after

creating

C++

temp

object\n");

delete

tmp;

return;

}

Figure

2.

C

Wrapper

Functions

for

Calling

C++

(cfun.C)

Interlanguage

Calls

347

Compiling

this

program,

linking

it

with

the

xlC

command,

and

running

it

produces

this

output:

Inside

Fortran

calling

first

C

function

%Inside

C

function

before

creating

C++

Object

***Inside

C++

constructor

10

30

35

%Inside

C

function

after

creating

C++

Object

***Inside

C++

Destructor

Inside

Fortran

calling

second

C

function

%Inside

C

function

cfun1

before

creating

C++

Object

***Inside

C++

temp

Constructor

40

50.54

%Inside

C

function

after

creating

C++

temp

object

***Inside

C++

temp

destructor

Exiting

the

Fortran

program

Making

Calls

to

C

Functions

Work

When

you

pass

an

argument

to

a

subprogram

call,

the

usual

Fortran

convention

is

to

pass

the

address

of

the

argument.

Many

C

functions

expect

arguments

to

be

passed

as

values,

however,

not

as

addresses.

For

these

arguments,

specify

them

as

%VAL(argument)

in

the

call

to

C,

as

follows:

MEMBLK

=

MALLOC(1024)

!

Wrong,

passes

the

address

of

the

constant

MEMBLK

=

MALLOC(N)

!

Wrong,

passes

the

address

of

the

variable

MEMBLK

=

MALLOC(%VAL(1024))

!

Right,

passes

the

value

1024

MEMBLK

=

MALLOC(%VAL(N))

!

Right,

passes

the

value

of

the

variable

#include

<iostream.h>

template<class

T>

class

junk

{

private:

int

inter;

T

templ_mem;

T

stor_val;

public:

junk(int

i,T

j):

inter(i),templ_mem(j)

{cout

<<"***Inside

C++

constructor"

<<

endl;}

~junk()

{cout

<<"***Inside

C++

Destructor"

<<

endl;}

void

store(T

*val){

stor_val

=

*val;}

void

print(void)

{cout

<<

inter

<<

"\t"

<<

templ_mem

;

cout

<<"\t"

<<

stor_val

<<

endl;

}};

template<class

T>

class

temp

{

private:

int

internal;

T

temp_var;

public:

temp(int

i,

T

j):

internal(i),temp_var(j)

{cout

<<"***Inside

C++

temp

Constructor"

<<endl;}

~temp()

{cout

<<"***Inside

C++

temp

destructor"

<<endl;}

void

print(void)

{cout

<<

internal

<<

"\t"

<<

temp_var

<<

endl;}};

Figure

3.

C++

Code

Called

from

Fortran

(cplus.h)

348

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

See

“Passing

Arguments

By

Reference

or

By

Value”

on

page

353

and

%VAL

and

%REF

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

more

details.

Passing

Data

From

One

Language

to

Another

The

following

table

shows

the

data

types

available

in

the

XL

Fortran,

Pascal,

and

C

languages.

This

section

shows

how

Fortran

arguments

can

be

passed

by

reference

to

C

programs.

To

use

the

Fortran

2003

Draft

Standard

interoperability

features,

such

as

the

BIND(C)

attribute

and

ISO_C_BINDING

module

support,

see

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Passing

Arguments

between

Languages

Table

24.

Corresponding

Data

Types

in

Fortran,

C,

and

Pascal.

When

calling

Fortran,

the

C

and

Pascal

routines

must

pass

arguments

as

pointers

to

the

types

listed

in

this

table.

XL

Fortran

Data

Types

IBM

C

Data

Types

XL

Pascal

Data

Types

INTEGER(1),

BYTE

signed

char

PACKED

-128..127

INTEGER(2)

signed

short

PACKED

-32768..32767

INTEGER(4)

signed

int

INTEGER

INTEGER(8)

signed

long

long

(see

note

1)

—

REAL,

REAL(4)

float

SHORTREAL

REAL(8),

DOUBLE

PRECISION

double

REAL

REAL(16)

long

double

(see

note

2)

—

COMPLEX,

COMPLEX(4)

structure

of

two

floats

record

of

two

SHORTREALs

COMPLEX(8),

DOUBLE

COMPLEX

structure

of

two

doubles

record

of

two

REALs

COMPLEX(16)

structure

of

two

long

doubles

—

LOGICAL(1)

unsigned

char

PACKED

0..255

LOGICAL(2)

unsigned

short

PACKED

0..65535

LOGICAL(4)

unsigned

int

—

LOGICAL(8)

unsigned

long

long

(see

note

1)

—

CHARACTER

char

CHAR

CHARACTER(n)

char[n]

PACKED

ARRAY[1..n]

OF

CHAR

Integer

POINTER

void

*

POINTER,

or

typed

pointer

such

as

@INTEGER

(see

note

3)

Array

array

ARRAY

Sequence-derived

type

structure

(with

C

-qalign=packed

option)

PACKED

RECORD

Notes:

1.

Requires

the

option

-qlanglvl=extended

in

XL

C

or

-qlonglong

in

C

for

AIX

and

C

Set

++

for

AIX.

These

are

default

options

for

some

compilation

commands

but

not

for

others.

2.

Requires

C

compiler

-qlongdbl

option.

3.

Requires

XL

Pascal

-qptr4

option.

Interlanguage

Calls

349

Notes:

1.

In

interlanguage

communication,

it

is

often

necessary

to

use

the

%VAL

and

%REF

built-in

functions

that

are

defined

in

“Passing

Arguments

By

Reference

or

By

Value”

on

page

353.

2.

C

programs

automatically

convert

float

values

to

double

and

short

integer

values

to

integer

when

calling

an

unprototyped

C

function.

Because

XL

Fortran

does

not

perform

a

conversion

on

REAL(4)

quantities

passed

by

value,

you

should

not

pass

REAL(4)

and

INTEGER(2)

values

as

arguments

to

C

functions

that

you

have

not

declared

with

function

prototypes.

3.

The

Fortran-derived

type,

the

Pascal

RECORD,

and

the

C

structure

must

match

in

the

number,

data

type,

and

length

of

subobjects

to

be

compatible

data

types.

Related

Information:

One

or

more

sample

programs

under

the

directory

/usr/lpp/xlf/samples

illustrate

how

to

call

from

Fortran

to

C.

To

use

the

Fortran

2003

Draft

Standard

interoperability

features

provided

by

XL

Fortran,

see

the

Language

Interoperability

Features

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Passing

Global

Variables

between

Languages

To

access

a

C

data

structure

from

within

a

Fortran

program

or

to

access

a

common

block

from

within

a

C

program,

follow

these

steps:

1.

Create

a

named

common

block

that

provides

a

one-to-one

mapping

of

the

C

structure

members.

If

you

have

an

unnamed

common

block,

change

it

to

a

named

one.

Name

the

common

block

with

the

name

of

the

C

structure.

2.

Declare

the

C

structure

as

a

global

variable

by

putting

its

declaration

outside

any

function

or

inside

a

function

with

the

extern

qualifier.

3.

Compile

the

C

source

file

with

-qalign=packed.

program

cstruct

struct

mystuff

{

real(8)

a,d

double

a;

integer

b,c

int

b,c;

.

double

d;

.

};

common

/mystuff/

a,b,c,d

.

main()

{

.

end

}

If

you

do

not

have

a

specific

need

for

a

named

common

block,

you

can

create

a

sequence-derived

type

with

the

same

one-to-one

mapping

as

a

C

structure

and

pass

it

as

an

argument

to

a

C

function.

You

must

compile

the

C

source

file

with

-qalign=packed.

Common

blocks

that

are

declared

THREADLOCAL

are

thread-specific

data

areas

that

are

dynamically

allocated

by

compiler-generated

code.

A

static

block

is

still

reserved

for

a

THREADLOCAL

common

block,

but

the

compiler

and

the

compiler’s

run-time

environment

use

it

for

control

information.

If

you

need

to

share

THREADLOCAL

common

blocks

between

Fortran

and

C

procedures,

your

C

source

must

be

aware

of

the

implementation

of

the

THREADLOCAL

common

block.

For

more

information,

see

THREADLOCAL

common

blocks,

the

Directives

section

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference,

and

Appendix

A,

“Sample

Fortran

Programs,”

on

page

405.

350

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Common

blocks

that

are

declared

THREADPRIVATE

can

be

accessed

using

a

C

global

variable

that

is

declared

as

THREADPRIVATE,

using

C

for

AIX

4.5

or

later.

Passing

Character

Types

between

Languages

One

difficult

aspect

of

interlanguage

calls

is

passing

character

strings

between

languages.

The

difficulty

is

due

to

the

following

underlying

differences

in

the

way

that

different

languages

represent

such

entities:

v

The

only

character

type

in

Fortran

is

CHARACTER,

which

is

stored

as

a

set

of

contiguous

bytes,

one

character

per

byte.

The

length

is

not

stored

as

part

of

the

entity.

Instead,

it

is

passed

by

value

as

an

extra

argument

at

the

end

of

the

declared

argument

list

when

the

entity

is

passed

as

an

argument.

v

Character

strings

in

C

are

stored

as

arrays

of

the

type

char.

A

null

character

indicates

the

end

of

the

string.

Note:

To

have

the

compiler

automatically

add

the

null

character

to

certain

character

arguments,

you

can

use

the

“-qnullterm

Option”

on

page

206.

v

Pascal’s

character-variable

data

types

are

STRING,

PACKED

ARRAY

OF

CHAR,

GSTRING,

and

PACKED

ARRAY

OF

GCHAR.

The

STRING

data

type

has

a

two-byte

string

length

that

is

usually

aligned

on

a

half-word

boundary

followed

by

a

set

of

contiguous

bytes,

one

character

per

byte.

The

dynamic

length

of

the

string

can

be

determined

using

the

predefined

Pascal

function

LENGTH.

Packed

arrays

of

CHAR,

like

Fortran’s

CHARACTER

type,

are

stored

as

a

set

of

contiguous

bytes,

one

character

per

byte.

If

you

are

writing

both

parts

of

the

mixed-language

program,

you

can

make

the

C

routines

deal

with

the

extra

Fortran

length

argument,

or

you

can

suppress

this

extra

argument

by

passing

the

string

using

the

%REF

function.

If

you

use

%REF,

which

you

typically

would

for

pre-existing

C

routines,

you

need

to

indicate

where

the

string

ends

by

concatenating

a

null

character

to

the

end

of

each

character

string

that

is

passed

to

a

C

routine:

!

Initialize

a

character

string

to

pass

to

C.

character*6

message1

/’Hello\0’/

!

Initialize

a

character

string

as

usual,

and

append

the

null

later.

character*5

message2

/’world’/

!

Pass

both

strings

to

a

C

function

that

takes

2

(char

*)

arguments.

call

cfunc(%ref(message1),

%ref(message2

//

’\0’))

end

For

compatibility

with

C

language

usage,

you

can

encode

the

following

escape

sequences

in

XL

Fortran

character

strings:

Table

25.

Escape

Sequences

for

Character

Strings

Escape

Meaning

\b

Backspace

\f

Form

feed

\n

New-line

\t

Tab

\0

Null

\’

Apostrophe

(does

not

terminate

a

string)

\"

Double

quotation

mark

(does

not

terminate

a

string)

\

\

Backslash

Interlanguage

Calls

351

Table

25.

Escape

Sequences

for

Character

Strings

(continued)

Escape

Meaning

\x

x,

where

x

is

any

other

character

(the

backslash

is

ignored)

If

you

do

not

want

the

backslash

interpreted

as

an

escape

character

within

strings,

you

can

compile

with

the

-qnoescape

option.

Passing

Arrays

between

Languages

Fortran

stores

array

elements

in

ascending

storage

units

in

column-major

order.

C

and

Pascal

store

array

elements

in

row-major

order.

Fortran

and

Pascal

array

indexes

start

at

1,

while

C

array

indexes

start

at

0.

The

following

example

shows

how

a

two-dimensional

array

that

is

declared

by

A(3,2)

is

stored

in

Fortran,

C,

and

Pascal:

Table

26.

Corresponding

Array

Layouts

for

Fortran,

C,

and

Pascal.

The

Fortran

array

reference

A(X,Y,Z)

can

be

expressed

in

C

as

a[Z-1][Y-1][X-1]

and

in

Pascal

as

A[Z,Y,X].

Keep

in

mind

that

although

C

passes

individual

scalar

array

elements

by

value,

it

passes

arrays

by

reference.

Fortran

Element

Name

C

Element

Name

Pascal

Element

Name

Lowest

storage

unit

A(1,1)

A[0][0]

A[1,1]

A(2,1)

A[0][1]

A[1,2]

A(3,1)

A[1][0]

A[2,1]

A(1,2)

A[1][1]

A[2,2]

A(2,2)

A[2][0]

A[3,1]

Highest

storage

unit

A(3,2)

A[2][1]

A[3,2]

To

pass

all

or

part

of

a

Fortran

array

to

another

language,

you

can

use

Fortran

90/Fortran

95

array

notation:

REAL,

DIMENSION(4,8)

::

A,

B(10)

!

Pass

an

entire

4

x

8

array.

CALL

CFUNC(

A

)

!

Pass

only

the

upper-left

quadrant

of

the

array.

CALL

CFUNC(

A(1:2,1:4)

)

!

Pass

an

array

consisting

of

every

third

element

of

A.

CALL

CFUNC(

A(1:4:3,1:8)

)

!

Pass

a

1-dimensional

array

consisting

of

elements

1,

2,

and

4

of

B.

CALL

CFUNC(

B(

(/1,2,4/)

)

)

Where

necessary,

the

Fortran

program

constructs

a

temporary

array

and

copies

all

the

elements

into

contiguous

storage.

In

all

cases,

the

C

routine

needs

to

account

for

the

column-major

layout

of

the

array.

Any

array

section

or

noncontiguous

array

is

passed

as

the

address

of

a

contiguous

temporary

unless

an

explicit

interface

exists

where

the

corresponding

dummy

argument

is

declared

as

an

assumed-shape

array

or

a

pointer.

To

avoid

the

creation

of

array

descriptors

(which

are

not

supported

for

interlanguage

calls)

when

calling

non-Fortran

procedures

with

array

arguments,

either

do

not

give

the

non-Fortran

procedures

any

explicit

interface,

or

do

not

declare

the

corresponding

dummy

arguments

as

assumed-shape

or

pointers

in

the

interface:

352

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

!

This

explicit

interface

must

be

changed

before

the

C

function

!

can

be

called.

INTERFACE

FUNCTION

CFUNC

(ARRAY,

PTR1,

PTR2)

INTEGER,

DIMENSION

(:)

::

ARRAY

!

Change

this

:

to

*.

INTEGER,

POINTER,

DIMENSION

(:)

::

PTR1

!

Change

this

:

to

*

!

and

remove

the

POINTER

!

attribute.

REAL,

POINTER

::

PTR2

!

Remove

this

POINTER

!

attribute

or

change

to

TARGET.

END

FUNCTION

END

INTERFACE

Passing

Pointers

between

Languages

Integer

POINTERs

always

represent

the

address

of

the

pointee

object

and

must

be

passed

by

value:

CALL

CFUNC(%VAL(INTPTR))

Note

that

the

FORTRAN

77

POINTER

extension

from

XL

Fortran

Version

2

is

now

referred

to

as

“integer

POINTER”

to

distinguish

it

from

the

Fortran

90

meaning

of

POINTER.

Fortran

90

POINTERs

can

also

be

passed

back

and

forth

between

languages

but

only

if

there

is

no

explicit

interface

for

the

called

procedure

or

if

the

argument

in

the

explicit

interface

does

not

have

a

POINTER

attribute

or

assumed-shape

declarator.

You

can

remove

any

POINTER

attribute

or

change

it

to

TARGET

and

can

change

any

deferred-shape

array

declarator

to

be

explicit-shape

or

assumed-size.

Because

of

XL

Fortran’s

call-by-reference

conventions,

you

must

pass

even

scalar

values

from

another

language

as

the

address

of

the

value,

rather

than

the

value

itself.

For

example,

a

C

function

passing

an

integer

value

x

to

Fortran

must

pass

&x.

Also,

a

C

function

passing

a

pointer

value

p

to

Fortran

so

that

Fortran

can

use

it

as

an

integer

POINTER

must

declare

it

as

void

**p.

A

C

array

is

an

exception:

you

can

pass

it

to

Fortran

without

the

&

operator.

Passing

Arguments

By

Reference

or

By

Value

To

call

subprograms

written

in

languages

other

than

Fortran

(for

example,

user-written

C

programs,

or

operating

system

routines),

the

actual

arguments

may

need

to

be

passed

by

a

method

different

from

the

default

method

used

by

Fortran.

C

routines,

including

those

in

system

libraries

such

as

libc.a,

require

you

to

pass

arguments

by

value

instead

of

by

reference.

(Although

C

passes

individual

scalar

array

elements

by

value,

it

passes

arrays

by

reference.)

You

can

change

the

default

passing

method

by

using

the

%VAL

and

%REF

built-in

functions

in

the

argument

list

of

a

CALL

statement

or

function

reference.

You

cannot

use

them

in

the

argument

lists

of

Fortran

procedure

references

or

with

alternate

return

specifiers.

%REF

Passes

an

argument

by

reference

(that

is,

the

called

subprogram

receives

the

address

of

the

argument).

It

is

the

same

as

the

default

calling

method

for

Fortran

except

that

it

also

suppresses

the

extra

length

argument

for

character

strings.

%VAL

Passes

an

argument

by

value

(that

is,

the

called

subprogram

receives

an

argument

that

has

the

same

value

as

the

actual

argument,

but

any

change

to

this

argument

does

not

affect

the

actual

argument).

Interlanguage

Calls

353

You

can

use

this

built-in

function

with

actual

arguments

that

are

CHARACTER(1),

BYTE,

logical,

integer,

real,

or

complex

expressions

or

that

are

sequence-derived

type.

Objects

of

derived

type

cannot

contain

pointers,

arrays,

or

character

structure

components

whose

lengths

are

greater

than

one

byte.

You

cannot

use

%VAL

with

actual

arguments

that

are

array

entities,

procedure

names,

or

character

expressions

of

length

greater

than

one

byte.

%VAL

causes

XL

Fortran

to

pass

the

actual

argument

as

32-bit

or

64-bit

intermediate

values.

In

32-bit

Mode

If

the

actual

argument

is

one

of

the

following:

v

An

integer

or

a

logical

that

is

shorter

than

32

bits,

it

is

sign-extended

to

a

32-bit

value.

v

An

integer

or

a

logical

that

is

longer

than

32

bits,

it

is

passed

as

two

32-bit

intermediate

values.

v

Of

type

real

or

complex,

it

is

passed

as

multiple

64-bit

intermediate

values.

v

Of

sequence-derived

type,

it

is

passed

as

multiple

32-bit

intermediate

values.

Byte-named

constants

and

variables

are

passed

as

if

they

were

INTEGER(1).

If

the

actual

argument

is

a

CHARACTER(1),

the

compiler

pads

it

on

the

left

with

zeros

to

a

32-bit

value,

regardless

of

whether

you

specified

the

-qctyplss

compiler

option.

In

64-bit

Mode

If

the

actual

argument

is

one

of

the

following:

v

An

integer

or

a

logical

that

is

shorter

than

64

bits,

it

is

sign-extended

to

a

64-bit

value.

v

Of

type

real

or

complex,

it

is

passed

as

multiple

64-bit

intermediate

values.

v

Of

sequence-derived

type,

it

is

passed

as

multiple

64-bit

intermediate

values.

Byte-named

constants

and

variables

are

passed

as

if

they

were

INTEGER(1).

If

the

actual

argument

is

a

CHARACTER(1),

the

compiler

pads

it

on

the

left

with

zeros

to

a

64-bit

value,

regardless

of

whether

you

specified

the

-qctyplss

compiler

option.

If

you

specified

the

-qautodbl

compiler

option,

any

padded

storage

space

is

not

passed

except

for

objects

of

derived

type.

EXTERNAL

FUNC

COMPLEX

XVAR

IVARB=6

CALL

RIGHT2(%REF(FUNC))

!

procedure

name

passed

by

reference

CALL

RIGHT3(%VAL(XVAR))

!

complex

argument

passed

by

value

CALL

TPROG(%VAL(IVARB))

!

integer

argument

passed

by

value

END

354

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Explicit

Interface

for

%VAL

and

%REF

You

can

specify

an

explicit

interface

for

non-Fortran

procedures

to

avoid

coding

calls

to

%VAL

and

%REF

in

each

argument

list,

as

follows:

INTERFACE

FUNCTION

C_FUNC(%VAL(A),%VAL(B))

!

Now

you

can

code

"c_func(a,b)"

INTEGER

A,B

!

instead

of

END

FUNCTION

C_FUNC

!

"c_func(%val(a),%val(b))".

END

INTERFACE

Returning

Values

from

Fortran

Functions

XL

Fortran

does

not

support

calling

certain

types

of

Fortran

functions

from

non-Fortran

procedures.

If

a

Fortran

function

returns

a

pointer,

array,

or

character

of

nonconstant

length,

do

not

call

it

from

outside

Fortran.

You

can

call

such

a

function

indirectly:

SUBROUTINE

MAT2(A,B,C)

!

You

can

call

this

subroutine

from

C,

and

the

!

result

is

stored

in

C.

INTEGER,

DIMENSION(10,10)

::

A,B,C

C

=

ARRAY_FUNC(A,B)

!

But

you

could

not

call

ARRAY_FUNC

directly.

END

Arguments

with

the

OPTIONAL

Attribute

When

you

pass

an

optional

argument

by

reference,

the

address

in

the

argument

list

is

zero

if

the

argument

is

not

present.

When

you

pass

an

optional

argument

by

value,

the

value

is

zero

if

the

argument

is

not

present.

The

compiler

uses

an

extra

register

argument

to

differentiate

that

value

from

a

regular

zero

value.

If

the

register

has

the

value

1,

the

optional

argument

is

present;

if

it

has

the

value

0,

the

optional

argument

is

not

present.

Related

Information:

See

“Order

of

Arguments

in

Argument

List”

on

page

365.

Arguments

with

the

INTENT

Attribute

Currently,

declaring

arguments

with

the

INTENT

attribute

does

not

change

the

linkage

convention

for

a

procedure.

However,

because

this

part

of

the

convention

is

subject

to

change

in

the

future,

we

recommend

not

calling

from

non-Fortran

procedures

into

Fortran

procedures

that

have

INTENT(IN)

arguments.

Type

Encoding

and

Checking

Run-time

errors

are

hard

to

find,

and

many

of

them

are

caused

by

mismatched

procedure

interfaces

or

conflicting

data

definitions.

Therefore,

it

is

a

good

idea

to

find

as

many

of

these

problems

as

possible

at

compile

or

link

time.

To

store

type

information

in

the

object

file

so

that

the

linker

can

detect

mismatches,

use

the

-qextchk

compiler

option.

Assembler-Level

Subroutine

Linkage

Conventions

The

subroutine

linkage

convention

specifies

the

machine

state

at

subroutine

entry

and

exit,

allowing

routines

that

are

compiled

separately

in

the

same

or

different

languages

to

be

linked.

The

information

on

subroutine

linkage

and

system

calls

in

the

AIX

Commands

Reference

is

the

base

reference

on

this

topic.

You

should

consult

it

for

full

details.

This

section

summarizes

the

information

needed

to

write

mixed-language

Fortran

and

assembler

programs

or

to

debug

at

the

assembler

level,

where

you

need

to

be

concerned

with

these

kinds

of

low-level

details.

Interlanguage

Calls

355

The

system

linkage

convention

passes

arguments

in

registers,

taking

full

advantage

of

the

large

number

of

floating-point

registers

(FPRs)

and

general-purpose

registers

(GPRs)

and

minimizing

the

saving

and

restoring

of

registers

on

subroutine

entry

and

exit.

The

linkage

convention

allows

for

argument

passing

and

return

values

to

be

in

FPRs,

GPRs,

or

both.

The

following

table

lists

floating-point

registers

and

their

functions.

The

floating-point

registers

are

double

precision

(64

bits).

Table

27.

Floating-Point

Register

Usage

across

Calls

Register

Preserved

Across

Calls

Use

0

no

1

no

FP

parameter

1,

function

return

1.

2

no

FP

parameter

2,

function

return

2.

...
...

...

13

no

FP

parameter

13,

function

return

13.

14-31

yes

The

following

table

lists

general-purpose

registers

and

their

functions.

Table

28.

General-Purpose

Register

Usage

across

Calls

Register

Preserved

Across

Calls

Use

0

no

1

yes

Stack

pointer.

2

yes

TOC

pointer.

3

no

1st

word

of

arg

list;

return

value

1.

4

no

2nd

word

of

arg

list;

return

value

2.

...
...

...

10

no

8th

word

of

arg

list;

return

value

8.

11

no

DSA

pointer

to

internal

procedure

(Env).

12

no

13-31

yes

If

a

register

is

not

designated

as

preserved,

its

contents

may

be

changed

during

the

call,

and

the

caller

is

responsible

for

saving

any

registers

whose

values

are

needed

later.

Conversely,

if

a

register

is

supposed

to

be

preserved,

the

callee

is

responsible

for

preserving

its

contents

across

the

call,

and

the

caller

does

not

need

any

special

action.

The

following

table

lists

special-purpose

register

conventions.

Table

29.

Special-Purpose

Register

Usage

across

Calls

Register

Preserved

Across

Calls

Condition

register

Bits

0-7

(CR0,CR1)

Bits

8-22

(CR2,CR3,CR4)

Bits

23-31

(CR5,CR6,CR7)

no

yes

no

Link

register

no

356

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

29.

Special-Purpose

Register

Usage

across

Calls

(continued)

Register

Preserved

Across

Calls

Count

register

no

MQ

register

no

XER

register

no

FPSCR

register

no

The

Stack

The

stack

is

a

portion

of

storage

that

is

used

to

hold

local

storage,

register

save

areas,

parameter

lists,

and

call-chain

data.

The

stack

grows

from

higher

addresses

to

lower

addresses.

A

stack

pointer

register

(register

1)

is

used

to

mark

the

current

“top”

of

the

stack.

A

stack

frame

is

the

portion

of

the

stack

that

is

used

by

a

single

procedure.

The

input

parameters

are

considered

part

of

the

current

stack

frame.

In

a

sense,

each

output

argument

belongs

to

both

the

caller’s

and

the

callee’s

stack

frames.

In

either

case,

the

stack

frame

size

is

best

defined

as

the

difference

between

the

caller’s

stack

pointer

and

the

callee’s.

The

following

diagrams

show

the

storage

maps

of

typical

stack

frames

for

32-bit

and

64-bit

environments.

In

these

diagrams,

the

current

routine

has

acquired

a

stack

frame

that

allows

it

to

call

other

functions.

If

the

routine

does

not

make

any

calls

and

there

are

no

local

variables

or

temporaries,

the

function

need

not

allocate

a

stack

frame.

It

can

still

use

the

register

save

area

at

the

top

of

the

caller’s

stack

frame,

if

needed.

The

stack

frame

is

double-word

aligned.

The

FPR

save

area

and

the

parameter

area

(P1,

P2,

...,

Pn)

are

double-word

aligned.

Other

areas

require

word

alignment

only.

Interlanguage

Calls

357

Run-time

Stack

for

32-bit

Environment

Low

|

|

Stack

grows

at

Addresses

|

|

this

end.

|--------------------|

Callee’s

stack

-->

0

|

Back

chain

|

pointer

4

|

Saved

CR

|

8

|

Saved

LR

|

12-16

|

Reserved

|

<---

LINK

AREA

20

|

Saved

TOC

|

(callee)

|--------------------|

Space

for

P1-P8

|

P1

|

OUTPUT

ARGUMENT

AREA

is

always

reserved

|

...

|

<---(Used

by

callee

|

Pn

|

to

construct

|--------------------|

argument

list)

|

Callee’s

|

|

stack

|

<---

LOCAL

STACK

AREA

|

area

|

|--------------------|

|

|

(Possible

word

wasted

|--------------------|

for

alignment.)

-8*nfprs-4*ngprs

-->

|

Save

area

for

|

Rfirst

=

R13

for

full

save

|

caller’s

GPR

|

save

|

max

19

words

|

R31

|--------------------|

-8*nfprs

-->

|

Save

area

for

|

Ffirst

=

F14

for

a

|

caller’s

FPR

|

full

save

|

max

18

dblwds

|

F31

|--------------------|

Caller’s

stack

-->

0

|

Back

chain

|

pointer

4

|

Saved

CR

|

8

|

Saved

LR

|

12-16

|

Reserved

|

<---

LINK

AREA

20

|

Saved

TOC

|

(caller)

|--------------------|

Space

for

P1-P8

24

|

P1

|

INPUT

PARAMETER

AREA

is

always

reserved

|

...

|

<---(Callee’s

input

|

Pn

|

parameters

found

|--------------------|

here.

Is

also

|

Caller’s

|

caller’s

arg

area.)

|

stack

|

High

|

area

|

Addresses

|

|

358

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

The

Link

Area

In

a

32-bit

environment,

the

link

area

consists

of

six

words

at

offset

zero

from

the

caller’s

stack

pointer

on

entry

to

a

procedure.

The

first

word

contains

the

caller’s

back

chain

(stack

pointer).

The

second

word

is

the

location

where

the

callee

saves

the

Condition

Register

(CR)

if

it

is

needed.

The

third

word

is

the

location

where

the

callee’s

prolog

code

saves

the

Link

Register

if

it

is

needed.

The

fourth

word

is

reserved

for

C

SETJMP

and

LONGJMP

processing,

and

the

fifth

word

is

reserved

for

future

use.

The

last

word

(word

6)

is

reserved

for

use

by

the

global

linkage

routines

that

are

used

when

calling

routines

in

other

object

modules

(for

example,

in

shared

libraries).

In

a

64-bit

environment,

this

area

consists

of

six

doublewords

at

offset

zero

from

the

caller’s

stack

pointer

on

entry

to

a

procedure.

The

first

doubleword

contains

the

caller’s

back

chain

(stack

pointer).

The

second

doubleword

is

the

location

where

the

callee

saves

the

Condition

Register

(CR)

if

it

is

needed.

The

third

doubleword

is

the

location

where

the

callee’s

prolog

code

saves

the

Link

Register

if

it

is

needed.

The

fourth

doubleword

is

reserved

for

C

SETJMP

and

LONGJMP

Run-time

Stack

for

64-bit

Environment

Low

|

|

Stack

grows

at

Addresses

|

|

this

end.

|--------------------|

Callee’s

stack

-->

0

|

Back

chain

|

pointer

8

|

Saved

CR

|

16

|

Saved

LR

|

24-32

|

Reserved

|

<---

LINK

AREA

40

|

Saved

TOC

|

(callee)

|--------------------|

Space

for

P1-P8

|

P1

|

OUTPUT

ARGUMENT

AREA

is

always

reserved

|

...

|

<---(Used

by

callee

|

Pn

|

to

construct

|--------------------|

argument

list)

|

Callee’s

|

|

stack

|

<---

LOCAL

STACK

AREA

|

area

|

|--------------------|

|

|

(Possible

word

wasted

|--------------------|

for

alignment.)

-8*nfprs-8*ngprs

-->

|

Save

area

for

|

Rfirst

=

R13

for

full

save

|

caller’s

GPR

|

save

|

max

19

doublewords

|

R31

|--------------------|

-8*nfprs

-->

|

Save

area

for

|

Ffirst

=

F14

for

a

|

caller’s

FPR

|

full

save

|

max

18

dblwds

|

F31

|--------------------|

Caller’s

stack

-->

0

|

Back

chain

|

pointer

8

|

Saved

CR

|

16

|

Saved

LR

|

24-32

|

Reserved

|

<---

LINK

AREA

40

|

Saved

TOC

|

(caller)

|--------------------|

Space

for

P1-P8

48

|

P1

|

INPUT

PARAMETER

AREA

is

always

reserved

|

...

|

<---(Callee’s

input

|

Pn

|

parameters

found

|--------------------|

here.

Is

also

|

Caller’s

|

caller’s

arg

area.)

|

stack

|

High

|

area

|

Addresses

|

|

Interlanguage

Calls

359

processing,

and

the

fifth

doubleword

is

reserved

for

future

use.

The

last

doubleword

(doubleword

6)

is

reserved

for

use

by

the

global

linkage

routines

that

are

used

when

calling

routines

in

other

object

modules

(for

example,

in

shared

libraries).

The

Input

Parameter

Area

In

a

32-bit

environment,

the

input

parameter

area

is

a

contiguous

piece

of

storage

reserved

by

the

calling

program

to

represent

the

register

image

of

the

input

parameters

of

the

callee.

The

input

parameter

area

is

double-word

aligned

and

is

located

on

the

stack

directly

following

the

caller’s

link

area.

This

area

is

at

least

8

words

in

size.

If

more

than

8

words

of

parameters

are

expected,

they

are

stored

as

register

images

that

start

at

positive

offset

56

from

the

incoming

stack

pointer.

The

first

8

words

only

appear

in

registers

at

the

call

point,

never

in

the

stack.

Remaining

words

are

always

in

the

stack,

and

they

can

also

be

in

registers.

In

a

64-bit

environment,

the

input

parameter

area

is

a

contiguous

piece

of

storage

reserved

by

the

calling

program

to

represent

the

register

image

of

the

input

parameters

of

the

callee.

The

input

parameter

area

is

double-word

aligned

and

is

located

on

the

stack

directly

following

the

caller’s

link

area.

This

area

is

at

least

8

doublewords

in

size.

If

more

than

8

doublewords

of

parameters

are

expected,

they

are

stored

as

register

images

that

start

at

positive

offset

112

from

the

incoming

stack

pointer.

The

first

8

doublewords

only

appear

in

registers

at

the

call

point,

never

in

the

stack.

Remaining

words

are

always

in

the

stack,

and

they

can

also

be

in

registers.

The

Register

Save

Area

The

register

save

area

is

double-word

aligned.

It

provides

the

space

that

is

needed

to

save

all

nonvolatile

FPRs

and

GPRs

used

by

the

callee

program.

The

FPRs

are

saved

next

to

the

link

area.

The

GPRs

are

saved

above

the

FPRs

(in

lower

addresses).

The

called

function

may

save

the

registers

here

even

if

it

does

not

need

to

allocate

a

new

stack

frame.

The

system-defined

stack

floor

includes

the

maximum

possible

save

area:

32-bit

platforms:

18*8

for

FPRs

+

19*4

for

GPRs

64-bit

platforms:

18*8

for

FPRs

+

19*8

for

GPRs

Locations

at

a

numerically

lower

address

than

the

stack

floor

should

not

be

accessed.

A

callee

needs

only

to

save

the

nonvolatile

registers

that

it

actually

uses.

It

always

saves

register

31

in

the

highest

v

addressed

word

(in

a

32-bit

environment)

v

addressed

doubleword

(in

a

64-bit

environment)

The

Local

Stack

Area

The

local

stack

area

is

the

space

that

is

allocated

by

the

callee

procedure

for

local

variables

and

temporaries.

The

Output

Parameter

Area

The

output

parameter

area

(P1...Pn)

must

be

large

enough

to

hold

the

largest

parameter

list

of

all

procedures

that

the

procedure

that

owns

this

stack

frame

calls.

360

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

In

a

32-bit

environment,

this

area

is

at

least

8

words

long,

regardless

of

the

length

or

existence

of

any

argument

list.

If

more

than

8

words

are

being

passed,

an

extension

list

is

constructed

beginning

at

offset

56

from

the

current

stack

pointer.

The

first

8

words

only

appear

in

registers

at

the

call

point,

never

in

the

stack.

Remaining

words

are

always

in

the

stack,

and

they

can

also

be

in

registers.

In

a

64-bit

environment,

this

area

is

at

least

8

doublewords

long,

regardless

of

the

length

or

existence

of

any

argument

list.

If

more

than

8

doublewords

are

being

passed,

an

extension

list

is

constructed,

which

begins

at

offset

112

from

the

current

stack

pointer.

The

first

8

doublewords

only

appear

in

registers

at

the

call

point,

never

in

the

stack.

Remaining

doublewords

are

always

in

the

stack,

and

they

can

also

be

in

registers.

Linkage

Convention

for

Argument

Passing

The

system

linkage

convention

takes

advantage

of

the

large

number

of

registers

available.

The

linkage

convention

passes

arguments

in

both

GPRs

and

FPRs.

Two

fixed

lists,

R3-R10

and

FP1-FP13,

specify

the

GPRs

and

FPRs

available

for

argument

passing.

When

there

are

more

argument

words

than

available

argument

GPRs

and

FPRs,

the

remaining

words

are

passed

in

storage

on

the

stack.

The

values

in

storage

are

the

same

as

if

they

were

in

registers.

The

size

of

the

parameter

area

is

sufficient

to

contain

all

the

arguments

passed

on

any

call

statement

from

a

procedure

that

is

associated

with

the

stack

frame.

Although

not

all

the

arguments

for

a

particular

call

actually

appear

in

storage,

it

is

convenient

to

consider

them

as

forming

a

list

in

this

area,

each

one

occupying

one

or

more

words.

For

call

by

reference

(as

is

the

default

for

Fortran),

the

address

of

the

argument

is

passed

in

a

register.

The

following

information

refers

to

call

by

value,

as

in

C

or

as

in

Fortran

when

%VAL

is

used.

For

purposes

of

their

appearance

in

the

list,

arguments

are

classified

as

floating-point

values

or

non-floating-point

values:

Interlanguage

Calls

361

In

a

32-bit

Environment

v

Each

INTEGER(8)

and

LOGICAL(8)

argument

requires

two

words.

v

Any

other

non-floating-point

scalar

argument

of

intrinsic

type

requires

one

word

and

appears

in

that

word

exactly

as

it

would

appear

in

a

GPR.

It

is

right-justified,

if

language

semantics

specify,

and

is

word

aligned.

v

Each

single-precision

(REAL(4))

value

occupies

one

word.

Each

double-precision

(REAL(8))

value

occupies

two

successive

words

in

the

list.

Each

extended-precision

(REAL(16))

value

occupies

four

successive

words

in

the

list.

v

A

COMPLEX

value

occupies

twice

as

many

words

as

a

REAL

value

with

the

same

kind

type

parameter.

v

In

Fortran

and

C,

structure

values

appear

in

successive

words

as

they

would

anywhere

in

storage,

satisfying

all

appropriate

alignment

requirements.

Structures

are

aligned

to

a

fullword

and

occupy

(sizeof(struct

X)+3)/4

fullwords,

with

any

padding

at

the

end.

A

structure

that

is

smaller

than

a

word

is

left-justified

within

its

word

or

register.

Larger

structures

can

occupy

multiple

registers

and

may

be

passed

partly

in

storage

and

partly

in

registers.

v

Other

aggregate

values,

including

Pascal

records,

are

passed

“val-by-ref”.

That

is,

the

compiler

actually

passes

their

address

and

arranges

for

a

copy

to

be

made

in

the

invoked

program.

v

A

procedure

or

function

pointer

is

passed

as

a

pointer

to

the

routine’s

function

descriptor;

its

first

word

contains

its

entry

point

address.

(See

“Pointers

to

Functions”

on

page

365

for

more

information.)

In

a

64-bit

Environment

v

All

non-floating-point

values

require

one

doubleword

that

is

doubleword

aligned.

v

Each

single-precision

(REAL(4))

value

and

each

double-precision

(REAL(8))

value

occupies

one

doubleword

in

the

list.

Each

extended-precision

(REAL(16))

value

occupies

two

successive

doublewords

in

the

list.

v

A

COMPLEX

value

occupies

twice

as

many

doublewords

as

a

REAL

value

with

the

same

kind

type

parameter.

v

In

Fortran

and

C,

structure

values

appear

in

successive

words

as

they

would

anywhere

in

storage,

satisfying

all

appropriate

alignment

requirements.

Structures

are

aligned

to

a

doubleword

and

occupy

(sizeof(struct

X)+7)/8

doublewords,

with

any

padding

at

the

end.

A

structure

that

is

smaller

than

a

doubleword

is

left-justified

within

its

doubleword

or

register.

Larger

structures

can

occupy

multiple

registers

and

may

be

passed

partly

in

storage

and

partly

in

registers.

v

Other

aggregate

values,

including

Pascal

records,

are

passed

“val-by-ref”.

That

is,

the

compiler

actually

passes

their

address

and

arranges

for

a

copy

to

be

made

in

the

invoked

program.

v

A

procedure

or

function

pointer

is

passed

as

a

pointer

to

the

routine’s

function

descriptor;

its

first

word

contains

its

entry

point

address.

(See

“Pointers

to

Functions”

on

page

365

for

more

information.)

362

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Argument

Passing

Rules

(by

Value)

From

the

following

illustration,

we

state

these

rules:

v

In

a

32-bit

environment,

the

parameter

list

is

a

conceptually

contiguous

piece

of

storage

that

contains

a

list

of

words.

For

efficiency,

the

first

8

words

of

the

list

are

not

actually

stored

in

the

space

that

is

reserved

for

them

but

are

passed

in

GPR3-GPR10.

Further,

the

first

13

floating-point

value

parameters

are

passed

in

FPR1-FPR13.

Those

beyond

the

first

8

words

of

the

parameter

list

are

also

in

storage.

Those

within

the

first

8

words

of

the

parameter

list

have

GPRs

reserved

for

them,

but

they

are

not

used.

v

In

a

64-bit

environment,

the

preceding

information

holds

true

if

references

to

words

are

replaced

with

doublewords.

v

If

the

called

procedure

treats

the

parameter

list

as

a

contiguous

piece

of

storage

(for

example,

if

the

address

of

a

parameter

is

taken

in

C),

the

parameter

registers

are

stored

in

the

space

reserved

for

them

in

the

stack.

v

A

register

image

is

stored

on

the

stack.

v

The

argument

area

(P1...Pn)

must

be

large

enough

to

hold

the

largest

parameter

list.

Here

is

an

example

of

a

call

to

a

function:

f(%val(l1),

%val(l2),

%val(l3),

%val(d1),

%val(f1),

%val(c1),

%val(d2),

%val(s1),

%val(cx2))

where:

l

denotes

integer(4)

(fullword

integer)

d

denotes

real(8)

(double

precision)

f

denotes

real(4)

(real)

s

denotes

integer(2)

(halfword

integer)

c

denotes

character

(one

character)

cx

denotes

complex(8)

(double

complex)

Interlanguage

Calls

363

Storage Mapping of
Parm Area
On the Stack in
32-Bit EnviornmentWill Be Passed In:

R3 0

4

8

12

16

20

24

28

32

36

40

44

48

52
cx2 (imaginary)

cx2 (real)

s1

d2

c1

f1

d1

|3

|2

|1

right-justified
(if language semantics specify)

right-justified
(if language semantics specify)

R4

R5

FP1 (R6, R7 unused)

FP2 (R8 unused)

R9

FP3 (R10 unused)

STACK

FP4 and stack

FP5 and stack

Figure

4.

Storage

Mapping

of

Parm

Area

On

the

Stack

in

32-Bit

Environment

Storage Mapping of
Parm Area
on the Stack in
64-Bit EnviornmentWill Be Passed In:

R3

right-justified
(if language semantics specify)

right-justified
(if language semantics specify)

R4

R5

FP1 (R6 unused)

FP2 (R7 unused)

R8

R10

FP4 and stack

FP5 and stack

FP3 (R9 unused) 48

56

64

72

40

32

24

16

8

0

cx2 (imaginary)

f1

cx2 (real)

d2

c1

s1

|3

d1

|2

|1

Figure

5.

Storage

Mapping

of

Parm

Area

On

the

Stack

in

64-Bit

Environment

364

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Order

of

Arguments

in

Argument

List

The

argument

list

is

constructed

in

the

following

order.

Items

in

the

same

bullet

appear

in

the

same

order

as

in

the

procedure

declaration,

whether

or

not

argument

keywords

are

used

in

the

call.

v

All

addresses

or

values

(or

both)

of

actual

arguments

4

v

“Present”

indicators

for

optional

arguments

that

are

passed

by

value

v

Length

arguments

for

strings

4

Linkage

Convention

for

Function

Calls

A

routine

has

two

symbols

associated

with

it:

a

function

descriptor

(name)

and

an

entry

point

(.name).

When

a

call

is

made

to

a

routine,

the

program

branches

to

the

entry

point

directly.

Excluding

the

loading

of

parameters

(if

any)

in

the

proper

registers,

compilers

expand

calls

to

functions

to

the

following

two-instruction

sequence:

BL

.foo

#

Branch

to

foo

ORI

R0,R0,0x0000

#

Special

NOP

The

linker

does

one

of

two

things

when

it

encounters

a

BL

instruction:

1.

If

foo

is

imported

(not

in

the

same

object

module),

the

linker

changes

the

BL

to

.foo

to

a

BL

to

.glink

(global

linkage

routine)

of

foo

and

inserts

the

.glink

into

the

object

module.

Also,

if

a

NOP

instruction

(ORI

R0,R0,0x0000)

immediately

follows

the

BL

instruction,

the

linker

replaces

the

NOP

instruction

with

the

LOAD

instruction

L

R2,

20(R1).

2.

If

foo

is

bound

in

the

same

object

module

as

its

caller

and

a

LOAD

instruction

L

R2,20(R1)

for

32-bit

and

L

R2,40(R1)

for

64-bit,

or

ORI

R0,R0,0

immediately

follows

the

BL

instruction,

the

linker

replaces

the

LOAD

instruction

with

a

NOP

(ORI

R0,R0,0).

Note:

For

any

export,

the

linker

inserts

the

procedure’s

descriptor

into

the

object

module.

Pointers

to

Functions

A

function

pointer

is

a

data

type

whose

values

range

over

procedure

names.

Variables

of

this

type

appear

in

several

programming

languages,

such

as

C

and

Fortran.

In

Fortran,

a

dummy

argument

that

appears

in

an

EXTERNAL

statement

is

a

function

pointer.

Fortran

provides

support

for

the

use

of

function

pointers

in

contexts

such

as

the

target

of

a

call

statement

or

an

actual

argument

of

such

a

statement.

A

function

pointer

is

a

fullword

quantity

that

is

the

address

of

a

function

descriptor.

The

function

descriptor

is

a

3-word

object.

The

first

word

contains

the

address

of

the

entry

point

of

the

procedure.

The

second

has

the

address

of

the

TOC

of

the

object

module

in

which

the

procedure

is

bound.

The

third

is

the

environment

pointer

for

some

non-Fortran

languages.

There

is

only

one

function

descriptor

per

entry

point.

It

is

bound

into

the

same

object

module

as

the

function

it

identifies

if

the

function

is

external.

The

descriptor

has

an

external

name,

which

is

the

same

as

the

function

name

but

with

a

different

storage

class

that

uniquely

identifies

it.

This

descriptor

name

is

used

in

all

import

or

export

operations.

4. There

may

be

other

items

in

this

list

during

Fortran-Fortran

calls.

However,

they

will

not

be

visible

to

non-Fortran

procedures

that

follow

the

calling

rules

in

this

section.

Interlanguage

Calls

365

Function

Values

Functions

return

their

values

according

to

type:

v

INTEGER

and

LOGICAL

of

kind

1,

2,

and

4

are

returned

(right

justified)

in

R3.

v

In

32-bit

mode,

INTEGER

and

LOGICAL

of

kind

8

are

returned

in

R3

and

R4.

v

In

64-bit

mode,

INTEGER

and

LOGICAL

of

kind

8

are

returned

in

R3.

v

REAL

of

kind

4

or

8

are

returned

in

FP1.

REAL

of

kind

16

are

returned

in

FP1

and

FP2.

v

COMPLEX

of

kind

4

or

8

are

returned

in

FP1

and

FP2.

COMPLEX

of

kind

16

are

returned

in

FP1-FP4.

v

Character

strings

are

returned

in

a

buffer

allocated

by

the

caller.

The

address

and

the

length

of

this

buffer

are

passed

in

R3

and

R4

as

hidden

parameters.

The

first

explicit

parameter

word

is

in

R5,

and

all

subsequent

parameters

are

moved

to

the

next

word.

v

Structures

are

returned

in

a

buffer

that

is

allocated

by

the

caller.

The

address

is

passed

in

R3;

there

is

no

length.

The

first

explicit

parameter

is

in

R4.

The

Stack

Floor

The

stack

floor

is

a

system-defined

address

below

which

the

stack

cannot

grow.

All

programs

in

the

system

must

avoid

accessing

locations

in

the

stack

segment

that

are

below

the

stack

floor.

All

programs

must

maintain

other

system

invariants

that

are

related

to

the

stack:

v

No

data

is

saved

or

accessed

from

an

address

lower

than

the

stack

floor.

v

The

stack

pointer

is

always

valid.

When

the

stack

frame

size

is

more

than

32

767

bytes,

you

must

take

care

to

ensure

that

its

value

is

changed

in

a

single

instruction.

This

step

ensures

that

there

is

no

timing

window

where

a

signal

handler

would

either

overlay

the

stack

data

or

erroneously

appear

to

overflow

the

stack

segment.

Stack

Overflow

The

linkage

convention

requires

no

explicit

inline

check

for

overflow.

The

operating

system

uses

a

storage

protection

mechanism

to

detect

stores

past

the

end

of

the

stack

segment.

Prolog

and

Epilog

On

entry

to

a

procedure,

you

might

have

to

do

some

or

all

of

the

following

steps:

1.

Save

the

link

register

at

offset

8

for

32-bit

environments

(or

offset

16

for

64-bit

environments)

from

the

stack

pointer

if

necessary.

2.

If

you

use

any

of

the

CR

bits

8-23

(CR2,

CR3,

CR4,

CR5),

save

the

CR

at

displacement

4

for

32-bit

environments

(or

displacement

8

for

64-bit

environments)

from

the

current

stack

pointer.

3.

Save

any

nonvolatile

FPRs

that

are

used

by

this

procedure

in

the

caller’s

FPR

save

area.

You

can

use

a

set

of

routines:

_savef14,

_savef15,

...

_savef31.

4.

Save

all

nonvolatile

GPRs

that

are

used

by

this

procedure

in

the

caller’s

GPR

save

area.

5.

Store

back

chain

and

decrement

stack

pointer

by

the

size

of

the

stack

frame.

Note

that

if

a

stack

overflow

occurs,

it

will

be

known

immediately

when

the

store

of

the

back

chain

is

done.

366

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

On

exit

from

a

procedure,

you

might

have

to

perform

some

or

all

of

the

following

steps:

1.

Restore

all

GPRs

saved.

2.

Restore

stack

pointer

to

the

value

it

had

on

entry.

3.

Restore

link

register

if

necessary.

4.

Restore

bits

8-23

of

the

CR

if

necessary.

5.

If

you

saved

any

FPRs,

restore

them

using

_restfn,

where

n

is

the

first

FPR

to

be

restored.

6.

Return

to

caller.

Traceback

The

compiler

supports

the

traceback

mechanism,

which

symbolic

debuggers

need

to

unravel

the

call

or

return

stack.

Each

object

module

has

a

traceback

table

in

the

text

segment

at

the

end

of

its

code.

This

table

contains

information

about

the

object

module,

including

the

type

of

object

module,

as

well

as

stack

frame

and

register

information.

Related

Information:

You

can

make

the

traceback

table

smaller

or

remove

it

entirely

with

the

“-qtbtable

Option”

on

page

249.

THREADLOCAL

Common

Blocks

and

ILC

with

C

Fortran

THREADLOCAL

common

blocks

are

implemented

using

the

thread-specific

data

facilities

that

are

defined

by

the

POSIX

pthreads

library.

For

additional

information

about

thread-specific

data

areas,

please

refer

to

AIX

documentation

on

threads

programming.

Internally,

the

storage

for

the

thread-specific

common

block

is

allocated

dynamically

by

the

Fortran

run-time

library.

The

Fortran

run-time

library

maintains

a

control

structure

that

holds

information

about

the

common

block.

This

control

area

is

an

external

structure

whose

name

is

the

name

of

the

common

block.

For

example,

if

you

declare

a

common

block

in

Fortran

as

the

following:

common

/myblock/

i

!ibm*

threadlocal

/myblock/

the

Fortran

compiler

creates

an

external

structure

(or

common

area)

that

is

named

myblock,

which

contains

control

information

about

the

thread-specific

common

block.

Interlanguage

Calls

367

The

control

structure

has

the

following

layout

and

would

be

coded

as

such

in

C:

typedef

struct

{

pthread_key_t

key;

int

flags;

void

*unused_1;

int

unused_2;

}

FORT_LOCAL_COMMON;

extern

FORT_LOCAL_COMMON

myblock;

The

″key″

field

is

a

unique

identifier

that

describes

a

threadlocal

data

area.

Every

threadlocal

common

block

has

its

own

key.

The

″flags″

field

indicates

whether

a

key

has

been

obtained

for

the

common

block.

Within

a

C

function,

you

should

use

the

″key″

in

the

control

block

in

a

call

to

pthread_getspecific

to

obtain

the

thread-specific

address

of

the

threadlocal

common

area.

Example

!

Example

1:

"fort_sub"

is

invoked

by

multiple

threads.

This

is

an

invalid

example

!

because

"fort_sub"

and

"another_sub"

both

declare

/block/

to

be

THREADLOCAL.

!

They

intend

to

share

the

common

block,

but

they

are

executed

by

different

threads.

SUBROUTINE

fort_sub()

COMMON

/block/

j

INTEGER

::

j

!IBM*

THREADLOCAL

/block/

!

Each

thread

executing

fort_sub

!

obtains

its

own

copy

of

/block/.

INTEGER

a(10)

...

!IBM*

INDEPENDENT

DO

index

=

1,10

CALL

another_sub(a(i))

END

DO

...

END

SUBROUTINE

fort_sub

SUBROUTINE

another_sub(aa)

!

Multiple

threads

are

used

to

execute

another_sub.

INTEGER

aa

COMMON

/block/

j

!

Each

thread

obtains

a

new

copy

of

the

INTEGER

::

j

!

common

block:

/block/.

!IBM*

THREADLOCAL

/block/

...

aa

=

j

!

The

value

of

’j’

is

undefined.

END

SUBROUTINE

another_sub

For

more

information,

see

the

THREADLOCAL

directive,

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

368

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Problem

Determination

and

Debugging

This

section

describes

some

methods

you

can

use

for

locating

and

fixing

problems

in

compiling

or

executing

your

programs.

Related

Information:

You

might

encounter

a

number

of

potential

problems

when

moving

from

previous

versions

of

XL

Fortran

to

XL

Fortran

Version

9.

“Avoiding

or

Fixing

Upgrade

Problems”

on

page

25

summarizes

these

potential

problems.

Understanding

XL

Fortran

Error

Messages

Most

information

about

potential

or

actual

problems

comes

through

messages

from

the

compiler

or

application

program.

These

messages

are

written

to

the

standard

error

output

stream.

Error

Severity

Compilation

errors

can

have

the

following

severity

levels,

which

are

displayed

as

part

of

some

error

messages:

U

An

unrecoverable

error.

Compilation

failed

because

of

an

internal

compiler

error.

S

A

severe

error.

Compilation

failed

due

to

one

of

the

following:

v

Conditions

exist

that

the

compiler

could

not

correct.

An

object

file

is

produced;

however,

you

should

not

attempt

to

run

the

program.

v

An

internal

compiler

table

has

overflowed.

Processing

of

the

program

stops,

and

XL

Fortran

does

not

produce

an

object

file.

v

An

include

file

does

not

exist.

Processing

of

the

program

stops,

and

XL

Fortran

does

not

produce

an

object

file.

v

An

unrecoverable

program

error

has

been

detected.

Processing

of

the

source

file

stops,

and

XL

Fortran

does

not

produce

an

object

file.

You

can

usually

correct

this

error

by

fixing

any

program

errors

that

were

reported

during

compilation.

E

An

error

that

the

compiler

can

correct.

The

program

should

run

correctly.

W

Warning

message.

It

does

not

signify

an

error

but

may

indicate

some

unexpected

condition.

L

Warning

message

that

was

generated

by

one

of

the

compiler

options

that

check

for

conformance

to

various

language

levels.

It

may

indicate

a

language

feature

that

you

should

avoid

if

you

are

concerned

about

portability.

I

Informational

message.

It

does

not

indicate

any

error,

just

something

that

you

should

be

aware

of

to

avoid

unexpected

behavior.

Notes:

1.

The

message

levels

S

and

U

indicate

a

compilation

failure.

2.

The

message

levels

I,

L,

W,

and

E

indicate

that

compilation

was

successful.

By

default,

the

compiler

stops

without

producing

output

files

if

it

encounters

a

severe

error

(severity

S).

You

can

make

the

compiler

stop

for

less

severe

errors

by

specifying

a

different

severity

with

the

-qhalt

option.

For

example,

with

-qhalt=e,

the

compiler

stops

if

it

encounters

any

errors

of

severity

E

or

higher

severity.

This

©

Copyright

IBM

Corp.

1990,

2004

369

technique

can

reduce

the

amount

of

compilation

time

that

is

needed

to

check

the

syntactic

and

semantic

validity

of

a

program.

You

can

limit

low-severity

messages

without

stopping

the

compiler

by

using

the

-qflag

option.

If

you

simply

want

to

prevent

specific

messages

from

going

to

the

output

stream,

see

“-qsuppress

Option”

on

page

245.

Compiler

Return

Code

The

compiler

return

codes

and

their

respective

meanings

are

as

follows:

0

The

compiler

did

not

encounter

any

errors

severe

enough

to

make

it

stop

processing

a

compilation

unit.

1

The

compiler

encountered

an

error

of

severity

E

or

halt_severity

(whichever

is

lower).

Depending

on

the

level

of

halt_severity,

the

compiler

might

have

continued

processing

the

compilation

units

with

errors.

40

An

option

error.

41

A

configuration

file

error.

250

An

out-of-memory

error.

The

compiler

cannot

allocate

any

more

memory

for

its

use.

251

A

signal

received

error.

An

unrecoverable

error

or

interrupt

signal

is

received.

252

A

file-not-found

error.

253

An

input/output

error.

Cannot

read

or

write

files.

254

A

fork

error.

Cannot

create

a

new

process.

255

An

error

while

executing

a

process.

Run-Time

Return

Code

If

an

XLF-compiled

program

ends

abnormally,

the

return

code

to

the

operating

system

is

1.

Note:

This

is

a

change

from

XL

Fortran

Version

2,

which

used

a

value

of

232

in

this

case.

If

the

program

ends

normally,

the

return

code

is

0

(by

default)

or

is

MOD(digit_string,256)

if

the

program

ends

because

of

a

STOP

digit_string

statement.

Understanding

XL

Fortran

Messages

In

addition

to

the

diagnostic

message

issued,

the

source

line

and

a

pointer

to

the

position

in

the

source

line

at

which

the

error

was

detected

are

printed

or

displayed

if

you

specify

the

-qsource

compiler

option.

If

-qnosource

is

in

effect,

the

file

name,

the

line

number,

and

the

column

position

of

the

error

are

displayed

with

the

message.

The

format

of

an

XL

Fortran

diagnostic

message

is:

��

15

cc

-

nnn

message_text

(

severity_letter

)

��

where:

15

Indicates

an

XL

Fortran

message

cc

Is

the

component

number,

as

follows:

00

Indicates

a

code

generation

or

optimization

message

370

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

01

Indicates

an

XL

Fortran

common

message

11-20

Indicates

a

Fortran-specific

message

24

Indicates

a

VAST

preprocessor

message

25

Indicates

a

run-time

message

from

an

XL

Fortran

application

program

26

Indicates

a

KAP

preprocessor

message

85

Indicates

a

loop-transformation

message

86

Indicates

an

interprocedural

analysis

(IPA)

message

nnn

Is

the

message

number

severity_letter

Indicates

how

serious

the

problem

is,

as

described

in

the

preceding

section

’message

text’

Is

the

text

describing

the

error

Limiting

the

Number

of

Compile-Time

Messages

If

the

compiler

issues

many

low-severity

(I

or

W)

messages

concerning

problems

you

are

aware

of

or

do

not

care

about,

use

the

-qflag

option

or

its

short

form

-w

to

limit

messages

to

high-severity

ones:

#

E,

S,

and

U

messages

go

in

listing;

U

messages

are

displayed

on

screen.

xlf95

-qflag=e:u

program.f

#

E,

S,

and

U

messages

go

in

listing

and

are

displayed

on

screen.

xlf95

-w

program.f

Selecting

the

Language

for

Messages

By

default,

XL

Fortran

comes

with

messages

in

U.S.

English

only.

You

can

also

order

translated

message

catalogs:

v

Compiler

messages

in

Japanese

v

Run-time

messages

in

Japanese

If

compile-time

messages

are

appearing

in

U.S.

English

when

they

should

be

in

another

language,

verify

that

the

correct

message

catalogs

are

installed

and

that

the

LANG,

LC_MESSAGES,

and/or

LC_ALL

environment

variables

are

set

accordingly.

If

a

run-time

message

appears

in

the

wrong

language,

also

ensure

that

your

program

calls

the

setlocale

routine.

Related

Information:

See

“Environment

Variables

for

National

Language

Support”

on

page

13

and

“Selecting

the

Language

for

Run-Time

Messages”

on

page

50.

To

determine

which

XL

Fortran

message

catalogs

are

installed,

use

the

following

commands

to

list

them:

lslpp

-f

’xlfcmp.msg.*’

#

compile-time

messages

lslpp

-f

’xlfrte.msg.*’

#

run-time

messages

The

file

names

of

the

message

catalogs

are

the

same

for

all

supported

international

languages,

but

they

are

placed

in

different

directories.

Problem

Determination

and

Debugging

371

Note:

When

you

run

an

XL

Fortran

program

on

a

system

without

the

XL

Fortran

message

catalogs,

run-time

error

messages

(mostly

for

I/O

problems)

are

not

displayed

correctly;

the

program

prints

the

message

number

but

not

the

associated

text.

To

prevent

this

problem,

copy

the

XL

Fortran

message

catalogs

from

/usr/lpp/xlf/bin/default_msg

to

a

directory

that

is

part

of

the

NLSPATH

environment-variable

setting

on

the

execution

system.

372

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Fixing

Installation

or

System

Environment

Problems

If

individual

users

or

all

users

on

a

particular

machine

have

difficulty

running

the

compiler,

there

may

be

a

problem

in

the

system

environment.

Here

are

some

common

problems

and

solutions:

xlf90:

not

found

xlf90_r:

not

found

xlf90_r7:

not

found

xlf95:

not

found

xlf95_r:

not

found

xlf95_r7:

not

found

xlf:

not

found

xlf_r:

not

found

xlf_r7:

not

found

f77:

not

found

fort77:

not

found

f90:

not

found

f95:

not

found

Symptom:

The

shell

cannot

locate

the

command

to

execute

the

compiler.

Solution:

Make

sure

that

your

PATH

environment

variable

includes

the

directory

/usr/bin.

If

the

compiler

is

properly

installed,

the

commands

you

need

to

execute

it

are

in

this

directory.

Could

not

load

program

program

Error

was:

not

enough

space

Killed

Symptom:

The

system

cannot

execute

the

compiler

or

an

application

program

at

all.

Solution:

Set

the

storage

limits

for

stack

and

data

to

“unlimited”

for

users

who

experience

this

problem.

For

example,

as

superuser

you

can

set

both

your

hard

and

soft

limits

with

these

ksh

commands:

ulimit

-s

unlimited

ulimit

-d

unlimited

Because

non-superusers

are

not

completely

free

to

give

themselves

unlimited

limits,

if

you

are

a

superuser

you

may

find

it

more

convenient

to

edit

the

file

/etc/security/limits

to

give

all

users

unlimited

stack

and

data

segments

(by

entering

-1

for

these

fields).

If

the

storage

problem

is

in

an

XLF-compiled

program,

using

the

-qsave

or

-qsmallstack

option

might

prevent

the

program

from

exceeding

the

stack

limit.

Explanation:

The

compiler

allocates

large

internal

data

areas

that

may

exceed

the

storage

limits

for

a

user.

XLF-compiled

programs

place

more

data

on

the

stack

by

default

than

in

previous

versions,

also

possibly

exceeding

the

storage

limit.

Because

it

is

difficult

to

determine

precise

values

for

the

necessary

limits,

we

recommend

making

them

unlimited.

Could

not

load

program

program

Could

not

load

library

library_name.a

[object_name]

Error

was:

no

such

file

or

directory

Solution:

Make

sure

the

XL

Fortran

libraries

are

installed

in

/usr/lib,

or

set

the

LIBPATH

environment

variable

to

include

the

directory

where

libxlf90.a

is

installed

if

it

is

in

a

different

directory.

See

“LIBPATH:Setting

Library

Search

Paths”

on

page

14

for

details

of

this

environment

variable.

Symptom:

Messages

from

the

compiler

or

an

XL

Fortran

application

program

are

displayed

in

the

wrong

language.

Solution:

Set

the

appropriate

national

language

environment.

You

can

set

the

national

language

for

each

user

with

the

command

smit

chlang.

Alternatively,

each

user

can

set

one

or

more

of

the

environment

variables

LANG,

NLSPATH,

LC_MESSAGES,

LC_TIME,

and

LC_ALL.

If

you

are

not

familiar

with

the

purposes

of

these

variables,

“Environment

Variables

for

National

Language

Support”

on

page

13

provides

details.

Symptom:

A

compilation

fails

with

an

I/O

error.

Solution:

Increase

the

size

of

the

/tmp

filesystem,

or

set

the

environment

variable

TMPDIR

to

the

path

of

a

filesystem

that

has

more

free

space.

Explanation:

The

object

file

may

have

grown

too

large

for

the

filesystem

that

holds

it.

The

cause

could

be

a

very

large

compilation

unit

or

initialization

of

all

or

part

of

a

large

array

in

a

declaration.

Symptom:

There

are

too

many

individual

makefiles

and

compilation

scripts

to

easily

maintain

or

track.

Solution:

Add

stanzas

to

the

configuration

file,

and

create

links

to

the

compiler

by

using

the

names

of

these

stanzas.

By

running

the

compiler

with

different

command

names,

you

can

provide

consistent

groups

of

compiler

options

and

other

configuration

settings

to

many

users.

Fixing

Compile-Time

Problems

The

following

sections

discuss

common

problems

you

might

encounter

while

compiling

and

how

to

avoid

them.

Problem

Determination

and

Debugging

373

Duplicating

Extensions

from

Other

Systems

Some

ported

programs

may

cause

compilation

problems

because

they

rely

on

extensions

that

exist

on

other

systems.

XL

Fortran

supports

many

extensions

like

these,

but

some

require

compiler

options

to

turn

them

on.

See

“Options

for

Compatibility”

on

page

79

for

a

list

of

these

options

and

“Porting

Programs

to

XL

Fortran”

on

page

397

for

a

general

discussion

of

porting.

Isolating

Problems

with

Individual

Compilation

Units

If

you

find

that

a

particular

compilation

unit

requires

specific

option

settings

to

compile

properly,

you

may

find

it

more

convenient

to

apply

the

settings

in

the

source

file

through

an

@PROCESS

directive.

Depending

on

the

arrangement

of

your

files,

this

approach

may

be

simpler

than

recompiling

different

files

with

different

command-line

options.

Compiling

with

Thread-safe

Commands

Thread-safe

invocation

commands,

like

xlf_r

or

xlf90_r,

for

example,

use

different

search

paths

and

call

different

modules

than

the

non

thread-safe

invocations.

Your

programs

should

account

for

the

different

usages.

Programs

that

compile

and

run

successfully

for

one

environment

may

produce

unexpected

results

when

compiled

and

run

for

a

different

use.

The

configuration

file,

xlf.cfg,

shows

the

paths,

libraries,

and

so

on

for

each

invocation

command.

(See

“Customizing

the

Configuration

File”

on

page

15

for

a

sample

configuration

file

and

an

explanation

of

its

contents.)

Running

out

of

Machine

Resources

If

the

operating

system

runs

low

on

resources

(page

space

or

disk

space)

while

one

of

the

compiler

components

is

running,

you

should

receive

one

of

the

following

messages:

1501-229

Compilation

ended

because

of

lack

of

space.

1501-224

fatal

error

in

/usr/lpp/xlf/bin/xlfentry:

signal

9

received.

1517-011

Compilation

ended.

No

more

system

resources

available.

Killed.

1501-053

(S)

Too

much

initialized

data.

1501-511.

Compilation

failed

for

file

[filename].

You

may

need

to

increase

the

system

page

space

and

recompile

your

program.

See

AIX

General

Concepts

and

Procedures

for

more

information

about

page

space.

If

your

program

produces

a

large

object

file,

for

example,

by

initializing

all

or

part

of

a

large

array,

you

may

need

to

do

one

of

the

following:

v

Increase

the

size

of

the

filesystem

that

holds

the

/tmp

directory.

v

Set

the

TMPDIR

environment

variable

to

a

filesystem

with

a

lot

of

free

space.

v

For

very

large

arrays,

initialize

the

array

at

run

time

rather

than

statically

(at

compile

time).

Fixing

Link-Time

Problems

After

the

XL

Fortran

compiler

processes

the

source

files,

the

linker

links

the

resulting

object

files

together.

Any

messages

issued

at

this

stage

come

from

the

ld

or

bind

commands.

A

frequently

encountered

error

and

its

solution

are

listed

here

for

your

convenience:

374

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

0706-317

ERROR:

Undefined

or

unresolved

symbols

detected:

Symptom:

A

program

cannot

be

linked

because

of

unresolved

references.

Explanation:

Either

needed

object

files

or

libraries

are

not

being

used

during

linking,

there

is

an

error

in

the

specification

of

one

or

more

external

names,

or

there

is

an

error

in

the

specification

of

one

or

more

procedure

interfaces.

Solution:

You

may

need

to

do

one

or

more

of

the

following

actions:

v

Compile

again

with

the

-bloadmap

option

to

create

a

file

that

contains

information

about

undefined

symbols.

v

Make

sure

that

if

you

use

the

-U

option,

all

intrinsic

names

are

in

lowercase.

v

Use

the

linker

-brename

option

on

the

compiler

command

line

to

change

the

names

of

some

symbols

at

link

time.

Fixing

Run-Time

Problems

XL

Fortran

issues

error

messages

during

the

running

of

a

program

in

either

of

the

following

cases:

v

XL

Fortran

detects

an

input/output

error.

“Setting

Run-Time

Options”

on

page

51

explains

how

to

control

these

kinds

of

messages.

v

XL

Fortran

detects

an

exception

error,

and

the

default

exception

handler

is

installed

(through

the

-qsigtrap

option

or

a

call

to

SIGNAL).

To

get

a

more

descriptive

message

than

Core

dumped,

you

may

need

to

run

the

program

from

within

dbx.

The

causes

for

run-time

exceptions

are

listed

in

“XL

Fortran

Run-Time

Exceptions”

on

page

66.

You

can

investigate

errors

that

occur

during

the

execution

of

a

program

by

using

a

symbolic

debugger,

such

as

dbx.

Duplicating

Extensions

from

Other

Systems

Some

ported

programs

may

not

run

correctly

if

they

rely

on

extensions

that

are

found

on

other

systems.

XL

Fortran

supports

many

such

extensions,

but

you

need

to

turn

on

compiler

options

to

use

some

of

them.

See

“Options

for

Compatibility”

on

page

79

for

a

list

of

these

options

and

“Porting

Programs

to

XL

Fortran”

on

page

397

for

a

general

discussion

of

porting.

Mismatched

Sizes

or

Types

for

Arguments

To

detect

arguments

of

different

sizes

or

types,

which

might

produce

incorrect

execution

and

results,

you

can

compile

with

the

-qextchk

option.

This

option

warns

you

of

any

problems

at

link

time.

To

do

the

type-checking

during

the

early

stages

of

compilation,

specify

interface

blocks

for

the

procedures

that

are

called

within

a

program.

Working

around

Problems

when

Optimizing

If

you

find

that

a

program

produces

incorrect

results

when

it

is

optimized

and

if

you

can

isolate

the

problem

to

a

particular

variable,

you

might

be

able

to

work

around

the

problem

temporarily

by

declaring

the

variable

as

VOLATILE.

This

prevents

some

optimizations

that

affect

the

variable.

(See

VOLATILE

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.)

Because

this

is

only

a

temporary

solution,

you

should

continue

debugging

your

code

until

you

resolve

your

problem,

and

then

remove

the

VOLATILE

keyword.

If

you

are

confident

that

the

source

code

and

program

design

are

correct

and

you

continue

to

have

problems,

contact

your

support

organization

to

help

resolve

the

problem.

Problem

Determination

and

Debugging

375

Input/Output

Errors

If

the

error

detected

is

an

input/output

error

and

you

have

specified

IOSTAT

on

the

input/output

statement

in

error,

the

IOSTAT

variable

is

assigned

a

value

according

to

Conditions

and

IOSTAT

Values

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

If

you

have

installed

the

XL

Fortran

run-time

message

catalog

on

the

system

on

which

the

program

is

executing,

a

message

number

and

message

text

are

issued

to

the

terminal

(standard

error)

for

certain

I/O

errors.

If

you

have

specified

IOMSG

on

the

input/output

statement,

the

IOMSG

variable

is

assigned

the

error

message

text

if

an

error

is

detected,

or

the

content

of

IOMSG

variable

is

not

changed.

If

this

catalog

is

not

installed

on

the

system,

only

the

message

number

appears.

Some

of

the

settings

in

“Setting

Run-Time

Options”

on

page

51

allow

you

to

turn

some

of

these

error

messages

on

and

off.

If

a

program

fails

while

writing

a

large

data

file,

you

may

need

to

increase

the

maximum

file

size

limit

for

your

user

ID.

You

can

do

this

through

a

shell

command,

such

as

ulimit

in

ksh,

or

through

the

smit

command.

Tracebacks

and

Core

Dumps

If

a

run-time

exception

occurs

and

an

appropriate

exception

handler

is

installed,

a

message

and

a

traceback

listing

are

displayed.

Depending

on

the

handler,

a

core

file

might

be

produced

as

well.

You

can

then

use

a

debugger

to

examine

the

location

of

the

exception.

To

produce

a

traceback

listing

without

ending

the

program,

call

the

xl__trbk

procedure:

IF

(X

.GT.

Y)

THEN

!

X

>

Y

indicates

that

something

is

wrong.

PRINT

*,

’Error

-

X

should

not

be

greater

than

Y’

CALL

XL__TRBK

!

Generate

a

traceback

listing.

X

=

0

!

The

program

continues.

END

IF

See

“Installing

an

Exception

Handler”

on

page

298

for

instructions

about

exception

handlers

and

“XL

Fortran

Run-Time

Exceptions”

on

page

66

for

information

about

the

causes

of

run-time

exceptions.

Debugging

a

Fortran

90

or

Fortran

95

Program

XL

Fortran

includes

a

technology

preview

of

the

IBM

Distributed

Debugger,

a

client-server

debugger,

which

you

can

use

to

help

debug

your

programs.

The

Distributed

Debugger

can

debug

programs

running

on

systems

accessible

through

a

network

connection

as

well

as

debug

programs

running

on

your

workstation.

For

instructions

on

using

your

chosen

debugger,

consult

the

online

help

within

the

debugger

or

its

documentation.

Always

specify

the

-g

option

when

compiling

programs

for

debugging.

Related

information:

See

“Options

for

Error

Checking

and

Debugging”

on

page

75.

376

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

A

Sample

dbx

Session

for

an

XL

Fortran

Program

You

can

debug

XL

Fortran

programs

with

any

dbx-compatible

symbolic

debugger.

For

background

information

on

dbx,

see

the

AIX

General

Concepts

and

Procedures

document

.

For

information

on

dbx

subcommands,

see

the

AIX

Commands

Reference.

The

following

example

represents

a

typical

XL

Fortran

problem

that

you

may

be

able

to

resolve

through

dbx.

Although

it

demonstrates

only

a

small

subset

of

dbx

features

and

uses

memory-allocation

techniques

made

obsolete

by

Fortran

90/Fortran

95

allocatable

arrays,

it

can

serve

as

an

introduction

if

you

have

not

used

this

debugger

before.

Problem

with

Dynamic

Memory

Allocation

The

following

program

tries

to

allocate

an

array

at

run

time

by

using

the

AIX

system

subroutine

malloc.

When

you

use

the

following

command

to

compile

the

program

and

then

run

the

program,

the

program

produces

a

core

dump:

xlf95

-qddim

testprog.f

-o

testprog

At

this

point,

you

may

be

wondering

whether

the

C

malloc

routine

is

working

correctly

or

whether

this

is

the

right

way

to

allocate

an

array

in

a

main

program

when

the

dimensions

are

not

known

until

run

time.

program

main

pointer(p,

array(nvar,nrec))

real*8

array

nvar

=

2

nrec

=

3

p

=

malloc(nvar*nrec*8)

call

test_sub(array,

nvar,

nrec)

end

subroutine

test_sub(array,

nvar,

nrec)

dimension

array(nvar,

nrec)

array(1,1)

=

1.

array(2,1)

=

2.

array(1,2)

=

3.

array(2,2)

=

4.

array(1,3)

=

5.

array(2,3)

=

6.

write(*,

100)

array(1,1),

array(2,1),

array(1,2),

1

array(2,2),

array(1,3),

array(2,3)

100

format(//t2,f4.1/t2,f4.1/t2,f4.1/t2,f4.1/

1

t2,f4.1/t2,f4.1)

return

end

You

might

go

through

the

debugging

process

as

follows:

1.

Compile

the

program

with

the

-g

option,

to

allow

debugging

under

dbx:

Problem

Determination

and

Debugging

377

2.

Run

the

program

to

verify

the

problem

and

create

a

core

dump:

3.

Find

out

where

in

the

program

the

core

dump

occurs:

4.

Use

the

where

command

to

get

a

traceback

of

the

calls

that

led

to

that

point

in

the

program:

main

calls

test_sub

at

line

12.

The

warning

indicates

that

a

problem

occurs

while

evaluating

the

arguments

for

this

call.

->

xlf95

-qddim

-g

testprog.f

-o

testprog

**

main

===

End

of

Compilation

1

===

**

test_sub

===

End

of

Compilation

2

===

1501-510

Compilation

successful

for

file

testprog.f.

->

testprog

Segmentation

fault(coredump)

->

->

dbx

testprog

core

dbx

version

3.1

for

AIX.

Type

’help’

for

help.

reading

symbolic

information

...

[using

memory

image

in

core]

segmentation

violation

in

test_sub

at

line

21

in

file

"testprog.f"

21

array(1,1)

=

1.

(dbx)

(dbx)

where

test_sub(array

=

(...),

nvar

=

warning:

Unable

to

access

address

0x200aee94

from

core

-1,

nrec

=

warning:

Unable

to

access

address

0x200aee98

from

core

-1),

line

21

in

"testprog.f"

main(),

line

12

in

"testprog.f"

(dbx)

378

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

5.

Look

at

the

value

of

the

first

argument

of

the

array:

This

suggests

that

array

does

not

have

a

value

assigned.

To

verify

that

possibility,

try

to

look

at

the

address

of

an

element

in

the

array:

It

seems

that

XL

Fortran

has

not

allocated

the

space

for

the

array.

To

verify

that

it

has

not,

print

the

value

of

the

pointer

that

points

to

the

array:

6.

To

find

out

what

happens

to

p

during

execution,

restart

the

program

and

trace

the

use

of

p:

Because

p

is

never

set

to

a

valid

value,

something

must

be

wrong

with

the

line

that

allocates

space

for

the

array:

(dbx)

print

array(1,1)

reference

through

nil

pointer

(dbx)

(dbx)

p

&array(1,1)

(nil)

(dbx)

(dbx)

print

p

warning:

Unable

to

access

address

0x200aee90

from

core

0xffffffff

(dbx)

stop

in

main

[1]

stop

in

main

(dbx)

run

[1]

stopped

in

main

at

line

7

in

file

"testprog.f"

7

nvar

=

2

(dbx)

trace

p

[3]

trace

p

(dbx)

cont

initially

(at

line

8

in

"testprog.f"):

p

=

nil

segmentation

violation

in

test_sub

at

line

21

in

file

"testprog.f"

21

array(1,1)

=

1.

(dbx)

p

p

nil

(dbx)

9

p

=

malloc(nvar*nrec*8)

Problem

Determination

and

Debugging

379

7.

The

next

step

is

to

research

why

the

call

to

malloc

does

not

work.

Because

malloc

is

a

C

function,

you

should

read

“Interlanguage

Calls”

on

page

345

for

background

knowledge

and

specific

guidelines.

When

you

read

that

section,

you

find

that

calls

to

C

functions

require

arguments

to

be

passed

by

value,

rather

than

by

reference.

To

fix

the

problem

in

this

sample

program,

replace

the

line:

p

=

malloc(nvar*nrec*8)

with

the

line:

p

=

malloc(%val(nvar*nrec*8))

8.

Compiling

and

running

the

fixed

program

(solution.f)

again

produces

the

correct

result:

9.

It

might

be

informative

to

trace

the

execution

of

the

corrected

program:

To

check

whether

the

values

of

p

and

array

are

appropriate,

turn

off

the

trace:

Then

set

new

break

points

and

run

through

the

program

again.

Notice

that

the

address

of

array(1,1)

is

the

same

as

the

contents

of

p(0x200af100),

as

expected:

->

xlf95

-qddim

-g

solution.f

-o

solution

**

main

===

End

of

Compilation

1

===

**

test_sub

===

End

of

Compilation

2

===

1501-510

Compilation

successful

for

file

solution.f.

->

solution

1.0

2.0

3.0

4.0

5.0

6.0

->

dbx

solution

dbx

version

3.1

for

AIX.

Type

’help’

for

help.

Core

file

program

(testprog)

does

not

match

current

program

(core

ignored)

reading

symbolic

information

...

(dbx)

trace

p

[1]

trace

p

(dbx)

run

initially

(at

line

7

in

"solution.f"):

p

=

nil

after

line

9

in

"solution.f":

p

=

0x200af100

1.0

2.0

3.0

4.0

5.0

6.0

execution

completed

(dbx)

(dbx)

status

[1]

trace

p

(dbx)

delete

all

(dbx)

status

(dbx)

380

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Using

Debug

Memory

Routines

for

XL

Fortran

The

XL

Fortran

compiler

contains

two

libraries

that

are

geared

to

various

memory-allocation

facilities.

These

libraries

include:

libhmd.a

A

library

that

provides

debug

versions

of

memory-management

routines.

libhm.a

A

non-debug

library

that

provides

replacement

routines

for

malloc,

free,

and

so

on.

These

routines

are

faster

than

the

usual

AIX

versions.

In

addition,

this

library

contains

a

few

new

library

routines

to

provide

additional

facilities

for

memory

management

and

production-level

heap

error

checking.

The

library

of

most

interest

to

Fortran

users

is

libhmd.a.

See

“The

libhmd.a

Library”

on

page

383

for

additional

details.

If

you

are

installing

an

application

built

with

these

libraries

in

an

environment

that

does

not

have

XL

Fortran

installed,

you

may

need

to

include

the

library

libhu.a

as

well.

This

is

because

some

routines

in

libhmd.a

and

libhm.a

are

dependent

on

routines

in

libhu.a.

The

libhm.a

Library

libhm.a

provides

fast

replacement

routines

for

the

following

libc.a

procedures:

malloc,

calloc,

realloc,

free,

strdup,

mallopt,

and

mallinfo.

The

interfaces

to

these

routines

are

exactly

the

same

as

the

interfaces

to

the

standard

system

routines,

so

a

user

need

only

link

in

libhm.a

before

the

system

libraries

to

make

use

of

them.

In

addition,

the

following

library

routines

that

are

provided

in

libhm.a

are

available

to

Fortran

users:

_heapchk

and

_heapset.

These

routines

provide

production-level

services

that

assist

in

maintaining

consistent

and

correct

heap

storage.

(dbx)

stop

at

9

[11]

stop

at

"solution.f":9

(dbx)

run

[11]

stopped

in

main

at

line

9

in

file

"solution.f"

9

p

=

malloc(%val(nvar*nrec*8))

(dbx)

p

p

nil

(dbx)

next

stopped

in

main

at

line

12

in

file

"solution.f"

12

call

test_sub(array,

nvar,

nrec)

(dbx)

p

p

0x200af100

<-------------

(dbx)

(dbx)

step

/*

Notice

we

use

step

to

step

into

subroutine

test_sub.

*/

stopped

in

test_sub

at

line

21

in

file

"solution.f"

21

array(1,1)

=

1.

(dbx)

p

&array(1,1)

0x200af100

<---------------

(dbx)

next

stopped

in

test_sub

at

line

22

in

file

"solution.f"

22

array(2,1)

=

2.

(dbx)

p

array(1,1)

1.0

(dbx)

Problem

Determination

and

Debugging

381

Note

that

you

cannot

use

the

-qextname

compiler

option

with

programs

that

use

these

facilities.

In

other

words,

since

these

library

routines

are

″system-like″

routines

that

are

not

Fortran-specific,

we

do

not

provide

″_″

versions

of

the

routines

in

our

library.

The

following

table

describes

the

additional

routines

that

you

can

use

from

libhm.a:

C

Function

prototype

Fortran

usage

example

Description

int

_heapchk(void);

integer(4)

_heapchk,

retc

retc

=

_heapchk()

Does

consistency

checking

for

all

allocated

and

freed

objects

on

the

heap.

Return

values:

0

The

heap

is

consistent.

1

Reserved.

2

Heap

errors

have

occurred.

int

_heapset

(unsigned

int

fill);

integer(4)

_heapset,

retc

integer(4)

fill

/1/

retc

=

_heapset(%val(fill))

_heapset

checks

the

heap

for

consistency

(similar

to

_heapchk).

It

then

sets

each

byte

of

any

non-reserved

freed

storage

to

the

value

of

fill.

The

value

of

fill

must

be

an

integer

in

the

range

of

0-255.

Using

_heapset

can

help

a

user

locate

problems

where

a

program

continues

to

use

a

freed

pointer

to

an

object.

Return

values:

0

The

heap

is

consistent.

1

Reserved.

2

Heap

errors

have

occurred.

Examples:

Example

1:

Using

_heapchk

to

test

for

heap

errors

program

tstheapchk

pointer

(p,pbased),(q,qbased)

integer

pbased,qbased

integer(4)

_heapchk,retcode

p

=

malloc(%val(4))

pbased

=

10

!

Decrement

the

pointer

and

store

into

!

memory

we

do

not

own.

q

=

p-4;

qbased

=

10

retcode

=

_heapchk()

if

(retcode

.ne.

0)

call

abort()

382

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

!

Expected

return

code

is:

2.

Program

will

be

aborted.

call

free(%val(p))

end

Example

2:

Using

_heapset

program

tstheapset

pointer

(p,based)

integer*1

based(1000)

integer

_heapset,retcode

p

=

malloc(%val(1000))

based

=

1

print

*,based(450:500)

call

free(%val(p))

retcode

=

_heapset(%val(2))

print

*,based(450:500)

end

Output:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Example

3:

Using

_heapchk

to

test

for

heap

errors

with

ALLOCATE

and

DEALLOCATE

program

tstheapchk

integer,

allocatable

::

a(:)

integer(4)

::

retcode

integer(4),

external

::

_heapchk

allocate(a(1:5))

!

Store

outside

the

bounds

of

allocated

memory.

a(-5:10)

=

17

retcode

=

_heapchk()

if

(retcode

/=

0)

call

abort()

print

*,

retcode

deallocate(a)

end

program

tstheapchk

Example

4:

Using

_heapset

with

memory

managed

with

ALLOCATE

and

DEALLOCATE

program

tstheapset

integer(1),

pointer

::

p1(:),

p2(:)

integer(4)

::

retcode

integer(4),

external

::

_heapset

allocate(p1(1:10))

p2

=>

p1(6:10)

p1

=

1

print

*,

p2

deallocate(p1)

retcode

=

_heapset(%val(2))

print

*,

p2

end

program

tstheapset

Output:

1

1

1

1

1

2

2

2

2

2

The

libhmd.a

Library

The

facilities

that

are

provided

with

libhmd.a

include:

Problem

Determination

and

Debugging

383

v

Memory

leak

reporting

that

indicates

where

the

allocation

of

non-freed

storage

occurred

and

that

displays

partial

contents

of

the

area

that

is

not

freed.

v

Memory

error

detection

that

includes:

–

Freeing

the

same

location

multiple

times

–

Overwriting

the

end

of

an

allocated

object

(note

that

the

-qcheck

compiler

option

available

with

XL

Fortran

already

provides

much

of

this

functionality)

–

Reading

data

from

or

writing

data

to

a

freed

object

–

Freeing

an

invalid

pointer

You

obtain

access

to

this

functionality

when

you

link

in

the

libhmd.a

library

prior

to

the

system

libraries.

References

to

malloc,

realloc,

and

free

can

be

explicit,

or

you

can

obtain

heap

debugging

for

memory

allocated

and

deallocated

via

the

ALLOCATE

and

DEALLOCATE

statements.

To

obtain

source

line

number

information

in

the

output

that

the

debug

library

produces,

you

should

compile

with

the

-g

compiler

option.

Note

that

you

cannot

specify

the

-qextname

compiler

option

with

programs

that

use

these

facilities.

The

following

shows

the

external

interface

and

description

of

the

procedures

that

are

provided.

Note

that

the

external

interfaces

and

functionality

of

malloc,

free,

calloc,

realloc,

and

strdup

are

not

shown

in

this

table,

since

they

have

not

changed.

C

Function

prototype

Fortran

usage

example

Description

void

_dump_allocated

(int

size);

integer(4)

::

size=4

call

_dump_allocated

&

(%val(size))

This

routine

prints

information

to

stderr

about

each

memory

block

that

is

currently

allocated

or

was

allocated

using

the

debug

memory

management

routines.

size

indicates

how

many

bytes

of

each

memory

block

are

to

be

printed,

as

follows:

Negative

size

All

bytes

are

displayed.

0

size

No

bytes

are

displayed.

Positive

size

Specified

number

of

bytes

are

displayed.

384

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

C

Function

prototype

Fortran

usage

example

Description

void

_dump_allocated_delta

(int

size);

integer(4)

::

size=4

call

_dump_allocated_delta

&

(%val(size))

This

routine

prints

information

to

stderr

about

each

memory

block

that

is

currently

allocated

or

was

allocated

using

the

debug

memory

management

routines

since

the

last

call

to

_dump_allocated

or

_dump_allocated_delta.

size

indicates

how

many

bytes

of

each

memory

block

are

to

be

printed,

as

follows:

Negative

size

All

bytes

are

displayed.

0

size

No

bytes

are

displayed.

Positive

size

Specified

number

of

bytes

are

displayed.

void

heap_check(void);

call

_heap_check()

This

routine

does

consistency

checking

for

memory

blocks

that

have

been

allocated

using

the

debug

memory-management

routines.

It

checks

that

your

program

has

not

overwritten

freed

storage

or

memory

outside

the

bounds

of

allocated

blocks.

All

of

the

debug

memory-allocation

routines

(debug

version

of

malloc,

and

so

on)

invoke

heap_check

automatically.

It

may

also

be

invoked

explicitly

in

areas

of

code

where

a

user

believes

there

may

be

memory

problems.

Calling

heap_check

frequently

can

increase

the

memory

requirements

and

affect

the

performance

of

a

program.

The

HD_SKIP

environment

variable

may

be

used

to

control

how

often

the

debug

memory

procedures

check

the

heap.

Note

that

the

errors

are

detected

when

the

heap_check

routine

is

invoked,

not

at

the

point

of

error

in

the

program.

Environment

Variables

The

debug

libraries

support

the

following

environment

variables:

HD_SKIP=increment

[,start]

Control

how

often

heap_check

is

invoked

from

the

debug

versions

of

the

memory-management

routines.

increment

indicates

how

often

you

want

the

debug

functions

to

check

the

heap.

start

specifies

that

the

skipping

of

heap

checks

should

begin

after

the

debug

memory

routines

have

been

Problem

Determination

and

Debugging

385

called

a

certain

number

of

times.

The

default

values

for

increment

and

start

are

1

and

0,

respectively.

HD_FILL

When

this

environment

variable

is

exported,

the

debug

versions

of

malloc

and

realloc

set

the

memory

allocated

to

a

byte

pattern

of

0xAA.

HD_STACK=n

n

specifies

how

many

procedures

should

appear

in

the

call

chain

that

the

debug

memory

routines

produce.

The

default

is

10,

or

it

is

the

number

of

routines

in

the

call

chain,

if

fewer

than

10.

For

example:

export

HD_SKIP=10

!

Every

10th

debug

memory

function

calls

heap_check.

export

HD_SKIP=100,10

!

After

100

calls

to

debug

memory

functions,

every

10th

call

!

will

result

in

a

call

to

heap_check.

Examples:

Example

1:

Memory

leak

detection

pointer

(p,a),(p2,b),(p3,c)

!

1

character

a(4)

!

2

integer

b,c

!

3

!

4

p

=

malloc(%val(4))

!

5

a(1)

=

’a’

!

6

a(2)

=

’b’

!

7

a(3)

=

’c’

!

8

a(4)

=

’d’

!

9

!

10

p2

=

malloc(%val(4))

!

11

b

=

1

!

12

!

13

call

_dump_allocated(%val(4))

!

14

!

15

p3

=

malloc(%val(4))

!

16

c

=

2

!

17

!

18

call

_dump_allocated_delta(%val(4))

!

19

end

!

20

Output:

1546-515

1546-516

START

OF

DUMP

OF

ALLOCATED

MEMORY

BLOCKS

1546-515

1546-518

Address:

0x20000DE0

Size:

0x00000004

(4)

_int_debug_umalloc

+

32C

_debug_umalloc

+

44

_dbg_umalloc

+

18

_umalloc_init

+

30

malloc

+

24

_main

+

24

[x.f:5]

1000022C

1546-520

Memory

contents:

61626364

[abcd

1546-515

1546-518

Address:

0x2000DE10

Size:

0x00000004

(4)

_int_debug_umalloc

+

32C

_debug_umalloc

+

44

_dbg_umalloc

+

18

386

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

malloc

+

24

_main

+

64

[x.f:11]

1000022C

1546-520

Memory

contents:

00000001

[....

1546-515

1546-517

END

OF

DUMP

OF

ALLOCATED

MEMORY

BLOCKS

1546-515

1546-515

1546-516

START

OF

DELTA

DUMP

OF

ALLOCATED

MEMORY

BLOCKS

1546-515

1546-518

Address:

0x2000DE30

Size:

0x00000004

(4)

_int_debug_umalloc

+

32C

_debug_umalloc

+

44

_dbg_umalloc

+

18

malloc

+

24

_main

+

8C

[x.f:16]

1000022C

1546-520

Memory

contents:

00000002

[....

1546-515

1546-517

END

OF

DELTA

DUMP

OF

ALLOCATED

MEMORY

BLOCKS

1546-515

Example

2:

Invalid

write

pointer

(p,a)

!

1

integer

a

!

2

!

3

p

=

malloc(%val(4))

!

4

a

=

1

!

5

p

=

p

+

4

!

6

a

=

2

!

7

!

8

call

_heap_check()

!

9

!

10

end

!

11

Output:

1546-503

End

of

allocated

object

0x20000BD0

was

overwritten

at

0x20000BD4.

1546-514

The

first

eight

bytes

of

the

object

(in

hex)

are:

0000000100000002.

_int_debug_umalloc

+

32C

_debug_umalloc

+

44

_dbg_umalloc

+

18

_umalloc_init

+

30

malloc

+

24

_main

+

24

[x.f:4]

1000022C

1546-522

Traceback:

0xD09D1C94

=

_uheap_check_init

+

0x24

0xD09D18C0

=

heap_check

+

0x28

0x100002C8

=

_main

+

0x5C

IOT/Abort

trap(coredump)

Problem

Determination

and

Debugging

387

388

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Understanding

XL

Fortran

Compiler

Listings

Diagnostic

information

is

placed

in

the

output

listing

produced

by

the

-qlist,

-qsource,

-qxref,

-qattr,

-qreport,

and

-qlistopt

compiler

options.

The

-S

option

generates

an

assembler

listing

in

a

separate

file.

To

locate

the

cause

of

a

problem

with

the

help

of

a

listing,

you

can

refer

to

the

following:

v

The

source

section

(to

see

any

compilation

errors

in

the

context

of

the

source

program)

v

The

attribute

and

cross-reference

section

(to

find

data

objects

that

are

misnamed

or

used

without

being

declared

or

to

find

mismatched

parameters)

v

The

transformation

and

object

sections

(to

see

if

the

generated

code

is

similar

to

what

you

expect)

A

heading

identifies

each

major

section

of

the

listing.

A

string

of

greater

than

symbols

precede

the

section

heading

so

that

you

can

easily

locate

its

beginning:

>>>>>

section

name

You

can

select

which

sections

appear

in

the

listing

by

specifying

compiler

options.

Related

Information:

See

“Options

That

Control

Listings

and

Messages”

on

page

77.

Header

Section

The

listing

file

has

a

header

section

that

contains

the

following

items:

v

A

compiler

identifier

that

consists

of

the

following:

–

Compiler

name

–

Version

number

–

Release

number

–

Modification

number

–

Fix

number
v

Source

file

name

v

Date

of

compilation

v

Time

of

compilation

The

header

section

is

always

present

in

a

listing;

it

is

the

first

line

and

appears

only

once.

The

following

sections

are

repeated

for

each

compilation

unit

when

more

than

one

compilation

unit

is

present.

Options

Section

The

options

section

is

always

present

in

a

listing.

There

is

a

separate

section

for

each

compilation

unit.

It

indicates

the

specified

options

that

are

in

effect

for

the

compilation

unit.

This

information

is

useful

when

you

have

conflicting

options.

If

you

specify

the

-qlistopt

compiler

option,

this

section

lists

the

settings

for

all

options.

©

Copyright

IBM

Corp.

1990,

2004

389

Source

Section

The

source

section

contains

the

input

source

lines

with

a

line

number

and,

optionally,

a

file

number.

The

file

number

indicates

the

source

file

(or

include

file)

from

which

the

source

line

originated.

All

main

file

source

lines

(those

that

are

not

from

an

include

file)

do

not

have

the

file

number

printed.

Each

include

file

has

a

file

number

associated

with

it,

and

source

lines

from

include

files

have

that

file

number

printed.

The

file

number

appears

on

the

left,

the

line

number

appears

to

its

right,

and

the

text

of

the

source

line

is

to

the

right

of

the

line

number.

XL

Fortran

numbers

lines

relative

to

each

file.

The

source

lines

and

the

numbers

that

are

associated

with

them

appear

only

if

the

-qsource

compiler

option

is

in

effect.

You

can

selectively

print

parts

of

the

source

by

using

the

@PROCESS

directives

SOURCE

and

NOSOURCE

throughout

the

program.

Error

Messages

If

the

-qsource

option

is

in

effect,

the

error

messages

are

interspersed

with

the

source

listing.

The

error

messages

that

are

generated

during

the

compilation

process

contain

the

following:

v

The

source

line

v

A

line

of

indicators

that

point

to

the

columns

that

are

in

error

v

The

error

message,

which

consists

of

the

following:

–

The

4-digit

component

number

–

The

number

of

the

error

message

–

The

severity

level

of

the

message

–

The

text

that

describes

the

error

For

example:

2

|

equivalence

(i,j,i)

............................a.

a

-

1514-092:

(E)

Same

name

appears

more

than

once

in

an

equivalence

group.

If

the

-qnosource

option

is

in

effect,

the

error

messages

are

all

that

appear

in

the

source

section,

and

an

error

message

contains:

v

The

file

name

in

quotation

marks

v

The

line

number

and

column

position

of

the

error

v

The

error

message,

which

consists

of

the

following:

–

The

4-digit

component

number

–

The

number

of

the

error

message

–

The

severity

level

of

the

message

–

The

text

that

describes

the

error

For

example:

"doc.f",

line

6.11:

1513-039

(S)

Number

of

arguments

is

not

permitted

for

INTRINSIC

function

abs.

390

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Transformation

Report

Section

If

the

-qreport

option

is

in

effect,

a

transformation

report

listing

shows

how

XL

Fortran

optimized

the

program.

This

section

displays

pseudo-Fortran

code

that

corresponds

to

the

original

source

code,

so

that

you

can

see

parallelization

and

loop

transformations

that

the

-qhot

and/or

-qsmp

options

have

generated.

Sample

Report

The

following

report

was

created

for

the

program

t.f

using

the

xlf

-qhot

-qreport

t.f

command.

Program

t.f:

integer

a(100,

100)

integer

i,j

do

i

=

1

,

100

do

j

=

1,

100

a(i,j)

=

j

end

do

end

do

end

Transformation

Report:

>>>>>

SOURCE

SECTION

<<<<<

**

_main

===

End

of

Compilation

1

===

>>>>>

LOOP

TRANSFORMATION

SECTION

<<<<<

PROGRAM

_main

()

4|

IF

(.FALSE.)

GOTO

lab_9

@LoopIV0

=

0

Id=1

DO

@LoopIV0

=

@LoopIV0,

99

5|

IF

(.FALSE.)

GOTO

lab_11

@LoopIV1

=

0

Id=2

DO

@LoopIV1

=

@LoopIV1,

99

!

DIR_INDEPENDENT

loopId

=

0

6|

a((@LoopIV1

+

1),(@LoopIV0

+

1))

=

(@LoopIV0

+

1)

7|

ENDDO

lab_11

8|

ENDDO

lab_9

9|

END

PROGRAM

_main

Source

Source

Loop

Id

Action

/

Information

File

Line

0

4

1

Loop

interchanging

applied

to

loop

nest.

>>>>>

FILE

TABLE

SECTION

<<<<<

Understanding

XL

Fortran

Compiler

Listings

391

Attribute

and

Cross-Reference

Section

This

section

provides

information

about

the

entities

that

are

used

in

the

compilation

unit.

It

is

present

if

the

-qxref

or

-qattr

compiler

option

is

in

effect.

Depending

on

the

options

in

effect,

this

section

contains

all

or

part

of

the

following

information

about

the

entities

that

are

used

in

the

compilation

unit:

v

Names

of

the

entities

v

Attributes

of

the

entities

(if

-qattr

is

in

effect).

Attribute

information

may

include

any

or

all

of

the

following

details:

–

The

type

–

The

class

of

the

name

–

The

relative

address

of

the

name

–

Alignment

–

Dimensions

–

For

an

array,

whether

it

is

allocatable

–

Whether

it

is

a

pointer,

target,

or

integer

pointer

–

Whether

it

is

a

parameter

–

Whether

it

is

volatile

–

For

a

dummy

argument,

its

intent,

whether

it

is

value,

and

whether

it

is

optional

–

Private,

public,

protected,

module
v

Coordinates

to

indicate

where

you

have

defined,

referenced,

or

modified

the

entities.

If

you

declared

the

entity,

the

coordinates

are

marked

with

a

$.

If

you

initialized

the

entity,

the

coordinates

are

marked

with

a

*.

If

you

both

declared

and

initialized

the

entity

at

the

same

place,

the

coordinates

are

marked

with

a

&.

If

the

entity

is

set,

the

coordinates

are

marked

with

a

@.

If

the

entity

is

referenced,

the

coordinates

are

not

marked.

Class

is

one

of

the

following:

v

Automatic

v

BSS

(uninitialized

static

internal)

v

Common

v

Common

block

v

Construct

name

v

Controlled

(for

an

allocatable

object)

v

Controlled

automatic

(for

an

automatic

object)

v

Defined

assignment

v

Defined

operator

v

Derived

type

definition

v

Entry

v

External

subprogram

v

Function

v

Generic

name

v

Internal

subprogram

v

Intrinsic

v

Module

v

Module

function

v

Module

subroutine

v

Namelist

v

Pointee

v

Private

component

v

Program

v

Reference

parameter

v

Renames

v

Static

v

Subroutine

392

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

v

Use

associated

v

Value

parameter

Type

is

one

of

the

following:

v

Byte

v

Character

v

Complex

v

Derived

type

v

Integer

v

Logical

v

Real

If

you

specify

the

full

suboption

with

-qxref

or

-qattr,

XL

Fortran

reports

all

entities

in

the

compilation

unit.

If

you

do

not

specify

this

suboption,

only

the

entities

you

actually

use

appear.

Object

Section

XL

Fortran

produces

this

section

only

when

the

-qlist

compiler

option

is

in

effect.

It

contains

the

object

code

listing,

which

shows

the

source

line

number,

the

instruction

offset

in

hexadecimal

notation,

the

assembler

mnemonic

of

the

instruction,

and

the

hexadecimal

value

of

the

instruction.

On

the

right

side,

it

also

shows

the

cycle

time

of

the

instruction

and

the

intermediate

language

of

the

compiler.

Finally,

the

total

cycle

time

(straight-line

execution

time)

and

the

total

number

of

machine

instructions

that

are

produced

are

displayed.

There

is

a

separate

section

for

each

compilation

unit.

File

Table

Section

This

section

contains

a

table

that

shows

the

file

number

and

file

name

for

each

main

source

file

and

include

file

used.

It

also

lists

the

line

number

of

the

main

source

file

at

which

the

include

file

is

referenced.

This

section

is

always

present.

Compilation

Unit

Epilogue

Section

This

is

the

last

section

of

the

listing

for

each

compilation

unit.

It

contains

the

diagnostics

summary

and

indicates

whether

the

unit

was

compiled

successfully.

This

section

is

not

present

in

the

listing

if

the

file

contains

only

one

compilation

unit.

Compilation

Epilogue

Section

The

compilation

epilogue

section

occurs

only

once

at

the

end

of

the

listing.

At

completion

of

the

compilation,

XL

Fortran

presents

a

summary

of

the

compilation:

number

of

source

records

that

were

read,

compilation

start

time,

compilation

end

time,

total

compilation

time,

total

CPU

time,

and

virtual

CPU

time.

This

section

is

always

present

in

a

listing.

Related

Information:

Sample

programs

are

shown

in

Appendix

A,

“Sample

Fortran

Programs,”

on

page

405.

Understanding

XL

Fortran

Compiler

Listings

393

394

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Fortran-Related

AIX

Commands

You

can

use

some

AIX

commands

with

XL

Fortran

files

to

perform

several

tasks,

as

outlined

in

this

section.

Related

Information:

See

the

AIX

Commands

Reference

for

full

details

on

these

commands.

Working

with

Object-Code

Archives

(ar)

The

ar

command

performs

operations

on

libraries

of

object

files

that

are

used

during

linking.

You

might

use

this

command

to

create

a

library

of

support

routines

that

can

be

linked

into

many

different

programs,

as

follows:

ar

-q

~/mylibs/graphics.a

raytrace.o

shade.o

illuminate.o

xlf95

spheres.f

-L~/mylibs/

-lgraphics

Printing

Output

Files

with

Fortran

ASA

Carriage

Controls

(asa)

The

asa

command

translates

the

output

of

Fortran

programs

that

use

the

historical

Fortran

convention

for

ASA

carriage-control

characters.

The

translated

output

is

suitable

for

the

qprt

command:

generate_output

|

asa

|

qprt

The

fpr

command

is

the

same

as

the

asa

command.

For

a

list

of

supported

carriage-control

characters,

see

Formatted

Records

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Splitting

Subprograms

into

Individual

Files

(fsplit)

The

fsplit

command

splits

the

specified

Fortran

source

program

files

into

several

files.

You

should

only

use

fsplit

with

FORTRAN

77

programs.

$

cat

fsplit.f

subroutine

sub1

print

*,’Hello

world’

end

subroutine

sub2

print

*,’Goodbye’

end

program

main

call

sub1

call

sub2

end

$

fsplit

fsplit.f

sub1.f

sub2.f

main.f

©

Copyright

IBM

Corp.

1990,

2004

395

Automating

Large,

Complex

Compilations

(make)

The

make

command

allows

you

to

specify

rules

(sets

of

commands

and

options)

to

use

for

processing

different

types

of

files.

By

keeping

track

of

which

files

are

out-of-date

and

need

to

be

recompiled,

it

can

automate

some

or

all

aspects

of

the

compilation

process.

If

you

use

make

with

XL

Fortran,

you

may

not

want

an

object

or

an

executable

file

created

when

the

compiler

encounters

errors.

The

default

setting

of

-qhalt=s

prevents

the

compiler

from

generating

the

object

file

if

it

finds

problems

that

it

cannot

correct.

Important:

If

you

make

any

changes

to

the

default

configuration

file

and

then

move

or

copy

your

makefiles

to

another

system,

you

also

need

to

copy

the

changed

configuration

file.

Run-Time

Profiling

(prof,

gprof)

The

prof

and

gprof

commands

provide

different

levels

of

run-time

profile

reports,

which

you

can

examine

to

find

performance

bottlenecks

and

identify

the

subprograms

that

are

called

most

or

least

often.

This

information

can

help

you

decide

where

to

concentrate

performance-tuning

efforts.

See

“-p

Option”

on

page

118

for

information

on

compiling

for

profiling

and

an

example

of

the

sequence

of

commands.

The

“-qipa

Option”

on

page

182

allows

you

to

feed

profiling

information

back

into

subsequent

compilations

to

enhance

optimization.

Translating

Programs

into

RATFOR

(struct)

The

struct

command

translates

a

FORTRAN

77

source

program

into

a

RATFOR

program:

struct

fortran.f

>ratfor.f

Displaying

Information

inside

Binary

Files

(what)

The

what

command

reads

information

encoded

into

some

binary

files,

as

follows:

v

Information

about

the

compiler

version

is

encoded

in

/usr/lpp/xlf/bin/xlfentry.

v

Information

about

the

parent

module,

bit

mode,

the

compiler

that

created

the

.mod

file,

the

date

and

time

the

.mod

file

was

created,

and

the

source

file

is

encoded

in

each

.mod

file.

396

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Porting

Programs

to

XL

Fortran

XL

Fortran

provides

many

features

intended

to

make

it

easier

to

take

programs

that

were

originally

written

for

other

computer

systems

or

compilers

and

recompile

them

with

XL

Fortran.

Outline

of

the

Porting

Process

The

process

for

porting

a

typical

program

looks

like

this:

1.

Identify

any

nonportable

language

extensions

or

subroutines

that

you

used

in

the

original

program.

Check

to

see

which

of

these

XL

Fortran

supports:

v

Language

extensions

are

identified

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

v

Some

extensions

require

you

to

specify

an

XL

Fortran

compiler

option;

you

can

find

these

options

listed

in

Table

8

on

page

80.
2.

For

any

nonportable

features

that

XL

Fortran

does

not

support,

modify

the

source

files

to

remove

or

work

around

them.

3.

Do

the

same

for

any

implementation-dependent

features.

For

example,

if

your

program

relies

on

the

representation

of

floating-point

values

or

uses

system-specific

file

names,

you

may

need

to

change

it.

4.

Compile

the

program

with

XL

Fortran.

If

any

compilation

problems

occur,

fix

them

and

recompile

and

fix

any

additional

errors

until

the

program

compiles

successfully.

5.

Run

the

XLF-compiled

program

and

compare

the

output

with

the

output

from

the

other

system.

If

the

results

are

substantially

different,

there

are

probably

still

some

implementation-specific

features

that

need

to

be

changed.

If

the

results

are

only

marginally

different

(for

example,

if

XL

Fortran

produces

a

different

number

of

digits

of

precision

or

a

number

differs

in

the

last

decimal

place),

decide

whether

the

difference

is

significant

enough

to

investigate

further.

You

may

be

able

to

fix

these

differences.

Before

porting

programs

to

XL

Fortran,

read

the

tips

in

the

following

sections

so

that

you

know

in

advance

what

compatibility

features

XL

Fortran

offers.

Maintaining

FORTRAN

77

Source

and

Object

Code

You

can

recompile

existing

FORTRAN

77

programs

from

XL

Fortran

Version

2

with

XL

Fortran

Version

9.1.

You

can

link

existing

FORTRAN

77

object

code

from

XL

Fortran

Versions

1

to

8

into

programs

generated

by

XL

Fortran

Version

9.1.

See

“Linking

New

Objects

with

Existing

Ones”

on

page

45

for

details.

Portability

of

Directives

XL

Fortran

supports

many

directives

available

with

other

Fortran

products.

This

ensures

easy

portability

between

products.

If

your

code

contains

trigger_constants

other

than

the

defaults

in

XL

Fortran,

you

can

use

the

-qdirective

compiler

option

to

specify

them.

For

instance,

if

you

are

porting

CRAY

code

contained

in

a

file

xx.f,

you

would

use

the

following

command

to

add

the

CRAY

trigger_constant:

xlf95

xx.f

-qdirective=mic\$

©

Copyright

IBM

Corp.

1990,

2004

397

For

fixed

source

form

code,

in

addition

to

the

!

value

for

the

trigger_head

portion

of

the

directive,

XL

Fortran

also

supports

the

trigger_head

values

C,

c,

and

*.

For

more

information,

see

“-qdirective

Option”

on

page

148.

XL

Fortran

supports

a

number

of

programming

terms

as

synonyms

to

ease

the

effort

of

porting

code

from

other

Fortran

products.

Those

terms

that

are

supported

are

dependent

on

context,

as

indicated

in

the

following

tables:

Table

30.

PARALLEL

DO

Clauses

and

Their

XL

Fortran

Synonyms

PARALLEL

DO

Clause

XL

Fortran

Synonym

LASTLOCAL

LASTPRIVATE

LOCAL

PRIVATE

MP_SCHEDTYPE

and

CHUNK

SCHEDULE

SAVELAST

LASTPRIVATE

SHARE

SHARED

NEW

PRIVATE

Table

31.

PARALLEL

DO

Scheduling

Types

and

Their

XL

Fortran

Synonyms

Scheduling

Type

XL

Fortran

Synonym

GSS

GUIDED

INTERLEAVE

STATIC(1)

INTERLEAVED

STATIC(1)

INTERLEAVE(n)

STATIC(n)

INTERLEAVED(n)

STATIC(n)

SIMPLE

STATIC

Table

32.

PARALLEL

SECTIONS

Clauses

and

Their

XL

Fortran

Synonyms

PARALLEL

SECTIONS

Clause

XL

Fortran

Synonym

LOCAL

PRIVATE

SHARE

SHARED

NEW

PRIVATE

398

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

NEW

Use

the

NEW

directive

to

specify

which

variables

should

be

local

in

a

PARALLEL

DO

loop

or

a

PARALLEL

SECTIONS

construct.

This

directive

performs

the

same

function

as

the

PRIVATE

clause

of

the

PARALLEL

DO

directive

and

PARALLEL

SECTIONS

directive.

Background

Information

The

NEW

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

The

NEW

directive

must

immediately

follow

either

a

PARALLEL

DO

directive

or

a

PARALLEL

SECTIONS

directive.

If

you

specify

the

NEW

directive,

you

must

specify

the

corresponding

PARALLEL

DO

or

PARALLEL

SECTIONS

directive

with

no

clauses.

If

the

NEW

directive

follows

the

PARALLEL

DO

directive,

the

first

noncomment

line

(not

including

other

directives)

following

the

NEW

directive

must

be

a

DO

loop.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

A

variable

name

in

the

named_variable_list

of

the

NEW

directive

has

the

same

restrictions

as

a

variable

name

appearing

in

the

PRIVATE

clause

of

the

PARALLEL

DO

directive

or

a

PRIVATE

clause

of

the

PARALLEL

SECTIONS

directive.

See

the

sections

on

the

PARALLEL

DO

directive

and

the

PARALLEL

SECTIONS

construct

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference.

Examples

INTEGER

A(10),

C(10)

REAL

B(10)

INTEGER

FUNC(100)

!SMP$

PARALLEL

DO

!SMP$

NEW

I,

TMP

DO

I

=

1,

10

TMP

=

A(I)

+

COS(B(I))

C(I)

=

TMP

+

FUNC(I)

END

DO

��

NEW

named_variable_list

��

Porting

Programs

to

XL

Fortran

399

Common

Industry

Extensions

That

XL

Fortran

Supports

XL

Fortran

allows

many

of

the

same

FORTRAN

77

extensions

as

other

popular

compilers,

including:

Extension

Refer

to

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

Section(s)

Typeless

constants

Typeless

Literal

Constants

*len

length

specifiers

for

types

The

Data

Types

BYTE

data

type

BYTE

Long

variable

names

Names

Lower

case

Names

Mixing

integers

and

logicals

(with

-qintlog

option)

Evaluation

of

Expressions

Character-count

Q

edit

descriptor

(with

-qqcount

option)

Q

(Character

Count)

Editing

Intrinsics

for

counting

set

bits

in

registers

and

determining

data-object

parity

POPCNT,

POPPAR

64-bit

data

types

(INTEGER(8),

REAL(8),

COMPLEX(8),

and

LOGICAL(8)),

including

support

for

default

64-bit

types

(with

-qintsize

and

-qrealsize

options)

Integer

Real

Complex

Logical

Integer

POINTERs,

similar

to

those

supported

by

CRAY

and

Sun

compilers.

(XL

Fortran

integer

pointer

arithmetic

uses

increments

of

one

byte,

while

the

increment

on

CRAY

computers

is

eight

bytes.

You

may

need

to

multiply

pointer

increments

and

decrements

by

eight

to

make

programs

ported

from

CRAY

computers

work

properly.)

POINTER(integer)

Conditional

vector

merge

(CVMGx)

intrinsic

functions

CVMGx

(TSOURCE,

FSOURCE,

MASK)

Date

and

time

service

and

utility

functions

(rtc,

irtc,

jdate,

clock_,

timef,

and

date)

Service

and

Utility

Procedures

STRUCTURE,

UNION,

and

MAP

constructs

Structure

Components,

Union

and

Map

Mixing

Data

Types

in

Statements

The

-qctyplss

option

lets

you

use

character

constant

expressions

in

the

same

places

that

you

use

typeless

constants.

The

-qintlog

option

lets

you

use

integer

expressions

where

you

can

use

logicals,

and

vice

versa.

A

kind

type

parameter

must

not

be

replaced

with

a

logical

constant

even

if

-qintlog

is

on,

nor

by

a

character

constant

even

if

-qctyplss

is

on,

nor

can

it

be

a

typeless

constant.

Date

and

Time

Routines

Date

and

time

routines,

such

as

dtime,

etime,

and

jdate,

are

accessible

as

Fortran

subroutines.

Other

libc

Routines

A

number

of

other

popular

routines

from

the

libc

library,

such

as

flush,

getenv,

and

system,

are

also

accessible

as

Fortran

subroutines.

400

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Changing

the

Default

Sizes

of

Data

Types

For

porting

from

machines

with

larger

or

smaller

word

sizes,

the

-qintsize

option

lets

you

specify

the

default

size

for

integers

and

logicals.

The

-qrealsize

option

lets

you

specify

the

default

size

for

reals

and

complex

components.

Name

Conflicts

between

Your

Procedures

and

XL

Fortran

Intrinsic

Procedures

If

you

have

procedures

with

the

same

names

as

any

XL

Fortran

intrinsic

procedures,

the

program

calls

the

intrinsic

procedure.

(This

situation

is

more

likely

with

the

addition

of

the

many

new

Fortran

90

and

Fortran

95

intrinsic

procedures.)

If

you

still

want

to

call

your

procedure,

add

explicit

interfaces,

EXTERNAL

statements,

or

PROCEDURE

statements

for

any

procedures

with

conflicting

names,

or

use

the

-qextern

option

when

compiling.

Reproducing

Results

from

Other

Systems

XL

Fortran

provides

settings

through

the

-qfloat

option

that

help

make

floating-point

results

consistent

with

those

from

other

IEEE

systems;

this

subject

is

discussed

in

“Duplicating

the

Floating-Point

Results

of

Other

Systems”

on

page

295.

Finding

Nonstandard

Extensions

XL

Fortran

supports

a

number

of

extensions

to

various

language

standards.

Many

of

these

extensions

are

so

common

that

you

need

to

keep

in

mind,

when

you

port

programs

to

other

systems,

that

not

all

compilers

have

them.

To

find

such

extensions

in

your

XL

Fortran

programs

before

beginning

a

porting

effort,

use

the

-qlanglvl

option:

Related

Information:

See

“-qlanglvl

Option”

on

page

189

and

“-qport

Option”

on

page

217.

$

#

-qnoobject

stops

the

compiler

after

parsing

all

the

source,

$

#

giving

a

fast

way

to

check

for

errors.

$

#

Look

for

anything

above

the

base

F77

standard.

$

xlf

-qnoobject

-qlanglvl=77std

f77prog.f

...

$

#

Look

for

anything

above

the

F90

standard.

$

xlf90

-qnoobject

-qlanglvl=90std

use_in_2000.f

...

$

#

Look

for

anything

above

the

F95

standard.

$

xlf95

-qnoobject

-qlanglvl=95std

use_in_2000.f

...

Porting

Programs

to

XL

Fortran

401

402

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Answers

to

Frequently

Asked

Questions

Here

are

the

answers

to

some

questions

that

are

often

asked

by

users

of

XL

Fortran.

Many

of

these

questions

are

answered

elsewhere

in

the

XL

Fortran

documentation,

but

they

are

also

collected

here

for

your

convenience.

Finding

the

Date

and

Time

There

are

some

common

date

and

time

subprograms

that

you

may

be

familiar

with

from

programming

in

FORTRAN

77

on

other

systems.

XL

Fortran

provides

equivalents

to

many

of

these

subprograms.

Some

of

the

names

have

trailing

underscores

to

avoid

conflicts

with

C

library

functions

of

the

same

name.

The

XL

Fortran

subprograms

that

deal

with

the

date

and

time

are:

alarm_

clock_

ctime_

date

dtime_

etime_

fdate_

gmtime_

idate_

irtc

itime_

jdate

ltime_

rtc

sleep_

time_

timef

usleep_

See

the

section

on

Service

and

Utility

Procedures

in

the

XL

Fortran

Enterprise

Edition

for

AIX

Language

Reference

for

details

about

these

subprograms.

For

portable

Fortran

90

and

Fortran

95

programming,

you

can

also

use

the

CPU_TIME,

DATE_AND_TIME,

and

SYSTEM_CLOCK

intrinsic

subroutines.

Efficient

Static

Linking

“Dynamic

and

Static

Linking”

on

page

46

discusses

the

respective

strengths

and

weaknesses

of

static

and

dynamic

linking.

A

technique

for

static

linking

that

requires

relatively

little

disk

space

is

to

link

any

XL

Fortran

libraries

statically

but

leave

references

to

other

system

libraries

dynamic.

This

example

statically

links

just

the

XL

Fortran

library:

#

Build

a

temporary

object:

ld

-r

-o

libtmp.o

-bnso

-lxlf90

#

Build

the

application

with

this

object

on

the

command

line:

xlf95

-o

appl

appl1.o

appl2.o

libtmp.o

©

Copyright

IBM

Corp.

1990,

2004

403

404

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Appendix

A.

Sample

Fortran

Programs

The

following

programs

are

provided

as

coding

examples

for

XL

Fortran.

A

number

of

these

samples

illustrate

various

aspects

of

SMP

programming

that

may

be

new

to

many

users.

If

you

are

new

to

SMP

programming,

you

should

examine

these

samples

to

gain

a

better

understanding

of

the

SMP

coding

style.

Every

attempt

has

been

made

to

internally

document

key

areas

of

the

source

to

assist

you

in

this

effort.

You

can

compile

and

execute

the

first

program

to

verify

that

the

compiler

is

installed

correctly

and

your

user

ID

is

set

up

to

execute

Fortran

programs.

Example

1

-

XL

Fortran

Source

File

PROGRAM

CALCULATE

!

!

Program

to

calculate

the

sum

of

up

to

n

values

of

x**3

!

where

negative

values

are

ignored.

!

IMPLICIT

NONE

INTEGER

I,N

REAL

SUM,X,Y

READ(*,*)

N

SUM=0

DO

I=1,N

READ(*,*)

X

IF

(X.GE.0)

THEN

Y=X**3

SUM=SUM+Y

END

IF

END

DO

WRITE(*,*)

’This

is

the

sum

of

the

positive

cubes:’,SUM

END

Execution

Results

Here

is

what

happens

when

you

run

the

program:

$

a.out

5

37

22

-4

19

6

This

is

the

sum

of

the

positive

cubes:

68376.00000

©

Copyright

IBM

Corp.

1990,

2004

405

Example

2

-

Valid

C

Routine

Source

File

/*

*

**

*

This

is

a

main

function

that

creates

threads

to

execute

the

Fortran

*

test

subroutines.

*

**

*/

#include

<pthread.h>

#include

<stdio.h>

#include

<errno.h>

extern

char

*sys_errlist[];

extern

char

*optarg;

extern

int

optind;

static

char

*prog_name;

#define

MAX_NUM_THREADS

100

void

*f_mt_exec(void

*);

void

f_pre_mt_exec(void);

void

f_post_mt_exec(int

*);

void

usage(void)

{

fprintf(stderr,

"Usage:

%s

-t

number_of_threads.\n",

prog_name);

exit(-1);

}

main(int

argc,

char

*argv[])

{

int

i,

c,

rc;

int

num_of_threads,

n[MAX_NUM_THREADS];

char

*num_of_threads_p;

pthread_attr_t

attr;

pthread_t

tid[MAX_NUM_THREADS];

prog_name

=

argv[0];

while

((c

=

getopt(argc,

argv,

"t"))

!=

EOF)

{

switch

(c)

{

case

’t’:

break;

default:

usage();

break;

}

}

argc

-=

optind;

argv

+=

optind;

if

(argc

<

1)

{

usage();

}

num_of_threads_p

=

argv[0];

if

((num_of_threads

=

atoi(num_of_threads_p))

==

0)

{

fprintf(stderr,

"%s:

Invalid

number

of

threads

to

be

created

<%s>\n",

prog_name,

num_of_threads_p);

exit(1);

406

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

}

else

if

(num_of_threads

>

MAX_NUM_THREADS)

{

fprintf(stderr,

"%s:

Cannot

create

more

than

100

threads.\n",

prog_name);

exit(1);

}

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_UNDETACHED);

/*

**

*

Execute

the

Fortran

subroutine

that

prepares

for

multi-threaded

*

execution.

*

**

*/

f_pre_mt_exec();

for

(i

=

0;

i

<

num_of_threads;

i++)

{

n[i]

=

i;

rc

=

pthread_create(&tid[i],

&attr,

f_mt_exec,

(void

*)&n[i]);

if

(rc

!=

0)

{

fprintf(stderr,

"Failed

to

create

thread

%d.\n",

i);

fprintf(stderr,

"Error

is

%s\n",

sys_errlist[rc]);

exit(1);

}

}

/*

The

attribute

is

no

longer

needed

after

threads

are

created.

*/

pthread_attr_destroy(&attr);

for

(i

=

0;

i

<

num_of_threads;

i++)

{

rc

=

pthread_join(tid[i],

NULL);

if

(rc

!=

0)

{

fprintf(stderr,

"Failed

to

join

thread

%d.

\n",

i);

fprintf(stderr,

"Error

is

%s\n",

sys_errlist[rc]);

}

}

/*

*

Execute

the

Fortran

subroutine

that

does

the

check

after

*

multi-threaded

execution.

*/

f_post_mt_exec(&num_of_threads);

exit(0);

}

!

!

This

test

case

tests

the

writing

list-directed

to

a

single

external

!

file

by

many

threads.

!

subroutine

f_pre_mt_exec()

integer

array(1000)

common

/x/

array

do

i

=

1,

1000

array(i)

=

i

end

do

open(10,

file="fun10.out",

form="formatted",

status="replace")

end

subroutine

f_post_mt_exec(number_of_threads)

integer

array(1000),

array1(1000)

common

/x/

array

Appendix

A.

Sample

Fortran

Programs

407

close(10)

open(10,

file="fun10.out",

form="formatted")

do

j

=

1,

number_of_threads

read(10,

*)

array1

do

i

=

1,

1000

if

(array1(i)

/=

array(i))

then

print

*,

"Result

is

wrong."

stop

endif

end

do

end

do

close(10,

status="delete")

print

*,

"Normal

ending."

end

subroutine

f_mt_exec(thread_number)

integer

thread_number

integer

array(1000)

common

/x/

array

write(10,

*)

array

end

Example

3

-

Valid

Fortran

SMP

Source

File

!***

!*

This

example

uses

a

PARALLEL

construct

and

a

DO

construct

*

!*

to

calculate

the

value

of

pi.

*

!***

program

compute_pi

integer

n,

i

real*8

w,

x,

pi,

f,

a

f(a)

=

4.d0

/(1.d0

+

a*a)

!!

function

to

integrate

pi

=

0.0d0

!$OMP

PARALLEL

private(x,

w,

n),

shared(pi)

n

=

10000

!!

number

of

intervals

w

=

1.0d0/n

!!

calculate

the

interval

size

!$OMP

DO

reduction(+:

pi)

do

i

=

1,

n

x

=

w

*

(i

-

0.5d0)

pi

=

pi

+

f(x)

enddo

!$OMP

END

DO

!$OMP

END

PARALLEL

print

*,

"Computed

pi

=

",

pi

end

Example

4

-

Invalid

Fortran

SMP

Source

File

!***

!*

In

this

example,

fort_sub

is

invoked

by

multiple

threads.

*

!*

*

!*

This

example

is

not

valid

because

*

!*

fort_sub

and

another_sub

both

declare

/block/

to

be

*

!*

THREADLOCAL.

They

intend

to

share

the

common

block,

but

*

!*

they

are

executed

via

different

threads.

*

!*

*

!*

To

"fix"

this

problem,

one

of

the

following

approaches

can

*

!*

be

taken:

*

!*

(1)

The

code

for

another_sub

should

be

brought

into

the

loop.*

!*

(2)

"j"

should

be

passed

as

an

argument

to

another_sub,

and

*

!*

the

declaration

for

/block/

should

be

removed

from

*

!*

another_sub.

*

408

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

!*

(3)

The

loop

should

be

marked

as

"do

not

parallelize"

by

*

!*

using

the

directive

"!SMP$

PARALLEL

DO

IF(.FALSE.)".

*

!***

subroutine

fort_sub()

common

/block/

j

integer

::

j

!IBM*

THREADLOCAL

/block/

!

Each

thread

executing

fort_sub

!

obtains

its

own

copy

of

/block/.

integer

a(10)

...

!IBM*

INDEPENDENT

do

index

=

1,10

call

another_sub(a(i))

enddo

...

end

subroutine

fort_sub

subroutine

another_sub(aa)

!

Multiple

threads

are

used

to

integer

aa

!

execute

another_sub.

common

/block/

j

!

Each

thread

obtains

a

new

copy

integer

::

j

!

of

the

common

block

/block/.

!IBM*

THREADLOCAL

/block/

aa

=

j

!

The

value

of

"j"

is

undefined.

end

subroutine

another_sub

Programming

Examples

Using

the

Pthreads

Library

Module

!**

!*

Example

5

:

Create

a

thread

with

Round_Robin

scheduling

policy.*

!*

For

simplicity,

we

do

not

show

any

codes

for

error

checking,

*

!*

which

would

be

necessary

in

a

real

program.

*

!**

use,

intrinsic::f_pthread

integer(4)

ret_val

type(f_pthread_attr_t)

attr

type(f_pthread_t)

thr

ret_val

=

f_pthread_attr_init(attr)

ret_val

=

f_pthread_attr_setschedpolicy(attr,

SCHED_RR)

ret_val

=

f_pthread_attr_setinheritsched(attr,

PTHREAD_EXPLICIT_SCHED)

ret_val

=

f_pthread_create(thr,

attr,

FLAG_DEFAULT,

ent,

integer_arg)

ret_val

=

f_pthread_attr_destroy(attr)

......

Before

you

can

manipulate

a

pthread

attribute

object,

you

need

to

create

and

initialize

it.

The

appropriate

interfaces

must

be

called

to

manipulate

the

attribute

objects.

A

call

to

f_pthread_attr_setschedpolicy

sets

the

scheduling

policy

attribute

to

Round_Robin.

Note

that

this

does

not

affect

newly

created

threads

that

inherit

the

scheduling

property

from

the

creating

thread.

For

these

threads,

we

explicitly

call

f_pthread_attr_setinheritsched

to

override

the

default

inheritance

attribute.

The

rest

of

the

code

is

self-explanatory.

!***

!*

Example

6

:

Thread

safety

*

!*

In

this

example,

we

show

that

thread

safety

can

be

achieved

*

!*

by

using

the

push-pop

cleanup

stack

for

each

thread.

We

*

!*

assume

that

the

thread

is

in

deferred

cancellability-enabled

*

!*

state.

This

means

that

any

thread-cancel

requests

will

be

*

!*

put

on

hold

until

a

cancellation

point

is

encountered.

*

!*

Note

that

f_pthread_cond_wait

provides

a

*

!*

cancellation

point.

*

Appendix

A.

Sample

Fortran

Programs

409

!***

use,

intrinsic::f_pthread

integer(4)

ret_val

type(f_pthread_mutex_t)

mutex

type(f_pthread_cond_t)

cond

pointer(p,

byte)

!

Initialize

mutex

and

condition

variables

before

using

them.

!

For

global

variables

this

should

be

done

in

a

module,

so

that

they

!

can

be

used

by

all

threads.

If

they

are

local,

other

threads

!

will

not

see

them.

Furthermore,

they

must

be

managed

carefully

!

(for

example,

destroy

them

before

returning,

to

avoid

dangling

and

!

undefined

objects).

mutex

=

PTHREAD_MUTEX_INITIALIZER

cond

=

PTHREAD_COND_INITIALIZER

......

!

Doing

something

......

!

This

thread

needs

to

allocate

some

memory

area

used

to

!

synchronize

with

other

threads.

However,

when

it

waits

on

a

!

condition

variable,

this

thread

may

be

canceled

by

another

!

thread.

The

allocated

memory

may

be

lost

if

no

measures

are

!

taken

in

advance.

This

will

cause

memory

leakage.

ret_val

=

f_pthread_mutex_lock(mutex)

p

=

malloc(%val(4096))

!

Check

condition.

If

it

is

not

true,

wait

for

it.

!

This

should

be

a

loop.

!

Since

memory

has

been

allocated,

cleanup

must

be

registered

!

for

safety

during

condition

waiting.

ret_val

=

f_pthread_cleanup_push(mycleanup,

FLAG_DEFAULT,

p)

ret_val

=

f_pthread_cond_wait(cond,

mutex)

!

If

this

thread

returns

from

condition

waiting,

the

cleanup

!

should

be

de-registered.

call

f_pthread_cleanup_pop(0)

!

not

execute

ret_val

=

f_pthread_mutex_unlock(mutex)

!

This

thread

will

take

care

of

p

for

the

rest

of

its

life.

......

!

mycleanup

looks

like:

subroutine

mycleanup(passed_in)

pointer(passed_in,

byte)

external

free

call

free(%val(passed_in))

end

subroutine

mycleanup

410

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Appendix

B.

XL

Fortran

Technical

Information

This

section

contains

details

about

XL

Fortran

that

advanced

programmers

may

need

to

diagnose

unusual

problems,

run

the

compiler

in

a

specialized

environment,

or

do

other

things

that

a

casual

programmer

is

rarely

concerned

with.

The

Compiler

Phases

The

typical

compiler

invocation

command

executes

some

or

all

of

the

following

programs

in

sequence.

For

link-time

optimizations,

some

of

the

phases

will

be

executed

more

than

once

during

a

compilation.

As

each

program

runs,

the

results

are

sent

to

the

next

step

in

the

sequence.

1.

A

preprocessor

2.

The

compiler,

which

consists

of

the

following

phases:

a.

Front-end

parsing

and

semantic

analysis

b.

Loop

transformations

c.

Interprocedural

analysis

d.

Optimization

e.

Register

allocation

f.

Final

assembly
3.

The

assembler

(for

any

.s

files)

4.

The

linker

ld

External

Names

in

theXL

FortranShared

Libraries

The

run-time

libraries

included

in

the

XL

Fortran

Run-Time

Environment

are

AIX

shared

libraries,

which

are

processed

by

the

linker

to

resolve

all

references

to

external

names.

To

minimize

naming

conflicts

between

user-defined

names

and

the

names

that

are

defined

in

the

run-time

libraries,

the

names

of

input/output

routines

in

the

run-time

libraries

are

prefixed

with

an

underscore(_),

or

_xl.

The

XL

Fortran

Run-Time

Environment

Object

code

that

the

XL

Fortran

compiler

produces

often

invokes

compiler-supplied

subprograms

at

run

time

to

handle

certain

complex

tasks.

These

subprograms

are

collected

into

several

libraries.

The

function

of

the

XL

Fortran

Run-Time

Environment

may

be

divided

into

these

main

categories:

v

Support

for

Fortran

I/O

operations

v

Mathematical

calculation

v

Operating-system

services

v

Support

for

SMP

parallelization

The

XL

Fortran

Run-Time

Environment

also

produces

run-time

diagnostic

messages

in

the

national

language

appropriate

for

your

system.

Unless

you

bind

statically,

you

cannot

run

object

code

produced

by

the

XL

Fortran

compiler

without

the

XL

Fortran

Run-Time

Environment.

The

XL

Fortran

Run-Time

Environment

is

upward-compatible.

Programs

that

are

compiled

with

a

given

level

of

the

run-time

environment

and

a

given

level

of

the

©

Copyright

IBM

Corp.

1990,

2004

411

operating

system

require

the

same

or

higher

levels

of

both

the

run-time

environment

and

the

operating

system

to

run.

External

Names

in

the

Run-Time

Environment

Run-time

subprograms

are

collected

into

libraries.

By

default,

the

compiler

invocation

command

also

invokes

the

linker

and

gives

it

the

names

of

the

libraries

that

contain

run-time

subprograms

called

by

Fortran

object

code.

The

names

of

these

run-time

subprograms

are

external

symbols.

When

object

code

that

is

produced

by

the

XL

Fortran

compiler

calls

a

run-time

subprogram,

the

.o

object

code

file

contains

an

external

symbol

reference

to

the

name

of

the

subprogram.

A

library

contains

an

external

symbol

definition

for

the

subprogram.

The

linker

resolves

the

run-time

subprogram

call

with

the

subprogram

definition.

You

should

avoid

using

names

in

your

XL

Fortran

program

that

conflict

with

names

of

run-time

subprograms.

Conflict

can

arise

under

two

conditions:

v

The

name

of

a

subroutine,

function,

or

common

block

that

is

defined

in

a

Fortran

program

has

the

same

name

as

a

library

subprogram.

v

The

Fortran

program

calls

a

subroutine

or

function

with

the

same

name

as

a

library

subprogram

but

does

not

supply

a

definition

for

the

called

subroutine

or

function.

Technical

Details

of

the

-qfloat=hsflt

Option

The

-qfloat=hsflt

option

is

unsafe

for

optimized

programs

that

compute

floating-point

values

that

are

outside

the

range

of

representation

of

single

precision,

not

just

outside

the

range

of

the

result

type.

The

range

of

representation

includes

both

the

precision

and

the

exponent

range.

Even

when

you

follow

the

rules

that

are

stated

in

the

preceding

paragraph

and

in

“-qfloat

Option”

on

page

163,

programs

that

are

sensitive

to

precision

differences

might

not

produce

expected

results.

Because

-qfloat=hsflt

is

not

compliant

with

IEEE

in

a

number

of

ways,

programs

may

not

run

correctly.

If

a

program

gives

unexpected,

incorrect,

or

unacceptable

results

when

compiled

with

this

option,

use

-qfloat=hssngl

instead.

For

example,

in

the

following

program,

X.EQ.Y

may

be

true

or

may

be

false:

REAL

X,

Y,

A(2)

DOUBLE

PRECISION

Z

LOGICAL

SAME

READ

*,

Z

X

=

Z

Y

=

Z

IF

(X.EQ.Y)

SAME

=

.TRUE.

!

...

!

...

Calculations

that

do

not

change

X

or

Y

!

...

CALL

SUB(X)

!

X

is

stored

in

memory

with

truncated

fraction.

IF

(X.EQ.Y)

THEN

!

Result

might

be

different

than

before.

...

A(1)

=

Z

X

=

Z

A(2)

=

1.

!

A(1)

is

stored

in

memory

with

truncated

fraction.

IF

(A(1).EQ.X)

THEN

!

Result

might

be

different

than

expected.

...

412

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

If

the

value

of

Z

has

fractional

bits

that

are

outside

the

precision

of

a

single-precision

variable,

these

bits

may

be

preserved

in

some

cases

and

lost

in

others.

This

makes

the

exact

results

unpredictable

when

the

double-precision

value

of

Z

is

assigned

to

single-precision

variables.

For

example,

passing

the

variable

as

a

dummy

argument

causes

its

value

to

be

stored

in

memory

with

a

fraction

that

is

truncated

rather

than

rounded.

The

speedup

from

this

option

is

primarily

for

POWER

and

POWER2

machines.

We

recommend

that

it

not

be

used

for

programs

targeted

(through

the

-qarch

option)

for

PowerPC

machines.

Implementation

Details

for

-qautodbl

Promotion

and

Padding

The

following

sections

provide

additional

details

about

how

the

-qautodbl

option

works,

to

allow

you

to

predict

what

happens

during

promotion

and

padding.

Terminology

The

storage

relationship

between

two

data

objects

determines

the

relative

starting

addresses

and

the

relative

sizes

of

the

objects.

The

-qautodbl

option

tries

to

preserve

this

relationship

as

much

as

possible.

Data

objects

can

also

have

a

value

relationship,

which

determines

how

changes

to

one

object

affect

another.

For

example,

a

program

might

store

a

value

into

one

variable,

and

then

read

the

value

through

a

different

storage-associated

variable.

With

-qautodbl

in

effect,

the

representation

of

one

or

both

variables

might

be

different,

so

the

value

relationship

is

not

always

preserved.

An

object

that

is

affected

by

this

option

may

be:

v

Promoted,

meaning

that

it

is

converted

to

a

higher-precision

data

type.

Usually,

the

resulting

object

is

twice

as

large

as

it

would

be

by

default.

Promotion

applies

to

constants,

variables,

derived-type

components,

arrays,

and

functions

(which

include

intrinsic

functions)

of

the

appropriate

types.

Note:

BYTE,

INTEGER,

LOGICAL,

and

CHARACTER

objects

are

never

promoted.

v

Padded,

meaning

that

the

object

keeps

its

original

type

but

is

followed

by

undefined

storage

space.

Padding

applies

to

BYTE,

INTEGER,

LOGICAL,

and

nonpromoted

REAL

and

COMPLEX

objects

that

may

share

storage

space

with

promoted

items.

For

safety,

POINTERs,

TARGETs,

actual

and

dummy

arguments,

members

of

COMMON

blocks,

structures,

pointee

arrays,

and

pointee

COMPLEX

objects

are

always

padded

appropriately

depending

on

the

-qautodbl

suboption.

This

is

true

whether

or

not

they

share

storage

with

promoted

objects.

Space

added

for

padding

ensures

that

the

storage-sharing

relationship

that

existed

before

conversion

is

maintained.

For

example,

if

array

elements

I(20)

and

R(10)

start

at

the

same

address

by

default

and

if

the

elements

of

R

are

promoted

and

become

twice

as

large,

the

elements

of

I

are

padded

so

that

I(20)

and

R(10)

still

start

at

the

same

address.

Except

for

unformatted

I/O

statements,

which

read

and

write

any

padding

that

is

present

within

structures,

I/O

statements

do

not

process

padding.

Note:

The

compiler

does

not

pad

CHARACTER

objects.

Appendix

B.

XL

Fortran

Technical

Information

413

Examples

of

Storage

Relationships

for

-qautodbl

Suboptions

The

examples

in

this

section

illustrate

storage-sharing

relationships

between

the

following

types

of

entities:

v

REAL(4)

v

REAL(8)

v

REAL(16)

v

COMPLEX(4)

v

COMPLEX(8)

v

COMPLEX(16)

v

INTEGER(8)

v

INTEGER(4)

v

CHARACTER(16).

Note:

In

the

diagrams,

solid

lines

represent

the

actual

data,

and

dashed

lines

represent

padding.

The

figure

above

illustrates

the

default

storage-sharing

relationship

of

the

compiler.

@process

autodbl(none)

block

data

complex(4)

x8

/(1.123456789e0,2.123456789e0)/

real(16)

r16(2)

/1.123q0,2.123q0/

integer(8)

i8(2)

/1000,2000/

character*5

c(2)

/"abcde","12345"/

common

/named/

x8,r16,i8,c

end

subroutine

s()

complex(4)

x8

real(16)

r16(2)

integer(8)

i8(2)

character*5

c(2)

common

/named/

x8,r16,i8,c

!

x8

=

(1.123456e0,2.123456e0)

!

promotion

did

not

occur

!

r16(1)

=

1.123q0

!

no

padding

!

r16(2)

=

2.123q0

!

no

padding

!

i8(1)

=

1000

!

no

padding

!

i8(2)

=

2000

!

no

padding

!

c(1)

=

"abcde"

!

no

padding

!

c(2)

=

"12345"

!

no

padding

end

subroutine

s

4 8 16 320 64

COMPLEX (16)
COMPLEX (8)
COMPLEX (4)
REAL (16)
REAL (8)
REAL (4)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure

6.

Storage

Relationships

without

the

-qautodbl

Option

414

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

@process

autodbl(dbl)

block

data

complex(4)

x8

real(16)

r16(2)

/1.123q0,2.123q0/

real(8)

r8

real(4)

r4

/1.123456789e0/

integer(8)

i8(2)

/1000,2000/

character*5

c(2)

/"abcde","12345"/

equivalence

(x8,r8)

common

/named/

r16,i8,c,r4

!

Storage

relationship

between

r8

and

x8

is

preserved.

!

Data

values

are

NOT

preserved

between

r8

and

x8.

end

subroutine

s()

real(16)

r16(2)

real(8)

r4

integer(8)

i8(2)

character*5

c(2)

common

/named/

r16,i8,c,r4

!

r16(1)

=

1.123q0

!

no

padding

!

r16(2)

=

2.123q0

!

no

padding

!

r4

=

1.123456789d0

!

promotion

occurred

!

i8(1)

=

1000

!

no

padding

!

i8(2)

=

2000

!

no

padding

!

c(1)

=

"abcde"

!

no

padding

!

c(2)

=

"12345"

!

no

padding

end

subroutine

s

4 8 16 320 64

COMPLEX (16)
COMPLEX (8) (promoted)
COMPLEX (4) (promoted)
REAL (16)
REAL (8) (promoted)
REAL (4) (promoted)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure

7.

Storage

Relationships

with

-qautodbl=dbl

Appendix

B.

XL

Fortran

Technical

Information

415

@process

autodbl(dbl4)

complex(8)

x16

/(1.123456789d0,2.123456789d0)/

complex(4)

x8

real(4)

r4(2)

equivalence

(x16,x8,r4)

!

Storage

relationship

between

r4

and

x8

is

preserved.

!

Data

values

between

r4

and

x8

are

preserved.

!

x16

=

(1.123456789d0,2.123456789d0)

!

promotion

did

not

occur

!

x8

=

(1.123456789d0,2.123456789d0)

!

promotion

occurred

!

r4(1)

=

1.123456789d0

!

promotion

occurred

!

r4(2)

=

2.123456789d0

!

promotion

occurred

end

@process

autodbl(dbl8)

complex(8)

x16

/(1.123456789123456789d0,2.123456789123456789d0)/

complex(4)

x8

real(8)

r8(2)

equivalence

(x16,x8,r8)

!

Storage

relationship

between

r8

and

x16

is

preserved.

!

Data

values

between

r8

and

x16

are

preserved.

!

x16

=

(1.123456789123456789q0,2.123456789123456789q0)

!

!

promotion

occurred

!

x8

=

upper

8

bytes

of

r8(1)

!

promotion

did

not

occur

!

r8(1)

=

1.123456789123456789q0

!

promotion

occurred

!

r8(2)

=

2.123456789123456789q0

!

promotion

occurred

end

4 8 16 320 64

COMPLEX (16)
COMPLEX (8)
COMPLEX (4) (promoted)
REAL (16)
REAL (8)
REAL (4) (promoted)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure

8.

Storage

Relationships

with

-qautobl=dbl4

4 8 16 320 64

COMPLEX (16)
COMPLEX (8) (promoted)
COMPLEX (4)
REAL (16)
REAL (8) (promoted)
REAL (4)
INTEGER (8)
INTEGER (4)
CHARACTER (16)

Figure

9.

Storage

Relationships

with

-qautodbl=dbl8

416

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

In

the

figure

above,

the

dashed

lines

represent

the

padding.

@process

autodbl(dblpad4)

complex(8)

x16

/(1.123456789d0,2.123456789d0)/

complex(4)

x8

real(4)

r4(2)

integer(8)

i8(2)

equivalence(x16,x8,r4,i8)

!

Storage

relationship

among

all

entities

is

preserved.

!

Date

values

between

x8

and

r4

are

preserved.

!

x16

=

(1.123456789d0,2.123456789d0)

!

padding

occurred

!

x8

=

(upper

8

bytes

of

x16,

8

byte

pad)

!

promotion

occurred

!

r4(1)

=

real(x8)

!

promotion

occurred

!

r4(2)

=

imag(x8)

!

promotion

occurred

!

i8(1)

=

real(x16)

!

padding

occurred

!

i8(2)

=

imag(x16)

!

padding

occurred

end

In

the

figure

above,

the

dashed

lines

represent

the

padding.

@process

autodbl(dblpad8)

complex(8)

x16

/(1.123456789123456789d0,2.123456789123456789d0)/

complex(4)

x8

real(8)

r8(2)

integer(8)

i8(2)

byte

b(16)

equivalence

(x16,x8,r8,i8,b)

!

Storage

relationship

among

all

entities

is

preserved.

4 8 16 320 64

COMPLEX (16) (padded)
COMPLEX (8) (padded)
COMPLEX (4) (promoted)
REAL (16) (padded)
REAL (8) (padded)
REAL (4) (promoted)
INTEGER (8) (padded)
INTEGER (4) (padded)
CHARACTER (16)

Figure

10.

Storage

Relationships

with

-qautodbl=dblpad4

4 8 16 320 64

COMPLEX (16) (padded)
COMPLEX (8) (promoted)
COMPLEX (4) (padded)
REAL (16) (padded)
REAL (8) (promoted)
REAL (4) (padded)
INTEGER (8) (padded)
INTEGER (4) (padded)
CHARACTER (16)

Figure

11.

Storage

Relationships

with

-qautodbl=dblpad8

Appendix

B.

XL

Fortran

Technical

Information

417

!

Data

values

between

r8

and

x16

are

preserved.

!

Data

values

between

i8

and

b

are

preserved.

!

x16

=

(1.123456789123456789q0,2.123456789123456789q0)

!

!

promotion

occurred

!

x8

=

upper

8

bytes

of

r8(1)

!

padding

occurred

!

r8(1)

=

real(x16)

!

promotion

occurred

!

r8(2)

=

imag(x16)

!

promotion

occurred

!

i8(1)

=

upper

8

bytes

of

real(x16)

!

padding

occurred

!

i8(2)

=

upper

8

bytes

of

imag(x16)

!

padding

occurred

!

b(1:8)=

i8(1)

!

padding

occurred

!

b(9:16)=

i8(2)

!

padding

occurred

end

In

the

figure

above,

the

dashed

lines

represent

the

padding.

@process

autodbl(dblpad)

block

data

complex(4)

x8

/(1.123456789e0,2.123456789e0)/

real(16)

r16(2)

/1.123q0,2.123q0/

integer(8)

i8(2)

/1000,2000/

character*5

c(2)

/"abcde","12345"/

common

/named/

x8,r16,i8,c

end

subroutine

s()

complex(8)

x8

real(16)

r16(4)

integer(8)

i8(4)

character*5

c(2)

common

/named/

x8,r16,i8,c

!

x8

=

(1.123456789d0,2.123456789d0)

!

promotion

occurred

!

r16(1)

=

1.123q0

!

padding

occurred

!

r16(3)

=

2.123q0

!

padding

occurred

!

i8(1)

=

1000

!

padding

occurred

!

i8(3)

=

2000

!

padding

occurred

!

c(1)

=

"abcde"

!

no

padding

occurred

!

c(2)

=

"12345"

!

no

padding

occurred

end

subroutine

s

4 8 16 320 64

COMPLEX (16) (padded)
COMPLEX (8) (promoted)
COMPLEX (4) (promoted)
REAL (16) (padded)
REAL (8) (promoted)
REAL (4) (promoted)
INTEGER (8) (padded)
INTEGER (4) (padded)
CHARACTER (16)

Figure

12.

Storage

Relationships

with

-qautodbl=dblpad

418

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Appendix

C.

Using

the

Mathematical

Acceleration

Subsystem

(MASS)

XL

Fortran

Enterprise

Edition

ships

the

Mathematical

Acceleration

Subsystem

(MASS),

a

set

of

libraries

of

tuned

mathematical

intrinsic

functions

that

provide

improved

performance

over

the

corresponding

standard

math

library

functions.

The

accuracy

and

exception

handling

might

not

be

identical

in

MASS

functions

and

standard

math

library

functions.

The

MASS

libraries

on

AIX

consist

of

a

library

of

scalar

functions,

described

in

“Using

the

Scalar

Library,”

and

a

set

of

vector

libraries

tuned

for

specific

architectures,

described

in

“Using

the

Vector

Libraries”

on

page

420.

“Compiling

and

Linking

a

Program

with

MASS”

on

page

423

describes

how

to

compile

and

link

a

program

that

uses

the

MASS

libraries,

and

how

to

selectively

use

the

MASS

scalar

library

functions

in

concert

with

the

regular

intrinsic

scalar

functions.

Using

the

Scalar

Library

The

MASS

scalar

library,

libmass.a,

contains

an

accelerated

set

of

frequently

used

math

intrinsic

functions

in

the

system

library.

These

functions

all

accept

double-precision

parameters

and

return

a

double-precision

result,

and

are

summarized

in

Table

33.

To

provide

the

interface

declarations

for

the

functions,

include

math.include

in

your

source

files.

Table

33.

MASS

Scalar

Library

Functions

Function

Description

sqrt

Returns

the

square

root

of

x

rsqrt

Returns

the

reciprocal

of

the

square

root

of

x

exp

Returns

the

exponential

function

of

x

log

Returns

the

natural

logarithm

of

x

sin

Returns

the

sine

of

x

cos

Returns

the

cosine

of

x

tan

Returns

the

tangent

of

x

atan

Returns

the

arctangent

of

x

atan2

Returns

the

arctangent

of

x/y

sinh

Returns

the

hyperbolic

sine

of

x

cosh

Returns

the

hyperbolic

cosine

of

x

tanh

Returns

the

hyperbolic

tangent

of

x

dnint

Returns

the

nearest

integer

to

x

(as

a

double)

x**y

Returns

x

raised

to

the

power

y

The

following

example

shows

interface

declarations

for

some

of

the

MASS

scalar

functions:

interface

real*8

function

sqrt

(x)

real*8

x

!

Returns

the

square

root

of

x.

©

Copyright

IBM

Corp.

1990,

2004

419

end

function

sqrt

real*8

function

rsqrt

(x)

real*8

x

!

Returns

the

reciprocal

of

the

square

root

of

x.

end

function

rsqrt

end

interface

The

trigonometric

functions

(sin,

cos,

tan)

return

NaN

(Not-a-Number)

values

for

large

arguments

(abs(x)>2**50*pi).

Note:

In

some

cases,

the

MASS

functions

are

not

as

accurate

as

those

in

the

standard

intrinsic

functions

and

they

may

handle

edge

cases

differently

(sqrt(Inf),

for

example).

Using

the

Vector

Libraries

The

MASS

vector

libraries

are

shipped

in

the

following

archives:

libmassv.a

The

general

vector

library.

libmassvp3.a

Contains

some

functions

that

have

been

tuned

for

the

POWER3

architecture.

The

remaining

functions

are

identical

to

those

in

libmassv.a.

libmassvp4.a

Contains

some

functions

that

have

been

tuned

for

the

POWER4

architecture.

The

remaining

functions

are

identical

to

those

in

libmassv.a.

If

you

are

using

POWER5,

this

library

is

the

recommended

choice.

With

the

exception

of

a

few

functions

(described

below),

all

of

the

functions

in

libmassv.a,

libmassvp3.a,

and

libmassvp4.a

accept

three

parameters:

v

a

double-precision

or

single-precision

vector

input

parameter

v

a

double-precision

or

single-precision

output

parameter

v

an

integer

vector-length

parameter

These

functions

are

all

of

the

form:

function_name

(y,x,n)

where

x

is

the

source

vector,

y

is

the

target

vector,

and

n

is

the

vector

length.

The

parameters

y

and

x

are

assumed

to

be

double-precision

for

functions

whose

prefix

is

v,

and

single-precision

for

functions

with

the

prefix

vs.

As

an

example,

the

following

code:

include

’massv.include’

real*8

x(500),

y(500)

integer

n

n

=

500

...

call

vexp

(y,

x,

n)

outputs

a

vector

y

of

length

500

whose

elements

are

exp(x(i)),

with

i=1,...,500.

The

single-precision

and

double-precision

functions

contained

in

the

vector

libraries

are

summarized

in

Table

34

on

page

421.

To

provide

the

interface

declarations

for

the

functions,

include

massv.include

in

your

source

files.

420

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Table

34.

MASS

Vector

Library

Functions

Double-precision

function

Single-precision

function

Arguments

Description

vacos

vsacos

(y,x,n)

Sets

y(i)

to

the

arccosine

of

x(i),

for

i=1,..,n

vasin

vsasin

(y,x,n)

Sets

y(i)

to

the

arcsine

of

x(i),

for

i=1,..,n

vatan2

vsatan2

(z,x,y,n)

Sets

z(i)

to

the

arctangent

of

x(i)/y(i),

for

i=1,..,n

vcos

vscos

(y,x,n)

Sets

y(i)

to

the

cosine

of

x(i),

for

i=1,..,n

vcosh

vscosh

(y,x,n)

Sets

y(i)

to

the

hyperbolic

cosine

of

x(i),

for

i=1,..,n

vcosisin

vscosisin

(y,x,n)

Sets

the

real

part

of

y(i)

to

the

cosine

of

x(i)

and

the

imaginary

part

of

y(i)

to

the

sine

of

x(i),

for

i=1,..,n

vdint

(y,x,n)

Sets

y(i)

to

the

integer

truncation

of

x(i),

for

i=1,..,n

vdiv

vsdiv

(z,x,y,n)

Sets

z(i)

to

x(i)/y(i),

for

i=1,..,n

vdnint

(y,x,n)

Sets

y(i)

to

the

nearest

integer

to

x(i),

for

i=1,..,n

vexp

vsexp

(y,x,n)

Sets

y(i)

to

the

exponential

function

of

x(i),

for

i=1,..,n

vexpm1

vsexpm1

(y,x,n)

Sets

y(i)

to

(the

exponential

function

of

x(i))-1,

for

i=1,..,n

vlog

vslog

(y,x,n)

Sets

y(i)

to

the

natural

logarithm

of

x(i),

for

i=1,..,n

vlog10

vslog10

(y,x,n)

Sets

y(i)

to

the

base-10

logarithm

of

x(i),

for

i=1,..,n

vlog1p

vslog1p

(y,x,n)

Sets

y(i)

to

the

natural

logarithm

of

(x(i)+1),

for

i=1,..,n

vpow

vspow

(z,x,y,n)

Sets

z(i)

to

x(i)

raised

to

the

power

y(i),

for

i=1,..,n

vrec

vsrec

(y,x,n)

Sets

y(i)

to

the

reciprocal

of

x(i),

for

i=1,..,n

vrsqrt

vsrsqrt

(y,x,n)

Sets

y(i)

to

the

reciprocal

of

the

square

root

of

x(i),

for

i=1,..,n

vsin

vssin

(y,x,n)

Sets

y(i)

to

the

sine

of

x(i),

for

i=1,..,n

vsincos

vssincos

(y,z,x,n)

Sets

y(i)

to

the

sine

of

x(i)

and

z(i)

to

the

cosine

of

x(i),

for

i=1,..,n

vsinh

vssinh

(y,x,n)

Sets

y(i)

to

the

hyperbolic

sine

of

x(i),

for

i=1,..,n

vsqrt

vssqrt

(y,x,n)

Sets

y(i)

to

the

square

root

of

x(i),

for

i=1,..,n

vtan

vstan

(y,x,n)

Sets

y(i)

to

the

tangent

of

x(i),

for

i=1,..,n

Appendix

C.

Using

the

Mathematical

Acceleration

Subsystem

(MASS)

421

Table

34.

MASS

Vector

Library

Functions

(continued)

vtanh

vstanh

(y,x,n)

Sets

y(i)

to

the

hyperbolic

tangent

of

x(i),

for

i=1,..,n

The

following

example

shows

interface

declarations

for

some

of

the

MASS

double-precision

vector

functions:

interface

subroutine

vsqrt

(y,

x,

n)

real*8

y(*),

x(*)

integer

n

!

Sets

y(i)

to

the

square

root

of

x(i),

for

i=1,..,n

end

subroutine

vsqrt

subroutine

vrsqrt

(y,

x,

n)

real*8

y(*),

x(*)

integer

n

!

Sets

y(i)

to

the

reciprocal

of

the

square

root

of

x(i),

!

for

i=1,..,n

end

subroutine

vrsqrt

end

interface

The

following

example

shows

interface

declarations

for

some

of

the

MASS

single-precision

vector

functions:

interface

subroutine

vssqrt

(y,

x,

n)

real*4

y(*),

x(*)

integer

n

!

Sets

y(i)

to

the

square

root

of

x(i),

for

i=1,..,n

end

subroutine

vssqrt

subroutine

vsrsqrt

(y,

x,

n)

real*4

y(*),

x(*)

integer

n

!

Sets

y(i)

to

the

reciprocal

of

the

square

root

of

x(i),

!

for

i=1,..,n

end

subroutine

vsrsqrt

end

interface

The

functions

vatan2,

vdiv,

and

vpow

take

four

parameters

and

are

of

the

form

function_name(z,x,y,n).

The

function

vsincos

takes

four

parameters

of

the

form

function_name(y,z,x,n).

The

function

vatan2

outputs

a

vector

z

whose

elements

are

atan(x(i)/y(i)).

The

function

vdiv

outputs

a

vector

z

whose

elements

are

x(i)/y(i),

with

i=1,..,n.

The

function

vsincos

outputs

two

vectors,

y

and

z,

whose

elements

are

sin(x(i))

and

cos(x(i))

respectively.

In

vcosisin(y,x,n),

x

is

a

vector

of

n

real*8

elements

and

the

function

outputs

a

vector

y

of

n

complex*16

elements

of

the

form

(cos(x(i)),sin(x(i))).

Consistency

of

MASS

Vector

Functions

In

the

interest

of

speed,

the

MASS

libraries

make

certain

trade-offs.

One

of

these

involves

the

consistency

of

certain

MASS

vector

functions.

For

certain

functions,

it

is

possible

that

the

result

computed

for

a

particular

input

value

will

vary

slightly

(usually

only

in

the

least

significant

bit)

depending

on

its

position

in

the

vector,

the

vector

length,

and

nearby

elements

of

the

input

vector.

Also,

the

results

produced

by

the

different

MASS

libraries

are

not

necessarily

bit-wise

identical.

422

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

However,

the

libmassvp4.a

library

provides

newer,

consistent

versions

of

certain

functions.

These

consistent

functions

are:

vsqrt,

vssqrt,

vlog,

vrec,

vdiv,

vexp,

vsin,

vcos,

vacos,

vasin,

vatan2,

vrsqrt,

vscos,

vsdiv,

vsrec,

vssin.

The

accuracy

of

the

vector

functions

is

comparable

to

that

of

the

corresponding

scalar

functions

in

libmass.a,

though

results

may

not

be

bit-wise

identical.

For

more

information

on

consistency

and

avoiding

inconsistency

with

the

vector

libraries,

as

well

as

performance

and

accuracy

data,

see

the

MASS

Web

site

at

URL

http://www.ibm.com/software/awdtools/fortran/xlfortran/mass.

Compiling

and

Linking

a

Program

with

MASS

To

compile

an

application

that

calls

the

routines

in

these

libraries,

specify

mass

and

massv

(or

massvp3

or

massvp4)

on

the

-l

linker

option.

For

example,

if

the

MASS

libraries

are

installed

in

the

default

directory,

you

could

specify:

xlf

progf.f

-o

progf

-lmass

-lmassv

The

MASS

functions

must

run

in

the

round-to-nearest

rounding

mode

and

with

floating-point

exception

trapping

disabled.

(These

are

the

default

compilation

settings.)

Using

libmass.a

with

the

Standard

Intrinsic

Functions

If

you

wish

to

use

the

libmass.a

scalar

library

for

some

functions

and

the

normal

intrinsic

functions,

follow

this

procedure

to

compile

and

link

your

program:

1.

Create

an

export

list

(this

can

be

a

flat

text

file)

containing

the

names

of

the

desired

functions.

For

example,

to

select

only

the

fast

tangent

function

from

libmass.a

for

use

with

the

program

sample.f,

create

a

file

called

fast_tan.exp

with

the

following

line:

tan

2.

Create

a

shared

object

from

the

export

list

with

the

ld

command,

linking

with

the

libmass.a

library.

For

example:

ld

-bexport:fast_tan.exp

-o

fast_tan.o

-bnoentry

-lmass

-bmodtype:SRE

3.

Archive

the

shared

object

into

a

library

with

the

ar

command.

For

example:

ar

-q

libfasttan.a

fast_tan.o

4.

Create

the

final

executable

using

xlf.

This

links

only

the

functions

specified

in

the

object

file

(in

this

example,

the

tan

function)

and

the

remainder

of

the

math

functions

from

the

standard

system

library.

For

example:

xlf

-o

sample

sample.f

-Ldir_containing_libfasttan.a

-lfasttan

Note:

The

MASS

cos

function

is

automatically

linked

if

you

export

MASS

sin;

MASS

atan2

is

automatically

linked

if

you

export

MASS

atan.

Related

Information

v

ld

and

ar

in

AIX

Commands

Reference

Appendix

C.

Using

the

Mathematical

Acceleration

Subsystem

(MASS)

423

http://www.ibm.com/software/awdtools/fortran/xlfortran/mass

424

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Appendix

D.

XL

Fortran

Internal

Limits

Language

Feature

Limit

Maximum

number

of

iterations

performed

by

DO

loops

with

loop

control

with

index

variable

of

type

INTEGER(n)

for

n

=

1,

2

or

4

(2**31)-1

Maximum

number

of

iterations

performed

by

DO

loops

with

loop

control

with

index

variable

of

type

INTEGER(8)

(2**63)-1

Maximum

character

format

field

width

(2**31)-1

Maximum

length

of

a

format

specification

(2**31)-1

Maximum

length

of

Hollerith

and

character

constant

edit

descriptors

(2**31)-1

Maximum

length

of

a

fixed

source

form

statement

6

700

Maximum

length

of

a

free

source

form

statement

6

700

Maximum

number

of

continuation

lines

n/a

�1�

Maximum

number

of

nested

INCLUDE

lines

64

Maximum

number

of

nested

interface

blocks

1

024

Maximum

number

of

statement

numbers

in

a

computed

GOTO

999

Maximum

number

of

times

a

format

code

can

be

repeated

(2**31)-1

Allowable

record

numbers

and

record

lengths

for

input/output

files

in

32-bit

mode

The

record

number

can

be

up

to

(2**63)-1.

The

maximum

record

length

is

(2**31)-1

bytes.

Allowable

record

numbers

and

record

lengths

for

input/output

files

in

64-bit

mode

The

record

number

can

be

up

to

(2**63)-1,

and

the

record

length

can

be

up

to

(2**63)-1

bytes.

However,

for

unformatted

sequential

files,

you

must

use

the

uwidth=64

run-time

option

for

the

record

length

to

be

greater

than

(2**31)-1

and

up

to

(2**63)-1.

If

you

use

the

default

uwidth=32

run-time

option,

the

maximum

length

of

a

record

in

an

unformatted

sequential

file

is

(2**31)-1

bytes.

Allowable

bound

range

of

an

array

dimension

The

bound

of

an

array

dimension

can

be

positive,

negative,

or

zero

within

the

range

-(2**31)

to

2**31-1

in

32-bit

mode,

or

-(2**63)

to

2**63-1

in

64-bit

mode.

Allowable

external

unit

numbers

0

to

(2**31)-1

�2�

Maximum

numeric

format

field

width

2

000

Maximum

number

of

concurrent

open

files

2

000

�3�

�1�

You

can

have

as

many

continuation

lines

as

you

need

to

create

a

statement

with

a

maximum

of

6

700

bytes.

©

Copyright

IBM

Corp.

1990,

2004

425

�2�

The

value

must

be

representable

in

an

INTEGER(4)

object,

even

if

specified

by

an

INTEGER(8)

variable.

�3�

In

practice,

this

value

is

somewhat

lower

because

of

files

that

the

run-time

system

may

open,

such

as

the

preconnected

units

0,

5,

and

6.

426

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504–1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2–31

Roppongi

3–chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

©

Copyright

IBM

Corp.

1990,

2004

427

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Lab

Director

IBM

Canada

Limited

8200

Warden

Avenue

Markham,

Ontario,

Canada

L6G

1C7

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

This

software

and

documentation

are

based

in

part

on

the

Fourth

Berkeley

Software

Distribution

under

license

from

the

Regents

of

the

University

of

California.

We

acknowledge

the

following

institution

for

its

role

in

this

product’s

development:

the

Electrical

Engineering

and

Computer

Sciences

Department

at

the

Berkeley

campus.

428

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

OpenMP

is

a

trademark

of

the

OpenMP

Architecture

Review

Board.

Portions

of

this

document

may

have

been

derived

from

the

OpenMP

Fortran

Language

Application

Program

Interface,

Version

2.0

(November

2000)

specification.

Copyright

1997-2000

OpenMP

Architecture

Review

Board.

Programming

Interface

Information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

the

customer

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Note:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

Service

Marks

The

following

terms,

used

in

this

publication,

are

trademarks

or

service

marks

of

the

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

AIX

IBM

PowerPC

PowerPC

601

PowerPC

603

PowerPC

604

POWER

POWER2

POWER3

POWER4

POWER5

POWERserver

POWER2

Architecture

RISC

System/6000

RS/6000

SAA

z/OS

UNIX

is

a

registered

trademark

of

the

Open

Group

in

the

United

States

and

other

countries.

Windows

is

a

trademark

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

429

430

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Glossary

This

glossary

defines

terms

that

are

commonly

used

in

this

document.

It

includes

definitions

developed

by

the

American

National

Standards

Institute

(ANSI)

and

entries

from

the

IBM

Dictionary

of

Computing.

A

active

processor.

See

online

processor.

actual

argument.

An

expression,

variable,

procedure,

or

alternate

return

specifier

that

is

specified

in

a

procedure

reference.

alias.

A

single

piece

of

storage

that

can

be

accessed

through

more

than

a

single

name.

Each

name

is

an

alias

for

that

storage.

alphabetic

character.

A

letter

or

other

symbol,

excluding

digits,

used

in

a

language.

Usually

the

uppercase

and

lowercase

letters

A

through

Z

plus

other

special

symbols

(such

as

$

and

_)

allowed

by

a

particular

language.

alphanumeric.

Pertaining

to

a

character

set

that

contains

letters,

digits,

and

usually

other

characters,

such

as

punctuation

marks

and

mathematical

symbols.

American

National

Standard

Code

for

Information

Interchange.

See

ASCII.

argument.

An

expression

that

is

passed

to

a

function

or

subroutine.

See

also

actual

argument,

dummy

argument.

argument

association.

The

relationship

between

an

actual

argument

and

a

dummy

argument

during

the

invoking

of

a

procedure.

arithmetic

constant.

A

constant

of

type

integer,

real,

or

complex.

arithmetic

expression.

One

or

more

arithmetic

operators

and

arithmetic

primaries,

the

evaluation

of

which

produces

a

numeric

value.

An

arithmetic

expression

can

be

an

unsigned

arithmetic

constant,

the

name

of

an

arithmetic

constant,

or

a

reference

to

an

arithmetic

variable,

function

reference,

or

a

combination

of

such

primaries

formed

by

using

arithmetic

operators

and

parentheses.

arithmetic

operator.

A

symbol

that

directs

the

performance

of

an

arithmetic

operation.

The

intrinsic

arithmetic

operators

are:

+

addition

-

subtraction

*

multiplication

/

division

**

exponentiation

array.

An

entity

that

contains

an

ordered

group

of

scalar

data.

All

objects

in

an

array

have

the

same

data

type

and

type

parameters.

array

declarator.

The

part

of

a

statement

that

describes

an

array

used

in

a

program

unit.

It

indicates

the

name

of

the

array,

the

number

of

dimensions

it

contains,

and

the

size

of

each

dimension.

array

element.

A

single

data

item

in

an

array,

identified

by

the

array

name

and

one

or

more

subscripts.

See

also

subscript.

array

name.

The

name

of

an

ordered

set

of

data

items.

array

section.

A

subobject

that

is

an

array

and

is

not

a

structure

component.

ASCII.

The

standard

code,

using

a

coded

character

set

consisting

of

7-bit

coded

characters

(8-bits

including

parity

check),

that

is

used

for

information

interchange

among

data

processing

systems,

data

communication

systems,

and

associated

equipment.

The

ASCII

set

consists

of

control

characters

and

graphic

characters.

See

also

Unicode.

asynchronous.

Pertaining

to

events

that

are

not

synchronized

in

time

or

do

not

occur

in

regular

or

predictable

time

intervals.

For

example,

input

events

are

controlled

by

the

user;

the

program

can

read

them

later.

assignment

statement.

An

executable

statement

that

defines

or

redefines

a

variable

based

on

the

result

of

expression

evaluation.

associate

name.

The

name

by

which

a

selector

of

an

ASSOCIATE

construct

is

known

within

the

construct.

attribute.

A

property

of

a

data

object

that

may

be

specified

in

a

type

declaration

statement,

attribute

specification

statement,

or

through

a

default

setting.

automatic

parallelization.

The

process

by

which

the

compiler

attempts

to

parallelize

both

explicitly

coded

DO

loops

and

DO

loops

generated

by

the

compiler

for

array

language.

B

binary

constant.

A

constant

that

is

made

of

one

or

more

binary

digits

(0

and

1).

©

Copyright

IBM

Corp.

1990,

2004

431

bind.

To

relate

an

identifier

to

another

object

in

a

program;

for

example,

to

relate

an

identifier

to

a

value,

an

address

or

another

identifier,

or

to

associate

formal

parameters

and

actual

parameters.

blank

common.

An

unnamed

common

block.

block

data

subprogram.

A

subprogram

headed

by

a

BLOCK

DATA

statement

and

used

to

initialize

variables

in

named

common

blocks.

bss

storage.

Uninitialized

static

storage.

busy-wait.

The

state

in

which

a

thread

keeps

executing

in

a

tight

loop

looking

for

more

work

once

it

has

completed

all

of

its

work

and

there

is

no

new

work

to

do.

byte

constant.

A

named

constant

that

is

of

type

byte.

byte

type.

A

data

type

representing

a

one-byte

storage

area

that

can

be

used

wherever

a

LOGICAL(1),

CHARACTER(1),

or

INTEGER(1)

can

be

used.

C

character

constant.

A

string

of

one

or

more

alphabetic

characters

enclosed

in

apostrophes

or

double

quotation

marks.

character

expression.

A

character

object,

a

character-valued

function

reference,

or

a

sequence

of

them

separated

by

the

concatenation

operator,

with

optional

parentheses.

character

operator.

A

symbol

that

represents

an

operation,

such

as

concatenation

(//),

to

be

performed

on

character

data.

character

set.

All

the

valid

characters

for

a

programming

language

or

for

a

computer

system.

character

string.

A

sequence

of

consecutive

characters.

character

substring.

A

contiguous

portion

of

a

character

string.

character

type.

A

data

type

that

consists

of

alphanumeric

characters.

See

also

data

type.

chunk.

A

subset

of

consecutive

loop

iterations.

collating

sequence.

The

sequence

in

which

the

characters

are

ordered

for

the

purpose

of

sorting,

merging,

comparing,

and

processing

indexed

data

sequentially.

comment.

A

language

construct

for

the

inclusion

of

text

in

a

program

that

has

no

effect

on

the

execution

of

the

program.

common

block.

A

storage

area

that

may

be

referred

to

by

a

calling

program

and

one

or

more

subprograms.

compile.

To

translate

a

source

program

into

an

executable

program

(an

object

program).

compiler

directive.

Source

code

that

controls

what

XL

Fortran

does

rather

than

what

the

user

program

does.

complex

constant.

An

ordered

pair

of

real

or

integer

constants

separated

by

a

comma

and

enclosed

in

parentheses.

The

first

constant

of

the

pair

is

the

real

part

of

the

complex

number;

the

second

is

the

imaginary

part.

complex

number.

A

number

consisting

of

an

ordered

pair

of

real

numbers,

expressible

in

the

form

a+bi,

where

a

and

b

are

real

numbers

and

i

squared

equals

-1.

complex

type.

A

data

type

that

represents

the

values

of

complex

numbers.

The

value

is

expressed

as

an

ordered

pair

of

real

data

items

separated

by

a

comma

and

enclosed

in

parentheses.

The

first

item

represents

the

real

part

of

the

complex

number;

the

second

represents

the

imaginary

part.

conform.

To

adhere

to

a

prevailing

standard.

An

executable

program

conforms

to

the

Fortran

95

Standard

if

it

uses

only

those

forms

and

relationships

described

therein

and

if

the

executable

program

has

an

interpretation

according

to

the

Fortran

95

Standard.

A

program

unit

conforms

to

the

Fortran

95

Standard

if

it

can

be

included

in

an

executable

program

in

a

manner

that

allows

the

executable

program

to

be

standard-conforming.

A

processor

conforms

to

the

standard

if

it

executes

standard-conforming

programs

in

a

manner

that

fulfills

the

interpretations

prescribed

in

the

standard.

connected

unit.

In

XL

Fortran,

a

unit

that

is

connected

to

a

file

in

one

of

three

ways:

explicitly

via

the

OPEN

statement

to

a

named

file,

implicitly,

or

by

preconnection.

constant.

A

data

object

with

a

value

that

does

not

change.

The

four

classes

of

constants

specify

numbers

(arithmetic),

truth

values

(logical),

character

data

(character),

and

typeless

data

(hexadecimal,

octal,

and

binary).

See

also

variable.

construct.

A

sequence

of

statements

starting

with

a

SELECT

CASE,

DO,

IF,

or

WHERE

statement

and

ending

with

the

corresponding

terminal

statement.

continuation

line.

A

line

that

continues

a

statement

beyond

its

initial

line.

control

statement.

A

statement

that

is

used

to

alter

the

continuous

sequential

invocation

of

statements;

a

control

statement

may

be

a

conditional

statement,

such

as

IF,

or

an

imperative

statement,

such

as

STOP.

432

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

D

data

object.

A

variable,

constant,

or

subobject

of

a

constant.

data

striping.

Spreading

data

across

multiple

storage

devices

so

that

I/O

operations

can

be

performed

in

parallel

for

better

performance.

Also

known

as

disk

striping.

data

transfer

statement.

A

READ,

WRITE,

or

PRINT

statement.

data

type.

The

properties

and

internal

representation

that

characterize

data

and

functions.

The

intrinsic

types

are

integer,

real,

complex,

logical,

and

character.

See

also

intrinsic.

debug

line.

Allowed

only

for

fixed

source

form,

a

line

containing

source

code

that

is

to

be

used

for

debugging.

Debug

lines

are

defined

by

a

D

or

X

in

column

1.

The

handling

of

debug

lines

is

controlled

by

the

-qdlines

and

-qxlines

compiler

options.

default

initialization.

The

initialization

of

an

object

with

a

value

specified

as

part

of

a

derived

type

definition.

definable

variable.

A

variable

whose

value

can

be

changed

by

the

appearance

of

its

name

or

designator

on

the

left

of

an

assignment

statement.

delimiters.

A

pair

of

parentheses

or

slashes

(or

both)

used

to

enclose

syntactic

lists.

denormalized

number.

An

IEEE

number

with

a

very

small

absolute

value

and

lowered

precision.

A

denormalized

number

is

represented

by

a

zero

exponent

and

a

non-zero

fraction.

derived

type.

A

type

whose

data

have

components,

each

of

which

is

either

of

intrinsic

type

or

of

another

derived

type.

digit.

A

character

that

represents

a

nonnegative

integer.

For

example,

any

of

the

numerals

from

0

through

9.

directive.

A

type

of

comment

that

provides

instructions

and

information

to

the

compiler.

disk

striping.

See

data

striping.

DO

loop.

A

range

of

statements

invoked

repetitively

by

a

DO

statement.

DO

variable.

A

variable,

specified

in

a

DO

statement,

that

is

initialized

or

incremented

prior

to

each

occurrence

of

the

statement

or

statements

within

a

DO

range.

It

is

used

to

control

the

number

of

times

the

statements

within

the

range

are

executed.

DOUBLE

PRECISION

constant.

A

constant

of

type

real

with

twice

the

precision

of

the

default

real

precision.

dummy

argument.

An

entity

whose

name

appears

in

the

parenthesized

list

following

the

procedure

name

in

a

FUNCTION,

SUBROUTINE,

ENTRY,

or

statement

function

statement.

dynamic

dimensioning.

The

process

of

re-evaluating

the

bounds

of

an

array

each

time

the

array

is

referenced.

dynamic

extent.

For

a

directive,

the

lexical

extent

of

the

directive

and

all

subprograms

called

from

within

the

lexical

extent.

E

edit

descriptor.

An

abreviated

keyword

that

controls

the

formatting

of

integer,

real,

or

complex

data.

elemental.

Pertaining

to

an

intrinsic

operation,

procedure

or

assignment

that

is

applied

independently

to

elements

of

an

array

or

corresponding

elements

of

a

set

of

conformable

arrays

and

scalars.

embedded

blank.

A

blank

that

is

surrounded

by

any

other

characters.

entity.

A

general

term

for

any

of

the

following:

a

program

unit,

procedure,

operator,

interface

block,

common

block,

external

unit,

statement

function,

type,

named

variable,

expression,

component

of

a

structure,

named

constant,

statement

label,

construct,

or

namelist

group.

environment

variable.

A

variable

that

describes

the

operating

environment

of

the

process.

executable

program.

A

program

that

can

be

executed

as

a

self-contained

procedure.

It

consists

of

a

main

program

and,

optionally,

modules,

subprograms

and

non-Fortran

external

procedures.

executable

statement.

A

statement

that

causes

an

action

to

be

taken

by

the

program;

for

example,

to

perform

a

calculation,

test

conditions,

or

alter

normal

sequential

execution.

explicit

initialization.

The

initialization

of

an

object

with

a

value

stated

in

a

data

statement

initial

value

list,

block

data

program

unit,

type

declaration

statement,

or

array

constructor.

explicit

interface.

For

a

procedure

referenced

in

a

scoping

unit,

the

property

of

being

an

internal

procedure,

module

procedure,

intrinsic

procedure,

external

procedure

that

has

an

interface

block,

recursive

procedure

reference

in

its

own

scoping

unit,

or

dummy

procedure

that

has

an

interface

block.

Glossary

433

expression.

A

sequence

of

operands,

operators,

and

parentheses.

It

may

be

a

variable,

a

constant,

or

a

function

reference,

or

it

may

represent

a

computation.

extended-precision

constant.

A

processor

approximation

to

the

value

of

a

real

number

that

occupies

16

consecutive

bytes

of

storage.

external

file.

A

sequence

of

records

on

an

input/output

device.

See

also

internal

file.

external

name.

The

name

of

a

common

block,

subroutine,

or

other

global

procedure,

which

the

linker

uses

to

resolve

references

from

one

compilation

unit

to

another.

external

procedure.

A

procedure

that

is

defined

by

an

external

subprogram

or

by

a

means

other

than

Fortran.

F

field.

An

area

in

a

record

used

to

contain

a

particular

category

of

data.

file.

A

sequence

of

records.

See

also

external

file,

internal

file.

file

index.

See

i-node.

floating-point

number.

A

real

number

represented

by

a

pair

of

distinct

numerals.

The

real

number

is

the

product

of

the

fractional

part,

one

of

the

numerals,

and

a

value

obtained

by

raising

the

implicit

floating-point

base

to

a

power

indicated

by

the

second

numeral.

format.

(1)

A

defined

arrangement

of

such

things

as

characters,

fields,

and

lines,

usually

used

for

displays,

printouts,

or

files.

(2)

To

arrange

such

things

as

characters,

fields,

and

lines.

formatted

data.

Data

that

is

transferred

between

main

storage

and

an

input/output

device

according

to

a

specified

format.

See

also

list-directed

and

unformatted

record.

function.

A

procedure

that

returns

the

value

of

a

single

variable

or

an

object

and

that

usually

has

a

single

exit.

See

also

intrinsic

procedure,

subprogram.

G

generic

identifier.

A

lexical

token

that

appears

in

an

INTERFACE

statement

and

is

associated

with

all

the

procedures

in

an

interface

block.

H

hard

limit.

A

system

resource

limit

that

can

only

be

raised

or

lowered

by

using

root

authority,

or

cannot

be

altered

because

it

is

inherent

in

the

system

or

operating

environments’s

implementation.

See

also

soft

limit.

hexadecimal.

Pertaining

to

a

system

of

numbers

to

the

base

sixteen;

hexadecimal

digits

range

from

0

(zero)

through

9

(nine)

and

A

(ten)

through

F

(fifteen).

hexadecimal

constant.

A

constant,

usually

starting

with

special

characters,

that

contains

only

hexadecimal

digits.

high

order

transformations.

A

type

of

optimization

that

restructures

loops.

Hollerith

constant.

A

string

of

any

characters

capable

of

representation

by

XL

Fortran

and

preceded

with

nH,

where

n

is

the

number

of

characters

in

the

string.

host.

A

main

program

or

subprogram

that

contains

an

internal

procedure

is

called

the

host

of

the

internal

procedure.

A

module

that

contains

a

module

procedure

is

called

the

host

of

the

module

procedure.

host

association.

The

process

by

which

an

internal

subprogram,

module

subprogram,

or

derived-type

definition

accesses

the

entities

of

its

host.

I

IPA.

Interprocedural

analysis,

a

type

of

optimization

that

allows

optimizations

to

be

performed

across

procedure

boundaries

and

across

calls

to

procedures

in

separate

source

files.

implicit

interface.

A

procedure

referenced

in

a

scoping

unit

other

than

its

own

is

said

to

have

an

implicit

interface

if

the

procedure

is

an

external

procedure

that

does

not

have

an

interface

block,

a

dummy

procedure

that

does

not

have

an

interface

block,

or

a

statement

function.

implied

DO.

An

indexing

specification

(similar

to

a

DO

statement,

but

without

specifying

the

word

DO)

with

a

list

of

data

elements,

rather

than

a

set

of

statements,

as

its

range.

infinity.

An

IEEE

number

(positive

or

negative)

created

by

overflow

or

division

by

zero.

Infinity

is

represented

by

an

exponent

where

all

the

bits

are

1’s,

and

a

zero

fraction.

i-node.

The

internal

structure

that

describes

the

individual

files

in

the

operating

system.

There

is

one

i-node

for

each

file.

An

i-node

contains

the

node,

type,

owner,

and

location

of

a

file.

A

table

of

i-nodes

is

stored

near

the

beginning

of

a

file

system.

Also

known

as

file

index.

input/output

(I/O).

Pertaining

to

either

input

or

output,

or

both.

input/output

list.

A

list

of

variables

in

an

input

or

output

statement

specifying

the

data

to

be

read

or

written.

An

output

list

can

also

contain

a

constant,

an

expression

involving

operators

or

function

references,

or

an

expression

enclosed

in

parentheses.

434

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

integer

constant.

An

optionally

signed

digit

string

that

contains

no

decimal

point.

interface

block.

A

sequence

of

statements

from

an

INTERFACE

statement

to

the

corresponding

END

INTERFACE

statement.

interface

body.

A

sequence

of

statements

in

an

interface

block

from

a

FUNCTION

or

SUBROUTINE

statement

to

the

corresponding

END

statement.

interference.

A

situation

in

which

two

iterations

within

a

DO

loop

have

dependencies

upon

one

another.

internal

file.

A

sequence

of

records

in

internal

storage.

See

also

external

file.

interprocedural

analysis.

See

IPA.

intrinsic.

Pertaining

to

types,

operations,

assignment

statements,

and

procedures

that

are

defined

by

Fortran

language

standards

and

can

be

used

in

any

scoping

unit

without

further

definition

or

specification.

intrinsic

module.

A

module

that

is

provided

by

the

compiler

and

is

available

to

any

program.

intrinsic

procedure.

A

procedure

that

is

provided

by

the

compiler

and

is

available

to

any

program.

K

keyword.

(1)

A

statement

keyword

is

a

word

that

is

part

of

the

syntax

of

a

statement

(or

directive)

and

that

may

be

used

to

identify

the

statement.

(2)

An

argument

keyword

specifies

a

name

for

a

dummy

argument.

kind

type

parameter.

A

parameter

whose

values

label

the

available

kinds

of

an

intrinsic

type.

L

lexical

extent.

All

of

the

code

that

appears

directly

within

a

directive

construct.

lexical

token.

A

sequence

of

characters

with

an

indivisible

interpretation.

link-edit.

To

create

a

loadable

computer

program

by

means

of

a

linker.

linker.

A

program

that

resolves

cross-references

between

separately

compiled

or

assembled

object

modules

and

then

assigns

final

addresses

to

create

a

single

relocatable

load

module.

If

a

single

object

module

is

linked,

the

linker

simply

makes

it

relocatable.

list-directed.

A

predefined

input/output

format

that

depends

on

the

type,

type

parameters,

and

values

of

the

entities

in

the

data

list.

literal.

A

symbol

or

a

quantity

in

a

source

program

that

is

itself

data,

rather

than

a

reference

to

data.

literal

constant.

A

lexical

token

that

directly

represents

a

scalar

value

of

intrinsic

type.

load

balancing.

An

optimization

strategy

that

aims

at

evenly

distributing

the

work

load

among

processors.

logical

constant.

A

constant

with

a

value

of

either

true

or

false

(or

T

or

F).

logical

operator.

A

symbol

that

represents

an

operation

on

logical

expressions:

.NOT.

(logical

negation)

.AND.

(logical

conjunction)

.OR.

(logical

union)

.EQV.

(logical

equivalence)

.NEQV.

(logical

nonequivalence)

.XOR.

(logical

exclusive

disjunction)

loop.

A

statement

block

that

executes

repeatedly.

License

Use

Management

(LUM).

A

run-time

license-management

application

based

on

Gradient

Technologies’

Version

2.0.1

(Version

1.1.2a)

of

the

Network

Licensing

System.

The

system

allows

software

vendors

to

bundle

compliance

mechanisms

with

their

software.

In

tracking

license

usage,

License

Use

Management

allows

customers

to

easily

comply

with

their

software

license

agreements.

M

_main.

The

default

name

given

to

a

main

program

by

the

compiler

if

the

main

program

was

not

named

by

the

programmer.

main

program.

The

first

program

unit

to

receive

control

when

a

program

is

run.

See

also

subprogram.

master

thread.

The

head

process

of

a

group

of

threads.

module.

A

program

unit

that

contains

or

accesses

definitions

to

be

accessed

by

other

program

units.

mutex.

A

primitive

object

that

provides

mutual

exclusion

between

threads.

A

mutex

is

used

cooperatively

between

threads

to

ensure

that

only

one

of

the

cooperating

threads

is

allowed

to

access

shared

data

or

run

certain

application

code

at

a

time.

N

NaN

(not-a-number).

A

symbolic

entity

encoded

in

floating-point

format

that

does

not

correspond

to

a

number.

See

also

quiet

NaN,

signalling

NaN.

Glossary

435

name.

A

lexical

token

consisting

of

a

letter

followed

by

up

to

249

alphanumeric

characters

(letters,

digits,

and

underscores).

Note

that

in

FORTRAN

77,

this

was

called

a

symbolic

name.

named

common.

A

separate,

named

common

block

consisting

of

variables.

namelist

group

name.

The

first

parameter

in

the

NAMELIST

statement

that

names

a

list

of

names

to

be

used

in

READ,

WRITE,

and

PRINT

statements.

negative

zero.

An

IEEE

representation

where

the

exponent

and

fraction

are

both

zero,

but

the

sign

bit

is

1.

Negative

zero

is

treated

as

equal

to

positive

zero.

nest.

To

incorporate

a

structure

or

structures

of

some

kind

into

a

structure

of

the

same

kind.

For

example,

to

nest

one

loop

(the

nested

loop)

within

another

loop

(the

nesting

loop);

to

nest

one

subroutine

(the

nested

subroutine)

within

another

subroutine

(the

nesting

subroutine).

nonexecutable

statement.

A

statement

that

describes

the

characteristics

of

a

program

unit,

data,

editing

information,

or

statement

functions,

but

does

not

cause

any

action

to

be

taken

by

the

program.

nonexisting

file.

A

file

that

does

not

physically

exist

on

any

accessible

storage

medium.

normal.

A

floating

point

number

that

is

not

denormal,

infinity,

or

NaN.

not-a-number.

See

NaN.

numeric

constant.

A

constant

that

expresses

an

integer,

real,

complex,

or

byte

number.

O

octal.

Pertaining

to

a

system

of

numbers

to

the

base

eight;

the

octal

digits

range

from

0

(zero)

through

7

(seven).

octal

constant.

A

constant

that

is

made

of

octal

digits.

one-trip

DO-loop.

A

DO

loop

that

is

executed

at

least

once,

if

reached,

even

if

the

iteration

count

is

equal

to

0.

(This

type

of

loop

is

from

FORTRAN

66.)

online

processor.

In

a

multiprocessor

machine,

a

processor

that

has

been

activated

(brought

online).

The

number

of

online

processors

is

less

than

or

equal

to

the

number

of

physical

processors

actually

installed

in

the

machine.

Also

known

as

active

processor.

operator.

A

specification

of

a

particular

computation

involving

one

or

two

operands.

P

pad.

To

fill

unused

positions

in

a

field

or

character

string

with

dummy

data,

usually

zeros

or

blanks.

paging

space.

Disk

storage

for

information

that

is

resident

in

virtual

memory

but

is

not

currently

being

accessed.

PDF.

See

profile-directed

feedback.

pointee

array.

An

explicit-shape

or

assumed-size

array

that

is

declared

in

an

integer

POINTER

statement

or

other

specification

statement.

pointer.

A

variable

that

has

the

POINTER

attribute.

A

pointer

must

not

be

referenced

or

defined

unless

it

is

pointer

associated

with

a

target.

If

it

is

an

array,

it

does

not

have

a

shape

unless

it

is

pointer-associated.

preconnected

file.

A

file

that

is

connected

to

a

unit

at

the

beginning

of

execution

of

the

executable

program.

Standard

error,

standard

input,

and

standard

output

are

preconnected

files

(units

0,

5

and

6,

respectively).

predefined

convention.

The

implied

type

and

length

specification

of

a

data

object,

based

on

the

initial

character

of

its

name

when

no

explicit

specification

is

given.

The

initial

characters

I

through

N

imply

type

integer

of

length

4;

the

initial

characters

A

through

H,

O

through

Z,

$,

and

_

imply

type

real

of

length

4.

present.

A

dummy

argument

is

present

in

an

instance

of

a

subprogram

if

it

is

associated

with

an

actual

argument

and

the

actual

argument

is

a

dummy

argument

that

is

present

in

the

invoking

procedure

or

is

not

a

dummy

argument

of

the

invoking

procedure.

primary.

The

simplest

form

of

an

expression:

an

object,

array

constructor,

structure

constructor,

function

reference,

or

expression

enclosed

in

parentheses.

procedure.

A

computation

that

may

be

invoked

during

program

execution.

It

may

be

a

function

or

a

subroutine.

It

may

be

an

intrinsic

procedure,

an

external

procedure,

a

module

procedure,

an

internal

procedure,

a

dummy

procedure,

or

a

statement

function.

A

subprogram

may

define

more

than

one

procedure

if

it

contains

ENTRY

statements.

profile-directed

feedback

(PDF).

A

type

of

optimization

that

uses

information

collected

during

application

execution

to

improve

performance

of

conditional

branches

and

in

frequently

executed

sections

of

code.

program

unit.

A

main

program

or

subprogram.

pure.

An

attribute

of

a

procedure

that

indicates

there

are

no

side

effects.

436

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

Q

quiet

NaN.

A

NaN

(not-a-number)

value

that

does

not

signal

an

exception.

The

intent

of

a

quiet

NaN

is

to

propagate

a

NaN

result

through

subsequent

computations.

See

also

NaN,

signalling

NaN.

R

random

access.

An

access

method

in

which

records

can

be

read

from,

written

to,

or

removed

from

a

file

in

any

order.

See

also

sequential

access.

rank.

The

number

of

dimensions

of

an

array.

real

constant.

A

string

of

decimal

digits

that

expresses

a

real

number.

A

real

constant

must

contain

a

decimal

point,

a

decimal

exponent,

or

both.

record.

A

sequence

of

values

that

is

treated

as

a

whole

within

a

file.

relational

expression.

An

expression

that

consists

of

an

arithmetic

or

character

expression,

followed

by

a

relational

operator,

followed

by

another

arithmetic

or

character

expression.

relational

operator.

The

words

or

symbols

used

to

express

a

relational

condition

or

a

relational

expression:

.GT.

greater

than

.GE.

greater

than

or

equal

to

.LT.

less

than

.LE.

less

than

or

equal

to

.EQ.

equal

to

.NE.

not

equal

to

result

variable.

The

variable

that

returns

the

value

of

a

function.

return

specifier.

An

argument

specified

for

a

statement,

such

as

CALL,

that

indicates

to

which

statement

label

control

should

return,

depending

on

the

action

specified

by

the

subroutine

in

the

RETURN

statement.

S

scalar.

(1)

A

single

datum

that

is

not

an

array.

(2)

Not

having

the

property

of

being

an

array.

scale

factor.

A

number

indicating

the

location

of

the

decimal

point

in

a

real

number

(and,

on

input,

if

there

is

no

exponent,

the

magnitude

of

the

number).

scope.

That

part

of

an

executable

program

within

which

a

lexical

token

has

a

single

interpretation.

scope

attribute.

That

part

of

an

executable

program

within

which

a

lexical

token

has

a

single

interpretation

of

a

particular

named

property

or

entity.

scoping

unit.

(1)

A

derived-type

definition.

(2)

An

interface

body,

excluding

any

derived-type

definitions

and

interface

bodies

contained

within

it.

(3)

A

program

unit

or

subprogram,

excluding

derived-type

definitions,

interface

bodies,

and

subprograms

contained

within

it.

selector.

The

object

that

is

associated

with

the

associate

name

in

an

ASSOCIATE

construct.

semantics.

The

relationships

of

characters

or

groups

of

characters

to

their

meanings,

independent

of

the

manner

of

their

interpretation

and

use.

See

also

syntax.

sequential

access.

An

access

method

in

which

records

are

read

from,

written

to,

or

removed

from

a

file

based

on

the

logical

order

of

the

records

in

the

file.

See

also

random

access.

signalling

NaN.

A

NaN

(not-a-number)

value

that

signals

an

invalid

operation

exception

whenever

it

appears

as

an

operand.

The

intent

of

the

signaling

NaN

is

to

catch

program

errors,

such

as

using

an

uninitialized

variable.

See

also

NaN,

quiet

NaN.

sleep.

The

state

in

which

a

thread

completely

suspends

execution

until

another

thread

signals

it

that

there

is

work

to

do.

SMP.

See

symmetric

multiprocessing.

soft

limit.

A

system

resource

limit

that

is

currently

in

effect

for

a

process.

The

value

of

a

soft

limit

can

be

raised

or

lowered

by

a

process,

without

requiring

root

authority.

The

soft

limit

for

a

resource

cannot

be

raised

above

the

setting

of

the

hard

limit.

See

also

hard

limit.

spill

space.

The

stack

space

reserved

in

each

subprogram

in

case

there

are

too

many

variables

to

hold

in

registers

and

the

program

needs

temporary

storage

for

register

contents.

specification

statement.

A

statement

that

provides

information

about

the

data

used

in

the

source

program.

The

statement

could

also

supply

information

to

allocate

data

storage.

stanza.

A

group

of

lines

in

a

file

that

together

have

a

common

function

or

define

a

part

of

the

system.

Stanzas

are

usually

separated

by

blank

lines

or

colons,

and

each

stanza

has

a

name.

statement.

A

language

construct

that

represents

a

step

in

a

sequence

of

actions

or

a

set

of

declarations.

Statements

fall

into

two

broad

classes:

executable

and

nonexecutable.

statement

function.

A

name,

followed

by

a

list

of

dummy

arguments,

that

is

equated

with

an

intrinsic

or

derived-type

expression,

and

that

can

be

used

as

a

substitute

for

the

expression

throughout

the

program.

statement

label.

A

number

from

one

through

five

digits

that

is

used

to

identify

a

statement.

Statement

Glossary

437

labels

can

be

used

to

transfer

control,

to

define

the

range

of

a

DO,

or

to

refer

to

a

FORMAT

statement.

storage

association.

The

relationship

between

two

storage

sequences

if

a

storage

unit

of

one

is

the

same

as

a

storage

unit

of

the

other.

structure.

A

scalar

data

object

of

derived

type.

structure

component.

The

part

of

a

data

object

of

derived-type

corresponding

to

a

component

of

its

type.

subobject.

A

portion

of

a

named

data

object

that

may

be

referenced

or

defined

independently

of

other

portions.

It

can

be

an

array

element,

array

section,

structure

component,

or

substring.

subprogram.

A

function

subprogram

or

a

subroutine

subprogram.

Note

that

in

FORTRAN

77,

a

block

data

program

unit

was

called

a

subprogram.

See

also

main

program.

subroutine.

A

procedure

that

is

invoked

by

a

CALL

statement

or

defined

assignment

statement.

subscript.

A

subscript

quantity

or

set

of

subscript

quantities

enclosed

in

parentheses

and

used

with

an

array

name

to

identify

a

particular

array

element.

substring.

A

contiguous

portion

of

a

scalar

character

string.

(Although

an

array

section

can

specify

a

substring

selector,

the

result

is

not

a

substring.)

symmetric

multiprocessing

(SMP).

A

system

in

which

functionally-identical

multiple

processors

are

used

in

parallel,

providing

simple

and

efficient

load-balancing.

synchronous.

Pertaining

to

an

operation

that

occurs

regularly

or

predictably

with

regard

to

the

occurrence

of

a

specified

event

in

another

process.

syntax.

The

rules

for

the

construction

of

a

statement.

See

also

semantics.

T

target.

A

named

data

object

specified

to

have

the

TARGET

attribute,

a

data

object

created

by

an

ALLOCATE

statement

for

a

pointer,

or

a

subobject

of

such

an

object.

thread.

A

stream

of

computer

instructions

that

is

in

control

of

a

process.

A

multithread

process

begins

with

one

stream

of

instructions

(one

thread)

and

may

later

create

other

instruction

streams

to

perform

tasks.

thread

visible

variable.

A

variable

that

can

be

accessed

by

more

than

one

thread.

time

slice.

An

interval

of

time

on

the

processing

unit

allocated

for

use

in

performing

a

task.

After

the

interval

has

expired,

processing

unit

time

is

allocated

to

another

task,

so

a

task

cannot

monopolize

processing

unit

time

beyond

a

fixed

limit.

token.

In

a

programming

language,

a

character

string,

in

a

particular

format,

that

has

some

defined

significance.

trigger

constant.

A

sequences

of

characters

that

identifies

comment

lines

as

compiler

comment

directives.

type

declaration

statement.

A

statement

that

specifies

the

type,

length,

and

attributes

of

an

object

or

function.

Objects

can

be

assigned

initial

values.

U

unformatted

record.

A

record

that

is

transmitted

unchanged

between

internal

and

external

storage.

Unicode.

A

universal

character

encoding

standard

that

supports

the

interchange,

processing,

and

display

of

text

that

is

written

in

any

of

the

languages

of

the

modern

world.

It

also

supports

many

classical

and

historical

texts

in

a

number

of

languages.

The

Unicode

standard

has

a

16-bit

international

character

set

defined

by

ISO

10646.

See

also

ASCII.

unit.

A

means

of

referring

to

a

file

to

use

in

input/output

statements.

A

unit

can

be

connected

or

not

connected

to

a

file.

If

connected,

it

refers

to

a

file.

The

connection

is

symmetric:

that

is,

if

a

unit

is

connected

to

a

file,

the

file

is

connected

to

the

unit.

unsafe

option.

Any

option

that

could

result

in

grossly

incorrect

results

if

used

in

the

incorrect

context.

Other

options

may

result

in

very

small

variations

from

the

default

result,

which

is

usually

acceptable.

Typically,

using

an

unsafe

option

is

an

assertion

that

your

code

is

not

subject

to

the

conditions

that

make

the

option

unsafe.

use

association.

The

association

of

names

in

different

scoping

units

specified

by

a

USE

statement.

V

variable.

A

data

object

whose

value

can

be

defined

and

redefined

during

the

execution

of

an

executable

program.

It

may

be

a

named

data

object,

array

element,

array

section,

structure

component,

or

substring.

Note

that

in

FORTRAN

77,

a

variable

was

always

scalar

and

named.

X

XPG4.

X/Open

Common

Applications

Environment

(CAE)

Portability

Guide

Issue

4;

a

document

which

defines

the

interfaces

of

the

X/Open

Common

Applications

Environment

that

is

a

superset

of

438

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

POSIX.1-1990,

POSIX.2-1992,

and

POSIX.2a-1992

containing

extensions

to

POSIX

standards

from

XPG3.

Z

zero-length

character.

A

character

object

that

has

a

length

of

0

and

is

always

defined.

zero-sized

array.

An

array

that

has

a

lower

bound

that

is

greater

than

its

corresponding

upper

bound.

The

array

is

always

defined.

Glossary

439

440

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

INDEX

Special

characters
_OPENMP

C

preprocessor

macro

40,

235

-#

compiler

option

91

-1

compiler

option

92

-B

compiler

option

93

-b64

linker

option

94

-bdynamic

linker

option

95

-bhalt

linker

option

97

-bloadmap

linker

option

98

-bmap

linker

option

87

-bmaxdata

and

-bmaxstack

linker

options

99

-brename

linker

option

87

-brtl

linker

option

100

-bshared

linker

option

95

-bstatic

linker

option

95

-c

compiler

option

104

-C

compiler

option

103

-d

compiler

option

106

-D

compiler

option

105

-F

compiler

option

107

-g

compiler

option

108,

376

-I

compiler

option

109

-k

compiler

option

110

-l

compiler

option

112

-L

compiler

option

111

-N

compiler

option

113

-o

compiler

option

116

-O

compiler

option

114,

307

-O2

compiler

option

114

-O3

compiler

option

114

-O4

compiler

option

114

-O5

compiler

option

115

-p

compiler

option

118

-P

compiler

option

117

-Q

compiler

option

317

-Q,

-Q!,

-Q+,

-Q-

compiler

options

119

-q32

compiler

option

281

-q64

compiler

option

282

-qalias

compiler

option

122,

312

-qalign

compiler

option

125

-qarch

compiler

option

39,

127,

310

-qassert

compiler

option

132,

313

-qattr

compiler

option

133,

392

-qautodbl

compiler

option

134,

413

-qcache

compiler

option

39,

137,

310

-qcclines

compiler

option

139

-qcheck

compiler

option

103,

140

-qci

compiler

option

141

-qcompact

compiler

option

142

-qcr

compiler

option

143

-qctyplss

compiler

option

144

-qdbg

compiler

option

108,

146

-qddim

compiler

option

147

-qdirective

compiler

option

148

-qdlines

compiler

option

105,

151

-qdpc

compiler

option

152

-qdpcl

compiler

option

153

-qescape

compiler

option

154

-qessl

compiler

option

155

-qextchk

compiler

option

156

-qextern

compiler

option

157

-qextname

compiler

option

158

-qfdpr

compiler

option

160

-qfixed

compiler

option

161

-qflag

compiler

option

162

-qfloat

compiler

option

163,

295

fltint

suboption

295

hsflt

suboption

296

hssngl

suboption

295

nans

suboption

302

nomaf

suboption

295

rsqrt

suboption

295

-qflttrap

compiler

option

165,

297

-qfree

compiler

option

168

-qfullpath

compiler

option

169

-qhalt

compiler

option

170

-qhot

compiler

option

171,

312,

313

-qhsflt

compiler

option

(obsolete)

173

-qhssngl

compiler

option

(obsolete)

174

-qieee

compiler

option

175,

278

-qinit

compiler

option

176

-qinitauto

compiler

option

177

-qintlog

compiler

option

179

-qintsize

compiler

option

180

-qipa

compiler

option

182,

319

-qkeepparm

compiler

option

188

-qlanglvl

compiler

option

189

-qlargepage

compiler

option

191

-qlibansi

linker

option

185

-qlibessl

linker

option

185

-qlibposix

linker

option

185

-qlist

compiler

option

195,

393

-qlistopt

compiler

option

196,

389

-qlm

compiler

option

197

-qlog4

compiler

option

198

-qmaxmem

compiler

option

199

-qmbcs

compiler

option

201

-qmixed

compiler

option

202

-qmoddir

compiler

option

203

-qmodule

compiler

option

204

-qnoprint

compiler

option

205

-qnullterm

compiler

option

206

-qobject

compiler

option

207

-qonetrip

compiler

option

92,

208

-qoptimize

compiler

option

114,

209

-qpdf

compiler

option

210,

316

-qphsinfo

compiler

option

214

-qpic

compiler

option

216

-qport

compiler

option

217

-qposition

compiler

option

219,

327

-qprefetch

compiler

option

220

-qqcount

compiler

option

221

-qrealsize

compiler

option

222

-qrecur

compiler

option

224

-qreport

compiler

option

225,

391

-qsaa

compiler

option

227

-qsave

compiler

option

228

-qsaveopt

compiler

option

229

-qsclk

compiler

option

230

-qshowpdf

compiler

option

231

-qsigtrap

compiler

option

232,

298

-qsmallstack

compiler

option

233

-qsmp

compiler

option

234

-qsource

compiler

option

239,

390

-qspillsize

compiler

option

113,

240

-qstrict

compiler

option

241,

307

-qstrict_induction

compiler

option

243

-qstrictieeemod

compiler

option

242

-qsuffix

compiler

option

244

-qsuppress

compiler

option

245

-qswapomp

compiler

option

247

-qtbtable

compiler

option

249

-qthreaded

compiler

option

250

-qtune

compiler

option

39,

251,

310

-qundef

compiler

option

254,

272

-qunroll

compiler

option

255

-qunwind

compiler

option

256

-qversion

compiler

option

257

-qwarn64

compiler

option

284

-qxflag=oldtab

compiler

option

259

-qxflag=xalias

compiler

option

(obsolete)
See

-qalias

compiler

option

-qxlf77

compiler

option

261

-qxlf90

compiler

option

263

-qxlines

compiler

option

265

-qxref

compiler

option

267,

392

-qzerosize

compiler

option

268

-S

compiler

option

269

-t

compiler

option

270

-u

compiler

option

272

-U

compiler

option

271

-v

compiler

option

273

-V

compiler

option

274

-w

compiler

option

162,

277

-W

compiler

option

275

-yn,

-ym,

-yp,

-yz

compiler

options

175,

278

/etc/csh.cshrc

and

/etc/csh.login

files

12

/etc/xlf.cfg

configuration

file

15,

107

/tmp

directory
See

TMPDIR

environment

variable

/usr/include/fexcp.h

298

/usr/include/fp_fort_c.f

and

fp_fort_t.f

297

/usr/include/fpdt.h

and

fpdc.h

292

/usr/lib/lib*.a

library

files

33,

42,

43,

44

/usr/lpp/xlf/bin/xlfentry

file

396

/usr/lpp/xlf/include

directory

50

/usr/lpp/xlf/include_d7

directory

50

/usr/lpp/xlf/lib/lib*.a

library

files

33,

42,

43,

44

.a

files

33

.cfg

files

33

.cshrc

file

12

.f

and

.F

files

33

.f90

suffix,

compiling

files

with

16

.lst

files

34

.mod

file

names

204

.mod

files

33,

34,

50,

203,

396

.o

files

33,

34

©

Copyright

IBM

Corp.

1990,

2004

441

.profile

file

12

.s

files

33,

34

.XOR.

operator

261

*

length

specifiers

(FORTRAN

77

extension)

400

@PROCESS

compiler

directive

37

%REF

functions

353

%VAL

functions

353

#if

and

other

cpp

directives

41

Numerics
1501-224,1501-229,

and

1517-011

error

messages

374

15xx

identifiers

for

XL

Fortran

messages

370

4K

suboption

of

-qalign

125

601

suboption

of

-qarch

127,

128

601

suboption

of

-qtune

251

603

suboption

of

-qarch

127,

128

603

suboption

of

-qtune

251

604

suboption

of

-qarch

127,

128

604

suboption

of

-qtune

251

64-bit

data

types

(FORTRAN

77

extension)

400

64-bit

environment

279

64-bit

large

data

type

support

279

64-bit

thread

support

280

A
a.out

file

34

actual

arguments
definition

of

431

addresses

of

arguments,

saving

261

affinity

suboption

of

-qsmp=schedule

235

alarm_

service

and

utility

subprogram

403

ALIAS

@PROCESS

directive

122

ALIGN

@PROCESS

directive

125

alignment

of

BIND(C)

derived

types

125

alignment

of

CSECTs

and

large

arrays

for

data-striped

I/O

125

allocatable

arrays,

automatic

deallocation

with

-qxlf90=autodealloc

263

alphabetic

character,

definition

of

431

alphanumeric,

definition

of

431

ANSI
checking

conformance

to

the

Fortran

90

standard

8,

55,

189

checking

conformance

to

the

Fortran

95

standard

8,

55,

189

appendold

and

appendunknown

suboptions

of

-qposition

219

ar

command

395

archive

files

33

argument

addresses,

saving

261

argument

promotion

(integer

only)

for

intrinsic

procedures

261

arguments
definition

of

431

passing

between

languages

348,

349

passing

by

reference

or

by

value

353

passing

null-terminated

strings

to

C

functions

206

arraypad

suboption

of

-qhot

314

arrays
optimizing

array

language

312

optimizing

assignments

122

passing

between

languages

352

arrays,

initialization

problems

374

aryovrlp

suboption

of

-qalias

122,

312

as

and

asopt

attributes

of

configuration

file

16

as

command,

passing

command-line

options

to

38

asa

command

395

ASCII
definition

of

431

assembler
low-level

linkage

conventions

355

source

(.s)

files

33,

34

ATTR

@PROCESS

directive

133

attribute

section

in

compiler

listing

392

auto

suboption

of

-qarch

127

auto

suboption

of

-qipa

182

auto

suboption

of

-qsmp

234

auto

suboption

of

-qtune

251

AUTODBL

@PROCESS

directive

134

autodealloc

suboption

of

-qxlf90

263

B
big

data

and

stack

segments

99

binary

compatibility,

POSIX

pthreads

49

BIND(C)

derived

types,

alignment

125

bitwise-identical

floating-point

results

295

blankpad

suboption

of

-qxlf77

261

blocked

special

files,

interaction

of

XL

Fortran

I/O

with

329

bolt

attribute

of

configuration

file

16

branches,

optimizing

316

bss

storage,

alignment

of

arrays

in

125

buffering

run-time

option
description

51

using

with

preconnected

files

51

buffers,

flushing

331

BYTE

data

type

(FORTRAN

77

extension)

400

C
C

language

and

interlanguage

calls

345,

348

C

preprocessor

(cpp)

40

C++

and

Fortran

in

same

program

347

calling

by

reference

or

value

353

calling

non-Fortran

procedures

345

carriage

control

characters,

printing

files

with

395

carriage

return

character

143

CCLINES

@PROCESS

139

character

constants

and

typeless

constants

144

character

data,

passing

between

languages

351

character

special

files,

interaction

of

XL

Fortran

I/O

with

329

character-count

edit

descriptor

(FORTRAN

77

extension)

400

CHECK

@PROCESS

directive

103,

140

check_fpscr.f

sample

file

302

chunk
definition

of

432

CI

@PROCESS

directive

141

cleanpdf

command

211

clock_

service

and

utility

subprogram

403

cnverr

run-time

option

53

code

attribute

of

configuration

file

16

code

generation

for

different

systems

39

code

optimization

9,

305

column

1

and

carriage

control

characters

395

com

suboption

of

-qarch

127

command

line,

specifying

options

on

36

command-line

options
See

compiler

options

common

blocks,

finding

sizes

of

87

COMPACT

@PROCESS

directive

142

compilation

order

33

compilation

unit

epilogue

section

in

compiler

listing

393

compiler

listings

389

See

also

listings

compiler

options

for

controlling

77

compiler

options
See

also

the

individual

options

listed

under

Special

Characters

at

the

start

of

the

index

deprecated

88

descriptions

90

for

compatibility

79

for

controlling

input

to

the

compiler

68

for

controlling

listings

and

messages

77

for

controlling

the

compiler

internal

operation

87

for

debugging

and

error

checking

75

for

floating-point

processing

86

for

linking

86

for

performance

optimization

70

obsolete

or

not

recommended

88

scope

and

precedence

36

section

in

compiler

listing

389

specifying

in

the

source

file

37

specifying

on

the

command

line

36

specifying

the

locations

of

output

files

70

summary

67

compiler

options

for

64-bit

280

compiling
cancelling

a

compilation

33

description

of

how

to

compile

a

program

29

problems

373

SMP

programs

32

concurrent

network

licenses

39

concurrent

nodelock

licenses

39

conditional

branching

optimization

316

conditional

compilation

40

conditional

vector

merge

intrinsic

functions

(FORTRAN

77

extension)

400

configuration

file

15,

33,

107

442

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

conflicting

options
-C

interferes

with

-qhot

103

-qautodbl

overrides

-qrealsize

136

-qdpc

is

overridden

by

-qautodbl

and

-qrealsize

222

-qflag

overrides

-qlanglvl

and

-qsaa

162

-qhalt

is

overridden

by

-qnoobject

207

-qhalt

overrides

-qobject

207

-qhot

is

overridden

by

-C

171

-qintsize

overrides

-qlog4

198

-qlanglvl

is

overridden

by

-qflag

190

-qlog4

is

overridden

by

-qintsize

198

-qnoobject

overrides

-qhalt

170

-qobject

is

overridden

by

-qhalt

170

-qrealsize

is

overridden

by

-qautodbl

136,

223

-qrealsize

overrides

-qdpc

222

-qsaa

is

overridden

by

-qflag

227

@PROCESS

overrides

command-line

setting

36

command-line

overrides

configuration

file

setting

36

specified

more

than

once,

last

one

takes

effect

36

conformance

checking

8,

189,

227

control

and

status

register

for

floating

point

300

conversion

errors

53

core

file

298,

299,

376

cost

model

for

loop

transformations

313

could

not

load

program

(error

message)

373

cpp

command

40

cpp,

cppoptions,

and

cppsuffix

attributes

of

configuration

file

16

cpu_time_type

run-time

option

53

CRAY

functions

(FORTRAN

77

extension)
conditional

vector

merge

intrinsics

400

date

and

time

service

and

utility

functions

400

CRAY

pointer

(FORTRAN

77

extension),

XL

Fortran

equivalent

400

cross-reference

section

in

compiler

listing

392

crt

attribute

of

configuration

file

16

crt_64

attribute

of

configuration

file

16

CSECTS,

alignment

of

125

csh

shell

12

cshrc,

csh.cshrc,

and

csh.login

files

12

ctime_

service

and

utility

subprogram

403

CTYPLSS

@PROCESS

directive

144

customizing

configuration

file

(including

default

compiler

options)

15

CVMGx

intrinsic

functions

(FORTRAN

77

extension)

400

D
data

limit

373

data

segment,

increasing

size

of

99

data

striping

333

-qalign

required

for

improved

performance

125

data

types

in

Fortran,

C,

and

Pascal

349

date

and

time

functions

(FORTRAN

77

extension)

400,

403

date

service

and

utility

subprogram

403

DATE_AND_TIME

intrinsic

function

403

DBG

@PROCESS

directive

108,

146

dbl,

dbl4,

dbl8,

dblpad,

dblpad4,

dblpad8

suboptions

of

-qautodbl

134

dbx

debugger

9

dbx

support
sample

session

377

DDIM

@PROCESS

directive

147

debugger

support

9

debugging

369

compiler

options

for

75

using

path

names

of

original

files

169

default_recl

run-time

option

54

defaultmsg

attribute

of

configuration

file

16

defaults
customizing

compiler

defaults

15

search

paths

for

include

and

.mod

files

109

search

paths

for

libraries

14

delays

run-time

option

61

deprecated

compiler

options

88

deps

suboption

of

-qassert

132

DIRECTIVE

@PROCESS

directive

148

directives
NEW

399

disassembly

listing
from

the

-S

compiler

option

269

disk

space,

running

out

of

374

disk

striping
See

data

striping

DLINES

@PROCESS

directive

105,

151

documentation,

online

formats

9

double-precision

values

288,

290

DPC

@PROCESS

directive

152

DPCL

@PROCESS

directive

153

dtime_

service

and

utility

subprogram

403

dummy

argument
definition

of

433

dynamic

dimensioning

of

arrays

147

dynamic

extent,

definition

of

433

dynamic

linking

46

dynamic

suboption

of

-qsmp=schedule

236

E
E

error

severity

369

Eclipse

help

system

9

edit

descriptors

(B,

O,

Z),

differences

between

F77

and

F90

261

edit

descriptors

(G),

difference

between

F77

and

F90

261

editing

source

files

29

emacs

text

editor

29

enable

suboption

of

-qflttrap

165,

299

end-of-file,

writing

past

261

ENTRY

statements,

compatibility

with

previous

compiler

versions

261

environment

problems

373

environment

variables
64-bit

environment
OBJECT_MODE

285

compile

time

12

LANG

13

LIBPATH

14

NLSPATH

13

OBJECT_MODE

285

PDFDIR

14

TMPDIR

15

OpenMP
OMP_DYNAMIC

64

OMP_NESTED

64

OMP_NUM_THREADS

64

OMP_SCHEDULE

65

run-time
LIBPATH

66

PDFDIR

14

TMPDIR

66

XLFRTEOPTS

51

XLSMPOPTS

59

XLFSCRATCH_unit

15

XLFUNIT_unit

15

eof,

writing

past

261

epilogue

sections

in

compiler

listing

393

err_recovery

run-time

option

54

error

checking,

compiler

options

for

75

error

messages

369

1501-224

374

1501-229

374

1517-011

374

compiler

options

for

controlling

77

explanation

of

format

370

in

compiler

listing

390

erroreof

run-time

option

54

ESCAPE

@PROCESS

directive

154

etime_

service

and

utility

subprogram

403

example

programs
See

sample

programs

exception

handling

66,

289

for

floating

point

165,

296

installing

an

exception

handler

298

exclusive

or

operator

261

executable

files

34

executing

a

program

48

executing

the

compiler

29

exits

suboption

of

-qipa

182

explicit

interfaces

355

EXTCHK

@PROCESS

directive

156

extended-precision

values

291

extensions

to

FORTRAN

77,

list

of

common

ones

400

external

names
in

the

run-time

environment

412

EXTNAME

@PROCESS

directive

158

F
f77

command
and

file

positioning

328

description

29

level

of

Fortran

standard

compliance

24,

31

f90

suffix

16

FAQ

(frequently

asked

questions)

list

for

XL

Fortran

403

INDEX

443

fdate_

service

and

utility

subprogram

403

fexcp.h

include

file

298

fhandler.F

sample

file

302

file

positioning

327

file

table

section

in

compiler

listing

393

files
editing

source

29

I/O

formats

325

input

33

names

326

output

34

permissions

330

using

suffixes

other

than

.f

for

source

files

16

FIPS

FORTRAN

standard,

checking

conformance

to

8

FIXED

@PROCESS

directive

161

FLAG

@PROCESS

directive

162

FLOAT

@PROCESS

directive

163

floating-point
exception

handling

66

exceptions

165,

296

processing

287

optimizing

295,

311

floating-point

status

and

control

register

300

fltint

suboption

of

-qfloat

163

FLTTRAP

@PROCESS

directive

165,

297

flttrap_handler.c

and

flttrap_test.f

sample

files

302

flushing

I/O

buffers

331

fold

suboption

of

-qfloat

163

formats,

file

325

fort.*

default

file

names

326,

331

fort77

command
description

29

level

of

Fortran

standard

compliance

24

Fortran

2003

features

55

Fortran

2003

iostat_end

behaviour

54

FORTRAN

77

extensions,

list

of

common

ones

400

Fortran

90
compiling

programs

written

for

31

fp_fort_c.f

and

fp_fort_t.f

include

files

297

fp_trap

libc

routine

297

fpdt.h

and

fpdc.h

include

files

292

fpgets

and

fpsets

service

and

utility

subroutines

300

fppv

and

fppk

attributes

of

configuration

file

16

fpr

command

395

fpscr

register

300

fpstat

array

300

FREE

@PROCESS

directive

168

frequently

asked

questions

403

fsplit

command

395

fsuffix

attribute

of

configuration

file

16

full

suboption

of

-qtbtable

249

FULLPATH

@PROCESS

directive

169

functions
linkage

convention

for

calls

365

return

values

355

G
G

edit

descriptor,

difference

between

F77

and

F90

261

gcrt

attribute

of

configuration

file

16

gcrt_64

attribute

of

configuration

file

16

gedit77

suboption

of

-qxlf77

261

generating

code

for

different

systems

39

get_round_mode

procedure

292

GETENV

intrinsic

procedure

326

gmon.out

file

396

gmtime_

service

and

utility

subprogram

403

gprof

command

396

guided

suboption

of

-qsmp=schedule

236

H
HALT

@PROCESS

directive

170

hardware,

compiling

for

different

types

of

39

header

section

in

compiler

listing

389

heap

storage,

increasing

size

of

99

hexint

and

nohexint

suboptions

of

-qport

217

hot

attribute

of

configuration

file

16

hotlist

suboption

of

-qreport

225

HSFLT

@PROCESS

directive

(obsolete)

173

hsflt

suboption

of

-qfloat

163,

412

HSSNGL

@PROCESS

directive

(obsolete)

174

hssngl

suboption

of

-qfloat

163

HTML

documentation

9

huge

data

and

stack

segments

99

I
I

error

severity

369

i-node

57

I/O
See

input/output

IBM

Distributed

Debugger

9

idate_

service

and

utility

subprogram

403

IEEE

@PROCESS

directive

175,

278

IEEE

arithmetic

287

iFOR/LS

38

implicitly

connected

files

326

imprecise

suboption

of

-qflttrap

165

include_32

attribute

of

configuration

file

16

include_64

attribute

of

configuration

file

16

inexact

suboption

of

-qflttrap

165

infinity

values

288

informational

message

369

INIT

@PROCESS

directive

176

initial

file

position

327

initialize

arrays,

problems

374

inline

suboption

of

-qipa

182

inlining

119,

317

input

files

33

input/output

287

input/output

(continued)
from

two

languages

in

the

same

program

346

increasing

throughput

with

data

striping

125,

333

redirection

328

run-time

behavior

51

when

unit

is

positioned

at

end-of-file

261

XL

Fortran

implementation

details

325

installation

problems

373

installing

the

compiler

11

intarg

suboption

of

-qxlf77

261

integer

arguments

of

different

kinds

to

intrinsic

procedures

261

integer

POINTER

(FORTRAN

77

extension)

400

INTENT

attribute

355

interface

errors,

detecting

45

interlanguage

calls

345,

353

arrays

352

C++

347

character

types

351

corresponding

data

types

349

input

and

output

346

low-level

linkage

conventions

355

pointers

353

internal

limits

for

the

compiler

425

interprocedural

analysis

(IPA)

182

INTLOG

@PROCESS

directive

179

intptr

suboption

of

-qalias

122

intrinsic

procedures

accepting

integer

arguments

of

different

kinds

261

intrinthds

run-time

option

55

INTSIZE

@PROCESS

directive

180

intxor

suboption

of

-qxlf77

261

invalid

suboption

of

-qflttrap

165

invoking

a

program

48

invoking

the

compiler

29

iostat_end

run-time

option

54

ipa

attribute

of

configuration

file

16

irand

routine,

naming

restriction

for

47

irtc

service

and

utility

subprogram

403

ISO
checking

conformance

to

the

Fortran

90

standard

8,

55,

189

checking

conformance

to

the

Fortran

95

standard

8,

55,

189

isolated

suboption

of

-qipa

182

itercnt

suboption

of

-qassert

132

itime_

service

and

utility

subprogram

403

J
jdate

service

and

utility

subprogram

403

K
killed

(error

message)

373

kind

type

parameters

24,

180,

222

ksh

shell

12

444

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

L
L

error

severity

369

LANG

environment

variable

13

LANGLVL

@PROCESS

directive

189

langlvl

run-time

option

55

language

support

7

language-level

error

369

large

and

small

suboptions

of

-qpic

216

large

data

and

stack

segments

99

large

pages

191

LC_*

national

language

categories

14

ld

and

ldopt

attributes

of

configuration

file

16

ld

command
passing

command-line

options

to

38

used

for

linking

64-bit

non-SMP

files

44

used

for

linking

64-bit

SMP

files

43

used

for

linking

non-SMP

files

44

used

for

linking

SMP

files

42

leadzero

suboption

of

-qxlf77

261

level

of

XL

Fortran,

determining

24

level

suboption

of

-qipa

182

lexical

extent,

definition

of

435

lib*.a

library

files

33,

112

LIBPATH

environment

variable

66,

373

compile

time

14

libraries

33,

42,

43,

44

default

search

paths

14

nonshared

403

shared

411

libraries

attribute

of

configuration

file

16

library

path

environment

variable

373

libxlf.a

library

25

libxlf90_r.a

library

23,

25,

31,

50

libxlf90_r.dylib

31

libxlf90_t.a

library

23,

25,

31

libxlf90.a

and

libxlf.a

libraries

24

libxlf90.a

library

25

libxlfpthrds_compat.a

library

50

libxlsmp.a

library

50

license

management

(LM)

38

License

Use

Management

(LUM)

38

licenses,

network

and

nodelock

39

limit

command

373

limit

suboption

of

-qipa

182,

319

limits

internal

to

the

compiler

425

line

feed

character

143

linker

options

86

-b64

94

-bdynamic

95

-bmaxdata

99

-bmaxstack

99

-bnortl

100

-brtl

100

-bshared

95

-bstatic

95

-qlibansi

185

-qlibessl

185

-qlibposix

185

linking

42

dynamic

46

problems

374

static

46,

403

links,

interaction

of

XL

Fortran

I/O

with

329

LIST

@PROCESS

directive

195

list

suboption

of

-qipa

182,

183

listing

files

34

listing

options

77

LISTOPT

@PROCESS

directive

196

LM

(license

management)

38

locale,

setting

at

run

time

50

LOG4

@PROCESS

directive

198

logical

volumes,

I/O

operations

on

333

long

variable

names

(FORTRAN

77

extension)

400

loops,

optimizing

312

lower

case

(FORTRAN

77

extension)

400

lowfreq

suboption

of

-qipa

182

lslpp

command

24

ltime_

service

and

utility

subprogram

403

LUM

(License

Use

Management)

38

M
m

suboption

of

-y

278

machines,

compiling

for

different

types

39,

127

macro

expansion

40

macro,

_OPENMP

C

preprocessor

40,

235

maf

suboption

of

-qfloat

163,

241

main,

restriction

on

use

as

a

Fortran

name

345

make

command

91,

396

makefiles
configuration

file

as

alternative

for

default

options

15

copying

modified

configuration

files

along

with

15

malloc

system

routine

135

MAXMEM

@PROCESS

directive

199

MBCS

@PROCESS

directive

201

mclock

routine,

naming

restrictions

for

47

mcrt

attribute

of

configuration

file

16

mcrt_64

attribute

of

configuration

file

16

memory

management

optimizations

312

message

suppression

245

messages
1501-053

error

message

374

1501-224

error

message

374

1501-229

error

message

374

1517-011

error

message

374

catalog

files

for

372

compiler

options

for

controlling

77

copying

message

catalogs

to

another

system

372

selecting

the

language

for

run-time

messages

50

messaging
XL

Fortran

programs

calling

MPI

library

16

migrating

8

from

other

systems

397

from

previous

versions

of

XL

Fortran

24

minus

infinity,

representation

of

288

minus

suboption

of

-qieee

175

missing

suboption

of

-qipa

182

MIXED

@PROCESS

directive

202,

271

mixing

integers

and

logicals

(FORTRAN

77

extension)

400

mklv

command

334

mod

and

nomod

suboptions

of

-qport

217

mod

file

names,

intrinsic

204

mod

files

33,

34,

203,

396

module

procedures,

external

names

corresponding

to

345

modules,

effect

on

compilation

order

33

mon.out

file

33,

396

MPI

library

16

mpxlf

stanza

of

configuration

file

16

mpxlf_r

stanza

of

configuration

file

16

mpxlf_r7

stanza

of

configuration

file

16

mpxlf90

stanza

of

configuration

file

16

mpxlf90_r

stanza

of

configuration

file

16

mpxlf90_r7

stanza

of

configuration

file

16

mpxlf95

stanza

of

configuration

file

16

mpxlf95_r

stanza

of

configuration

file

16

mpxlf95_r7

stanza

of

configuration

file

16

multconn

run-time

option

56

multconnio

run-time

option

57

multiple

compilations

38

N
n

suboption

of

-y

278

name

conflicts,

avoiding

47

namelist

run-time

option

57

naming

conventions

for

external

names

345

NaN

values
and

infinities

288

specifying

with

-qinitauto

compiler

option

177

nans

suboption

of

-qfloat

163

national

language

support
at

run

time

50

compile

time

environment

13

nearest

suboption

of

-qieee

175

negative

infinity,

representation

of

288

nested_par

suboption

of

-qsmp

234

NetLS

(Network

Licensing

System)

38

network

file

system

(NFS)
using

the

compiler

on

a

11

Network

Install

Manager

11

network

licenses

39

NEW

compiler

directive

399

NFS
See

network

file

system

NIM

(Network

Install

Manager)

11

NLSPATH

environment

variable
compile

time

13

nlwidth

run-time

option

58

noauto

suboption

of

-qsmp

234

nodblpad

suboption

of

-qautodbl
See

none

suboption

instead

nodelock

licenses

39

nodeps

suboption

of

-qassert

132

noinline

suboption

of

-qipa

182

none

suboption

of

-qautodbl

134

none

suboption

of

-qtbtable

249

INDEX

445

nonested_par

suboption

of

-qsmp

234

nonshared

libraries

for

XL

Fortran

403

noobject

suboption

of

-qipa

182

noomp

suboption

of

-qsmp

234

noopt

suboption

of

-qsmp

235

norec_locks

suboption

of

-qsmp

235

null-terminated

strings,

passing

to

C

functions

206,

351

NULLTERM

@PROCESS

directive

206

O
OBJECT

@PROCESS

directive

207

object

files

33,

34

object

suboption

of

-qipa

182

OBJECT_MODE

environment

variable

285

obsolete

compiler

options

88

oldboz

suboption

of

-qxlf77

261

omp

suboption

of

-qsmp

234

OMP_DYNAMIC

environment

variable

64

OMP_NESTED

environment

variable

64

OMP_NUM_THREADS

environment

variable

64

OMP_SCHEDULE

environment

variable

65

ONETRIP

@PROCESS

directive

92,

208

online

compiler

help

9

online

documentation

9

OpenMP

environment

variables

64

opt

suboption

of

-qsmp

235

optimization

9,

305

compiler

options

for

70

for

floating-point

arithmetic

295

levels

307

OPTIMIZE

@PROCESS

directive

114,

209

OPTIONAL

attribute

355

options

attribute

of

configuration

file

16

options

section

in

compiler

listing

389

osuffix

attribute

of

configuration

file

16

output

files

34

overflow

suboption

of

-qflttrap

165

P
p

suboption

of

-y

278

p2sc

suboption

of

-qarch

128

p2sc

suboption

of

-qtune

251

pad

setting,

changing

for

internal,

direct-access

and

stream-access

files

261

padding

of

data

types

with

-qautodbl

option

413

paging

space
running

out

of

374

parallel

execution

options

60

parameters
See

arguments

parthds

run-time

option

60

parthreshold

run-time

option

62

partition

suboption

of

-qipa

182

Pascal

language

and

interlanguage

calls

345

path

name

of

source

files,

preserving

with

-qfullpath

169

PDF

documentation

9

PDFDIR

environment

variable

14

pdfname

suboption

of

-qipa

182,

184

performance

of

floating-point

arithmetic

295

performance

of

real

operations,

speeding

up

135,

222

Performance

Toolbox

249

performance

tuning

options

61

permissions

of

files

330

persistent

suboption

of

-qxlf77

261

PHSINFO

@PROCESS

directive

214

pipes,

interaction

of

XL

Fortran

I/O

with

329

platform,

compiling

for

a

specific

type

127

plus

infinity,

representation

of

288

plus

suboption

of

-qieee

175

pointers

(Fortran

90)

and

-qinit

compiler

option

176

pointers

(integer

POINTER)

(FORTRAN

77

extension)

400

PORT

@PROCESS

directive

217

portability

397

porting

to

XL

Fortran

397

POSITION

@PROCESS

directive

219,

327

position

of

a

file

after

an

OPEN

statement

327

positive

infinity,

representation

of

288

POSIX

pthreads
API

support

32

binary

compatibility

49

run-time

libraries

50

postmortem.f

sample

file

302

POWER,

POWER2,

POWER3,

POWER4,

POWER5,

or

PowerPC

systems

127

compiling

programs

for

39

ppc

suboption

of

-qarch

127,

128

ppc64

suboption

of

-qarch

128

ppc64gr

suboption

of

-qarch

128

ppc64grsq

suboption

of

-qarch

128

ppc970

suboption

of

-qarch

127

ppc970

suboption

of

-qtune

251

ppcgr

suboption

of

-qarch

128

precision

of

real

data

types

135,

222

preconnected

files

326

preprocessing

Fortran

source

with

the

C

preprocessor

40

problem

determination

369

procedure

calls

to

other

languages
See

subprograms

in

other

languages,

calling

prof

command

34,

396

profile

file

12

profilefreq

run-time

option

63

profiling

data

files

34

proflibs

attribute

of

configuration

file

16

Program

Editor

29

promoting

integer

arguments

to

intrinsic

procedures

261

promotion

of

data

types

with

-qautodbl

option

413

pseudo-devices,

interaction

of

XL

Fortran

I/O

with

329

pteovrlp

suboption

of

-qalias

122

pthreads

library

module

409

pure

suboption

of

-qipa

182

pwr

suboption

of

-qarch

127

pwr

suboption

of

-qtune

251

pwr2

suboption

of

-qarch

127

pwr2

suboption

of

-qtune

251

pwr2s

suboption

of

-qarch

128

pwr2s

suboption

of

-qtune

251

pwr3

suboption

of

-qarch

129

pwr3

suboption

of

-qtune

251

pwr4

suboption

of

-qarch

129

pwr5

suboption

of

-qarch

129

pwrx

suboption

of

-qarch

127

pwrx

suboption

of

-qtune

251

Q
Q

(character-count)

edit

descriptor

(FORTRAN

77

extension)

400

QCOUNT

@PROCESS

directive

221

qdirectstorage

compiler

option

150

quiet

NaN

177,

288

quiet

NaN

suboption

of

-qflttrap

165

R
rand

routine,

naming

restriction

for

47

random

run-time

option

58

raw

logical

volumes,

I/O

operations

on

333

READ

statements

past

end-of-file

261

README.xlf

file

11

real

arithmetic

287

REAL

data

types

135

REAL(16)

values

291

REAL(4)

and

REAL(8)

values

288,

290

REALSIZE

@PROCESS

directive

222

rec_locks

suboption

of

-qsmp

235

record

lengths

330

RECUR

@PROCESS

directive

224

recursion

224,

228

redirecting

input/output

328

reference,

passing

arguments

by

353

register

flushing

188

related

documentation

4

REPORT

@PROCESS

directive

225

resetpdf

command

211

return

code
from

compiler

370

from

Fortran

programs

370

rndsngl

suboption

of

-qfloat

163

rounding

292

rounding

errors

294

rounding

mode

292,

294

rrm

suboption

of

-qfloat

163,

241

rsqrt

suboption

of

-qfloat

163

rtc

service

and

utility

subprogram

403

run

time
exceptions

66

options

51

run-time
libraries

33,

44

problems

375

SMP

libraries

42,

43

446

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

run-time

environment
external

names

in

412

running

a

program

48

running

the

compiler

29

runtime

suboption

of

-qsmp=schedule

236

S
S

error

severity

369

SAA

@PROCESS

directive

227

SAA

FORTRAN

definition,

checking

conformance

to

8

safe

suboption

of

-qipa

182

sample

programs

405

calling

C

functions

from

Fortran

350

floating-point

exception

handling

302

for

SMP

406

notes

on

using

4

SAVE

@PROCESS

directive

228

schedule

run-time

option

59

schedule

suboption

of

-qsmp

235

scratch

file

directory
See

TMPDIR

environment

variable

scratch_vars

run-time

option

15,

58,

332

segmentation

fault

210

seqthreshold

run-time

option

63

setlocale

libc

routine

50

setrteopts

service

and

utility

procedure

51

severe

error

369

sh

shell

12

shared

libraries

411

shared

object

files

33

side-effects,

definition

of

182

SIGFPE

signal

296,

298

SIGN

intrinsic,

effect

of

-qxlf90=signedzero

on

263

signal

handling

66

for

floating

point

296

installing

an

exception

handler

298

signaling

NaN

288,

302

signedzero

suboption

of

-qxlf90

263

SIGTRAP

signal

66,

165,

296,

298

single-precision

values

288,

290

sleep_

service

and

utility

subprogram

403

small

and

large

suboptions

of

-qpic

216

small

suboption

of

-qtbtable

249

SMP
programs,

compiling

32

sample

programs

406

smplibraries

attribute

of

configuration

file

16

smplist

suboption

of

-qreport

225

softeof

suboption

of

-qxlf77

261

SOURCE

@PROCESS

directive

239

source

file

options

37

source

files

33

allowing

suffixes

other

than

.f

16

preserving

path

names

for

debugging

169

specifying

options

in

37

source

section

in

compiler

listing

390

source-code

conformance

checking

8

source-level

debugging

support

9

space

problems

373

space,

increasing

amount

for

data

and

stack

99

special

files,

interaction

of

XL

Fortran

I/O

with

329

SPILLSIZE

@PROCESS

directive

113,

240

spins

run-time

option

61

ssuffix

attribute

of

configuration

file

16

stack

357

limit

99,

373

stack

run-time

option

61

standard

error,

input,

and

output

streams

326

star

length

specifiers

400

static

linking

46,

403

static

storage,

alignment

of

arrays

in

125

static

suboption

of

-qsmp=schedule

236

status

and

control

register

for

floating

point

300

std

suboption

of

-qalias

122

stderr,

stdin,

and

stdout

streams

326

stdexits

suboption

of

-qipa

182

storage

limits

373

storage

relationship

between

data

objects

413

storage-associated

arrays,

performance

implications

of

122

STRICT

@PROCESS

directive

241

strictieeemod

@PROCESS

directive

242

strictnmaf

suboption

of

-qfloat

163

strings,

passing

to

C

functions

206,

351

struct

command

396

subprogram

calls

to

other

languages
See

subprograms

in

other

languages,

calling

subprograms

in

other

languages,

calling

345,

348

suffix,

allowing

other

than

.f

on

source

files

16

suffixes

for

source

files

244

summary

of

compiler

options

67

Sun

pointer

(FORTRAN

77

extension),

XL

Fortran

equivalent

400

SWAPOMP

@PROCESS

directive

247

symbolic

debugger

support

9

symbolic

links,

interaction

of

XL

Fortran

I/O

with

329

syntax

diagrams

and

statements

2

system

problems

373

T
tape

files,

interaction

of

XL

Fortran

I/O

with

329

target

machine,

compiling

for

127

tctl

command

329

temporary

arrays,

reducing

122,

312

temporary

file

directory

15

temporary

files
See

/tmp

directory

text

editors

29

TextEdit

text

editor

29

threads,

controlling

55

threshold

suboption

of

-qipa

182

threshold

suboption

of

-qsmp

236

throughput

for

I/O,

increasing

with

data

striping

125,

333

time

and

date

functions

(FORTRAN

77

extension)

400,

403

time_

service

and

utility

subprogram

403

timef

service

and

utility

subprogram

403

times

routine,

naming

restriction

for

47

TMPDIR

environment

variable

66,

374

compile

time

15

tokens,

definition

38

tprof

command

249

Trace/BPT

trap

66,

298

traceback

listing

232,

299,

376

tracking

usage

of

the

compiler

38

transformation

report

section

in

compiler

listing

391

trigger_constant
$OMP

234

IBM*

148

IBMP

234

IBMT

250

setting

values

148

SMP$

234

trigraphs

41

tuning

performance
See

optimization

typeless

constants

(FORTRAN

77

extension)

400

typeless

constants

and

character

constants

144

typestmt

and

notypestmt

suboptions

of

-qport

217

U
U

error

severity

369

ulimit

command

373

UNDEF

@PROCESS

directive

254,

272

underflow

suboption

of

-qflttrap

165

Unicode

data

201

unit_vars

run-time

option

15,

58,

331

UNIVERSAL

setting

for

locale

201

unknown

suboption

of

-qipa

182

unrecoverable

error

369

unresolved

references,

fixing

via

-brename

option

87

unrolling

DO

LOOPs

255

unrolling

loops

313

UNWIND

@PROCESS

directive

256

upgrading

to

the

latest

version

of

XL

Fortran

24

usage

tracking

for

the

compiler

38

use

attribute

of

configuration

file

16

usleep_

service

and

utility

subprogram

403

usrthds

run-time

option

61

UTF-8

encoding

for

Unicode

data

201

uwidth

run-time

option

58

V
value

relationships

between

data

objects

413

value,

passing

arguments

by

353

INDEX

447

vi

text

editor

29

W
W

error

severity

369

warning

error

369

what

command

24,

396

WRITE

statements

past

end-of-file

261

X
XFLAG(OLDTAB)

@PROCESS

directive

259

XFLAG(XALIAS)

@PROCESS

directive

(obsolete)

260

xl__ieee

exception

handler

299

xl__ieee.F

and

xl__ieee.c

sample

files

302

xl__sigdump

exception

handler

299

xl__trbk

exception

handler

299

xl__trbk

library

procedure

376

xl__trbk_test.f

sample

file

302

xl__trce

exception

handler

232,

299

xl__trcedump

exception

handler

299

xlf

attribute

of

configuration

file

16

xlf

command
and

file

positioning

328

description

29

level

of

Fortran

standard

compliance

24,

31

xlf_r

command
and

file

positioning

328

description

29

for

compiling

SMP

programs

32

level

of

Fortran

standard

compliance

24,

31

xlf_r7

command
and

file

positioning

328

description

29

for

compiling

SMP

programs

32

level

of

Fortran

standard

compliance

24,

31

xlf.cfg

configuration

file

107

XLF77

@PROCESS

directive

261

XLF90

@PROCESS

directive

263

xlf90

command
and

file

positioning

328

description

29

level

of

Fortran

standard

compliance

24,

31

xlf90_r

command
and

file

positioning

328

description

29

for

compiling

SMP

programs

32

level

of

Fortran

standard

compliance

24,

31

xlf90_r7

command
and

file

positioning

328

description

29

for

compiling

SMP

programs

32

level

of

Fortran

standard

compliance

24,

31

xlf95

command
description

29

level

of

Fortran

standard

compliance

24

xlf95_r

command
description

29

for

compiling

SMP

programs

32

level

of

Fortran

standard

compliance

24,

31

xlf95_r7

command
description

29

for

compiling

SMP

programs

32

level

of

Fortran

standard

compliance

24,

31

xlfentry

file

396

xlfopt

attribute

of

configuration

file

16

XLFRTEOPTS

environment

variable

51

XLFSCRATCH_unit

environment

variable

15,

58,

332

XLFUNIT_unit

environment

variable

15,

58,

331

XLINES

@PROCESS

265

XLSMPOPTS

environment

variable

59

XOR

261

XREF

@PROCESS

directive

267

xrf_messages

run-time

option

58

Y
yields

run-time

option

61

Z
z

suboption

of

-y

278

zero

suboption

of

-qieee

175

zerodivide

suboption

of

-qflttrap

165

zeros

(leading),

in

output

261

ZEROSIZE

@PROCESS

directive

268

448

XL

Fortran

Enterprise

Edition

for

AIX

:

User’s

Guide

����

Program

Number:

5724-I08

SC09-7898-00

	Contents
	Figures
	What's New for XL Fortran
	Introduction
	How to Use This Document
	How to Read the Syntax Diagrams and Statements
	Syntax Diagrams
	Example of a Syntax Diagram
	Syntax Statements
	Example of a Syntax Statement

	Notes on the Examples in This Document
	Notes on the Terminology in This Document
	Typographical Conventions

	Related Documentation
	XL Fortran and Operating System Publications
	Other Publications
	Standards Documents

	Overview of XL Fortran Features
	Hardware and Operating-System Support
	Language Support
	Migration Support
	Source-Code Conformance Checking
	Highly Configurable Compiler
	Diagnostic Listings
	Symbolic Debugger Support
	Program Optimization
	Documentation and Online Help

	Setting Up and Customizing XL Fortran
	Where to Find Installation Instructions
	Using the Compiler on a Network File System

	Correct Settings for Environment Variables
	Environment Variable Basics
	Environment Variables for National Language Support
	LIBPATH:Setting Library Search Paths
	PDFDIR: Specifying the Directory for PDF Profile Information
	TMPDIR: Specifying a Directory for Temporary Files
	XLFSCRATCH_unit: Specifying Names for Scratch Files
	XLFUNIT_unit: Specifying Names for Implicitly Connected Files

	Customizing the Configuration File
	Attributes
	What a Configuration File Looks Like

	Determining Which Level of XL Fortran Is Installed
	Upgrading to XL Fortran Version 9
	Things to Note in XL Fortran Version 9

	Avoiding or Fixing Upgrade Problems
	Running Two Levels of XL Fortran

	Editing, Compiling, Linking, and Running XL Fortran Programs
	Editing XL Fortran Source Files
	Compiling XL Fortran Programs
	Compiling XL Fortran Version 2 Programs
	Compiling Fortran 90 or Fortran 95 Programs
	Compiling XL Fortran SMP Programs
	Levels of POSIX pthreads API Support

	Compilation Order for Fortran Programs
	Canceling a Compilation
	XL Fortran Input Files
	XL Fortran Output Files
	Scope and Precedence of Option Settings
	Specifying Options on the Command Line
	Specifying Options in the Source File
	Passing Command-Line Options to the "ld" or "as" Commands
	Tracking Use of the Compiler
	Compiling for Specific Architectures
	Passing Fortran Files through the C Preprocessor
	cpp Directives for XL Fortran Programs
	Passing Options to the C Preprocessor
	Avoiding Preprocessing Problems

	Linking XL Fortran Programs
	Compiling and Linking in Separate Steps
	Linking 32–Bit SMP Object Files Using the ld Command
	Linking 64–Bit SMP Object Files Using the ld Command
	Linking 32–Bit Non-SMP Object Files Using the ld Command
	Linking 64-Bit Non-SMP Object Files Using the ld Command
	Passing Options to the ld Command
	Checking for Interface Errors at Link Time
	Linking New Objects with Existing Ones
	Relinking an Existing Executable File
	Dynamic and Static Linking
	Avoiding Naming Conflicts during Linking

	Running XL Fortran Programs
	Canceling Execution
	Running Previously Compiled Programs
	Compiling and Executing on Different Systems
	POSIX Pthreads Binary Compatibility
	Run-Time Libraries for POSIX Pthreads Support
	Selecting the Language for Run-Time Messages
	Setting Run-Time Options
	The XLFRTEOPTS Environment Variable
	The XLSMPOPTS Environment Variable

	OpenMP Environment Variables
	OMP_DYNAMIC Environment Variable
	OMP_NESTED Environment Variable
	OMP_NUM_THREADS Environment Variable
	OMP_SCHEDULE Environment Variable

	Other Environment Variables That Affect Run-Time Behavior
	XL Fortran Run-Time Exceptions

	XL Fortran Compiler-Option Reference
	Summary of the XL Fortran Compiler Options
	Options That Control Input to the Compiler
	Options That Specify the Locations of Output Files
	Options for Performance Optimization
	Options for Error Checking and Debugging
	Options That Control Listings and Messages
	Options for Compatibility
	Options for Floating-Point Processing
	Options That Control Linking
	Options That Control Other Compiler Operations
	Options That Are Obsolete or Not Recommended

	Detailed Descriptions of the XL Fortran Compiler Options
	-# Option
	-1 Option
	-B Option
	-b64 Option
	-bdynamic, -bshared, and -bstatic Options
	-bhalt Option
	-bloadmap Option
	-bmaxdata, -bmaxstack Options
	-brtl Option
	-bshared Option
	-bstatic Option
	-C Option
	-c Option
	-D Option
	-d Option
	-F Option
	-g Option
	-I Option
	-k Option
	-L Option
	-l Option
	-N Option
	-O Option
	-o Option
	-P Option
	-p Option
	-Q Option
	-q32 Option
	-q64 Option
	-qalias Option
	-qalign Option
	-qarch Option
	-qassert Option
	-qattr Option
	-qautodbl Option
	-qcache Option
	-qcclines Option
	-qcheck Option
	-qci Option
	-qcompact Option
	-qcr Option
	-qctyplss Option
	-qdbg Option
	-qddim Option
	-qdirective Option
	-qdirectstorage Option
	-qdlines Option
	-qdpc Option
	-qdpcl Option
	-qescape Option
	-qessl Option
	-qextchk Option
	-qextern Option
	-qextname Option
	-qfdpr Option
	-qfixed Option
	-qflag Option
	-qfloat Option
	-qflttrap Option
	-qfree Option
	-qfullpath Option
	-qhalt Option
	-qhot Option
	-qhsflt Option
	-qhssngl Option
	-qieee Option
	-qinit Option
	-qinitauto Option
	-qintlog Option
	-qintsize Option
	-qipa Option
	-qkeepparm Option
	-qlanglvl Option
	-qlargepage Option
	-qlibansi Option
	-qlibessl Option
	-qlibposix Option
	-qlist Option
	-qlistopt Option
	-qlm Option
	-qlog4 Option
	-qmaxmem Option
	-qmbcs Option
	-qmixed Option
	-qmoddir Option
	-qmodule Option
	-qnoprint Option
	-qnullterm Option
	-qobject Option
	-qonetrip Option
	-qoptimize Option
	-qpdf Option
	-qphsinfo Option
	-qpic Option
	-qport Option
	-qposition Option
	-qprefetch Option
	-qqcount Option
	-qrealsize Option
	-qrecur Option
	-qreport Option
	-qsaa Option
	-qsave Option
	-qsaveopt Option
	-qsclk Option
	-qshowpdf Option
	-qsigtrap Option
	-qsmallstack Option
	-qsmp Option
	-qsource Option
	-qspillsize Option
	-qstrict Option
	-qstrictieeemod Option
	-qstrict_induction Option
	-qsuffix Option
	-qsuppress Option
	-qswapomp Option
	-qtbtable Option
	-qthreaded Option
	-qtune Option
	-qundef Option
	-qunroll Option
	-qunwind Option
	-qversion Option
	-qwarn64 Option
	-qxflag=oldtab Option
	-qxflag=xalias Option
	-qxlf77 Option
	-qxlf90 Option
	-qxlines Option
	-qxref Option
	-qzerosize Option
	-S Option
	-t Option
	-U Option
	-u Option
	-v Option
	-V Option
	-W Option
	-w Option
	-y Option

	Using XL Fortran in a 64-Bit Environment
	64-Bit Large Data Type Support
	64-Bit Thread Support
	Compiler Options for the 64-Bit Environment
	-q32 Option
	-q64 Option
	-qwarn64 Option

	Default Bit Mode
	Module Support

	XL Fortran Floating-Point Processing
	IEEE Floating-Point Overview
	Compiling for Strict IEEE Conformance
	IEEE Single- and Double-Precision Values
	IEEE Extended-Precision Values
	Infinities and NaNs
	Exception-Handling Model

	Hardware-Specific Floating-Point Overview
	Single- and Double-Precision Values
	Extended-Precision Values

	How XL Fortran Rounds Floating-Point Calculations
	Selecting the Rounding Mode
	Minimizing Rounding Errors
	Minimizing Overall Rounding
	Delaying Rounding until Run Time
	Ensuring that the Rounding Mode is Consistent

	Duplicating the Floating-Point Results of Other Systems
	Maximizing Floating-Point Performance
	Detecting and Trapping Floating-Point Exceptions
	Compiler Features for Trapping Floating-Point Exceptions
	Operating System Features for Trapping Floating-Point Exceptions
	Installing an Exception Handler
	Producing a Core File
	Controlling the Floating-Point Status and Control Register
	xlf_fp_util Procedures
	fpgets and fpsets Subroutines
	Sample Programs for Exception Handling
	Causing Exceptions for Particular Variables
	Minimizing the Performance Impact of Floating-Point Exception Trapping

	Floating-Point Processing on the POWER and POWER2 Architectures
	Precision of Computations
	Invalid Operation Exceptions for SQRT Operations on POWER Processors

	Optimizing XL Fortran Programs
	The Philosophy of XL Fortran Optimizations
	Summary of Compiler Options for Optimization
	Choosing an Optimization Level
	Optimization Level -O2
	Optimization Level -O3
	Getting the Most out of -O2 and -O3
	The -O4 and -O5 Options

	Optimizing for a Target Machine or Class of Machines
	Getting the Most out of Target Machine Options

	Optimizing Floating-Point Calculations
	High-order Transformations (-qhot)
	Getting the Most out of -qhot
	Optimizing Loops and Array Language
	Cost Model for Loop Transformations
	Unrolling Loops
	Describing the Hardware Configuration
	Efficiency of Different Array Forms
	Reducing Use of Temporary Arrays
	Array Padding

	Profile-directed Feedback (PDF)
	Using Profile-directed Feedback (PDF)
	Optimizing Conditional Branching

	Interprocedural Analysis (-qipa)
	Getting the Most from -qipa

	Optimizing Subprogram Calls
	Finding the Right Level of Inlining

	Shared-memory Parallelism (-qsmp)
	Getting the Most out of -qsmp

	Other Program Behavior Options
	Other Performance Options
	Debugging Optimized Code
	Different Results in Optimized Programs

	Compiler-friendly Programming

	Implementation Details of XL Fortran Input/Output
	Implementation Details of File Formats
	File Names
	Preconnected and Implicitly Connected Files
	File Positioning
	Preserving the XL Fortran Version 2.3 File Positioning

	I/O Redirection
	How XLF I/O Interacts with Pipes, Special Files, and Links
	Default Record Lengths
	File Permissions
	Selecting Error Messages and Recovery Actions
	Flushing I/O Buffers
	Choosing Locations and Names for Input/Output Files
	Naming Files That Are Connected with No Explicit Name
	Naming Scratch Files

	Increasing Throughput with Logical Volume I/O and Data Striping
	Logical Volume I/O
	Data Striping

	Asynchronous I/O
	Execution of an Asychronous Data Transfer Operation
	Usage
	Performance
	Compiler-Generated Temporary I/O Items
	System Setup
	Linking
	Error Handling
	XL Fortran Thread-Safe I/O Library
	Synchronization of I/O Operations
	Parallel I/O Issues

	Use of I/O Statements in Signal Handlers
	Asynchronous Thread Cancellation

	Interlanguage Calls
	Conventions for XL Fortran External Names
	Mixed-Language Input and Output
	Mixing Fortran and C++
	Making Calls to C Functions Work
	Passing Data From One Language to Another
	Passing Arguments between Languages
	Passing Global Variables between Languages
	Passing Character Types between Languages
	Passing Arrays between Languages
	Passing Pointers between Languages
	Passing Arguments By Reference or By Value
	Explicit Interface for %VAL and %REF

	Returning Values from Fortran Functions
	Arguments with the OPTIONAL Attribute
	Arguments with the INTENT Attribute
	Type Encoding and Checking

	Assembler-Level Subroutine Linkage Conventions
	The Stack
	The Link Area
	The Input Parameter Area
	The Register Save Area
	The Local Stack Area
	The Output Parameter Area

	Linkage Convention for Argument Passing
	Argument Passing Rules (by Value)
	Order of Arguments in Argument List

	Linkage Convention for Function Calls
	Pointers to Functions
	Function Values
	The Stack Floor
	Stack Overflow

	Prolog and Epilog
	Traceback
	THREADLOCAL Common Blocks and ILC with C
	Example

	Problem Determination and Debugging
	Understanding XL Fortran Error Messages
	Error Severity
	Compiler Return Code
	Run-Time Return Code
	Understanding XL Fortran Messages
	Limiting the Number of Compile-Time Messages
	Selecting the Language for Messages

	Fixing Installation or System Environment Problems
	Fixing Compile-Time Problems
	Duplicating Extensions from Other Systems
	Isolating Problems with Individual Compilation Units
	Compiling with Thread-safe Commands
	Running out of Machine Resources

	Fixing Link-Time Problems
	Fixing Run-Time Problems
	Duplicating Extensions from Other Systems
	Mismatched Sizes or Types for Arguments
	Working around Problems when Optimizing
	Input/Output Errors
	Tracebacks and Core Dumps

	Debugging a Fortran 90 or Fortran 95 Program
	A Sample dbx Session for an XL Fortran Program
	Problem with Dynamic Memory Allocation

	Using Debug Memory Routines for XL Fortran
	The libhm.a Library
	Examples:

	The libhmd.a Library
	Environment Variables
	Examples:

	Understanding XL Fortran Compiler Listings
	Header Section
	Options Section
	Source Section
	Error Messages

	Transformation Report Section
	Attribute and Cross-Reference Section
	Object Section
	File Table Section
	Compilation Unit Epilogue Section
	Compilation Epilogue Section

	Fortran-Related AIX Commands
	Working with Object-Code Archives (ar)
	Printing Output Files with Fortran ASA Carriage Controls (asa)
	Splitting Subprograms into Individual Files (fsplit)
	Automating Large, Complex Compilations (make)
	Run-Time Profiling (prof, gprof)
	Translating Programs into RATFOR (struct)
	Displaying Information inside Binary Files (what)

	Porting Programs to XL Fortran
	Outline of the Porting Process
	Maintaining FORTRAN 77 Source and Object Code
	Portability of Directives
	NEW

	Common Industry Extensions That XL Fortran Supports
	Mixing Data Types in Statements
	Date and Time Routines
	Other libc Routines
	Changing the Default Sizes of Data Types
	Name Conflicts between Your Procedures and XL Fortran Intrinsic Procedures
	Reproducing Results from Other Systems
	Finding Nonstandard Extensions

	Answers to Frequently Asked Questions
	Finding the Date and Time
	Efficient Static Linking

	Appendix A. Sample Fortran Programs
	Example 1 - XL Fortran Source File
	Execution Results

	Example 2 - Valid C Routine Source File
	Example 3 - Valid Fortran SMP Source File
	Example 4 - Invalid Fortran SMP Source File
	Programming Examples Using the Pthreads Library Module

	Appendix B. XL Fortran Technical Information
	The Compiler Phases
	External Names in theXL FortranShared Libraries
	The XL Fortran Run-Time Environment
	External Names in the Run-Time Environment

	Technical Details of the -qfloat=hsflt Option
	Implementation Details for -qautodbl Promotion and Padding
	Terminology
	Examples of Storage Relationships for -qautodbl Suboptions

	Appendix C. Using the Mathematical Acceleration Subsystem (MASS)
	Using the Scalar Library
	Using the Vector Libraries
	Consistency of MASS Vector Functions

	Compiling and Linking a Program with MASS
	Using libmass.a with the Standard Intrinsic Functions

	Appendix D. XL Fortran Internal Limits
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Glossary
	INDEX

