Engineering and Scientific Subroutine Library for AIX,
Version 4 Release 2., and
Engineering and Scientific Subroutine Library for Linux

on POWER,

Version 4 Release 2

<|lI!

Guide and Reference

SA22-7904-02

Engineering and Scientific Subroutine Library for AIX,
Version 4 Release 2., and
Engineering and Scientific Subroutine Library for Linux

on POWER,

Version 4 Release 2

<|lI!

Guide and Reference

SA22-7904-02

Note:
Before using this information and the product it supports, read the information in
[‘Notices” on page 1043 |

Third Edition (September 2003)

This edition applies to:
* Version 4 Release 2 of the IBM Engineering and Scientific Subroutine Library (ESSL) for Advanced Interactive
Executive (AIX) licensed program, program number 5765-F82

* Version 4 Release 2 of the IBM Engineering and Scientific Subroutine Library (ESSL) for Linux on POWER
licensed program, program number 5765-G17

and to all subsequent releases and modifications until otherwise indicated by new editions. Significant changes or
additions to the text and illustrations are indicated by a vertical line (|) to the left of the change.

In this document, ESSL refers to both of the above products (unless a differentiation between ESSL for AIX and
ESSL for Linux is explicitly specified). Changes are periodically made to the information herein.

Order IBM publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

IBM welcomes your comments. Address your comments as follows:

World Wide Web: http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/feedback.html

Mail:

International Business Machines Corporation
Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX:
(United States & Canada): 1+845+432-9405
(Other countries): Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM(MHVRCEFS)
IBM Mail Exchange: USIB6TCY at IBMMAIL

Internet e-mail: mhvrcfs@us.ibm.com
If you would like a reply, be sure to include the following in your comment or note:

Your name, address, telephone number, or FAX number
Title and order number of this book
Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About ThisBook. Xi

Software Products for Installing and Customizing

|
How to Use This Book. N S ESSL e 29
How to Find a Subroutine Descrrptlon oL x| Software PTOdUCtS fOf DlSplaymg ESSL
Where to Find Related Publications . . oL x| Documentation . . . e (U
How to Look Up a Brbhography Reference .. L xdid ESSL Internet Resources . . o .10
Special Terms . . . L. xiil Getting on the ESSL Mailing Lrst B i
Short and Long Precrslon S xiid List of ESSL Subroutines11
Subroutines and Subprograms. . . 111 Linear Algebra Subprograms12
How to Interpret the Subroutine Names w1th a Matrix Operations15
Prefix Underscorexii Linear Algebraic Equations16
Abbreviated Names xii Eigensystem Analysis . . . e &
Fonts . . . S xiv Fourier Transforms, Convolut1ons and
Special Notatrons and Convent1ons L. L. XV Correlations, and Related Computations. . . . 20
Scalar Dataxiv Sorting and Searching21
Vectorso xv Interpolation . . . e e . L 22
Matrices xv Numerical Quadrature Lo .22
Sequences.XV Random Number Generation22
Arrays. . . . L xvi Utilities.23
Special Characters, Symbols Expressmns and
Abbreviations xvil Chapter 2. Planning Your Program. . . 25
How to Interpret the Subroutrne Descr1pt1ons .. XiX Selecting an ESSL Subroutine25
DescriptionXxix Which ESSL Library Do You Want to Use7 .. .25
Syntax. XX What Type of Data Are You Processing in Your
OnEntryxix Program? . . . 28
On Return. XX How Is Your Data Structured7 And What Storage
NotesXX Technique Are You Using?28
Function XX What about Performance and Accuracy7 .. .29
Special Usage.XX Avoiding Conflicts with Internal ESSL Routine
Error ConditionsXxx Names That are Exported.29
ExamplesXxx Setting Up Your Data29
How Do You Set Up Your Scalar Data7 ... 029
Summary of Changes XXi How Do You Set Up Your Arrays?.29
What’s New for ESSL Version 4 Release 2 .. Loxxd How Should Your Array Data Be AthEd7 - .30
What’s New for ESSL Version 4 Release 1 xxi What Storage Mode Should You Use for Your
Future Migrationxxi Data? 30
How Do You Convert from One Storage Mode to
- p Another?30
Part 1. Guide Information1 Setting Up Your ESSL Calhng Sequences30
What Is an Input-Output Argument?31
Chapter 1. Introduction and What Are the General Rules to Follow when
Requirements . 3 Specifying Data for the Arguments? 31
Overview of ESSL .3 What Happens When a Value of 0 Is Spec1f1ed
Performance and Functional Capab1l1ty .3 forN?31
Usability. .3 How Do You Spec1fy the Begrnnrng of the Data
The Variety of Mathematrcal Functrons 4 Structure in the ESSL Calling Sequence?. . . . 31
ESSL—Processing Capabilities .5 Using Auxiliary Storage in ESSL32
Accuracy of the Computations 6 Dynamic Allocation of Auxiliary Storage . . . 33
High Performance of ESSL.) .6 Setting Up Auxiliary Storage When Dynamic
The Fortran Language Interface to the Subroutrnes 7 Allocation Is Not Used 33
Software and Hardware Products That Can Be Used Who Do You Want to Calculate the SlZQ? YOU or
with ESSL, . .8 ESSL?33
Hardware Products Supported by ESSL .8 How Do You Calculate the Srze Us1ng the
Operating Systems Supported by ESSL .8 Formulas?.33
Software Products Required by ESSL . .8 How Do You Get ESSL to Calculate the Slze
Using ESSL Error Handling?.34

© Copyright IBM Corp. 1991, 2004 iii

Providing a Correct Transform Length to ESSL . 38
What ESSL Subroutines Require Transform
Lengths? . . 38
Who Do You Want to Calculate the Length7 You
or ESSL? . .38
How Do You Calculate the Length Usmg the
Table or Formula? . . . 39
How Do You Get ESSL to Calculate the Length
Using ESSL Error Handling?. .. 39
Getting the Best Accuracy . 43
What Precisions Do ESSL Subrout1nes Operate
On? . . 43
How does the Nature of the ESSL Computation
Affect Accuracy?. . . 44
What Data Type Standards Are Used by ESSL
and What Exceptions Should You Know About? . 44
How is Underflow Handled? .. .44
Where Can You Find More Information on
Accuracy? . . 44
Getting the Best Performance . 45
What General Coding Techniques Can You Use
to Improve Performance?. . 45
Where Can You Find More Informat10n on
Performance? . . 46
Dealing with Errors when Us1ng ESSL . 46
What Can You Do about Program Exceptions?. . 46
What Can You Do about ESSL Input-Argument
Errors? . . . 46
What Can You Do about ESSL Computatlonal
Errors? . . . 47
What Can You Do about ESSL Resource Errors7 49
What Can You Do about ESSL Attention
Messages? . . 49
How Do You Control Error Handhng by Settlng
Values in the ESSL Error Option Table? . . 50
How does Error Handling Work in a Threaded
Environment?52
Where Can You Find More Informat1on on
Errors? . .52
Chapter 3. Setting Up Your Data
Structures . 55
Concepts . 55
Vectors . . . 55
Transpose of a Vector . . 56
Conjugate Transpose of a Vector . 56
In Storage . . 57
How Stride Is Used for Vectors . 58
Sparse Vector . . 60
Matrices . . 61
Transpose of a Matrlx . . 62
Conjugate Transpose of a Matr1x . 62
In Storage 62
How Leading D1mensron Is Used for Matrlces . 63
Symmetric Matrix . 65
Positive Definite or Negatlve Def1n1te Symmetr1c
Matrix . . 69
Symmetric Indeﬁnlte Matrlx . 69
Complex Hermitian Matrix . . 69
Positive Definite or Negative Def1n1te Complex
Hermitian Matrix .71

Positive Definite or Negative Definite Symmetric

Toeplitz Matrix71
Positive Definite or Negatrve Def1n1te Complex
Hermitian Toeplitz Matrix72
Triangular Matrix73
General Band Matrix76
Symmetric Band Matrix 81
Positive Definite Symmetric Band Matr1x .. .83
Complex Hermitian Band Matrix 84
Triangular Band Matrix84
General Tridiagonal Matrix88
Symmetric Tridiagonal Matrix 89
Positive Definite Symmetric Tridiagonal Matrlx 90
Sparse Matrix.90
Sequences 102
Real and Complex Elements in Storage ... 102
One-Dimensional Sequences102
Two-Dimensional Sequences 102
Three-Dimensional Sequences 102
How Stride Is Used for Three- D1mens1onal
Sequences104

Chapter 4. Coding Your Program . . . 107

Fortran Programs 107
Calling ESSL Subroutmes and Funct1ons in
Fortran . . . 107
Setting Up a User-Supphed Subroutrne for ESSL
in Fortran . . . 04
Setting Up Scalar Data in Fortran 108
Setting Up Arrays in Fortran 108
Creating Multiple Threads and Calling ESSL
from Your Fortran Program. 113
Handling Errors in Your Fortran Program .o 114
Example of Handling Errors in a Multithreaded
Application Program123

C Programs 125
Calling ESSL Subroutmes and Funct1ons in C 125
Passing Arguments in C. . . 126
Setting Up a User-Supphed Subroutme for ESSL
nC . . . oo o127
Setting Up Scalar Data in C .o oo 127
Setting Up Complex Data Types in C ... 128
Using Logical DatainC.129
Setting Up Arraysin C . . . 129
Creating Multiple Threads and Call1ng ESSL
from Your C Program 130
Handling Errors in Your C Program ... 132

C++ Programs 141
Calling ESSL Subroutmes and Functlons in C++ 141
Passing Arguments in C++. . . . 141
Setting Up a User-Supphed Subroutme for ESSL
inC++ 143
Setting Up Scalar Data in C++ 143
Using Complex Data in C++ 144
Using Logical Datain C++. 146
Setting Up Arrays in C++ 146
Creating Multiple Threads and Calllng ESSL
from Your C++ Program. . . N 1)
Handling Errors in Your C++ Program ... 148

Chapter 5. Processing Your Program 159

iV ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Processing Your Program on AIX.

Dynamic Linking Versus Static Linking on AIX

Fortran Program Procedures on AIX.

C Program Procedures on AIX.

C++ Program Procedures on AIX.
Processing Your Program on Linux .

Dynamic Linking Versus Static L1nk1ng on

Linux . .

Fortran Program Procedures on Llnux .

C Program Procedures on Linux .

C++ Program Procedures on Linux .

Chapter 6. Migrating Your Programs
Migrating ESSL Version 4 Release 1 Programs to
Version 4 Release 2 .
Migrating ESSL Version 3 Release 3 Programs to
Version 4 Release 1 Lo
ESSL Subroutines . .
Planning for Future Migration.
Migrating From One Hardware Platform to
Another . .
Auxiliary Storage . .
Bitwise-Identical Results.
Migrating from Other Libraries to ESSL
Migrating from ESSL /370

. 159
159
. 159
. 160
. 161
. 162

. 163
. 163
. 164
. 164

167

. 167

. 167
. 167
. 168

. 168
. 168
. 168
. 168

. 169

Migrating from Another IBM Subroutlne lerary 169

Migrating from LAPACK . 169
Migrating from a Non-IBM Subroutlne L1brary 169
Chapter 7. Handling Problems . 171
Where to Find More Information About Errors . . 171
Getting Help from IBM Support . . 171
National Language Support . 172
Dealing with Errors . 173
Program Exceptions . . . 173
ESSL Input-Argument Error Messages . . 173
ESSL Computational Error Messages . 174
ESSL Resource Error Messages .. 174
ESSL Informational and Attention Messages . . 175
Miscellaneous Error Messages . . 177
Messages . . . 178
Message Conventlons . 178
Input-Argument Error Messages(ZOOl 2099) . 178
Computational Error Messages(2100-2199) . . 184
Input-Argument Error Messages(2200-2299) . 186
Resource Error Messages(2400-2499) . . 186
Informational and Attention Error
Messages(2600-2699) . . . 186
Miscellaneous Error Messages(2700 2799) . 187
Part 2. Reference Information . . . 189
Chapter 8. Linear Algebra
Subprograms . 191
Overview of the Linear Algebra Subprograms . 191
Vector-Scalar Linear Algebra Subprograms . 191
Sparse Vector-Scalar Linear Algebra
Subprograms . . . 192
Matrix-Vector Linear Algebra Subprograms . 193

Sparse Matrix-Vector Linear Algebra
Subprograms e
Use Considerations
Performance and Accuracy C0n51derat10ns
Vector-Scalar Subprograms . .
ISAMAX, IDAMAX, ICAMAX, and IZAMAX —
Position of the First or Last Occurrence of the
Vector Element Having the Largest Magnitude .
ISAMIN and IDAMIN — Position of the First or
Last Occurrence of the Vector Element Having
Minimum Absolute Value

ISMAX and IDMAX — Position of the F1rst or Last

Occurrence of the Vector Element Having the
Maximum Value

ISMIN and IDMIN — Pos1t1on of the F1rst or Last

Occurrence of the Vector Element Having
Minimum Value .
SASUM, DASUM, SCASUM and DZASUM —

Sum of the Magnitudes of the Elements in a Vector
SAXPY, DAXPY, CAXPY, and ZAXPY — Multiply

a Vector X by a Scalar, Add to a Vector Y, and Store
. 212

in the Vector Y .

SCOPY, DCOPY, CCOPY and ZCOPY — Copy a
Vector . .
SDOT, DDOT, CDOTU ZDOTU CDOTC and
ZDOTC — Dot Product of Two Vectors.
SNAXPY and DNAXPY — Compute SAXPY or
DAXPY N Times

SNDOT and DNDOT — Compute Spec1al Dot
Products N Times .

SNRM2, DNRM2, SCNRM2 and DZNRMZ —

Euclidean Length of a Vector with Scaling of Input

to Avoid Destructive Underflow and Overflow .

SNORM2, DNORM2, CNORM2, and ZNORM2 —

Euclidean Length of a Vector with No Scaling of
Input
SROTG, DROTG CROTG and ZROTG —
Construct a Givens Plane Rotation

SROT, DROT, CROT, ZROT, CSROT, and ZDROT
— Apply a Plane Rotation . .

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL and
ZDSCAL — Multiply a Vector X by a Scalar and
Store in the Vector X . . L.
SSWAP, DSWAP, CSWAP, and ZSWAP —
Interchange the Elements of Two Vectors . .
SVEA, DVEA, CVEA, and ZVEA — Add a Vector
X to a Vector Y and Store in a Vector Z.

SVES, DVES, CVES, and ZVES — Subtract a Vector
. 259

Y from a Vector X and Store in a Vector Z.

SVEM, DVEM, CVEM, and ZVEM — Multlply a
Vector X by a Vector Y and Store in a Vector Z
SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX
— Multiply a Vector X by a Scalar and Store in a
Vector Y . .
SZAXPY, DZAXPY CZAXPY and ZZAXPY —

Multiply a Vector X by a Scalar, Add to a Vector Y,

and Store in a Vector Z . . .
Sparse Vector-Scalar Subprograms .

Contents

. 194
. 194
. 194
. 196

. 197

. 200

. 203

. 206

209

. 215

. 218

. 222

. 227

. 232

. 235

. 238

. 245

. 249

. 252

. 255

. 263

. 267

. 270
. 274

v

SSCTR, DSCTR, CSCTR, ZSCTR — Scatter the
Elements of a Sparse Vector X in
Compressed-Vector Storage Mode into Specified
Elements of a Sparse Vector Y in Full-Vector
Storage Mode

SGTHR, DGTHR, CGTHR and ZGTHR — Gather
Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode .
SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ —
Gather Specified Elements of a Sparse Vector Y in
Full-Vector Mode into a Sparse Vector X in
Compressed-Vector Mode, and Zero the Same
Specified Elements of Y . .o

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI
Multiply a Sparse Vector X in Compressed-Vector
Storage Mode by a Scalar, Add to a Sparse Vector
Y in Full-Vector Storage Mode, and Store in the
Vector Y .

SDOTI, DDOTI, CDOTUI ZDOTUI CDOTCI and
ZDOTCI — Dot Product of a Sparse Vector X in
Compressed-Vector Storage Mode and a Sparse
Vector Y in Full-Vector Storage Mode
Matrix-Vector Subprograms

SGEMV, DGEMV, CGEMYV, ZGEMYV, SGEMX

DGEMX, SGEMTX, and DGEMTX — Matrix-Vector

Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose .
SGER, DGER, CGERU, ZGERU CGERC and

ZGERC — Rank-One Update of a General Matrix .

SSPMV, DSPMV, CHPMV, ZHPMYV, SSYMYV,

DSYMV, CHEMV, ZHEMYV, SSLMX, and DSLMX —

Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix .

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR CHER
ZHER, SSLR1, and DSLR1 — Rank-One Update of
a Real Symmetric or Complex Hermitian Matrix.
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2,
CHER?2, ZHER2, SSLR2, and DSLR2 — Rank-Two

Update of a Real Symmetric or Complex Hermitian
. 325

Matrix.

SGBMYV, DGBMV CGBMV and ZGBMV —
Matrix-Vector Product for a General Band Matrix,
Its Transpose, or Its Conjugate Transpose .
SSBMYV, DSBMV, CHBMYV, and ZHBMV —
Matrix-Vector Product for a Real Symrnetric or
Complex Hermitian Band Matrix .

STRMV, DTRMV, CTRMV, ZTRMY, STPMV
DTPMV, CTPMYV, and ZTPMV — Matrix-Vector
Product for a Triangular Matrix, Its Transpose, or
Its Conjugate Transpose . .

STBMV, DTBMYV, CTBMYV, and ZTBMV —
Matrix-Vector Product for a Triangular Band
Matrix, Its Transpose, or Its Conjugate Transpose
Sparse Matrix-Vector Subprograms . . .
DSMMX — Matrix-Vector Product for a Sparse
Matrix in Compressed-Matrix Storage Mode .
DSMTM — Transpose a Sparse Matrix in
Compressed-Matrix Storage Mode

. 275

. 278

. 281

. 284

. 287
. 291

. 292

303

. 310

. 318

. 334

. 341

. 346

. 352

. 357

. 358

. 361

DSDMX — Matrix-Vector Product for a Sparse
Matrix or Its Transpose in Compressed-Diagonal

Storage Mode365
Chapter 9. Matrix Operations. 371
Overview of the Matrix Operation Subroutines . . 371
Use Considerations . . . 372
Specifying Normal, Transposed or Con]ugate
Transposed Input Matrices372
Transposing or Conjugate Transposing:. . . . 372
Performance and Accuracy Considerations . . . 373
In General373
For Large Matrices373
For Combined Operations373
Matrix Operation Subroutines . . . 374

SGEADD, DGEADD, CGEADD, and ZGEADD —
Matrix Addition for General Matrices or Their
Transposes 375
SGESUB, DGESUB CGESUB and ZGESUB —

Matrix Subtraction for General Matrices or Their
Transposes . . . 381
SGEMUL, DGEMUL CGEMUL and ZGEMUL —
Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes . . . 387
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS —
Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using

Winograd’s Variation of Strassen’s Algorithm. . . 396
SGEMM, DGEMM, CGEMM,, and ZGEMM —
Combined Matrix Multiplication and Addition for
General Matrices, Their Transposes, or Conjugate
Transposes . . . 402
SSYMM, DSYMM, CSYMM ZSYMM CHEMM

and ZHEMM — Matrix-Matrix Product Where One
Matrix is Real or Complex Symmetric or Complex

Hermitian 410
STRMM, DTRMM, CTRMM and ZTRMM —
Triangular Matrix-Matrix Product 417

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and

ZHERK — Rank-K Update of a Real or Complex
Symmetric or a Complex Hermitian Matrix . . . 424
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K,

and ZHER2K — Rank-2K Update of a Real or

Complex Symmetric or a Complex Hermitian

Matrix. 430
SGETMI, DGETMI CGETMI and ZGETMI

General Matrix Transpose (In-Place). . . . 437
SGETMO, DGETMO, CGETMO, and ZGETMO —
General Matrix Transpose (Out-of-Place) 440

Chapter 10. Linear Algebraic

Equations. 443
Overview of the Linear Algebra1c Equatlon
Subroutines 443

Dense Linear Algebralc Equatlon Subroutlnes 443
Banded Linear Algebraic Equation Subroutines 445
Sparse Linear Algebraic Equation Subroutines 445

Linear Least Squares Subroutines. 446
Dense and Banded Linear Algebraic Equatlon
Considerations446

Vi ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Use Considerations 446 SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and

Performance and Accuracy C0n51derat10ns .. 447 DGEICD — General Matrix Inverse, Condition
Sparse Matrix Direct Solver Considerations . . . 447 Number Reciprocal, and Determinant 537
Use Considerations447 | SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD
Performance and Accuracy C0n51derat10ns . . 447 | DPOICD, SPPTRI, DPPTRI, SPPICD, and DPPICD
Sparse Matrix Skyline Solver Considerations . . . 448 | — Positive Definite Real Symmetric or Complex
Use Considerations448 | Hermitian Matrix Inverse, Condition Number
Performance and Accuracy C0n51derat10ns . . 448 | Reciprocal, and Determinant . . . 545
Sparse Matrix Iterative Solver Considerations . . 449 STRSV, DTRSV, CTRSV, ZTRSV, STPSV DTPSV
Use Considerations 449 CTPSV, and ZTPSV — Solution of a Triangular
Performance and Accuracy Con51derat10ns .. 449 System of Equations with a Single Right-Hand Side 555
Linear Least Squares Considerations. 450 STRSM, DTRSM, CTRSM, and ZTRSM — Solution
Use Considerations 450 of Triangular Systems of Equations with Multiple
Performance and Accuracy Con51derat10ns .. 450 Right-Hand Sides 561
Dense Linear Algebraic Equation Subroutines 451 STRTRI, DTRTRI, CTRTRI, ZTRTRI STPTRI
SGESV, DGESV, CGESV, ZGESV — General Matrix DTPTRI, CTPTRI, and ZTPTRI — Triangular
Factorization and Multiple Right-Hand Side Solve . 452 Matrix Inverse 568
SGETREF, DGETRF, CGETRF and ZGETRF — Banded Linear Algebralc Equatlon Subroutlnes 576
General Matrix Factorization 456 SGBF and DGBF — General Band Matrix
SGETRS, DGETRS, CGETRS, and ZGETRS — Factorization 577
General Matrix Multiple Right-Hand Side Solve. . 460 SGBS and DGBS — General Band Matnx Solve . . 581
SGEF, DGEF, CGEF, and ZGEF — General Matrix SPBF, DPBF, SPBCHEF, and DPBCHF — Positive
Factorization . . . 465 Definite Symmetric Band Matrix Factorization . . 584
SGES, DGES, CGES, and ZGES — General Matrlx SPBS, DPBS, SPBCHS, and DPBCHS — Positive
Its Transpose, or Its Conjugate Transpose Solve . . 468 Definite Symmetric Band Matrix Solve 588
SGESM, DGESM, CGESM, and ZGESM — General SGTF and DGTF — General Tridiagonal Matrix
Matrix, Its Transpose, or Its Conjugate Transpose Factorization 591
Multiple Right-Hand Side Solve . . . N YA SGTS and DGTS — General Tr1d1ag0na1 Matrlx
SGEFCD and DGEFCD — General Matrlx Solve 594
Factorization, Condition Number Rec1procal, and SGTNP, DGTNP CGTNP and ZGTNP — General
Determinant. 477 Tridiagonal Matrix Combined Factorization and
SPPSV, DPPSV, CPPSV and ZPPSV — Posmve Solve with No Pivoting 5%
Definite Real Symmetric and Complex Hermitian SGTNPE, DGTNPE, CGTNPE, and ZGTNPF —
Matrix Factorization and Multiple Right-Hand Side General Tridiagonal Matrix Factorization with No
Solve 481 Pivoting 599
SPOSV, DPOSV CPOSV and ZPOSV — Posmve SGTNPS, DGTNPS CGTNPS and ZGTNPS —
Definite Real Symmetric or Complex Hermitian General Tridiagonal Matrix Solve with No Pivoting 602
Matrix Factorization and Multiple Right—Hand Side SPTF and DPTF — Positive Definite Symmetric
Solve 487 Tridiagonal Matrix Factorization 605
SPOTRE, DPOTRF CPOTRF ZPOTRF SPOF SPTS and DPTS — Positive Definite Symmetnc
DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, Tridiagonal Matrix Solve 607
ZPPTRF, SPPF, and DPPF — Positive Definite Real STBSV, DTBSV, CTBSV, and ZTBSV — Trlangular
Symmetric or Complex Hermitian Matrix Band Equation Solve 609
Factorization . . . 493 Sparse Linear Algebraic Equatlon Subroutlnes 614
SPOTRS, DPOTRS, CPOTRS ZPOTRS SPOSM DGSF — General Sparse Matrix Factorization
DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, Using Storage by Indices, Rows, or Columns. . . 615
CPPTRS, and ZPPTRS —Positive Definite Real DGSS — General Sparse Matrix or Its Transpose
Symmetric or Complex Hermitian Matrix Multiple Solve Using Storage by Indices, Rows, or Columns. 621
Right-Hand Side Solve 505 DGKEFS — General Sparse Matrix or Its Transpose
SPPS and DPPS — Positive Deflnlte Real Factorization, Determinant, and Solve Using
Symmetric Matrix Solve. 513 Skyline Storage Mode 625
SPPFCD, DPPFCD, SPOFCD, and DPOFCD — DSKFS — Symmetric Sparse Matrlx Factorlzatlon
Positive Definite Real Symmetric Matrix Determinant, and Solve Using Skyline Storage
Factorization, Condition Number Reciprocal, and Mode 642
Determinant.ble6 DSRIS — Iteratlve Llnear System Solver for a
DBSSV — Symmetric Indef1n1te Matrlx General or Symmetric Sparse Matrix Stored by
Factorization and Multiple Right-Hand Side Solve . 522 Rows 660
DBSTRF — Symmetric Indefinite Matrix DSMCG — Sparse Posmve Deflnlte or Negatlve
Factorization . . . 528 Definite Symmetric Matrix Iterative Solve Using
DBSTRS — Symmetrlc Indef1n1te Matrlx Mult1ple Compressed-Matrix Storage Mode 671
Right-Hand Side Solve533

Contents Vil

DSDCG — Sparse Positive Definite or Negative
Definite Symmetric Matrix Iterative Solve Using

Compressed-Diagonal Storage Mode 679
DSMGCG — General Sparse Matrix Iterative Solve
Using Compressed-Matrix Storage Mode 687
DSDGCG — General Sparse Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode . . . 694
Linear Least Squares Subroutines 701
SGESVF and DGESVF — Singular Value
Decomposition for a General Matrix. 702

SGESVS and DGESVS — Linear Least Squares
Solution for a General Matrix Using the Singular

Value Decomposition. 710
DGEQRF — General Matrix QR Factor1zat1on . . 715
DGELS — Linear Least Squares Solution for a

General Matrix 719

SGELLS and DGELLS — Llnear Least Squares
Solution for a General Matrix with Column

Pivoting72
Chapter 11. Eigensystem Analysis 733
Overview of the Eigensystem Analysis Subroutines 733
Performance and Accuracy Considerations . . . 733
Eigensystem Analysis Subroutines 734

SGEEV, DGEEV, CGEEV, and ZGEEV —

Eigenvalues and, Optionally, All or Selected
Eigenvectors of a General Matrix.735
SSPEV, DSPEV, CHPEV, and ZHPEV —

Eigenvalues and, Optionally, the Eigenvectors of a

Real Symmetric Matrix or a Complex Hermitian
Matrix. . . . 746
SSPSV, DSPSV, CHPSV and ZHPSV — Extreme
Eigenvalues and, Optionally, the Eigenvectors of a

Real Symmetric Matrix or a Complex Hermitian
Matrix. 755
SGEGV and DGEGV — Elgenvalues and

Optionally, the Eigenvectors of a Generalized Real
Eigensystem, Az=wBz, where A and B Are Real
General Matrices 762
SSYGV and DSYGV — E1genvalues and

Optionally, the Eigenvectors of a Generalized Real
Symmetric Eigensystem, Az=wBz, where A Is Real
Symmetric and B Is Real Symmetric Positive

Definite768

Chapter 12. Fourier Transforms,
Convolutions and Correlations, and

Related Computations 775
Overview of the Signal Processing Subroutmes . . 775
Fourier Transforms Subroutines 775
Convolution and Correlation Subroutines . . . 775
Related-Computation Subroutines . . . 776
Fourier Transforms, Convolutions, and Correlatlons
Considerations776
Use Considerations 776
Initializing Auxiliary Worl<1ng Storage . . 779
Determining the Amount of Auxiliary Workmg
Storage That You Need 779
Performance and Accuracy Cons1derat1ons .. L7779

When Running on the Workstation Processors 780

Defining Arrays 780
Fourier Transform Cons1derat10ns .. . 780
How the Fourier Transform Subroutines Achleve
High Performance. 781
Convolution and Correlatlon Con51derat10ns 781
Related Computation Considerations 783
Accuracy Considerations783
Fourier Transform Subroutines 784

SCFT and DCFT — Complex Fourier Transform 785
SRCFT and DRCFT — Real-to-Complex Fourier

Transform79
SCRFT and DCRFT — Complex-to Real Four1er
Transform 802
SCOSF and DCOSF — Cosme Transform810
SSINF and DSINF — Sine Transform . . . 818
SCFT2 and DCFT2 — Complex Fourier Transform

in Two Dimensions . . . 826
SRCFT2 and DRCFT2 — Real to Complex Four1er
Transform in Two Dimensions. . . . 833
SCRFT2 and DCRFT2 — Complex-to- Real Four1er
Transform in Two Dimensions. . . . 840
SCFT3 and DCFT3 — Complex Fourier Transform

in Three Dimensions 848
SRCFT3 and DRCFT3 — Real- to Complex Fourler
Transform in Three Dimensions . . . 854
SCRFT3 and DCRFT3 — Complex-to—Real Four1er
Transform in Three Dimensions 860
Convolution and Correlation Subroutlnes .. . 866
SCON and SCOR — Convolution or Correlation of

One Sequence with One or More Sequences . . . 867

SCOND and SCORD — Convolution or

Correlation of One Sequence with Another

Sequence Using a Direct Method 873
SCONF and SCORF — Convolution or Correlatlon

of One Sequence with One or More Sequences

Using the Mixed-Radix Fourier Method 879
SDCON, DDCON, SDCOR, and DDCOR —
Convolution or Correlation with Decimated Output

Using a Direct Method 889
SACOR — Autocorrelation of One or More
Sequences 8%

SACORF — Autocorrelatlon of One or More
Sequences Using the Mixed-Radix Fourier Method . 898

Related-Computation Subroutines 904
SPOLY and DPOLY — Polynomial Evaluat1on .. 905
SIZC and DIZC — I-th Zero Crossing 908
STREC and DTREC — Time-Varying Recurswe

Filter 911

SQINT and DQINT — Quadrat1c Interpolat1on . . 914
SWLEV, DWLEV, CWLEV, and ZWLEV —
Wiener-Levinson Filter Coefficients 918

Chapter 13. Sorting and Searching 923

Overview of the Sorting and Searching Subroutines 923

Use Considerations 923
Performance and Accuracy Cons1derat10ns ... 923
Sorting and Searching Subroutines. . . . 924
ISORT, SSORT, and DSORT — Sort the Elements of

aSequence95

viili ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISORTX, SSORTX, and DSORTX — Sort the
Elements of a Sequence and Note the Original

Element Positions . . 927
ISORTS, SSORTS, and DSORTS — Sort the

Elements of a Sequence Using a Stable Sort and

Note the Original Element Positions. . 930

IBSRCH, SBSRCH, and DBSRCH — Binary Search

for Elements of a Sequence X in a Sorted Sequence

Y . oo o 0L s 934
ISSRCH, SSSRCH, and DSSRCH — Sequential

Search for Elements of a Sequence X in the

Sequence Y . . 938
Chapter 14. Interpolation . 943
Overview of the Interpolation Subroutines . 943
Use Considerations . . 943
Performance and Accuracy Con51derat10ns . 943
Interpolation Subroutines . .. 944
SPINT and DPINT — Polynomial Interpolatlon .. 945
STPINT and DTPINT — Local Polynomial
Interpolation . 950
SCSINT and DCSINT — Cublc Splme Interpolatlon 953
SCSIN2 and DCSIN2 — Two-Dimensional Cubic
Spline Interpolation . 959
Chapter 15. Numerical Quadrature 963
Overview of the Numerical Quadrature
Subroutines . . 963
Use Considerations . 963
Choosing the Method . . 963
Performance and Accuracy Con51deratlons . 963
Programming Considerations for the SUBF
Subroutine . 964
Designing SUBF . 964
Coding and Setting Up SUBF in Your Program 964
Numerical Quadrature Subroutines. .. 966
SPTNQ and DPTNQ — Numerical Quadrature
Performed on a Set of Points . . . 967
SGLNQ and DGLNQ — Numerical Quadrature
Performed on a Function Using Gauss-Legendre
Quadrature . . 970
SGLNQ2 and DGLNQ2 — Numerlcal Quadrature
Performed on a Function Over a Rectangle Using
Two-Dimensional Gauss-Legendre Quadrature . . 973
SGLGQ and DGLGQ — Numerical Quadrature
Performed on a Function Using Gauss-Laguerre
Quadrature . . 979
SGRAQ and DGRAQ Numerrcal Quadrature
Performed on a Function Usmg Gauss-Rational
Quadrature . . 982
SGHMQ and DGHMQ Numerlcal Quadrature
Performed on a Function Using Gauss-Hermite
Quadrature . . 986
Chapter 16. Random Number
Generation .. . 989
Overview of the Random Number Generat1on
Subroutines . . 989
Use Considerations . . 989
Random Number Generation Subroutmes . 990

SURAND and DURAND — Generate a Vector of

Uniformly Distributed Random Numbers . . 991
SNRAND and DNRAND — Generate a Vector of
Normally Distributed Random Numbers . .. 994
SURXOR and DURXOR — Generate a Vector of
Long Period Uniformly Distributed Random
Numbers . e e . 998
Chapter 17. Utilities . . 1003
Overview of the Utility Subroutines . 1003
Use Considerations . . 1003
Determining the Level of ESSL Installed . 1003
Finding the Optimal Stride(s) for Your Fourier
Transforms . . . 1003
Converting Sparse Matrlx Storage . . 1004
Utility Subroutines . . . 1005
EINFO — ESSL Error Informat1on Handler
Subroutine . . 1006
ERRSAV — ESSL ERRSAV Subroutme for ESSL 1009
ERRSET — ESSL ERRSET Subroutine for ESSL 1010
ERRSTR — ESSL ERRSTR Subroutine for ESSL 1012
IESSL. — Determine the Level of ESSL Installed 1013
STRIDE — Determine the Stride Value for
Optimal Performance in Specified Fourier
Transform Subroutines . . 1015
DSRSM — Convert a Sparse Matr1x from
Storage-by-Rows to Compressed-Matrix Storage
Mode. . 1024
DGKTRN — For a General Sparse Matr1x
Convert Between Diagonal-Out and Profile-In
Skyline Storage Mode . . 1028
DSKTRN — For a Symmetric Sparse Matr1x
Convert Between Diagonal-Out and Profile-In
Skyline Storage Mode . . 1033
Part 3. Appendixes . 1037
Appendix A. Basic Linear Algebra
Subprograms (BLAS) . 1039
Level 1 BLAS . . 1039
Level 2 BLAS . . 1039
Level 3 BLAS . . 1040
Appendix B. LAPACK . 1041
LAPACK Subroutines . . 1041
Non-LAPACK-Conforming Subroutmes . . 1041
Notices . 1043
Trademarks . 1044
Software Update Protocol . 1045
Programming Interfaces . 1045
Glossary . . 1047
Bibliography . . 1051
References . . . 1051
ESSL Publications . 1056
Related Publications. . 1056
Contents 1X

Index1057

X ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

About This Book

The Engineering and Scientific Subroutine Library (ESSL) is a set of
high-performance mathematical subroutines. ESSL is provided as two run-time
libraries, running on the following:

Servers IBM® @server Cluster 1600, IBM @server POWER servers, SP
systems, or BladeCenter JS20

T™ ™

Processors POWER3 ', POWER3-II, POWER4
PowerPC 970 processors

, POWER4+, POWER5", and

ESSL can be used with Fortran, C, and C++ programs operating under the AIX®
and Linux operating systems.

This book is a guide and reference manual for using ESSL in doing application
programming. It includes:

* An overview of ESSL and guidance information for designing, coding, and
processing your program, as well as migrating existing programs, and
diagnosing problems

* Reference information for coding each ESSL calling sequence

This book is written for a wide class of ESSL users: scientists, mathematicians,
engineers, statisticians, computer scientists, and system programmers. It assumes a
basic knowledge of mathematics in the areas of ESSL computation. It also assumes
that users are familiar with Fortran, C, and C++ programming.

How to Use This Book

Front Matter consists of the Table of Contents and the Preface. Use these to find or
interpret information in the book.

Part 1. “Guide Information” provides guidance information for using ESSL. It
covers the user-oriented tasks of learning, designing, coding, migrating, processing,
and diagnosing. Use the following chapters when performing any of these tasks:

* Chapter 1, “Learning about ESSL” gives an introduction to ESSL, providing
highlights and general information. Read this chapter first to determine the
aspects of ESSL you want to use.

* Chapter 2, “Designing Your Program” provides ESSL-specific information that
helps you design your program. Read this chapter before designing your
program.

* Chapter 3, “Setting Up Your Data Structures” describes all types of data
structures, such as vectors, matrices, and sequences. Use this information when
designing and coding your program.

* Chapter 4, “Coding Your Program” tells you how to code your scalar and array
data, how to code calls to ESSL in Fortran, C, and C++ programs, and how to do
the coding necessary to handle errors. Use this information when coding your
program.

* Chapter 5, “Processing Your Program” describes how to process your program
under your particular operating system on your hardware. Use this information
after you have coded your program and are ready to run it.

© Copyright IBM Corp. 1991, 2004 xi

* Chapter 6, “Migrating Your Programs” explains all aspects of migration to
ESSL, to this version of ESSL, to different processors, and to future releases and
future processors. Read this chapter before starting to design your program.

* Chapter 7, “Handling Problems” provides diagnostic procedures for analyzing
all ESSL problems. When you encounter a problem, use the symptom indexes at
the beginning of this chapter to guide you to the appropriate diagnostic
procedure.

Part 2. “Reference Information” provides reference information you need to code
the ESSL calling sequences. It covers each of the mathematical areas of ESSL, and
the utility subroutines. Each chapter begins with an introduction, followed by the
subroutine descriptions. Each introduction applies to all the subroutines in that
chapter and is especially important in planning your use of the subroutines and
avoiding problems. To understand the information in the subroutine descriptions,
see [“How to Interpret the Subroutine Descriptions” on page xix| Use the
appropriate chapter when coding your program:

e Chapter 8, “Linear Algebra Subprograms”
* Chapter 9, “Matrix Operations”

* Chapter 10, “Linear Algebraic Equations”
e Chapter 11, “Eigensystem Analysis”

* Chapter 12, “Fourier Transforms, Convolutions and Correlations, and Related
Computations”

* Chapter 13, “Sorting and Searching”

e Chapter 14, “Interpolation”

* Chapter 15, “Numerical Quadrature”

e Chapter 16, “Random Number Generation”
* Chapter 17, “Utilities”

Appendix A. Basic Linear Algebra Subprograms provides a list of the Level 1, 2,
and 3 Basic Linear Algebra Subprograms (BLAS) included in ESSL.

Appendix B. LAPACK provides a list of the LAPACK subroutines included in
ESSL.

Glossary contains definitions of terms used in this book.

Bibliography provides information about publications related to ESSL. Use it when
you need more information than this book provides.

How to Find a Subroutine Description

If you want to locate a subroutine description and you know the subroutine name,
you can find it listed individually or under the entry “subroutines, ESSL” in the
Index.

Where to Find Related Publications

If you have a question about IBM clustered servers, PSSP, or a related product, the
online resources listed in [Table 5 on page 11| make it easy to find the information
for which you are looking.

A list of all ESSL publications, as well as related programming and hardware
publications, are listed in the bibliography of this book. Also included is a list of

xii ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

math background publications you may find helpful, along with the necessary
information for ordering them from independent sources. See [“Bibliography” on|

How to Look Up a Bibliography Reference

Special references are made throughout this book to mathematical background
publications and software libraries, available through IBM, publishers, or other
companies. All of these are described in detail in the bibliography. A reference to
one of these is made by using a bracketed number. The number refers to the item
listed under that number in the bibliography. For example, reference [1] cites the
first item listed in the bibliography.

Special Terms

Standard data processing and mathematical terms are used in this book.
Terminology is generally consistent with that used for Fortran. See the Glossary for
definitions of terms used in this book.

Short and Long Precision

Because ESSL can be used with more than one programming language, the terms
short precision and long precision are used in place of the Fortran terms single
precision and double precision.

Subroutines and Subprograms

An ESSL subroutine is a named sequence of instructions within the ESSL product
library whose execution is invoked by a call. A subroutine can be called in one or
more user programs and at one or more times within each program. The ESSL
subroutines are referred to as subprograms in the area of linear algebra
subprograms. The term subprograms is used because it is consistent with the
BLAS. Many of the linear algebra subprograms correspond to the BLAS; these are
listed in [Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1039.|

How to Interpret the Subroutine Names with a Prefix Underscore

A name specified in this book with an underscore (_) prefix, such as _GEMUL,
refers to all the versions of the subroutine with that name. To get the entire list of
subroutines that name refers to, substitute the first letter for each version of the
subroutine. For example, _GEMUL, refers to all versions of the matrix
multiplication subroutine: SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do
not use the underscore in coding the names of the ESSL subroutines in your
program. You code a complete name, such as SGEMUL. For details about these
names, see [“The Variety of Mathematical Functions” on page 4.

Abbreviated Names

The abbreviated names used in this book are defined below.

Short Name Full Name

AIX Advanced Interactive Executive

BLAS Basic Linear Algebra Subprograms

ESSL IBM Engineering and Scientific Subroutine Library
HTML Hypertext Markup Language

About This Book Xiii

Short Name Full Name

IBM @server Cluster 1600 Highly scalable cluster solution comprised of POWER
architecture-based symmetric multiprocessing (SMP) AIX
5L™ or Linux® servers

LAPACK Linear Algebra Package

SL MATH Subroutine Library—Mathematics
SMP Symmetric Multi-Processing

Ssp Scientific Subroutine Package

Fonts

This book uses a variety of special fonts to distinguish between many
mathematical and programming items. These are defined below.

Special Font Example Description

Italic with no subscripts |m, inclx, aux, iopt Calling sequence argument or
mathematical variable

Italic with subscripts X1s Qs Xj1,j2 Element of a vector, matrix, or
sequence

Bold italic lowercase XY, z Vector or sequence

Bold italic uppercase A, B, C Matrix

Gothic uppercase A, B, C, AGB Array

IM=ISMAX(4,X,2) Fortran statement

Special Notations and Conventions

This section explains the special notations and conventions used in this book to
describe various types of data.

Scalar Data

Following are the special notations used in the examples in this book for scalar
data items. These notations are used to simplify the examples, and they do not
imply usage of any precision. For a definition of scalar data in Fortran, C, and
C++, see [Chapter 4, “Coding Your Program,” on page 107

Data Item Example Description
Character item T Character(s) in single quotation marks
Hexadecimal string X'97FA0OC1' String of 4-bit hexadecimal characters
Logical item .TRUE. .FALSE. True or false logical value, as indicated
Integer data 1 Number with no decimal point
Real data 1.6 Number with a decimal point
Complex data (1.0,-2.9) Real part followed by the imaginary part
Continuation 1.6666 Continue the last digit

(1.6666666... and so forth)

xiv ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Vectors

A vector is represented as a single row or column of subscripted elements enclosed
in square brackets. The subscripts refer to the element positions within the vector:

[x, x, x5 ... x,]

Xn

For a definition of vector, see[“Vectors” on page 55

Matrices

A matrix is represented as a block of elements enclosed in square brackets.
Subscripts refer to the row and column positions, respectively:

all o e e Clln

A - - Ay

For a definition of matrix, see [“Matrices” on page 61|

Sequences

Sequences are used in the areas of sorting, searching, Fourier transforms,
convolutions, and correlations. For a definition of sequences, see|“Sequences” on

One-Dimensional Sequences
A one-dimensional sequence is represented as a series of elements enclosed in
parentheses. Subscripts refer to the element position within the sequence:

(X1, X, X3, «e, X)

Two-Dimensional Sequences

A two-dimensional sequence is represented as a series of columns of elements.
(They are represented in the same way as a matrix without the square brackets.)
Subscripts refer to the element positions within the first and second dimensions,
respectively:

About This Book XV

(111 a12 e e Clln

ay, dyp ayy

ml m2* * *“mn

Three-Dimensional Sequences

A three-dimensional sequence is represented as a series of blocks of elements.
Subscripts refer to the elements positions within the first, second, and third
dimensions, respectively:

a ap,, . . .d
A G- - -G A2 o - - A lp “12p 1np
apyp Ay Ao Ay Ay Ay D1p 922p Donp
Q11 D21+ - - Ay A1z G2+ - - Ay amlp amZp' . 'amnp
Arrays

Arrays contain vectors, matrices, or sequences. For a definition of array, see
[Do You Set Up Your Arrays?” on page 29.|

One-Dimensional Arrays
A one-dimensional array is represented as a single row of numeric elements
enclosed in parentheses:

(1.0, 2.0, 3.0, 4.0, 5.0)

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. In the following array, five elements
are significant to the computation, and two elements not used in the computation
exist between each of the elements shown:

(r.e, ., .,2.0, ., .,3.0, ., .,40, ., .,5.0)
This notation is used to show vector elements inside an array.

Two-Dimensional Arrays
A two-dimensional array is represented as a block of numeric elements enclosed in
square brackets:

1.0 11.0 5.0 25.0
2.0 12.0 6.0 26.0
3.0 13.0 7.0 27.0
4.0 14.0 8.0 28.0

XVi ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. The following array contains three
rows and two columns not used in the computation:

1.0 2.0 5.0 4.0
2.0 3.0 6.0 3.0
3.0 4.0 7.0 2.0
4.0 5.0 8.0 1.0

This notation is used to show matrix elements inside an array.

Three-Dimensional Arrays
A three-dimensional array is represented as a series of blocks of elements separated
by ellipses. Each block appears like a two-dimensional array:

1.0 11.0 5.0 25.0 10.0 111.0 15.0 125.0 100.0 11.0 15.0 25.0
2.0 12.0 6.0 26.0 20.0 112.0 16.0 126.0 200.0 12.0 16.0 26.0
3.0 13.0 7.0 27.0 30.0 113.0 17.0 127.0 300.0 13.0 17.0 27.0
4.0 14.0 8.0 28.0 40.0 114.0 18.0 128.0 400.0 14.0 18.0 28.0

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown, just as for two-dimensional arrays.

Special Characters, Symbols, Expressions, and Abbreviations

The mathematical and programming notations used in this book are consistent
with traditional mathematical and programming usage. These conventions are
explained below, along with special abbreviations that are associated with specific

values.

Item Description

Greek letters: «, 6, w, Q Symbolic scalar values

lal The absolute value of 4

a*b The dot product of a and b

X; The i-th element of vector x

Cij The element in matrix C at row i and column j

S Elements from x; to x,,

i=1,n i is assigned the values 1 to n

yex Vector y is replaced by vector x

xy Vector x times vector y

AX=B AX is congruent to B

a* a raised to the k power

e* Exponential function of x

AT xT The transpose of matrix A; the transpose of vector x
A The Fomplex conjugate of vector x; the complex conjugate of

> matrix A

About This Book XVii

Item Description
X Ejk The complex conjugate of the complex vector element x;, where:
if x; = (a;,),
then X; = (a;, —b;)
The complex conjugate of the complex matrix element ¢y
¥ AH The complex conjugate transpose of vector x; the complex

conjugate transpose of matrix A

The sum of elements x; to x,,

The square root of a+b

The integral from a to b of f(x) dx

[Ixll» The Euclidean norm of vector x, defined as:

Al

lA]l, The spectral norm of matrix A, defined as:
max{|Ax|, : |lx[, = 1}

lA|lg The Frobenius norm of matrix A, defined as:

Al The inverse of matrix A

AT The transpose of A inverse

A The determinant of matrix A

m by n matrix A

Matrix A has m rows and n columns

sin a The sine of a

cos b The cosine of b

SIGN (a) The sign of a; the result is either + or —

address {a} The storage address of a

max(x) The maximum element in vector x

min(x) The minimum element in vector x

ceiling(x) The smallest integer that is greater than or equal to x

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Item Description

floor(x) The largest integer that is not greater than x

int(x) The largest integer that is less than or equal to x

x mod(m) x modulo m; the remainder when x is divided by m
® Infinity

n Pi, 3.14159265...

How to Interpret the Subroutine Descriptions

This section explains how to interpret the information in the subroutine
descriptions in Part 2 of this book.

Description

Each subroutine description begins with a brief explanation of what the subroutine
does. When we combine the description of multiple versions of a subroutine, we
give enough information to enable you to easily tell the differences among the
subroutines. Differences usually occur in either the function performed or the data

types required for each subroutine.

Syntax
This shows the syntax for the Fortran, C, and C++ calling statements:
Fortran CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ...)
C and C++ name-1 | name-2 | ... | name-n (arg-1, ... ,arg-m);

The syntax indicates:

¢ The programming language (Fortran, C, or C++)

 Each possible subroutine name that you can code in the calling sequence. Each

name is separated by the | (or) symbol. You specify only one of these names in
your calling sequence. (You do not code the | in the calling sequence.)

The arguments, listed in the order in which you code them in the calling
sequence. You must code them all in your calling sequence.

You can distinguish between input arguments and output arguments by looking
at the “On Entry” and “On Return” sections, respectively. An argument used for
both input and output is described in both the “On Entry” and “On Return”
sections. In this case, the input value for the argument is overlaid with the
output value.

The names of the arguments give an indication of the type of data that you
should specify for the argument; for example:

— Names beginning with the letters i through n, such as m, incx, iopt, and isign,
indicate that you specify integer data.

— Names beginning with the letters a through / and o through z, such as b, t,
alpha, sigma, and omega, indicate that you specify real or complex data.

On Entry

This lists the input arguments, which are the arguments you pass to the ESSL
subroutine. Each argument description first gives the meaning of the argument,

About This Book XiX

and then gives the form of data required for the argument. (To help you avoid
errors, output arguments are also listed, along with a reference to the
section.)

On Return

This lists the output arguments, which are the arguments passed back to your
program from the ESSL subroutine. Each argument description first gives the
meaning of the argument, and then gives the form of data passed back to your
program for the argument.

Notes

The notes describe any programming considerations and restrictions that apply to
the arguments or the data for the arguments. There may be references to other
parts of the book for further information.

Function

This is a functional, or mathematical, description of the function performed by this
subroutine. It explains what computation is performed, not the implementation.
It explains the variations in the computation depending on the input arguments.
References are made, where appropriate, to mathematical background books listed
in the bibliography. References appear as a number enclosed in square brackets,
where the number refers to the item listed under that number in the bibliography.
For example, reference [1] cites the first item listed.

Special Usage

These are unique ways you can use the subroutine in your application. In most
cases, this book does not address applications of the ESSL subroutines; however, in
special situations where the functional capability of the subroutine can be extended
by following certain rules for its use, these rules are described in this section.

Error Conditions

These are all the ESSL run-time errors that can occur in the subroutine. They are
organized under three headings; Computational Errors, Input-Argument Errors,
and Resource Errors. The return code values resulting from these errors are also
explained.

Examples

The examples show how you would call the subroutine from a Fortran program.
They show a variety of uses of the subroutine. Except where it is important to
show differences in use between the various versions of the subroutine, the
simplest version of the subroutine is used in the examples. In most cases, this is
the short-precision real version of the subroutine. Each example provides a
description of the important features of the example, followed by the Fortran
calling sequence, the input data, and the resulting output data.

XX ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Summary of Changes

This section summarizes the changes that were introduced in each release of ESSL
Version 4.

What’s New for ESSL Version 4 Release 2

* This release of ESSL is supported on the following operating system versions or
distributions:

AIX 5L Version 5.2

AIX 5L Version 5.3

SuSE Linux Enterprise Server 9 for POWER (SLES9)
Red Hat Enterprise Linux 3 (RHEL3) (Update 3)

The ESSL Libraries are now tuned for the POWER5 and the PowerPC 970.

The Dense Linear Algebraic Equation Subroutines now include these new
LAPACK subroutines:

CPPSV and ZPPSV; see the subroutine description for Positive Definite
Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve
on page

CPPTRF and ZPPTRE; see the subroutine description for Positive Definite
Complex Hermitian Matrix Factorization on page

CPPTRS and ZPPTRS; see the subroutine description for Positive Definite
Complex Hermitian Matrix Multiple Right-Hand Side Solve on page

SPPTRI and DPPTRI; see the subroutine description for Positive Definite Real
Symmetric Matrix Inverse on page

What’s New for ESSL Version 4 Release 1

ESSL now runs on the SuSE Linux Enterprise Server 8 for pSeries (SLES8)
operating system (in addition to AIX 5L for POWER Version 5.2B or later).

The ESSL Libraries are tuned for the POWER4+.

The Dense Linear Algebraic Equation Subroutines now include these new
LAPACK subroutines:

SGESV, DGESV, CGESV, and ZGESV; see the subroutine description for
General Matrix Factorization and Multiple Right-Hand Side Solve on page
452

SPPSV and DPPSV; see the subroutine description for Positive Definite Real
%nmetric Matrix Factorization and Multiple Right-Hand Side Solve on page
481

SPOSV, DPOSV, CPOSV, and ZPOSV; see the subroutine description for
Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization
and Multiple Right-Hand Side Solve on page

SPPTRF and DPPTRF; see the subroutine description for Positive Definite
Real Symmetric Matrix Factorization on page)

SPPTRS and DPPTRS; see the subroutine description for Positive Definite Real
Symmetric Matrix Multiple Right-Hand Side Solve on page

CGETRI and ZGETRI; see the subroutine description for General Matrix
Inverse on page

© Copyright IBM Corp. 1991, 2004 xxi

— CPOTRI and ZPOTRI; see the subroutine description for Positive Definite
Complex Hermitian Matrix Inverse on page

— CTRTRI, ZTRTRI, CTPTRI, and ZTPTRI; see the subroutine description for
Triangular Matrix Inverse on page .

* SMP support has been added to the SCFT and DCFT subroutines when
computing a single large transform.

* Manpages of the subroutine descriptions are now available.

* Documentation is no longer being shipped with the product. It can be viewed or
downloaded from the URLs listed in [Table 5 on page 11}

* The ESSL software license agreement is now shipped, viewed, and accepted
electronically. (See the ESSL for AIX Installation Guide for details.)

Future Migration

If you are concerned with migration to possible future releases of ESSL or possible
future hardware, you should read {“Planning for Future Migration” on page 168.|
That section explains what you can do now to prevent future migration
problems.

xxii ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Part 1. Guide Information

This part of the book is organized into the following chapters, which provide
guidance information on how to use ESSL. It is organized as follows:

* Learning about ESSL

* Designing your program

* Setting up your data structures

* Coding your program

* Processing your program

* Migrating your programs

* Handling problems

© Copyright IBM Corp. 1991, 2004

2 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 1. Introduction and Requirements

This chapter introduces you to the Engineering and Scientific Subroutine Library
(ESSL).

Overview of ESSL

This section gives an overview of the ESSL capabilities and requirements.

ESSL is a state-of-the-art collection of subroutines providing a wide range of
mathematical functions for many different scientific and engineering applications.
Its primary characteristics are performance, functional capability, and usability.

Performance and Functional Capability

The mathematical subroutines, in nine computational areas, are tuned for
performance. The computational areas are:

* Linear Algebra Subprograms

* Matrix Operations

* Linear Algebraic Equations

* Eigensystem Analysis

* Fourier Transforms, Convolutions and Correlations, and Related Computations
 Sorting and Searching

* Interpolation

* Numerical Quadrature

* Random Number Generation

ESSL provides two run-time libraries:

¢ The ESSL Symmetric Multi-Processing (SMP) Library provides thread-safe
versions of the ESSL subroutines for use on all SMP processors. In addition, a
subset of these subroutines are also multithreaded versions; that is, they support
the shared memory parallel processing programming model. You do not have to
change your existing application programs that call ESSL to take advantage of
the increased performance of using the SMP processors; you can simply re-link
your existing application programs. For a list of the multithreaded subroutines
in the ESSL SMP Library, see [Table 24 on page 26

e The ESSL Serial Library provides thread-safe versions of the ESSL subroutines
for use on all processors. You may use this library to develop your own
multithreaded applications.

All libraries are designed to provide high levels of performance for numerically
intensive computing jobs. All versions provide mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications.

The ESSL subroutines can be called from application programs written in Fortran,
C, and C++. ESSL runs under the AIX and Linux operating systems.

Usability
ESSL is designed for usability:

* It has an easy-to-use call interface.

© Copyright IBM Corp. 1991, 2004 3

4

* If your existing application programs use the ESSL Serial library, you only need

to re-link your program to take advantage of the increased performance of the
ESSL SMP Library.

* It supports a 64-bit environment.

The data model used for the 64-bit environment is referred to as LP64. This data
model supports 32-bit integers and 64-bit pointers. In accordance with the LP64
data model, all ESSL integer arguments remain 32-bit except for the iusadr

argument for ERRSET. See [“ERRSET — ESSL. ERRSET Subroutine for ESSL” on|
_ae 1010.

* It has informative error-handling capabilities, enabling you to calculate auxiliary
storage sizes and transform lengths.

* An online book that can be displayed using an Hypertext Markup Language
(HTML) document browser, is available for use with ESSL.

The Variety of Mathematical Functions

This section describes the mathematical functions included in ESSL.

Areas of Application

ESSL provides a variety of mathematical functions for many different types of
scientific and engineering applications. Some of the industries using these
applications are: Aerospace, Automotive, Electronics, Petroleum, Finance, Utilities,
and Research. Examples of applications in these industries are:

Structural Analysis Time Series Analysis
Computational Chemistry Computational Techniques
Fluid Dynamics Analysis Mathematical Analysis
Seismic Analysis Dynamic Systems Simulation
Reservoir Modeling Nuclear Engineering
Quantitative Analysis Electronic Circuit Design

What ESSL Provides

The subroutines provided in ESSL, summarized in|Iable 1} fall into the following

groups:

* Nine major areas of mathematical computation, providing the computations
commonly used by the industry applications listed above

* Utilities, performing general-purpose functions

To help you select the ESSL subroutines that fulfill your needs for performance,
accuracy, storage, and so forth, see [“Selecting an ESSL Subroutine” on page 25.|

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 1. Summary of ESSL Subroutines

Integer Short-Precision Long-Precision
ESSL Area of Computation Subroutines Subroutines Subroutines
Linear Algebra Subprograms:
Vector-scalar 0 41 41
Sparse vector-scalar 0 11 11
Matrix-vector 1 32 32
Sparse matrix-vector 0 0 3
Matrix Operations:
Addition, subtraction, multiplications, rank-k updates,
rank-2k updates, and matrix transposes 0 25 26
Linear Algebraic Equations:
Dense linear algebraic equations 3 53 58
Banded linear algebraic equations 0 18 18
Sparse linear algebraic equations 0 0 11
Linear least squares 0 3 5
Eigensystem Analysis:
Solutions to the algebraic eigensystem analysis problem
and the generalized eigensystem analysis problem 0 8 8
Signal Processing Computations:
Fourier transforms 0 15 11
Convolutions and correlations 0 10 2
Related computations 0 6 6
Sorting and Searching:
Sorting, sorting with index, and binary and sequential
searching 5 5 5
Interpolation:
Polynomial and cubic spline interpolation 0 4 4
Numerical Quadrature:
Numerical quadrature on a set of points or on a
function 0 6 6
Random Number Generation:
Generating vectors of uniformly distributed and
normally distributed random numbers 0 3 3
Utilities:
General service operations 8 0 3
Total ESSL Subroutines 13 240 253

ESSL—Processing Capabilities

ESSL provides two run-time libraries, the ESSL SMP Library and the ESSL Serial

Library. These libraries are designed to provide high levels of performance for
numerically intensive computing jobs.

To order ESSL, specify one of the program numbers below:

Chapter 1. Introduction and Requirements

5

ESSL for AIX
5765-F82

ESSL for Linux
5765-G17

Most of the subroutine calls are compatible with those in the ESSL./370 product.

Accuracy of the Computations

ESSL provides accuracy comparable to libraries using equivalent algorithms with
identical precision formats. Both short- and long-precision real versions of the
subroutines are provided in most areas of ESSL. In some areas, short- and
long-precision complex versions are also provided, and, occasionally, an integer
version is provided. The data types operated on by the short-precision,
long-precision, and integer versions of the subroutines are ANSI/IEEE 32-bit and
64-bit binary floating-point format, and 32-bit integer. See the ANSI/IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for more detail.
(There are ESSL-specific rules that apply to the results of computations on
workstation processors using the ANSI/IEEE standards. For details, see |”What|
Data Type Standards Are Used by ESSL, and What Exceptions Should You Know]
About?” on page 44))

For more information on accuracy, see [“Getting the Best Accuracy” on page 43/

High Performance of ESSL

The ESSL subroutines have been designed to provide high performance, as
described in the following sections. (See references ,ﬁ and .)

Algorithms

To achieve high performance, the subroutines use state-of-the-art algorithms
tailored to specific operational characteristics of the hardware, such as cache size,
Translation Lookaside Buffer (TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:

* Managing the cache and TLB efficiently so the hit ratios are maximized; that is,
data is blocked so it stays in the cache or TLB for its computation.

* Accessing data stored contiguously—that is, using stride-1 computations.

* Exploiting the large number of available floating-point registers.

* Using algorithms that minimize paging.

e Structuring the ESSL subroutines so, where applicable, the compiled code fully
utilizes the dual floating-point execution units. Because two Multiply-Add

instructions can be executed each cycle, neglecting overhead, this allows four
floating-point operations per cycle to be performed.

* Structuring the ESSL subroutines so, where applicable, the compiled code takes
full advantage of the hardware data prefetching.

Obtaining High Performance on SMP Processors

The ESSL SMP Library is designed to exploit the processing power and shared
memory of the SMP processor. In addition, a subset of the ESSL SMP subroutines
have been coded to take advantage of increased performance from multithreaded

(parallel) programming techniques. For a list of the multithreaded subroutines in
the ESSL SMP Library, see [Table 24 on page 26,

6 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Choosing the number of threads depends on the problem size, the specific
subroutine being called, and the number of physical processors you are running
on. To achieve optimal performance, experimentation is necessary; however,
picking the number of threads equal to the number of online processors generally
provides good performance in most cases. In some cases, performance may
increase if you choose the number of threads to be less than the number of online
processors.

You should use either the XL Fortran XLSMPOPTS or the OMP_NUM_THREADS
environment variable to specify the number of threads you want to create.

Obtaining High Performance on the POWERS5 Processors
The following operating systems support simultaneous multithreading (SMT) on
servers with POWERS processors:

* AIX 5L Version 5.3
* SuSE Linux Enterprise Server 9 for POWER (SLES9)
* Red Hat Enterprise Linux 3 (RHEL3) (Update 3)

SMT is a processor technology that allows two separate instruction streams
(threads) to run concurrently on the same physical processor, improving overall
throughput. To the operating system, each hardware thread is treated as an
independent logical processor.

Not all applications benefit from SMT. Having two threads executing on the same
processor will not increase the performance of applications with
execution-unit-limited performance or applications that consume all the chip’s
memory bandwidth. For this reason, the POWERS supports single-threaded (ST)
execution mode. In this mode, the POWERS gives all the physical resources to the
active thread.

In most cases, ESSL subroutines will not benefit from SMT. However, this can vary
depending on the nature of the application; therefore, you may wish to verify this
by testing your own applications in this mode.

Any POWERS partition can be booted in either in ST mode or SMT mode (which
is the default).

Mathematical Techniques

All areas of ESSL use state-of-the-art mathematical techniques to achieve high
performance. For example, the matrix-vector linear algebra subprograms operate
on a higher-level data structure, matrix-vector rather than vector-scalar. As a result,
they optimize performance directly for your program and indirectly through those
ESSL subroutines using them.

The Fortran Language Interface to the Subroutines

The ESSL subroutines follow standard Fortran calling conventions and must run in
the Fortran run-time environment. When ESSL subroutines are called from a
program in a language other than Fortran, such as C or C++, the Fortran
conventions must be used. This applies to all aspects of the interface, such as the
linkage conventions and the data conventions. For example, array ordering must
be consistent with Fortran array ordering techniques. Data and linkage conventions
for each language are given in [Chapter 4, “Coding Your Program,” on page 107

Chapter 1. Introduction and Requirements 7

Software and Hardware Products That Can Be Used with ESSL

This section describes the hardware and software products you can use with ESSL,
as well as those products for installing ESSL and displaying the online
documentation. It is divided into the following sections:

« [“Hardware Products Supported by ESSL’|
* |[“Operating Systems Supported by ESSL’|
* [“Software Products Required by ESSL’
* [“Software Products for Installing and Customizing ESSL” on page 9

» [“Software Products for Displaying ESSL. Documentation” on page 10|

Hardware Products Supported by ESSL

ESSL runs on the following hardware platforms:

Servers IBM @server Cluster 1600, IBM @server POWER servers, SP
systems, or BladeCenter JS20

Processors POWER3, POWER3-1I, POWER4, POWER4+, POWERS, and
PowerPC 970 processors

64-bit applications require 64-bit hardware.

Operating Systems Supported by ESSL

ESSL is supported in the following operating system environments:

Product Supported Environment

ESSL for AIX AIX 5L Version 5.2 with the 5200-04
Recommended Maintenance Package, or
later

AIX 5L Version 5.3, or later

ESSL for Linux SuSE Linux Enterprise Server 9 for POWER
(SLES9)

Red Hat Enterprise Linux 3 (RHEL3)
(Update 3)

Software Products Required by ESSL

This section describes the software products that are required by ESSL. It is
divided into the following sections:

+ |“Software Products Required by ESSL for AIX”|
* |“Software Products Required by ESSL for Linux” on page 9|

Software Products Required by ESSL for AIX

ESSL for AIX requires the software products shown in [Table 2 on page 9|for
compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is
described in [‘C Programs” on page 125 and ['C++ Programs” on page 141

8 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 2. Required Software Products for AIX

For Compiling

For Linking, Loading, or Running

IBM XL Fortran Enterprise Edition Version 9.1 for AIX
(program number 5724-108)

—or—

IBM XL C/C++ Enterprise Edition Version 7.0 for AIX
(program number 5724-111)

—or—

IBM XL C Enterprise Edition for AIX, Version 7.0
(program number 5724-110)

IBM XL Fortran Enterprise Edition Run-Time
Environment Version 9.1 for AIX !

—and-

C libraries®

Notes:

1. IBM XL Fortran Enterprise Edition Run-Time Environment Version 9.1 for AIX is automatically shipped with the
compiler. It is also available for downloading from the following Web site:

http:/ /www.ibm.com/software /awdtools/fortran

2. The AIX product includes the C and math libraries in the Application Development Toolkit.

Software Products Required by ESSL for Linux
ESSL for Linux requires the software products shown in for compiling and

running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is

described in [“C Programs” on page 125 and [‘C++ Programs” on page 141

Table 3. Required Software Products for Linux

For Compiling For Linking, Loading, or Running

IBM XL Fortran Advanced IBM XL Fortran Advanced Edition Run-Time Environment for Linux!

Edition for Linux
—and-

—0r—

IBM XL C/C++ Advanced

GCC 3.3.3 32-bit libraries on SLES9

Edition for Linux GCC 9.0.42 64-bit libraries on SLES9

GCC 3.2.3 32-bit and 64-bit libraries on RHEL3 (Update 3)

Notes:

1. IBM XL Fortran Advanced Edition Run-Time Environment for Linux is automatically shipped with the compiler.
It is also available for downloading from the following Web site:

http:/ /www.ibm.com/software /awdtools/fortran

2. Optional packages are required for building applications. For details, consult the Linux and compiler

documentation.

Software Products for Installing and Customizing ESSL

The ESSL licensed program is distributed on a CD. The following sections provide
information about software products that are used for installing and customizing

ESSL:

» [“Software Products for Installing and Customizing ESSL for AIX” on page 1(]

* [“Software Products for Installing and Customizing ESSL for Linux” on page 10|

Chapter 1. Introduction and Requirements

9

Software Products for Installing and Customizing ESSL for AIX
The ESSL for AIX Installation Guide provides the detailed information you need to
install ESSL for AIX.

ESSL for AIX is packaged according to the AIX guidelines, as described in the AIX
General Programming Concepts: Writing and Debugging Programs manual. The product
can be installed using the smit command, as described in the AIX System
Management Guide: Operating System and Devices manual.

Software Products for Installing and Customizing ESSL for Linux
The ESSL for Linux Installation Guide provides the detailed information you need to
install ESSL for Linux.

ESSL for Linux is packaged as RPM packages. The product can be installed using
the rpm command, as described at the following URL:

http://www.rpm.org/

Software Products for Displaying ESSL Documentation
The software products needed to display ESSL online information are listed in

Table 4. Software needed to display various formats of ESSL online information

Format of online Software needed

information

HTML HTML document browser (such as Microsoft® Internet Explorer)
PDF Adobe Acrobat Reader, which is freely available for

downloading from the Adobe Web site at:
http://www.adobe.com

Manpages No additional software needed. To display a specific manpage,
use the man command as follows:

man subroutine-name

Note: These manpages will be installed in the following
directory:

/usr/share/man/man3

The manpages provided by LAPACK are installed in the
/usr/share/man/manl directory. By default, ESSL manpages
will be displayed rather than BLAS or LAPACK manpages with
the same names. If you want to access the BLAS or LAPACK
manpages, you must set the MANPATH environment variable.
See the documentation for the man command.

ESSL Internet Resources

ESSL documentation, as well as other related information, can be displayed or
downloaded from the Internet at the URLs listed in[Table 5 on page 11|

10 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 5. Online resources for information related to ESSL products

Web Site Type of File Formats
Information Available
Provided PDF HTML

IBM @server Cluster Resource Center: Documentation Yes Yes

http://publib.boulder.ibm.com/cIresctr

for several
releases of
pSeries® and
clustered-server
software products

IBM Publications Center: Documentation Yes No
http://w3.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

for IBM products

Getting on the ESSL Mailing List

Late breaking information about ESSL can be obtained by being placed on the
ESSL mailing list. In addition, users on the mailing list will receive information
about new ESSL function and may receive customer satisfaction surveys and
requirements surveys, to provide feedback to ESSL Development on the product
and user requirements.

You can be placed on the mailing list by sending a request to either of the
following, asking to be placed on the ESSL mailing list:

International Business Machines Corporation
ESSL Development

Department 85BA/Mail Station P963

2455 South Rd.

Poughkeepsie, N.Y. 12601-5400

e-mail: essl@us.ibm.com

Note: You should send us e-mail if you would like to be withdrawn from the ESSL
mailing list.

When requesting to be placed on the mailing list or asking any questions, please
provide the following information:

* Your name

* The name of your company

* Your mailing address

* Your Internet address

* Your phone number

List of ESSL Subroutines

This section provides an overview of the subroutines in each of the areas of ESSL.

[Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1039| contains a
list of Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in
ESSL.

|[Appendix B, “LAPACK,” on page 1041|contains a list of Linear Algebra Package
(LAPACK) subroutines included in ESSL.

Chapter 1. Introduction and Requirements 11

Linear Algebra Subprograms

The linear algebra subprograms consist of:

* Vector-scalar linear algebra subprograms (Table 6
* Sparse vector-scalar linear algebra subprograms (Table
* Matrix-vector linear algebra subprograms (Iable §
* Sparse matrix-vector linear algebra subprograms (lable 9|D

Notes:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the
BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Vector-Scalar Linear Algebra Subprograms

The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference . The remainder of the
vector-scalar linear algebra subprograms are commonly used computations
provided for your applications. Both real and complex versions of the subprograms
are provided.

Table 6. List of Vector-Scalar Linear Algebra Subprograms

Short- Precision |Long- Precision
Descriptive Name Subprogram Subprogram Page
Position of the First or Last Occurrence of the Vector Element ISAMAX* IDAMAX™ @
Having the Largest Magnitude ICAMAX™ IZAMAX™
Position of the First or Last Occurrence of the Vector Element ISAMIN* IDAMIN* @
Having Minimum Absolute Value
Position of the First or Last Occurrence of the Vector Element ISMAX* IDMAX* @
Having Maximum Value
Position of the First or Last Occurrence of the Vector Element ISMIN™ IDMIN* @
Having Minimum Value
Sum of the Magnitudes of the Elements in a Vector SASUM™ DASUM™ poq
SCASUM™ DZASUM™
Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the | SAXPY" DAXPY"
Vector Y CAXPY" ZAXPY"
Copy a Vector SCOPY” DCOPY”
CCOoPrY” ZCOPY"
Dot Product of Two Vectors SDOT™ DDOT™ D18
CDOTU™ ZDOTU™
CDOTC™ ZDOTC™
Compute SAXPY or DAXPY N Times SNAXPY DNAXPY
Compute Special Dot Products N Times SNDOT DNDOT
Euclidean Length of a Vector with Scaling of Input to Avoid SNRM2™ DNRM2"
Destructive Underflow and Overflow SCNRM2* DZNRM2™
Euclidean Length of a Vector with No Scaling of Input SNORM2* DNORM2*
CNORM2* ZNORM2*
Construct a Givens Plane Rotation SROTG" DROTG” 238
CROTG" ZROTG"

12 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 6. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short- Precision

Long- Precision

Descriptive Name Subprogram Subprogram Page

Apply a Plane Rotation SROT" DROT
CROT" ZROT"
CSROT" ZDROT"

Multiply a Vector X by a Scalar and Store in the Vector X SSCAL" DSCAL"
CSCAL" ZSCAL’
CSSCAL" ZDSCAL"

Interchange the Elements of Two Vectors SSWAP” DSWAP*
CSWAP” ZSWAP"

Add a Vector X to a Vector Y and Store in a Vector Z SVEA DVEA
CVEA ZVEA

Subtract a Vector Y from a Vector X and Store in a Vector Z SVES DVES D59
CVES ZVES

Multiply a Vector X by a Vector Y and Store in a Vector Z SVEM DVEM @
CVEM ZVEM

Multiply a Vector X by a Scalar and Store in a Vector Y SYAX DYAX @
CYAX ZYAX
CSYAX ZDYAX

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store ina |SZAXPY DZAXPY

Vector Z CZAXPY ZZAXPY

* This subprogram is invoked as a function in a Fortran program.

" Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms
The sparse vector-scalar linear algebra subprograms operate on sparse vectors; that
is, only the nonzero elements of the vector are stored. These subprograms provide
similar functions to the vector-scalar subprograms. These subprograms represent a
subset of the sparse extensions to the Level 1 BLAS described in reference .
Both real and complex versions of the subprograms are provided.

Table 7. List of Sparse Vector-Scalar Linear Algebra Subprograms

Short- Precision

Long- Precision

Descriptive Name Subprogram Subprogram Page
Scatter the Elements of a Sparse Vector X in Compressed-Vector SSCTR DSCTR
Storage Mode into Specified Elements of a Sparse Vector Y in CSCTR ZSCTR
Full-Vector Storage Mode
Gather Specified Elements of a Sparse Vector Y in Full-Vector SGTHR DGTHR D78
Storage Mode into a Sparse Vector X in Compressed-Vector Storage | CGTHR ZGTHR
Mode
Gather Specified Elements of a Sparse Vector Y in Full-Vector SGTHRZ DGTHRZ
Mode into a Sparse Vector X in Compressed-Vector Mode, and CGTHRZ ZGTHRZ
Zero the Same Specified Elements of Y
Multiply a Sparse Vector X in Compressed-Vector Storage Mode by | SAXPYI DAXPYI
a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, CAXPYI ZAXPYI
and Store in the Vector Y
Dot Product of a Sparse Vector X in Compressed-Vector Storage SDOTI' DDOTI"
Mode and a Sparse Vector Y in Full-Vector Storage Mode CDOTCT' ZDOTCI"

CDOTUI* ZDOTUTI"

" This subprogram is invoked as a function in a Fortran program.

Chapter 1. Introduction and Requirements

13

Matrix-Vector Linear Algebra Subprograms
The matrix-vector linear algebra subprograms operate on a higher-level data
structure—matrix-vector rather than vector-scalar—using optimized algorithms to
improve performance. These subprograms include a subset of the standard set of
Level 2 BLAS. For details on the Level 2 BLAS, see and . Both real and
complex versions of the subprograms are provided.

Table 8. List of Matrix-Vector Linear Algebra Subprograms

Short- Precision

Long- Precision

Descriptive Name Subprogram Subprogram Page
Matrix-Vector Product for a General Matrix, Its Transpose, or Its SGEMV™ DGEMV™ @
Conjugate Transpose CGEMV™ ZGEMV™

SGEMXS DGEMX®

SGEMTXS DGEMTX®
Rank-One Update of a General Matrix SGER™ DGER™ @

CGERU™ ZGERU™

CGERC™ ZGERC™
Matrix-Vector Product for a Real Symmetric or Complex Hermitian | SSPMV™ DSPMV™ 310
Matrix CHPMV™ ZHPMV™

SSYMV™ DSYMV™

CHEMV™ ZHEMV™

SSLMXS DSLMXS
Rank-One Update of a Real Symmetric or Complex Hermitian SSPR™ DSPR™ 318
Matrix CHPR™ ZHPR™

SSYR™ DSYR™

CHER™ ZHER™

SSLR1S DSLR1S
Rank-Two Update of a Real Symmetric or Complex Hermitian SSPR2* DSPR2™
Matrix CHPR2™ ZHPR2™

SSYR2™ DSYR2™

CHER2™ ZHER2™

SSLR2S DSLR2S
Matrix-Vector Product for a General Band Matrix, Its Transpose, or | SGBMV™ DGBMV™ 334
Its Conjugate Transpose CGBMV™ ZGBMV™
Matrix-Vector Product for a Real Symmetric or Complex Hermitian | SSBMV™ DSBMV™
Band Matrix CHBMV™ ZHBMV™
Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its | STRMV™ DTRMV™ B46
Conjugate Transpose CTRMV™ ZTRMV™

STPMV™ DTPMV™

CTPMV™ ZTPMV™
Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, |STBMV™ DTBMV™
or Its Conjugate Transpose CTBMV™ ZTBMV™

“ Level 2 BLAS

programs.

S This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

Sparse Matrix-Vector Linear Algebra Subprograms
The sparse matrix-vector linear algebra subprograms operate on sparse matrices;
that is, only the nonzero elements of the matrix are stored. These subprograms

provide similar functions to the matrix-vector subprograms.

14 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 9. List of Sparse Matrix-Vector Linear Algebra Subprograms

Long- Precision
Descriptive Name Subprogram Page
Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode | DSMMX 358
Transpose a Sparse Matrix in Compressed-Matrix Storage Mode DSMTM 361
Matrix-Vector Product for a Sparse Matrix or Its Transpose in DSDMX 365
Compressed-Diagonal Storage Mode

Matrix Operations

Some of the matrix operation subroutines were designed in accordance with the

Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the callin
application program. For details on the Level 3 BLAS, see reference

Table 10. List of Matrix Operation Subroutines

. The
matrix operation subroutines also include the commonly used matrix operations:
addition, subtraction, multiplication, and transposition.

Short- Precision

Long- Precision

Descriptive Name Subroutine Subroutine Page
Matrix Addition for General Matrices or Their Transposes SGEADD DGEADD
CGEADD ZGEADD
Matrix Subtraction for General Matrices or Their Transposes SGESUB DGESUB
CGESUB ZGESUB
Matrix Multiplication for General Matrices, Their Transposes, or SGEMUL DGEMUL
Conjugate Transposes CGEMUL ZGEMUL
DGEMLPS
Matrix Multiplication for General Matrices, Their Transposes, or SGEMMS DGEMMS @
Conjugate Transposes Using Winograd’s Variation of Strassen’s CGEMMS ZGEMMS
Algorithm
Combined Matrix Multiplication and Addition for General SGEMM* DGEMM* @
Matrices, Their Transposes, or Conjugate Transposes CGEMM* ZGEMM*
Matrix-Matrix Product Where One Matrix is Real or Complex SSYMM* DSYMM*
Symmetric or Complex Hermitian CSYMM* ZSYMM*
CHEMM* ZHEMM*
Triangular Matrix-Matrix Product STRMM* DTRMM®*
CTRMM* ZTRMM*
Rank-K Update of a Real or Complex Symmetric or a Complex SSYRK* DSYRK*
Hermitian Matrix CSYRK* ZSYRK*
CHERK* ZHERK"*
Rank-2K Update of a Real or Complex Symmetric or a Complex SSYR2K* DSYR2K*
Hermitian Matrix CSYR2K* ZSYR2K*
CHER2K*® ZHER2K*
General Matrix Transpose (In-Place) SGETMI DGETMI
CGETMI ZGETMI
General Matrix Transpose (Out-of-Place) SGETMO DGETMO 440)
CGETMO ZGETMO

* Level 3 BLAS

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new

programs.

Chapter 1. Introduction and Requirements

15

Linear Algebraic Equations

The linear algebraic equations consist of:

“Dense Linear Algebraic Equations’]|

“Banded Linear Algebraic Equations” on page 18|

“Sparse Linear Algebraic Equations” on page 1§

“Linear Least Squares” on page 19|

Note: Some of the linear algebraic equations were designed in accordance with the

Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these
subprograms do not comply with the standard as approved, IBM will
consider updating them to do so. If IBM updates these subprograms, the
updates could require modifications of the calling application program. For
details on the Level 2 and 3 BLAS, see EI and . For details on
LAPACK, see [E||

Dense Linear Algebraic Equations

The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, real symmetric

indefinite matrices and triangular matrices. Some of these subroutines correspond
to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references

, and @]

Table 11. List of Dense Linear Algebraic Equation Subroutines

Short-Precision | Long-Precision
Descriptive Name Subroutine Subroutine Page
General Matrix Factorization and Multiple Right-Hand Side SGESV~ DGESV#
Solve CGESV~ ZGESV#
General Matrix Factorization SGETRF# DGETRF# 456]
CGETRF# ZGETRF#
SGEF DGEF e
CGEF ZGEF
DGEFPS
General Matrix, Its Transpose, or Its Conjugate Transpose SGETRS” DGETRS” @
Multiple Right-Hand Side Solve CGETRS” ZGETRS”
SGESM DGESM
CGESM ZGESM
General Matrix, Its Transpose, or Its Conjugate Transpose Solve | SGES DGES 163
CGES ZGES
General Matrix Factorization, Condition Number Reciprocal, and | SGEFCD DGEFCD
Determinant
Positive Definite Real Symmetric Matrix Factorization and SPPSV~ DPPSV# 481
Multiple Right-Hand Side Solve CPPSV~ ZPPSV#
Positive Definite Real Symmetric or Complex Hermitian Matrix | SPOSV# DPOSV#
Factorization and Multiple Right-Hand Side Solve CPOSV# ZPOSV#

16 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 11. List of Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision

Long-Precision

Descriptive Name Subroutine Subroutine Page
Positive Definite Real Symmetric or Complex Hermitian Matrix | SPOTRF* DPOTRF# @
Factorization CPOTRF# ZPOTRF~

SPOF DPOF

CPOF ZPOF

SPPTRF~ DPPTRF#

CPPTRF# ZPPTRF#

SPPF DPPF

DPPFPS

Positive Definite Real Symmetric or Complex Hermitian Matrix | SPOTRS” DPOTRS” @
Multiple Right-Hand Side Solve CPOTRS” ZPOTRS”

SPOSM DPOSM

CPOSM ZPOSM

SPPTRS# DPPTRS®

CPPTRS# ZPPTRS”
Positive Definite Real Symmetric Matrix Solve SPPS DPPS
Positive Definite Real Symmetric Matrix Factorization, Condition | SPPFCD DPPFCD
Number Reciprocal, and Determinant SPOFCD DPOFCD
Symmetric Indefinite Matrix Factorization and Multiple DBSSV
Right-Hand Side Solve
Symmetric Indefinite Matrix Factorization DBSTRF 528
Symmetric Indefinite Matrix Multiple Right-Hand Side Solve DBSTRS
General Matrix Inverse, Condition Number Reciprocal, and SGETRI# DGETRI#
Determinant CGETRI# ZGETRI#

SGEICD DGEICD
Positive Definite Real Symmetric or Complex Hermitian Matrix SPOTRI# DPOTRI®
Inverse, Condition Number Reciprocal, and Determinant CPOTRI# ZPOTRI#

SPPTRI® DPPTRI#

SPPICD DPPICD

SPOICD DPOICD
Solution of a Triangular System of Equations with a Single STRSV™ DTRSV™
Right-Hand Side CTRSV™ ZTRSV™

STPSV™ DTPSV*

CTPSV™ ZTPSV™
Solution of Triangular Systems of Equations with Multiple STRSM* DTRSM*
Right-Hand Sides CTRSM* ZTRSM*
Triangular Matrix Inverse STRTRI® DTRTRI# @

CTRTRI# ZTRTRI#

STPTRI# DTPTRI#

CTPTRI# ZTPTRI#

STRIS DTRIS

STPIS DTPIS

~ Level 2 BLAS
* Level 3 BLAS

2 LAPACK

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

programs. Documentation for this subroutine is no longer provided.

Chapter 1. Introduction and Requirements

17

Banded Linear Algebraic Equations

The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for real general band matrices, real positive definite
symmetric band matrices, real or complex general tridiagonal matrices, real
positive definite symmetric tridiagonal matrices, and real or complex triangular
band matrices.

Table 12. List of Banded Linear Algebraic Equation Subroutines

Short- Precision |Long- Precision

Descriptive Name Subroutine Subroutine Page

General Band Matrix Factorization SGBF DGBF

General Band Matrix Solve SGBS DGBS

Positive Definite Symmetric Band Matrix Factorization SPBF DPBF
SPBCHF DPBCHF

Positive Definite Symmetric Band Matrix Solve SPBS DPBS 588
SPBCHS DPBCHS

General Tridiagonal Matrix Factorization SGTF DGTF

General Tridiagonal Matrix Solve SGTS DGTS @

General Tridiagonal Matrix Combined Factorization and Solve with | SGTNP DGTNP @

No Pivoting CGTNP ZGTNP

General Tridiagonal Matrix Factorization with No Pivoting SGTNPF DGTNPF @
CGTNPF ZGTNPF

General Tridiagonal Matrix Solve with No Pivoting SGTNPS DGTNPS @
CGTNPS ZGTNPS

Positive Definite Symmetric Tridiagonal Matrix Factorization SPTF DPTE [RE|

Positive Definite Symmetric Tridiagonal Matrix Solve SPTS DPTS @

Triangular Band Equation Solve STBSV™ DTBSV* kod
CTBSV™ ZTBSV™

~ Level 2 BLAS

Sparse Linear Algebraic Equations

The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their
transposes and for sparse symmetric matrices.

Table 13. List of Sparse Linear Algebraic Equation Subroutines

Long- Precision

Descriptive Name Subroutine Page
General Sparse Matrix Factorization Using Storage by Indices, Rows, or DGSF
Columns

General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or | DGSS
Columns

General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve DGKFS
Using Skyline Storage Mode DGKFSPS

Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline DSKFS 642,

Storage Mode DSKFSPS

Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored | DSRIS
by Rows

o)
N
[y

Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve DSMCGH
Using Compressed-Matrix Storage Mode

18 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 13. List of Sparse Linear Algebraic Equation Subroutines (continued)

Long- Precision
Descriptive Name Subroutine Page
Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve DSDCG 679
Using Compressed-Diagonal Storage Mode
General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode | DSMGCG*
General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode | DSDGCG 694

S This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

* This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Use DSRIS instead.

Linear Least Squares

The linear least squares subroutines provide least squares solutions to linear
systems of equations for real general matrices. Three methods are provided: one
that uses the singular value decomposition; one that uses a QR decomposition with
column pivoting; and another that uses a QR decomposition without column
pivoting. Some of these subroutines correspond to the LAPACK routines described
in reference B]

Table 14. List of Linear Least Squares Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Singular Value Decomposition for a General Matrix SGESVF DGESVF
Linear Least Squares Solution for a General Matrix Using the SGESVS DGESVS
Singular Value Decomposition
General Matrix QR Factorization DGEQRF# 715
Linear Least Squares Solution for a General Matrix DGELS# 719
Linear Least Squares Solution for a General Matrix with Column |SGELLS DGELLS 726
Pivoting
2 LAPACK

Eigensystem Analysis

The eigensystem analysis subroutines provide solutions to the algebraic
eigensystem analysis problem Az = wz and the generalized eigensystem analysis
problem Az = wBz . Many of the eigensystem analysis subroutines use
the algorithms presented in Linear Algebra by Wilkinson and Reinsch or use
adaptations of EISPACK routines, as described in theEISPACK Guide Lecture Notes®
in Computer Science in reference or in the EISPACK Guide Extension Lecture
Notes in Computer Science in reference . (EISPACK is available from the sources
listed in reference .)

Table 15. List of Eigensystem Analysis Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Eigenvalues and, Optionally, All or Selected Eigenvectors of a SGEEV¢ DGEEV*
General Matrix CGEEV* ZGEEV*
Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric | SSPEV¢ DSPEV¢
Matrix or a Complex Hermitian Matrix CHPEV* ZHPEV?

Chapter 1. Introduction and Requirements 19

Table 15. List of Eigensystem Analysis Subroutines (continued)

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real SSPSV< DSPSV¢
Symmetric Matrix or a Complex Hermitian Matrix CHPSV¢ ZHPSV¢
Eigenvalues and, Optionally, the Eigenvectors of a Generalized SGEGV* DGEGV* @
Real Eigensystem, Az=wBz, where A and B Are Real General
Matrices
Eigenvalues and, Optionally, the Eigenvectors of a Generalized SSYGV? DSYGV¢ @
Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric
and B Is Real Symmetric Positive Definite

‘Not LAPACK. Although this subroutine has the same name as an existing LAPACK subroutine, its calling-sequence
arguments and functionality are different from that LAPACK subroutine.

Fourier Transforms, Convolutions and Correlations, and

Related Computations
This signal processing area provides:

e Fourier transform subroutines 1| Table 16|D

+ Convolution and correlation subroutines (Table 17)

* Related-computation subroutines (Table 18)

Fourier Transforms

The Fourier transform subroutines perform mixed-radix transforms in one, two,

and three dimensions.

Table 16. List of Fourier Transform Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Complex Fourier Transform SCFT DCFT
SCFTPS
Real-to-Complex Fourier Transform SRCFT DRCFT
Complex-to-Real Fourier Transform SCRFT DCRFT
Cosine Transform SCOSF DCOSF 810
SCOSFT*
Sine Transform SSINF DSINF
Complex Fourier Transform in Two Dimensions SCFT2 DCFT2 826
SCFT2PS
Real-to-Complex Fourier Transform in Two Dimensions SRCFT2 DRCFT2 833
Complex-to-Real Fourier Transform in Two Dimensions SCRFT2 DCRFT2 540
Complex Fourier Transform in Three Dimensions SCFT3 DCFT3 348
SCFT3P$
Real-to-Complex Fourier Transform in Three Dimensions SRCFT3 DRCFT3 854
Complex-to-Real Fourier Transform in Three Dimensions SCRFT3 DCREFT3 860
§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Convolutions and Correlations
The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a

20 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

Table 17. List of Convolution and Correlation Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Convolution or Correlation of One Sequence with One or More SCONS
Sequences SCORS
Convolution or Correlation of One Sequence with Another SCOND
Sequence Using a Direct Method SCORD
Convolution or Correlation of One Sequence with One or More SCONF 879
Sequences Using the Mixed-Radix Fourier Method SCORF
Convolution or Correlation with Decimated Output Using a Direct | SDCON DDCON
Method SDCOR DDCOR
Autocorrelation of One or More Sequences SACORS 894
Autocorrelation of One or More Sequences Using the Mixed-Radix | SACORF 898
Fourier Method

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Related Computations

The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those
provided on the IBM 3838 Array Processor; however, the ESSL subroutines
generally solve a wider range of problems.

Table 18. List of Related-Computation Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Polynomial Evaluation SPOLY DPOLY G|
I-th Zero Crossing SIZC DIizC
Time-Varying Recursive Filter STREC DTREC 011
Quadratic Interpolation SQINT DQINT 014
Wiener-Levinson Filter Coefficients SWLEV DWLEV 018

CWLEV ZWLEV

Sorting and Searching

The sorting and searching subroutines operate on three types of data: integer,
short-precision real, and long-precision real . The sorting subroutines
perform sorts with or without index designations. The searching subroutines
perform either a binary or sequential search.

Table 19. List of Sorting and Searching Subroutines

Integer Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Subroutine Page
Sort the Elements of a Sequence ISORT SSORT DSORT 925
Sort the Elements of a Sequence and Note the ISORTX SSORTX DSORTX
Original Element Positions
Sort the Elements of a Sequence Using a Stable |ISORTS SSORTS DSORTS 930
Sort and Note the Original Element Positions

Chapter 1. Introduction and Requirements

21

Table 19. List of Sorting and Searching Subroutines (continued)

Integer Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Subroutine Page
Binary Search for Elements of a Sequence X in a |IBSRCH SBSRCH DBSRCH 934
Sorted Sequence Y
Sequential Search for Elements of a Sequence X |ISSRCH SSSRCH DSSRCH 938
in the Sequence Y

Interpolation

The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and both one- and two-dimensional

cubic spline interpolation (Table 20).

Table 20. List of Interpolation Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Polynomial Interpolation SPINT DPINT
Local Polynomial Interpolation STPINT DTPINT 950)
Cubic Spline Interpolation SCSINT DCSINT
Two-Dimensional Cubic Spline Interpolation SCSIN2 DCSIN2 959

Numerical Quadrature

The numerical quadrature subroutines provide Gaussian quadrature methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration (Table 21|D.

Table 21. List of Numerical Quadrature Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Numerical Quadrature Performed on a Set of Points SPTNQ DPTNQ @
Numerical Quadrature Performed on a Function Using SGLNQ' DGLNQ"
Gauss-Legendre Quadrature
Numerical Quadrature Performed on a Function Over a Rectangle |SGLNQ2' DGLNQ2*
Using Two-Dimensional Gauss-Legendre Quadrature
Numerical Quadrature Performed on a Function Using SGLGQ" DGLGQ" 079
Gauss-Laguerre Quadrature
Numerical Quadrature Performed on a Function Using SGRAQ?" DGRAQ"
Gauss-Rational Quadrature
Numerical Quadrature Performed on a Function Using SGHMQ" DGHMQ" 086
Gauss-Hermite Quadrature

" This subprogram is invoked as a function in a Fortran program.

Random Number Generation

Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers (Table 22).

22 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 22. List of Random Number Generation Subroutines

Short- Precision

Long- Precision

Descriptive Name Subroutine Subroutine Page
Generate a Vector of Uniformly Distributed Random Numbers SURAND DURAND 991
Generate a Vector of Normally Distributed Random Numbers SNRAND DNRAND 994
Generate a Vector of Long Period Uniformly Distributed Random | SURXOR DURXOR 998

Numbers

Utilities

The utility subroutines perform general service functions that support ESSL, rather

than mathematical computations (Table 23).

Table 23. List of Utility Subroutines

Descriptive Name Subroutine Page
ESSL Error Information-Handler Subroutine EINFO
ESSL ERRSAV Subroutine for ESSL ERRSAV
ESSL ERRSET Subroutine for ESSL ERRSET
ESSL ERRSTR Subroutine for ESSL ERRSTR
Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library IVSSETS

Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library IEVOPS®

Determine the Level of ESSL Installed IESSL
Determine the Stride Value for Optimal Performance in Specified Fourier Transform | STRIDE
Subroutines

Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode | DSRSM
For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline DGKTRN
Storage Mode

For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline | DSKTRN 103

Storage Mode

S This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new

programs. Documentation for this subroutine is no longer provided.

Chapter 1. Introduction and Requirements

23

24 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 2. Planning Your Program

This chapter provides information about ESSL that you need when planning your
program. Its purpose is to help you in performing the following tasks:

* Selecting an ESSL subroutine

* Avoiding Conflicts with Internal ESSL Routine Names That are Exported
* Setting up your data

* Setting up your ESSL calling sequences

* Using auxiliary storage in ESSL

¢ Providing a correct transform length to ESSL

* Getting the best accuracy

* Getting the best performance

* Dealing with errors when using ESSL

Selecting an ESSL Subroutine

Your choice of which ESSL subroutine to use is based mainly on the functional
needs of your program. However, you have a choice of several variations of many
of the subroutines. In addition, there are instances where certain subroutines
cannot be used. This section describes these variations and limitations. See the
answers to each question below that applies to you.

Which ESSL Library Do You Want to Use?

ESSL provides two run-time libraries:

e The ESSL SMP Library provides thread-safe versions of the ESSL subroutines
for use on all SMP processors. In addition, a subset of these subroutines are also
multithreaded versions; that is, they support the shared memory parallel
processing programming model. For a list of the multithreaded subroutines in
the ESSL SMP Library, see [Table 24 on page 26}

* The ESSL Serial Library provides thread-safe versions of the ESSL subroutines
for use on all processors. You may choose to use this library if you decide to
develop your own multithreaded programs that call the thread-safe ESSL
subroutines.

The number of threads you choose to use depends on the problem size, the
specific subroutine being called, and the number of physical processors you are
running on. To achieve optimal performance, experimentation is necessary;
however, picking the number of threads equal to the number of online
processors generally provides good performance in most cases. In a few cases,
performance may increase if you choose the number of threads to be less than
the number of online processors. For more information about thread concepts,
see AIX General Programming Concepts: Writing and Debugging Programs and
reference .

The ESSL SERIAL Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications. For details see [Chapter 4
“Coding Your Program,” on page 107|and |Chapter 5, “Processing Your Program,”|

on page 159.|

© Copyright IBM Corp. 1991, 2004 25

Table 24. Multithreaded ESSL SMP Subroutines

Subroutine Names

Vector-Scalar Linear Algebra Subprograms:

SASUM, DASUM, SCASUM, DZASUM

SAXPY, DAXPY, CAXPY, ZAXPY

SCOPY, DCOPY, CCOPY, ZCOPY

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC
SNDOT, DNDOT

SNORM2, DNORM2, CNORM?2, ZNORM2

SROT, DROT, CROT, ZROT, CSROT, ZDROT
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL
SSWAP, DSWAP, CSWAP, ZSWAP

SVEA, DVEA, CVEA, ZVEA

SVES, DVES, CVES, ZVES

SVEM, DVEM, CVEM, ZVEM

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX
SZAXPY, DZAXPY, CZAXPY, ZZAXPY

Matrix-Vector Linear Algebra Subprograms:

SGEMV, DGEMV, CGEMV, ZGEMV
SGER, DGER, CGERU, ZGERU, CGERC, ZGERC
SSPMV, DSPMV, CHPMV, ZHPMV
SSYMV, DSYMV, CHEMV, ZHEMV
SSPR, DSPR, CHPR, ZHPR

SSYR, DSYR, CHER, ZHER

SSPR2, DSPR2, CHPR2, ZHPR2
SSYR2, DSYR2, CHER2, ZHER2
SGBMV*, DGBMV*

CGBMV?*, ZGBMV"*

SSBMV*, DSBMV*

CHBMV®*, ZHBMV*

STRMV, DTRMV, CTRMYV, ZTRMV
STPMV, DTPMV, CTPMV, ZTPMV
STBMV*, DTBMV*

CTBMV*, ZTBMV*

Matrix Operations:

SGEADD, DGEADD, CGEADD, ZGEADD

SGESUB, DGESUB, CGESUB, ZGESUB

SGEMUL, DGEMUL, CGEMUL, ZGEMUL

SGEMM, DGEMM, CGEMM, ZGEMM

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM
STRMM, DTRMM, CTRMM, ZTRMM

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K
SGETMI, DGETMI, CGETMI, ZGETMI

SGETMO, DGETMO, CGETMO, ZGETMO

26 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 24. Multithreaded ESSL SMP Subroutines (continued)

Subroutine Names

Dense Linear Algebraic Equations:

SGESV, DGESV, CGESV, ZGESV

SGEF, DGEF, CGEF, ZGEF

SGES, DGES, CGES, ZGES

SGETRE, DGETRF, CGETRF, ZGETRF

SGETRS, DGETRS, CGETRS, ZGETRS

SPPSV, DPPSV, CPPSV, ZPPSV

SPPE, DPPF, SPPTRE, DPPTRF, CPPTRF, ZPPTRF, DPOF, DPOTRF
SPPTRS, DPPTRS, CPPTRS, ZPPTRS

SPOSV, DPOSV, CPOSV, ZPOSV

SPOSM, DPOSM, CPOSM, ZPOSM

SPPFCD*, DPPECD*, DPOFCD*

SPPTRI, DPPTRI, SPPICD*, DPPICD*, DPOICD*
STRSV, DTRSV, CTRSV, ZTRSV

STPSV, DTPSV, CTPSV, ZTPSV

STRSM, DTRSM, CTRSM, ZTRSM

STRI, DTRI, STRTRI, DTRTRI, CTRTRI, ZTRTRI

Sparse Linear Algebraic Equations:

DSRIS*

Linear Least Squares:

DGEQRF

Fourier Transforms:

SCFT, DCFT
SRCFT, DRCFT
SCRFT, DCRFT
SCFT2, DCFT2
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SRCFT3, DRCFT3
DCRFT3, DCRFT3

Convolution and Correlation:

SCOND, SCORD
SDCON, SDCOR, DDCON, DDCOR

Chapter 2. Planning Your Program 27

28

Table 24. Multithreaded ESSL SMP Subroutines (continued)

Subroutine Names

Many of the dense linear algebraic equations and eigensystem analysis subroutines make
one or more calls to the multithreaded versions of the matrix-vector linear algebra and
matrix operation subroutines shown in this table. SCOSF, DCOSEF, SSINF, and DSINF make
one or more calls to the multithreaded versions of the Fourier Transform subroutines
shown in this table. These subroutines benefit from the increased performance of the
multithreaded versions of the ESSL SMP subroutines.

Your performance may be improved by setting the Environment variables:
ESSL for AIX export MALLOCMULTIHEAP=true

—and—

export XLSMPOPTS="spins=0:yields=0"
ESSL for Linux export XLSMPOPTS="spins=0:yields=0"

For additional information, see the AIX Performance Management Guide and the XLF
Manuals.

* DSRIS only uses multiple threads when IPARM(4) = 1 or 2.

* The Level 2 Banded BLAS use multiple threads only when the bandwidth is sufficiently
large.

* Multiple threads are used for the factor or inverse computation.

What Type of Data Are You Processing in Your Program?

The version of the ESSL subroutine you select should agree with the data you are
using. ESSL provides a short- and long-precision version of most of its subroutines
processing short- and long-precision data, respectively. In a few cases, it also
provides an integer version processing integer data or returning just integer data.
The subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real

D for long-precision real

C for short-precision complex
Z for long-precision complex
I for integer

The precision of your data affects the accuracy of your results. This is discussed in
“Getting the Best Accuracy” on page 43]For a description of these data types, see
“How Do You Set Up Your Scalar Data?” on page 29|

How Is Your Data Structured? And What Storage Technique
Are You Using?

Some subroutines process specific data structures, such as sparse vectors and
matrices or dense and banded matrices. In addition, these data structures can be
stored using various storage techniques. You should select the proper subroutine
on the basis of the type of data structure you have and the storage technique you
want to use. If possible, you should use a storage technique that conserves storage
and potentially improves performance. For more about storage techniques, see
[“Setting Up Your Data” on page 29

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

What about Performance and Accuracy?

ESSL provides variations among some of its subroutines. You should consider
performance and accuracy when deciding which subroutine is the best to use.
Study the “Function” section in each subroutine description. It helps you
understand exactly what each subroutine does, and helps you determine which
subroutine is best for you. For example, some subroutines perform multiple
computations of a certain type. This might give you better performance than a
subroutine that does each computation individually. In other cases, one subroutine
may do scaling while another does not. If scaling is not necessary for your data,
you get better performance by using the subroutine without scaling.

Avoiding Conflicts with Internal ESSL Routine Names That are

Exported

Do not use names for your own subroutines, functions, and global variables that
are the same as the ESSL exported names. All internal ESSL routine names that are
exported begin with the ESV prefix, so you should avoid using this prefix for your
own names.

Setting Up Your Data

This section explains how to set up your scalar and array data and points you to
where you can find more detail.

How Do You Set Up Your Scalar Data?

A scalar item is a single item of data, whether it is a constant, a variable, or an
element of an array. ESSL assumes that your scalar data conforms to the
appropriate standards, as described below. The scalar data types and how you
should code them for each programming language are listed under “Coding Your
Scalar Data” in each language section in [Chapter 4, “Coding Your Program,” on|

Internal Representation

Scalar data passed to ESSL from all types of programs, including Fortran, C, and
C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point
format, as described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985.

How Do You Set Up Your Arrays?

An array represents an area of storage in your program, containing data stored in
a series of locations. An array has a single name. It is made up of one or more
pieces of scalar data, all the same type. These are the elements of the array. It can
be passed to the ESSL subroutine as input, returned to your program as output, or
used for both input and output, in which case the original contents are
overwritten.

Arrays can contain conceptual (mathematical) data structures, such as vectors,
matrices, or sequences. There are many different types of data structures. Each type
of data structure requires a unique arrangement of data in an array and does not
necessarily have to include all the elements of the array. In addition, the elements
of these data structures are not always contiguous in storage within an array.
Stride and leading dimension arguments passed to ESSL subroutines define the
separations in array storage for the elements of the vector, matrix, and sequence.
All these aspects of data structures are described in Chapter 3, “Setting Up Your

Chapter 2. Planning Your Program 29

[Data Structures,” on page 55 You must first understand array storage techniques
to fully understand the concepts of data structures, stride, and leading dimension,
especially if you are using them in unconventional ways.

ESSL subroutines assume that all arrays passed to them are stored using the
Fortran array storage techniques (in column-major order), and they process your
data accordingly. For details, see [“Setting Up Arrays in Fortran” on page 108.On
the other hand, C, and C++ programs store arrays in row-major order. For details
on what you can do, see:

e For C, see pagel”Setting Up Arrays in C” on page 129)

* For C++, see page[“Setting Up Arrays in C++” on page 146

How Should Your Array Data Be Aligned?

All arrays, regardless of the type of data, should be aligned on a doubleword
boundary to ensure optimal performance. For information on how your
programming language aligns data, see your programming language manuals.

What Storage Mode Should You Use for Your Data?

The amount of storage used by arrays and the storage arrangement of data in the
arrays can affect overall program performance. As a result, ESSL provides
subroutines that operate on different types of data structures, stored using various
storage modes. You should chose a storage mode that conserves storage and
potentially improves performance. For definitions of the various data structures
and their corresponding storage modes, see [Chapter 3, “Setting Up Your Datal
[Structures,” on page 55 You can also find special storage considerations, where
applicable, in the “Notes” section of each subroutine description.

How Do You Convert from One Storage Mode to Another?

This section describes how you can convert from one storage mode to another.

Conversion Subroutines
ESSL provides several subroutines that help you convert from one storage mode to
another:

* DSRSM is used to migrate your existing program from sparse matrices stored by
rows to sparse matrices stored in compressed-matrix storage mode. This
converts the matrices into a storage format that is compatible with the input
requirements for some ESSL sparse matrix subroutines, such as DSMMX.

* DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKEFSP or DSKFS/DSKFSP, respectively.

Sample Programs

In addition, sample programs are provided with many of the storage mode
descriptions in |[Chapter 3, “Setting Up Your Data Structures,” on page 55) You can
use these sample programs to convert your data to the desired storage mode by
adapting them to your application program.

Setting Up Your ESSL Calling Sequences

This section gives the general rules for setting up the ESSL calling sequences. The
information given here applies to all types of programs, running in all
environments. For a description and examples of how to code the ESSL calling
sequences in your particular programming language, see the following sections:

+ |“Fortran Programs” on page 107

30 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

« |"C Programs” on page 125|
* |"C++ Programs” on page 141

For details on the conventions used in this book to describe the calling sequence
syntax, see ['How to Interpret the Subroutine Descriptions” on page xix/ It
describes how required and optional arguments are indicated in the calling
sequence and the naming conventions used for different data types.

What Is an Input-Output Argument?

Some arguments are used for both input and output. The contents of the input
argument are overlaid with the output value(s) on return to your program. Be
careful that you save any data you need to preserve before calling the ESSL
subroutine.

What Are the General Rules to Follow when Specifying Data
for the Arguments?

You should follow the syntax rules given for each argument in “On Entry” in the
subroutine description. Input-argument error messages may be issued, and your
program may terminate when you make an error specifying the input arguments.
For example:

e Data passed to ESSL must be of the correct type: integer, character, real,
complex, short-precision, or long-precision. There is no conversion of data.
Assuming you are using the ESSL header file with your C and C++ programs,
you first need to define the following;:

— Complex and logical data in C programs, using the guidelines given on page
128

— Short-precision complex and logical data in C++ programs, using the
guidelines given on page
* Character values must be one of the specified values. For example, it may have
to be 'N', 'T', or 'C'.
* Numeric values must fall within the correct range for that argument. For

example, a numeric value may need to be greater than or equal to 0, or it may
have to be a nonzero value.

* Arrays must be defined correctly; that is, they must have the correct dimensions,
or the dimensions must fall within the correct range. For example, input and
output matrices may need to be conformable, or the number of rows in the
matrix must be less than or equal to the leading dimension specified. (ESSL
assumes all arrays are stored in column-major order.)

What Happens When a Value of 0 Is Specified for N?

For most ESSL subroutines, if you specify 0 for the number of elements to be
processed in a vector or the order of a matrix (usually argument 7), no
computation is performed. After checking for input-argument errors, the
subroutine returns immediately and no result is returned. In the other subroutines,
an error message may be issued.

How Do You Specify the Beginning of the Data Structure in
the ESSL Calling Sequence?

When you specify a vector, matrix, or sequence in your calling sequence, it does
not necessarily have to start at the beginning of the array. It can begin at any
point in the array. For example, if you want vector x to start at element 3 in array

Chapter 2. Planning Your Program 31

A, which is declared A(1:12), specify A(3) in your calling sequence for argument x,
such as in the following SASUM calling sequence in your Fortran program:

N X INCX

||
X = SASUM(4 , A(3) , 2)

Also, for example, if you want matrix A to start at the second row and third
column of array A, which is declared A(0:10,2:8), specify A(1,4) in your calling
sequence for argument 4, such as in the following SGEADD calling sequence in
your Fortran program:

A LDA TRANSA B LDB TRANSB C LDC M N

| |
CALL SGEADD(A(1,4) , 11, 'N' , B, 4, 'N' ,C,4,4,3)

For more examples of specifying vectors and matrices, see |Chapter 3, “Setting Up|
[Your Data Structures,” on page 55.|

Using Auxiliary Storage in ESSL

For the ESSL subroutines listed in you need to provide extra working
storage to perform the computation. This section describes the use of dynamic
allocation for providing auxiliary storage in ESSL and how to calculate the amount
of auxiliary storage you need by use of formulas or error-handling capabilities
provided in ESSL, if dynamic allocation is not an option.

Auxiliary storage, or working storage, is supplied through one or more arguments,
such as aux, in the calling sequence for the ESSL subroutine. If the working
storage does not need to persist after the subroutine call, it is suggested you use
dynamic allocation. For example, in the Fourier Transforms subroutines, you may
allocate aux2 dynamically, but not aux1. See the subroutine descriptions in Part 2 of
this book for details and variations.

Table 25. ESSL Subroutines Requiring Auxiliary Working Storage

Subroutine Names

Linear Algebra Subprograms:
DSMTM

Matrix Operations:
_GEMMS

Dense Linear Algebraic Equations:
_GEFCD _PPFCD _GEICD _PPICD _POFCD
_POICD DGEFP* DPPFP*

Sparse Linear Algebraic Equations:
DGSF DGSS DGKFS DGKFSP* DSKFS DSKFSP*
DSRIS DSMCG DSDCG DSMGCG DSDGCG

Linear Least Squares:
_GESVF _GELLS

Eigensystem Analysis:
_GEEV _SPEV _HPEV _SPSV _HPSV
_GEGV _SYGV

Fourier Transforms:

_CFT _RCFT _CRFT _COSF _SINF
SCOSFT* _CFT2 _RCFT2 _CRFTI2 _CFT3
_RCFT3 _CRFT3 SCFTP* SCFT2P* SCFT3P2

32 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 25. ESSL Subroutines Requiring Auxiliary Working Storage (continued)

Subroutine Names

Convolutions and Correlations:
SCONF SCORF SACORF

Related Computations:
_WLEV

Interpolation:
_TPINT _CSIN2

Random Number Generation:
_NRAND

Utilities:
DGKTRN DSKTRN

4 Documentation for this subroutine is no longer provided. The aux and naux arguments
for the subroutine are specified the same as for the corresponding serial ESSL subroutine.

Dynamic Allocation of Auxiliary Storage

Dynamic allocation for the auxiliary storage is performed when error 2015 is
unrecoverable and naux=0. For details on which aux arguments allow dynamic
allocation, see the subroutine descriptions in Part 2 of this book.

Setting Up Auxiliary Storage When Dynamic Allocation Is Not

You set up the storage area in your program and pass it to ESSL through
arguments, specifying the size of the aux work area in the naux argument.

Who Do You Want to Calculate the Size? You or ESSL?

You have a choice of two methods for determining how much auxiliary storage
you should specify:

* Use the formulas provided in the subroutine description to derive sufficient
values for your current and future needs. Use them if ease of migration to
future machines and future releases of ESSL is your primary concern. For details,
see ["How Do You Calculate the Size Using the Formulas?.”]

* Use the ESSL error-handling facilities to return to you a minimum value for the
particular processor you are currently running on. (Values vary by platform.)
Use this approach if conserving storage is your primary concern. For details, see
“How Do You Get ESSL to Calculate the Size Using ESSL Error Handling?” on|

page 34

How Do You Calculate the Size Using the Formulas?

The formulas provided for calculating naux indicate a sufficient amount of
auxiliary storage required, which, in most cases, is larger than the minimum
amount, returned by ESSL error handling. There are two types of formulas:

* Simple formulas

These are given in the naux argument syntax descriptions. In general, these
formulas result in the minimum required value, but, in a few cases, they provide
overestimates.

* Processor-independent formulas

These are given in separate sections in the subroutine description. In general,
these provide overestimates.

Chapter 2. Planning Your Program 33

Both types of formulas provide values that are sufficient for all processors. As a
result, you can migrate to any other processor and to future releases of ESSL
without being concerned about having to increase the amount of storage for aux.
You do, of course, need to weigh your storage requirements against the
convenience of using this larger value.

To calculate the amount of storage using the formulas, you must substitute values
for specific variables, such as n, m, n1, or n2. These variables are arguments
specified in the ESSL calling sequence or derived from the arguments in the calling
sequence.

How Do You Get ESSL to Calculate the Size Using ESSL Error
Handling?

This section describes how you can get ESSL to calculate auxiliary storage.

Here Are the Two Ways You Can Do It

Ask yourself which of the following ways you prefer to obtain the information
from ESSL:

* By leaving error 2015 unrecoverable, you can obtain the minimum required
value of naux from the input-argument error message, but your program
terminates.

* By making error 2015 recoverable, you can obtain the minimum required value
of naux from the input-argument error message and have the updated naux
argument returned to your program.

For both techniques, the amount returned by the ESSL error-handling facility is the
minimum amount of auxiliary storage required to run your program successfully
on the particular processor you are currently running on. The ESSL
error-handling capability usually returns a smaller value than you derive by using
the formulas listed for the subroutine. This is because the formulas provide a good
estimate, but ESSL can calculate exactly what is needed on the basis of your data.

The values returned by ESSL error handling may not apply to future processors.
You should not use them if you plan to run your program on a future processor.
You should use them only if you are concerned with minimizing the amount of
auxiliary storage used by your program.

The First Way

In this case, you obtain the minimum required value of naux from the error
message, but your program terminates. The following description assumes that
dynamic allocation is not selected as an option.

Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with the naux values smaller than required by the subroutine for the
particular processor you are running on. As a general guideline, specify values
smaller than those listed in the formulas. However, if a lower limit is specified in
the syntax (only for several naux1 arguments in the Fourier transform, convolution,
and correlation subroutines), you should not go below that limit. The ESSL error
monitor returns the necessary sizes of the aux storage areas in the input-argument
error message. This does, however, terminate your program when the error is
encountered. (If you accidentally specify a sufficient amount of storage for the
ESSL subroutine to perform the computation, error handling does not issue an
error message and processing continues normally.) [Figure 1 on page 35| illustrates
what happens when error 2015 is unrecoverable.

34 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

User Program

Call ESSL
subroutine

] ESSL Subroutine

N

[«

I‘

Is NAUX=0
and
dynamic allocati
is allowed

?

Is NAUX >
lower limit
7

es Issue message 2538-2015
y with lower limit
|
[Terminate]
Is NAUX =
minimum no
required
value?
Issue message 2538-2015
yes with minimum

<&

on

yes

required value

(

Terminate]

<

[Perform ESSL

computation

)

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

subroutines.

Figure 1. How to Obtain an NAUX Value from an Error Message, but Terminate

The Second Way

In this case, you obtain the minimum required value of naux from the error
message and from the updated naux argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2015 recoverable. This allows you to dynamically determine in your program the
minimum sizes required for the auxiliary working storage areas, specified in the
naux arguments. Run your program with the naux values smaller than required by
the subroutine for the particular processor you are running on. As a general
guideline, specify values smaller than those listed in the formulas. However, if a
lower limit is specified in the syntax (only for several naux1 arguments in the
Fourier transform, convolution, and correlation subroutines), you should not go
below that limit. The ESSL error monitor returns the necessary sizes of the aux
storage areas in the input-argument error message and a return code is passed

Chapter 2. Planning Your Program 35

User Program

back to your program, indicating that updated values are also returned in the naux
arguments. You can then react to these updated values during run time in your
program. ESSL does not perform any computation when this error occurs. For
details on how to do this, see [Chapter 4, “Coding Your Program,” on page 107/ (If
you accidentally specify a sufficient amount of storage for the ESSL subroutine to
perform the computation, error handling does not issue an error message and
processing continues normally.) illustrates what happens when error 2015
is recoverable.

ESSL Subroutine

Make error
2015 recoverable

Is NAUX >

lower limit
?*

Issue message 2538-2015

Call ESSL
subroutine

with lower limit

N
J

<&
<

Is return code
=r?

Terminate

Is NAUX >
minimum
required
value?

(

Issue message 2538-2015
React to updated yes with minimum
NAUX value required value

Perform ESSL
computation

Updated NAUX argument
with minimum

required value

Set return code
=r

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

subroutines.

Figure 2. How to Obtain an NAUX Value from an Error Message and in Your Program

Here Is an Example of What Happens When You Use These Two
Techniques

The following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, naux. A key point
here is that if you want to have the updated argument value returned to your

36 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

program, you must make error 2015 recoverable and then specify an naux value
greater than or equal to 20 and less than 300. For values out of that range, the
error recovery facility is not in effect. (These values of naux, 20 and 300, are used
only for the purposes of this example and do not relate to any of the ESSL

subroutines.)

NAUX Meaning of the NAUX Value

20 Lower limit of naux required for using recoverable input-argument
error-handling facilities in ESSL. (This applies only to several naux1
arguments in the Fourier transform, convolution, and correlation
subroutines. You can find the lower limit in the syntax description for the
naux1 argument. For a list of subroutines, see[Table 25 on page 32})

300 Minimum value of naux, required for successful running (on the processor

the program is being run on).

describes the actions taken by ESSL in every possible situation for the

values given in this example.

Table 26. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

NAUX Value

Action When 2015 Is an Unrecoverable
Input-Argument Error

Action When 2015 Is a Recoverable
Input-Argument Error

naux < 20

An input-argument error message is issued.

The value in the error message is the lower
limit, 20. The application program stops.

An input-argument error message is issued.
The value in the error message is the lower
limit, 20. The application program stops.

20 = naux < 300

An input-argument error message is issued.

The value in the error message is the
minimum required value, 300. The
application program stops.

ESSL returns the value of naux as 300 to the
application program, and an input-argument
error message is issued. The value in the
error message is the minimum required
value, 300. ESSL does no computation, and
control is returned to the application
program.

naux = 300

Your application program runs successfully.

Your application program runs successfully.

Here Is How You Code It in Your Program

If you leave error 2015 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the sizes of auxiliary storage. On the
other hand, if you want to make error 2015 recoverable to obtain the auxiliary
storage sizes dynamically in your program, you need to add some coding
statements to your program. For details on coding these statements in each
programming language, see the following examples:

* For Fortran, see page m
e For C, see page
e For C++, see page

You may want to provide a separate subroutine to calculate the auxiliary storage

size whenever you need it. [Figure 3 on page 38/shows how you might code a

separate Fortran subroutine. Before calling SCFT in your program, call this
subroutine, SCFT which calculates the minimum size and stores it in the naux
arguments. Upon return, your program checks the return code. If it is nonzero, the
naux arguments were updated, as planned. You should then make sure adequate
storage is available and call SCFT. On the other hand, if the return code is zero,
error handling was not invoked, the naux arguments were not updated, and the
initialization step was performed for SCFT.

Chapter 2. Planning Your Program 37

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUXI,AUX2,NAUX2)
REAL#4 X(0:%),Y(0:%),SCALE
REAL*8 AUX1(7),AUX2(0:%)
INTEGER+4 INIT,INC1X,INC2X,INCLY,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 $2015
CALL EINFO(0)
CALL ERRSAV(2015,52015)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INCLX,INC2X,Y,INCLY,INC2Y,
* N,M, ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,52015)
RETURN
10 CONTINUE
CALL ERRSTR(2015,52015)
RETURN 1
END

Figure 3. Fortran Subroutine to Calculate Auxiliary Storage Sizes

Providing a Correct Transform Length to ESSL

This section describes how to calculate the length of your transform by use of
formulas or error-handling capabilities provided in ESSL.

What ESSL Subroutines Require Transform Lengths?

For the ESSL subroutines listed in you need to provide one or more
transform lengths for the computation of a Fourier transform. These transform
lengths are supplied through one or more arguments, such as 1, n1, n2, and #3, in
the calling sequence for the ESSL subroutine. Only certain lengths of transforms
are permitted in the computation.

Table 27. ESSL Subroutines Requiring Transform Lengths

Subroutine Names

Fourier Transforms:

_CFT _RCFT _CRFT _COSF _SINF
SCOSFT _CFT2 _RCFI2 _CRFTI2 _CFT3
_RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P

Who Do You Want to Calculate the Length? You or ESSL?

You have a choice of two methods for determining an acceptable length for your
transform to be processed by ESSL:

* Use the formula or large table in[“Acceptable Lengths for the Transforms” on
page 77§| to determine an acceptable length. For details, see [“How Do Yo

Calculate the Length Using the Table or Formula?” on page 39,

* Use the ESSL error-handling facilities to return to you an acceptable length. For
details, see [‘How Do You Get ESSL to Calculate the Length Using ESSL Error]
[Handling?” on page 39

38 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

How Do You Calculate the Length Using the Table or
Formula?

The lengths ESSL accepts for transforms in the Fourier transform subroutines are
listed in [“Acceptable Lengths for the Transforms” on page 777 You should use the
table in that section to find the two values your length falls between. You then
specify the larger length for your transform. If you find a perfect match, you can
use that value without having to change it. The formula provided in that section
expresses how to calculate the acceptable values listed in the table. If necessary,
you can use the formula to dynamically check lengths in your program.

How Do You Get ESSL to Calculate the Length Using ESSL
Error Handling?

This section describes how to get ESSL to calculate transform lengths.

Here Are the Two Ways You Can Do It
Ask yourself which of the following ways you prefer to obtain the information
from ESSL:

* By leaving error 2030 unrecoverable, you can obtain an acceptable value for n
from the input-argument error message, but your program terminates.

* By making error 2030 recoverable, you obtain an acceptable value for n from
the input-argument error message and have the updated n argument returned to
your program.

Because the Fourier transform subroutines allow only certain lengths for
transforms, ESSL provides this error-handling capability to return acceptable
lengths to your program. It returns them in the transform length arguments. The
value ESSL returns is the next larger acceptable length for a transform, based on
the length you specify in the n argument.

The First Way

In this case, you obtain an acceptable value of n from the error message, but your
program terminates.

Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in input-argument error message. This does,
however, terminates your program when the error is encountered. (If you do
happen to specify an acceptable length for the transform, error handling does not
issue an error message and processing continues normally.) [Figure 4 on page 40|
illustrates what happens when error 2030 is unrecoverable.

Chapter 2. Planning Your Program 39

User Program ESSL Subroutine

Is N=
acceptable no

i transform

. length?

| Issue message 2538-2030
Call ESSL h yes with next larger
subroutine J acceptable transform

P length

I |

Terminate

Perform ESSL
computation

Figure 4. How to Obtain an N Value from an Error Message, but Terminate

The Second Way

In this case, you obtain an acceptable value of n from the error message and from
the updated n argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2030 recoverable. This allows you to dynamically determine in your program an
acceptable length for your transform, specified in the n argument(s). Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in the input-argument error message and a
return code is passed back to your program, indicating that updated values are
also returned in the n argument(s). You can then react to these updated values
during run time in your program. ESSL does not perform any computation when
this error occurs. For details on how to do this, see [Chapter 4, “Coding Your|
[Program,” on page 107.|(If you do happen to specify an acceptable length for the
transform, error handling does not issue an error message and processing
continues normally.) [Figure 5 on page 41|illustrates what happens when error 2030
is recoverable.

40 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

User Program

ESSL Subroutine

Make error

2030 recoverable]

Is N= no
acceptable

transform
length?

Call ESSL
subroutine

\ yes Issue message 2538-2030
) with next larger

acceptable transform
length

&
<

Is return code
=r?

Perform ESSL
computation

Update N argument
with next larger
acceptable transform

React to updated) length

N value

[Set return code]
=r

Figure 5. How to Obtain an N Value from an Error Message and in Your Program

Here Is an Example of What Happens When You Use These Two

Techniques
The following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, n. The values of n
used in the example are as follows:

N Meaning of the N Value

7208960 An acceptable transform length, required for successful computing
of a Fourier transform

7340032 The next larger acceptable transform length, required for successful
computing of a Fourier transform

[Table 28 on page 42| describes the actions taken by ESSL in every possible situation
for the values given in this example.

Chapter 2. Planning Your Program 41

Table 28. Example of Input-Argument Error Recovery for Transform Lengths

Action When 2030 Is an Unrecoverable

Action When 2030 Is a Recoverable

N Value Input-Argument Error Input-Argument Error

n = 7208960 Your application program runs Your application program runs
successfully. successfully.

n = 7340032

7208960 < n < 7340032

An input-argument error message is
issued. The value in the error message is
7340032. The application program stops.

ESSL returns the value of 1 as 7340032 to
the application program, and an
input-argument error message is issued.

The value in the error message is 7340032.
ESSL does no computation, and control is
returned to the application program.

42

Here Is How You Code It in Your Program

If you leave error 2030 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the transform lengths. On the other
hand, if you want to make error 2030 recoverable to obtain the transform lengths
dynamically in your program, you need to add some coding statements to your
program. For details on coding these statements in each programming language,
see the following examples:

* For Fortran, see ae

* For C, see page

* For C++, see page

You may want to provide a separate subroutine to calculate the transform length
whenever you need it. shows how you might code a separate Fortran
subroutine. Before calling SCFT in your program, you call this subroutine, SCFT
which calculates the correct length and stores it in #n. Upon return, your program
checks the return code. If it is nonzero, the n argument was updated, as planned.
You then do any necessary data setup and call SCFT. On the other hand, if the
return code is zero, error handling was not invoked, the n argument was not
updated, and the initialization step was performed for SCFT.

SUBROUTINE SCFT
% N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL#4 X(0:%),Y(0:%),SCALE
REAL*8 AUX1(7),AUX2(0:%)
INTEGER*4 INIT,INCIX,INC2X,INCLY,INC2Y,N,M,ISIGN,NAUXI,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 $2030
CALL EINFO(0)
CALL ERRSAV(2030,52030)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
CALL SCFT(INIT,X,INC1X,INC2X,Y,INCLY,INC2Y,
* N,M, ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2030,52030)
RETURN
CONTINUE
CALL ERRSTR(2030,52030)
RETURN 1
END

10

Figure 6. Fortran Subroutine to Calculate Transform Length

You might want to combine the request for auxiliary storage sizes along with your
request for transform lengths. [Figure 7 on page 43| shows how you might code a

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

separate Fortran subroutine combining both requests. It combines the functions
performed by the subroutines in [Figure 3 on page 38 and [Figure 6 on page 42,

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:%),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:x)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2015,52030
CALL EINFO(0)
CALL ERRSAV(2015,52015)
CALL ERRSAV(2030,52030)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY

NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INCIX,INC2X,Y,INC1Y,INC2Y,
* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)

CALL ERRSTR(2015,52015)
CALL ERRSTR(2030,52030)
RETURN

10 CONTINUE
CALL ERRSTR(2015,52015)
CALL ERRSTR(2030,52030)
RETURN 1
END

Figure 7. Fortran Subroutine to Calculate Auxiliary Storage Sizes and Transform Length

Getting the Best Accuracy

This section explains how accuracy of your results can be affected in various
situations and what you can do to achieve the best possible accuracy.

What Precisions Do ESSL Subroutines Operate On?

Both short- and long-precision real versions of the subroutines are provided in
most areas of ESSL. In some areas, short- and long-precision complex versions are
also provided, and, occasionally, an integer version is provided. The subroutine
names are distinguished by a one- or two-letter prefix based on the following
letters:

S for short-precision real

D for long-precision real

C for short-precision complex
Z for long-precision complex
I for integer

For a description of these data types, see ["How Do You Set Up Your Scalar Data?”]
The scalar data types and how you should code them for each
programming language are listed under “Coding Your Scalar Data” in each
language section in [Chapter 4, “Coding Your Program,” on page 107]

Chapter 2. Planning Your Program 43

How does the Nature of the ESSL Computation Affect
Accuracy?

In subroutines performing operations such as copy and swap, the accuracy of data
is not affected. In subroutines performing computations involving mathematical
operations on array data, the accuracy of the result may be affected by the
following:

* The algorithm, which can vary depending on values or array sizes within the
computation or the number of threads used.

¢ The matrix and vector sizes

For this reason, the ESSL subroutines do not have a closed formula for the error of
computation. In other words, there is no formula with which you can calculate the
error of computation in each subroutine.

Short-precision subroutines sometimes provide increased accuracy of results by
accumulating intermediate results in long precision. This is also noted in the
functional description for each subroutine.

Where applicable, the ESSL subroutines use the Multiply-Add instructions, which
combine a Multiply and Add operation without an intermediate rounding
operation.

For the ESSL Serial Library and the ESSL SMP Library, results obtained by 32-bit
environment and 64-bit environment applications using the same ESSL library are
mathematically equivalent but may not be bit identical.

What Data Type Standards Are Used by ESSL, and What
Exceptions Should You Know About?

The data types operated on by the short-precision, long-precision, and integer
versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary floating-point
format, and 32-bit integer. See the ANSI/IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 for more detail.

There are ESSL-specific rules that apply to the results of computations using the
ANSI/IEEE standards. When running your program, the result of a multiplication
of NaN (“Not-a-Number”) by a scalar zero, under certain circumstances, may
differ in the ESSL subroutines from the result you expect.

Usually, when NaN is multiplied by a scalar zero, the result is NaN; however, in
some ESSL subroutines where scaling is performed, the result may be zero. For
example, in computing «A, where « is a scalar and A is a matrix, if « is zero and
one (or more) of the elements of A is Nal, the scaled result, using that element,
may be a zero, rather than NaN. To avoid problems, you should consider this
when designing your program.

How is Underflow Handled?

ESSL does not mask underflow. If your program incurs a number of unmasked
underflows, its overall performance decreases. Floating-point exception trapping is
disabled by default. Therefore, you do not have to mask underflow unless you
have changed the default.

Where Can You Find More Information on Accuracy?

Information about accuracy can be found in the following places:

44 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Migration considerations concerning accuracy of results between releases,

platforms, and so forth are described in|Chapter 6, “Migrating Your Programs,”|

Specific information on accuracy for each area of ESSL is given in “Performance
and Accuracy Considerations” in each chapter introduction in Part 2.

The functional description under “Function” for each subroutine explains what
you need to know about the accuracy of the computation. Varying
implementation techniques are sometimes used to improve performance. To let
you know how accuracy is affected, the functional description may explain in
general terms the different techniques used in the computation.

Getting the Best Performance

This section describes how you can achieve the best possible performance from the
ESSL subroutines.

What General Coding Techniques Can You Use to Improve
Performance?

There are many ways in which you can improve the performance of your program.
Here are some of them:

Use the basic linear algebra subprograms and matrix operations in the order of
optimum performance: matrix-matrix computations, matrix-vector computations,
and vector-scalar computations. When data is presented in matrices or vectors,
rather than vectors or scalars, multiple operations can be performed by a single
ESSL subroutine.

Where possible, use subroutines that do multiple computations, such as SNDOT
and SNAXPY, rather than individual computations, such as SDOT and SAXPY.

Use a stride of 1 for the data in your computations. Not having vector elements

consecutively accessed in storage can degrade your performance. The closer the

vector elements are to each other in storage, the better your performance. For an
explanation of stride, see ["How Stride Is Used for Vectors” on page 58]

Do not specify the size of the leading dimension of an array (/da) or stride of a
vector (inc) equal to or near a multiple of:

— 128 for a long-precision array

— 256 for a short-precision array

Do not specify the individual sizes of your one-dimensional arrays as multiples
of 128. This is especially important when you are passing several
one-dimensional arrays to an ESSL subroutine. (The multiplicity can cause a
performance problem that otherwise might not occur.)

For small problems, avoid using a large leading dimension (Ida) for your matrix.

In general, align your arrays on doubleword boundaries, regardless of the type
of data. For information on how your programming language aligns data, see
your programming language manuals.

One subroutine may do scaling while another does not. If scaling is not
necessary for your data, you get better performance by using the subroutine
without scaling. SNORM2 and DNORM2 are examples of subroutines that do
not do scaling, versus SNRM2 and DNRM2, which do scaling.

Use the STRIDE subroutine to calculate the optimal stride values for your input
or output data when using any of the Fourier transform subroutines, except
_RCFT and _CRFT. Using these stride values for your data allows the Fourier
transform subroutines to achieve maximum performance. You first obtain the
optimal stride values from STRIDE, calling it once for each stride value desired.

Chapter 2. Planning Your Program 45

You then arrange your data using these stride values. After the data is set up,
you call the Fourier transform subroutine. For details on the STRIDE subroutine
and how to use it for each Fourier transform subroutine, see|”STRIDE —
Determine the Stride Value for Optimal Performance in Specified Fourier
Transform Subroutines” on page 1015/ For additional information, see|“Setting|
Up Your Data” on page 780.|

Where Can You Find More Information on Performance?

Information about performance can be found in the following places:

* Many of the techniques ESSL uses to achieve the best possible performance are
described in the [“High Performance of ESSL” on page 6

* Migration considerations concerning performance are described in|Chapter 6
[“Migrating Your Programs,” on page 167.|

* Specific information on performance for each area of ESSL is given in
“Performance and Accuracy Considerations” in each chapter introduction in Part
2.

* Detailed performance information for selected subroutines can be found in

reference , , [44].

Dealing with Errors when Using ESSL

At run time, you can encounter different types of errors or messages that are
related to the use of the ESSL subroutines:

* Program exceptions

* ESSL input-argument errors

* ESSL computational errors

* ESSL resource errors

* ESSL attention messages

This section explains how to handle all these situations.

What Can You Do about Program Exceptions?

The program exceptions you can encounter in ESSL are described in the ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

What Can You Do about ESSL Input-Argument Errors?

This section gives an overview on how you can handle input-argument errors.

All Input-Argument Errors

ESSL checks the validity of most input arguments. If it finds that any are invalid, it
issues the appropriate error messages. Also, except for the three recoverable errors
described below, it terminates your program. You should use standard
programming techniques to diagnose and fix unrecoverable input-argument errors,
as described in|Chapter 7, “Handling Problems,” on page 171

You can determine the input-argument errors that can occur in a subroutine by
looking under “Error Conditions” in the subroutine description in Part 2 of this
book. Error messages for all input-argument errors are listed in [“Input-Argument|
[Error Messages(2001-2099)” on page 178

Recoverable Errors 2015, 2030 and 2200 Can Return Updated
Values in the NAUX, N and NSINFO Arguments

For three input-argument errors, 2015, 2030, and 2200 in Fortran, C, and C++
programs, you have the option to continue running and have an updated value of

46 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

the input argument returned to your program for subsequent use. These are called
recoverable errors. This recoverable error-handling capability gives you flexibility
in determining the correct values for the arguments. You can:

¢ Determine the correct size of an auxiliary work area by using error 2015. For
help in deciding whether you want to use this capability and details on how to
use it, see [“Using Auxiliary Storage in ESSL” on page 32

* Determine the correct length of a transform by using error 2030. For help in
deciding whether you want to use this capability and details on how to use it,
see [‘Providing a Correct Transform Length to ESSL” on page 38|

* Determine the minimal size of the array AP for DBSTRF and DBSSV by using
error 2200. For help deciding whether you want to use this capability, see
“DBSTRF — Symmetric Indefinite Matrix Factorization” on page 528 and
“DBSSV — Symmetric Indefinite Matrix Factorization and Multiple Right-Hand|
Side Solve” on page 522

If you chose to leave errors 2015, 2030 and 2200 unrecoverable, you do not need to
make any coding changes to your program. The input-argument error message is
issued upon termination, containing the updated values you could have specified
for the program to run successfully. You then make the necessary corrections in
your program and rerun it.

If you choose to make errors 2015, 2030 and 2200 recoverable, you call the ERRSET
subroutine to set up the ESSL error exit routine, ENOTRM, and then call the ESSL
subroutine. When one or more of these errors occurs, the input-argument error
message is issued with the updated values. In addition, the updated values are
returned to your program in the input arguments named in the error message,
along with a nonzero return code and processing continues. Return code values
associated with these recoverable errors are described under “Error Conditions” for
each ESSL subroutine in Part 2.

For details on how to code the necessary statements in your program to make
2015, 2030 and 2200 recoverable, see the following sections:

+ |[“Input-Argument Errors in Fortran” on page 115|

* [“Input-Argument Errors in C” on page 132|

* [“Input-Argument Errors in C++” on page 148|

What Can You Do about ESSL Computational Errors?

This section gives an overview on how you can handle computational errors.

All Computational Errors

ESSL computational errors are errors occurring in the computational data, such as
in your vectors and matrices. You can determine the computational errors that can
occur in a subroutine by looking under “Error Conditions” in the subroutine
description in Part 2 of this book. These errors cause your program to terminate
abnormally unless you take preventive action. A message is also provided in your
output, containing information about the error. Messages are listed in
[“Computational Error Messages(2100-2199)” on page 184/

When a computational error occurs, you should assume that the results are
unpredictable. The result of the computation is valid only if no errors have
occurred. In this case, a zero return code is returned.

[Figure 8 on page 48 shows what happens when a computational error occurs.

Chapter 2. Planning Your Program 47

User Program

ESSL Subroutine

Does error
21nn occur during yes
: the ESSL
: computation?
no Issue message 2538-21nn

Call ESSL \ with information on inf1
subrolutlne) and, optionally, inf2

[«

Terminate

Figure 8. How to Obtain Computational Error Information from an Error Message, but Terminate

Recoverable Computational Errors Can Return Values Through
EINFO

In Fortran, C, and C++ programs, you have the capability to make certain
computational errors recoverable and have information returned to your program
about the errors. Recoverable computational errors are listed in [Table 178 on page]
1006} First, you call EINFO in the beginning of your program to initialize the ESSL
error option table. You then call ERRSET to reset the number of allowable errors
for the computational error codes in which you are interested. When a
computational error occurs, a nonzero return code is returned for each
computational error. Return code values associated with these errors are described
under “Error Conditions” in each subroutine description. Based on the return code,
your program can branch to an appropriate statement to call the ESSL error
information-handler subroutine, EINFO, to obtain specific information about the
data involved in the error. This information is returned in the EINFO output
arguments, infl and, optionally, inf2. You can then check the information returned
and continue processing, if you choose. The syntax for EINFO is described under
['EINFO — ESSL Error Information-Handler Subroutine” on page 1006.| You also
get a message in your output for each computational error encountered, containing
information about the error. The EINFO subroutine provides the same information
in the messages as it provides to your program.

For details on how to code the necessary statements in your program to obtain
specific information on computational errors, see the following sections:

e |“Computational Errors in Fortran” on page 11
e |“Computational Errors in C” on page 13.72i

» ["Computational Errors in C++” on page 153|

[Figure 9 on page 49| shows what happens if you make a computational error
recoverable.

48 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

User Program

ESSL Subroutine

Make error
21nn recoverable

Does error
21nn occur during
the ESSL

yes

computation?

(

Call ESSL
subroutine

Issue message 2538-21nn
with information on inf1
and, optionally, inf2

\ no
J

Is return code
=r?

<&
<

Set return code
=r

Call EINFO to obtain
information on inf1
and, optionally, inf2

React to this
information

Figure 9. How to Obtain Computational Error Information in an Error Message and in Your Program

What Can You Do about ESSL Resource Errors?

This section gives an overview on how you can handle resource errors.

All Resource Errors

ESSL returns a resource error and terminates your program when an attempt to
allocate work area fails. Some ESSL subroutines attempt to allocate work area for
their internal use. Other ESSL subroutines attempt to dynamically allocate auxiliary
storage when a user requests it through calling sequence arguments, such as aux
and naux. For information on how you could reduce memory constraints on the
system or increase the amount of memory available before rerunning the
application program, see [“ESSL Resource Error Messages” on page 174

You can determine the resource errors that can occur in a subroutine by looking
under “Error Conditions” in the subroutine description in Part 2 of this book. Error

messages for all resource errors are listed in [“Resource Error Messages(2400-2499)”|

What Can You Do about ESSL Attention Messages?

This section gives an overview on how you can handle attention messages.

Chapter 2. Planning Your Program 49

All Attention Messages

ESSL returns an attention message to describe a condition that occurred, however,
ESSL is able to continue processing. For information on how you could reduce
memory constraints on the system or increase the amount of memory available, see
[“ESSL Resource Error Messages” on page 174/

For example, an attention message may be issued when enough work area was
available to continue processing, but was not the amount initially requested. An
attention message would be issued to indicate that performance may be degraded.

For a list of subroutines that may generate an attention message, see [Table 34 o
age 176l For a list of attention messages, see [‘Informational and Attention Error

Messages(2600-2699)” on page 186.

How Do You Control Error Handling by Setting Values in the

ESSL Error Option Table?

This section explains all aspects of using the ESSL error option table.

What Values Are Set in the ESSL Error Option Table?

The ESSL error option table contains information that tells ESSL what to do every

time it encounters an ESSL-generated error. [Table 29| shows the default values
established in the table when ESSL is installed.

Table 29. ESSL Error Option Table Default Values

Number of
Allowable Errors Number of Messages | Modifiable Table
Range of Error Messages (From-To) (ALLOW) Printed (PRINT) Entry (MODENT)
2538-2000 Unlimited 255 NO
2538-2001 through 2538-2073 Unlimited 255 YES
2538-2074 Unlimited 5 YES
2538-2075 through 2538-2098 Unlimited 255 YES
2538-2099 1 255 YES
2538-2100 through 2538-2101 1 255 YES
2538-2102 Unlimited 255 YES
2538-2103 through 2538-2113 1 255 YES
2538-2114 Unlimited 255 YES
2538-2115 through 2538-2122 1 255 YES
2538-2123 through 2538-2124 Unlimited 255 YES
2538-2125 through 2538-2126 1 255 YES
2538-2127 Unlimited 255 YES
2538-2128 through 2538-2137 1 255 YES
2538-2138 through 2538-2143 Unlimited 255 YES
2538-2144 through 2538-2145 1 255 YES
2538-2146 through 2538-2149 Unlimited 255 YES
2538-2150 1 255 YES
2538-2151 Unlimited 255 YES
2538-2152 through 2538-2198 1 255 YES
2538-2199 1 255 YES

50 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 29. ESSL Error Option Table Default Values (continued)

Number of

Allowable Errors Number of Messages | Modifiable Table
Range of Error Messages (From-To) (ALLOW) Printed (PRINT) Entry (MODENT)
2538-2200 through 2538-2299 Unlimited 255 YES
2538-2400 through 2538-2499 1 255 NO
2538-2600 through 2538-2699 Unlimited 255 NO
2538-2700 through 2538-2799 1 255 NO

How Can You Change the Values in the Error Option Table?

You can change any of the values in the ESSL error option table by calling the
ERRSET subroutine in your program. This dynamically changes values at run time.
You can also save and restore entries in the table by using the ERRSAV and
ERRSTR subroutines, respectively. For a description of the ERRSET, ERRSAV, and
ERRSTR subroutines see [Chapter 17, “Utilities,” on page 1003

When Do You Change the Values in the Error Option Table?
Because you can change the information in the error option table, you can control
what happens when any of the ESSL errors occur. There are a number of instances
when you may want to do this:

To Customize Your Error-Handling Environment: You may simply want to adjust
the number of times an error is allowed to occur before your program terminates.
You can use any of the capabilities available in ERRSET.

To Obtain Auxiliary Storage Sizes and Transform Lengths: You may want to
make ESSL input-argument error 2015 or 2030 recoverable, so ESSL returns
updated auxiliary storage sizes or transform lengths, respectively, to your program.
For a more detailed discussion, see [“What Can You Do about ESSLI
[Input-Argument Errors?” on page 46]For how to use ERRSET to do this, see the
section for your programming language in [Chapter 4, “Coding Your Program,” on|

To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV: You may
want to make ESSL input-argument error 2200 recoverable, so ESSL returns an
updated size to your program. For a more detailed discussion, see [“What Can Youl|
[Do about ESSL Input-Argument Errors?” on page 46]For how to use ERRSET to
do this, see the section for your programming language in [Chapter 4, “Coding]
[Your Program,” on page 107

To Get More Information About a Computational Error: You may want ESSL to
return information about a computational error to your program. For a more
detailed discussion, see [“What Can You Do about ESSL. Computational Errors?” onl|
For how to do use ERRSET to do this, see the section for your
programming language in [Chapter 4, “Coding Your Program,” on page 107

To Allow Parts of Your Application to Have Unique Error-Handling
Environments: If your program is part of a large application, you may want to
dynamically save and restore entries in the error option table that have been
altered by ERRSET. This ensures the integrity of the error option table when it is
used by multiple programs within an application. For a more detailed discussion,
see “How Can You Control Error Handling in Large Applications by Saving and

Chapter 2. Planning Your Program 51

[Restoring Entries in the Error Option Table?”| For how to use ERRSAV and
ERRSTR, see the section for your programming language in|Chapter 4, “Coding|
[Your Program,” on page 107/

How Can You Control Error Handling in Large Applications by
Saving and Restoring Entries in the Error Option Table?

When your program is part of a larger application, you should consider that one of
the following can occur:

* If you use ERRSET in your program to reset any of the values in the error
option table for any of the ESSL input-argument errors or computational errors,
some other program in the application may be adversely affected. It may be
expecting its original values.

* If some other program in the application uses ERRSET to reset any of the values
in the error option table for any of the ESSL input-argument errors or
computational errors, your program may be adversely affected. You may need a
certain value in the error option table, and the application may have reset that
value.

These situations can be avoided if every program that uses ERRSET, in the large
application, also uses the ERRSAV and ERRSTR facilities. For a particular error
number, ERRSAV saves an entry from the error option table in an area accessible to
your program. ERRSTR then stores the entry back into the error option table from
the storage area. You code an ERRSAV and ERRSTR for each input-argument error
number and computational error number for which you do an ERRSET to reset the
values in the error option table. Call ERRSAV at the beginning of your program
after you call EINFO, and then call ERRSTR at the end of your program after all
ESSL computations are completed. This saves the original contents of the error
option table while your program is running with different values, and then restores
it to its original contents when your program is done. For details on how to code
these statements in your program, see (Chapter 4, “Coding Your Program,” on page|
107.

How does Error Handling Work in a Threaded Environment?

When your application program or Fortran first creates a thread, ESSL initializes
the error option table information to the default settings shown in [Table 29 on page|
@l You can change the default settings for each thread you created by calling the
appropriate error handling subroutines (ERRSET, ERRSAV, or ERRSTR) from each
thread. An example of how to initialize the error option table and change the
default settings on multiple threads is shown in [‘Example of Handling Errors in al
Multithreaded Application Program” on page 123

ESSL issues error messages as they occur in a threaded environment. Error
messages issued from any of the existing threads are written to standard output in
the order in which they occur.

When a terminating condition occurs on any of the existing threads (for example,
the number of allowable errors was exceeded), ESSL terminates your application
program. One set of summary information corresponding to the terminating thread
is always printed. Summary information corresponding to other threads may also
be printed.

Where Can You Find More Information on Errors?

Information about errors and how to handle them can be found in the following
places:

52 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

How to code your program to use the ESSL error-handling facilities is described
in|Chapter 4, “Coding Your Program,” on page 107

All ESSL error messages are listed under|“Messages” on page 178]

The errors and return codes associated with each ESSL subroutine are listed
under “Error Conditions” in each subroutine description in Part 2.

Complete diagnostic procedures for all types of ESSL programming and
documentation problems, along with how to collect information and report a
problem, are provided in |Chapter 7, “Handling Problems,” on page 171)

Chapter 2. Planning Your Program 53

54 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 3. Setting Up Your Data Structures

This chapter provides you with information that you need to set up your data
structures, consisting of vectors, matrices, and sequences. These techniques apply
to programs in all programming languages.

Concepts

Vectors, matrices, and sequences are conceptual data structures contained in arrays.
In many cases, ESSL uses stride or leading dimension to select the elements of the
vector, matrix, or sequence from an array. In other cases, ESSL uses a specific
mapping, or storage layout, that identifies the elements of the vector, matrix, or
sequence in an array, sometimes requiring several arrays to help define the
mapping. These elements selected from the array(s) make up the conceptual data
structure.

When you call an ESSL subroutine, it assumes that the data structure is set up
properly in the array(s) you pass to it. If it is not, your results are unpredictable.
ESSL also uses these same storage layouts for data structures passed back to your
program.

The use of the terms vector, matrix, and sequence in this book is consistent with
standard mathematical definitions, and their representations are consistent with
conventions used in mathematical texts. Special notations and conventions used in
this book for describing vectors, matrices, and sequences are explained in
Notations and Conventions” on page Xiv.|

Overlapping Data Structures: Most of the subroutines do not allow vectors,
matrices, or sequences to overlap. If this occurs, results are unpredictable. Where
this applies, it is explained in in each subroutine description. This means the
elements of the data structure cannot reside in the same storage locations as any of
the other data structures. It is possible, however, to have elements of different data
structures in the same array, as long as the elements are interleaved through
storage using strides greater than 1. For example, using vectors x and y with
strides of 2, where x starts at A(1) and y starts at A(2), the elements reside in array
A in the order xy, ¥4, X5, Yo, X3, Y3, ... and so forth.

When you use this technique, you should be careful that you specify different
starting locations for each data structure contained in the array.

Vectors

A vector is a one-dimensional, ordered collection of numbers. It can be a column
vector, which represents an 7 by 1 ordered collection, or a row vector, which
represents a 1 by n ordered collection.

The column vector appears symbolically as follows:

© Copyright IBM Corp. 1991, 2004 55

56

A row vector appears symbolically as follows:

x=[x1 Xy X5 o xn]

Vectors can contain either real or complex numbers. When they contain real
numbers, they are sometimes called real vectors. When they contain complex
numbers, they are called complex vectors.

Transpose of a Vector

The transpose of a vector changes a column vector to a row vector, or vice versa:

]]
X, X
x x
73 T T _ |7
x=|. X = [x1 X, x3...xn] (x') =
xn _x”l_

The ESSL subroutines use the vector as it is intended in the computation, as either
a column vector or a row vector; therefore, no movement of data is necessary.

In the examples provided with the subroutine descriptions in [Part 2, “Reference]|
of this book, both types of vectors are represented in the same way,
showing the elements of the array that make up the vector x, as follows:

(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Conjugate Transpose of a Vector

The conjugate transpose of a vector x, containing complex numbers, is denoted by
x™ and is expressed as follows:

H_ [= = = —
X —[x1 X, x3...xn]

=
Il

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Just as for the transpose of a vector, no movement of data is necessary for the
conjugate transpose of a vector.

In Storage

A vector is usually stored within a one- or two-dimensional array. Its elements are
stored sequentially in the array, but not necessarily contiguously.

The location of the vector in the array is specified by the argument for the vector
in the ESSL calling sequence. It can be specified in a number of ways. For example,
if A is an array of length 12, and you want to specify vector x as starting at the first
element of array A, specify A as the argument, such as in:

X = SASUM (4,A,2)

where the number of elements to be summed in the vector is 4, the location of the
vector is A, and the stride is 2.

If you want to specify vector x as starting at element 3 in array A, which is
declared as A(1:12), specify:

X = SASUM (4,A(3),2)

If A is declared as A(-1:8), specify the following for element 3:
X = SASUM (4,A(1),2)

If A is a two-dimensional array and declared as A(1:4,1:10), and you want vector
x to start at the second row and third column of A, specify the following;:

X = SASUM (4,A(2,3),2)

The stride specified in the ESSL calling sequence is used to step through the array
to select the vector elements. The direction in which the vector elements are
selected from the array—that is, front to back or back to front—is indicated by the
sign (+ or —) of the stride. The absolute value of the stride gives the spacing
between each element selected from the array.

To calculate the total number of elements needed in an array for a vector, you can
use the following formula, which takes into account the number of elements, #, in
the array and the stride, inc, specified for the vector:

1+(n-1) linc|

An array can be much larger than the vector that it contains; that is, there can be
many elements following the vector in the array, as well as elements preceding
the vector.

For a complete description of how vectors are stored within arrays, see
Stride Is Used for Vectors” on page 58)

For a complex vector, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex vectors and matrices as for
real vectors and matrices of the same precision. See ['How Do You Set Up Your]|
Scalar Data?” on page 29 for a description of real and complex numbers, and
“How Do You Set Up Your Arrays?” on page 29|for a description of how real and
complex data is stored in arrays.

Chapter 3. Setting Up Your Data Structures 57

How Stride Is Used for Vectors

The stride for a vector is an increment that is used to step through array storage to
select the vector elements from an array. To define exactly which elements become
the conceptual vector in the array, the following items are used together:

* The location of the vector within the array

* The stride for the vector

* The number of elements, n, to be processed

The stride can be positive, negative, or 0. For positive and negative strides, if you
specify vector elements beyond the range of the array, your results are be
unpredictable, and you may get program errors.

This section explains how each of the three types of stride is used to select the
vector elements from the array.

Positive Stride

When a positive stride is specified for a vector, the location specified by the
argument for the vector is the location of the first element in the vector, element x;.
The vector is in forward order in the array: (xy, x,, ..., x,,). For example, if you
specify X(1) for vector x, where X is declared as X(0:12) and defined as:

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)
then processing begins at the second element in X, which is 2.0.

To find each successive element, the stride is added cumulatively to the starting
point of vector x in the array. In this case, the starting point is X(1). If the stride
specified for vector x is 3 and the number of elements to be processed is 4, then
the resulting elements selected from X for vector x are: X(1),X(4),X(7), and X(10).

Vector x is then:
(2.0, 5.0, 8.0, 11.0)

As shown in this example, a vector does not have to extend to the end of the array.
Elements are selected from the second to the eleventh element of the array, and the
array elements after that are not used.

This element selection can be expressed in general terms. Using BEGIN as the
starting point in an array X and inc as the stride, this results in the following
elements being selected from the array:

X(BEGIN)
X(BEGIN+inc)

X(BEGIN+(2)inc)
X(BEGIN+(3)inc)

X(BEGIN+(n—1)inc)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

x;, = X(BEGIN + (i-1)(inc)) for i = 1, n

58 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

When using an array with more than one dimension, you should understand how
the array elements are stored to ensure that elements are selected properly. For a
description of array storage, see [‘Setting Up Arrays in Fortran” on page 108 You
should remember that the elements of an array are selected as they are arranged in
storage, regardless of the number of dimensions defined in the array. Stride is used
to step through array storage until # elements are selected. ESSL processing stops
at that point. For example, given the following two-dimensional array, declared as
A(1:7,1:4).

Matrix A is:
1.0 8.0 15.0 22.0
2.0 9.0 16.0 23.0
3.0 10.0 17.0 24.0
4.0 11.0 18.0 25.0
5.0 12.0 19.0 26.0
6.0 13.0 20.0 27.0
7.0 14.0 21.0 28.0

with A(3,1) specified for vector x, a stride of 2, and the number of elements to be
processed as 12, the resulting vector x is:

(3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)

This is not a conventional use of arrays, and you should be very careful when
using this technique.

Zero Stride

When a zero stride is specified for a vector, the starting point for the vector is the
only element used in the computation. The starting point for the vector is at the
location specified by the argument for the vector, just as though you had specified
a positive stride. For example, if you specify X for vector x, where X is defined as:

X = (5.0, 4.0, 3.0, 2.0, 1.0)

and you specify the number of elements, 1, to be processed as 6, then processing
begins at the first element, which is 5.0. This element is used for each of the six
elements in vector x.

This makes the conceptual vector x appear as:
(5.0, 5.0, 5.0, 5.0, 5.0, 5.0)

The following general formula shows how to calculate each vector position in a
one-dimensional array:

x; = X(BEGIN) for i = 1, n

Negative Stride

When a negative stride is specified for a vector, the location specified for the vector
is actually the location of the last element in the vector. In other words, the vector
is in reverse order in the array: (x,, x,_4, ..., X1). You specify the end of the vector,
(x,,). ESSL then calculates where the starting point (x;) is by using the following
arguments:

* The location of the vector in the array

e The stride for the vector, inc

* The number of elements, n, to be processed

Chapter 3. Setting Up Your Data Structures 59

60

If you specify vector x at location X(BEGIN) in array X with a negative stride of inc
and 7 elements to be processed, then the following formula gives the starting point
of vector x in the array:

X(BEGIN + (—n+1)(inc))

For example, if you specify X(2) for vector x, where X is declared as X(1:9) and
defined as:

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

and if you specify a stride of -2, and four elements to be processed, processing
begins at the following element in X:

X(2+(-4+1)(-2)) = X(8)
where element X(8) is 8.0.

To find each of the n successive element positions in the array, you successively
add the stride to the starting point n—1 times. Suppose the formula calculated a
starting point of X(SP); the elements selected are:

X(SP)
X(SP-+inc)
X(SP+(2)inc)
X(SP+(3)inc)

;((S P+(n-1)inc)

In the above example, the resulting elements selected from X for vector x are X(8),
X(6), X(4), and X(2). This makes the resulting vector x appear as follows:

(8.0, 6.0, 4.0, 2.0)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

x; = X(BEGIN + (-n+i)(inc)) for i = 1, n

Sparse Vector

A sparse vector is a vector having a relatively small number of nonzero elements.

Consider the following as an example of a sparse vector x with n elements, where
n is 11, and vector x is:

(0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

In Storage

There are two storage modes that apply to sparse vectors: full-vector storage mode
and compressed-vector storage mode. When a sparse vector is stored in full-vector
storage mode, all its elements, including its zero elements, are stored in an array.

For example, sparse vector x is stored in full-vector storage mode in a
one-dimensional array X, as follows:

X = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

When a sparse vector is stored in compressed-vector storage mode, it is stored
without its zero elements. It consists of two one-dimensional arrays, each with a
length of nz, where nz is the number of nonzero elements in vector x:

* The first array contains the nonzero elements of the sparse vector x, stored
contiguously within the array.

Note: The ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.

* The second array contains a sequence of integers indicating the element
positions (indices) of the nonzero elements of the sparse vector x stored in
full-vector storage mode. This is referred to as the indices array.

For example, the sparse vector x shown above might have its five nonzero
elements stored in ascending order in array X of length 5, as follows:

X = (1.0, 2.0, 3.0, 4.0, 5.0)

in which case, the array of indices, INDX, also of length 5, contains:
INDX = (3, 5, 6, 8, 10)

If the sparse vector x has its elements stored in random order in the array X as:
X = (5.0, 3.0, 4.0, 1.0, 2.0)

then the array INDX contains:
INDX = (16, 6, 8, 3, 5)

In general terms, this storage technique can be expressed as follows:
For each xj # 0, forj=1,n

there exists i, where 1 =i = nz,

such that X(7) = x; and INDX(i) = j.

where:

Xy, ..., X, are the n elements of sparse vector x, stored in full-vector storage mode.

X is the array containing the nz nonzero elements of sparse vector x; that is, vector
x is stored in compressed-vector storage mode.

INDX is the array containing the nz indices indicating the element positions.
To avoid an error when using the INDX array to access the elements in any other

target vector, the length of the target vector must be greater than or equal to
max(INDX(i)) for i = 1, nz.

Matrices

A matrix, also referred to as a general matrix, is an m by n ordered collection of
numbers. It is represented symbolically as:

Chapter 3. Setting Up Your Data Structures 61

62

where the matrix is named A and has m rows and n columns. The elements of the
matrix are a;;, wherei = 1, mandj = 1, n.

Matrices can contain either real or complex numbers. Those containing real
numbers are called real matrices; those containing complex numbers are called
complex matrices.

Transpose of a Matrix

The transpose of a matrix A is a matrix formed from A by interchanging the rows
and columns such that row i of matrix A becomes column i of the transposed
matrix. The transpose of A is denoted by A". Each element a; in A becomes
element a;; in A" If A is an m by n matrix, then A" is an n by m matrix. The
following represents a matrix and its transpose:

Clll o e .Cll all ... a

A: . . AT:

ml » - Ay - o Ay

ESSL assumes that all matrices are stored in untransformed format, such as matrix
A shown above. No movement of data is necessary in your application program
when you are processing transposed matrices. The ESSL subroutines adjust their
selection of elements from the matrix when an argument in the calling sequence
indicates that the transposed matrix is to be used in the computation. Examples of
this are the transa and transb arguments specified for SGEADD, matrix addition.

Conjugate Transpose of a Matrix

The conjugate transpose of a matrix A, containing complex numbers, is denoted by
A" and is expressed as follows:

.a ay, - - -y,

Just as for the transpose of a matrix, the conjugate transpose of a matrix is stored
in untransformed format. No movement of data is necessary in your program.

In Storage

A matrix is usually stored in a two-dimensional array. Its elements are stored
successively within the array. Each column of the matrix is stored successively in

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

the array. The leading dimension argument is used to select the matrix elements
from each successive column of the array. The starting point of the matrix in the
array is specified as the argument for the matrix in the ESSL calling sequence. For
example, if matrix A is contained in array A and starts at the first element in the
first row and first column of A, you should specify A as the argument for matrix A,
such as in:

CALL SGEMX (5,2,1.0,A,6,X,1,Y,1)

where, in the matrix-vector product, the number of rows in matrix A is 5, the
number of columns in matrix A is 2, the scaling constant is 1.0, the location of the
matrix is A, the leading dimension is 6, the vectors used in the matrix-vector
product are X and Y, and their strides are 1.

If matrix A is contained in the array BIG, declared as BIG(1:20,1:30), and starts at
the second row and third column of BIG, you should specify BIG(2,3) as the
argument for matrix A, such as in:

CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)

See [“How Leading Dimension Is Used for Matrices”| for a complete description of
how matrices are stored within arrays.

For a complex matrix, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex matrices as for real matrices
of the same precision. See [“How Do You Set Up Your Scalar Data?” on page 29| for
a_description of real and complex numbers, and [“How Do You Set Up Your|
|Arrays?” on page 29| for a description of how real and complex data is stored in
arrays.

How Leading Dimension Is Used for Matrices

The leading dimension for a two-dimensional array is an increment that is used to
find the starting point for the matrix elements in each successive column of the
array. To define exactly which elements become the conceptual matrix in the array,
the following items are used together:

* The location of the matrix within the array

* The leading dimension

* The number of rows, m, to be processed in the array

* The number of columns, 7, to be processed in the array

The leading dimension must always be positive. It must always be greater than or
equal to m, the number of rows in the matrix to be processed. For an array, A,
declared as A(E1:E2,F1:F2), the leading dimension is equal to:

(E2-E1+1)
The starting point for selecting the matrix elements from the array is at the location

specified by the argument for the matrix in the ESSL calling sequence. For
example, if you specify A(3,0) for a 4 by 4 matrix A, where A is declared as

A(1:7,0:4):
[1.0 8.0 15.0 22.0 29.0 —I
2.0 9.0 16.0 23.0 30.0
3.0 10.0 17.0 24.0 31.0
4.0 11.0 18.0 25.0 32.0
5.0 12.0 19.0 26.0 33.0

Chapter 3. Setting Up Your Data Structures 63

then processing begins at the element at row 3 and column 0 in array A, which is
3.0.

The leading dimension is used to find the starting point for the matrix elements in
each of the n successive columns in the array. ESSL subroutines assume that the
arrays are stored in column-major order, as described under |”How Do You Set Up|
[Your Arrays?” on page 29 /and they add the leading dimension (times the size of
the element in bytes) to the starting point. They do this n-1 times. This finds the
starting point in each of the n columns of the array.

In the above example, the leading dimension is:
E2-E1+1 = 7-1+1 = 7

If the number of columns, 1, to be processed is 4, the starting points are: A(3,0),
A(3,1), A(3,2), and A(3,3). These are elements 3.0, 10.0, 17.0, and 24.0 for a,q, a4,
a3, and aq,, respectively.

In general terms, this results in the following starting positions of each column in
the matrix being calculated as follows:

A(BEGINI, BEGINJ)
A(BEGINI, BEGINJ+1)
A(BEGINI, BEGINJ+2)

A(BEGINI, BEGINJ+n-1)

To find the elements in each column of the array, 1 is added successively to the
starting point in the column until m elements are selected. This is why the leading
dimension must be greater than or equal to m; otherwise, you go past the end of
each dimension of the array. In the above example, if the number of elements, m,
to be processed in each column is 4, the following elements are selected from array
A for the first column of the matrix: A(3,0), A(4,0), A(5,0), and A(6,0). These
are elements 3.0, 4.0, 5.0, and 6.0, corresponding to the matrix elements a;,, a5, a3,
and ay,, respectively.

Column element selection can also be expressed in general terms. Using
A(BEGINI,BEGINJ) as the starting point in the array, this results in the following
elements being selected from each column in the array:

A(BEGINI, BEGINJ)

A(BEGINI+1, BEGINJ)
A(BEGINI+2, BEGINJ)

A(BEGINI+m—1, BEGINJ)

64 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Combining this with the technique already described for finding the starting point
in each column of the array, the resulting matrix in the example is:

G- - i 30 100 17.0 24.0
’ ' 40 110 180 250
50 120 19.0 260
60 130 200 27.0

As shown in this example, a matrix does not have to include all columns and rows
of an array. The elements of matrix A are selected from rows 3 through 6 and
columns 0 through 3 of the array. Rows 1, 2, and 7 and column 4 of the array are
not used.

Symmetric Matrix
The matrix A is symmetric if it has the property A = AT, which means:

e It has the same number of rows as it has columns; that is, it has n rows and n
columns.

¢ The value of every element 4;; on one side of the main diagonal equals its mirror

image a; on the other side: a; = a;forl =i snand1 =j = n

The following matrix illustrates a symmetric matrix of order #; that is, it has n
rows and n columns. The subscripts on each side of the diagonal appear the same
to show which elements are equal:

a; dy ds - - 'anlw
ay dy Ay
Qs ds; ds;
A=
a,a,]
In Storage

The four storage modes used for storing symmetric matrices are described in the
following sections:

+ |“Lower-Packed Storage Mode”|

* [“Upper-Packed Storage Mode” on page 67|

* |“Lower Storage Mode” on page 68
* |“Upper Storage Mode” on page 68

The storage technique you should use depends on the ESSL subroutine you are
using and is given under in each subroutine description.

Lower-Packed Storage Mode: When a symmetric matrix is stored in
lower-packed storage mode, the lower triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. (This is equivalent to packing the upper triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a

Chapter 3. Setting Up Your Data Structures 65

one-dimensional array. To calculate the location of each element 4;; of matrix A in
an array, AP, using the lower triangular packed technique, use the following

formula:
AP + ((2n—)(j-1)/2)) = a; where i = j

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = a4, (start the first column)

AP(2) =y,

AP (3) = Ll31

AP(n) =4,

AP(n+1) = a,, (start the second column)

AP(1+2) = a3

AP(2n-1) =4,

AP(2n) = a4 (start the third column and so forth)
AP(21+1) =y,

AP(n(n+1)/2) =a,,

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array.

Given the following matrix A:

12 3 4 5
2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Note: Additional work storage is required in the array for some ESSL subroutines;
for example, in the simultaneous linear algebraic equation subroutines SPPF,
DPPE, SPPS, and DPPS. See the description of those subroutines in
[“Reference Information”| for details.

66 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Following is an example of how to transform your symmetric matrix to
lower-packed storage mode:

K=20
DO 1 J=1,N
DO 2 I=J,N
K = K+1
AP(K)=A(I,J)
2 CONTINUE
1 CONTINUE

Upper-Packed Storage Mode: When a symmetric matrix is stored in
upper-packed storage mode, the upper triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. (This is equivalent to packing the lower triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element 4;; of matrix A in
an array AP using the upper triangular packed technique, use the following
formula:

AP(i+(j(j-1)/2)) = a; where j = i

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = a,; (start the first column)
AP(2) = a,, (start the second column)
AP(3) =y

AP(4) = a5 (start the third column)
AP(5) = a3

AP(6) = 55

AP(7) = a,, (start the fourth column)

AP(j(G-1/2+1) = ay; (start the j-th column)
AP(G-1/2+2) = a,
AP(i(-1)/2+3) = ay;

AP(jG-1/2+j) = a; (end of the j-th column)

AP(n(n+1)/2) =a,,

Chapter 3. Setting Up Your Data Structures 67

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array. Given the
following matrix A:

=N EN -
N0 O wN
w oo~
O v oo
—
w

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Following is an example of how to transform your symmetric matrix to
upper-packed storage mode:

K=0
DO 1 J=1,N
D0 2 I=1,J
K = K+1
AP(K)=A(I,J)
2 CONTINUE
1 CONTINUE

Lower Storage Mode: When a symmetric matrix is stored in lower storage mode,
the lower triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The upper part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AL.

Given the following matrix A:

1 2 3 4 5
2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15
the array is:
1 = * * *
2 6 * * *
AL = 3 7 10 % =*
4 8 11 13 =
5 9 12 14 15

"o

where “+” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Upper Storage Mode: When a symmetric matrix is stored in upper storage mode,
the upper triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The lower part of the matrix is not required to be stored
in the array.

68 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AU.

Given the following matrix A:

OB wWwnN =
O 00 N O N
=
(<)

—
=
=
nN

the array is:

1 2 3 4 5
* 6 7 8 9
AU = * o+ 10 11 12
* x % 13 14
* * * * 15

7R

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Positive Definite or Negative Definite Symmetric Matrix

A real symmetric matrix A is positive definite if and only if x'Ax is positive for all
nonzero vectors x.

A real symmetric matrix A is negative definite if and only if x'Ax is negative for
all nonzero vectors x.

In Storage

The positive definite or negative definite symmetric matrix is stored in the same
way the symmetric matrix is stored. For a description of this storage technique, see
[‘Symmetric Matrix” on page 65)

Symmetric Indefinite Matrix

A real symmetric matrix A is indefinite if and only if (x"Ax) (A yTAy) < 0 for some
non-zero vectors x and y.

In Storage
The symmetric indefinite matrix is stored in the same way the symmetric matrix is
stored. For a description of this storage technique, see [’Symmetric Matrix” on page|

Complex Hermitian Matrix

A complex matrix is Hermitian if it is equal to its conjugate transpose:

H = HY

In Storage
The complex Hermitian matrix is stored using the same four techniques used for
symmetric matrices:

Chapter 3. Setting Up Your Data Structures 69

* Lower-packed storage mode, as described in|“Lower-Packed Storage Mode” on|
(The complex Hermitian matrix is not symmetric; therefore,
lower-packed storage mode is not equivalent to packing the upper triangle by
rows, as it is for a symmetric matrix.)

* Upper-packed storage mode, as described in|“Upper-Packed Storage Mode” on|
ﬁ

age 67.|(The complex Hermitian matrix is not symmetric; therefore,
upper-packed storage mode is not equivalent to packing the lower triangle by
rows, as it is for a symmetric matrix.)

* Lower storage mode, as described in|“Lower Storage Mode” on page 68|

» Upper storage mode, as described in|‘Upper Storage Mode” on page 68|

Following is an example of a complex Hermitian matrix H of order 5.
Given the following matrix H:

(11, 0) (21, -1) (31, 1) (41, -1) (51, -1)
(21, 1) (22, 0) (32, -1) (42, -1) (52, 1)
(31, -1) (32, 1) (33, 0) (43, -1) (53, -1)
(41, 1) (42, 1) (43, 1) (44, 0) (54, -1)
(51, 1) (52, -1) (53, 1) (54, 1) (55, 0)

it is stored in a one-dimensional array, HP, in n(n+1)/2 = 15 elements as follows:
* In lower-packed storage mode:

HP = ((11, *), (21, 1), (31, -1), (41, 1), (51, 1),
(22, =), (32, 1), (42, 1), (52, -1), (33, %),
(43, 1), (53, 1), (44, *), (54, 1), (55, *))

* In upper-packed storage mode:

HP = ((11, =), (21, -1), (22, *), (31, 1), (32, -1),
(333 *)’ (41: '1)3 (42, '1)9 433 _1)3 (449 *)s
(51, -1), (52, 1), (53, -1), (54, -1), (55, *))

or it is stored in a two-dimensional array, HP, as follows:

* In lower storage mode:

(11, =) * * * *
(21, 1) (22, *) = * *

HP = (31, -1) (32, 1) (33, =) * *
(41, 1) (42, 1) (43, 1) (44, »*) *
(51, 1) (52, -1) (53, 1) (54, 1) (55, *)

* In upper storage mode

(11, =) (21, -1) (31, 1) (41, -1) (51, -1)

* (229 *) (329 '1) (42: _1) (529 1)

HP = * * (33, =*) (43, -1) (53, -1)
* * * (44s *) (54’ '1)

* * * * (55, =)

7

where “+” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian matrix are
always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

70 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Positive Definite or Negative Definite Complex Hermitian
Matrix

A complex Hermitian matrix A is positive definite if and only if x™Ax is positive
for all nonzero vectors x.

A complex Hermitian matrix A is negative definite if and only if x"'Ax is negative
for all nonzero vectors x.

In Storage

The positive definite or negative definite complex Hermitian matrix is stored in the
same way the complex Hermitian matrix is stored. For a description of this storage
technique, see [’Complex Hermitian Matrix” on page 69.]

Positive Definite or Negative Definite Symmetric Toeplitz
Matrix

A positive definite or negative definite symmetric matrix A of order # is also a
Toeplitz matrix if and only if:

ai]' = al'_l,]'_l fOI' l = 2, n and] = 2, n
The elements on each diagonal of the Toeplitz matrix have a constant value. For
the definition of a positive definite or negative definite symmetric matrix, see
[“Positive Definite or Negative Definite Symmetric Matrix” on page 69.|

The following matrix illustrates a symmetric Toeplitz matrix of order #; that is, it
has 7 rows and 7 columns:

andy @y ..y
ay ayy Ay -
a3 dy; dyy
A=
a3
. . Oy
L%n1 - d31dyy dyy |

A symmetric Toeplitz matrix of order n is represented by a vector x of length n
containing the elements of the first column of the matrix (or the elements of the
first row), such that x; = a;; fori = 1, n.

The following vector represents the matrix A shown above:

Chapter 3. Setting Up Your Data Structures 71

In Storage

The elements of the vector x, which represent a positive definite symmetric
Toeplitz matrix, are stored sequentially in an array. This is called
packed-symmetric-Toeplitz storage mode. Following is an example of a positive
definite symmetric Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

99 12 13 14 15 16
12 99 12 13 14 15
13 12 99 12 13 14
14 13 12 99 12 13
15 14 13 12 99 12
16 15 14 13 12 99

the array is:
X = (99, 12, 13, 14, 15, 16)

Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix

A positive definite or negative definite complex Hermitian matrix A of order n is
also a Toeplitz matrix if and only if:

a,-]» = al‘,lr]*,l fOI‘ 1= 2, n and] = 2, n

The real part of the diagonal elements of the Toeplitz matrix must have a constant
value. The imaginary part of the diagonal elements must be zero.

For the definition of a positive definite of negative definite complex Hermitian
matrix, see [“Positive Definite or Negative Definite Complex Hermitian Matrix” on|

|Eage 71.|

The following matrix illustrates a complex Hermitian Toeplitz matrix of order #;
that is, it has 7 rows and #n columns:

dipdp Gz - - - a,, |
dip dyy dpp
a3 dyp Ay
A=
as
K o ap
L% - - - di3dyp Ay |

A complex Hermitian Toeplitz matrix of order # is represented by a vector x of
length n containing the elements of the first row of the matrix.

The following vector represents the matrix A shown above.

72 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

aﬂ
ap
a
x =3
L%n |
In Storage

The elements of the vector x, which represent a positive definite complex
Hermitian Toeplitz matrix, are stored sequentially in an array. This is called
packed-Hermitian-Toeplitz storage mode. Following is an example of a positive
definite complex Hermitian Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

(10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0)

(2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0)
(-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0)
(1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (l10.0, 0.0)

the array is:
X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

Triangular Matrix

There are two types of triangular matrices: upper triangular matrix and lower
triangular matrix. Triangular matrices have the same number of rows as they have
columns; that is, they have n rows and n columns.

A matrix U is an upper triangular matrix if its nonzero elements are found only in
the upper triangle of the matrix, including the main diagonal; that is:

u;;

]=0 ifi>j

A matrix L is an lower triangular matrix if its nonzero elements are found only in
the lower triangle of the matrix, including the main diagonal; that is:

The following matrices, U and L, illustrate upper and lower triangular matrices of
order n, respectively:

Uy Uy Uy . . . Uy, Ly 0 0 ... 0]
0wy, 1y, . by b 0
0 0 uy . Ly Ly Ly
U= L =
. 0
O O unn lnl lnn

Chapter 3. Setting Up Your Data Structures 73

A unit triangular matrix is a triangular matrix in which all the diagonal elements
have a value of one; that is:

* For an upper triangular matrix, u; = 1ifi = j.

* For an lower triangular matrix, [; = 1if i = j.

The following matrices, U and L, illustrate upper and lower unit real triangular
matrices of order n, respectively:

R T T 10 0 0
U = L =

0 L0 1] 1, 1]
In Storage

The four storage modes used for storing triangular matrices are described in the
following sections:

* [“Upper-Triangular-Packed Storage Mode”
* [“Lower-Triangular-Packed Storage Mode”
* |“Upper-Triangular Storage Mode” on page 75
* |“Lower-Triangular Storage Mode” on page 75

It is important to note that because the diagonal elements of a unit triangular
matrix are always one, you do not need to set these values in the array for these
four storage modes. ESSL always assumes that the values in these positions are
one.

Upper-Triangular-Packed Storage Mode: When an upper-triangular matrix is
stored in upper-triangular-packed storage mode, the upper triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
[“Upper-Packed Storage Mode” on page 67.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix U:

12 4 7 11
06 3 5 8 12
6 066 9 13
06 0 0 10 14
6 060 0 15

the array is:
up =(1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15)

Lower-Triangular-Packed Storage Mode: When a lower-triangular matrix is
stored in lower-triangular-packed storage mode, the lower triangle of the matrix is

74 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
[‘Lower-Packed Storage Mode” on page 65.|

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix L:

10 06 0 0
2 6 0 0 0
37 10 0 0
4 8 11 13 0
5 9 12 14 15

the array is:

Lp=(1, 2, 3, 4,5,6, 7, 8,9, 10, 11, 12, 13, 14, 15)
Upper-Triangular Storage Mode: A triangular matrix is stored in upper-triangular
storage mode in a two-dimensional array. Only the elements in the upper triangle

of the matrix, including the diagonal, are stored in the upper triangle of the array.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UTA.

Given the following matrix U:

11 12 13 14 15
0 22 23 24 25
6 0 33 34 35
6 0 0 44 45
6 0 0 0 55
the array is:
11 12 13 14 15
* 22 23 24 25
UTA = * % 33 34 35
* % x 44 45
* * * * b§

7

where “*” means you do not have to store a value in that position in the array.
Lower-Triangular Storage Mode: A triangular matrix is stored in lower-triangular
storage mode in a two-dimensional array. Only the elements in the lower triangle

of the matrix, including the diagonal, are stored in the lower triangle of the array.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LTA.

Given the following matrix L:

Chapter 3. Setting Up Your Data Structures 75

1 0 0 0 0
21 22 0 0 ©
31 32 33 0 O
41 42 43 44 0
51 52 53 54 55
the array is:
11 * * * *
21 22 x % %
LTA = | 31 32 33 * =*
41 42 43 44 x

51 52 53 54 55

7R

where “+” means you do not have to store a value in that position in the array.

General Band Matrix

A general band matrix has its nonzero elements arranged uniformly near the
diagonal, such that:

a.. =0

i if (i—j) > ml or (j—i) > mu

where ml and mu are the lower and upper band widths, respectively, and ml+mu+1
is the total band width.

The following matrix illustrates a square general band matrix of order n, where the
band widths are ml = g-1 and mu = p-1:

|« mu — |
ayap az - .a,0 . . 0]
_ |ayay any .0
1| a51a3 as; R
ml 0
4=11"
_ |9
0 .
0 .
0 .
0 .0 . a,, |

Some special types of band matrices are:
* Tridiagonal matrix: ml = mu = 1
* 9-diagonal matrix: ml = mu = 4

The following two matrices illustrate m by n rectangular general band matrices,

where the band widths are ml = g-1 and mu = p-1. For both matrices, the leading
diagonal is ay;, a5y, 433, ..., 4,,- Following is a general band matrix with m > n:

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

— mu —> |

ayap ay - a0 .0

dpy Ay do3 -0

a3y Az ds3 - 0.
- 0
T
ml an

A=110.
- 0o .
0 .
0 . a,,
0 .
0 .
0 . 0. .a,,

Following is a general band matrix with m < n:

|« mu —>
(a, a,, a5 . ca, 0o 0 |
— | A1 Ay dys -0
T ay, Ay, Ay . 0
ml 0
A= 1 . 0
— |ay . 0
0 . . 0
0o .
0 .
i 0 0 a,, A |
In Storage

The two storage modes used for storing general band matrices are described in the
following sections:

+ [“General-Band Storage Mode”]

» ["BLAS-General-Band Storage Mode” on page 79|

General-Band Storage Mode: (This storage mode is used only for square
matrices.) Only the band elements of a general band matrix are stored for
general-band storage mode. Additional storage must also be provided for fill- in.
General-band storage mode packs the matrix elements by columns into a
two-dimensional array, such that each diagonal of the matrix appears as a row in
the packed array.

For a matrix A of order n with band widths ml and mu, the array must have a

leading dimension, Ida, greater than or equal to 2ml+mu+16. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Chapter 3. Setting Up Your Data Structures 77

Using array AGB, which is declared as AGB(2ml+mu+16, n), the columns of elements
in matrix A are stored in each column in array AGB as follows, where a,; is stored
at AGB(ml+mu+1, 1):

| « n —
T, .
ml
4)
T alp a2,p+1 an—mu,n
mu

i3

d * a, .

AGB = l all . . ann
Tl L
ml
* aql aq+1,2 . aq+mu,p . : an,nfml

*
15
i * %

"o

where “*” means you do not store an element in that position in the array.

In the ESSL subroutine computation, some of the positions in the array indicated
by an “*” are used for fill- in. Other positions may not be accessed at all.

Following is an example of a band matrix A of order 9 and band widths of ml = 2
and mu = 3.

Given the following matrix A:

11 12 13 14 06 0 0 0 0
21 22 23 24 25 0 0O 0O O
31 32 33 34 35 36 0 0 0

0

[cNoNoNoNoNo)

you store it in general-band storage mode in a 23 by 9 array AGB as follows, where
ay; is stored in AGB(6,1):

78 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

* o+ o« 14 25 36 47 58 69
* % 13 24 35 46 57 68 79
* 12 23 34 45 56 67 78 89
11 22 33 44 55 66 77 88 99
21 32 43 54 65 76 87 98
31 42 53 64 75 86 97 x
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
AGB = * * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

Following is an example of how to transform your general band matrix, of order n,
to general-band storage mode:
MD=ML+MU+1
DO 1 J=1,N
DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
AGB(I-J+MD,J)=A(I,J)
1 CONTINUE

BLAS-General-Band Storage Mode: (This storage mode is used for both square
and rectangular matrices.) Only the band elements of a general band matrix are
stored for BLAS-general-band storage mode. The storage mode packs the matrix
elements by columns into a two-dimensional array, such that each diagonal of the
matrix appears as a row in the packed array.

For an m by n matrix A with band widths m! and mu, the array AGB must have a
leading dimension, [da, greater than or equal to ml+mu+1. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using the array AGB, which is declared as AGB(ml+mu+1, n), the columns of

elements in matrix A are stored in each column in array AGB as follows, where a;;
is stored at AGB(mu+1, 1):

Chapter 3. Setting Up Your Data Structures 79

T * . . . * alp az’pﬂ
mu
AGB = \L % a, s
l ay
7
ml
*L g 4412

where “*” means you do not store an element in that position in the array. These
positions are not accessed by ESSL. Unused positions in the array always occur in
the upper left triangle of the array, but may not occur in the lower right triangle
of the array, as you can see from the examples given here.

Following is an example where m > n, and general band matrix A is 9 by 8 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:

11 12 13 14 06 0 0 0
21 22 23 24 25 O 0O O
31 32 33 34 35 36 0 0
0 42 43 44 45 46 47 0

53 54 55 56 57 58
0 64 65 66 67 68
06 0 75 76 77 78
6 0 0 8 87 88
6 6 0 0 97 98

[cNoNoNoNo]
[cNoNoNoNo]

you store it in array AGB, declared as AGB(6,8), as follows, where 4, is stored in
AGB(4,1):

* o+« o« 14 25 36 47 58
* « 13 24 35 46 57 68
AGB = * 12 23 34 45 56 67 78
11 22 33 44 55 66 77 88
21 32 43 54 65 76 87 98
31 42 53 64 75 86 97 ~

Following is an example where m < n, and general band matrix A is 7 by 9 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:

11 12 13 14 0 0 0
21 22 23 24 25 0 O
31 32 33 34 35 36 O
0 42 43 44 45 46 47

[cNoNoNo]
[cNoRoNo]

80 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

0 0 53 54 55 56 57 58 0
06 0 0 64 65 66 67 68 69
6 06 06 0 75 76 77 78 79

you store it in array AGB, declared as AGB(6,9), as follows, where a,, is stored in
AGB(4,1) and the leading diagonal does not fill up the whole row:

* o+« o« 14 25 36 47 58 69
* % 13 24 35 46 57 68 79
AGB = * 12 23 34 45 56 67 78 «x
11 22 33 44 55 66 77 =+ =*
21 32 43 54 65 76 * x %
31 42 53 64 75 x o« & %

"o

and where “*” means you do not store an element in that position in the array.

Following is an example of how to transform your general band matrix, for all
values of m and n, to BLAS-general-band storage mode:

DO 20 J=1,N
K=MU+1-J
DO 10 I=MAX(1,J-MU),MIN(M,J+ML)
AGB(K+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Symmetric Band Matrix

A symmetric band matrix is a symmetric matrix whose nonzero elements are
arranged uniformly near the diagonal, such that:

where k is the half band width.

The following matrix illustrates a symmetric band matrix of order n, where the
half band width k = g-1:

|« &k > |

aydy ay . a0 0 00
ay1 4y A3 0
Qs dsz; Az 0

nn

In Storage

The two storage modes used for storing symmetric band matrices are described in
the following sections:

* |“Upper-Band-Packed Storage Mode” on page 82|

Chapter 3. Setting Up Your Data Structures ~ 81

82

* |"Lower-Band-Packed Storage Mode” on page 83|

Upper-Band-Packed Storage Mode: Only the band elements of the upper
triangular part of a symmetric band matrix, including the main diagonal, are
stored for upper-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, /da, greater than or equal to k+1, and the size of the second

dimension must be (at least) n.

Using array ASB, which is declared as ASB(Ilda,n), where p = lda = k+1, the
elements of a symmetric band matrix are stored as follows:

ES . . . sk alp az’p_*_l . . . an_k,n

ASB = .
* A3 Ay
* ap 25%)
a 5% (-

o

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 3.

Given the following matrix A:

you store it in upper-band-packed storage mode in array ASB, declared as ASB(4,6),
as follows.

ASB = * o+ 13 24 35 46
* 12 23 34 45 56
11 22 33 44 55 66

Following is an example of how to transform your symmetric band matrix to
upper-band-packed storage mode:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J
ASB(M+1,J)=A(I,J)
10 CONTINUE
20 CONTINUE

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Lower-Band-Packed Storage Mode: Only the band elements of the lower
triangular part of a symmetric band matrix, including the main diagonal, are
stored for lower-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(Ida,n), where q = Ida = k+1, the elements
of a symmetric band matrix are stored as follows:

all a22 . . . ann—‘
ay Az *
as; Ay
ASB =
_Clql Clq+1,2 o o anjnik E S]

o

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 2.

Given the following matrix A:

11 21 31 06 0 0
21 22 32 42 0 0
31 32 33 43 53 0
0 42 43 44 54 64
0 0 53 54 55 65
6 0 0 64 65 66

you store it in lower-band-packed storage mode in array ASB, declared as ASB(3,6),
as follows:

11 22 33 44 55 66
ASB = | 21 32 43 54 65
[31 42 53 64 « *J

Following is an example of how to transform your symmetric band matrix to
lower-band-packed storage mode:
DO 20 J=1,N
DO 10 I=J,MIN(J+K,N)
ASB(I-J+1,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Positive Definite Symmetric Band Matrix

A real symmetric band matrix A is positive definite if and only if x'Ax is positive
for all nonzero vectors x.

Chapter 3. Setting Up Your Data Structures 83

In Storage

The positive definite symmetric band matrix is stored in the same way a
symmetric band matrix is stored. For a description of this storage technique, see
[‘Symmetric Band Matrix” on page 81|

Complex Hermitian Band Matrix
A complex band matrix is Hermitian if it is equal to its conjugate transpose:
H = H"

In Storage
The complex Hermitian band matrix is stored using the same two techniques used
for symmetric band matrices:

* Lower-band-packed storage mode, as described in |“Lower-Band-Packed Storage|
[Mode” on page 83|

* Upper-band-packed storage mode, as described in [“Upper-Band-Packed Storage
[Mode” on page 82

Following is an example of a complex Hermitian band matrix H of order 5, having
a half band width of 2.

Given the following matrix H:

(11, o) (21, -1) (31, 1) (0, 0) (60, 0)
(21, 1) (22, o) (32, -1) (42, -1) (0, 0)
(31, -1) (32, 1) (33, 0) (43, -1) (53, -1)
(0, 0) (0, 0) (53, 1) (54, 1) (55, 0)

you store it in a two-dimensional array HP, as follows:
* In lower-band-packed storage mode:

(11, =) (22, *) (33, *) (44, *) (55, *)
WP = | (21, 1) (32, 1) (43, 1) (54, 1) =
(31, -1) (42, 1) (53, 1) * *

* In upper-band-packed storage mode:

* * (31: 1) (429 _1) (53: _1)
HP = * (21, -1) (32, -1) (43, -1) (54, -1)
(11, =) (22, =*) (33, =) (44, =*) (55, =)

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian band matrix
are always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Triangular Band Matrix

There are two types of triangular band matrices: upper triangular band matrix and
lower triangular band matrix. Triangular band matrices have the same number of
rows as they have columns; that is, they have n rows and n columns. They have an
upper or lower band width of k.

84 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

A band matrix U is an upper triangular band matrix if its nonzero elements are
found only in the upper triangle of the matrix, including the main diagonal; that
is:

Its band elements are arranged uniformly near the diagonal in the upper triangle
of the matrix, such that:

The following matrix U illustrates an upper triangular band matrix of order n with
an upper band width k = g-1:

|« k > |
1y, 1y 1y, -y, 0 0 |
0 u,, us, 0
0 w54 0 .
0
U =
o . .. 0 u,, |

A band matrix L is a lower triangular band matrix if its nonzero elements are
found only in the lower triangle of the matrix, including the main diagonal; that is:

lij=0 1f1<]

Its band elements are arranged uniformly near the diagonal in the lower triangle of
the matrix such that:

The following matrix L illustrates an upper triangular band matrix of order n with
a lower band width k = g-1:

L, 0 . . . 0]

| &= — |
~~

nn

Chapter 3. Setting Up Your Data Structures 85

A triangular band matrix can also be a unit triangular band matrix if all the
diagonal elements have a value of 1. For an illustration of a unit triangular matrix,
see [“Triangular Matrix” on page 73

In Storage

The two storage modes used for storing triangular band matrices are described in
the following sections:

« |“Upper-Triangular-Band-Packed Storage Mode”]

» [“Lower-Triangular-Band-Packed Storage Mode” on page 87|

It is important to note that because the diagonal elements of a unit triangular
band matrix are always one, you do not need to set these values in the array for
these two storage modes. ESSL always assumes that the values in these positions
are one.

Upper-Triangular-Band-Packed Storage Mode: Only the band elements of the
upper triangular part of an upper triangular band matrix, including the main
diagonal, are stored for upper-triangular-band-packed storage mode.

For a matrix U of order n and an upper band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second

dimension must be (at least) n.

Using array UTB, which is declared as UTB(Ilda,n), where p = lda = k+1, the
elements of an upper triangular band matrix are stored as follows:

% . . . ES ulp u2’p+1 . . . unfk,n

UTB =

ull U22 . . . unn

7R

where “+” means you do not store an element in that position in the array.

Following is an example of an upper triangular band matrix U of order 6 and an
upper band width of 3.

Given the following matrix U:

11 12 13 14 0 0
0 22 23 24 25 0O
0 0 33 34 35 36
0 0 0 44 45 46
6 06 0 0 55 56
6 0 06 0 0 66

you store it in upper-triangular-band-packed storage mode in array UTB, declared
as UTB(4,6), as follows:

86 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

* o+« % 14 25 36
UTB = * o« 13 24 35 46
* 12 23 34 45 56
11 22 33 44 55 66

Following is an example of how to transform your upper triangular band matrix to
upper-triangular-band-packed storage mode:
DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J
UTB(M+I,J)=U(I,J)
10 CONTINUE
20 CONTINUE

Lower-Triangular-Band-Packed Storage Mode: Only the band elements of the
lower triangular part of a lower triangular band matrix, including the main
diagonal, are stored for lower-triangular-band-packed storage mode.

Note: As an alternative to this storage mode, you can specify your arguments in
your subroutine in a special way so that ESSL selects the matrix elements
properly, and you can leave your matrix stored in full-matrix storage mode.
For details, see the in the subroutine description in Part 2 of this
book.

For a matrix L of order n and a lower band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array LTB, which is declared as LTB(I/da,n), where q = Ida = k+1, the elements
of a lower triangular band matrix are stored as follows:

lll 122 st lnn
by Iy *
131 142

LTB =
_lql lq+l,2 o .. ln,n—k E T]

where “+” means you do not store an element in that position in the array.

Following is an example of a lower triangular band matrix L of order 6 and a
lower band width of 2.

Given the following matrix L:

1 0 0 0 0 0
21 22 06 0 0 0
31 32 33 0 0 0
0 42 43 44 0 0
0 0 53 54 55 0
06 0 0 64 65 66

Chapter 3. Setting Up Your Data Structures 87

you store it in lower-triangular-band-packed storage mode in array LTB, declared
as LTB(3,6), as follows:

11 22 33 44 55 66
LTB = 21 32 43 54 65 =+
31 42 53 64 * *

Following is an example of how to transform your lower triangular band matrix to
lower-triangular-band-packed storage mode:
DO 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)
LTB(M+I,J)=L(I,J)
10 CONTINUE
20 CONTINUE

General Tridiagonal Matrix

A general tridiagonal matrix is a matrix whose nonzero elements are found only
on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:

a; =0 if li-jl > 1

The following matrix illustrates a general tridiagonal matrix of order n:

(a,a, 0 . . . 0
Ay Ay ay; 0
0 a3 az; a 0
A= 0 ay; ay
0 Ay, |
In Storage

Only the diagonal, subdiagonal, and superdiagonal elements of the general
tridiagonal matrix are stored. This is called tridiagonal storage mode. The elements
of a general tridiagonal matrix, A, of order n are stored in three one-dimensional
arrays, C, D, and E, each of length #n, where array C contains the subdiagonal
elements, stored as follows:

C = (% ay, Az A3, vy 1)
and array D contains the main diagonal elements, stored as follows:

D = (411, 420, A3z, -y Gyy)

and array E contains the superdiagonal elements, stored as follows:

E = (412 23, 34 o) Qv *)
i r

where “*” means you do not store an element in that position in the array.

Following is an example of a general tridiagonal matrix A of order 5:

88 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

11 12 0 0
21 22 23 0
0 32 33 34
0 0 43 44 4
6 0 0 54 5

[N NoNoNo)

which you store in tridiagonal storage mode in arrays C, D, and E, each of length 5,

as follows:
C = (x, 21, 32, 43, 54)
D = (11, 22, 33, 44, 55)
E = (12, 23, 34, 45, =)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C, D, and E. These additional
locations are used for working storage by the ESSL subroutine. The reasons
for choosing this option are explained in the subroutine descriptions.

Symmetric Tridiagonal Matrix

A tridiagonal matrix A is also symmetric if and only if its nonzero elements are
found only on the diagonal, subdiagonal, and superdiagonal of the matrix, and its
subdiagonal elements and superdiagonal elements are equal; that is:

(@; =0 if ligjl >1) and (1 = a; if li4jl = 1)

The following matrix illustrates a symmetric tridiagonal matrix of order n:

(a,a,, 0 . . . 0
Ay Ay a3, 0
0 61(3)2 asy; a0
. A, a
4= 43 Q44
0
i 0 A, |
In Storage

Only the diagonal and subdiagonal elements of the positive definite symmetric
tridiagonal matrix are stored. This is called symmetric-tridiagonal storage mode.
The elements of a symmetric tridiagonal matrix A of order n are stored in two
one-dimensional arrays C and D, each of length 1, where array C contains the
subdiagonal elements, stored as follows:

C = (% aa1, A3, Agzy -y Gy 1)

7

where “+” means you do not store an element in that position in the array. Then
array D contains the main diagonal elements,stored as follows:

D = (a1, A22, B33, o) pyy)

Following is an example of a symmetric tridiagonal matrix A of order 5:

Chapter 3. Setting Up Your Data Structures 89

10 1 0 0 0
1 20 2 0 0
6 2 30 3 0
6 0 3 40 4
6 0 0 4 50

which you store in symmetric-tridiagonal storage mode in arrays C and D, each of
length 5, as follows:

C=1(x,1,2,3,4)

D

(10, 20, 30, 40, 50)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C and D. These additional locations
are used for working storage by the ESSL subroutine. The reasons for
choosing this option are explained in the subroutine descriptions.

Positive Definite Symmetric Tridiagonal Matrix

A real symmetric tridiagonal matrix A is positive definite if and only if x"Ax is
positive for all nonzero vectors x.

In Storage

The positive definite symmetric tridiagonal matrix is stored in the same way the
symmetric tridiagonal matrix is stored. For a description of this storage technique,
see [‘Symmetric Tridiagonal Matrix” on page 89)

Sparse Matrix

A sparse matrix is a matrix having a relatively small number of nonzero elements.
Consider the following as an example of a sparse matrix A:

11 0 13 0 0 0
21 22 0 24 0 0
06 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0 65 66

In Storage

A sparse matrix can be stored in full-matrix storage mode or a packed storage
mode. When a sparse matrix is stored in full-matrix storage mode, all its elements,
including its zero elements, are stored in an array.

The seven packed storage modes used for storing sparse matrices are described in
the following sections:

« [“Compressed-Matrix Storage Mode” on page 91|

+ ["Compressed-Diagonal Storage Mode” on page 92|

« [“Storage-by-Indices” on page 94

e |“Storage-by-Columns” on page 95|

* [“Storage-by-Rows” on page 96

* [“Diagonal-Out Skyline Storage Mode” on page 98|

* |“Profile-In Skyline Storage Mode” on page 100|

90 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Note: When the elements of a sparse matrix are stored using any of these storage
modes, the ESSL subroutines do not check that all elements are nonzero. You
do not get an error if any elements are zero.

Compressed-Matrix Storage Mode: The sparse matrix A, stored in
compressed-matrix storage mode, uses two two-dimensional arrays to define the
sparse matrix storage, AC and KA. See reference . Given the m by n sparse
matrix A, having a maximum of nz nonzero elements in each row:

* AC is defined as AC(lda,nz), where the leading dimension, /da, must be greater
than or equal to m. Each row of array AC contains the nonzero elements of the
corresponding row of matrix A. For each row in matrix A containing less than nz
nonzero elements, the corresponding row in array AC is padded with zeros. The
elements in each row can be stored in any order.

* KA is an integer array defined as KA(Ida,nz), where the leading dimension, I/da,
must be greater than or equal to m. It contains the column numbers of the
matrix A elements that are stored in the corresponding positions in array AC. For
each row in matrix A containing less than 7z nonzero elements, the
corresponding row in array KA is padded with any values from 1 to n. Because
this array is used by the ESSL subroutines to access other target vectors in the
computation, you must adhere to these required values to avoid errors.

Unless all the rows of sparse matrix A contain approximately the same number
of nonzero elements, this storage mode requires a large amount of storage. This
diminishes the performance you can obtain by using this storage mode.

Consider the following as an example of a 6 by 6 sparse matrix A with a
maximum of four nonzero elements in each row. It shows how matrix A can be
stored in arrays AC and KA.

Given the following matrix A:

11 0 13 06 0 0
21 22 0 24 0O O
0 32 33 0 35 0
0 0 43 44 0 46
51 0 0O 54 55 0
61 62 0 0O 65 66

the arrays are:

[11 13 0 0 1

22 21 24 0
AC= |33 32 35 0
44 43 46 0
55 51 54 0
66 61 62 65

1 3 * *

2 1 4 =

Kh= |3 2 5 =

4 3 6 *

5 1 4 =

6 1 2 5

"y
*

where means you can store any value from 1 to 6 in that position in the array.

Chapter 3. Setting Up Your Data Structures 91

Symmetric sparse matrices use the same storage technique as nonsymmetric sparse
matrices; that is, all nonzero elements of a symmetric matrix A must be stored in
array AC, not just the elements of the upper triangle and diagonal of matrix A.

In general terms, this storage technique can be expressed as follows:

For each a; # 0, fori=1 mandj=1,n
there exists k, where 1 = k = nz,
such that AC(i,k) = a; and KA(i,k) = j.

For all other elements of AC and KA,
AC(i,k) = 0 and 1 = KA(L,k) = n

where:

* a;; are the elements of the m by n matrix A that has a maximum of nz nonzero
elements in each row.

* Array AC is defined as AC(Ida,nz), where lda
* Array KA is defined as KA(Ida,nz), where lda

v

m.

v

m.

Compressed-Diagonal Storage Mode: The storage mode used for square sparse
matrices stored in compressed-diagonal storage mode has two variations,
depending on whether the matrix is a general sparse matrix or a symmetric sparse
matrix. This section explains both of these variations. This section begins, however,
by explaining the conventions used for numbering the diagonals in the matrix,
which apply to the storage descriptions.

Matrix A of order n has 2n-1 diagonals. Because k = j—i is constant for the
elements a;; along each diagonal, each diagonal can be assigned a diagonal number,
k, having a value from 1-# to n—1. Then the diagonals can be referred to as d,,

where k = 1-n, n—1.

The following matrix shows the starting position of each diagonal, d;:

d, d, d, . . . d

n—1
ay dyp Gz - - .
d_, Qyy Ayy o
d_, asy dzp dss
A=
d_, |lan - - - . . a,]

For a general (square) sparse matrix A, compressed-diagonal storage mode uses
two arrays to define the sparse matrix storage, AD and LA. Using the above
convention for numbering the diagonals, and given that sparse matrix A contains
nd diagonals having nonzero elements, arrays AD and LA are set up as follows:

* AD is defined as AD(lda,nd), where the leading dimension, /da, must be greater
than or equal to n. Each diagonal of matrix A that has at least one nonzero
element is stored in a column of array AD. All of the elements of the diagonal,
including its zero elements, are stored in n contiguous locations in the array, in
the same order as they appear in the diagonal. Padding with zeros is required as
follows to fill the n locations in each column of array AD:

92 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

— Each superdiagonal (k > 0), which has n—k elements, is padded with k
trailing zeros.

— The main diagonal (k = 0), which has n elements, does not require padding.

— Each subdiagonal (k < 0), which has n—1k| elements, is padded with [k|
leading zeros.

The diagonals can be stored in any columns in array AD.

¢ LA is a one-dimensional integer array of length nd, containing the diagonal
numbers k for the diagonals stored in each corresponding column in array AD.

Because this storage mode requires entire diagonals to be stored, if the nonzero
elements in matrix A are not concentrated along a few diagonals, this storage
mode requires a large amount of storage. This diminishes the performance you
obtain by using this storage mode.

Consider the following as an example of how a 6 by 6 general sparse matrix A
with 5 nonzero diagonals is stored in arrays AD and LA.

Given the following matrix A:

11 0 13 0 0 0
21 22 0 24 0 0
0 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0 65 66

the arrays are:

0
0
AD = 33 35 32 0
0
1
2

oo oNoNo)

LA (0, 2, -1, -4, -5)

For a symmetric sparse matrix, where each superdiagonal k is equal to subdiagonal
—k, compressed-diagonal storage mode uses the same storage technique as for the
general sparse matrix, except that only the nonzero main diagonal and one
diagonal of each couple of nonzero diagonals, k and —k, are used in setting up
arrays AD and LA. You can store either the upper or the lower diagonal of each
couple.

Consider the following as an example of a symmetric sparse matrix of order 6 and
how it is stored in arrays AD and LA, using only three nonzero diagonals in the
matrix.

Given the following matrix A:

11 0 13 0 51 0
06 22 0 24 0 62
13 0 33 0 35 0
0 24 0 44 0 46

Chapter 3. Setting Up Your Data Structures 93

94

51 0 35 0 55 0
0 62 0 46 0O 66

the arrays are:

11 13 0
22 24 0
AD = 33 35 0
44 46 0
55 0 51
66 0 62

LA = (0, 2, -4)
In general terms, this storage technique can be expressed as follows:

For each d, = (0, ..., 0), for k = 1-n, n-1
for general square sparse matrices, or

for each unique d;, = (0, ..., 0), for k = 1-n, n-1
for symmetric sparse matrices,

there exists [, where 1 = [= nd,
such that LA(/) = k and column [in array AD contains dp;.

where:

* Array AD is defined as AD(Ida,nd), where Ida =z n, and where nd is the number of
nonzero diagonals, d, that are stored in array AD.

* Array LA has nd elements.
* kis the diagonal number of each diagonal, d;, where k = i—j.

* dp, are the diagonals, d;, with padding, which are constructed from the sparse
matrix A elements, aj, fori,j = 1, n as follows:

For superdiagonals (k > 0), dp, has k trailing zeros: dp, = (a4 j11, G2 g4/ s Ao
04, ..., Op)

For the main diagonal (k = 0), dp, has no padding: dp, = (ayy, a5, ..., 4,,,,)

For subdiagonals (k < 0), dp, has |kl leading zeros: dp;, = (0y, ..., 0y, @ 151411,
A1k142,2 s An, neikl)

Storage-by-Indices: For a sparse matrix A, storage-by-indices uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:

* AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously in any order.

* IA, an integer array of (at least) length ne contains the corresponding row
numbers of each nonzero element, a;, in matrix A.

e JA, an integer array of (at least) length ne contains the corresponding column
numbers of each nonzero element, 4;, in matrix A.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can

be stored in arrays AR, IA, and JA.:

Given the following matrix A:

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

11 0 13 06 0 0
21 22 0 24 0O O
0

0 0 43 44 0 46

[oN o]

61 62 0

the arrays are:
AR = (11, 22, 32, 33, 13, 21, 43, 24, 66, 46, 35, 62, 61, 65, 44)

IA=(,2,3,3,1,2,4,2,6, 4, 3,6, 6,6, 4)

JA

(1’ 2’ 2’ 3’ 3’ 1’ 39 4’ 6’ 6’ 5’ 2’]" 59 4)
In general terms, this storage technique can be expressed as follows:

For each a; # 0, fori =1, mand j =1, n

there exists k, where 1 = k = ne, such that:

AR(k) = a;
IA(k) = i
IAK) = j
where:

a; are the elements of the m by n sparse matrix A.

Arrays AR, IA, and JA each have ne elements.

Storage-by-Columns: For a sparse matrix, A, storage-by-columns uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:

* AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously. The columns of matrix A are stored consecutively from 1 to
n in AR. The elements in each column of A are stored in any order in AR.

* IA an integer array of (at least) length ne contains the corresponding row
numbers of each nonzero element, A, in matrix A.

e JA, an integer array of (at least) length n+1 contains the relative starting position
of each column of matrix A in array AR; that is, each element JA(j) of the column
pointer array indicates where column j begins in array AR. If all elements in
column j are zero, then JA(j) = JA(j+1). The last element, JA(n+1), indicates the
position after the last element in array AR, which is ne+1.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can
be stored in arrays AR, IA, and JA.

Given the following matrix A:

11 0 13 0 06 0
21 22 0 24 0 O
06 32 33 0 0 0
0 0 43 44 0 46
6 06 0 0 0 0
61 62 0 0 0O 66

Chapter 3. Setting Up Your Data Structures 95

96

the arrays are:
AR = (11, 61, 21, 62, 32, 22, 13, 33, 43, 44, 24, 46, 66)

IA=(1,6,2,6,3,2,1, 3, 4,4,2,4,06)

JA = (1, 4, 7, 10, 12, 12, 14)
In general terms, this storage technique can be expressed as follows:

For each a; # 0, for i =1, mand j =1, n
there exists k, where 1 = k = ne, such that

= a;

And for j =1, n,

JA() = k, where a;, in AR(k), is the first element stored in AR for column j
JA(j) = JA(j+1), where all a; = 0 in column j

JA(n+1) = ne+1

where:

a; are the elements of the m by n sparse matrix A.
Arrays AR and IA each have ne elements.
Array JA has n+l elements.

Storage-by-Rows: The storage mode used for sparse matrices stored by rows has
three variations, depending on whether the matrix is a general sparse matrix or a
symmetric sparse matrix. This section explains these variations.

For a general sparse matrix A, storage-by-rows uses three one-dimensional arrays
to define the sparse matrix storage, AR, IA, and JA. Given the m by n sparse matrix
A having ne nonzero elements, the arrays are set up as follows:

* AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously. The rows of matrix A are stored consecutively from 1 to m
in AR. The elements in each row of A are stored in any order in AR.

e IA, an integer array of (at least) length m+1 contains the relative starting position
of each row of matrix A in array AR; that is, each element IA(7) of the row pointer
array indicates where row i begins in array AR. If all elements in row i are zero,
then IA(}) = IA(i+1). The last element, IA(m+1), indicates the position after the

last element in array AR, which is ne+1.
e JA, an integer array of (at least) length ne contains the corresponding column
numbers of each nonzero element, a;, in matrix A.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it can be stored in arrays AR, IA, and JA.

Given the following matrix A:

11 0 13 0 0 0
21 22 0 24 0 0O
06 32 33 0 0 0
0 0 43 44 0 46
6 6 0 0 0 0
61 62 0 0 0O 66

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

the arrays are:
AR = (11, 13, 24, 22, 21, 32, 33, 44, 43, 46, 61, 62, 66)

IA = (1, 3, 6, 8, 11, 11, 14)

JA

(1, 3,4,2,1,2,3,4,3,6, 1, 2, 6)

For a symmetric sparse matrix of order m, storage-by-rows uses the same storage
technique as for the general sparse matrix, except that only the upper or lower
triangle and diagonal elements are used in setting up arrays AR, IA, and JA.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it can be stored in arrays AR, IA, and JA using upper-storage-by-rows,

which stores only the upper triangle and diagonal elements.

Given the following matrix A:

11 0 13 0 0 0
0 22 23 24 0 0O
13 23 33 0 35 0
0 24 0 44 0 46
6 0 35 0 55 0
6 06 0 46 0 0

the arrays are:

AR = (11, 13, 22, 24, 23, 33, 35, 46, 44, 55)
IA = (1, 3, 6, 8, 10, 11, 11)
JA = (1, 3, 2, 3, 4, 3, 5, 4, 6, 5)

Using the same symmetric matrix A, consider the following as an example of how
it can be stored in arrays AR, IA, and JA using lower-storage-by-rows, which stores
only the lower triangle and diagonal elements:

AR = (11, 22, 23, 33, 13, 24, 44, 55, 35, 46)

IA=(1, 2, 3, 6, 8, 10, 11)

JA

(1,2, 2,3,1,2,4,5, 3, 4)
In general terms, this storage technique can be expressed as follows:

For each a; # 0,

for i =1, m and j = 1, n for general sparse matrices
or

for i =1, m and j = i, m for symmetric sparse matrices using the lower triangle
or

fori =1, m and j = 1, i for symmetric sparse matrices using the upper triangle

there exists k, where 1 = k = ne, such that
AR(k) = a
JA(k) = j

ij

And for i = 1, m,

IA(i) = k, where a; in AR(k), is the first element stored in AR for row i
IA() = IA(i+1), where all 4; = 0 in row i

IA(m+1) = ne+l

Chapter 3. Setting Up Your Data Structures 97

where:

* aj; are the elements of sparse matrix A, which is either an m by n general sparse
matrix or a symmetric sparse matrix of order m containing ne nonzero elements.

 Arrays AR and JA each have ne elements.
e Array IA has m+1 elements.

Diagonal-Out Skyline Storage Mode: The diagonal-out skyline storage mode
used for sparse matrices has two variations, depending on whether the matrix is a
general sparse matrix or a symmetric sparse matrix. Both of these variations are
explained here.

For a general sparse matrix A, diagonal-out skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order 7, containing nu+nl-n elements under the top
and left profiles, the arrays are set up as follows:

* AU of (at least) length nu contains the upper triangle of the sparse matrix A,
where the columns are stored consecutively from 1 to n in AU in the following
way. For each column, the elements starting at the diagonal element and ending
at the topmost nonzero element in the column are stored contiguously in AU. The
elements stored may include zero elements along with the nonzero elements. If
all elements in the column to be stored are zero, the diagonal element, 4, having
a value of zero, is stored in AU for that column. A total of nu elements are stored
for the upper triangle of A.

* IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(7) of the
diagonal pointer array indicates where diagonal element a,; is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

* AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to # in AL in the following way.
For each row, the elements starting at the diagonal element and ending at the
leftmost nonzero element in the row are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, 4;;, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

* IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element a;; is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is n/+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:

6 12 13 0 0 0
21 22 0 24 0 0
31 0 33 34 0 36
41 42 43 44 45 0

0 0 0 54 55 56

6 0 63 0 65 66

98 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

v = (1, 2, 4, 7, 10, 12, 16) where nu=15
AL = (%, *, 21, %, 0, 31, *, 43, 42, 41, =, 54, %, 65, 0, 63)

IbL = (1, 2, 4, 7, 11, 13, 17) where nl=16
and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order 1, diagonal-out skyline storage mode uses
the same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:

06 12 13 0 0 0
12 22 0 24 0 0
13 0 33 34 0 36

0 24 34 44 45 0

6 0 0 45 55 56

6 0 36 0 56 66

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

v = (1, 2, 4, 7, 10, 12, 16) where nu=15
In general terms, this storage technique can be expressed as follows:
For general sparse matrices and symmetric sparse matrices:

For each a; for j =1, nand i =j, k,

where 4;; is the topmost a; # 0 in each column j,
there exists m, where 1 = m = nu, such that
AU(m+j—i) = a;

IDU(j) = m for each a;
IDU(n+1) = nu+l

Also, for general sparse matrices:

For each a;; fori=1nand i =j, k

where 4 is the leftmost 4; # 0 in each row i,
there exists m, where 1 = m = nl, such that
AL(m+i—j) = a;

IDL(i) = m for each a;

IDL(n+1) = nl+1

where:

a; are the elements of sparse matrix A, of order n.
Array AU has nu elements.

Chapter 3. Setting Up Your Data Structures 99

Array AL has nl elements.
Arrays IDU and IDL each have n+1 elements.

Profile-In Skyline Storage Mode: The profile-in skyline storage mode used for
sparse matrices has two variations, depending on whether the matrix is a general
sparse matrix or a symmetric sparse matrix. Both of these variations are explained
here.

For a general sparse matrix A, profile-in skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order n, containing nu+nl-n elements under the top
and left profiles, the arrays are set up as follows:

* AU of (at least) length nu contains the upper triangle of the sparse matrix A,
where the columns are stored consecutively from 1 to # in AU in the following
way. For each column, the elements starting at the topmost nonzero element in
the column and ending at the diagonal element are stored contiguously in AU.
The elements stored may include zero elements along with the nonzero
elements. If all elements in the column to be stored are zero, the diagonal
element, a;;, having a value of zero, is stored in AU for that column. A total of nu
elements are stored for the upper triangle of A.

* IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(7) of the
diagonal pointer array indicates where diagonal element g;; is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

* AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to # in AL in the following way.
For each row, the elements starting at the leftmost nonzero element in the row
and ending at the diagonal element are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, 4;;, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

e IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element a;; is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is nl+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:

06 12 13 0 0 0
21 22 0 24 0 0
31 0 33 34 0 36
41 42 43 44 45 0

0 0 0 54 55 56

6 0 63 0 65 66

the arrays are:
AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

100 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Ibu = (1, 3, 6, 9, 11, 15, 16) where nu=15
AL = (%, 21, =, 31, 0, *, 41, 42, 43, =, 54, %, 63, 0, 65, *)

oL = (1, 3, 6, 10, 12, 16, 17) where nl=16
and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order n, profile-in skyline storage mode uses the
same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:

6 12 13 0 0 0
12 22 0 24 0 0
13 0 33 34 0 36

0 24 34 44 45 0

6 0 0 45 55 56

6 0 36 0 56 66

the arrays are:
AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

Ibu = (1, 3, 6, 9, 11, 15, 16) where nu=15
In general terms, this storage technique can be expressed as follows:

For general sparse matrices and symmetric sparse matrices:
For each a;; forj=1nand i =k, j,

where g;; is the topmost a; # 0 in each column j,

there exists m, where 1 = m = nu, such that

AU(m—j+i) = aj;

IDU(j) = m for each a;

IDU(n+1) = nu+l

Also, for general sparse matrices:

For each a;; fori=1nand j =k i

where 4 is the leftmost 4; # 0 in each row i,
there exists m, where 1 = m = nl, such that
AL(m—i+j) = a;

IDL(i) = m for each a;

IDL(n+1) = nl+1

where:
a; are the elements of sparse matrix A, of order n.
Array AU has nu elements.

Array AL has nl elements.
Arrays IDU and IDL each have n+1 elements.

Chapter 3. Setting Up Your Data Structures 101

Sequences

A sequence is an ordered collection of numbers. It can be a one-, two-, or
three-dimensional sequence. Sequences are used in the areas of sorting, searching,
Fourier transforms, convolutions, and correlations.

Real and Complex Elements in Storage

Sequences can contain either real or complex data. For sequences containing
complex data, a special storage arrangement is used to accommodate the two
parts, a and b, of each complex number, a+bi, in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex sequences as for real

sequences of the same precision. See["How Do You Set Up Your Scalar Data?” on|
age 29 for a description of real and complex numbers, and ["How Do You Set Up
Your Arrays?” on page 29| for a description of how real and complex data is stored

in arrays.

One-Dimensional Sequences

A one-dimensional sequence appears symbolically as follows, where the subscripts
indicate the element positions within the sequence:

(X1, X, X3, .o X;)

In Storage
A one-dimensional sequence is stored in an array using stride in the same way a
vector uses stride. For details, see[“How Stride Is Used for Vectors” on page 58.|

Two-Dimensional Sequences

A two-dimensional sequence appears symbolically as a series of columns of
elements. (They are represented in the same way as a matrix without the square
brackets.) The two subscripts indicate the element positions in the first and second
dimensions, respectively:

oo o1 - - - Aop1

o i - - - Ay
Ap-10 Ap-11" - * Q1,01
In Storage

A two-dimensional sequence is stored in an array using the stride for the second
dimension in the same way that a matrix uses leading dimension. It uses a stride
of 1 for the first dimension. For details, see [“How Leading Dimension Is Used for]
Matrices” on page 63.](In the area of Fourier transforms, a two-dimensional
sequence may be stored in transposed form in an array. In this case, the stride for
the second dimension is 1, and the stride for the first dimension is the leading
dimension of the array.)

Three-Dimensional Sequences

A three-dimensional sequence is represented as a series of blocks of elements. Each
block is equivalent to a two-dimensional sequence. The number of blocks indicates

102 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

the length of the third dimension. The three subscripts indicate the element
positions in the first, second, and third dimensions, respectively:

Plane 0:

o0 - - - 9on-10

00 - A0
Apn-1,00 * ° " Ay 1,10
Plane 1:

ap0,1 - o Qop-1n

01 R P
Ap-101 * ° " Ay 1,101
Plane (p—1):

Qop-1 - -« Aop-1p-1

Aro,p-1 * Ap-1p-1
Ay1,0,p-1 Ay n-1,p-1
In Storage

Each block of elements in a three-dimensional sequence is stored successively in an
array. The stride for the third dimension is used to select the elements for each
successive block of elements in the array. The starting point of the
three-dimensional sequence is specified as the argument for the sequence in the
ESSL calling statement. For example, if the three-dimensional sequence is contained
in array BIG, declared as BIG(1:20,1:30,1:10), and starts at the second element in
the first dimension, the third element in the second dimension, and the first
element in the third dimension of array BIG, you should specify BIG(2,3,1) as the
argument for the sequence, such as in:

CALL SCFT3 (BIG(2,3,1),20,600,Y,32,2056,16,20,10,1,1.0,AUX,30000)

See [“How Stride Is Used for Three-Dimensional Sequences” on page 104 for a
detailed description of how three-dimensional sequences are stored within arrays
using strides.

Chapter 3. Setting Up Your Data Structures 103

How Stride Is Used for Three-Dimensional Sequences

The elements of the three-dimensional sequence can be defined as a;; fori = 1, m,
j =1,n,and k = 1, p. The first two subscripts, i and j, define the elements in the
first two dimensions of the sequence, and the third subscript, k, defines the
elements in the third dimension. Using this definition of three-dimensional
sequences, this section explains how these elements are mapped into an array
using the concepts of stride. (Remember that the elements a5 are the elements of
the conceptual data structure, the three-dimensional sequence to be processed by
ESSL. The sequence does not have to include all the elements in the array. Strides
are used by the ESSL subroutines to select the desired elements to be processed in
the array.)

The sequence elements in the first two dimensions are mapped into an array in the
same way a matrix or two-dimensional sequence is mapped into an array. It uses
all the items listed in ["How Leading Dimension Is Used for Matrices” on page 63}
such as the starting point, the number of rows and columns, and the leading
dimension. The stride for the first dimension, incl, of a three-dimensional sequence
is assumed to be 1, as for matrices. The stride for the second dimension, inc2, of a
three-dimensional sequence is equivalent to the leading dimension for a matrix.

The stride for the third dimension, inc3, is used to define the array elements that
make up the third dimension of the three-dimensional sequence. The stride for the
third dimension is used as an increment to step through the array to find the
starting point for each of the p successive blocks of elements in the array. The
stride, inc3, must always be positive. It must always be greater than or equal to the
number of elements to be processed in the first two dimensions; that is,

inc3 z (inc2)(n).

A three-dimensional sequence is usually stored in a one-, two-, or
three-dimensional array; however, for the sake of this discussion, a
three-dimensional array is used here. For an array, A, declared as
A(E1:E2,F1:F2,G1:G2), the strides in the first, second, and third dimensions are:

incl =1
inc2 = (E2-E1+1)
inc3 = (E2—E1+1)(F2-F1+1)

Given an array A, declared as A(1:7,1:3,0:3), where the lengths of the first,
second, and third dimensions are 7, 3, and 4, respectively, the resulting strides are
incl = 1, inc2 = 7, and inc3 = 21.

The starting point for a three-dimensional sequence in an array is at the location
specified by the argument for the sequence in the ESSL calling statement. Using
the array A, described above, if you specify A(2,2,1) for a three-dimensional
sequence, where A is defined as follows, in four blocks, for planes 0 - 3,

respectively:

1.0 8.0 15.0 22.0 29.0 36.0 43.0 50.0 57.0 64.0 71.0 78.0
2.0 9.0 16.0 23.0 30.0 37.0 44.0 51.0 58.0 65.0 72.0 79.0
3.0 10.0 17.0 24.0 31.0 38.0 45.0 52.0 59.0 66.0 73.0 80.0
4.0 11.0 18.0 25.0 32.0 39.0 46.0 53.0 60.0 67.0 74.0 81.0
5.0 12.0 19.0 26.0 33.0 40.0 47.0 54.0 61.0 68.0 75.0 82.0
6.0 13.0 20.0 27.0 34.0 41.0 48.0 55.0 62.0 69.0 76.0 83.0
7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0 77.0 84.0

104 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

then processing begins in the second block of elements at row 2 and column 2 in
array A, which is 30.0. The stride in the third dimension is then used to find the
starting point for each of the next p—1 successive blocks of elements in the array.
The stride, inc3, is added to the starting point p—1 times. In this example, the stride
for the third dimension is 21, and the number of blocks of elements, p, to be
processed is 3, so the starting points in array A are A(2,2,1), A(2,2,2), and
A(2,2,3). These are elements 30.0, 51.0, and 72.0. These array elements then
correspond to the sequence elements 4,4, 415, and 4,5, respectively.

In general terms, this results in the following starting positions for the blocks of
elements in the array:

A(BEGINI, BEGINJ, BEGINK)
A(BEGINI, BEGINJ, BEGINK+1)
A(BEGINI, BEGINJ, BEGINK+2)

A(BEGINI, BEGINJ, BEGINK+p-1)

Usingm = 4,n = 2,and p = 3 to define the elements of the three-dimensional
data structure in this example, the resulting three-dimensional sequence is defined
as follows, in three blocks, for planes 0 - 2, respectively:

Plane 0: Plane 1: Plane 2:
Ao00 Ao10 Aoo1 Ao11 Aoz Ao12
00 110 101 111 102 Aq12
200 210 201 f211 A202 0212
300 310 301 311 A302 312
Plane 0: Plane 1: Plane 2:
30.0 37.0 51.0 58.0 72.0 79.0
31.0 38.0 52.0 59.0 73.0 80.0
32.0 39.0 53.0 60.0 74.0 81.0
33.0 40.0 54.0 61.0 75.0 82.0

As shown in this example, the three-dimensional sequence does not have to
include all the blocks of elements in the array. In this case, the three-dimensional
sequence includes only the second through the fourth block of elements in the
array. The first block is not used. Elements of an array are selected as they are
arranged in storage, regardless of the number of dimensions defined in the array.
Therefore, when using a one- or two-dimensional array to store your
three-dimensional sequence, you should understand how your array elements are
stored to ensure that elements are selected properly. See [“Setting Up Arrays in|
[Fortran” on page 108| for a description of array storage.

Note: Three-dimensional sequences are used by the three-dimensional Fourier
transform subroutines. By specifying certain stride values for inc2 and inc3

and declaring your arrays to have certain number of dimensions, you
achieve optimal performance in these subroutines. For details, see|”Setting]

[Up Your Data” on page 780|and the section for each subroutine.

Chapter 3. Setting Up Your Data Structures 105

106 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 4. Coding Your Program

This chapter provides you with information you need to code your Fortran, C, and
C++ programs.

Fortran Programs

This section describes how to code your Fortran program using any of the ESSL
run-time libraries.

Calling ESSL Subroutines and Functions in Fortran

In Fortran programs, most ESSL subroutines are invoked with the CALL statement:

CALL subroutine-name (argument-1, . . . , argument-n)

An example of a calling sequence for the SAXPY subroutine might be:
CALL SAXPY (5,A,X,J+INC,Y,1)

The remaining ESSL subroutines are invoked as functions by coding a function
reference. You first declare the type of value returned by the function: short- or
long-precision real, short- or long-precision complex, or integer. Then you code the
function reference as part of an expression in a statement. An example of declaring
and invoking the DASUM function might be:

DOUBLE PRECISION DASUM,SUM,X

SUM = DASUM (N,X,INCX)

Values are returned differently for ESSL subroutines and functions. For
subroutines, the results of the computation are returned in an argument specified
in the calling sequence. In the CALL statement above, the result is returned in
argument Y. For functions, the result is returned as the value of the function. In the
assignment statement above, the result is assigned to SUM.

See the Fortran publications for details on how to code the CALL statement and a
function reference.

Setting Up a User-Supplied Subroutine for ESSL in Fortran

Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in Fortran, there are some coding rules you must
follow:

* You must declare subf as EXTERNAL in your program.

* You should code the subf subroutine to the specifications given in
[Considerations for the SUBF Subroutine” on page 964 For examples of coding a

subf subroutine in Fortran, see the subroutine descriptions in that chapter.

© Copyright IBM Corp. 1991, 2004 107

Setting Up Scalar Data in Fortran

lists the scalar data types in Fortran that are used for ESSL. Only those

types and lengths used by ESSL are listed.

Table 30. Scalar Data Types in Fortran Programs

Terminology Used by ESSL

Fortran Equivalent

Character item" CHARACTER*1
N, 'T,'C' or'n', 't, '¢' ‘N, 'T, 'C
Logical item LOGICAL
.TRUE., .FALSE. .TRUE., .FALSE.

32-bit environment integer

12345, -12345

INTEGER or INTEGER*4

12345, -12345

64-bit environment in’ceger2

12345, —12345

INTEGER*8?

12345_8, —12345_8

Short-precision real number*

12.345

REAL or REAL*4

0.12345E2

Long-precision real number*

12.345

DOUBLE PRECISION or REAL*8

0.12345D2

Short-precision complex number*

(123.45, —54321.0)

COMPLEX or COMPLEX*8

(123.45E0, —543.21E2)

Long-precision complex number*

(123.45, —54321.0)

COMPLEX*16

(123.45D0, —543.21D2)

Note: ' ESSL accepts character data in either upper- or lowercase in its calling sequences.

2 In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits
except for the iusadr argument for ERRSET.

3 INTEGER may be used if you specify the compiler option -qintsize=8.

* Short- and long-precision numbers look the same in this book.

Setting Up Arrays in Fortran

Arrays are declared in Fortran by specifying the array name, the number of
dimensions, and the range of each dimension in a DIMENSION statement or an
explicit data type statement, such as REAL, DOUBLE PRECISION, and so forth.

Real and Complex Array Elements

Each array element can be either a real or complex data item of short or long
precision. The type of the array determines the size of the element storage
locations. Short-precision data requires 4 bytes, and long-precision data requires 8
bytes. Complex data requires two storage locations of either 4 or 8 bytes each, for
short or long precision, respectively, to accommodate the two parts of the complex
number: ¢ = a+bi. Therefore, exactly twice as much storage is required for complex
data as for real data of the same precision. See ['How Do You Set Up Your Scalar|
[Data?” on page 29|for a description of real and complex numbers.

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Even though complex data items require two storage locations, the same number
of elements exist in the array as for real data. A reference to an element—for
example, C(3)—in an array containing complex data gives you the whole complex
number; that is, it contains both a4 and b, where the complex number is expressed
as follows:

C(I)«(a; b; for a one-dimensional array
C(I,J)<—(a,-j, b,«j) for a two-dimensional array
C(I,J,K)«(@, byy) for a three-dimensional array

One-Dimensional Array
For a one-dimensional array in Fortran 77, you can code:
DIMENSION A(E1:E2)

where A is the name of the array, E1 is the lower bound, and E2 is the upper bound
of the single dimension in the array. If the lower bound is not specified, such as in
A(E2), the value is assumed to be 1. The upper bound is required.

A one-dimensional array is stored in ascending storage locations (relative to some
base storage address) in the following order:

Relative Location Array Element
1 A(E1L)

2 A(E1+1)

3 A(E1+2)
E2-E1+1 A(E2)

For example, the array A of length 4 specified in the DIMENSION statement as
A(0:3) and containing the following elements:

A=(1, 2,3, 4)

has its elements arranged in storage as follows:

Relative Location Array Element Value
1 1
2 2
3 3
4 4

Two-Dimensional Array
For a two-dimensional array in Fortran 77, you can code:
DIMENSION A(El:E2,F1:F2)

where A is the name of the array. E1 and F1 are the lower bounds of the first and
second dimensions, respectively, and E2 and F2 are the upper bounds of the first
and second dimensions, respectively. If either of the lower bounds is not specified,
such as in A(E2,F1:F2), the value is assumed to be 1. The upper bounds are
always required for each dimension. For examples of Fortran 77 usage, see
“SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX|
— Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate
Transpose” on page 292

The elements of a two-dimensional array are stored in column-major order; that is,
they are stored in the following ascending storage locations (relative to some base

Chapter 4. Coding Your Program 109

110

storage address) with the value of the first (row) subscript expression increasing
most rapidly and the value of the second (column) subscript expression increasing
least rapidly. Following are the locations of the elements in the array:

Relative Location
1
2

E2-E1+1
(E2-E1+1)+1
(E2-E1+1)+2

(E2-E1+1)2)
(E2-E1+1)(2)+1
(E2-E1+1)(2)+2

.(EZ—E1+1)(F2—F1)
(E2-E1+1)(F2-F1)+1
(E2-E1+1)(F2-F1)+2

(E2-E1+1)(F2-F1+1)

Array Element
A(E1,F1) (starting column 1)
A(E1+1,F1)

A(E2,F1)
A(E1,F1+1) (starting column 2)
A(E1+1,F1+1)

A(E2,F1+1)
A(E1,F1+2) (starting column 3)
A(E1+1,F1+2)

A(E2,F2-1)
A(E1,F2) (starting column F2-F1+1)
A(E1+1,F2)

A(E2,F2)

For example, the 3 by 4 array A specified in the DIMENSION statement as
A(2:4,1:4) and containing the following elements:

11 12 13
A = 21 22 23 24
31 32 33 34

has its elements arranged in storage as follows:

Relative Location

= O WO IDUIRE WN M=

11
12

Array Element Value
11 (starting column 1)
21
31
12 (starting column 2)
22
32
13 (starting column 3)
23
33
14 (starting column 4)
24
34

Each element A(I,J) of the array A, declared A(1:n, 1:m), containing real or complex
data, occupies the storage location whose address is given by the following

formula:

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

address {A(I,J)} = address {A} + (I-1 + n(J-1))f
for:

I
J

1, n and

[
N
3

where:

f
f
f
f

Three-Dimensional Array
For a three-dimensional array in Fortran 77, you can code:

DIMENSION A(El:E2,F1:F2,G1:G2)

for short-precision real numbers
for long-precision real numbers
for short-precision complex numbers
6 for long-precision complex numbers

4
8
8
1

where A is the name of the array. E1, F1, and G1 are the lower bounds of the first,
second, and third dimensions, respectively, and E2, F2, and G2 are the upper
bounds of the first, second, and third dimensions, respectively. If any of the lower
bounds are not specified, such as in A(E1:E2,F1:F2,62), the value is assumed to be
1. The upper bounds are always required for each dimension. For examples of
Fortran 77 usage, see ['SCFT3 and DCFT3 — Complex Fourier Transform in Three|
[Dimensions” on page 848

The elements of a three-dimensional array can be thought of as a set of
two-dimensional arrays, stored sequentially in ascending storage locations in the
array. The elements in each two-dimensional array are stored as defined in the
previous section. In the three-dimensional array, the value of the first (row)
subscript expression increases most rapidly, the second (column) subscript
expression increases less rapidly, and the third subscript expression (set of rows
and columns) increases least rapidly. Following are the locations of the elements in
the array:

Relative Location Array Element

1 A(E1,F1,G1) (starting the first set)

2 A(E1+1,F1,G1)

(E2-E1+1)(F2-F1+1) A(E2,F2,61)

(E2-E1+1)(F2-F1+1)+1 A(E1,F1,G1+1) (starting the second set)
(E2-E1+1)(F2-F1+1)+2 A(E1+1,F1,G1+1)
(E2-E1+1)(F2-F1+1)(2) A(E2,F2,G1+1)
(E2-E1+1)(F2-F1+1)(2)+1 A(E1,F1,G1+2) (starting the third set)
(E2-E1+1)(F2-F1+1)(2)+2 A(E1+1,F1+2)

(E2-E1+1)(F2-F1+1)(G2-G1) A(E2,F2,G2-1)
(E2-E1+1)(F2-F1+1)(G2-G1)+1 A(E1,F1,G2) (starting the last set*)
(E2-E1+1)(F2-F1+1)(G2-G1)+2 A(E1+1,F1,G2)

Chapter 4. Coding Your Program 111

112

(E2-E1+1)(F2-F1+1)(G2-G1+1) A(E2,F2,G2)
* The last set is the G2-G1+1 set.
For example, the 3 by 2 by 4 array A specified in the DIMENSION statement as

A(1:3,0:1,2:5) and containing the following sets of rows and columns of
elements:

111 121 112 122 113 123 114 124
A = 211 221 212 222 213 223 214 224
311 321 312 322 313 323 314 324

has its elements arranged in storage as follows:

Relative Location Array Element Value

1 111 (starting the first set)
2 211

3 311

4 121

5 221

6 321

7 112 (starting the second set)
8 212

9 312

10 122

11 222

12 322

13 113 (starting the third set)
14 213

15 313

16 123

17 223

18 323

19 114 (starting the fourth set)
20 214

21 314

22 124

23 224

24 324

Each element A(I,J,K) of the array A, declared A(1:n, 1:m, 1:p), containing real or
complex data, occupies the storage location whose address is given by the
following formula:

address {A(I,J,K)} = address {A} + (I-1 + n(J-1) + mn(K-1))f

for:
I=1,n
J=1m
K=1p
where:

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

f
f
f
f

4 for short-precision real numbers
8 for long-precision real numbers
8 for short-precision complex numbers
16 for long-precision complex numbers

Creating Multiple Threads and Calling ESSL from Your Fortran
Program

The following example shows how to create up to a maximum of eight threads,
where each thread calls the DURAND and DGEICD subroutines.

Note: Be sure to compile this program with the x1f_r command and the -gnosave

option.

Chapter 4. Coding Your Program 113

1SMP$
1SMP$&

sd =

program matinv_example
implicit none

I program to invert m nxn random matrices

real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
real (8) :: dummy_aux, seed=1998, sd
integer ::rc, i, m=8, n=500, iopt=3, naux=0

I allocate storage

allocate(A(n,n,m),stat=rc)

call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)

call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)

call error_exit(rc,"Allocation of rcond")

! Calculate inverses in parallel

parallel do private(i,sd), schedule(static),
share(n,a,iopt,rcond,det,dummy_aux,naux)
do i=1,m

seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),
dummy_aux,naux)
enddo

write(*,*)'Reciprocal condition numbers of the matrices are:'
write(*,'(4E12.4)") rcond

deallocate(A,stat=rc)

call error_exit(rc,"Deallocation of matrix A")
deallocate(det,stat=rc)

call error_exit(rc,"Deallocation of det")
deallocate(rcond,stat=rc)

call error_exit(rc,"Deallocation of rcond")

stop
contains
subroutine error_exit(error_code,string)
character(*) :: string
integer 11 error_code

if(error_code .eq. 0) return
write(0,*)string,": failing return code was ",error_code

stop 1
end subroutine error_exit
end

Handling Errors in Your Fortran Program

ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:

* For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable
errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

114 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the
subroutine descriptions in Part 2 of this book.

* For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in Fortran”|and [‘Computational Errors in Fortran” on|
page 118|explain how to use these facilities by describing the additional statements
you must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in |”Ir1put-Argument Errors in Fortran”|
and |“Cornputational Errors in Fortran” on page 118|on each thread that calls ESSL.
An example is shown in [‘Example of Handling Errors in a Multithreadedl
IApplication Program” on page 123

Input-Argument Errors in Fortran

To obtain corrected input-argument values in a Fortran program and to avert
program termination for the optionally-recoverable input-argument errors 2015,
2030, and 2200 add the statements in the following steps your program. Steps 3
and 7 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps
makes the effect of the call to ERRSET temporary.

Step 1. Declare ENOTRM as External:

EXTERNAL ENOTRM

This declares the ESSL error exit routine ENOTRM as an external reference in your
program. This should be coded in the beginning of your program before any of the
following statements.

Step 2. Call EINFO for Initialization:

CALL EINFO (0)

This calls the EINFO subroutine with one argument of value 0 to initialize the
ESSL error option table. It is required only if you call ERRSET in your program. It
is coded only once in the beginning of your program before any calls to ERRSET.
For a description of EINFO, see|“EINFO — ESSL Error Information-Handler|
[Subroutine” on page 1006

Step 3. Call ERRSAV:

CALL ERRSAV (ierno,tabent)

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, tabent, which is
accessible to your program. ERRSAV must be called for each entry you want to

save. This step is used, along with step 7, for ERRSTR. For information on whether

Chapter 4. Coding Your Program 115

ou should use ERRSAV and ERRSTR, see ['How Can You Control Error Handling]
in Large Applications by Saving and Restoring Entries in the Error Option Table?”]
on page 52] For an example, see|“Example 3” on page 122 as the use is the same
as for computational errors.

Step 4. Call ERRSET:

CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:

* How many times each error can occur before execution terminates (inoal)
* How many times each error message can be printed (inomes)
* The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030 or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see |iable 29 oﬁl
page 5“, For a description of the input-argument errors, see ['Input-Argument Error]|
Messages(2001-2099)” on page 178.[For a description of ERRSET, see [Chapter 17|
“Utilities,” on page 1003

Step 5. Call ESSL:

CALL name (arg-1,...,arg-n,xyyy,*zzz,...)

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:

* name specifies the ESSL subroutine.
e arg-1,..., arg-n are the input and output arguments.

"y

* yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran
statement numbers indicating where you want to branch when you get a
nonzero return code. Each corresponds to a different ESSL value. Control goes to
the corresponding statement number when a nonzero return code value is
returned for the CALL statement. Return code values are described under “Error
Conditions” in each ESSL subroutine description in Part 2 of this book.

Step 6. Perform the Desired Action: These are the statements at statement
number yyy or zzz, shown in the CALL statement in Step 5, and preceded by an
“x”. The statement to which control is passed corresponds to the return code value
for the error.

These statements perform whatever action is desired when the recoverable error
occurs. These statements may check the new values set in the input arguments to

116 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

determine whether adequate program storage is available, and then decide
whether to continue or terminate the program. Otherwise, these statements may
check that the size of the working storage arrays or the length of the transform
agrees with other data in the program. The program may also store this corrected
input argument value for future reference.

Step 7. Call ERRSTR:

CALL ERRSTR (ierno,tabent)

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area, tabent,
which is accessible to your program. ERRSTR must be called for each entry you
want to store. This step is used, along with step 3, for ERRSAV. For information on
whether you should use ERRSAV and ERRSTR, see [‘How Can You Control Error]
Handling in Large Applications by Saving and Restoring Entries in the Error
Option Table?” on page 52| For an example, see|'Example 3” on page 122|as the
use is the same as for computational errors.

Example

This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

Chapter 4. Coding Your Program 117

C DECLARE ENOTRM AS EXTERNAL
EXTERNAL ENOTRM

C INITIALIZE THE ESSL ERROR
C OPTION TABLE
CALL EINFO(0)

C MAKE ERROR CODE 2015 A RECOVERABLE
C ERROR AND SUPPRESS PRINTING ALL
C ERROR MESSAGES FOR IT

CALL ERRSET(2015,0,-1,0,ENOTRM,2015)

CALL ESSL ROUTINE SWLEV.
IF THE NAUX INPUT
ARGUMENT IS TOO SMALL, ERROR
2015 OCCURS. THE MINIMUM VALUE
REQUIRED IS STORED IN THE NAUX
INPUT ARGUMENT AND CONTROL GOES
TO LABEL 400.

CALL SWLEV(X,INCX,U,INCU,Y,INCY,N,AUX,NAUX,*400)

OOOOOO0O

CHECK THE RESULTING INPUT ARGUMENT
VALUE IN NAUX AND TAKE THE
DESIRED ACTION

B0 00

Computational Errors in Fortran
To obtain information about an ESSL computational error in a Fortran program,
add the statements in the following steps to your program. Steps 2 and 7 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary. For a list of those computational errors that
return information and to which these steps apply, see I"EINFO — ESSL Erroﬂ
[Information-Handler Subroutine” on page 1006

Step 1. Call EINFO for Initialization:

CALL EINFO (0)

This calls the EINFO subroutine with one argument of value 0 to initialize the
ESSL error option table. It is required only if you call ERRSET in your program. It

118 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

is coded only once in the beginning of your program before any calls to ERRSET.
For a description of EINFO, see [“EINFO — ESSL Error Information-Handler|
[Subroutine” on page 1006

Step 2. Call ERRSAV:

CALL ERRSAV (ierno,tabent)

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, tabent, which is
accessible to your program. ERRSAV must be called for each entry you want to

save. This step is used, along with step 7, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see [‘How Can You Control Error Handling|
in Large Applications by Saving and Restoring Entries in the Error Option Table?”]

on page 52.|

Step 3. Call ERRSET:

CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:

* How many times each error can occur before execution terminates (inoal)

* How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
[Table 178 on page 1006} To allow your program to continue after an error in the
specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr
should be specified as either 0 or 1 in a 32-bit environment (0_8 or 1_8 in a 64-bit
environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see [Table 29 o]
page 5(1 For a description of the computational errors, see [‘Computational Error]
Messages(2100-2199)” on page 184.|For a description of ERRSET, see|§ hapter 17,|
“Utilities,” on page 1003/

Step 4. Call ESSL:

CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:

* name specifies the ESSL subroutine.
* arg-1,.., arg-n are the input and output arguments.

"

* yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran
statement numbers indicating where you want to branch when you get a
nonzero return code. Each corresponds to a different ESSL value. Control goes to

Chapter 4. Coding Your Program 119

the corresponding statement number when a nonzero return code value is
returned for the CALL statement. Return code values are described under “Error
Conditions” in each ESSL subroutine description in Part 2 of this book.

Step 5. Call EINFO for Information:

nmbr CALL EINFO (icode,infl)
Or
nmbr CALL EINFO (icode,infl,inf2)

This calls the EINFO subroutine, which returns information about certain
computational errors, where:

e nmbr is the statement number yyy, zzz, or any of the other statement numbers

preceded by an “+” in the CALL statement in Step 4, corresponding to the return
code value for this error code.

e jcode is the error code of interest.

 infl and inf2 are the integer variables used to receive the information, where infl
is assigned a value for all errors, and inf2 is assigned a value for some errors.
For a description of EINFO, see[“EINFO — ESSL Error Information-Handler]
[Subroutine” on page 1006|

Step 6. Check the Values in the Information Receivers: These statements check
the values returned in the output argument information receivers, infl and inf2,
which contain the information about the computational error.

Step 7. Call ERRSTR:

CALL ERRSTR (ierno,tabent)

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area, tabent,
which is accessible to your program. ERRSTR must be called for each entry you
want to store. This step is used, along with step 2, for ERRSAV. For information on
whether you should use ERRSAV and ERRSTR, see [‘How Can You Control Error]
Handling in Large Applications by Saving and Restoring Entries in the Errof
Option Table?” on page 52|

Example 1
This 32-bit environment example shows an error code 2104, which returns one
piece of information: the index of the last diagonal with nonpositive value (I1).

120 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

C INITIALIZE THE ESSL ERROR
C OPTION TABLE
CALL EINFO(0)

C ALLOW 100 ERRORS FOR CODE 2104
CALL ERRSET(2104,100,0,0,0,2104)

CALL ESSL ROUTINE DPPF.

IF THE INPUT MATRIX IS NOT
POSITIVE DEFINITE, CONTROL GOES TO
LABEL 400

OO0

I0PT=0
CALL DPPF(APP,N,IOPT,*400)

CALL THE INFORMATION-HANDLER
ROUTINE FOR ERROR CODE 2104 TO
RETURN ONE PIECE OF INFORMATION
IN VARIABLE I1, THE INDEX OF THE
LAST NONPOSITIVE DIAGONAL FOUND
BY ROUTINE DPPF

00 CALL EINFO (2104,11)

PO oOOO0O0

Example 2
This 32-bit environment example shows an error code 2103, which returns one
piece of information: the index of the zero diagonal (I1) found by DGEFE.

Chapter 4. Coding Your Program 121

C ' INITIALIZE THE ESSL ERROR
C OPTION TABLE
CALL EINFO(0)

C ALLOW 100 ERRORS FOR CODE 2103
CALL ERRSET(2163,100,0,0,0,2103)

CALL ESSL SUBROUTINE DGEF.
IF THE INPUT MATRIX IS
SINGULAR, CONTROL GOES TO
LABEL 400

CALL DGEF(A,LDA,N,IPVT,*400)

OO0

CALL THE INFORMATION-HANDLER
ROUTINE FOR ERROR CODE 2103 TO
RETURN ONE PIECE OF INFORMATION
IN VARIABLE I1, THE INDEX OF THE
LAST ZERO DIAGONAL FOUND BY
SUBROUTINE DGEF

00 CALL EINFO (2103,I1)

SBOO0O0O0000

Example 3

This 32-bit environment example shows an error code 2101, which returns two
pieces of information: the eigenvalue (I1) that failed to converge after the indicated
(I2) number of iterations. It uses ERRSAV and ERRSTR to insulate the effects of
the error handling for error 2101 by this program.

122 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

C DECLARE AN AREA TO SAVE THE

C ERROR OPTION TABLE INFORMATION

C FOR ERROR CODE 2101
CHARACTER*8 SAV2101

C INITIALIZE THE ESSL ERROR
C OPTION TABLE
CALL EINFO(0)
C SAVE THE EXISTING ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2101

CALL ERRSAV(2101,SAv2101)

C ALLOW 255 ERRORS FOR CODE 2101
CALL ERRSET(2101,255,0,0,0,2101)

C CALL ESSL SUBROUTINE DGEEV.
C IF THE EIGENVALUE FAILED TO
C CONVERGE, CONTROL GOES TO LABEL 400

CALL DGEEV(IOPT,A,LDA,W,Z,LDZ,SELECT,N,AUX,NAUX,*400)

CALL THE INFORMATION-HANDLER

ROUTINE FOR ERROR CODE 2101 TO

RETURN TWO PIECES OF INFORMATION.

VARIABLE I1 CONTAINS THE EIGENVALUE

THAT FAILED TO CONVERGE. VARIABLE

I2 CONTAINS THE NUMBER OF ITERATIONS.
00 CALL EINFO (2101,I1,12)

BSEOO0O0O0000

RESTORE THE PREVIOUS ERROR OPTION
TABLE ENTRY FOR ERROR CODE 2101.
ERROR PROCESSING RETURNS TO HOW IT
WAS BEFORE IT WAS ALTERED BY THE ABOVE
ERRSET STATEMENT.

CALL ERRSTR(2101,SAvV2101)

OOOOO

Example of Handling Errors in a Multithreaded Application
Program

This 32-bit environment example shows how to modify the MATINV_EXAMPLE
program in|“Creating Multiple Threads and Calling ESSL from Your Fortranl
[Program” on page 113 with calls to the ESSL error handling subroutines. The ESSL
error handling subroutines are called from each thread to: initialize the error
option table, save the current error option table values for input-argument error
2015 and computational error 2105, change the default values for errors 2015 and
2105, and then restore the original default values for errors 2015 and 2105.

Chapter 4. Coding Your Program 123

program matinv_example
implicit none
!
I program to invert m nxn random matrices
!
real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)

real (8) :: dummy_aux, seed=1998, sd

integer ::rc, i, m=8, n=500, iopt=3, naux=0
integer 1t inf1(8)

character(8) 11 sav2015(8)

character(8) :: sav2105(8)

integer :: ENOTRM

external ENOTRM

I allocate storage
allocate(A(n,n,m),stat=rc)
call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)
call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)

call error_exit(rc,"Allocation of rcond")
|

I Calculate inverses in parallel
!
ISMP$ parallel do private(i,sd), schedule(static),
1SMP$& share(n,m,a,iopt,rcond,det,dummy_aux,naux,sav2015,sav2105,infl)
do i=1,m
!
! initialize error handling
call einfo(0)

! Save existing option table values for error 2015
call errsav(2015,sav2015(i))

! Set Error 2015 to be non-recoverable so dgeicd will dynamically
! allocate the work area.
call errset(2015,100,100,0,1,2015)

! Save existing option table values for error 2105
call errsav(2105,sav2105(i))

! Set Error 2105 to be recoverable
call errset(2105,100,100,0,ENOTRM,2105)

sd = seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),
& dummy_aux,naux,*10,*20)
10 goto 30

! Catch singular matrix returned by dgeicd.
20 CALL EINFO(2105,inf1(i))
WRITE(*,*) 'ERROR: Zero pivot found at Tocation ',inf1(i)

! Restore the error option table entries
30 continue
call errstr(2015,SAV2015(i))
call errstr(2105,5AV2105(i))

enddo

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

write(x,*)'Reciprocal condition numbers of the matrices are:'
write(*,'(4E12.4)") rcond

deallocate(A,stat=rc)

call error_exit(rc,"Deallocation of matrix A")
deallocate(det,stat=rc)

call error_exit(rc,"Deallocation of det")

deallocate(rcond,stat=rc)
call error_exit(rc,"Deallocation of rcond")

stop

contains
subroutine error_exit(error_code,string)
character(*) :: string
integer :: error_code

if(error_code .eq. 0) return
write(0,*)string,": failing return code was ",error_code

stop 1
end subroutine error_exit
end

C Programs

This section describes how to code your C program.

Calling ESSL Subroutines and Functions in C

This section shows how to call ESSL subroutines and functions from your C
program.

Before You Call ESSL

Before you can call the ESSL subroutines from your C program, you must have the
appropriate ESSL header file installed on your system. The ESSL header file allows
you to code your function calls as described in this section. It contains entries for
all the ESSL subroutines. The ESSL header file is distributed with the ESSL
package. The ESSL header file to be used with the C compiler is named ess1.h.
You should check with your system support group to verify that the appropriate
ESSL header file is installed.

In the beginning of your program, before you call any of the ESSL subroutines,
you must code the following statement for the ESSL header file:

#include <essl.h>

If you are planning to create your own threads for the ESSL Thread-Safety or SMP
Library, you must include the pthread.h header file as the first include file in your
C program. For an example, see |”Creating Multiple Threads and Calling ESSL froml
[Your C Program” on page 130

Coding the Calling Sequences
In C programs, the ESSL subroutines, not returning a function value, are invoked
with the following type of statement:

subroutine-name (argument-1, . . . , argument-n);

Chapter 4. Coding Your Program 125

An example of a calling sequence for SAXPY might be:
saxpy (5,a,x,incx,y,1);

The ESSL subroutines returning a function value are invoked with the following
type of statement:

function-value-name=subroutine-name (argument-1, . . . , argument-n);

An example of invoking DASUM might be:
sum = dasum (n,x,incx);

See the C publications for details about how to code the function calls.

Passing Arguments in C

This section describes how to pass arguments in your C program.

About the Syntax Shown in This Book

The argument syntax shown in this book assumes that you have installed and are
using the ESSL header file. For further details, see|’Calling ESSL Subroutines and|
[Functions in C” on page 125)

No Optional Arguments
In the ESSL calling sequences for C, there are no optional arguments, as for some
programming languages. You must code all the arguments listed in the syntax.

Arguments That Must Be Passed by Value
All scalar arguments that are not modified must be passed by value in the ESSL

calling sequence. (This refers to input-only scalar arguments, such as incx, m, and
Ida.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a
pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.

Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The
name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output argument is a scalar data item, it
must be passed by reference. This is true for all scalar data types: real, complex,
and so forth. When this occurs, it is listed in the notes of each subroutine
description in Part 2 of this book.

Character Arguments: Character arguments must be passed as strings, by
reference. You specify the character, in upper- or lowercase, in the ESSL calling
sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as
strings n and ¢, respectively:

sgeadd (a,5,"n",b,3,"t",c,4,4,3);

Altered Arguments When Using Error Handling: If you use ESSL error handling
in your C program, as described in[“Handling Errors in Your C Program” on page
you must pass by reference all the arguments that can potentially be altered

126 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

by ESSL error handling. This applies to all your ESSL call statements after the
point where you code the #define statement, shown in step 1 in [‘Input-Argument|
Errors in C” on page 132and in step 1 in[“Computational Errors in C” on page]
137 The two types of ESSL arguments are:

* naux arguments for auxiliary storage

* n arguments for transform lengths

Setting Up a User-Supplied Subroutine for ESSL in C

Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in C, there are some coding rules you must follow
for the subf subroutine:

* You can code the subf subroutine using only C or Fortran.
* You must declare subf as an external subroutine in your application program.

* You should code the subf subroutine to the specifications given in

[Considerations for the SUBF Subroutine” on page 964 For an example of coding
a subf subroutine in C, see [“Example 1” on page 976

Setting Up Scalar Data in C

able 31| lists the scalar data types in C that are used for ESSL. Only those types
and lengths used by ESSL are listed.

Table 31. Scalar Data Types in C Programs

Terminology Used by ESSL C Equivalent

Character item' char *

VNV, ITY’ VC! Or an, Vt|’ VC| Iln//, Ilt/f’ //CU

Logical item int

.TRUE., .FALSE. For additional information, see |”Usina

[Logical Data in C” on page 129.f

32-bit environment integer int

12345, -12345

64-bit environment integer’ long

123451, —123451

Short-precision real number® float

12.345

Long-precision real number* double

12.345

Short-precision complex number* Specify it as described in ["Setting Up]

|[Complex Data Types in C” on page 128}

(123.45, —54321.0)

Long-precision complex number” Specify it as described in ["Setting Up]|
|[Complex Data Types in C” on page 128.f

(123.45, —54321.0)

Chapter 4. Coding Your Program 127

Table 31. Scalar Data Types in C Programs (continued)

Terminology Used by ESSL | C Equivalent

Note: ' ESSL accepts character data in either upper- or lowercase in its calling sequences.

2 There are no equivalent data types for logical and complex data in C. These require
special procedures. For details, see the referenced section.

® In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits
except for the iusadr argument for ERRSET.

*# Short- and long-precision numbers look the same in this book.

Setting Up Complex Data Types in C

Complex data types are not part of the C language; however, some ESSL
subroutines require arguments of these data types.

Complex Data

ESSL provides identifiers, cmplx and demplx, for complex data types, defined in the
ESSL header file, as well as two macro definitions, RE and IM, for handling the
real and imaginary parts of complex numbers:

#ifndef CMPLX

#ifndef _REIM

#define REIM 1

#endif

typedef union { struct { float _re, _im;}
_data; double _align;} cmplx;

#endif

#ifndef DCMPLX

#ifndef _REIM

#define REIM 1

#endif

typedef union { struct { double re, _im;}
_data; double _align;} dcmplx;

#endif

#ifdef REIM

#define RE(x) (

#define IM(x) (

#endif

(x)._data._re)
(x). data._im)

You must, therefore, code an include statement for the ESSL header file in the
beginning of your program to use these definitions. For details, see [“Calling ESS

[Subroutines and Functions in C” on page 125

Assuming you are using the ESSL header file, if you declare data items to be of
type cmplx or decmplx, you can pass them as short- and long-precision complex data
to ESSL, respectively. You may want to write a CSET macro to initialize complex
variables, using the RE and IM macros provided in the ESSL header file. Following
is an example of how to use the CSET macro to initialize the complex variable
alpha:

#include <essl.h>

#define CSET(x,a,b) (RE(x)=a, IM(x)=b)

main()

{
cmplx alpha,t[3],s[5];

CSET (alpha,2.0,3.0);
caxpy (3,alpha,s,1,t,2);

128 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

}
If you choose to use your own definitions for complex data, instead of those
provided in the ESSL header file, you can define _CMPLX and _DCMPLX in your
program for short- and long-precision complex data, respectively, using the
following #define statements. These statements are coded with your global
declares in the front of your program and must be coded before the #incTude
statement for the ESSL header file.

#define _CMPLX
#define _DCMPLX

If you prefer to define your complex data at compile time, you can use the job
processing procedures described in [Chapter 5, “Processing Your Program,” on page|
h159.

Using Logical Data in C

Logical data types are not part of the C language; however, some ESSL subroutines
require arguments of these data types.

By coding the following simple macro definitions in your program, you can then
use TRUE or FALSE in assigning values to or specifying any logical arguments
passed to ESSL:

#define FALSE 0
#define TRUE 1

Setting Up Arrays in C
C arrays are arranged in storage in row-major order. This means that the last
subscript expression increases most rapidly, the next-to-the-last subscript
expression increases less rapidly, and so forth, with the first subscript expression
increasing least rapidly. ESSL subroutines require that arrays passed as arguments
be in column-major order. This is the array storage convention used by Fortran,
described in [“Setting Up Arrays in Fortran” on page 108] To pass an array from
your C program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C program, you can do any of the
following:

* Build and process the matrix, logically transposed from the outset, and transpose
the results as necessary.

* Before the ESSL call, transpose the input arrays. Then, following the ESSL call,
transpose any arrays updated as output.

* If there are arguments in the ESSL calling sequence indicating whether the
arrays are to be processed in normal or transposed form, such as the transa and
transb arguments in the _GEMM subroutines, use these arguments in
combination with the matrix equivalence rules to avoid having to transpose your
data in separate operations. For further detail, see|"SGEMMS, DGEMMS)
CGEMMS, and ZGEMMS — Matrix Multiplication for General Matrices, Theiq
Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s|
Algorithm” on page 396.|

Chapter 4. Coding Your Program 129

Creating Multiple Threads and Calling ESSL from Your C
Program

The example shown below shows how to create two threads, where each thread
calls the ISAMAX subroutine. To use the AIX pthreads library, you must specify
the pthread.h header file as the first include file in your program.

Note: Be sure to compile this program with the cc_r command.

130 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <essl.h>

/* Create structure for argument Tist =*/
typedef struct {

int n;

float *X3

int incx;
} arg_list;

/* Define prototype for thread routine */
void *Thread(void *v);

int main()

{

float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};

pthread_t first_th;
pthread_t second_th;
int rc;

arg list a_1,b 1;

/* Creating argument 1ist for the first thread =/
al.n=09;

a_l.incx = 1;

a_l.x = sxl;

/* Creating argument 1ist for the second thread =*/
b T.n = 8;

b _T.incx = 1;

b _T.x = sx2;

/* Creating first thread which calls the ESSL subroutine ISAMAX =*/
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_1);
if (rc) exit(-1);

/* Creating second thread which calls the ESSL subroutine ISAMAX =/
rc = pthread create(&second_th, NULL, Thread, (void *) &b _1);
if (rc) exit(-1);

sleep(1);
exit(0);
1

/* Thread routine which call ESSL routine ISAMAX */
void *Thread(void *v)

{

arg_list =al;

float *x;

int n,incx;

int i;

al = (arg_list *)(v);
al->x;

al->n;

ncx = al->incx;

X
n
i

/* Calling the ESSL subroutine ISAMAX =/
i = isamax(n,x,incx);

if (i==28)
printf("max for sx2 should be 8 = %d\n",i);
else

printf("max for sx1 should be 6 = %d\n",i);
1

Chapter 4. Coding Your Program

131

Handling Errors in Your C Program

ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:

* For input-argument errors 2015, 2030, and 2200, which are optionally-recoverable
errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the
subroutine descriptions in Part 2 of this book.

* For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

[“Input-Argument Errors in C”| and [‘Computational Errors in C” on page 137
explain how to use these facilities by describing the additional statements you
must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in |“Input-Argument Errors in C”|and
[“Computational Errors in C” on page 137 on each thread that calls ESSL.

Input-Argument Errors in C

To obtain corrected input-argument values in a C program and to avert program
termination for the optionally-recoverable input-argument errors 2015, 2030, and
2200, add the statements in the following steps to your program. Steps 4 and 8 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling:

/* Code two underscores =*/
/* before the letters ESVERR */
#define _ ESVERR
#include <essl.h>
extern int enotrm();

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.
The extern statement declares the ESSL error exit routine ENOTRM as an external
reference in your program. After the point where you code these statements in
your program, you must pass by reference all ESSL calling sequence arguments
that can potentially be altered by ESSL error handling. This applies to all your
ESSL call statements. The two types of arguments are:

* naux arguments for auxiliary storage

e n arguments for transform lengths

132 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Step 2. Declare the Variables:

int (*iusadr) ();
int ierno,inoal, inomes,itrace,irange,irc,dummy;
char storarea[8];

This declares a pointer, iusadr, to be used for the ESSL error exit routine ENOTRM.
Also included are declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

iusadr = enotrm;
einfo (0,&dummy,&dummy) ;

The first statement sets the function pointer, iusadr, to ENOTRM, the ESSL error
exit routine. The last statement calls the EINFO subroutine to initialize the ESSL
error option table, where dummy is a declared integer and is a placeholder. For a
description of EINFO, see [“EINFO — ESSL Error Information-Handler Subroutine”]
These statements should be coded only once in the beginning of

your program before calls to ERRSET.

Step 4. Call ERRSAV:

errsav (&ierno,storarea);

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see [“How Can You Control Error Handling|
in Large Applications by Saving and Restoring Entries in the Error Option Table?”]
on page 52.| For an example, see[“Example 1” on page 139 as the use is the same
as for computational errors.

Step 5. Call ERRSET:

errset (&ierno,&inoal ,&inomes ,&itrace,&iusadr,&irange);

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:

* How many times each error can occur before execution terminates (inoal)

* How many times each error message can be printed (inomes)

Chapter 4. Coding Your Program 133

* The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see [Table 29 or]
page 5(1 For a description of the input-argument errors, see I“Input-Argument Errorl
Messages(2001-2099)” on page 178.| For a description of ERRSET, see E;hagter 17,|
“Utilities,” on page 1003

Step 6. Call ESSL:

irc = name (argl,...,argn);
if irc == rcl

{

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:

 name specifies the ESSL subroutine.

e argl,...,argn are the input and output arguments. As explained in step 1, all
arguments that can potentially be altered by error handling must be coded by
reference.

* irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

* rcl, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

Step 7. Perform the Desired Action: These are the statements following the test
for each value of the return code, returned in irc in step 6. These statements
perform whatever action is desired when the recoverable error occurs. These
statements may check the new values set in the input arguments to determine
whether adequate program storage is available, and then decide whether to
continue or terminate the program. Otherwise, these statements may check that the
size of the working storage arrays or the length of the transform agrees with other
data in the program. The program may also store this corrected input argument
value for future reference.

Step 8. Call ERRSTR:

errstr (&ierno,storarea);

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each

134 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see ["How Can You|
Control Error Handling in Large Applications by Saving and Restoring Entries in|
the Error Option Table?” on page 52|For an example, see ['Example 1” on page
139 as the use is the same as for computational errors.

Example 1

This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

Chapter 4. Coding Your Program 135

/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLINGx/
#define _ ESVERR
#include <essl.h>
extern int enotrm();

/*DECLARE THE VARIABLES*/
main ()

int (xiusadr) ();
int ierno,inoal,inomes,itrace,irc,dummy;
int naux;

/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE=*/
jusadr = enotrm;

/*INITIALIZE THE ESSL ERROR OPTION TABLE=*/
einfo (0,&dummy,&dummy) ;

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/
ierno = 2015;

inoal = 0;
inomes = -1;
itrace = 0;

irange = 2015;
errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
RETURN CODE OF 1 IS SET IN IRC.=*/
irc = swlev (x,incx,u,incu,y,incy,n,aux,&naux);
if irc ==

/*CHECK THE RESULTING INPUT ARGUMENT VALUE
IN NAUX AND TAKE THE DESIRED ACTION=*/

136 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Computational Errors in C

To obtain information about an ESSL computational error in a C program, add the
statements in the following steps to your program. Steps 4 and 9 for ERRSAV and
ERRSTR, respectively, are optional. Adding these steps makes the effect of the call
to ERRSET temporary. For a list of those computational errors that return
information and to which these steps apply, see I”EINFO — ESSL Errod
[Information-Handler Subroutine” on page 1006

Step 1. Code the Global Statements for ESSL Error Handling:

/* Code two underscores =/

/% before the letters ESVERR %/
#define _ ESVERR

#include <essl.h>

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.
After the point where you code these statements in your program, you must pass
by reference all ESSL calling sequence arguments that can potentially be altered
by ESSL error handling. This applies to all your ESSL call statements. The two
types of arguments are:

* naux arguments for auxiliary storage

* n arguments for transform lengths

Step 2. Declare the Variables:

int ierno,inoal, inomes,itrace,iusadr,irange,irc;
int infl,inf2,dummy;
char storarea[8];

These statements include declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

einfo (0,&dummy,&dummy) ;

This statement calls the EINFO subroutine to initialize the ESSL error option table,
where dummy is a declared integer and is a placeholder. For a description of
EINFO, see ["EINFO — ESSL Error Information-Handler Subroutine” on page 1006.|
These statements should be coded only once in the beginning of your program
before calls to ERRSET.

Step 4. Call ERRSAV:

errsav (&ierno,storarea);

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which

Chapter 4. Coding Your Program 137

is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether

ou should use ERRSAV and ERRSTR, see ['How Can You Control Error Handling|
in Large Applications by Saving and Restoring Entries in the Error Option Table?”|
on page 52] For an example, see|“Example 1” on page 139,

Step 5. Call ERRSET:

errset (&ierno,&inoal ,&inomes ,&itrace,&iusadr,&irange);

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:

* How many times each error can occur before execution terminates (inoal)

* How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
[Table 178 on page 1006] To allow your program to continue after an error in the
specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr
should be specified as either 0 or 1 in a 32-bit environment (01 or 11 in a 64-bit
environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see [Table 29 on]
bage 50| For a description of the computational errors, see [‘Computational Error
Messages(2100-2199)” on page 184.|For a description of ERRSET, see [Chapter 17,|
“Utilities,” on page 1003

Step 6. Call ESSL:

irc = name (argl,...,argn);
if irc == rcl

{

}
if irc == rc2

{

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:

* name specifies the ESSL subroutine.

* argl,...,argn are the input and output arguments. As explained in step 1, all
arguments that can potentially be altered by error handling must be coded by
reference.

* irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

138 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

e rcl, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

The statements following each test of the return code can perform any desired
action. This includes calling EINFO for more information about the error, as
described in step 7.

Step 7. Call EINFO for Information:

einfo (ierno,&infl,&inf2);

This calls the EINFO subroutine, which returns information about certain
computational errors, where:

e jerno is the error code of interest.

* infl and inf2 are the integer variables used to receive the information, where infl
is assigned a value for all errors, and inf2 is assigned a value for some errors.
You must specify both arguments, as there are no optional arguments for C.
Both arguments must be passed by reference, because they are output scalar
arguments. For a description of EINFO, see [“EINFO — ESSL Error
[Information-Handler Subroutine” on page 1006.|

Step 8. Check the Values in the Information Receivers: These statements check
the values returned in the output argument information receivers, infl and inf2,
which contain the information about the computational error.

Step 9. Call ERRSTR:

errstr (&ierno,storarea);

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see |”H0w Can You|
Control Error Handling in Large Applications by Saving and Restoring Entries in|
the Error Option Table?” on page 52.|For an example, see |“ExamEle 1.”|

Example 1

This 32-bit environment example shows an error code 2105, which returns one
piece of information: the index of the pivot element (i) near zero, causing
factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects of the error
handling for error 2105 by this program.

Chapter 4. Coding Your Program 139

140

/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING=*/
#define _ ESVERR
#include <essl.h>

/*DECLARE THE VARIABLES*/
main ()
{
int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int infl,inf2,dummy;
char sav2105[8];

/*INITIALIZE THE ESSL ERROR OPTION TABLE=*/
einfo (0,&dummy,&dummy) ;
/*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105%/
ierno = 2105;
errsav (&ierno,sav2105);

/*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
FOR THEM. THIS SHOWS HOW YOU CODE THE
ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */

ierno = 2101;

inoal 0;

inomes = 0; /*A DUMMY ARGUMENT=/

itrace = 0; /*A DUMMY ARGUMENT=/

iusadr = 0; /*A DUMMY ARGUMENT=/

irange = 2105

errset (&ierno,&inoal,&inomes,&itrace, &iusadr,&irange);

/*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/
irc = dgeicd (a,lda,n,iopt,&rcond,det,aux,&naux);
if irc ==

/*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
CODE 2105 TO RETURN ONE PIECE OF INFORMATION
IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
INF2 IS NOT USED, BUT MUST BE SPECIFIED.
BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.=/
ierno = 2105;
einfo (ierno,&infl,&inf2);
/*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
DESIRED ACTION=*/

/*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105. ERROR PROCESSING
RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
THE ABOVE ERRSAV STATEMENT=*/
ierno = 2105;
errstr (&ierno,sav2105);

}

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

C++ Programs

This section describes how to code your C++ program.

Calling ESSL Subroutines and Functions in C++

This section shows how to call ESSL subroutines and functions from your C++
program.

Before You Call ESSL

Before you can call the ESSL subroutines from your C++ program, you must have
the appropriate ESSL header file installed on your system. The ESSL header file
allows you to code your function calls as described in this section. It contains
entries for all the ESSL subroutines. The ESSL header file is distributed with the
ESSL package. The ESSL header file to be used with the C++ compiler is named
essl.h.

In the beginning of your program, before you call any of the ESSL subroutines,
you must code the following statement for the ESSL header file:

#include <essl.h>

If you are creating your own threads for the ESSL Thread-Safe or SMP Library, you
must include the pthread.h header file in your C++ program. For an example, see
“Creating Multiple Threads and Calling ESSL from Your C++ Program” on page]

46]
Coding the Calling Sequences

In C++ programs, the ESSL subroutines, not returning a function value, are
invoked with the following type of statement:

subroutine-name (argument-1, . . . , argument-n);

An example of a calling sequence for SAXPY might be:
saxpy (5,a,x,incx,y,1);

The ESSL subroutines returning a function value are invoked with the following
type of statement:

function-value-name=subroutine-name (argument-1, . . . , argument-n);

An example of invoking DASUM might be:

sum = dasum (n,x,incx);

See the C++ publications for details about how to code the function calls.

Passing Arguments in C++
This section describes how to pass arguments in your C++ program.

Chapter 4. Coding Your Program 141

About the Syntax Shown in This Book

The argument syntax shown in this book assumes that you have installed and are
using the ESSL header file. For further details, see|’Calling ESSL Subroutines and|
[Functions in C++” on page 141

No Optional Arguments
In the ESSL calling sequences for C++, there are no optional arguments, as for
some programming languages. You must code all the arguments listed in the

syntax.
Arguments That Must Be Passed by Value

All scalar arguments that are not modified must be passed by value in the ESSL

calling sequence. (This refers to input-only scalar arguments, such as incx, m, and
lda.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a
pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.

Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The
name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output scalar argument is a scalar data item,
it must be passed by reference as shown below. This is true for all scalar data
types: real, complex, and so forth.

The ESSL header file supports two alternatives:

e The arguments are declared to be type reference in the function prototype. This
is the default. Following is an example of how you can call DURAND using this
alternative:
durand (seed, n, x);

e The arguments are declared as pointers in the function prototype. If you wish to
use this alternative, you must define _ESVCPTR using one of the following
methods:

— Define _ESVCPTR in your program using a #define statement, as shown
below:
#define _ESVCPTR
This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

— Define _ESVCPTR at compile time by using the job processing procedure
described in [“C++ Program Procedures on AIX” on page 161.

Following is an example of how you can call DURAND using this alternative:
durand (&seed, n, x);

Character Arguments: Character arguments must be passed as strings, by
reference. You specify the character, in upper- or lowercase, in the ESSL calling
sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as
strings 1 and ¢, respectively:

sgeadd (a,5,"n",b,3,"t",c,4,4,3);

142 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Setting Up a User-Supplied Subroutine for ESSL in C++

Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in C++, there are some coding rules you must
follow for the subf subroutine:

* You can code the subf subroutine using only C, C++, or Fortran.

* You must declare subf as an external subroutine in your application program.

* You should code the subf subroutine to the specifications given in

|Considerations for the SUBF Subroutine” on page 964/ For an example of coding
a subf subroutine in C++, see[’Example 1” on page 976,

Setting Up Scalar Data in C++

lists the scalar data types in C++ that are used for ESSL. Only those types
and lengths used by ESSL are listed.

Table 32. Scalar Data Types in C++ Programs

Terminology Used by ESSL C++ Equivalent

Character item* char *

N, 'T','C or'n', 't, 'c' “n”, “t”, “c”

Logical item int

.TRUE., .FALSE. For additional information, seem

[Logical Data in C++” on page 146

32-bit environment integer int

12345, —12345

64-bit environment in’ceger3 long

123451, —123451

Short-precision real number* float

12.345

Long-precision real number* double

12.345

Short-precision complex number* complex <float>%, or as described in["On|
AIX—Setting Up Short-Precision Complex|

(123.45, -54321.0) Data Types If You Are Using the IBM Open|

Class Complex Mathematics Library in C++"|
on page 144.|

Long-precision complex number? complex <double>® or Complex6

(123.45, —54321.0)

Chapter 4. Coding Your Program 143

Table 32. Scalar Data Types in C++ Programs (continued)

Terminology Used by ESSL | C++ Equivalent

Notes:
1. ESSL accepts character data in either upper- or lowercase in its calling sequences.

2. There are no equivalent data types for logical data in C++. These require special
procedures. For details, see the referenced section.

3. In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits
except for the iusadr argument for ERRSET.

4. Short- and long-precision numbers look the same in this book.
5. This data type is defined in file <complex>.

6. This data type is defined in file <complex.h> (supported only on AIX).

Using Complex Data in C++

On AIX, the ESSL header file supports both the IBM Open Class® Complex
Mathematics Library (<complex.h>) and the Standard Numerics Library facilities
for complex arithmetic (<complex>). On Linux, only the Standard Numerics
Library is supported.

The following sections explain how to handle the two choices available on AIX.

On AIX—Selecting the <complex> or <complex.h> Header File
Although the header files <complex> and <complex.h> are similar in purpose, they
are mutually incompatible and cannot be simultaneously used.

If you wish to use the Standard Numerics Library facilities for complex arithmetic,
you must do one of the following;:

* Code the #include statement for the Standard Numerics Library facilities for
complex arithmetic (#include <complex>) in your program prior to coding the
#include statement for the ESSL header file.

* Define _ESV_COMPLEX_, using one of the following methods:

— Define _ESV_COMPLEX_ in your program using a #define statement, as
shown below:
#define ESV_COMPLEX
This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

— Define _ESV_COMPLEX_ at compile time by using the job processing
procedures described in [Chapter 5, “Processing Your Program,” on page 159.]

If you take none of the preceding steps, the ESSL header file will use the IBM

Open Class Complex Mathematics Library. The ESSL header file will also use the

IBM Open Class Complex Mathematics Library if you:

* Code the #include statement for the IBM Open Class Complex Mathematics
Library (#include<complex.h>) in your program prior to coding the #include
statement for the ESSL header file.

On AIX—Setting Up Short-Precision Complex Data Types If You
Are Using the IBM Open Class Complex Mathematics Library in
C++

Short-precision complex data types are not part of the C++ language; however,
some ESSL subroutines require arguments of these data types.

144 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Short-Precision Complex Data: ESSL provides an identifier, cmp1x, for the
short-precision complex data type, defined in the ESSL header file, as well as two
member functions, sreal and simag, for handling the real and imaginary parts of
short-precision complex numbers:

#ifndef _CMPLX
class cmplx
{
private:
float _re,_im;
public:
cmplx() { _re = 0.0; _im = 0.0; }
cmplx(float r, float i = 0.0) { re =r; _im=1i; }
friend inline float sreal(const cmpix& a) { return a._re; }
friend inline float simag(const cmpix& a) { return a._im; }
}s
#endif

You must, therefore, code an include statement for the ESSL header file in the

beginning of your program to use these definitions. For details, see [“Calling ESS

Subroutines and Functions in C++” on page 141)

Assuming you are using the ESSL header file, if you declare data items to be of
type cmplx or complex, you can pass them as short- or long-precision complex data
to ESSL, respectively. Following is an example of how you might code your
program:

#include <complex.h>
#include <essl1.h>
main()

{
cmplx alpha,t[3],s[5];
complex beta,td[3],sd[5];

alpha = cmp1x(2.0,3.0);
caxpy (3,alpha,s,1,t,2);

beta = complex(2.0,3.0);
zaxpy (3,beta,sd,1,td,2);

}
If you choose to use your own definition for short-precision complex data, instead

of that provided in the ESSL header file, your definition must conform to the
following rules:

¢ The definition must have exactly two variables of type float representing the
real and imaginary parts of the short-precision complex data. For example:
struct cmplx { float _re, _im; };

* The definition cannot include an explicit destructor.

In addition, you must do one of the following;:

* Define _CMPLX in your program using the #define statement. This statement is
coded with your global declares in the front of your program and must be
coded before the #include statement for the ESSL header file, as follows:

#define _CMPLX

Chapter 4. Coding Your Program 145

* Use the job processing procedures described in|Chapter 5, “Processing Your]
[Program,” on page 159|to define your short-precision complex data at compile
time.

Using Logical Data in C++

Logical data types are not part of the C++ language; however, some ESSL
subroutines require arguments of these data types.

By coding the following simple macro definitions in your program, you can then
use TRUE or FALSE in assigning values to or specifying any logical arguments
passed to ESSL:

#define FALSE 0
#define TRUE 1

Setting Up Arrays in C++

C++ arrays are arranged in storage in row-major order. This means that the last
subscript expression increases most rapidly, the next-to-the-last subscript
expression increases less rapidly, and so forth, with the first subscript expression
increasing least rapidly. ESSL subroutines require that arrays passed as arguments
be in column-major order. This is the array storage convention used by Fortran,
described in [“Setting Up Arrays in Fortran” on page 108] To pass an array from
your C++ program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C++ program, you can do any of the
following:

* Build and process the matrix, logically transposed from the outset, and transpose
the results as necessary.

* Before the ESSL call, transpose the input arrays. Then, following the ESSL call,
transpose any arrays updated as output.

* If there are arguments in the ESSL calling sequence indicating whether the
arrays are to be processed in normal or transposed form, such as the transa and
transb arguments in the _GEMM subroutines, use these arguments in
combination with the matrix equivalence rules to avoid having to transpose your
data in separate operations. For further detail, see|"SGEMMS, DGEMMS)
CGEMMS, and ZGEMMS — Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s|
Algorithm” on page 396.|

Creating Multiple Threads and Calling ESSL from Your C++
Program

The example shown below shows how to create two threads, where each thread
calls the ISAMAX subroutine. To use the pthreads library, you must remember to
code the pthread.h header file in your C++ program.

Note: Be sure to compile this program with the x1C_r command.

146 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

#include "ess1.h"
#ifdef _ Tinux
#include <iostream>
#else

#include <iostream.h>
#endif

/* Define prototype for thread routine */
void *Thread(void =*v);

/* Define prototype for thread library routine, which is in C */

extern "C" {

#include <pthread.h>

#include <stdlib.h>

int pthread_create(pthread_t *tid, const pthread_attr_t =attr,
void *(*start_routine) (void *), void *arg);

}

extern "Fortran" int isamax(const int &, float *, const int &);
/* Create structure for argument Tist =*/
struct arg_list {

int n;
float *x;
int incx;

}s

void main()

float sx1[9] = { 1., 2., 7., -8.
float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
pthread_t first_th;

pthread t second_th;

int rc;

struct arg_Tlist a_1,b_1;

a_l.n=09;
a_l.incx = 1;
a_l.x = sxl;
b T.n = 8;

b _T.incx = 1;
b T.x = sx2;

/* Creating argument list for first thread =*/
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_1);
if (rc) exit(-1);

/* Creating argument Tist for second thread =*/
rc = pthread create(&second_th, NULL, Thread, (void *) &b _1);
if (rc) exit(-1);

sleep(20);

exit(0);

1
/* Thread routine which calls the ESSL subroutine ISAMAX */
void* Thread(void =v)

{

struct arg Tist =*al;

float *t;

int n,incx;

int i;

al = (struct arg_list *)(v);
t = al->x;

n = al->n;

incx = al->incx;

Chapter 4. Coding Your Program

147

148

/* Calling the ESSL subroutine ISAMAX =*/
i = isamax(n,t,incx);

if (i ==28)

cout << "max for sx2 should be 8 = " << i << "\n";
else

cout << "max for sxl should be 6 = " << i << "\n";

return NULL;

Handling Errors in Your C++ Program

ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:

* For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable
errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the
subroutine descriptions in Part 2 of this book.

* For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

[“Input-Argument Errors in C++"| and [“Computational Errors in C++” on page 153
explain how to use these facilities by describing the additional statements you
must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in [“Input-Argument Errors in C++”|and
[“Computational Errors in C++” on page 153 on each thread that calls ESSL.

Input-Argument Errors in C++

To obtain corrected input-argument values in a C++ program and to avert program
termination for the optionally-recoverable input-argument errors 2015, 2030, and
2200, add the statements in the following steps to your program. Steps 4 and 8 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary.

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Step 1. Code the Global Statements for ESSL Error Handling:

/* Code one underscore */

/* before the Tetters ESVERR =*/

#define _ESVERR

#ifdef _ linux

#include <iostream>

#else

#include <iostream.h>

#endif

#include <stdio.h>

#include <essl.h>

extern "Fortran" int enotrm(int &,int &);
extern "Fortran" typedef int (*FN) (int &,int &);

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statements for the ESSL header
file. The extern statements are required to call the ESSL error exit routine
ENOTRM as an external reference in your program.

Step 2. Declare the Variables:

FN iusadr;
int ierno, inoal, inomes,itrace,irange,irc,dummy;
char storarea[8];

This declares a pointer, iusadr, to be used for the ESSL error exit routine ENOTRM.
Also included are declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

iusadr = enotrm;
dummy = 0;
einfo (0,dummy,dummy) ;

The first statement sets the function pointer, iusadr, to ENOTRM, the ESSL error
exit routine. The last statement calls the EINFO subroutine to initialize the ESSL
error option table, where dummy is a declared integer and is a placeholder. For a
description of EINFO, see ["EINFO — ESSL Error Information-Handler Subroutine”]
These statements should be coded only once in the beginning of

your program before calls to ERRSET.

Step 4. Call ERRSAV:

errsav (ierno,storarea);

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to

Chapter 4. Coding Your Program 149

save. This step is used, along with step 8, for ERRSTR. For information on whether

ou should use ERRSAV and ERRSTR, see ['How Can You Control Error Handling]
in Large Applications by Saving and Restoring Entries in the Error Option Table?”|
on page 52] For an example, see|“Example” on page 155 as the use is the same as
for computational errors.

Step 5. Call ERRSET:

errset (ierno,inoal,inomes,itrace,iusadr,irange);

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:

* How many times each error can occur before execution terminates (inoal)
* How many times each error message can be printed (inomes)
* The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see |iable 29 or—\|
page 5“, For a description of the input-argument errors, see [‘Input-Argument Error|
Messages(2001-2099)” on page 178.[For a description of ERRSET, see [Chapter 17|
“Utilities,” on page 1003

Step 6. Call ESSL:

irc = name (argl,...,argn);
if irc == rcl

{

)
if irc == rc2

{

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:

 name specifies the ESSL subroutine.
e argl,..,argn are the input and output arguments.

* irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

150 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

e rcl, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

Step 7. Perform the Desired Action: These are the statements following the test
for each value of the return code, returned in irc in step 6. These statements
perform whatever action is desired when the recoverable error occurs. These
statements may check the new values set in the input arguments to determine
whether adequate program storage is available, and then decide whether to
continue or terminate the program. Otherwise, these statements may check that the
size of the working storage arrays or the length of the transform agrees with other
data in the program. The program may also store this corrected input argument
value for future reference.

Step 8. Call ERRSTR:

errstr (ierno,storarea);

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see ["'How Can You|
Control Error Handling in Large Applications by Saving and Restoring Entries in]
the Error Option Table?” on page 52|For an example, see ["Example” on page 155/
as the use is the same as for computational errors.

Example

This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

Chapter 4. Coding Your Program 151

152

/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
#define ESVERR
#include <essl.h>
#ifdef _ linux
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stdio.h>
extern "Fortran" int enotrm(int &,int &);
extern "Fortran" typedef int (*FN) (int &,int &);

/*DECLARE THE VARIABLES*/
main ()

FN fusadr;
int ierno,inoal,inomes,itrace,irc,dummy;
int naux;

/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE=*/
jusadr = enotrm;

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;
einfo (0,dummy,dummy) ;

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
SUPPRESS PRINTING ALL ERROR MESSAGES FOR ITx/
ierno = 2015;

inoal = 0;
inomes = -1;
itrace = 0;

E]
irange = 2015;
errset (ierno,inoal,inomes,itrace,iusadr,irange);

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
RETURN CODE OF 1 IS SET IN IRC.*/
irc = swlev (x,incx,u,incu,y,incy,n,aux,naux);
if irc ==

/*CHECK THE RESULTING INPUT ARGUMENT VALUE
IN NAUX AND TAKE THE DESIRED ACTION=*/

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Computational Errors in C++

To obtain information about an ESSL computational error in a C++ program, add
the statements in the following steps to your program. Steps 4 and 9 for ERRSAV
and ERRSTR, respectively, are optional. Adding these steps makes the effect of the
call to ERRSET temporary. For a list of those computational errors that return
information and to which these steps apply, see ["EINFO — ESSL Errod
[Information-Handler Subroutine” on page 1006

Step 1. Code the Global Statements for ESSL Error Handling:

/* Code one underscore */

/* before the letters ESVERR =/
#define ESVERR

#ifdef _ linux

#include <iostream>

#else

#include <iostream.h>

#endif

#include <stdio.h>

#include <essl.h>

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.

Step 2. Declare the Variables:

int ierno, inoal, inomes,itrace,iusadr,irange,irc;
int infl, inf2,dummy;
char storarea[8];

These statements include declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

dummy = 0;
einfo (0,dummy,dummy) ;

The last statement calls the EINFO subroutine to initialize the ESSL error option
table, where dummy is a declared integer and is a placeholder. For a description of
EINFO, see ["EINFO — ESSL Error Information-Handler Subroutine” on page 1006.|
These statements should be coded only once in the beginning of your program
before calls to ERRSET.

Step 4. Call ERRSAV:

errsav (ierno,storarea);

Chapter 4. Coding Your Program 153

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see ["How Can You Control Error Handling]
in Large Applications by Saving and Restoring Entries in the Error Option Table?”|
on page 52| For an example, see|“Example” on page 155]

Step 5. Call ERRSET:

errset (ierno,inoal,inomes,itrace,iusadr,irange);

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:

* How many times each error can occur before execution terminates (inoal)

* How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
[Table 178 on page 1006] To allow your program to continue after an error in the
specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr
should be specified as either 0 or 1 in a 32-bit environment (01 or 11 in a 64-bit
environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see [Table 29 on]
bage 50| For a description of the computational errors, see [‘Computational Error
Messages(2100-2199)” on page 184.|For a description of ERRSET, see [Chapter 17,|
“Utilities,” on page 1003,

Step 6. Call ESSL:

irc = name (argl,...,argn);
if irc == rcl

{

)
if irc == rc2

{

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:

 name specifies the ESSL subroutine.
* argl,..,argn are the input and output arguments.

* irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

154 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

e rcl, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

The statements following each test of the return code can perform any desired
action. This includes calling EINFO for more information about the error, as
described in step 7.

Step 7. Call EINFO for Information:

einfo (ierno,infl,inf2);

This calls the EINFO subroutine, which returns information about certain

computational errors, where:

e ierno is the error code of interest.

* infl and inf2 are the integer variables used to receive the information, where infl
is assigned a value for all errors, and inf2 is assigned a value for some errors.
You must specify both arguments, as there are no optional arguments for C. For
a description of EINFO, see ["EINFO — ESSL Error Information-Handler|
[Subroutine” on page 1006.|

Step 8. Check the Values in the Information Receivers: These statements check
the values returned in the output argument information receivers, infl and inf2,
which contain the information about the computational error.

Step 9. Call ERRSTR:

errstr (ierno,storarea);

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see |”H0w Can Y0u|
Control Error Handling in Large Applications by Saving and Restoring Entries in|
the Error Option Table?” on page 52.|For an example, see |”Exam91e.”|

Example

This 32-bit environment example shows an error code 2105, which returns one
piece of information: the index of the pivot element (i) near zero, causing
factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects of the error
handling for error 2105 by this program.

Chapter 4. Coding Your Program 155

/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
#define _ESVERR
#include <essl.h>
#ifdef _ Tinux
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stdio.h>

/*DECLARE THE VARIABLES*/
main ()
{
int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int infl,inf2,dummy;
char sav2105[8];

/*INITIALIZE THE ESSL ERROR OPTION TABLEx/
dummy = 03
einfo (0,dummy,dummy);
/*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105%/
ierno = 2105;
errsav (ierno,sav2105);

/*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
FOR THEM. THIS SHOWS HOW YOU CODE THE
ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */

ierno = 2101;

inoal 0;

inomes = 0; /%A DUMMY ARGUMENT=/

itrace = 0; /*A DUMMY ARGUMENT=/

iusadr = 0; /*A DUMMY ARGUMENT=/

irange = 2105

errset (ierno,inoal,inomes,itrace, iusadr,irange);

/*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/
irc = dgeicd (a,lda,n,iopt,rcond,det,aux,naux);
if irc ==
{
/*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
CODE 2105 TO RETURN ONE PIECE OF INFORMATION
IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
INF2 IS NOT USED, BUT MUST BE SPECIFIED.
BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.=/
ierno = 2105;
einfo (ierno,infl,inf2);
/*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
DESIRED ACTIONx/

156 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

/*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105. ERROR PROCESSING
RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
THE ABOVE ERRSAV STATEMENT=*/
ierno = 2105;
errstr (ierno,sav2105);

Chapter 4. Coding Your Program 157

158 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 5. Processing Your Program

This section describes the ESSL-specific changes you need to make to your job
procedures for compiling, linking, and running your program.

You can use any procedures you are currently using to compile, link, and run your
Fortran, C, and C++ programs, as long as you make the necessary modifications
required by ESSL.

Processing Your Program on AIX

The following notes apply to processing your program on AIX.

Notes:

1. The default search path for the ESSL libraries is: /usvlib. (Note thatJib is a
symbolic link to /Ausrlib.)

If the libraries are installed somewhere else, add the path name of that
directory to the beginning of the LIBPATH environment variable, being careful
to keep /usrlib in the path. The correct LIBPATH setting is needed both for
linking and executing the program.

For example, if you installed the ESSL libraries in /home/melib you would issue
ksh commands similar to the following in order to compile and link a program:
LIBPATH=~home-me~1ib:-usr-1ib
export LIBPATH
x1f -o myprog myprog.f -less]
After setting the LIBPATH command, the /home/melib directory is the directory
that gets searched first for the necessary libraries. This same search criterion is
used at both compile and link time and run time.

2. For the ESSL SMP Library, you can use the XL Fortran XLSMPOPTS or
OMP_NUM_THREADS environment variable to specify options which affect
SMP execution. For details, see the Fortran publications.

3. If you are accessing ESSL from a 64-bit-environment program, you must add
the -q64 compiler option.

4. ESSL supports the XL Fortran compile-time option -qextname. For details, see
the Fortran manuals.

5. Fortran 90 programmers may be interested in the -qessl compiler option which
allows the use of ESSL routines in place of Fortran 90 intrinsic procedures. For
details, see the Fortran manuals.

6. In your job procedures, you must use only the allowable compilers and
libraries listed in[Table 2 on page 9|

Dynamic Linking Versus Static Linking on AIX
Only dynamic linking is supported for programs using ESSL.

Fortran Program Procedures on AIX

You do not need to modify your existing Fortran compilation procedures when
using ESSL.

When linking and running your program, you must modify your existing job
procedures for ESSL in order to set up the necessary libraries.

© Copyright IBM Corp. 1991, 2004 159

If you are accessing ESSL from a Fortran program, you can compile and link using
the commands shown in the table below.

ESSL Library Name Command
32-bit x1f_r -0 -gnosave xyz.f -lesslsmp
SMP
64-bit x1f_r -0 -gnosave -q64 xyz.f -Tesslsmp
32-bit x1f_r -0 -gnosave xyz.f -lessl
Serial
64-bit x1f_r -0 -gnosave -q64 xyz.f -Tessl
32-bit x1f -0 xyz.f -lessl
Serial
64-bit x1f -0 -g64 xyz.f -lessl

where xyz.f is the name of your Fortran program.

ESSL supports the XL Fortran compile-time option -qextname. For details, see the
Fortran manuals.

C Program Procedures on AIX

The ESSL header file ess1.h, used for C and C++ programes, is installed in the
~usr~include directory. You do not need to modify your existing C compilation
procedures when using ESSL, unless you want to specify your own definitions for
complex data.

If you do want to specify your own definitions for short- and long-precision
complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile
and link command. Otherwise, you automatically use the definitions of short- and
long-precision complex data provided in the ESSL header file (as shown in the
table below).

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

If you are accessing ESSL from a C program, you can compile and link using the
commands also shown in the table below.

ESSL Library Name |Command
ccr -0 xyz.c -lesslsmp
32-bit
ccr -0 -DCMPLX -D DCMPLX xyz.c -lesslsmp
SMP — — —
ccr -0 -gb64 xyz.c -lesslsmp
64-bit
ccr -0 -DCMPLX -D _DCMPLX -q64 xyz.c -lesslsmp
cc.r -0 xyz.c -lessl
32-bit
ccr -0 -DCMPLX -D DCMPLX xyz.c -lessl
Serial = = =
ccr -0 -g64 xyz.c -lessl
64-bit
cc_r -0 -D_CMPLX -D_DCMPLX -g64 xyz.c -Tlessl
cc -0 xyz.c -lessl
32-bit
cc -0 -D CMPLX -D DCMPLX xyz.c -lessl
Serial — —
cc -0 -gb4 xyz.c -lessl
64-bit
cc -0 -D_CMPLX -D_DCMPLX -q64 xyz.c -Tessl
160 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

C++ Program Procedures on AIX

The ESSL header file ess1.h, used for C and C++ programs, is installed in the
~usr~include directory. When using ESSL, the compiler option
-qnocinc=/usr/include/essl must be specified.

If you are using the IBM Open Class Complex Mathematics Library, you
automatically use the definition of short-precision complex data provided in the
ESSL header file. If you prefer to specify your own definition for short-precision
complex data, add -D_CMPLX to your commands (as shown in the table below).
Otherwise, ESSL will use the IBM Open Class Complex Mathematics Library or the
Standard Numerics Library, as described in [‘On AIX—Selecting the <complex> or|
lccomplex.h> Header File” on page 144

If you prefer to explicitly specify that you want to use the Standard Numerics
Library facilities for complex arithmetic, add -D_ESV_COMPLEX_ to your
command as shown in the table below.

The ESSL header file supports two alternatives for declaring scalar output
arguments. By default, the arguments are declared to be type reference. If you
prefer for them to be declared as pointers, add -D_ESVCPTR to your commands
as shown in the table below.

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

If you are accessing ESSL from a C++ program, you can compile and link using the
commands shown in the table below.

ESSL Library Name

Command

32-bit

SMP

x1C_r -0 xyz.C -lesslsmp -gnocinc=/usr/include/ess]
x1C_r -0 -D_CMPLX xyz.C -lesslsmp -gnocinc=/usr/include/ess]
x1C_r -0 -D_ESV_COMPLEX_ xyz.C -lesslsmp -gnocinc=/usr/include/ess]

x1C_r -0 -D _ESVCPTR xyz.C -lesslsmp -gnocinc=/usr/include/ess]

64-bit

x1C_r -0 -g64 xyz.C -lesslsmp -gnocinc=/usr/include/ess]
x1C_r -0 -D_CMPLX -g64 xyz.C -lesslsmp -gnocinc=/usr/include/ess]
x1C_r -0 -D_ESV_COMPLEX_ -q64 xyz.C ~-lesslsmp -gnocinc=/usr/include/ess]

x1C_r -0 -D _ESVCPTR -g64 xyz.C -lesslsmp -gnocinc=/usr/include/ess]

Chapter 5. Processing Your Program 161

ESSL Library Name |Command

32-bit

x1C_r -0
x1C_r -0
x1C_r -0

x1C_r -0

xyz.C -less1 -gnocinc=/usr/include/ess]
-D_CMPLX xyz.C -lessl -gnocinc=/usr/include/ess]
-D_ESV_COMPLEX_ xyz.C -lessl -gnocinc=/usr/include/ess]

-D_ESVCPTR xyz.C -lessl -gnocinc=/usr/include/essl

Serial

64-bit

x1C_r -0
x1C_r -0
x1C_r -0

x1C_r -0

-q64 xyz.C -lessl -gnocinc=/usr/include/ess]
-D_CMPLX -qg64 xyz.C -lessl -gnocinc=/usr/include/ess]
-D_ESV_COMPLEX_ -q64 xyz.C -lessl -gnocinc=/usr/include/ess]

-D_ESVCPTR -g64 xyz.C -lessl -gnocinc=/usr/include/ess]

x1C
x1C
32-bit
x1C

x1C

xyz.C -lessl -gnocinc=/usr/include/ess]
-D_CMPLX xyz.C -lessl -gnocinc=/usr/include/ess]
-D_ESV_COMPLEX_ xyz.C -lessl -gnocinc=/usr/include/ess]

-D_ESVCPTR xyz.C -lessl -gnocinc=/usr/include/ess]

Serial
x1C

x1C
64-bit
x1C

x1C

-q64 xyz.C -lessl -gnocinc=/usr/include/ess]
-D_CMPLX -g64 xyz.C -lessl -gnocinc=/usr/include/ess]
-D_ESV_COMPLEX_ -g64 xyz.C -lessl -gnocinc=/usr/include/ess]

-D_ESVCPTR -g64 xyz.C -lessl -gnocinc=/usr/include/ess]

Processing Your Program on Linux

The following notes apply to processing your program on Linux.

Notes:
1. The default search paths for the ESSL libraries are as follows:
32-bit libraries The default search path is: usrlib
64-bit libraries The default search path is: usrlib64
If the libraries are installed somewhere else, you need to set the link-time and

run-ti

me library search paths. There are two ways to set these search paths:

* Use one of the following compile/link options:

-R (or -rpath) Writes the specified run-time library search paths into the

-L

executable program.

Searches the library search paths at link time, but does not
write them into the executable as run-time library search
paths.

—O0r—

* Use one of the following environment variables:

LD_LIBRARY_PATH Specifies the directories that are to be

searched for libraries at run time.

LD_RUN_PATH Specifies the directories that are to be

searched for libraries at both link and run
time.

162 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

For example, if you installed the ESSL 32-bit libraries in /home/me/lib, you
would issue ksh commands similar to the following in order to compile and
link a program:

LD_LIBRARY_PATH=~home-me-1ib: $LD_LIBRARY_PATH

LD_RUN_PATH=~home-me~1ib: $LD_RUN_PATH

export LD_LIBRARY_PATH

export LD_RUN_PATH

x1f_r -o myprog myprog.f -lessl

The result would be that the /home/melib directory is the directory that gets
searched at link time and run time.

For more information on link options and environment variables, see the
manpage for the 1d command

. For the ESSL SMP Library, you can use the XL Fortran XLSMPOPTS or

OMP_NUM_THREADS environment variable to specify options which affect
SMP execution. For details, see the Fortran publications.

. If you are accessing ESSL from a 64-bit-environment program, you must add

the -q64 compiler option.

. ESSL supports the XL Fortran compile-time option -qextname. For details, see

the Fortran manuals.

. Fortran 90 programmers may be interested in the -qessl compiler option which

allows the use of ESSL routines in place of Fortran 90 intrinsic procedures. For
details, see the Fortran manuals.

. The commands in the table below assume that you installed the IBM compilers

in the default directory, /opt/ibmcmp. If you used different directories, you need
to make the appropriate changes to the -L and -R options.

. In your job procedures, you must use only the allowable compilers and

libraries listed in [Table 3 on page 9

Dynamic Linking Versus Static Linking on Linux

Only dynamic linking is supported for programs using ESSL.

Fortran Program Procedures on Linux

You do not need to modify your existing Fortran compilation procedures when

using ESSL.

When linking and running your program, you must modify your existing job
procedures for ESSL in order to set up the necessary libraries.

If you are accessing ESSL from a Fortran program, you can compile and link using

the commands shown in the table below.

ESSL Library Name

Command

32-bit x1f_r -0 -gnosave -gsmp xyz.f -lesslsmp
x1f_r -0 -gnosave xyz.f -lesslismp -TxIsmp
SMP
64-bit x1f_r -0 -gnosave -q64 -qsmp xyz.f -lesslsmp
x1f_r -0 -gnosave -q64 xyz.f -lesslsmp -1x1smp
32-bit x1f_r -0 -gnosave xyz.f -lessl
Serial
64-bit x1f_r -0 -gnosave -q64 xyz.f -lessl

where xyz.f is the name of your Fortran program.

Chapter 5. Processing Your Program

163

ESSL supports the XL Fortran compile-time option -qextname. For details, see the
Fortran manuals.

C Program Procedures on Linux

The ESSL header file ess1.h, used for C and C++ programes, is installed in the
/usr/include directory.

You do not need to modify your existing C compilation procedures when using
ESSL, unless you want to specify your own definitions for complex data. If you do
want to specify your own definitions for short- and long-precision complex data,
add -D_CMPLX and -D_DCMPLX, respectively, to your compile and link
command. Otherwise, you automatically use the definitions of short- and
long-precision complex data provided in the ESSL header file.

When linking and running your program, you must modify your existing job
procedures for ESSL in order to set up the necessary libraries.

If you are accessing ESSL from a C program, you can compile and link using the
commands also shown in the table below.

ESSL Library Name Command
32-bit ccr -0 xyz.c -lesslsmp -1x1f90_r -1xIsmp -T1x1fmath
. -L/opt/ibmemp/x1f/9.1/1ib -R/opt/ibmemp/x1f/9.1/1ib
64-bit ccr -0 -gb64 xyz.c -lesslsmp -1x1f90_r -I1xIsmp -Tx1fmath
-L/opt/ibmemp/x1f/9.1/11b64 -R/opt/ibmecmp/x1f/9.1/1ib64
32-bit ccr -0 xyz.c -lessl -1x1f90_r -Ixlomp_ser -1x1fmath
Serial -L/opt/ibmemp/x1£/9.1/1ib -R/opt/ibmcmp/x1€/9.1/1ib
eria
64-bit ccr -0 -g64 xyz.c -lessl -1x1f90_r -1xTomp_ser -1x1fmath
-L/opt/ibmemp/x1f/9.1/1ib64 -R/opt/ibmcmp/x1f/9.1/1ib64

C++ Program Procedures on Linux

The ESSL header file ess1.h, used for C and C++ programes, is installed in the
/usr/include directory.

The ESSL header file supports two alternatives for declaring scalar output
arguments. By default, the arguments are declared to be type reference. If you
prefer for them to be declared as pointers, add -D_ESVCPTR to your commands.

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

If you are accessing ESSL from a C++ program, you can compile and link using the
commands shown in the table below.

ESSL Library Name

Command

32-bit

x1C_r -0 xyz.C -lesslsmp -1x1f90_r -IxIsmp -1x1fmath
-L/opt/ibmemp/x1f/9.1/1ib -R/opt/ibmemp/x1f/9.1/11ib

SMP
64-bit

xIC_r -0 -q64 xyz.C -Tesslsmp -1x1f90_r -1xTsmp -1x1fmath
-L/opt/ibmemp/x1f/9.1/1ib64 -R/opt/ibmemp/x1f/9.1/1ib64

164 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ESSL Library Name

Command

32-bit

x1C_r -0 xyz.C -lessl -1x1f90_r -1xlomp_ser -1xIfmath
-L/opt/ibmemp/x1f/9.1/1ib -R/opt/ibmemp/x1f/9.1/1ib

Serial

64-bit

x1C_r -0 -g64 xyz.C -Tessl -1x1f90_r
-L/opt/ibmemp/x1f/9.1/11b64

-1xTomp_ser -1x1fmath
-R/opt/ibmemp/x1f/9.1/1ib64

Chapter 5. Processing Your Program 165

166 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 6. Migrating Your Programs

This chapter explains many aspects of migrating your application programs to use
the ESSL subroutines. It covers:

* |“Migrating ESSL Version 4 Release 1 Programs to Version 4 Release 2”

* |“Migrating ESSL Version 3 Release 3 Programs to Version 4 Release 1”

* [“Planning for Future Migration” on page 168

+ [“Migrating From One Hardware Platform to Another” on page 168|
* ["Migrating from Other Libraries to ESSL” on page 16§

Migrating ESSL Version 4 Release 1 Programs to Version 4 Release 2

The calling sequences for the subroutines in ESSL Version 4 Release 1 and ESSL
Version 4 Release 2 are identical; therefore, no changes to your application
programs are required.

ESSL Version 4 Release 2 does not support SLES8. In most cases, binary
compatibility does not exist between SLES8 and SLES9. Therefore, SLES8
applications must be recompiled and rebuilt on SLES9.

On Linux, if you are accessing ESSL from a C or C++ program, you must change
your compile and link commands so that they specify IBM XL Fortran Enterprise
Edition Version 9.1 for Linux. See [“C Program Procedures on Linux” on page 164]
and [’C++ Program Procedures on Linux” on page 164

Migrating ESSL Version 3 Release 3 Programs to Version 4 Release 1

The Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve
subroutine, DBSSV, has been modified so that the matrix is factored in the case
where 7 is greater than zero and nrhs is zero. Previously, this was a quick-return
condition and the matrix was not factored. (See the subroutine description on page

22))

For all other subroutines, no changes to your application programs are required if
you are migrating from ESSL Version 3 Release 3 to ESSL Version 4 Release 1.

Note: If you are migrating from a release earlier than ESSL Version 3 Release 3, see
the documentation for ESSL Version 3 Release 3 (which is available from the
Web sites listed in [Table 5 on page 11).

ESSL Subroutines

The calling sequences for the subroutines in ESSL Version 3 Release 3 and ESSL
Version 4 Release 1 are identical.

© Copyright IBM Corp. 1991, 2004 167

Planning for Future Migration

With respect to planning for the future, if working storage does not need to persist
after the subroutine call, you should use dynamic allocation. Otherwise, you
should use the processor-independent formulas or simple formulas for calculating
the values for the naux arguments in the ESSL calling sequences. Two things may
occur that could cause the minimum values of naux, returned by ESSL error
handling, to increase in the future:

¢ If changes are made to the ESSL subroutines to improve performance

¢ If changes are necessary to support future processors

The formulas allow you to specify your auxiliary storage large enough to
accommodate any future improvements to ESSL and any future processors. If you
do not provide, at least, these amounts of storage, your program may not run in
the future.

You should use the following rule of thumb: To protect your application from
having to be recoded in the future because of possible increased requirements for
auxiliary storage, use dynamic allocation if possible. If the working storage must
persists after the subroutine call, then you should provide as much storage as
possible in your current application. In determining the right amount to specity,
you should weigh your storage constraints against the inconvenience of making
future changes, then specify what you think is best. If possible, you should provide
this larger amount of storage to prevent future migration problems.

| Migrating From One Hardware Platform to Another

[This section describes all the aspects of migrating your ESSL application programs
I from one hardware platform to another.

Auxiliary Storage

The minimum amount of auxiliary storage returned by ESSL error handling may
vary from one hardware platform to another for the following subroutines:

¢ all the Fourier transform subroutines
* SCONF

* SCORF

* SACORF

I Therefore, to guarantee that your application programs always migrate from any
I platform to any other platform, you should use the processor-independent
I formulas to determine the amount of auxiliary storage to use.

Bitwise-ldentical Results

[Because of hardware and ESSL design differences, the results you obtain when
I migrating from one ESSL Library to another or from one hardware platform to
I another may not be bitwise identical. The results, however, are mathematically
I equivalent.

Migrating from Other Libraries to ESSL

This section describes some general aspects of moving from an IBM or non-IBM
engineering and scientific library to ESSL.

168 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Migrating from ESSL/370

There is a high degree of compatibility between ESSL/370 and ESSL for AIX.
However you may need to make some coding changes for certain subroutines.

Migrating from Another IBM Subroutine Library

If you are migrating from other IBM library products—such as Subroutine
Library—Mathematics (SL MATH) or Scientific Subroutine Package (SSP), which
have some functions similar to ESSL—the ESSL calling sequences differ from the
calling sequences you are currently using. Your program must be modified to add
the ESSL calling sequences and make the other ESSL-related coding changes.

If you are migrating from the Basic Linear Algebra Subroutine Library provided
with AIX, your calling sequences do not need to be changed.

Migrating from LAPACK

ESSL contains some subroutines that conform to the LAPACK interface. If you are
using these subroutines, no coding changes are needed to migrate to ESSL.

Note: You should be aware that there are some ESSL subroutines whose names
match those of existing LAPACK subroutines, but whose calling-sequence
arguments and functionality are different from those LAPACK subroutines.
(See|Appendix B, “LAPACK,” on page 1041.)

Additionally, you may be interested in using the Call Conversion Interface (CCI)
that is available with LAPACK. The CCI substitutes a call to an ESSL subroutine in
place of an LAPACK subroutine whenever an ESSL subroutine provides either
functional or near-functional equivalence. Using the CCI allows LAPACK users to
obtain the optimized performance of ESSL for an additional subset of LAPACK
subroutines. For details, see reference .

Migrating from a Non-IBM Subroutine Library

If you are using a non-IBM library, ESSL may provide subroutines corresponding
to those you are currently using. You may choose to migrate your program to
benefit from the increased performance offered by the ESSL subroutines. In this
case, you may have to recode your program to use the ESSL calling sequences,
because the names and arguments used by ESSL may be different from those used
by the non-IBM library. On the other hand, if you are using any of the standard
Level 1, 2, and 3 BLAS or LAPACK routines that correspond to ESSL subroutines,
you do not need to recode the calling sequences. The ESSL calling sequences are
the same as the public domain code.

Chapter 6. Migrating Your Programs 169

170 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 7. Handling Problems

This chapter provides the following information for your use when dealing with
errors:

* How to obtain IBM support.
* What to do about NLS (National Language Support) problems.

* A description of the different types of errors that can occur in ESSL. It explains
what happens when an error occurs and, in some instances, how you can use
error handling to obtain further information.

 All of the ESSL error messages are categorized into the different error types.
There is also a description of the error message format.

Where to Find More Information About Errors

Specific errors associated with each ESSL subroutine are listed under "Error
Conditions” in each subroutine description in Part 3 of this book.

Getting Help from IBM Support
Should you require help from IBM in resolving an ESSL problem, report it and
provide the following information, if available and appropriate.
1. Your customer number
2. The ESSL program number:

ESSL for AIX 5765-F82
ESSL for Linux 5765-G17

This is important information that speeds up the correct routing of your call.
3. The version and release of the operating system that you are running on.

On AIX Enter the following command:
oslevel

On Linux Enter the following command:
uname -a

This is important information that speeds up the correct routing of your call.
4. The names and versions of key products being run.

On AIX Enter the following command:

Islpp -h product

where the appropriate values of product are listed in|Table 33 on|
[page 172]

On Linux Enter the following command:

rpm -q package

© Copyright IBM Corp. 1991, 2004 171

where the appropriate values of package are listed in|Table 3
Table 33. Product File Set and Package Names

Product File Sets on AIX Product Packages on Linux | Descriptive Name

essl.* essl.rte ESSL

xlfrte xlf.rte XL Fortran Run-Time
Environment

xlsmp.rte xlsmp.rte SMP Run-Time Environment

xlfemp xIf.cmp XL Fortran compiler

vac.C vac.cmp XL C compiler

vacpp.cmp.C vacpp.cmp XL C++ compiler

5. The message that is returned when an error is detected.

6. Any error message relating to core dumps.

7. The compiler listings, including compiler options in effect, and any run-time

listings produced

8. Program changes made in comparison with a previous successful run

9. A small test case demonstrating the problem using the minimum number of
statements and variables, including input data

Consult your IBM Service representative for more assistance.

National Language Support

For National Language Support (NLS), all ESSL subroutines display messages
located in externalized message catalogs. English versions of the message catalogs
are shipped with the product, but your site may be using its own translated
message catalogs. The environment variable NLSPATH is used by the various
ESSL subroutines to find the appropriate message catalog. NLSPATH specifies a
list of directories to search for message catalogs. The directories are searched, in
the order listed, to locate the message catalog. In resolving the path to the message
catalog, NLSPATH is affected by the value of the environment variables
LC_MESSAGES and LANG.

172

The ESSL message catalogs are in English, and are located in the following

directories:

On AIX

/usr/1ib/nls/msg/C

/usr/1ib/n1s/msg/En_US
/usr/1ib/n1s/msg/en_US

On Linux

/usr/share/locale/en_US/LC_MESSAGES

/usr/share/locale/C

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For

additional information on NLS and message catalogs, see AIX General Programming
Concepts: Writing and Debugging Programs.

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Dealing with Errors

At run time, you can encounter a number of different types of errors that are
specifically related to the use of the ESSL subroutines:

¢ Program exceptions

* Input-argument errors (2001-2099) and (2200-2299)
¢ Computational errors (2100-2199)

* Resource errors (2401-2499)

* Informational and Attention messages (2600-2699)
* Miscellaneous errors (2700-2799)

Program Exceptions

The program exceptions you can encounter in ESSL are described in ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

ESSL Input-Argument Error Messages

If you receive an error message in the form 2538-20nn or 2538-22nn, you have an
input-argument error in the calling sequence for an ESSL subroutine. Your program
terminated at this point unless you did one of the following:

* Specified the ESSL user exit routine, ENOTRM, with ERRSET to determine the
correct input argument values in your program for the optionally-recoverable
ESSL errors 2015, 2030 or 2200. For details on how to do this, see
[“Coding Your Program,” on page 107

* Reset the number of allowable errors (2099) during ESSL installation or using
ERRSET in your program. This is not recommended for input-argument errors.

Note: For many of the ESSL subroutines requiring auxiliary storage, you can avoid
program termination due to error 2015 by allowing ESSL to dynamically
allocate auxiliary storage for you. You do this by setting naux = 0 and
making error 2015 unrecoverable. For details on which aux arguments allow
dynamic allocation and how to specify them, see the subroutine descriptions
in Part 2 of this book.

The name of the ESSL subroutine detecting the error is listed as part of the
message. The argument number(s) involved in the error appears in the message
text. See |“Input-Argument Error Messages(2001-2099)” on page 178 for a complete
description of the information contained in each message and for an indication of
which messages correspond to optionally-recoverable errors. Regardless of whether
the name in the message is a user-callable ESSL subroutine or an internal ESSL
routine, the message-text and its unique parts apply to the user-callable ESSL
subroutine. Return code values are described under “Error Conditions” for each
ESSL subroutine in Part 2 of this book.

You may get more than one error message, because most of the arguments are
checked by ESSL for possible errors during each call to the subroutine. The ESSL
subroutine returns as many messages as there are errors detected. As a result,
fewer runs are necessary to diagnose your program.

Fix the error(s), recompile, relink, and rerun your program.

Chapter 7. Handling Problems 173

ESSL Computational Error Messages

If you receive an error message in the form 2538-21nn, you have a computational
error in the ESSL subroutine. A computational error is any error occurring in the
ESSL subroutine while using the computational data (that is, scalar and array
data). The name of the ESSL subroutine detecting the error is listed as part of the
message. Regardless of whether the name in the message is a user-callable ESSL
subroutine or an internal ESSL routine, the message-text and its unique parts apply
to the user-callable ESSL subroutine. A nonzero return code is returned when the
ESSL subroutine encounters a computational error. See [“Computational Error
Messages(2100-2199)” on page 184] for a complete description of the information in
each message. Return code values are described under “Error Conditions” for each
ESSL subroutine in Part 2 of this book.

Your program terminates for some computational errors unless you have called
ERRSET to reset the number of allowable errors for that particular error, and the
number has not been exceeded. A message is issued for each computational error.
You should use the message to determine where the error occurred in your
program.

If you called ERRSET and you have not reached the limit of errors you had set,
you can check the return code. If it is not 0, you should call the EINFO subroutine
to obtain information about the data involved in the error. EINFO provides the
same information provided in the messages; however, it is provided to your
program so your program can check the information during run time. Depending
on what you want to do, you may choose to continue processing or terminate your
program after the error occurs. For information on how to make these changes in
your program to reset the number of allowable errors, how to diagnose the error,
and how to decide whether to continue or terminate your program, see
[‘Coding Your Program,” on page 107

If you are unable to solve the problem, report it and provide the following
information, if available and appropriate:

¢ The message number and the module that detected an error
¢ The system dump, system error code, and system log of this job

* The compiler listings, including compiler options in effect, and any run-time
listings produced

* Program changes made in comparison with a previous successful run

¢ A small test case demonstrating the problem using the minimum number of
statements and variables, including input data

* A brief description of the problem

ESSL Resource Error Messages

If you receive a message in the form 2538-24nn, it means that ESSL issued a
resource error message.

A resource error occurs when a buffer storage allocation request fails in a ESSL
subroutine. In general, the ESSL subroutines allocate internal auxiliary storage
dynamically as needed. Without sufficient storage, the subroutine cannot complete
the computation.

174 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

When a buffer storage allocation request fails, a resource error message is issued,
and the application program is terminated. You need to reduce the memory
constraint on the system or increase the amount of memory available before
rerunning the application program.

The following ways may reduce memory constraints:

* Investigate the load of your process and run in a more dedicated environment.
* Increase your processor’s paging space.

* Select a machine with more memory.

* For a 32-bit environment application on AIX, consider specifying the -bmaxdata
binder option when linking your program. For details see the Fortran
publications.

¢ Check the setting of your user ID’s user limit (ulimit). (See the AIX Commands
Reference).

ESSL Informational and Attention Messages

If you receive a message in the form 2538-26nn, it means that ESSL issued an
informational or attention message.

Informational Messages
When you receive an informational message, check your application to determine
why the condition was detected.

ESSL Attention Messages

An attention message is issued to describe a condition that occurred. ESSL is able
to continue processing, but performance may be degraded.

One condition that may produce an attention message is when enough work area
was available to continue processing, but was not the amount initially requested.
ESSL does not terminate your application program, but performance may be
degraded. If you want to reduce the memory constraint on the system or increase
the amount of memory available to eliminate the attention message, see the
suggestions in ['ESSL Resource Error Messages” on page 174 For a list of
subroutines that may generate this type of attention message, see [Table 34 on page]
176

Chapter 7. Handling Problems 175

176

Table 34. ESSL Subroutines That May Generate Attention Messages

Category of Subroutine

Subroutine Names

7]
)
)
=
&
a9
[¢]

Matrix-Vector Linear Algebra | _GBMV
Subprograms “GEMV
_GER
_GERC
_GERU
_HEMV
_HER
_HER2
_HPMV
_HPR
_HPR2
_SBMV
_SPMV
_SYMV
_SPR
_SYR
_SPR2
_SYR2
_TBMV
_TPMV
_TRMV
Matrix Operations _GEMM
_GEMUL
_HEMM
_HER2K
_SYMM
_SYR2K
_TRMM 417

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 34. ESSL Subroutines That May Generate Attention Messages (continued)

Category of Subroutine Subroutine Names See Page
Dense Linear Algebraic _GEICD 537
Equations _GETRI 537
_POF
_POSV
_GESV
_POICD
_POTRF
_POTRI
_PPF
_PPFCD
_PPICD
_PPSV
_PPTRF
_PPTRI
_PPTRS
_TPI
_TPSV
_TPTRI
_TRI
_TRSM 561
_TRSV 555
_TRTRI 568
Banded Linear Algebraic STBSV and DTBSV
Equations
Linear Least Squares _GESVS
Fourier Transforms: _CFT
_CFT3
_CRFT
_CRFT3 860,
_RCFT 794
_RCFT3 854

Miscellaneous Error Messages

If you receive a message in the form 2538-27nn, it means that ESSL issued a
miscellaneous error message.

A miscellaneous error is an error that does not fall under any other categories.

When ESSL detects a miscellaneous error, you receive an error message with
information on how to proceed and your application program is terminated.

Chapter 7. Handling Problems 177

Messages

This section explains the conventions used for the ESSL messages and lists all the
ESSL messages. For a description of each of the four types of ESSL messages, see
[‘Dealing with Errors” on page 173.|

Message Conventions
This section describes the message conventions for the ESSL product.

About Upper- and Lowercase

The literals, such as, 'N', 'T", 'U’, and so forth, appear in the messages in this book
in uppercase; however, they may be specified in your ESSL calling sequence in
either upper- or lowercase, for example, n', 't’, and 'u'.

Message Format
The ESSL messages are issued in your output in the following format:

rtn-name : 2538-mmmnn
message-text

Figure 10. Message Format

The parts of the ESSL message are as follows:

rin-name
gives the name of the ESSL subroutine that encountered the error.

2538 is the ESSL component identification number.

mm indicates the type of ESSL error message:

20—Input-argument error message
21—Computational error message
22—Input-argument error message
24—Resource error message
26—Information and attention message
27—Miscellaneous error message

nn is the message identification number.

message-text
describes the nature of the error. Where one of several possible
message-texts can be issued for a particular ESSL error, they are listed in
this book with an “or” between them. The possible unique parts are:

¢ The argument number of each argument involved in the error is
included in the message description as (ARG NO. _)

* Additional information about the error is included in the message. The
placement of this information is shown in the messages as (_)

Input-Argument Error Messages(2001-2099)

RTN_NAME : 2538-2001 The number of elements RTN_NAME : 2538-2003 The number of rows
(ARG NO.) in a vector must be (ARG NO. _) in a matrix must be
greater than or equal to zero. greater than or equal to zero.

RTN_NAME : 2538-2002 The stride (ARG NO. _) for
a vector must be nonzero.

178 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

RTN_NAME : 2538-2004 The number of columns
(ARG NO.) in a matrix must be
greater than or equal to zero.

RTN_NAME : 2538-2005 The size of the leading
dimension (ARG NO. _) of an array
must be greater than zero.

RTN_NAME : 2538-2006 The number of rows
(ARG NO.) of a matrix must be less
than or equal to the size of the leading
dimension (ARG NO. _) of its array.

RTN_NAME : 2538-2007 The degree of a polynomial
(ARG NO. _) must be greater than or
equal to zero.

RTN_NAME : 2538-2008 The number of elements
(ARG NO.) to be scanned must be
greater than or equal to 2.

RTN_NAME : 2538-2009 The number of elements
(ARG NO.)) in a vector to be
processed must be greater than or equal
to 3.

RTN_NAME : 2538-2010 The transform length
(ARG NO. _) must be a power of 2.

RTN_NAME : 2538-2011 The number of points used
in the interpolation (ARG NO. _) must
be greater than or equal to zero and less
than or equal to the number of data
points (ARG NO.).

RTN_NAME : 2538-2012 The transform length
(ARG NO. _) must be less than or
equal to ().

RTN_NAME : 2538-2013 The transform length
(ARG NO. _) must be greater than or
equal to ().

RTN_NAME : 2538-2014 The routine must be
initialized with the present value of
(ARG NO.).

RTN_NAME : 2538-2015 The number of elements
(ARG NO.) in a work array must be
greater than or equal to ().

RTN_NAME : 2538-2016 The form (ARG NO.) of a
matrix must be "N’ or "T". or The form
(ARG NO.) of a matrix must be 'N’,
"T’, or 'C’. or The form (ARG NO.) of
a matrix must be "N” or "C’.

RTN_NAME : 2538-2017 The dimension
(ARG NO.) of the matrices must be
greater than or equal to zero.

RTN_NAME : 2538-2018 The matrix form is specified
by (ARG NO. _); therefore, the leading
dimension (ARG NO. _) of its array
must be greater than or equal to the
number of its rows (ARG NO.).

RTN_NAME : 2538-2019 The number of sequences
(ARG NO. _) must be greater than zero.

RTN_NAME : 2538-2020 (ARG NO. _) must be
nonzero.

RTN_NAME : 2538-2021 The storage control switch
(ARG NO. _) must be 1, 2, 3, or 4.

RTN_NAME : 2538-2022 (ARG NO. _) must be less
than ().

RTN_NAME : 2538-2023 The outer loop increment
(ARG NO.) must be greater than or
equal to zero.

RTN_NAME : 2538-2024 The stride (ARG NO.) for
a vector must be greater than or equal to
zero.

RTN_NAME : 2538-2025 The stride (ARG NO. _) for
a vector must be greater than zero.

RTN_NAME : 2538-2026 The stride (ARG NO.) for
a vector must be greater than or equal to
Q).

RTN_NAME : 2538-2027 The order (ARG NO.) of
a matrix must be greater than or equal
to zero.

RTN_NAME : 2538-2028 The job option argument
(ARG NO. _) must be 0, 1, or 2.

or
The job option argument
(ARG NO. _) must be 0, 1,
2, or 3.

Chapter 7. Handling Problems 179

RTN_NAME : 2538-2036 The lower bandwidth
(ARG NO. _) must be less than the
order (ARG NO. _) of the matrix.

or
The job option argument
(ARG NO.) must be 0, 1,
2, 10, 11, or 12.

RTN_NAME : 2538-2037 The upper bandwidth
or (ARG NO. _) must be less than the
The job option argument order (ARG NO. _) of the matrix.
(ARG NO.) must be 0, 1,

10, or 11. RTN_NAME : 2538-2038 The half-band bandwidth

(ARG NO. _) must be less than the

o order (ARG NO. _) of the matrix.

The job option argument
(ARG NO.) must be 0, 1,

20, or 21. RTN_NAME : 2538-2039 (ARG NO. _) must be
greater than zero.

or
The job option argument .
(ARG NO.) must be 0, 1, RTN_NAME : 2538-2040 Insufficient storage

allocated for positive definite solve. (1)

10, 11, 20, 21, 30, or 31. ca !
additional bytes required.

or

The job option argument RTN_NAME : 2538-2041 The resulting correlation

(ARG NO.) must be 0, 1, length obtained from ARG NO. 8 = ()

2, 3, or 4. and ARG NO. 10 = () must be less than
Q).

RTN_NAME : 2538-2029 The job option argument

(ARG NO. _) must be 0 or 1. RTN_NAME : 2538-2042 (ARG NO. _) must be

greater than or equal to zero.

RTN_NAME : 2538-2030 The transform length
(ARG NO.) is not an allowed value.
The next higher allowed value is ().

RTN_NAME : 2538-2043 (ARG NO. _) must be
greater than ().

RTN_NAME : 2538-2031 The resulting convolution RTN_NAME : 2538-2044 The number of initialized

length obtained from ARG NO. 10 = (),
ARG NO. 11 = (), ARG NO. 13 = (),
and ARG NO. 14 = () must be less than

coefficients (ARG NO. _) cannot exceed
the size of the coefficient vector
(ARG NO.).

0.

RTN_NAME : 2538-2045 The order specified
(ARG NO.)) is not supported for this
quadrature method. The nearest
supported order is ().

RTN_NAME : 2538-2032 The size of the leading
dimension (ARG NO.) of the matrix
must be greater than or equal to (), the
bandwidth constraint.

RTN_NAME : 2538-2046 The scaling parameter
(ARG NO.) must be greater than zero
for this quadrature method.

RTN_NAME : 2538-2033 The lower bandwidth
(ARG NO.) must be greater than or
equal to zero.

RTN_NAME : 2538-2047 The scaling parameter
(ARG NO. _) must be nonzero for this
quadrature method.

RTN_NAME : 2538-2034 The upper bandwidth
(ARG NO. _) must be greater than or
equal to zero.

RTN_NAME : 2538-2048 The sum of (ARG NO.)
and (ARG NO. _) must be nonzero for
this quadrature method.

RTN_NAME : 2538-2035 The half-band bandwidth
(ARG NO.) must be greater than or
equal to zero.

180 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

RTN_NAME : 2538-2049 The number of data points

(ARG NO. _) must be greater than one
in order to perform numerical
quadrature.

RTN_NAME : 2538-2059 Element () in the real

parameter vector (ARG NO. _) must be
greater than zero.

RTN_NAME : 2538-2050 The number of columns

specified for the arrays to store the
matrix in compressed matrix mode
(ARG NO. _) must be greater than or
equal to ().

RTN_NAME : 2538-2060 The size of the leading

dimension (ARG NO. _) of an array
must be greater than or equal to the
maximum of (ARG NO. _) and
(ARG NO.).

RTN_NAME : 2538-2051 The number of columns

(ARG NO.) specified for the matrix
used to store the sparse matrix in
compressed mode must be greater than
zero.

RTN_NAME : 2538-2061 Parameter (ARG NO.),

which specifies the number of columns
of the input sparse matrix (ARG NO. _
and ARG NO.), must be greater than
or equal to ().

RTN_NAME : 2538-2052 The total number of

non-zero elements of the input sparse
matrix stored by rows, obtained from
element () of the row pointers array
(ARG NO.), must be greater than or
equal to zero.

RTN_NAME : 2538-2062 The number of random

numbers generated (ARG NO. _) must
be even and greater than or equal to
zero.

RTN_NAME : 2538-2053 The number of non-zero

elements in row () obtained from the
row pointer array (ARG NO. _) is less
than zero.

RTN_NAME : 2538-2063 SIDE (ARG NO. _), which

specifies whether the triangular input
matrix (ARG NO. _) appears on the left
or right of the other input matrix, must
be 'L’ or 'R’.

RTN_NAME : 2538-2054 The number of diagonals

(ARG NO.) specified for the matrix
used to store the sparse matrix in
compressed diagonal mode must be
greater than zero.

RTN_NAME : 2538-2064 UPLO (ARG NO.), which

specifies whether an input matrix
(ARG NO.)) is upper or lower
triangular, must be "U’ or 'L".

RTN_NAME : 2538-2055 Element () of the vector

used to store the diagonal numbers
(ARG NO.) is incompatible with the

order of the sparse matrix (ARG NO.).

RTN_NAME : 2538-2065 DIAG (ARG NO. _), which

specifies whether an input matrix
(ARG NO.)) is unit triangular, must be
U’ or 'N'".

RTN_NAME : 2538-2056 The matrix is singular

because the number of non-zero entries
(ARG NO.) is zero.

RTN_NAME : 2538-2066 Given the value which has

been assigned to SIDE (ARG NO.),
the leading dimension (ARG NO. _) for
the triangular input matrix must be
greater than or equal to (ARG NO.).

RTN_NAME : 2538-2057 Element () in the integer

parameter vector (ARG NO. _) must be
greater than or equal to zero.

RTN_NAME : 2538-2058 Element () in the integer

parameter vector (ARG NO. _) must be
0,0, or O).

RTN_NAME : 2538-2067 TRANSA (ARG NO.)

specifies whether an input matrix
(ARG NO.), its transpose, or its
conjugate transpose should be used.
TRANSA must be 'N’, 'T’, or 'C".

RTN_NAME : 2538-2068 The size of the leading

dimension (ARG NO.) of an array
must be greater than or equal to zero.

Chapter 7. Handling Problems 181

RTN_NAME : 2538-2070 Element (1) in (ARG NO.)

182

must be 0 or 1.

or
Element (1) in (ARG NO. _) must be
greater than zero.

or
Element () in

(ARG NO. _) must be
greater than or equal to zero.

or
Element () in

(ARG NO.) must be
greater than or equal to zero
and less than or equal to 1.

or
Element () in

(ARG NO. _) must be
greater than the preceding
element.

or
Element (1) in

(ARG NO. _) must be

greater than or equal to 1 and
less than or equal to n.

or
Element () in

(ARG NO. _) must be
-1 or 1.

or
Element () in

(ARG NO. _) must be
nonzero.

or
Element () in

(ARG NO.) must be
0, 1, 2, 10, or 11.

or
Element () in

(ARG NO. _) must be
0, 1, 2, 10, 11, 100, 102,
or 110.

or
Element () in
(ARG NO. _) must be 0.

or
Element () in
(ARG NO.) must be 1.

or
Element () in

(ARG NO. _) must be 0,
1, 2, 10, 11, 100, 101, 102,
110, or 111.

or
Element () in

(ARG NO.) must be
1, 2, 3, or 4.

or
Element () in
(ARG NO. _) must be
1, 2, 3, 4, or 5.

RTN_NAME :

2538-2071 The number of eigenvalues
(ARG NO. _) must be less than or
equal to the order of the matrix

(ARG NO.).

RTN_NAME :

2538-2072 The work area

(ARG NO. _) does not contain a valid
vector seed. The routine must be called
with a nonzero value of ISEED

(ARG NO.).

RTN_NAME :

2538-2073 (ARG NO. _) must be a
double precision whole number greater
than or equal to 1.0 and less than
2147483647.0.

RTN_NAME :

2538-2074 Performance can be
improved by using a larger work array.
For best performance, specify the
number of elements (ARG NO. _) in
the work array to be greater than or
equal to ().

RTN_NAME :

2538-2075 The data type parameter
(ARG NO. _) must be’S’,'D’, 'C’, or
'z

RTN_NAME

: 2538-2076 (ARG NO. _) must be

greater than or equal to () and smaller
than ().

RTN_NAME

: 2538-2077 The matrix is singular.

Column (_) is empty in the matrix
specified by (ARG NO.),
(ARG NO.), and (ARG NO.).

RTN_NAME

: 2538-2078 The matrix is singular. Row

(1) is empty in the matrix specified by
(ARG NO.), (ARG NO.), and
(ARG NO.).

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

RTN_NAME : 2538-2079 The matrix, specified by RTN_NAME : 2538-2085 The number of steps after
(ARG NO.), (ARG NO.), and which the generalized minimum
(ARG NO.), contains at least one residual method is restarted, element ()
duplicate column index in row (). in (ARG NO.), must be greater than 0.
RTN_NAME : 2538-2080 Element () in (ARG NO.) RTN_NAME : 2538-2086 The acceleration parameter,
must be greater than or equal to (U) and element () in (ARG NO. _), must be
less than or equal to (). greater than 0 when using the SSOR
preconditioner.
or
Element () in RTN_NAME : 2538-2087 STOR (ARG NO.), which
(ARG NO. _) must be s ..
specifies the storage variation used to
greater than or equal to () and represent the input sparse matrix, must
less than or equal to be 'G’. 'L’ or U’
(ARG NO.). Y)
or RTN_NAME : 2538-2088 INIT (ARG NO. _), which
Element () in specifies the type of computation to be
(ARG NO. _) must be performed, must be 'I" or ’S’.
greater than or equal to element
() and less than or equal RTN_NAME : 2538-2089 Element () in (ARG NO. _)
to ().
must be greater than or equal to ().
or
Element () in or .
(ARG NO.) must be Element () in
zero or must be greater than or (ARG NO.) must be
equal to (). greater than or equal to
element ().
RTN_NAME : 2538-2081 Element () in (ARG NO.)
must be less than or equal to (). RTN_NAME : 2.538-2(-)90 For lfavel (T)' the number of
grid points for dimension (L) must be an
odd number greater than 1.
RTN_NAME : 2538-2082 Element (_) in (ARG NO.)
may cause incorrect or misleading 3 :
results. A nonzero number with RTN_NAME : 2538-2091 Since tl}e mesh spacing
absolute value less than or equal to 1 is (ARG NO.) here is n.ot constant, the
recommended. second order prolongation method must
be used. That is, element () of
or (ARG NO.) must be ().
Element () in
(ARG NO.) may cause RTN_NAME : 2538-2092 The index into
incorrect or misleading results. (ARG NO.) is out of range. This
A positive number less than or index is element (_,) of (ARG NO.).
equal to 1 is recommended.
RTN_NAME : 2538-2093 The index into
RTN_NAME : 2538-2083 The pivot tolerance (element (ARG NO.) is out of range. This
() in (ARG NO. _)) may cause incorrect index is element (_,_,) of (ARG NO.).
or misleading results. A number greater
than or equal to 0 and less than or equal))
to 1 is recommended. RTN_NAME : 2538-2094 For dl.menswn (1) on level
(), the mesh spacing must be changed
to a positive value.
RTN_NAME : 2538-2084 The dimension
(ARG NO.) of the array (ARG NO.) 3
RTN_NAME : 2538-2095 Excess space in

must be greater than or equal to ().

(ARG NO. _) has been decreased and
may be inadequate. To avoid this,
specify the coarse level matrix as the
final item in this argument.

Chapter 7. Handling Problems 183

RTN_NAME : 2538-2096 For level (_), the matrix
type, solver, and preconditioner are
incompatible.

RTN_NAME : 2538-2097 The solver requested for
level (1) requires a square matrix.
Elements (_,_,) and (_,_,)) in
(ARG NO.) must be equal.

RTN_NAME : 2538-2098 Element (_,_) of
(ARG NO.) must be greater than or
equal to ().

RTN_NAME : 2538-2099 End of input argument error
reporting. For more information, refer to
Engineering and Scientific Subroutine
Library Guide and Reference
(SA22-7904).

Note: There are more input-argument error messages listed in [“Input-Argument Error]

Messages(2200-2299)” on page 186|

Computational Error Messages(2100-2199)

RTN_NAME : 2538-2100 The computed index of a
vector is out of the range (1) to ().

RTN_NAME : 2538-2101 Eigenvalue () failed to
converge after () iterations.

RTN_NAME : 2538-2102 Eigenvector () failed to
converge after () iterations.

RTN_NAME : 2538-2110 The maximum allowed
number of iterations, element number
() of (ARG NO.), were performed
but the iterative process did not
converge to a solution according to the
stopping procedure.

RTN_NAME : 2538-2103 The matrix (ARG NO. _) is
singular. Zero diagonal element (_) has
been detected.

RTN_NAME : 2538-2111 The factorization matrix
(ARG NO.) is not consistent with the
sparse matrix specified by (ARG NO.)
and (ARG NO.).

RTN_NAME : 2538-2104 The matrix (ARG NO. _) is
not positive definite. The last diagonal
element with nonpositive value is ().

RTN_NAME : 2538-2112 The incomplete factorization
of the sparse matrix specified by
(ARG NO.) and (ARG NO.)) is not
stable.

RTN_NAME : 2538-2105 Factorization failed due to
near zero pivot number ().

RTN_NAME : 2538-2106 Vector boundary
misalignment detected in ESSL scalar
library.

RTN_NAME : 2538-2113 Unexpected nonzero vector
mask detected in ESSL scalar routine.
Contact your IBM Service
Representative.

RTN_NAME : 2538-2114 Eigenvalue (_) failed to
converge after () iterations.

RTN_NAME : 2538-2107 Singular value () failed to
converge after () iterations.

RTN_NAME : 2538-2108 The matrix specified by
(ARG NO.) and (ARG NO. _) is not
definite because the diagonal is not of
constant sign.

RTN_NAME : 2538-2115 The matrix (ARG NO.) is
not positive definite. The leading minor
of order (1) has a nonpositive
determinant.

RTN_NAME : 2538-2109 The matrix specified by
(ARG NO.) and (ARG NO.)) is not
definite and the iterative process is
stopped at iteration number ().

RTN_NAME : 2538-2116 The matrix specified by
(ARG NO.) and (ARG NO.) is
singular.

RTN_NAME : 2538-2117 The pivot element in
column () is smaller than the first
element in (ARG NO.).

184 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

RTN_NAME : 2538-2118 The pivot element in row ()
is smaller than the first element in
(ARG NO.).

RTN_NAME : 2538-2131 The matrix specified by
(ARG NO.), (ARG NO.), and
(ARG NO.) is singular.

RTN_NAME : 2538-2119 The storage space, specified
by (ARG NO.), is insufficient.

RTN_NAME : 2538-2120 The matrix is singular. The
last row processed in the matrix was
row ().

RTN_NAME : 2538-2121 The matrix is singular. the
last column processed was column ().

RTN_NAME : 2538-2122 The factorization failed. No
pivot element was found in the active
submatrix.

RTN_NAME : 2538-2123 Performance can be
improved by specifying a larger value
for (ARG NO.). () compressions were
performed.

RTN_NAME : 2538-2124 The data contained in
AUX1, (ARG NO. _), was computed for
a different algorithm.

RTN_NAME : 2538-2126 The pivot value at row () is
not acceptable based on pivot criteria
((ARG NO.) and (ARG NO.))). No
fixup was applicable to this pivot. The
matrix (ARG NO. _) may be singular or
not definite.

RTN_NAME : 2538-2127 The pivot value at row ()
was replaced with element () in
(ARG NO.). The matrix (ARG NO.)
may be singular or not definite.

RTN_NAME : 2538-2128 Internal ESSL error. contact
your IBM service representative.

RTN_NAME : 2538-2129 The matrix specified by
(ARG NO.), (ARG NO.), and
(ARG NO.) is not definite because
the diagonal is not of constant sign or
some diagonal element is zero.

RTN_NAME : 2538-2130 The incomplete factorization
of the sparse matrix specified by
(ARG NO.), (ARG NO.), and
(ARG NO. _) is not stable.

RTN_NAME : 2538-2132 Element () in (ARG NO.)
indicates that factorization was done on
a previous call. The data passed is not
the result of a prior valid factorization.

RTN_NAME : 2538-2133 An error occurred on level
() in the user-supplied subroutine
specified by (ARG NO.).

RTN_NAME : 2538-2134 The data contained in
(ARG NO.) is not consistent with the
sparse matrix specified by
(ARG NO.), (ARG NO.), and
(ARG NO.).

RTN_NAME : 2538-2135 For level (), loss of
orthogonality occurred in a minimum
residual solver because the input matrix
(element (_,_) of (ARG NO.)))is
inappropriate. Choose one of the other
non-symmetric solvers.

RTN_NAME : 2538-2136 For level (), the main
diagonal element for row () of a matrix
is 0.

RTN_NAME : 2538-2145 The input matrix
(ARG NO.) is singular. The first
diagonal element found to be exactly
zero was in column ().

RTN_NAME : 2538-2146 The input matrix
(ARG NO.) is singular. The first
diagonal element found to be exactly
zero was in column ().

RTN_NAME : 2538-2147 The matrix (ARG NO.) is
singular. Zero diagonal element (_) has
been detected.

RTN_NAME : 2538-2148 The matrix (ARG NO.) is
not positive definite. The leading minor
of order () has a nonpositive
determinant.

RTN_NAME : 2538-2149 Factorization failed due to
near zero pivot number ().

Chapter 7. Handling Problems 185

RTN_NAME : 2538-2150 The inverse of matrix
(ARG NO.)) could not be computed.
The first diagonal element of the
factored matrix found to be exactly zero
was in column ().

RTN_NAME : 2538-2151 The inverse of matrix
(ARG NO.)) could not be computed.
The first diagonal element of the
factored matrix found to be exactly zero
was in column ().

RTN_NAME : 2538-2199 End of computational error
reporting. For more information, refer to
Engineering and Scientific Subroutine
Library Guide and Reference
(SA22-7904).

Input-Argument Error Messages(2200-2299)

RTN_NAME : 2538-2200 The dimension
(ARG NO.)) of the array (ARG NO.)
must be greater than or equal to ().

RTN_NAME : 2538-2201 The number of elements
(ARG NO.) in a work array
(ARG NO.) must be zero, to indicate
dynamic allocation, minus one, to
indicate workspace query, or greater
than or equal to () if a work array is
being supplied.

Resource Error Messages(2400-2499)

RTN_NAME : 2538-2400 An internal buffer allocation

has failed due to insufficient memory.

Informational and Attention Error Messages(2600-2699)

RTN_NAME : 2538-2600 Performance may be
degraded due to limited buffer space
availability.

RTN_NAME : 2538-2601 Execution terminating due
to error count for error number ()
Message summary: Message number -
Count

RTN_NAME : 2538-2602 User error corrective routine
entered. User corrective action taken.
Execution continuing.

RTN_NAME : 2538-2606 Serial execution is taking
place since the input array is equal to
the output array and either:

INC2X (ARG NO.)

is not equal to 2 times INC2Y
(ARG NO.) or

INC3X (ARG NO.)

is not equal to 2 times
INC3Y (ARG NO.).

RTN_NAME : 2538-2603 Standard corrective action
taken. Execution continuing.

RTN_NAME : 2538-2604 Execution terminating due
to error count for error number _.

RTN_NAME : 2538-2605 Message summary: _ - _

RTN_NAME : 2538-2607 Serial execution is taking
place since the input array is equal to
the output array and either:

INC2X (ARG NO.)
is not equal to INC2Y
(ARG NO.) or
INC3X (ARG NO.)
is not equal to INC3Y
(ARG NO.).

186 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

RTN_NAME : 2538-2608 Performance may be RTN_NAME : 2538-2609 Performance may be

improved by using a larger work array. improved by specifying a larger value
For best performance, specify the for (ARG NO. _). (1) compressions were
number of elements (ARG NO.) in performed.

the work array to be greater than or

equal to ().

Miscellaneous Error Messages(2700-2799)

RTN_NAME : 2538-2700 Internal ESSL error number
(). Contact your IBM service
representative.

RTN_NAME : 2538-2703 Internal ESSL error:
message number requested () is outside
of the valid range. Contact your IBM
service representative.

RTN_NAME : 2538-2799 Unable to locate message
number (). Please refer to the chapter
entitled "Using Error Handling” in the
ESSL Guide and Reference (SA22-7904)
for the full message text.

Chapter 7. Handling Problems 187

188 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Part 2. Reference Information

This part of the book is organized into ten areas, providing reference information
for coding the ESSL calling sequences. It is organized as follows:

* Linear Algebra Subprograms

* Matrix Operations

* Linear Algebraic Equations

* Eigensystem Analysis

* Fourier Transforms, Convolutions and Correlations, and Related Computations
 Sorting and Searching

¢ Interpolation

* Numerical Quadrature

* Random Number Generation

* Utilities

© Copyright IBM Corp. 1991, 2004 189

190 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 8. Linear Algebra Subprograms

The linear algebra subprograms, provided in four areas, are described in this

chapter.

Overview of the Linear Algebra Subprograms

This section describes the subprograms in each of the four linear algebra

subprogram areas:

* Vector-scalar linear algebra subprograms |
* Sparse vector-scalar linear algebra subprograms {

¢ Matrix-vector linear algebra subprograms (Table 37|

* Sparse matrix-vector linear algebra subprograms (

Notes:

Table 30)

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the

BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications

of the calling application program.

Vector-Scalar Linear Algebra Subprograms
The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference . The remainder of the
vector-scalar linear algebra subprograms are commonly used computations
provided for your applications. Both real and complex versions of the subprograms

are provided.

Table 35. List of Vector-Scalar Linear Algebra Subprograms

Short- Precision

Long- Precision

Descriptive Name Subprogram Subprogram Page

Position of the First or Last Occurrence of the Vector Element ISAMAX' IDAMAX™ @

Having the Largest Magnitude ICAMAX™ IZAMAX™

Position of the First or Last Occurrence of the Vector Element ISAMIN* IDAMIN' @

Having Minimum Absolute Value

Position of the First or Last Occurrence of the Vector Element ISMAX* IDMAX* @

Having Maximum Value

Position of the First or Last Occurrence of the Vector Element ISMIN* IDMIN* @

Having Minimum Value

Sum of the Magnitudes of the Elements in a Vector SASUM™ DASUM*"™ @
SCASUM*™ DZASUM*™

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the | SAXPY" DAXPY"

Vector Y CAXPY" ZAXPY"

Copy a Vector SCOPY" DCOPY"
CcCcorY” ZCOPY"

© Copyright IBM Corp. 1991, 2004

191

Table 35. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short- Precision |Long- Precision

Descriptive Name Subprogram Subprogram Page

Dot Product of Two Vectors SDOT™ DDOT*
CDOTU™ ZDOTU™
CDOTC™ ZDOTC™

Compute SAXPY or DAXPY N Times SNAXPY DNAXPY

Compute Special Dot Products N Times SNDOT DNDOT

Euclidean Length of a Vector with Scaling of Input to Avoid SNRM2™ DNRM2"

Destructive Underflow and Overflow SCNRM2™ DZNRM2"™

Euclidean Length of a Vector with No Scaling of Input SNORM?2* DNORM?2*
CNORM2* ZNORM2*

Construct a Givens Plane Rotation SROTG" DROTG” 238
CROTG" ZROTG”

Apply a Plane Rotation SROT" DROT"
CROT" ZROT"
CSROT" ZDROT"

Multiply a Vector X by a Scalar and Store in the Vector X SSCAL" DSCAL" E
CSCAL” ZSCAL’
CSSCAL" ZDSCAL”

Interchange the Elements of Two Vectors SSWAP" DSWAP"
CSWAP” ZSWAP"

Add a Vector X to a Vector Y and Store in a Vector Z SVEA DVEA
CVEA ZVEA

Subtract a Vector Y from a Vector X and Store in a Vector Z SVES DVES
CVES ZVES

Multiply a Vector X by a Vector Y and Store in a Vector Z SVEM DVEM @
CVEM ZVEM

Multiply a Vector X by a Scalar and Store in a Vector Y SYAX DYAX @
CYAX ZYAX
CSYAX ZDYAX

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a |SZAXPY DZAXPY m

Vector Z CZAXPY Z27ZAXPY

" This subprogram is invoked as a function in a Fortran program.

" Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms

The sparse vector-scalar linear algebra subprograms operate on sparse vectors
using optimized storage techniques; that is, only the nonzero elements of the
vector are stored. These subprograms provide similar functions to the vector-scalar
subprograms. These subprograms represent a subset of the sparse extensions to the
Level 1 BLAS described in reference . Both real and complex versions of the
subprograms are provided.

Table 36. List of Sparse Vector-Scalar Linear Algebra Subprograms

Short- Precision |Long- Precision

Descriptive Name Subprogram Subprogram Page
Scatter the Elements of a Sparse Vector X in Compressed-Vector SSCTR DSCTR
Storage Mode into Specified Elements of a Sparse Vector Y in CSCTR ZSCTR

Full-Vector Storage Mode

192 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Table 36. List of Sparse Vector-Scalar Linear Algebra Subprograms (continued)

Short- Precision

Long- Precision

Descriptive Name Subprogram Subprogram Page
Gather Specified Elements of a Sparse Vector Y in Full-Vector SGTHR DGTHR 78
Storage Mode into a Sparse Vector X in Compressed-Vector Storage | CGTHR ZGTHR
Mode
Gather Specified Elements of a Sparse Vector Y in Full-Vector SGTHRZ DGTHRZ
Mode into a Sparse Vector X in Compressed-Vector Mode, and CGTHRZ ZGTHRZ
Zero the Same Specified Elements of Y
Multiply a Sparse Vector X in Compressed-Vector Storage Mode by | SAXPYI DAXPYI D34
a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, CAXPYI ZAXPYI
and Store in the Vector Y
Dot Product of a Sparse Vector X in Compressed-Vector Storage SDOTT" DDOTI*
Mode and a Sparse Vector Y in Full-Vector Storage Mode CDOTCT' ZDOTCI*

CDOTUI* ZDOTUT!

T This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms

The matrix-vector linear algebra subprograms operate on a higher-level data
structure—matrix-vector rather than vector-scalar—using optimized algorithms to
improve performance. These subprograms represent a subset of the Level 2 BLAS
described in references and . Both real and complex versions of the

subprograms are provided.

Table 37. List of Matrix-Vector Linear Algebra Subprograms

Short- Precision

Long- Precision

Descriptive Name Subprogram Subprogram Page
Matrix-Vector Product for a General Matrix, Its Transpose, or Its SGEMV™ DGEMV™ @
Conjugate Transpose CGEMV™ ZGEMV™

SGEMXS DGEMXS

SGEMTXS DGEMTXS
Rank-One Update of a General Matrix SGER™ DGER™ @

CGERU™ ZGERU™

CGERC™ ZGERC™
Matrix-Vector Product for a Real Symmetric or Complex Hermitian | SSPMV™ DSPMV™ 310
Matrix CHPMV™ ZHPMV™

SSYMV™ DSYMV™

CHEMV™ ZHEMV™

SSLMXS DSLMXS
Rank-One Update of a Real Symmetric or Complex Hermitian SSPR™ DSPR™ 318
Matrix CHPR™ ZHPR™

SSYR™ DSYR™

CHER™ ZHER™

SSLR18 DSLR1S
Rank-Two Update of a Real Symmetric or Complex Hermitian SSPR2™ DSPR2*
Matrix CHPR2™ ZHPR2™

SSYR2™ DSYR2™

CHER2™ ZHER2™

SSLR2S DSLR2S
Matrix-Vector Product for a General Band Matrix, Its Transpose, or | SGBMV™ DGBMV™ 334
Its Conjugate Transpose CGBMV™ ZGBMV™

Chapter 8. Linear Algebra Subprograms

193

Table 37. List of Matrix-Vector Linear Algebra Subprograms (continued)

Short- Precision |Long- Precision
Descriptive Name Subprogram Subprogram Page
Matrix-Vector Product for a Real Symmetric or Complex Hermitian | SSBMV™ DSBMV™
Band Matrix CHBMV™ ZHBMV™
Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its | STRMV™ DTRMV™ B46
Conjugate Transpose CTRMV™ ZTRMV™

STPMV™ DTPMV™

CTPMV™ ZTPMV™
Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, |STBMV™ DTBMV™
or Its Conjugate Transpose CTBMV™ ZTBMV™

~ Level 2 BLAS

S These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Sparse Matrix-Vector Linear Algebra Subprograms

The sparse matrix-vector linear algebra subprograms operate on sparse matrices
using optimized storage techniques; that is, only the nonzero elements of the
vector are stored. These subprograms provide similar functions to the
matrix-vector subprograms.

Table 38. List of Sparse Matrix-Vector Linear Algebra Subprograms

Long- Precision
Descriptive Name Subprogram Page
Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode | DSMMX 358
Transpose a Sparse Matrix in Compressed-Matrix Storage Mode DSMTM 361
Matrix-Vector Product for a Sparse Matrix or Its Transpose in DSDMX 365
Compressed-Diagonal Storage Mode

Use Considerations

If your program uses a sparse matrix stored by rows, as defined in
[“Storage-by-Rows” on page 96 you should first convert your sparse matrix to
compressed-matrix storage mode by using the subroutine DSRSM on page
DSRSM converts a matrix to compressed-matrix storage mode. To convert your
sparse matrix to compressed-diagonal storage mode, you need to perform this
conversion in your application program before calling the ESSL subroutine.

Performance and Accuracy Considerations

1. In ESSL, the SSCAL and DSCAL subroutines provide the fastest way to zero
out contiguous (stride 1) arrays, by specifying incx = 1 and a = 0.

2. Where possible, use the matrix-vector linear algebra subprograms, rather than
the vector-scalar, to optimize performance. Because data is presented in
matrices rather than vectors, multiple operations can be performed by a single
ESSL subprogram.

3. Where possible, use subprograms that do multiple computations, such as
SNDOT and SNAXPY, rather than individual computations, such as SDOT and
SAXPY. You get better performance.

194 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

4. Many of the short-precision subprograms provide increased accuracy by
accumulating results in long precision. This is noted in the functional
description of each subprogram.

5. In some of the subprograms, because implementation techniques vary to
optimize performance, accuracy of the results may vary for different array
sizes. In the subprograms in which this occurs, a general description of the
implementation techniques is given in the functional description for each
subprogram.

6. To select the sparse matrix subroutine that gives you the best performance, you
must consider the layout of the data in your matrix. From this, you can
determine the most efficient storage mode for your sparse matrix. ESSL
provides two versions of each of its sparse matrix-vector subroutines that you
can use. One operates on sparse matrices stored in compressed-matrix storage
mode, and the other operates on sparse matrices stored in compressed-diagonal

storage mode. These two storage modes are described in|‘Sparse Matrix” onl
‘

Compressed-matrix storage mode is generally applicable. It should be used
when each row of the matrix contains approximately the same number of
nonzero elements. However, if the matrix has a special form—that is, where the
nonzero elements are concentrated along a few diagonals—compressed-
diagonal storage mode gives improved performance.

7. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should]
You Know About?” on page 44/

Chapter 8. Linear Algebra Subprograms 195

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

Vector-Scalar Subprograms

This section contains the vector-scalar subprogram descriptions.

196 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

ISAMAX, IDAMAX, ICAMAX, and IZAMAX — Position of the First or
Last Occurrence of the Vector Element Having the Largest Magnitude

Purpose

ISAMAX and IDAMAX find the position i of the first or last occurrence of a vector
element having the maximum absolute value. ICAMAX and IZAMAX find the
position i of the first or last occurrence of a vector element having the largest sum
of the absolute values of the real and imaginary parts of the vector elements.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 39. Data Types

x Subprogram
Short-precision real ISAMAX
Long-precision real IDAMAX

Short-precision complex ICAMAX

Long-precision complex IZAMAX

Syntax

Fortran ISAMAX | IDAMAX | ICAMAX | IZAMAX (n, x, incx)

C and C++ isamax | idamax | icamax | izamax (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.

x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in [Table 39

incx is the stride for vector x.

Specified as: a fullword integer. It can have any value.

On Return

Function value
is the position i of the element in the array, where:
If incx = 0, i is the position of the first occurrence.
If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 = i = n.

Notes

Declare the ISAMAX, IDAMAX, ICAMAX, and IZAMAX functions in your
program as returning a fullword integer value.

Chapter 8. Linear Algebra Subprograms 197

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

Function

ICAMAX and IZAMAX find the first element x;, where k is defined as the smallest
index k, such that:

lagl+ 101 = max{la;|+1b;| for j =1, n}
where x, = (a, b))

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx 2 0,1 = k
For incx < 0, i = n—k+1

See reference . The result is returned as a function value. If # is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX

IMAX = ISAMAX(9 , X, 1)

X = (1.0, 2.0, 7.0, -8.0, -5.0, -10.0, -9.0, 10.0, 6.0)
Output:

IMAX = 6

Example 2

This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX

IMAX = ISAMAX(5, X, 2)

X = (1.0, . ,7.0, ., -5.0, ., -9.0, ., 6.0)
Output:
IMAX = 4

198 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

Example 3
This example shows a vector, x, with a stride of 0.

Function Reference and Input:
N X INCX

IMAX = ISAMAX(9 , X, 0)

X = (1.0, .y e ey ey e ey s)
Output:

IMAX =1

Example 4

This example shows a vector, x, with a negative stride. Processing begins at
element X(15), which is 2.0.

Function Reference and Input:
N X INCX

IMAX = ISAMAX(8 , X , -2)

X = (3.0, ., 5.0, ., -8.0, .,6.0, .,8.0, .,
4.0, ., 8.0, ., 2.0)

Output:

IMAX = 7

Example 5

This example shows a vector, x, containing complex numbers and having a stride
of 1.

Function Reference and Input:
N X INCX

IMAX = ICAMAX(5 , X, 1)

X = ((9.0, 2.0) , (7.0, -8.0) , (-5.0 , -10.0) , (-4.0 , 10.0),
(6.0 , 3.0))

Output:

IMAX = 2

Chapter 8. Linear Algebra Subprograms 199

ISAMIN and IDAMIN

ISAMIN and IDAMIN — Position of the First or Last Occurrence of the
Vector Element Having Minimum Absolute Value

Purpose

These subprograms find the position i of the first or last occurrence of a vector
element having the minimum absolute value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 40. Data Types

x Subprogram
Short-precision real ISAMIN
Long-precision real IDAMIN
Syntax
Fortran ISAMIN | IDAMIN (n, x, incx)
C and C++ isamin | idamin (n, x, incx);
On Entry
n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.
x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx|, containing numbers of the data
type indicated in [Table 40
incx is the stride for vector x.

Specified as: a fullword integer. It can have any value.

On Return

Function value
is the position i of the element in the array, where:
If incx = 0, i is the position of the first occurrence.
If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 = i = n.

Notes

Declare the ISAMIN and IDAMIN functions in your program as returning a
fullword integer value.

Function

These subprograms find the first element x;, where k is defined as the smallest
index k, such that:

x| = min{lle for j = 1, n}

200 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISAMIN and IDAMIN

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx

=0, 1
For incx < 0, i = n—k+1

See reference . The result is returned as a function value. If #n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX

IMIN = ISAMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)
Output:

IMIN = 3

Example 2

This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX

||
IMIN = ISAMIN(4 , X , 2)

X = (-3.0, ., -9.0, . , -8.0, . , 3.0)
Output:

IMIN =1

Example 3

This example shows a vector, x, with a positive stride and two elements with the
minimum absolute value. The position of the first occurrence is returned.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 201

ISAMIN and IDAMIN

N X INCX

|
IMIN = ISAMIN(4 , X , 2)

X = (2.0, ., -1.0, . , 4.0, . , 1.0)
Output:

IMIN = 2

Example 4

This example shows a vector, x, with a negative stride and two elements with the
minimum absolute value. The position of the last occurrence is returned.
Processing begins at element X(7), which is 1.0.

Function Reference and Input:
N X INCX

IMIN = ISAMIN(4 , X , -2)

X = (2.0, ., -l.0, ., 4.0, ., 1.0)
Output:
IMIN = 4

202 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISMAX and IDMAX

ISMAX and IDMAX — Position of the First or Last Occurrence of the
Vector Element Having the Maximum Value

Purpose

These subprograms find the position i of the first or last occurrence of a vector
element having the maximum value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 41. Data Types

x Subprogram
Short-precision real ISMAX
Long-precision real IDMAX
Syntax
Fortran ISMAX | IDMAX (n, x, incx)
C and C++ ismax | idmax (n, x, incx);

Notes

On Entry

n

incx

On Return

Function value

is the number of elements in vector x. Specified as: a fullword
integer; n = 0.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx|, containing numbers of the data
type indicated in [Table 41

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the position i of the element in the array, where:
If incx = 0, i is the position of the first occurrence.
If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 = i = n.

Declare the ISMAX and IDMAX functions in your program as returning a fullword

integer value.

Function

These subprograms find the first element x;, where k is defined as the smallest
index k, such that:

X = max{x]» for j = 1, n}

Chapter 8. Linear Algebra Subprograms 203

ISMAX and IDMAX

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx

=0, 1
For incx < 0, i = n—k+1

See reference . The result is returned as a function value. If #n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX

IMAX = ISMAX(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 8.0)
Output:

IMAX = 4

Example 2

This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX

IMAX = ISMAX(4 , X , 2)

X = (-3.0, ., 9.0, ., -8.0, . , 3.0)
Output:

IMAX = 2

Example 3

This example shows a vector, x, with a positive stride and two elements with the
maximum value. The position of the first occurrence is returned.

Function Reference and Input:

204 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISMAX and IDMAX

N X INCX
IMAX = TSMAX(i , L , i)

X = (2.0, ., 4.0, ., 4.0, ., 1.0)
Output:

IMAX =2

Example 4

This example shows a vector, x, with a negative stride and two elements with the
maximum value. The position of the last occurrence is returned. Processing begins
at element X(7), which is 1.0.

Function Reference and Input:
N X INCX

IMAX = ISMAX(4 , X , -2)

X = (2.0, ., 4.0, ., 4.0, ., 1.0)
Output:
IMAX = 3

Chapter 8. Linear Algebra Subprograms 205

ISMIN and IDMIN

ISMIN and IDMIN — Position of the First or Last Occurrence
of the Vector Element Having Minimum Value

Purpose

These subprograms find the position i of the first or last occurrence of a vector
element having the minimum value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 42. Data Types

x Subprogram
Short-precision real ISMIN
Long-precision real IDMIN
Syntax
Fortran ISMIN | IDMIN (n, x, incx)
C and C++ ismin | idmin (n, x, incx);
On Entry
n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.
x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx|, containing numbers of the data
type indicated in [Table 42
incx is the stride for vector x.

Specified as: a fullword integer. It can have any value.

On Return

Function value
is the position i of the element in the array, where:
If incx = 0, i is the position of the first occurrence.
If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 = i = n.

Notes

Declare the ISMIN and IDMIN functions in your program as returning a fullword
integer value.

Function

These subprograms find the first element x;, where k is defined as the smallest
index k, such that:

X = min{xj for j = 1, n}

206 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ISMIN and IDMIN

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx

=0, 1
For incx < 0, i = n—k+1

See reference . The result is returned as a function value. If #n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX

IMIN = ISMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)
Output:

IMIN = 3

Example 2

This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX

|
IMIN = ISMIN(4 , X , 2)

X = (-3.0, ., -9.0, . , -8.0, . , 3.0)
Output:

IMIN = 2

Example 3

This example shows a vector, x, with a positive stride and two elements with the
minimum value. The position of the first occurrence is returned. Processing begins
at element X(7), which is 1.0.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 207

ISMIN and IDMIN

N X INCX
IMIN = ISMIN(lll , >|< , i)

X = (2.0, ., 1.0, . , 4.0, . , 1.0)
Output:

IMIN = 2

Example 4

This example shows a vector, x, with a negative stride and two elements with the
minimum value. The position of the last occurrence is returned. Processing begins
at element X(7), which is 1.0.

Function Reference and Input:
N X INCX

IMIN = ISMIN(4 , X , -2)

X = (2.0, ., 1.0, ., 4.0, ., 1.0)
Output:
IMIN = 4

208 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SASUM, DASUM, SCASUM, and DZASUM

SASUM, DASUM, SCASUM, and DZASUM — Sum of the Magnitudes of
the Elements in a Vector

Purpose

SASUM and DASUM compute the sum of the absolute values of the elements in
vector x. SCASUM and DZASUM compute the sum of the absolute values of the
real and imaginary parts of the elements in vector x.

Table 43. Data Types

x Result Subprogram
Short-precision real Short-precision real SASUM
Long-precision real Long-precision real DASUM
Short-precision complex Short-precision real SCASUM
Long-precision complex Long-precision real DZASUM
Syntax
Fortran SASUM | DASUM | SCASUM | DZASUM (n, x, incx)
C and C++ sasum | dasum | scasum | dzasum (n, x, incx);
On Entry
n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.
x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in
incx is the stride for vector x.

Specified as: a fullword integer. It can have any value.

On Return

Function value is the result of the summation. Returned as: a number of the data

type indicated in [Table 43

Notes
Declare this function in your program as returning a value of the type indicated in

[Table 43

Function

SASUM and DASUM compute the sum of the absolute values of the elements of x,
which is expressed as follows:

n
D] = |+)+ ||
i=1

Chapter 8. Linear Algebra Subprograms 209

SASUM, DASUM, SCASUM, and DZASUM

SCASUM and DZASUM compute the sum of the absolute values of the real and
imaginary parts of the elements of x, which is expressed as follows:

2 (el + [ol) = (] + [1]) + (o] + [eal) + -+ (] + [o.])
i=1
where x; =(a;,b;)

See reference . The result is returned as a function value. If # is 0, then 0.0 is
returned as the value of the function. For SASUM and SCASUM, intermediate
results are accumulated in long precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX

SUMM = SASUM(7 , X , 1)

X = (1.0, -3.0, -6.0, 7.0, 5.0, 2.0, -4.0)
Output:

SUMM = 28.0

Example 2

This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX

SUMM = SASUM(4 , X , 2)

X = (1.0, ., -6.0, ., 5.0, ., -4.0)
Output:

SUMM = 16.0

Example 3

This example shows a vector, x, with negative stride. Processing begins at element
X(7), which is —4.0.

Function Reference and Input:

210 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SASUM, DASUM, SCASUM, and DZASUM

N X INCX
SUMM = SASUM(i , L , -i)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)
Output:

SUMM = 16.0

Example 4

This example shows a vector, x, with a stride of 0. The result in SUMM is nx;.

Function Reference and Input:
N X INCX

||
SUMM = SASUM(7 , X , 0)

X = (220, ., o, e e s)
Output:

SUMM = 14.0

Example 5

This example shows a vector, x, containing complex numbers and having a stride
of 1.

Function Reference and Input:
N X INCX

SUMM = SCASUM(5 , X , 1)

X = ((1.e, 2.0), (-3.0, 4.0), (5.0, -6.0), (-7.0, -8.0),
(9.0, 10.0))

Output:

SUMM = 55.0

Chapter 8. Linear Algebra Subprograms 211

SAXPY, DAXPY, CAXPY, and ZAXPY

SAXPY, DAXPY, CAXPY, and ZAXPY — Multiply a Vector X by a Scalar,
Add to a Vector Y, and Store in the Vector Y

Purpose

Yy < y+ox

These subprograms perform the following computation, using the scalar « and
vectors x and y:

Table 44. Data Types

alpha, x, y Subprogram
Short-precision real SAXPY
Long-precision real DAXPY
Short-precision complex CAXPY
Long-precision complex ZAXPY
Syntax
Fortran CALL SAXPY | DAXPY | CAXPY | ZAXPY (n, alpha, x, incx, y, incy)
C and C++ saxpy | daxpy | caxpy | zaxpy (n, alpha, x, incx, y, incy);

Notes

On Entry

n

alpha

incx

incy

On Return
Y

is the number of elements in vectors x and y.

Specified as: a fullword integer; n = 0.

is the scalar alpha.

Specified as: a number of the data type indicated in [Table 44

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1)lincx |, containing numbers of the data
type indicated in [Table 44

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincy |, containing numbers of the data
type indicated in [Table 44

is the stride for vector y.

Specified as: a fullword integer. It can have any value.

is the vector y, containing the results of the computation y-+ox.
Returned as: a one-dimensional array, containing numbers of the

data type indicated in [Table 44}

1. If you specify the same vector for x and y, incx and incy must be equal;
otherwise, results are unpredictable.

212 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SAXPY, DAXPY, CAXPY, and ZAXPY

2. If you specify different vectors for x and y, they must have no common
elements; otherwise, results are unpredictable. See|“Concepts” on page 55/

Function
The computation is expressed as follows:

V1 M Xy

Yn Yn Xn
See reference . If alpha or n is zero, no computation is performed. For CAXPY,
intermediate results are accumulated in long precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SAXPY(5,2.0 , X, 1 ,Y,2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (1.0, ., 1.0, ., 1.0, . , 1.0, . , 1.0)
Output:

Y = (3.0, ., 5.0, .,7.0, .,9.0, ., 11.0)
Example 2

This example shows vectors x and y having strides of opposite signs. For y, which
has negative stride, processing begins at element Y (5), which is 1.0.

Call Statement and Input:

N ALPHA X INCX Y
[
CALL SAXPY(5 , 2.0 , X , 1 , Y, -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Output:

Y = (15.0, 12.0, 9.0, 6.0, 3.0)

Chapter 8. Linear Algebra Subprograms 213

SAXPY, DAXPY, CAXPY, and ZAXPY

Example 3
This example shows a vector, x, with 0 stride. Vector x is treated like a vector of
length n, all of whose elements are the same as the single element in x.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SAXPY(5,2.0 ,X,0 ,Y,1)

X = (1.0)

Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Output:

Y = (7.0, 6.0, 5.0, 4.0, 3.0)
Example 4

This example shows how SAXPY can be used to compute a scalar value. In this
case, vectors x and y contain scalar values and the strides for both vectors are 0.
The number of elements to be processed, 7, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SAXPY(1 ,2.0 ,X,0 ,Y,0)

X = (1.0)
Y = (5.0)
Output:

Y = (7.0)
Example 5

This example shows how to use CAXPY, where vectors x and y contain complex
numbers. In this case, vectors x and y have positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL CAXPY(3 ,ALPHA, X , 1 , Y ,2)

ALPHA = (2.0, 3.0)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

y = ((1.0, 1.0), . , (0.0, 2.0), ., (5.0, 4.0))
Output:

y = ((-3.0, 8.0), . , (4.0, 8.0), . , (-4.0, 23.0))

214 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SCOPY, DCOPY, CCOPY, and ZCOPY

SCOPY, DCOPY, CCOPY, and ZCOPY — Copy a Vector

Purpose

yex

These subprograms copy vector x to another vector, y:

Table 45. Data Types

X,y Subprogram
Short-precision real SCOPY
Long-precision real DCOPY
Short-precision complex Cccory
Long-precision complex ZCOPY
Syntax
Fortran CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, incx, y, incy)
C and C++ scopy | dcopy | ccopy | zcopy (n, x, incx, y, incy);

Notes

On Entry

n

incx

Yy
incy

On Return
Y

is the number of elements in vectors x and y.

Specified as: a fullword integer; n = 0.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in [Table 45

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

See

is the stride for vector y. Specified as: a fullword integer. It can
have any value.

is the vector y of length n. Returned as: a one-dimensional array of

(at least) length 1+(n-1) lincy |, containing numbers of the data
type indicated in [Table 45

1. If you specify the same vector for x and y, incx and incy must be equal;
otherwise, results are unpredictable.

2. If you specify different vectors for x and y, they must have no common
elements; otherwise, results are unpredictable. See|[“Concepts” on page 55/

Function

The copy is expressed as follows:

Chapter 8. Linear Algebra Subprograms 215

SCOPY, DCOPY, CCOPY, and ZCOPY

N X1

Yn Xn
See reference . If n is 0, no copy is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows input vector x and output vector y with positive strides.

Call Statement and Input:
N X INCX Y INCY

CALL SCOPY(5, X, 1 ,Y,2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:

Y = (1.0, ., 2.0, ., 3.0, ., 4.0, . , 5.0)
Example 2

This example shows how to obtain a reverse copy of the input vector x by
specifying strides with the same absolute value, but with opposite signs, for input
vector x and output vector y. For y, which has a negative stride, results are stored
beginning at element Y(5).

Call Statement and Input:
N X INCX Y INCY

CALL SCOPY(5, X, 1 ,Y,-1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Output:

Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Example 3

This example shows an input vector, x, with 0 stride. Vector x is treated like a
vector of length 7, all of whose elements are the same as the single element in x.
This is a technique for replicating an element of a vector.

Call Statement and Input:

216 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SCOPY, DCOPY, CCOPY, and ZCOPY

INCX Y INCY
CALL SCOPY(5 , X, 0 , Y, 1)

X

1}
—
—_
w
(=]
~

Output:
Y = (13.0, 13.0, 13.0, 13.0, 13.0)

Example 4
This example shows input vector x and output vector y, containing complex
numbers and having positive strides.

Call Statement and Input:
N X INCX Y INCY

CALL CCOPY(4 , X, 1 ,Y,2)

X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0))

Output:

Y = ((1.e, 1.0), ., (2.0, 2.0), . , (3.0, 3.0), .,
(4.0, 4.0))

Chapter 8. Linear Algebra Subprograms 217

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC — Dot Product of
Two Vectors

Purpose
SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of vectors x and y:

xey

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector
x with vector y:

Xey
Table 46. Data Types
x, Y, Result Subprogram
Short-precision real SDOT
Long-precision real DDOT
Short-precision complex CDOTU and CDOTC
Long-precision complex ZDOTU and ZDOTC
Syntax
Fortran SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (n, x, incx, y, incy)
C and C++ sdot | ddot | cdotu | zdotu | cdotc | zdotc (n, x, incx, y, incy);

On Entry

n is the number of elements in vectors x and y.
Specified as: a fullword integer; n = 0.

x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n-1) lincx |, containing numbers of the data
type indicated in [Table 46

incx is the stride for vector x.
Specified as: a fullword integer. It can have any value.

Y is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1)lincy |, containing numbers of the data
type indicated in [Table 46

incy is the stride for vector y.
Specified as: a fullword integer. It can have any value.

On Return

Function value is the result of the dot product computation. Returned as: a
number of the data type indicated in [Table 46,

218 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

Notes

Declare this function in your program as returning a value of the data type
indicated in [Table 46 on page 218|

Function

SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of the vectors x and
y, which is expressed as follows:

Xy =X Y +X),+ X, Y,

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector
x with vector y, which is expressed as follows:

Xey=XxXy+X),+..+tX,),

See reference . The result is returned as a function value. If n is 0, then zero is
returned as the value of the function.

For SDOT, CDOTU, and CDOTC, intermediate results are accumulated in long
precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows how to compute the dot product of two vectors, x and y,
having strides of 1.

Function Reference and Input:
N X INCX Y INCY

DOTT = SDOT(5, X, 1 , Y, 1)

X = (1.0, 2.0, -3.0, 4.0, 5.0)

Y = (9.0, 8.0, 7.0, -6.0, 5.0)

Output:

DOTT = (9.0 + 16.0 - 21.0 - 24.0 + 25.0) = 5.0
Example 2

This example shows how to compute the dot product of a vector, x, with a stride
of 1, and a vector, y, with a stride greater than 1.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 219

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

220

N X INCX Y INCY
A R
DOTT = SDOT(5 , X , 1 , Y ,2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)

Y = (9.0, ., 7.0, ., 5.0, ., -3.0, ., 1.0)
Output:

DOTT = (9.0 + 14.0 - 15.0 - 12.0 + 5.0) = 1.0
Example 3

This example shows how to compute the dot product of a vector, x, with a
negative stride, and a vector, y, with a stride greater than 1. For x, processing
begins at element X(5), which is 5.0.

Function Reference and Input:
N X INCX Y INCY

DOTT = SDOT(5 , X , -1 , Y ,2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)

Y = (9.0, ., 7.0, .,5.0,.,-3.0,.,1.0)
Output:

DOTT = (45.0 + 28.0 - 15.0 - 6.0 + 1.0) = 53.0
Example 4

This example shows how to compute the dot product of a vector, x, with a stride
of 0, and a vector, y, with a stride of 1. The result in DOTT is x;(y;+...4+,,).

Function Reference and Input:
N X INCX Y INCY

DOTT = SDOT(5 , X , 0 , Y, 1)

X = (1.0, ., ., .,.)

Y = (9.0, 8.0, 7.0, -6.0, 5.0)

Output:

DOTT = (1.0) x (9.0 + 8.0 + 7.0 - 6.0 + 5.0) = 23.0
Example 5

This example shows how to compute the dot product of two vectors, x and y, with
strides of 0. The result in DOTT is nxy;.

Function Reference and Input:
N X INCX Y INCY

DOTT = SDOT(5, X, 0 ,Y,0)

X = (1.0, ., ., .,.)

Y = (9.0, ., ., .,)
Output:

DOTT = (5) x (1.0) x (9.0) = 45.0

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

Example 6

This example shows how to compute the dot product of two vectors, x and y,
containing complex numbers, where x has a stride of 1, and y has a stride greater
than 1.

Function Reference and Input:
N X INCX Y INCY

||
DOTT = CDOTU(3 , X , 1 , Y, 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))
Output:
DOTT = ((10.0 - 18.0 - 10.0) - (18.0 - 20.0 + 6.0),
(9.0 + 15.0 - 5.0) + (20.0 + 24.0 + 12.0))
= (-22.0, 75.0)
Example 7

This example shows how to compute the dot product of the conjugate of a vector,
x, with vector y, both containing complex numbers, where x has a stride of 1, and
y has a stride greater than 1.

Function Reference and Input:
N X INCX Y INCY

DOTT = CDOTC(3 , X, 1 , Y, 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))

Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))
Output:

DOTT = ((10.0 - 18.0 - 10.0) + (18.0 - 20.0 + 6.0),

(9.0 + 15.0 - 5.0) - (20.0 + 24.0 + 12.0))
(-14.0, -37.0)

Chapter 8. Linear Algebra Subprograms 221

SNAXPY and DNAXPY

SNAXPY and DNAXPY — Compute SAXPY or DAXPY N Times

Purpose
These subprograms compute SAXPY or DAXPY, respectively, n times:

yiéyi+0(,-xi fori=1,n

where each «; is a scalar value, contained in the vector a, and each x; and y; are
vectors, contained in vectors (or matrices) x and y, respectively. For an explanation
of the SAXPY and DAXPY computations, see ['SAXPY, DAXPY, CAXPY, and|
ZAXPY — Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in thel
Vector Y” on page 212

Table 47. Data Types

axy Subprogram
Short-precision real SNAXPY
Long-precision real DNAXPY
Syntax
Fortran CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo)
C and C++ snaxpy | dnaxpy (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);

On Entry

n is the number of SAXPY or DAXPY computations to be performed
and the number of elements in vector a.

Specified as: a fullword integer; n = 0.

m is the number of elements in vectors x; and y; for each SAXPY or
DAXPY computation.

Specified as: a fullword integer; m = 0.

a is the vector a of length 1, containing the scalar values «;, used in
each computation of y; + ax;.

Specified as: a one-dimensional array of (at least) length

1+(n=1) lincal, containing numbers of the data type indicated in
Table 4

inca is the stride for vector a.
Specified as: a fullword integer. It can have any value.

x is the vector (or matrix) x, containing the x; vectors of length m,
used in the n computations of y; + o;x;. Specified as: a one- or
two-dimensional array of (at least) length (1+(n—1)(incxo0)) +

m=1) lincxil, containing numbers of the data type indicated in
Table 4

incxi is the stride for x in the inner loop—that is, the stride identifying
the elements in each vector x;.

Specified as: a fullword integer. It can have any value.

222 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Notes

SNAXPY and DNAXPY

incxo is the stride for x in the outer loop—that is, the stride identifying
each vector x; in x.

Specified as: a fullword integer; incxo = 0.

y is the vector (or matrix) y, containing the y; vectors of length m,
used in the n computations of y; + ax;. Specified as: a one- or
two-dimensional array of (at least) length (1+(n—1)(incyo)) +
(m=1) lincyil, containing numbers of the data type indicated in
[Table 47 on page 222

incyi is the stride for y in the inner loop—that is, the stride identifying
the elements in each vector y; in y. Specified as: a fullword integer;
incyi > 0 or incyi < 0.

incyo is the stride for y in the outer loop—that is, the stride identifying
each vector y; in y.

Specified as: a fullword integer; incyo = 0.

On Return

y is the vector (or matrix) y, containing the y; vectors of length m,
which contain the results of the n SAXPY or DAXPY computations,
y; + ax; for i = 1, n. Returned as: a one- or two-dimensional array,
containing numbers of the data type indicated in [Table 47 on page|

222,

Vector y must have no common elements with vector a or vector x; otherwise,
results are unpredictable. See [“Concepts” on page 55

Function

The SAXPY or DAXPY computations:

y ey +ax

are performed n times. This is expressed as follows:
Y €y + ax; fori=1,n

where each «; is a scalar value, contained in the vector a, and each x; and y; are
vectors, contained in vectors (or matrices) x and y, respectively.

Each computation of SAXPY or DAXPY on page uses the length of the x; and
y; vectors, m, for its input argument, n. It also uses the strides for the inner loop,
incxi and incyi, for its parameters incx and incy, respectively. See |”Function” on
for a description of how the computation is done.

The outer loop of the SNAXPY or DNAXPY computation uses the strides of inca,
incxo, and incyo to locate the elements in a and vectors in x and y for each i-th
computation. These are:

Fori =1, n:

Chapter 8. Linear Algebra Subprograms 223

SNAXPY and DNAXPY

&((i-1)inca+1) for inca = 0
O((i—n)inca+1) for inca < 0
X((i~1)incxo+1)
Y((i-1)incyo+1)

If m or n is 0, no computation is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<o0

m <0

incxo < 0

incyi = 0

incyo < 0

o0~

Examples

Example 1
This example shows vectors, contained in matrices, with the stride of the inner
loops incxi and incyi equal to 1.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO

CALL SNAXPY(3 , 4 ,A, 1 ,X, 1 ,10 ,Y, 1 , 5)

A = (3.0, 2.0, 4.0)
1.0 4.0 3.0
2.0 3.0 4.0
3.0 2.0 2.0
4.0 1.0 1.0
X =
4.0 1.0 3.0
3.0 2.0 4.0
Y = 2.0 3.0 2.0
1.0 4.0 1.0
Output:
7.0 9.0 15.0
9.0 8.0 20.0
Y = 11.0 7.0 10.0
13.0 6.0 5.0

224 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNAXPY and DNAXPY

Example 2
This example shows vectors, contained in matrices, with a stride of the inner loop
incxi greater than 1.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO

CALL SNAXPY(3 ,4,A,1 , X, 2 ,10 ,Y, 1 , 5)

A = (3.0, 2.0, 4.0)
1.0 4.0 3.0
2.0 3:0 4.0

X = |3.0 2.0 2.0
4.0 1:0 1.0
4.0 1.0 3.0
3.0 2.0 4.0

Y = 2.0 3.0 2.0
1.0 4.0 1.0

Output:

Y =(same as output Y in Example 1)

Example 3

This example shows vectors, contained in matrices, with a negative stride, incyi, for
the inner loop.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO

CALL SNAXPY(3 ,4,A,1 , X, 1 ,10 ,Y,-1 , 5)

A = (3.0, 2.0, 4.0)
1.0 4.0 3.0
2.0 3.0 4.0
3.0 2.0 2.0
4.0 1.0 1.0

X =
1.0 4.0 1.0
2.0 3.0 2.0

Chapter 8. Linear Algebra Subprograms 225

SNAXPY and DNAXPY

Y = |3.0 2.0 4.0
4.0 1.0 3.0
Output:
[13.0 6.0 5.0]
11.0 7.0 10.0
Y o= 9.0 8.0 20.0
7.0 9.0 15.0
Example 4

This example shows vectors, contained in matrices, with a negative stride, inca, for
vector a. For vector a, processing begins at element A(5), which is 3.0.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO

CALL SNAXPY(3,4 ,A,-2 , X, 1 ,10 ,Y, 1 , 5)

A = (4.0, ., 2.0, ., 3.0)
1.0 4.0 3.0
2.0 3.0 4.0
3.0 2.0 2.0
4.0 1.0 1.0
X =
4.0 1.0 3.0
3.0 2.0 4.0
Y = 2.0 3.0 2.0
1.0 4.0 1.0
Output:
Y =(same as output Y in Example 1)

226 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNDOT and DNDOT

SNDOT and DNDOT — Compute Special Dot Products N Times

These subprograms compute one of the following special dot products n times:

Purpose
S;i€XxX;*Y;
S; € =X Y;

S; € 54X Y;
§; €8x Y;
fori=1,n

Store positive dot product
Store negative dot product
Accumulate positive dot product
Accumulate negative dot product

where each s; is an element in vector s, and each x; and y; are vectors contained in
vectors (or matrices) x and y, respectively.

Table 48. Data Types

S, X,y Subprogram
Short-precision real SNDOT
Long-precision real DNDOT
Syntax
Fortran CALL SNDOT | DNDOT (n, m, s, incs, isw, X, incxi, incxo, y, incyi, incyo)
C and C++ sndot | dndot (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo);

On Entry

n

incs

isw

is the number of dot product computations to be performed and
the number of elements in the vector s.

Specified as: a fullword integer; n = 0.

is the number of elements in vectors x; and y; for each dot product
computation.

Specified as: a fullword integer; m = 0.

is the vector s, containing the 7 scalar values s; where: If isw = 1
or 2, s; is not used in the computation (no input value specified.)

If isw = 3 or 4, s; is used in the computation (input value
specified.)

Specified as: a one-dimensional array of (at least) length

1+(n-1) lincs|, containing numbers of the data type indicated in
Table 48

is the stride for vector s.
Specified as: a fullword integer; incs > 0 or incs < 0.

indicates the type of computation to perform, depending on the
value specified:

Ifi5w= 1, Siéxi‘yi
Ifisw =2, s;¢-x;°y;

Ifisw =3, s;¢s;+x;°y;

Chapter 8. Linear Algebra Subprograms 227

SNDOT and DNDOT

incxi

ncxo

incyi

incyo

On Return

S

Function

Ifisw = 4, s;

l<_s

i XY
where i = 1, n

Specified as: a fullword integer. Its value must be 1, 2, 3, or 4.

is the vector (or matrix) x, containing the x; vectors of length m,
used in the 1 dot product computations. Specified as: a one- or
two-dimensional array of (at least) length

(1+(n-1)(incxo))+(m—1) lincxi |, containing numbers of the data type
indicated in [Table 48 on page 227

is the stride for x in the inner loop—that is, the stride identifying
the elements in each vector x;.

Specified as: a fullword integer. It can have any value.

is the stride for x in the outer loop—that is, the stride identifying
each vector x; in x.

Specified as: a fullword integer; incxo = 0.

is the vector (or matrix) y, containing the y; vectors of length m,
used in the n dot product computations. Specified as: a one- or
two-dimensional array of (at least) length (1+(n—1)(incyo)) +
(m=1) lincyil, containing numbers of the data type indicated in
[Table 48 on page 227

is the stride for y in the inner loop—that is, the stride identifying
the elements in each vector y;.

Specified as: a fullword integer. It can have any value.

is the stride for y in the outer loop—that is, the stride identifying
each vector y; in y.

Specified as: a fullword integer; incyo = 0.

is the vector s of length n, containing the results of the n dot
product computations. The type of dot product computation
depends of the value specified for isw.

Ifisw =1 s;<x;°y;
Ifisw =2, s;¢-x;°y,

If isw

1l
»

S¢St XY

If isw

Il
-~

$;i€Si—Xi*Y;
where i = 1, n

Returned as: a one-dimensional array, containing numbers of the
data type indicated in [Table 48 on page 227}

The four possible computations that can be performed by these subprograms are:

S;i€Xx;*Y;
5 € XY

Store positive dot product
Store negative dot product

228 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNDOT and DNDOT

S; € 5+X; ° Y; Accumulate positive dot
product

S; € 5=X;*Y; Accumulate negative dot
product

fori=1,n

where each s; is a scalar element in the vector s of length #, and each of the n x;
and y; vectors of length m are contained in vectors (or matrices) x and y,
respectively. Each computation uses the dot product, which is expressed:

X;*Y; = U0 + Uplp + o + U0,

where u; and v; are elements of x; and y,, respectively. To find the elements for the
computation, it uses:

* The strides for the inner loops, incxi and incyi, to locate the elements in vectors
x; and y;, respectively.

* The strides for the outer loops, incs, incxo, and incyo, to locate the element s; in
vector s and the vectors x; and y; in vectors (or matrices) x and y, respectively.

If m or n is 0, no computation is performed. For SNDOT, intermediate results are
accumulated in long precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

m < 0

incs = 0

isw < 1orisw > 4

incxo < 0

incyo < 0

o0k W~

Examples

Example 1
This example shows a store positive dot product computation using vectors with
positive strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO

CALL SNDOT(3 , 4,S,1 ,1,Xx, 1 , 4 ,Y, 1 , 4)

|
|

[4.0 3.0 2.0]

OB wN
[cNoNoNO]
ool B Ww
[cNoNoNo]

Chapter 8. Linear Algebra Subprograms 229

SNDOT and DNDOT

Y = |3.0 2.0 1.0
2.0 1.0 4.0
1.0 4.0 3.0
Output:
S = (20.0, 36.0, 48.0)
Example 2

This example shows a store negative dot product computation using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X [INCXI INCXO Y INCYI INCYO

CALL SNDOT(3 ,4,S,-1 ,2,%X, 2 ,10 ,Y,-1 , 6)

1.0 2.0 3.0
2.0 3.0 4.0
X = |3.0 4.0 5.0
4.0 5.0 6.0
4.0 3.0 2.0
3.0 2.0 1.0
Y = |2.0 1.0 4.0
1.0 4.0 3.0
Output:
S = (-42.0, -34.0, -30.0)
Example 3

This example shows an accumulative positive dot product using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X [INCXI INCXO Y INCYI INCYO

CALL SNDOT(3 ,4,S,1 ,3,%Xx,-2 ,10 ,Y, 2 ,10)

S = (2.0, 5.0, 8.0)
1.0 2.0 3.0
2.0 3.0 4.0

X = 3.0 4.0 5.0
4.0 5.0 6.0

230 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNDOT and DNDOT

4.0 3.0 2.0 |

3.0 2.0 1.0
Y = |20 1.0 4.0

1.0 4.0 3.0
Output:
S = (32.0, 39.0, 50.0)
Example 4

This example shows an accumulative negative dot product using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO

CALL SNDOT(3 , 4 ,S,-1 ,4,X, 1 , 6 ,Y, 2 ,10)
S = (3.0, 6.0, 9.0)

[N oNoNo]
ol wWwN
[cNoRoNo]
oo B W
[cNoNoNo)

>
1
BN -

Output:
S = (-45.0, -30.0, -11.0)

Chapter 8. Linear Algebra Subprograms 231

SNRM2, DNRM2, SCNRM2, and DZNRM2

SNRM2, DNRM2, SCNRM2, and DZNRM2 — Euclidean Length of a
Vector with Scaling of Input to Avoid Destructive Underflow and
Overflow

Purpose

These subprograms compute the Euclidean length (I, norm) of vector x, with
scaling of input to avoid destructive underflow and overflow.

Table 49. Data Types

x Result Subprogram

Short-precision real Short-precision real SNRM2

Long-precision real Long-precision real DNRM2

Short-precision complex Short-precision real SCNRM2

Long-precision complex Long-precision real DZNRM2

Note: If there is a possibility that your data will cause the computation to
overflow or underflow, you should use these subroutines instead of
SNORM2, DNORM?2, CNORM2, and ZNORM?2, because the intermediate
computational results may exceed the maximum or minimum limits of the
machine. ["Notes” on page 235| explains how to estimate whether your data
will cause an overflow or underflow.
Syntax
Fortran SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx)
C and C++ snrm2 | dnrm2 | secnrm?2 | dznrm?2 (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.

x is the vector x of length 1, whose Euclidean length is to be
computed.
Specified as: a one-dimensional array of (at least) length
1+(n=1) lincx |, containing numbers of the data type indicated in
Table 49

incx is the stride for vector x.
Specified as: a fullword integer. It can have any value.

On Return

Function value is the Euclidean length (I, norm) of the vector x. Returned as: a
number of the data type indicated in [Table 49

Notes

Declare this function in your program as returning a value of the data type

indicated in|Table 49

232 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNRM2, DNRM2, SCNRM2, and DZNRM2

Function

The Euclidean length (I, norm) of vector x is expressed as follows, with scaling of
input to avoid destructive underflow and overflow:

Y+ +

See reference . The result is returned as the function value. If n is 0, then 0.0 is
returned as the value of the function.

For SNRM2 and SCNRM2, the sum of the squares of the absolute values of the
elements is accumulated in long precision. The square root of this long-precision
sum is then computed and, if necessary, is unscaled.

Although these subroutines eliminate destructive underflow, nondestructive
underflows may occur if the input elements differ greatly in magnitude. This does
not affect accuracy, but it degrades performance. The system default is to mask
underflow, which improves the performance of these subroutines.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Important Information About the Following Examples

Workstations use workstation architecture precisions: ANSI/IEEE 32-bit and 64-bit
binary floating-point format. The ranges are:

* For short-precision: 3.37x107°° to 3.37x10%®

* For long-precision: 1.67x107°% to 1.67x10°%

Examples

Example 1
This example shows a vector, x, whose elements must be scaled to prevent
overflow.

Function Reference and Input:
N X INCX

DNORM = DNRM2(6 , X , 1)

X = (0.68056D+200, 0.25521D+200, 0.34028D+200,
0.85071D+200, 0.25521D+200, 0.85071D+200)

Output:
DNORM = 0.1469D+201

Example 2
This example shows a vector, x, whose elements must be scaled to prevent
destructive underflow.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 233

SNRM2, DNRM2, SCNRM2, and DZNRM2

N INCX

»2)

(0.10795D-200, . , 0.10795D-200, . , 0.10795D-200,
., 0.10795D-200)

><—2><

|
DNORM = DNRM2(4 ,

>
U}

Output:
DNORM = 0.21590D-200

Example 3
This example shows a vector, x, with a stride of 0. The result in SNORM is:

[2
nx;

Function Reference and Input:
N X INCX

SNORM = SNRM2(4 , X , 0)

X = (4.0)
Output:

SNORM = 8.0
Example 4

This example shows a vector, x, containing complex numbers, and whose elements
must be scaled to prevent overflow.

Function Reference and Input:
N X INCX

DZNORM = DZNRM2(3 , X , 1)

X = ((0.68056D+200, 0.25521D+200), (0.34028D+200, 0.85071D+200),
(0.25521D+200, 0.85071D+200))

Output:
DZNORM = 0.1469D+201

Example 5
This example shows a vector, x, containing complex numbers, and whose elements
must be scaled to prevent destructive underflow.

Function Reference and Input:
N X INCX

DZNORM = DZNRM2(2 , X , 2)

X = ((0.10795D-200, 0.10795D-200), . ,
(0.10795D-200, 0.10795D-200))

Output:

DZNORM = 0.2159D-200

234 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNORM2, DNORM2, CNORM2, and ZNORM2

SNORM2, DNORM2, CNORM2, and ZNORM2 — Euclidean Length of a
Vector with No Scaling of Input

Purpose

These subprograms compute the euclidean length (I, norm) of vector x with no
scaling of input.

Table 50. Data Types

x Result Subprogram
Short-precision real Short-precision real SNORM2
Long-precision real Long-precision real DNORM2
Short-precision complex Short-precision real CNORM2
Long-precision complex Long-precision real ZNORM2
Syntax
Fortran SNORM2 | DNORM2 | CNORM2 | ZNORM2 (n, x, incx)
C and C++ snorm2 | dnorm2 | cnorm2 | znorm?2 (n, x, incx);
On Entry
n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.
x is the vector x of length 1, whose euclidean length is to be
computed.

Specified as: a one-dimensional array of (at least) length

1+(n=1) lincx |, containing numbers of the data type indicated in
Table 50

incx is the stride for vector x.

Specified as: a fullword integer. It can have any value.

On Return

Function value is the euclidean length (I, norm) of the vector x. Returned as: a
number of the data type indicated in [Table 50|

Notes

1. This subroutine does not underflow or overflow if the values of the elements in
vector x conform to the following conditions. If these conditions are violated,
overflow or destructive underflow may occur:

* For short-precision numbers:

Any valid short-precision number.

e For long—precision numbers:

lx;l = 0 or 0.10010E-145 < Ix;I < 0.13408E+155 for i = 1, n

2. Declare this function in your program as returning a value of the data type

indicated in [Table 50

Chapter 8. Linear Algebra Subprograms 235

SNORM2, DNORM2, CNORM2, and ZNORM2

Function

The euclidean length (I, norm) of vector x is expressed as follows with no scaling
of input:

S+ + o+

See reference . The result is returned as the function value. If # is 0, then 0.0 is
returned as the value of the function.

For SNORM2 and CNORM?2, the sum of the squares of the absolute values of the
elements is accumulated in long-precision. The square root of this long-precision
sum is then computed.

This subroutine should not be used if the values in vector x do not conform to the
restriction given in [‘Notes” on page 235,

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX

|
SNORM = SNORM2(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)
Output:

SNORM = 10.0

Example 2

This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX

SNORM = SNORM2(6 , X , 2)

X = (3.0, .,4.0,.,10,.,8.0,.,1.0, ., 3.0)
Output:
SNORM = 10.0

236 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SNORM2, DNORM2, CNORM2, and ZNORM2

Example 3
This example shows a vector, x, with a stride of 0. The result in SNORM is:

[2
nx;

Function Reference and Input:
N X INCX

||
SNORM = SNORM2(4 , X , 0)

X = (4.0)
Output:

SNORM = 8.0
Example 4

This example shows a vector, x, containing complex numbers and having a stride
of 1.

Function Reference and Input:
N X INCX

CNORM = CNORM2(3 , X , 1)

X = ((3.0, 4.0), (1.0, 8.0), (-1.0, 3.0))
Output:
CNORM = 10.0

Chapter 8. Linear Algebra Subprograms 237

SROTG, DROTG, CROTG, and ZROTG

SROTG, DROTG, CROTG, and ZROTG — Construct a Givens Plane
Rotation

Purpose

SROTG and DROTG construct a real Givens plane rotation, and CROTG and
ZROTG construct a complex Givens plane rotation. The computations use
rotational elimination parameters a and b. Values are returned for r, as well as the
cosine ¢ and the sine s of the angle of rotation. SROTG and DROTG also return a
value for z.

Note: Throughout this description, the symbols r and z are used to represent two
of the output values returned for this computation. It is important to note
that the values for and z are actually returned in the input-output
arguments a and b, respectively, overwriting the original values passed in a

and b.
Table 51. Data Types
a, b1, s c b4 Subprogram
Short-precision real Short-precision real Short-precision real SROTG
Long-precision real Long-precision real Long-precision real DROTG
Short-precision complex Short-precision real (No value returned) CROTG
Long-precision complex Long-precision real (No value returned) ZROTG
Syntax

Fortran CALL SROTG | DROTG | CROTG | ZROTG (g, b, c, s)
C and C++ srotg | drotg | crotg | zrotg (a, b, c, s);

On Entry

a is the rotational elimination parameter a.

Specified as: a number of the data type indicated in
b is the rotational elimination parameter b.

Specified as: a number of the data type indicated in [Table 51
: See
s See

On Return
a is the value computed for r.

For SROTG and DROTG:

7= Gw/a2 +b°

where:
6 = SIGN(a) if lal > 1Dl
6 = SIGN(b) if lal = 1bl

238 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SROTG, DROTG, CROTG, and ZROTG

For CROTG and ZROTG:

r=\y |a|2 +|b|2 if |a|¢0
r=>b if |a]=0

where:

Y =a/lal

Returned as: a number of the data type indicated in[Table 51 o
b is the value computed for z.

For SROTG and DROTG:

5 if lal > 1bl

1/c if lal = 1bl and c# 0 and r 2 0
1 if lal = 1bl and c =0and r # 0
0 if r=20

NN NN
I

For CROTG and ZROTG: no value is returned, and the input value
is not changed.

Returned as: a number of the data type indicated in [Table 51 o

is the cosine ¢ of the angle of (Givens) rotation. For SROTG and
DROTG:

=a/r if r =0

=1 if r =20

For CROTG and ZROTG:

c= L if |a|¢0

al* + ol

c=0 if |a|=0

Returned as: a number of the data type indicated in [Table 51 o

is the sine s of the angle of (Givens) rotation.

For SROTG and DROTG:

s =b/r ifr=0
s =0 ifr=20

Chapter 8. Linear Algebra Subprograms 239

SROTG, DROTG, CROTG, and ZROTG

For CROTG and ZROTG:

s=— Y2 iflaf=0

a* + ol

s =(1.0,00) if |a|=0
where ¢ = a/lal

Returned as: a number of the data type indicated in[Table 51 o

Notes
In your C program, arguments 4, b, ¢, and s must be passed by reference.

Function
SROTG and DROTG

A real Givens plane rotation is constructed for values 2 and b by computing values
for r, ¢, s, and z, where:

r = c\/az +b?

where:

o = SIGN(a) if lal > 1bl
6 = SIGN(b) if lal = Ibl

c=a/r ifr=20

c=1 ifr=20

s=0b/r ifr=0

s=0 ifr=20

z=s if lal > 1Dl

z=1/c if lal = |blandc # O0Qandr # 0
z=1 if lal = Iblandc =0andr = 0
z=0 ifr=0

See reference .

Following are some important points about the computation:
1. The numbers for ¢, s, and r satisfy:

240 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SROTG, DROTG, CROTG, and ZROTG

EfgH

2. Where necessary, scaling is used to avoid overflow and destructive underflow
in the computation of r, which is expressed as follows:

5 2
a b
r = o (la|+[p)) (|a|+|b|) +(|a|+|b|J

3. o is not essential to the computation of a Givens rotation matrix, but its use
permits later stable reconstruction of ¢ and s from just one stored number, z.
See reference @] c and s are reconstructed from z as follows:

For z=1,¢=0 and s =1

For |z| < l,c:wll—z2 and s =z
For |2 >1,c=1/z and s =,/1-¢

CROTG and ZROTG

A complex Givens plane rotation is constructed for values a2 and b by computing
values for 7, ¢, and s, where:

r=\y |cz|2 +|b|2 if |a|¢0

r=5b if |a|:O

where:

Y =a/lal

o1 if |a|#0
laf” +[p["

c=0 1if |a|=0

Chapter 8. Linear Algebra Subprograms 241

SROTG, DROTG, CROTG, and ZROTG

s = L if |a|;t0
laf” +[p]”
s = (1.0,0.0) if |a|=()

See reference .

Following are some important points about the computation:

1. The numbers for ¢, s, and r satisfy:

e B D

2. Where necessary, scaling is used to avoid overflow and destructive underflow
in the computation of r, which is expressed as follows:

2 2

b

laf + 2]

a

e — +
laf + {2

r=y (|a| + |b|)

Error Conditions

Computational Errors
None

Input-Argument Errors
None

Examples

Example 1
This example shows the construction of a real Givens plane rotation, where 7 is 0.

Call Statement and Input:

A B C S
|
CALL SROTG(0.0 , 0.0 , C, S)
Output:
A = 0.0
B = 0.0
C = 1.0
S = 0.0
Example 2

This example shows the construction of a real Givens plane rotation, where c is 0.

Call Statement and Input:

242 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SROTG, DROTG, CROTG, and ZROTG

A B C S
| |

CALL SROTG(0.0 , 2.0 , C , S)

Output:

A = 2.0

B = 1.0

C = 0.0

S = 1.0

Example 3

This example shows the construction of a real Givens plane rotation, where
bl > lal.

Call Statement and Input:
A B c S

CALL SROTG(6.0 , -8.0 , C , S)

Output:

A = -10.0
B = -1.666
C = -0.6

S = 0.8
Example 4

This example shows the construction of a real Givens plane rotation, where
lal > 1bl.

Call Statement and Input:

A B c S
| |
CALL SROTG(8.6 , 6.0 , C , S)
Output:
A = 10.0
B = 0.6
C = 0.8
S = 0.6
Example 5

This example shows the construction of a complex Givens plane rotation, where
lal = 0.

Call Statement and Input:
A B C S

|
CALL CROTG(A , B, C, S)

A = (0.0, 0.0)
B = (1.0, 0.0)
Output:

A = (1.0, 0.0)
C = 0.0

S = (1.0, 0.0)

Chapter 8. Linear Algebra Subprograms 243

SROTG, DROTG, CROTG, and ZROTG

Example 6

This example shows the construction of a complex Givens plane rotation, where
lal = 0.

Call Statement and Input:
AB C S

|
CALL CROTG(A , B, C , S)

A = (3.0, 4.0)

B = (4.0, 6.0)
Output:

A = (5.26, 7.02)
C = 0.57

S = (0.82, -0.05)

244 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SROT, DROT, CROT, ZROT, CSROT, ZDROT

SROT, DROT, CROT, ZROT, CSROT, and ZDROT — Apply a Plane

Rotation

Purpose

SROT and DROT apply a real plane rotation to real vectors; CROT and ZROT
apply a complex plane rotation to complex vectors; and CSROT and ZDROT apply
a real plane rotation to complex vectors. The plane rotation is applied to n points,
where the points to be rotated are contained in vectors x and y, and where the
cosine and sine of the angle of rotation are ¢ and s, respectively.

Table 52. Data Types

X,y c s Subprogram
Short-precision real Short-precision real Short-precision real SROT
Long-precision real Long-precision real Long-precision real DROT
Short-precision complex Short-precision real Short-precision complex CROT
Long-precision complex Long-precision real Long-precision complex ZROT
Short-precision complex Short-precision real Short-precision real CSROT
Long-precision complex Long-precision real Long-precision real ZDROT

Syntax
Fortran CALL SROT | DROT | CROT | ZROT | CSROT | ZDROT (n, x, incx, y, incy, c, s)
C and C++ srot | drot | crot | zrot | csrot | zdrot (n, x, incx, y, incy, c, s);

On Entry

n

incx

incy

is the number of points to be rotated—that is, the number of
elements in vectors x and y.

Specified as: a fullword integer; n = 0.

is the vector x of length 7, containing the x; coordinates of the
points to be rotated.

Specified as: a one-dimensional array of (at least) length

1+(n-1) lincx |, containing numbers of the data type indicated in
Table 5

is the stride for vector x.
Specified as: a fullword integer. It can have any value.

is the vector y of length #, containing the y; coordinates of the
points to be rotated.

Specified as: a one-dimensional array of (at least) length

1+(n-1) lincy |, containing numbers of the data type indicated in
Table 5

is the stride for vector y.
Specified as: a fullword integer. It can have any value.
the cosine, ¢, of the angle of rotation.

Specified as: a number of the data type indicated in [Table 52

Chapter 8. Linear Algebra Subprograms 245

SROT, DROT, CROT, ZROT, CSROT, ZDROT

s the sine, s, of the angle of rotation.

Specified as: a number of the data type indicated in [Table 52 on

On Return

x is the vector x of length 7, containing the rotated x; coordinates,
where:
X; € cxp+sy; fori =1,
Returned as: a one-dimensional array, containing numbers of the
data type indicated in [Table 52 on page 245

y is the vector y of length #, containing the rotated y; coordinates,

where:

For SROT, DROT, CSROT, and ZDROT:
Y; € —sxqcy; fori=1n

For CROT and ZROT:

V, «——8x; +cy;, fori=1n

Returned as: a one-dimensional array, containing numbers of the
data type indicated in [Table 52 on page 245|

Notes

The vectors x and y must have no common elements; otherwise, results are
unpredictable. See [“Concepts” on page 55

Function

Applying a plane rotation to # points, where the points to be rotated are contained
in vectors x and y, is expressed as follows, where ¢ and s are the cosine and sine of
the angle of rotation, respectively. For SROT, DROT, CSROT, and ZDROT:

el] i
Yi -5 C Yi

For CROT and ZROT:

[x,} «— { ¢ S} [x,} for i =1,n
Vi —-s C Vi

See references [@ﬂ and . No computation is performed if n is 0 or if ¢ is 1.0 and
s is zero. For SROT, CROT, and CSROT, intermediate results are accumulated in
long precision.

246 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SROT, DROT, CROT, ZROT, CSROT, ZDROT

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows how to apply a real plane rotation to real vectors x and y
having positive strides.

Call Statement and Input:
N X INCX Y INCY C

S
[A R N
S

CALL SROT(5,X,1 ,Y,2 , 0.5,

X = (l.e, 2.0, 3.0, 4.0, 5.0)

Y = (-1.0, ., -2.0, ., -3.0, ., -4.0, . , -5.0)
V3.0

S ="
2.0

Output:

X = (-0.366, -0.732, -1.098, -1.464, -1.830)

Y = (-1.366, -2.732, -4.098, -5.464, -6.830)

Example 2

This example shows how to apply a real plane rotation to real vectors x and y
having strides of opposite sign.

Call Statement and Input:

N X IIiICX T IliICY (li T
CALL SROT(5, X, 1 , Y, -1 ,0.5,S

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-5.0, -4.0, -3.0, -2.0, -1.0)
V3.0
g =2
2.0
Output:
X =(same as output X in Example 1)
Y = (-6.830, -5.464, -4.098, -2.732, -1.366)
Example 3

This example shows how scalar values in vectors x and y can be processed by
specifying 0 strides and the number of elements to be processed, 1, equal to 1.

Chapter 8. Linear Algebra Subprograms 247

SROT, DROT, CROT, ZROT, CSROT, ZDROT

Call Statement and Input:

A A R T

CALL SROT(1 ,X,0 ,Y,0 ,0.5,S)
X = (1.0)
Y = (-1.0)

V3.0
S=—+

2.0
Output:
X = (-0.366)
Y = (-1.366)
Example 4

This example shows how to apply a complex plane rotation to complex vectors x
and y having positive strides.

Call Statement and Input:

NoX INX Y INGY C S
[I N I
s

CALLCROT(3 ,X,1 ,Y,2 ,0.5,58)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))
S = (0.75, 0.50)
Output:
X = ((-2.750, 4.250), (2.500, 3.500), (-2.250, 2.750))
Y = ((-2.250, 1.500), . , (-4.000, 0.750),
(-5.750, 0.000))
Example 5

This example shows how to apply a real plane rotation to complex vectors x and y
having positive strides.

Call Statement and Input:

N X INCX Y INCY C

s
[A A N B
S

CALLCSROT(3 ,X,1 ,Y,2 ,0.5,5)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))
o _ 30

2.0
Output:
X = ((-0.366, 5.330), (-0.732, 4.964), (-1.098, 4.598))
Y = ((-1.366, 0.768), . , (-2.732, -0.598),

(-4.098, -1. 964))

248 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL — Multiply a
Vector X by a Scalar and Store in the Vector X

Purpose

These subprograms perform the following computation, using the scalar o and the

vector x:

x€ox

Table 53. Data Types

o x Subprogram
Short-precision real Short-precision real SSCAL
Long-precision real Long-precision real DSCAL
Short-precision complex Short-precision complex CSCAL
Long-precision complex Long-precision complex ZSCAL
Short-precision real Short-precision complex CSSCAL
Long-precision real Long-precision complex ZDSCAL
Syntax
Fortran CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx)
C and C++ sscal | dscal | cscal | zscal | csscal | zdscal (1, alpha, x, incx);
On Entry
n is the number of elements in vector x. Specified as: a fullword
integer; n = 0.
alpha is the scalar a.
Specified as: a number of the data type indicated in
x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n-1) lincx |, containing numbers of the data
type indicated in
incx is the stride for vector x.
Specified as: a fullword integer. It can have any value.
On Return
x is the vector x of length 7, containing the result of the computation
ox. Returned as: a one-dimensional array, containing numbers of
the data type indicated in m
Notes

The fastest way in ESSL to zero out contiguous (stride 1) arrays is to call SSCAL or
DSCAL, specifying incx = 1 and o = 0.

Function

The computation is expressed as follows:

Chapter 8. Linear Algebra Subprograms 249

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

See reference . If n is 0, no computation is performed. For CSCAL, intermediate
results are accumulated in long precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Call Statement and Input:
N ALPHA X INCX

CALL SSCAL(5, 2.0, X, 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Output:

X = (2.0, 4.0, 6.0, 8.0, 10.0)
Example 2

This example shows vector, x, with a stride greater than 1.

Call Statement and Input:
N ALPHA X INCX

|
CALL SSCAL(5 , 2.0 , X , 2)

X = (1., ., 2.0, .,3.0, ., 4.0, ., 5.0)
Output:

X = (2.0, ., 4.0, ., 6.0, ., 8.0, ., 10.0)
Example 3

This example illustrates that when the strides for two similar computations
(Example 1 and Example 3) have the same absolute value but have opposite signs,
the output is the same. This example is the same as Example 1, except the stride
for x is negative (—1). For performance reasons, it is better to specify the positive
stride. For x, processing begins at element X(5), which is 5.0, and results are stored
beginning at the same element.

Call Statement and Input:

250 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

N ALPHA X INCX

CALL SSCAL(5, 2.0, X, -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Output:

X = (2.0, 4.0, 6.0, 8.0, 10.0)
Example 4

This example shows how SSCAL can be used to compute a scalar value. In this

case, input vector x contains a scalar value, and the stride is 0. The number of
elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX

CALL SSCAL(1, 2.0, X, 0)

X = (1.0)
Output:

X = (2.0)
Example 5

This example shows a scalar, &, and a vector, x, containing complex numbers,
where vector x has a stride of 1.

Call Statement and Input:
N ALPHA X INCX

CALL CSCAL(3 ,ALPHA, X , 1)

ALPHA = (2.0, 3.0)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Output:

X = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))
Example 6

This example shows a scalar, &, containing a real number, and a vector, x,
containing complex numbers, where vector x has a stride of 1.

Call Statement and Input:
N ALPHA X INCX

CALL CSSCAL(3, 2.0, X, 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Output:
X = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

Chapter 8. Linear Algebra Subprograms

251

SSWAP, DSWAP, CSWAP, and ZSWAP

SSWAP, DSWAP, CSWAP, and ZSWAP — Interchange the Elements of
Two Vectors

Purpose

These subprograms interchange the elements of vectors x and y:

Yy > x

Table 54. Data Types

Xy Subprogram
Short-precision real SSWAP
Long-precision real DSWAP
Short-precision complex CSWAP
Long-precision complex ZSWAP
Syntax
Fortran CALL SSWAP | DSWAP | CSWAP | ZSWAP (n, x, incx, y, incy)
C and C++ sswap | dswap | cswap | zswap (n, x, incx, y, incy);

On Entry

n

incx

incy

On Return

X

Notes

is the number of elements in vectors x and y.

Specified as: a fullword integer; n = 0.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in [Table 54

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincy |, containing numbers of the data
type indicated in [Table 54

is the stride for vector y.

Specified as: a fullword integer. It can have any value.

is the vector x of length 7, containing the elements that were
swapped from vector y. Returned as: a one-dimensional array,
containing numbers of the data type indicated in [Table 54}

is the vector y of length 1, containing the elements that were
swapped from vector x. Returned as: a one-dimensional array;,

containing numbers of the data type indicated in [Table 54

1. If you specify the same vector for x and y, then incx and incy must be equal;
otherwise, results are unpredictable.

252 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSWAP, DSWAP, CSWAP, and ZSWAP

2. If you specify different vectors for x and y, they must have no common
elements; otherwise, results are unpredictable. See|“Concepts” on page 55/

Function
The elements of vectors x and y are interchanged as follows:

N X1

Yn Xn
See reference . If n is 0, no elements are interchanged.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N X INCX Y INCY

CALL SSWAP(5 , X , 1 , Y ,2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, ., -2.0, . , -3.0, . , -4.0, . , -5.0)
Output:

X = (-1.0, -2.0, -3.0, -4.0, -5.0)

Y = (1.0, ., 2.0, ., 3.0, ., 4.0, ., 5.0)
Example 2

This example shows how to obtain output vectors x and y that are reverse copies
of the input vectors y and x. You must specify strides with the same absolute
value, but with opposite signs. For y, which has negative stride, processing begins
at element Y (5), which is —5.0, and the results of the swap are stored beginning at
the same element.

Call Statement and Input:
N X INCX Y INCY

CALL SSWAP(5 , X , 1 , Y, -1)

X = (l.e, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, -2.0, -3.0, -4.0, -5.0)
Output:

Chapter 8. Linear Algebra Subprograms 253

SSWAP, DSWAP, CSWAP, and ZSWAP

254

X = (-5.0, -4.0, -3.0, -2.0, -1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Example 3

This example shows how SSWAP can be used to interchange scalar values in
vectors x and y by specifying 0 strides and the number of elements to be processed
as 1.

Call Statement and Input:
N X INCX Y INCY

CALL SSWAP(1 ,X,0 ,Y,0)

X = (1.0)
Y = (-4.0)
Output:

X = (-4.0)
Y = (1.0)
Example 4

This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY

CALL CSWAP(4 , X , 1 ,Y,2)

X = ((1.0, 6.0), (2.0, 7.0), (3.0, 8.0), (4.0, 9.0))
Y = ((-1.0, -1.0), . , (-2.0, -2.0), . , (-3.0, -3.0), . ,
(-4.0, -4.0))
Output:
X = ((-1.0, -1.0), (-2.0, -2.0), (-3.0, -3.0), (-4.0, -4.0))
Y = ((1.0, 6.0), . , (2.0, 7.0), . , (3.0, 8.0), .,
(4.0, 9.0))

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SVEA, DVEA, CVEA, and ZVEA

SVEA, DVEA, CVEA, and ZVEA — Add a Vector X to a Vector Y and
Store in a Vector Z

Purpose

These subprograms perform the following computation, using vectors x, y, and z:

zex+y

Table 55. Data Types

XY z Subprogram
Short-precision real SVEA
Long-precision real DVEA
Short-precision complex CVEA
Long-precision complex ZVEA
Syntax
Fortran CALL SVEA | DVEA | CVEA | ZVEA (n, x, incx, y, incy, z, incz)
C and C++ svea | dvea | cvea | zvea (n, x, incx, y, incy, z, incz);

On Entry

n

incx

incy

incz

On Return

z

is the number of elements in vectors x, y, and z.

Specified as: a fullword integer; n = 0.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in [Table 55

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincy |, containing numbers of the data
type indicated in [Table 55

is the stride for vector y.

Specified as: a fullword integer. It can have any value.

See

is the stride for vector z.

Specified as: a fullword integer. It can have any value.

is the vector z of length 7, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length

1+(n-1) lincz |, containing numbers of the data type indicated in
Table 55

Chapter 8. Linear Algebra Subprograms 255

SVEA, DVEA, CVEA, and ZVEA

Notes

1. If you specify the same vector for x and z, then incx and incz must be equal;
otherwise, results are unpredictable. The same is true for y and z.

2. If you specify different vectors for x and z, they must have no common
elements; otherwise, results are unpredictable. The same is true for y and z. See
[“Concepts” on page 55)

Function

The computation is expressed as follows:

Zn Xn Yn

If n is 0, no computation is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEA(5 , X , 1 , Y, 2 ,Z,1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (1.6, ., 1.0, ., 1.0, ., 1.0, . , 1.0)
Output:

z = (2.0, 3.0, 4.0, 5.0, 6.0)

Example 2

This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y (5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z 1INCZ

CALL SVEA(5 , X , 1 , Y, -1 ,Z,2)

X
Y

(1.0, 2.0, 3.0, 4.0, 5.0)
(5.0, 4.0, 3.0, 2.0, 1.0)

Uy

256 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SVEA, DVEA, CVEA, and ZVEA

Output:
VA = (2.0, .,4.0, .,6.0,.,8.0,.,10.0)
Example 3

This example shows a vector, x, with 0 stride and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:

N X INCX Y INCY Z INCZ
[N N N

CALL SVEA(5 , X, 0 , Y, 1 ,Z,-1)

X = (1.0)

Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:

z = (2.0, 3.0, 4.0, 5.0, 6.0)

Example 4

This example shows a vector, y, with O stride. y is treated like a vector of length n,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEA(5, X, 1 ,Y,0 ,Z,1)

X = (l.e, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:

z = (6.0, 7.0, 8.0, 9.0, 10.0)
Example 5

This example shows the output vector, z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, 1, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEA(5 , X, 1 ,Y,0 ,Z,0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:

z = (10.0)

Example 6

This example shows the output vector z, with 0 stride, where the vector x has 0
stride, and the vector y has negative stride. The number of elements to be
processed, 1, is greater than 1.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 257

SVEA, DVEA, CVEA, and ZVEA

258

N X INCX Y INCY Z INCZ
[R A A
CALL SVEA(5 , X, 0 ,Y,-1 ,Z,0)
X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Output:
z = (6.0)
Example 7

This example shows how SVEA can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z,
are 0. The number of elements to be processed, 1, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEA(1 , X, 0 ,Y,0 ,Z,0)

X = (1.0)
Y = (5.0)
Output:

z = (6.0)
Example 8

This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL CVEA(3 , X, 1 , Y, 2 ,Z,1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))
Output:

VA = ((8.0, 10.0), (12.0, 14.0), (16.0, 18.0))

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SVES, DVES, CVES, and ZVES

SVES, DVES, CVES, and ZVES — Subtract a Vector Y from a Vector X
and Store in a Vector Z

Purpose

These subprograms perform the following computation, using vectors x, y, and z:

z¢x—y

Table 56. Data Types

XY z Subprogram
Short-precision real SVES
Long-precision real DVES
Short-precision complex CVES
Long-precision complex ZVES
Syntax
Fortran CALL SVES | DVES | CVES | ZVES (n, x, incx, y, incy, z, incz)
C and C++ sves | dves | cves | zves (n, x, incx, y, incy, z, incz);

On Entry

n

incx

incy

incz

On Return

z

is the number of elements in vectors x, y, and z.

Specified as: a fullword integer; n = 0.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in [Table 56

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincy |, containing numbers of the data
type indicated in [Table 56

is the stride for vector y.

Specified as: a fullword integer. It can have any value.

See

is the stride for vector z.

Specified as: a fullword integer. It can have any value.

is the vector z of length 7, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length

1+(n-1) lincz |, containing numbers of the data type indicated in
Table 56

Chapter 8. Linear Algebra Subprograms 259

SVES, DVES, CVES, and ZVES

Notes

1. If you specify the same vector for x and z, then incx and incz must be equal;
otherwise, results are unpredictable. The same is true for y and z.

2. If you specify different vectors for x and z, they must have no common
elements; otherwise, results are unpredictable. The same is true for y and z. See
[“Concepts” on page 55)

Function

The computation is expressed as follows:

Zn Xn Yn

If n is 0, no computation is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVES(5, X, 1 ,Y,2 ,Z,1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (1.6, ., 1.0, ., 1.0, ., 1.0, . , 1.0)
Output:

z = (0.0, 1.0, 2.0, 3.0, 4.0)

Example 2

This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y (5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z 1INCZ

CALL SVES(5, X, 1 , Y, -1 ,Z,2)

X
Y

(1.0, 2.0, 3.0, 4.0, 5.0)
(5.0, 4.0, 3.0, 2.0, 1.0)

Uy

260 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SVES, DVES, CVES, and ZVES

Output:
VA = (0.0, ., 0.0, .,0.0,.,0.0,.,0.0)
Example 3

This example shows a vector, x, with O stride, and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:

N X INCX Y INCY Z INCZ
[N N N

CALL SVES(5 , X, 0 ,Y,1 ,Z,-1)

X = (1.0)

Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:

z = (0.0, -1.0, -2.0, -3.0, -4.0)

Example 4

This example shows a vector, y, with O stride. y is treated like a vector of length n,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVES(5, X, 1 ,Y,0 ,Z,1)

X = (l.e, 2.0, 3.0, 4.0, 5.0)

Y = (5.0)

Output:

Z = (-4.0, -3.0, -2.0, -1.0, 0.0)
Example 5

This example shows the output vector z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, 1, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVES(5, X, 1 ,Y,0 ,Z2,0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:

z = (0.0)

Example 6

This example shows the output vector z, with 0 stride, where the vector x has 0
stride, and the vector y has negative stride. The number of elements to be
processed, 1, is greater than 1.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 261

SVES, DVES, CVES, and ZVES

262

N X INCX Y INCY Z INCZ
[U A R

CALL SVES(5 , X, 0 ,Y,-1 ,Z,0)
X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Output:
z = (-4.0)
Example 7

This example shows how SVES can be used to compute a scalar value. In this case,
vectors x and y contain scalar values. The strides of all vectors, x, y, and z, are 0.
The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVES(1,X,0 ,Y,0 ,Z,0)

X = (1.0)
Y = (5.0)
Output:

z = (-4.0)
Example 8

This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALLCVES(3,X,1 ,Y,2 ,Z,1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))
Output:

VA = ((-6.0, -6.0), (-6.0, -6.0), (-6.0, -6.0))

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SVEM, DVEM, CVEM, and ZVEM

SVEM, DVEM, CVEM, and ZVEM — Multiply a Vector X by a Vector Y
and Store in a Vector Z

Purpose

These subprograms perform the following computation, using vectors x, y, and z:

z¢xy

Table 57. Data Types

XY z Subprogram
Short-precision real SVEM
Long-precision real DVEM
Short-precision complex CVEM
Long-precision complex ZVEM
Syntax
Fortran CALL SVEM | DVEM | CVEM | ZVEM (n, x, incx, y, incy, z, incz)
C and C++ svem | dvem | cvem | zvem (n, x, incx, y, incy, z, incz);

On Entry

n

incx

incy

incz

On Return

z

is the number of elements in vectors x, y, and z.

Specified as: a fullword integer; n = 0.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincx |, containing numbers of the data
type indicated in [Table 57

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincy |, containing numbers of the data
type indicated in [Table 57|

is the stride for vector y.

Specified as: a fullword integer. It can have any value.

See

is the stride for vector z.

Specified as: a fullword integer. It can have any value.

is the vector z of length 7, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length

1+(n-1) lincz |, containing numbers of the data type indicated in
Table 5

Chapter 8. Linear Algebra Subprograms 263

SVEM, DVEM, CVEM, and ZVEM

Notes

1. If you specify the same vector for x and z, then incx and incz must be equal;
otherwise, results are unpredictable. The same is true for y and z.

2. If you specify different vectors for x and z, they must have no common
elements; otherwise, results are unpredictable. The same is true for y and z. See
[“Concepts” on page 55)

Function

The computation is expressed as follows:
Z; € Xy, fori=1,n

If n is 0, no computation is performed. For CVEM, intermediate results are
accumulated in long precision (short-precision Multiply followed by a
long-precision Add), with the final result truncated to short precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n <0

Examples

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEM(5, X, 1 ,Y,2 ,Z,1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y - (1.0, ., 1.0, ., 1.0, ., 1.0, . , 1.0)
Output:

z = (1.0, 2.0, 3.0, 4.0, 5.0)

Example 2

This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y (5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z 1INCZ

CALL SVEM(5 , X , 1 , Y, -1 ,Z,2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:

z = (1.0, . , 4.0, .,9.0, ., 16.0, ., 25.0)

264 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SVEM, DVEM, CVEM, and ZVEM

Example 3

This example shows a vector, x, with O stride, and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:

N X INCX Y INCY Z INCZ
[O I I

CALL SVEM(5 , X , 0 ,Y,1 ,Z,-1)
X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
Output:
z = (1.0, 2.0, 3.0, 4.0, 5.0)
Example 4

This example shows a vector, y, with O stride. y is treated like a vector of length #,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEM(5 , X, 1 ,Y,0 ,Z,1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (5.0)

Output:

z = (5.0, 10.0, 15.0, 20.0, 25.0)
Example 5

This example shows the output vector, z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, 1, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEM(5 , X, 1 , Y, 0 ,Z,0)

X = (l.e, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:

z = (25.0)

Example 6

This example shows the output vector z, with 0 stride, where the vector x has 0
stride, and the vector y has negative stride. The number of elements to be
processed, 1, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z 1INCZ

CALL SVEM(5 , X , 0 , Y, -1 ,Z,0)

X
Y

(1.0)
(5.0, 4.0, 3.0, 2.0, 1.0)

Chapter 8. Linear Algebra Subprograms 265

SVEM, DVEM, CVEM, and ZVEM

266

Output:
z = (5.0)
Example 7

This example shows how SVEM can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z,
are 0. The number of elements to be processed, 1, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL SVEM(1 , X, 0 , Y, 0 ,Z,0)

X = (1.0)
Y = (5.0)
Output:

z = (5.0)
Example 8

This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ

CALL CVEM(3 , X, 1 ,Y,2 ,Z,1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

Y = ((7.0, 8.0), ., (9.0, 10.0), . , (11.0, 12.0))
Output:

z = ((-9.0, 22.0), (-13.0, 66.0), (-17.0, 126.0))

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX — Multiply a Vector X
by a Scalar and Store in a Vector Y

Purpose

These subprograms perform the following computation, using the scalar « and
vectors x and y:

yeax
Table 58. Data Types
o X,y Subprogram
Short-precision real Short-precision real SYAX
Long-precision real Long-precision real DYAX
Short-precision complex Short-precision complex CYAX
Long-precision complex Long-precision complex ZYAX
Short-precision real Short-precision complex CSYAX
Long-precision real Long-precision complex ZDYAX
Syntax
Fortran CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy)
C and C++ syax | dyax | cyax | zyax | csyax | zdyax (n, alpha, x, incx, y, incy);
On Entry
n is the number of elements in vector x and y.
Specified as: a fullword integer; n = 0.
alpha is the scalar a.
Specified as: a number of the data type indicated in
x is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n-1) lincx |, containing numbers of the data
type indicated in
incx is the stride for vector x.

Specified as: a fullword integer. It can have any value.

y See

incy is the stride for vector y.

Specified as: a fullword integer. It can have any value.

On Return

y is the vector y of length #, containing the result of the computation
ox. Returned as: a one-dimensional array of (at least) length

1+(n-1) lincy |, containing numbers of the data type indicated in
Table 58

Chapter 8. Linear Algebra Subprograms 267

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

Notes

1. If you specify the same vector for x and y, then incx and incy must be equal;
otherwise, results are unpredictable.

2. If you specify different vectors for x and y, they must have no common
elements; otherwise, results are unpredictable. See [“Concepts” on page 55/

Function

The computation is expressed as follows:

Vn Xn

See reference . If n is 0, no computation is performed. For CYAX, intermediate
results are accumulated in long precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SYAX(5 ,2.0 ,X,1 ,Y,2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:

Y = (2.0, ., 4.0, ., 6.0, ., 8.0, ., 10.0)
Example 2

This example shows vectors x and y that have strides of opposite signs. For y,
which has negative stride, results are stored beginning in element Y (5).

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SYAX(5,2.0 ,X,1 ,Y,-1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:

268 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

Y = (lo.o, 8.0, 6.0, 4.0, 2.0)

Example 3
This example shows a vector, x, with 0 stride. x is treated like a vector of length ,
all of whose elements are the same as the single element in x.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SYAX(5,2.0 ,X,0 ,Y,1)

X = (1.0)
Output:
Y = (2.0, 2.0, 2.0, 2.0, 2.0)

Example 4

This example shows how SYAX can be used to compute a scalar value. In this case
both vectors x and y contain scalar values, and the strides for both vectors are 0.
The number of elements to be processed, 7, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL SYAX(1,2.0,X,0 ,Y,0)

X = (1.0)
Output:

Y = (2.0)
Example 5

This example shows a scalar, «, and vectors x and y, containing complex numbers,
where both vectors have a stride of 1.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL CYAX(3 ,ALPHA, X , 1 , Y, 1)

ALPHA = (2.0, 3.0)

X = ((1.e, 2.0), (2.0, 0.0), (3.0, 5.0))
Output:

Y = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))
Example 6

This example shows a scalar, &, containing a real number, and vectors x and y,
containing complex numbers, where both vectors have a stride of 1.

Call Statement and Input:
N ALPHA X INCX Y INCY

CALL CSYAX(3 ,2.0 ,X,1 ,Y,1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Output:
Y = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

Chapter 8. Linear Algebra Subprograms 269

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY — Multiply a Vector X by a
Scalar, Add to a Vector Y, and Store in a Vector Z

Purpose

These subprograms perform the following computation, using the scalar « and
vectors x, y, and z:

zZey+ox

Table 59. Data Types

XY,z Subprogram

Short-precision real SZAXPY

Long-precision real DZAXPY

Short-precision complex CZAXPY

Long-precision complex ZZAXPY

Syntax

Fortran CALL SZAXPY | DZAXPY | CZAXPY | ZZAXPY (n, alpha, x, incx, y, incy, z, incz)
C and C++ szaxpy | dzaxpy | czaxpy | zzaxpy (n, alpha, x, incx, y, incy, z, incz);

On Entry

n

alpha

incx

incy

ncz

On Return

z

is the number of elements in vectors x, y, and z.

Specified as: a fullword integer; n = 0.

is the scalar a.

Specified as: a number of the data type indicated in [Table 59

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1)lincx |, containing numbers of the data
type indicated in [Table 59

is the stride for vector x.

Specified as: a fullword integer. It can have any value.

is the vector y of length n. Specified as: a one-dimensional array of
(at least) length 1+(n—1) lincy |, containing numbers of the data
type indicated in [Table 59

is the stride for vector y.

Specified as: a fullword integer. It can have any value.

See

is the stride for vector z.

Specified as: a fullword integer. It can have any value.

is the vector z of length 7, containing the result of the computation

270 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

y+ox . Returned as: a one-dimensional array of (at least) length
1+(n-1) lincz |, containing numbers of the data type indicated in
[Table 59 on page 270}

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;
otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common
elements; otherwise, results are unpredictable. The same is true for y and z. See
[“Concepts” on page 55)

Function
The computation is expressed as follows:

Z B2 Xy

Zy Yn Xn

See reference . If n is 0, no computation is performed. For CZAXPY,
intermediate results are accumulated in long precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
n<0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY Z 1INCZ

CALL SZAXPY(5,2.0 , X, 1 ,Y,2 ,Z,1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (1.0, ., 1.0, ., 1.0, ., 1.0, . , 1.0)
Output:

z = (3.0, 5.0, 7.0, 9.0, 11.0)

Example 2

This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y (5), which is 1.0.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 271

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

N ALPHA X INCX
I I
CALL SZAXPY(5 , 2.0 , X , 1

INCY Z INCZ

Y
[
Y s -1 s z s 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:

z = (3.0, ., 6.0, .,9.0, ., 12.0, . , 15.0)
Example 3

This example shows a vector, x, with 0 stride, and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:

N ALPHA X INCX Y INCY Z INCZ
R A A R

CALL SZAXPY(5 , 2.0 , X, 0 ,Y,1 ,Z,-1)

X = (1.0)

Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:

z = (3.0, 4.0, 5.0, 6.0, 7.0)

Example 4

This example shows a vector, y, with 0 stride. y is treated like a vector of length #,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ

CALL SZAXPY(5 ,2.0 , X, 1 ,Y,0 ,Z2,1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Y = (5.0)

Output:

VA = (7.0, 9.0, 11.0, 13.0, 15.0)
Example 5

This example shows how SZAXPY can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z,
are 0. The number of elements to be processed, #, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY Z 1INCZ

CALL SZAXPY(1 ,2.0 ,X,0 ,Y,0 ,Z,0)

X = (1.0)
Y = (5.0)
Output:

z = (7.0)

272 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

Example 6
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY Z 1INCZ

CALL CZAXPY(3 ,ALPHA, X , 1 , Y ,2 ,Z,1)

ALPHA = (2.0, 3.0)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Y = ((1.e, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))
Output:

z = ((-3.0, 8.0), (4.0, 8.0), (-4.0, 23.0))

Chapter 8. Linear Algebra Subprograms 273

SSCTR, DSCTR, CSCTR, and ZSCTR

Sparse Vector-Scalar Subprograms

This section contains the sparse vector-scalar subprogram descriptions.

274 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSCTR, DSCTR, CSCTR, and ZSCTR

SSCTR, DSCTR, CSCTR, ZSCTR — Scatter the Elements of a Sparse
Vector X in Compressed-Vector Storage Mode into Specified Elements
of a Sparse Vector Y in Full-Vector Storage Mode

Purpose

These subprograms scatter the elements of sparse vector x, stored in
compressed-vector storage mode, into specified elements of sparse vector y, stored
in full-vector storage mode.

Table 60. Data Types

X,y Subprogram
Short-precision real SSCTR
Long-precision real DSCTR
Short-precision complex CSCTR
Long-precision complex ZSCTR
Syntax
Fortran CALL SSCTR | DSCTR | CSCTR | ZSCTR (nz, x, indx, y)
C and C++ ssctr | dsctr | csctr | zsctr (nz, x, indx, y);

On Entry

nz

indx

Y
On Return
Y

is the number of elements in sparse vector x, stored in
compressed-vector storage mode. Specified as: a fullword integer;
nz z 0.

is the sparse vector x, containing nz elements, stored in
compressed-vector storage mode in an array, referred to as X.
Specified as: a one-dimensional array of (at least) length nz,
containing numbers of the data type indicated in[Table 60}

is the array, referred to as INDX, containing the nz indices that
indicate the positions of the elements of the sparse vector x when
in full-vector storage mode. They also indicate the positions in
vector y into which the elements are copied.

Specified as: a one-dimensional array of (at least) length nz,
containing fullword integers.

See

is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz, into which nz elements of
vector x are copied at positions indicated by the indices array INDX.

Returned as: a one-dimensional array of (at least) length
max(INDX(i)) for i = 1, nz, containing numbers of the data type
indicated in [Table 60

Chapter 8. Linear Algebra Subprograms 275

SSCTR, DSCTR, CSCTR, and ZSCTR

Notes

1. Each value specified in array INDX must be unique; otherwise, results are
unpredictable.

2. Vectors x and y must have no common elements; otherwise, results are
unpredictable. See [‘Concepts” on page 55.|

3. For a description of how sparse vectors are stored, see |”Sparse Vector” on page|

Function

The copy is expressed as follows:

Yinoxay € Xi for i =1, nz

where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.

y is a sparse vector, stored in full-vector storage mode.

See reference . If nz is 0, no copy is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
nz < 0

Examples

Example 1
This example shows how to use SSCTR to copy a sparse vector x of length 5 into
the following vector y, where the elements of array INDX are in ascending order:

Y= (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Call Statement and Input:

NZ X INDX Y
|| |
CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

INDX = (1, 3, 4, 7, 10)

Output:

Y = (1.0, 2.0, 2.0, 3.0, 6.0, 10.0, 4.0, 8.0, 9.0, 5.0)
Example 2

This example shows how to use SSCTR to copy a sparse vector x of length 5 into
the following vector y, where the elements of array INDX are in random order:

Y= (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Call Statement and Input:

276 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSCTR, DSCTR, CSCTR, and ZSCTR

NZ X INDX Y
| | |
CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

INDX = (4,3, 1, 10, 7)

Output:

Y = (3.0, 2.0, 2.0, 1.0, 6.0, 10.0, 5.0, 8.0, 9.0, 4.0)
Example 3

This example shows how to use CSCTR to copy a sparse vector x of length 3 into
the following vector y, where the elements of array INDX are in random order:

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Call Statement and Input:

NZ X INDX Y
|
CALL CSCTR(3, X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

INDX = (4, 1, 3)

Output:

Y = ((3.0, 4.0), (-2.0, 3.0), (5.0, 6.0), (1.0, 2.0))

Chapter 8. Linear Algebra Subprograms 277

SGTHR, DGTHR, CGTHR, and ZGTHR

SGTHR, DGTHR, CGTHR, and ZGTHR — Gather Specified Elements of
a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X
in Compressed-Vector Storage Mode

Purpose

These subprograms gather specified elements of vector y, stored in full-vector
storage mode, into sparse vector x, stored in compressed-vector storage mode.

Table 61. Data Types

Xy Subprogram
Short-precision real SGTHR
Long-precision real DGTHR
Short-precision complex CGTHR
Long-precision complex ZGTHR
Syntax
Fortran CALL SGTHR | DGTHR | CGTHR | ZGTHR (nz, y, x, indx)
C and C++ sgthr | dgthr | cgthr | zgthr (nz, y, x, indx);

On Entry

nz

indx

On Return

X

is the number of elements in sparse vector x, stored in
compressed-vector storage mode. Specified as: a fullword integer;
nz z 0.

is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz, from which nz elements are
copied from positions indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length
max(INDX(i)) for i = 1, nz, containing numbers of the data type
indicated in [Table 61

See

is the array, referred to as INDX, containing the nz indices that
indicate the positions of the elements of the sparse vector x when
in full-vector storage mode. They also indicate the positions in
vector y from which elements are copied.

Specified as: a one-dimensional array of (at least) length nz,
containing fullword integers.

is the sparse vector x, containing nz elements, stored in
compressed-vector storage mode in an array, referred to as X, into
which are copied the elements of vector y from positions indicated
by the indices array INDX.

Returned as: a one-dimensional array of (at least) length nz,
containing numbers of the data type indicated in [Table 61|

278 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGTHR, DGTHR, CGTHR, and ZGTHR

Notes

1. Vectors x and y must have no common elements; otherwise, results are
unpredictable. See [“Concepts” on page 55.|

2. For a description of how sparse vectors are stored, see [“Sparse Vector” on page|

Function
The copy is expressed as follows:
X;i € Yinox() fori =1, nz
where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference . If nz is 0, no copy is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
nz <0

Examples

Example 1

This example shows how to use SGTHR to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in
ascending order.

Call Statement and Input:
NZ Y X INDX

CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3,4,7,9)

Output:

X = (6.0, 4.0, 7.0, -2.0, 9.0)

Example 2

This example shows how to use SGTHR to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in random
order. (Note that the element 0.0 occurs in output vector x. This does not produce
an error.)

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 279

SGTHR, DGTHR, CGTHR, and ZGTHR

JA X INDX

NZ Y
[T
CALL SGTHR(5 , Y , X , INDX)

H

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3,1, 10, 7)

Output:

X = (7.0, 4.0, 6.0, 0.0, -2.0)

Example 3

This example shows how to use CGTHR to copy specified elements of a vector, y,
into a sparse vector, x, of length 3, where the elements of array INDX are in random
order.

Call Statement and Input:
NZ Y X INDX

|
CALL CGTHR(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4,1, 3)

Output:

X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

280 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ — Gather Specified
Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse
Vector X in Compressed-Vector Mode, and Zero the Same Specified
Elements of Y

Purpose

These subprograms gather specified elements of sparse vector y, stored in
full-vector storage mode, into sparse vector x, stored in compressed-vector storage
mode, and zero the same specified elements of vector y.

Table 62. Data Types

X,y Subprogram
Short-precision real SGTHRZ
Long-precision real DGTHRZ
Short-precision complex CGTHRZ
Long-precision complex ZGTHRZ
Syntax
Fortran CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx)
C and C++ sgthrz | dgthrz | cgthrz | zgthrz (nz, y, x, indx);

On Entry

nz

indx

On Return
Yy

is the number of elements in sparse vector x, stored in
compressed-vector storage mode. Specified as: a fullword integer;
nz z 0.

is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz, from which nz elements are
copied from positions indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length
max(INDX(i)) for i = 1, nz, containing numbers of the data type

indicated in [Table 62
See

is the array, referred to as INDX, containing the nz indices that
indicate the positions of the elements of the sparse vector x when
in full-vector storage mode. They also indicate the positions in
vector y from which elements are copied then set to zero.

Specified as: a one-dimensional array of (at least) length nz,
containing fullword integers.

is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz, whose elements are set to
zero at positions indicated by the indices array INDX.

Returned as: a one-dimensional array, containing numbers of the

data type indicated in [Table 62,

Chapter 8. Linear Algebra Subprograms 281

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ

Notes

x is the sparse vector x, containing nz elements stored in

compressed-vector storage mode in an array, referred to as X, into
which are copied the elements of vector y from positions indicated
by the indices array INDX.

Returned as: a one-dimensional array of (at least) length nz,
ﬁ\taining numbers of the data type indicated in [Table 62 on page]
281|.

1. Each value specified in array INDX must be unique; otherwise, results are
unpredictable.

2. Vectors x and y must have no common elements; otherwise, results are
unpredictable. See [’Concepts” on page 55.|

3. For a description of how sparse vectors are stored, see [“Sparse Vector” on page]

Function

The copy is expressed as follows:

X; € Yinox@)

yINDX(i)éO'O (for SGTHRZ and DGTHRZ)

yINDX(,-)G(O.O,O.O) (for CGTHRZ and ZGTHRZ)
for i = 1,nz

where:
x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.

y is a sparse vector, stored in full-vector storage mode.

See reference . If nz is 0, no computation is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
nz <0

Examples

Example 1

This example shows how to use SGTHRZ to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in
ascending order.

Call Statement and Input:
NZ Y X INDX

|
CALL SGTHRZ(5 , Y , X , INDX)

Y
INDX

(6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
(1! 3! 49 73 9)

282 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ

Output:

Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 0.0, 0.0)
X = (6.0, 4.0, 7.0, -2.0, 9.0)

Example 2

This example shows how to use SGTHRZ to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in random
order. (Note that the element 0.0 occurs in output vector x. This does not produce
an error.)

Call Statement and Input:
NZ Y X INDX

|
CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3,1, 10,7)

Output:

Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 9.0, 0.0)
X = (7.0, 4.0, 6.0, 0.0, -2.0)

Example 3

This example shows how to use CGTHRZ to copy specified elements of a vector y
into a sparse vector x of length 3, where the elements of array INDX are in random
order.

Call Statement and Input:
NZ Y X INDX

CALL CGTHRZ(3 , Y , X, INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4,1, 3)

Output:

y = ((0.0, 0.0), (-2.0, 3.0), (0.0, 0.0), (0.0, 0.0))
X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

Chapter 8. Linear Algebra Subprograms 283

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

SAXPYI, DAXPYI, CAXPYI, and ZAXPYl — Multiply a Sparse Vector X in
Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector
Y in Full-Vector Storage Mode, and Store in the Vector Y

Purpose

These subprograms multiply sparse vector x, stored in compressed-vector storage
mode, by scalar «, add it to sparse vector y, stored in full-vector storage mode, and
store the result in vector y.

Table 63. Data Types

o XY Subprogram
Short-precision real SAXPYI
Long-precision real DAXPYI
Short-precision complex CAXPYI
Long-precision complex ZAXPYI
Syntax
Fortran CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y)
C and C++ saxpyi | daxpyi | caxpyi | zaxpyi (nz, alpha, x, indx, y);
On Entry
nz is the number of elements in sparse vector x, stored in
compressed-vector storage mode. Specified as: a fullword integer;
nz z 0.
alpha is the scalar a. Specified as: a number of the data type indicated in
X is the sparse vector x, containing nz elements, stored in

compressed-vector storage mode in an array, referred to as X.

Specified as: a one-dimensional array of (at least) length nz,

containing numbers of the data type indicated in [[able 63

indx is the array, referred to as INDX, containing the nz indices that
indicate the positions of the elements of the sparse vector x when
in full-vector storage mode. They also indicate the positions of the
elements in vector y that are used in the computation.

Specified as: a one-dimensional array of (at least) length nz,
containing fullword integers.

y is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz. Specified as: a
one-dimensional array of (at least) length max(INDX(i)) for i = 1,
nz, containing numbers of the data type indicated in

On Return

y is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz containing the results of the
computation, stored at positions indicated by the indices array
INDX.

284 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Notes

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

Returned as: a one-dimensional array, containing numbers of the
data type indicated in [Table 63 on page 284}

1. Each value specified in array INDX must be unique; otherwise, results are
unpredictable.

2. Vectors x and y must have no common elements; otherwise, results are
unpredictable. See [‘Concepts” on page 55.|

3. For a description of how sparse vectors are stored, see [“Sparse Vector” on page

Function

The computation is expressed as follows:
Ymox@) € Yinoxa T 0X; for i =1, nz
where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference . If « or nz is zero, no computation is performed. For SAXPYI and
CAXPY], intermediate results are accumulated in long-precision.

Error Conditions

Computational Errors
None

Input-Argument Errors
nz < 0

Examples

Example 1
This example shows how to use SAXPYI to perform a computation using a sparse
vector x of length 5, where the elements of array INDX are in ascending order.

Call Statement and Input:

NZ ALPHA X INDX Y
[A |
Y

CALL SAXPYI(5, 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

INDX = (1, 3, 4, 7, 10)

Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
Output:

Y = (3.0, 5.0, 8.0, 9.0, 6.0, 10.0, 6.0, 8.0, 9.0, 10.0)
Example 2

This example shows how to use SAXPYI to perform a computation using a sparse
vector x of length 5, where the elements of array INDX are in random order.

Chapter 8. Linear Algebra Subprograms 285

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

Call Statement and Input:

NZ ALPHA X INDX Y
|| |
CALL SAXPYI(5, 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

INDX = (4,3, 1, 10, 7)

Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
Output:

Y = (7.0, 5.0, 8.0, 5.0, 6.0, 10.0, 8.0, 8.0, 9.0, 8.0)
Example 3

This example shows how to use CAXPYI to perform a computation using a sparse
vector x of length 3, where the elements of array INDX are in random order.

Call Statement and Input:
NZ ALPHA X INDX Y

CALL CAXPYI(3 , ALPHA , X , INDX , Y)

ALPHA = (2.0, 3.0)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

INDX = (4, 1, 3)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
Output:

Y = ((0.0, 22.0), (-2.0, 3.0), (7.0, 31.0), (5.0, 7.0))

286 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

SDOTI, DDOTI, CDOTUIL, ZDOTUI, CDOTCI, and ZDOTCI — Dot Product
of a Sparse Vector X in Compressed-Vector Storage Mode and a
Sparse Vector Y in Full-Vector Storage Mode

Purpose

SDOTI, DDOTI, CDOTUI, and ZDOTUI compute the dot product of sparse vector
x, stored in compressed-vector storage mode, and full vector y, stored in full-vector

storage mode.

CDOTCI and ZDOTCI compute the dot product of the complex conjugate of sparse
vector x, stored in compressed-vector storage mode, and full vector y, stored in
full-vector storage mode.

Table 64. Data Types

x, y, Result Subprogram
Short-precision real SDOTI
Long-precision real DDOTI
Short-precision complex CDOTUI
Long-precision complex ZDOTUI
Short-precision complex CDOTCI
Long-precision complex ZDOTCI
Syntax
Fortran SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y)
C and C++ sdoti | ddoti | cdotui | zdotui | cdotci | zdotci (nz, x, indx, y);

On Entry

nz

indx

is the number of elements in sparse vector x, stored in
compressed-vector storage mode. Specified as: a fullword integer;
nz z 0.

is the sparse vector x, containing nz elements, stored in
compressed-vector storage mode in an array, referred to as X.
Specified as: a one-dimensional array of (at least) length nz,
containing numbers of the data type indicated in [Table 64}

is the array, referred to as INDX, containing the nz indices that
indicate the positions of the elements of the sparse vector x when
in full-vector storage mode. They also indicate the positions of
elements in vector y that are used in the computation.

Specified as: a one-dimensional array of (at least) length nz,
containing fullword integers.

is the sparse vector y, stored in full-vector storage mode, of (at
least) length max(INDX(i)) for i = 1, nz. Specified as: a
one-dimensional array of (at least) length max(INDX(i)) for i = 1,

nz, containing numbers of the data type indicated in[Table 64

Chapter 8. Linear Algebra Subprograms 287

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

On Return
Function value

is the result of the dot product computation.

Returned as: a number of the data type indicated in|Table 64 o
[page 287

Notes

1. Declare this function in your program as returning a value of the data type
indicated in [Table 64 on page 287

2. For a description of how sparse vectors are stored, see [“Sparse Vector” on page

Function

For SDOTI, DDOTI, CDOTUI, and ZDOTU], the dot product computation is
expressed as follows:

nz

inyINDX(i) = X Yinox1) T X2Vmox) -t X YiNDx(n)
i-1

For CDOTCI and ZDOTCI, the dot product computation is expressed as follows:

nz

ZfinNDX(i) = X ioxay + X2Vinoxe) T o T X VINDX(nz)
i=1

where:
x is a sparse vector, stored in compressed-vector storage mode.

X isthe complex conjugate of a sparse vector, stored in compressed - vector
storage mode.

INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference . The result is returned as the function value. If nz is 0, then zero
is returned as the value of the function.

For SDOTI, CDOTUI, and CDOTCI, intermediate results are accumulated in
long-precision.

Error Conditions

Computational Errors
None

288 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

Input-Argument Errors
nz <0

Examples

Example 1
This example shows how to use SDOTI to compute a dot product using a sparse
vector x of length 5, where the elements of array INDX are in ascending order.

Function Reference and Input:
NZ X INDX Y

DOTT = SDOTI(5, X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

INDX = (1, 3, 4, 7, 10)

Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
Output:

DOTT = (1.0 + 8.0 + 9.0 -8.0 + 0.0) = 10.0

Example 2

This example shows how to use SDOTI to compute a dot product using a sparse
vector x of length 5, where the elements of array INDX are in random order.

Function Reference and Input:
NZ X INDX Y

DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

INDX = (4, 3,1, 10, 7)

Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
Output:

DOTT = (3.0 + 8.0 + 3.0 + 0.0 -10.0) = 4.0

Example 3

This example shows how to use CDOTUI to compute a dot product using a sparse
vector x of length 3, where the elements of array INDX are in ascending order.

Function Reference and Input:
NZ X INDX Y

[
DOTT = CDOTUI(3 , X , INDX , Y)

X = ((1.e, 2.0), (3.0, 4.0), (5.0, 6.0))

INDX = (1, 3, 4)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
Output:

DOTT = (70.0, 143.0)

Example 4

This example shows how to use CDOTCI to compute a dot product using the
complex conjugate of a sparse vector x of length 3, where the elements of array
INDX are in random order.

Chapter 8. Linear Algebra Subprograms 289

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

Function Reference and Input:
NZ X INDX Y

DOTT = CDOTCI(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))

INDX = (4, 1, 3)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
Output:

DOTT = (146.0, -97.0)

290 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Matrix-Vector Subprograms

This section contains the matrix-vector subprogram descriptions.

Chapter 8. Linear Algebra Subprograms 291

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and
DGEMTX — Matrix-Vector Product for a General Matrix, Its Transpose,
or Ilts Conjugate Transpose

Purpose

SGEMV and DGEMYV compute the matrix-vector product for either a real general
matrix or its transpose, using the scalars a and B, vectors x and y, and matrix A or
its transpose:

y¢ B y+a Ax

y ¢ PByta A'x

CGEMYV and ZGEMV compute the matrix-vector product for either a complex
general matrix, its transpose, or its conjugate transpose, using the scalars o and S,
vectors x and y, and matrix A, its transpose, or its conjugate transpose:

y ¢ B yta Ax

y < By+ax Alx

y ¢« B y+a Alx

SGEMX and DGEMX compute the matrix-vector product for a real general matrix,
using the scalar «, vectors x and y, and matrix A:

y< y+o Ax

SGEMTX and DGEMTX compute the matrix-vector product for the transpose of a
real general matrix, using the scalar «, vectors x and y, and the transpose of matrix

A:
y ¢ y+a A'x

Table 65. Data Types

o B xy A Subprogram

Short-precision real SGEMYV, SGEMX, and SGEMTX
Long-precision real DGEMV, DGEMX, and DGEMTX
Short-precision complex CGEMV

Long-precision complex ZGEMV

Note: SGEMV and DGEMYV are Level 2 BLAS subroutines. It is suggested that
these subroutines be used instead of SGEMX, DGEMX, SGEMTX, and
DGEMTX, which are provided only for compatibility with earlier releases of

ESSL.
Syntax
Fortran CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, Ida, x, incx, beta, y, incy)
CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy)
C and C++ sgemv | dgemv | cgemv | zgemv (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);

sgemx | dgemx | sgemtx | dgemtx (m, n, alpha, a, Ida, x, incx, y, incy);

292 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

On Entry
transa indicates the form of matrix A to use in the computation, where:

If transa

'N', A is used in the computation.
If transa = 'T', A" is used in the computation.
If transa = 'C', A" is used in the computation.
Specified as: a single character. It must be 'N', 'T', or 'C".
m is the number of rows in matrix A, and:

For SGEMV, DGEMV, CGEMYV, and ZGEMV:

If transa
If transa

'N', it is the length of vector y.
T" or 'C', it is the length of vector x.

For SGEMX and DGEMYX, it is the length of vector y.
For SGEMTX and DGEMTYX, it is the length of vector x.

Specified as: a fullword integer; 0 = m = Ida.
n is the number of columns in matrix A, and:
For SGEMV, DGEMV, CGEMYV, and ZGEMV:

If transa
If transa

'N', it is the length of vector x.
T" or 'C', it is the length of vector y.

For SGEMX and DGEMYX, it is the length of vector x.
For SGEMTX and DGEMTYX, it is the length of vector y.

Specified as: a fullword integer; n = 0.

alpha is the scaling constant a.

Specified as: a number of the data type indicated in [Table 65 on

a is the m by n matrix A, where:

For SGEMYV, DGEMV, CGEMYV, and ZGEMV:

If transa = 'N', A is used in the computation.
If transa = 'T', A" is used in the computation.
If transa = 'C', A™ is used in the computation.

For SGEMX and DGEMX, A is used in the computation.
For SGEMTX and DGEMTX, A" is used in the computation.

Note: No data should be moved to form AT or AY; that is, the
matrix A should always be stored in its untransposed form.

Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 65 on page 292|

Chapter 8. Linear Algebra Subprograms 293

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Ilda

ncx

beta

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ida = m.
is the vector x, where:

For SGEMV, DGEMYV, CGEMYV, and ZGEMV:

If transa
If transa

‘N, it has length n.
T' or 'C’, it has length m.

For SGEMX and DGEMYX, it has length n.
For SGEMTX and DGEMTYX, it has length m.

Specified as: a one-dimensional array, containing numbers of the
data type indicated in [Table 65 on page 292 where:

For SGEMV, DGEMV, CGEMYV, and ZGEMV:

If transa
If transa

'N', it must have at least 1+(n-1)lincx| elements.
'T" or 'C', it must have at least 1+(m—1)!lincx| elements.

For SGEMX and DGEMYX, it must have at least 1+(n—1) | incx |
elements.

For SGEMTX and DGEMTYX, it must have at least 1+(m—1) | incx|
elements.

is the stride for vector x.

Specified as: a fullword integer; It can have any value.

is the scaling constant S.

Specified as: a number of the data type indicated in [Table 65 on
—

is the vector y, where:

For SGEMV, DGEMV, CGEMYV, and ZGEMV:

If transa
If transa

'N', it has length m.
T' or 'C', it has length n.

For SGEMX and DGEMYX, it has length .
For SGEMTX and DGEMTX, it has length n.

Specified as: a one-dimensional array, containing numbers of the
data type indicated in [Table 65 on page 292 where:

For SGEMV, DGEMV, CGEMYV, and ZGEMV:

If transa
If transa

'N', it must have at least 1+(m—-1)lincy!| elements.
T' or 'C’, it must have at least 1+(n-1)lincy! elements.

For SGEMX and DGEMYX, it must have at least 1+(m—1) lincy |
elements.

294 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

For SGEMTX and DGEMTYX, it must have at least 1+(n-1) | incy |
elements.

incy is the stride for vector y.

Specified as: a fullword integer; incy > 0 or incy < 0.

On Return
y is the vector y, containing the result of the computation, where:

For SGEMV, DGEMV, CGEMYV, and ZGEMV:

If transa = 'N', it has length m.
If transa = 'T' or 'C', it has length n.

For SGEMX and DGEMYX, it has length m.
For SGEMTX and DGEMTX, it has length n.

Returned as: a one-dimensional array, containing numbers of the
data type indicated in [Table 65 on page 292|

Notes

1. For SGEMV and DGEMY, if you specify 'C' for the transa argument, it is
interpreted as though you specified 'T".

2. The SGEMV, DGEMYV, CGEMYV, and ZGEMYV subroutines accept lowercase
letters for the transa argument.

3. In the SGEMYV, DGEMV, CGEMYV, and ZGEMYV subroutines, incx = 0 is valid;
however, the Level 2 BLAS standard considers incx = 0 to be invalid. See
references and .

4. Vector y must have no common elements with matrix A or vector x; otherwise,
results are unpredictable. See [‘Concepts” on page 55

Function

The possible computations that can be performed by these subroutines are
described in the following sections. Varying implementation techniques are used
for this computation to improve performance. As a result, accuracy of the
computational result may vary for different computations.

For SGEMV, CGEMYV, SGEMX, and SGEMTYX, intermediate results are accumulated
in long precision. Occasionally, for performance reasons, these intermediate results
are stored.

See references [@], \I , , and |@| No computation is performed if m or n

is 0 or if « is zero and B is one.

General Matrix
For SGEMV, DGEMYV, CGEMYV, and ZGEMY, the matrix-vector product for a
general matrix:

y<Py+oAx

is expressed as follows:

Chapter 8. Linear Algebra Subprograms 295

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

N b1 ap .- Ay || 5

« B . |+ a
ym ym aml te amn xn

For SGEMX and DGEMX, the matrix-vector product for a real general matrix:
Yey+oAx

is expressed as follows:

N N ay e Ay |4

Ym Y L I Xy

In these expressions:

y is a vector of length m.
o is a scalar.

B is a scalar.

A is an m by n matrix.
x is a vector of length n.

Transpose of a General Matrix
For SGEMV, DGEMV, CGEMV and ZGEMYV, the matrix-vector product for the
transpose of a general matrix:

y ¢ By+aA'x

is expressed as follows:

N N TR S i 11
«~ B|. [+«
yn yn aln e amn xm

For SGEMTX and DGEMTX, the matrix-vector product for the transpose of a real
general matrix:

y ¢ y+aA'x

is expressed as follows:

296 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

M V1 TR S I Y|

yn yn aln amn 'xm

In these expressions:

y is a vector of length n.

o is a scalar.

B is a scalar.

AT is the transpose of matrix A, where A is an m by n matrix.
x is a vector of length m.

Conjugate Transpose of a General Matrix
For CGEMV and ZGEMY, the matrix-vector product for the conjugate transpose of
a general matrix:

y ¢ By+aAtlx

is expressed as follows:

N N ay At || X1
«~ B + o
yn yn aln e amn xm
where:

y is a vector of length n.

o is a scalar.

B is a scalar.

A" is the conjugate transpose of matrix A, where A is an m by n matrix.
x is a vector of length m.

Error Conditions

Resource Errors
Unable to allocate internal work area (for SGEMV, DGEMV, CGEMYV, and
ZGEMV).

Computational Errors
None

Input Argument Errors
transa # 'N', 'T', or 'C’'

m < 0

m > lda

n<0

Ida = 0

incy = 0

N

Chapter 8. Linear Algebra Subprograms 297

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Examples

Example 1

This example shows the computation for TRANSA equal to 'N', where the real
general matrix A is used in the computation. Because Ida is 10 and 7 is 3, array A
must be declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 = 3. In this
example, array A is declared as A(1:10,0:2).

Call Statement and Input:

TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | I
CALL SGEMV('N' , 4,3, 1.0, A(1,0) , 10 , X, 1 ,1.0,Y,2)
1.0 2.0 3.0
2.0 2.0 4.0
3.0 2.0 2.0
4.0 2.0 1.0
A= . .
X = (3.0, 2.0, 1.0)
Y = (4.0, ., 5.0, ., 2.0, ., 3.0)
Output:
Y = (14.0, ., 19.0, ., 17.0, . , 20.0)
Example 2

This example shows the computation for TRANSA equal to 'T', where the transpose
of the real general matrix A is used in the computation. Array A must follow the
same rules as given in Example 1. In this example, array A is declared as
A(-1:8,1:3).

Call Statement and Input:
TRANSA' M N ALPHA A LDA X INCX BETA Y INCY

|
CALL SGEMV('T' , 4,3, 1.0, A(-1,1) , 16 , X, 1 ,2.0,Y,2)

A =(same as input A in Example 1)
X = (3.0, 2.0, 1.0, 4.0)

Y = (1.0, ., 2.0, ., 3.0)
Output:

Y = (28.0, . , 24.0, . , 29.0)
Example 3

This example shows the computation for TRANSA equal to 'N', where the complex
general matrix A is used in the computation.

Call Statement and Input:
TRANSAM N ALPHA A LDA X INCX BETA INCY

Y
Y A A I N A
Y

CALL CGEMV('N' , 5, 3 , ALPHA , A, 106 , X, 1 ,BETA,Y , 1)

ALPHA = (1.0, 0.0)

298 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

i (1.0, 2.0) (3.0, 5.0) (2.0, 0.0)_
(2.0, 3.0) (7.0, 9.0) (4.0, 8.0)
(7.0, 4.0) (1.0, 4.0) (6.0, 0.0)
(8.0, 2.0) (2.0, 5.0) (8.0, 0.0)
A= (9.0, 1.0) (3.0, 6.0) (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0), (3.0, 4.0),
(2.0, 0.0))
Output:
y = ((12.0, 28.0), (24.0, 55.0), (10.0, 39.0), (23.0, 50.0),
(22.0, 44.0))
Example 4

This example shows the computation for TRANSA equal to 'T', where the transpose
of complex general matrix A is used in the computation. Because f8 is zero, the
result of the computation is aA'x

Call Statement and Input:

TR?NSA l‘|/| lil ALI|3HA ? L[l)A)I(IliICX Bll-:TA T IlilCY
CALL CGEMV('T' , 5, 3 , ALPHA , A, 16 , X, 1 ,BETA,Y , 1)
ALPHA = (1.0, 0.0)
A =(same as input A in Example 3)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))

BETA = (0.0, 0.0)
Y =(not relevant)
Output:
Y = ((42.0, 67.0), (10.0, 87.0), (50.0, 74.0))
Example 5

This example shows the computation for TRANSA equal to 'C', where the conjugate
transpose of the complex general matrix A is used in the computation.

Call Statement and Input:

TRT\NSAl*l’I lil ALFl’HA ? L[l)A)l(IIiICX Bll-:TA T IlilCY
CALL CGEMV('C' , 5, 3 , ALPHA , A, 106 , X, 1 , BETA, Y , 1)
ALPHA = (-1.0, 0.0)
A =(same as input A in Example 3)
X = ((L.0e, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),
(2.0, 0.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
Output:
Y = ((-73.0, -13.0), (-74.0, 57.0), (-49.0, -11.0))

Chapter 8. Linear Algebra Subprograms 299

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

300

Example 6

This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are positive. Because Ida is 10 and # is 3, array A must be declared
as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 = 3. For this example, array A
is declared as A(1:10,0:2).

Call Statement and Input:

M N ALPHA A LDA X INCX Y INCY
| | R A N
CALL SGEMX(4 , 3, 1.0 , A(1,8) , 106 , X , 1 , Y, 2)
1.0 2.0 3.0
2.0 2.0 4.0
3.0 2.0 2.0
4.0 2.0 1.0
N
X = (3.0, 2.0, 1.0)
Y = (4.0, ., 5.0, ., 2.0, ., 3.0)
Output:
Y = (14.0, ., 19.0, ., 17.0, . , 20.0)
Example 7

This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are of opposite sign. For y, which has negative stride, processing
begins at element Y(7), which is 4.0. Array A must follow the same rules as given
in Example 6. For this example, array A is declared as A(-1:8,1:3).

Call Statement and Input:

M N ALTHA ll\ L[l)A)l(Ill\lCX T IlilCY
CALL SGEMX(4 , 3, 1.0 , A(-1,1) , 10, X, 1 ,Y, -2)
A =(same as input A in Example 6)
X = (3.0, 2.0, 1.0)
Y = (3.0, ., 2.0, .,5.0, ., 4.0)
Output:
Y = (20.0, ., 17.0, . , 19.0, . , 14.0)
Example 8

This example shows a matrix, A, contained in a larger array, A, and the first
element of the matrix is not the first element of the array. Array A must follow the
same rules as given in Example 6. For this example, array A is declared as
A(1:10,1:3).

Call Statement and Input:
M N ALPHA A LDA INCX Y INCY

X
| | R A A
X

CALL SGEMX(4 , 3, 1.0 , A(5,1) , 10 , X, 1 ,Y, 1)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

B WN e o o
NN RN e o o o

A=]1.0 2.0 3.0
.0 2.0 4.0
.0 2.0 2.0
.0 2.0 1.0
X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)
Output:
Y = (14.0, 19.0, 17.0, 20.0)
Example 9

This example shows a matrix, A, and an array, A, having the same number of rows.
For this case, m and Ida are equal. Because lda is 4 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 = 3. For this example,
array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY

CALL SGEMX(4 , 3, 1.0, A(1,0) , 4 ,X,1 ,Y,1)

1.0 2.0 3.0
A=1]2.0 2.0 4.0

3.0 2.0 2.0

4.0 2.0 1.0
X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)
Output:
Y = (14.0, 19.0, 17.0, 20.0)
Example 10

This example shows a matrix, A, and an array, A, having the same number of rows.
For this case, m and Ida are equal. Because Ida is 4 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 = 3. For this
example, array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY

CALL SGEMTX(4 , 3, 1.0 , A(1,0) , 4 , X, 1 , Y, 1)

{1.0 2.0 3.0}
A=12.0 2.0 4.0
3.0 2.0 2.0
4.0 2.0 1.0
X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

Chapter 8. Linear Algebra Subprograms 301

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

302

Output:
Y = (27.0, 22.0, 26.0)
Example 11

This example shows a computation in which alpha is greater than 1. Array A must
follow the same rules as given in Example 10. For this example, array A is declared
as A(-1:2,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY

CALL SGEMTX(4 , 3, 2.0 , A(-1,1) , 4, X, 1 , Y, 1)

A =(same as input A in Example 10)
X = (3.0, 2.0, 1.0, 4.0)

Y = (1.0, 2.0, 3.0)

Output:

Y = (53.0, 42.0, 49.0)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC — Rank-One
Update of a General Matrix

Purpose

SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general
matrix, using the scalar «, matrix A, vector x, and the transpose of vector y:

A ¢« A+oxy’

CGERC and ZGERC compute the rank-one update of a general matrix, using the
scalar o, matrix A, vector x, and the conjugate transpose of vector y:

A ¢ Atoay™

Table 66. Data Types

oA x Yy Subprogram
Short-precision real SGER
Long-precision real DGER
Short-precision complex CGERU and CGERC
Long-precision complex ZGERU and ZGERC

Note: For compatibility with earlier releases of ESSL, you can use the names
SGER1 and DGER1 for SGER and DGER, respectively.

Syntax
Fortran CALL SGER | DGER | CGERU | ZGERU | CGERC | ZGERC (m, n, alpha, x, incx, y, incy, a, lda)
C and C++ sger | dger | cgeru | zgeru | cgerc | zgerc (m, n, alpha, x, incx, y, incy, a, lda);

On Entry

m

alpha

incx

is the number of rows in matrix A and the number of elements in
vector x.

Specified as: a fullword integer; 0 = m = lda.

is the number of columns in matrix A and the number of elements
in vector y.

Specified as: a fullword integer; n = 0.

is the scaling constant a.

Specified as: a number of the data type indicated in
is the vector x of length m.

Specified as: a one-dimensional array of (at least) length
1+(m=1) lincx |, containing numbers of the data type indicated in

is the stride for vector x.
Specified as: a fullword integer. It can have any value.

is the vector y of length n, whose transpose or conjugate transpose
is used in the computation.

Chapter 8. Linear Algebra Subprograms 303

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Note: No data should be moved to form y' or y'; that is, the
vector y should always be stored in its untransposed form.

Specified as: a one-dimensional array of (at least) length
1+(n-1) lincy |, containing numbers of the data type indicated in
|Tab1e 66 on page 303I

incy is the stride for vector y.
Specified as: a fullword integer. It can have any value.

a is the m by n matrix A. Specified as: an Ida by (at least) n array,
containing numbers of the data type indicated in [Table 66 on page

!

Ida is the size of the leading dimension of the array specified for a.

Specified as: a fullword integer; Ida > 0 and lda = m.

On Return
a is the m by n matrix A, containing the result of the computation.

Returned as: a two-dimensional array, containing numbers of the
data type indicated in [Table 66 on page 303|

Notes

1. In these subroutines, incx = 0 and incy = 0 are valid; however, the Level 2
BLAS standard considers incx = 0 and incy = 0 to be invalid. See references
and [B7].

2. Matrix A can have no common elements with vectors x and y; otherwise,
results are unpredictable. See [’Concepts” on page 55

Function

SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general
matrix:

A ¢ A+oxy"
where:
A is an m by n matrix.

o is a scalar.

x is a vector of length m.

y' is the transpose of vector y of length n.

It is expressed as follows:

It can also be expressed as:

304 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

a;; +ax) ... QT axy,

a aml + 0(’xmyl amn+0(‘xmyn

ml ** Ymn

CGERC and ZGERC compute a slightly different rank-one update of a general
matrix:

A ¢ A+oxy"
where:
A is an m by n matrix.

o is a scalar.

x is a vector of length m.

y'! is the conjugate transpose of vector y of length 7.

It is expressed as follows:

an A an A, X1
. <~ . + o [J_/l J_/n]
a;rzl Qo A Qo Xm
It can also be expressed as:
a, ...a, a,; +oxy, Looap,toxy,
(_
Ay - am;l a,.nl +ox,y ... amn.+ ax,y,

See references @], , and [[82]. No computation is performed if m, n, or « is
zero. For CGERU and CGERC, intermediate results are accumulated in long
precision. For SGER, intermediate results are accumulated in long precision on
some platforms.

Error Conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors
1. m<0
2. n<0

Chapter 8. Linear Algebra Subprograms 305

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

3. lda =0
4. m > lda

Examples

Example 1

This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are positive. Because Ida is 10 and #n is 3, array A must be declared
as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 = 3. For this example, array A
is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA

CALL SGER(4 , 3, 1.0 , X, 1 ,Y,2 , A(1,0) , 10)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, ., 2.0, ., 3.0)
1.0 2.0 3.0
2.0 2.0 4.0
3.0 2.0 2.0
4.0 2.0 1.0
N
Output:
4.0 8.0 12.0
4.0 6.0 10.0
4.0 4.0 5.0
8.0 10.0 13.0
A= . . .
Example 2

This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are of opposite sign. For y, which has negative stride, processing
begins at element Y (5), which is 1.0. Array A must follow the same rules as given
in Example 1. For this example, array A is declared as A(-1:8,1:3).

Call Statement and Input:

M N ALPHA X INCX
[
CALL SGER(4 , 3, 1.0 , X , 1

Y INY A LDA
| | |
Y, -2 ,A(-1,1) , 10)

B

X = (3.0, 2.0, 1.0, 4.0)
Y = (3.0, ., 2.0, ., 1.0)
A =(same as input A in Example 1)

306 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Output:
A =(same as input A in Example 1)
Example 3

This example shows a matrix, A, contained in a larger array, A, and the first
element of the matrix is not the first element of the array. Array A must follow the
same rules as given in Example 1. For this example, array A is declared as
A(1:10,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA

CALL SGER(4 , 3, 1.0 , X, 3 , Y, 1 ,A(4,1),10)

X = (3.0, ., .,2.0, .,.,110,.,.,4.0
Y = (1.0, 2.0, 3.0)
1.0 2.0 3.0
A=1]2.0 2.0 4.0

3.0 2.0 2.0

4.0 2.0 1.0
Output:

21.0 é.O lé.O
A= 4.0 6.0 10.0

4.0 4.0 5.0

8.0 10.0 13.0
Example 4

This example shows a matrix, A, and array, A, having the same number of rows.
For this case, m and Ida are equal. Because lda is 4 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 = 3. For this example,
array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA

CALL SGER(4 , 3, 1.0 , X, 1 , Y, 1 , A(L,0), 4)

X
Y

4.0)

(3.0, 2.0, 1.0,
(1.0, 2.0, 3.0)

Chapter 8. Linear Algebra Subprograms 307

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

1.0 2.0 3.0
A=12.0 2.0 4.0

3.0 2.0 2.0

4.0 2.0 1.0
Output:

4.0 8.0 12.0
A=1]4.0 6.0 10.0

4.0 4.0 5.0

8.0 10.0 13.0
Example 5

This example shows a computation in which scalar value for alpha is greater than
1. Array A must follow the same rules as given in Example 4. For this example,
array A is declared as A(-1:2,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA

CALL SGER(4 , 3 ,2.06 , X, 1 , Y, 1 ,A(-1,1), 4)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)
A =(same as input A in Example 4)
Output:
7.0 14.0 21.0
A= 6.0 10.0 16.0
5.6 6.0 8.0
12.0 18.0 25.0
Example 6

This example shows a rank-one update in which all data items contain complex
numbers, and the transpose y" is used in the computation. Matrix A is contained
in a larger array, A. The strides of vectors x and y are positive. The Fortran
DIMENSION statement for array A must follow the same rules as given in
Example 1. For this example, array A is declared as A(1:10,0:2).

Call Statement and Input:

M N ALTHA T ITCX T ITCY ? LTA
CALL CGERU(5, 3 , ALPHA , X , 1 , Y, 1 , A(1,0) , 10)
ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),
(2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
_ (1.0, 2.0) (3.0, 5.0) (2.0, 0.0)-

(2.0, 3.0) (7.0, 9.0) (4.0, 8.0)

(7.0, 4.0) (1.0, 4.0) (6.0, 0.0)

(8.0, 2.0) (2.0, 5.0) (8.0, 0.0)
A=1 (9.0, 1.0) (3.0, 6.0) (1.0, 0.0)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Output:

(-2.0, 6.0) (7.0, 13.0) (5.0, 1.0)
(6.0, 11.0) (23.0, 9.0) (8.0, 4.0)
(6.0, 7.0) (5.0, 8.0) (8.0, 0.0)
(3.0, 12.0) (14.0, 21.0) (15.0, 1.0)

A= (11.6, 5.8) (11.8, 6.0) (3.0, -2.0)
Example 7

This example shows a rank-one update in which all data items contain complex
numbers, and the conjugate transpose y* is used in the computation. Matrix A is
contained in a larger array, A. The strides of vectors x and y are positive. The
Fortran DIMENSION statement for array A must follow the same rules as given in
Example 1. For this example, array A is declared as A(1:10,0:2).

Call Statement and Input:

M N ALPHA)|(IlilCX T IIilCY ? L[|)/-\
CALL CGERC(5, 3 , ALPHA , X , 1 , Y, 1 , A(1,0) , 10)
ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),
(2.0, 0.0))

Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
A =(same as input A in Example 6)
Output:

(6.0, 2.0) (7.0, 13.0) (1.0, 3.0)

(6.0, -5.0) (23.0, 9.0) (8.0, 12.0)

(10.0, 3.0) (5.0, 8.0) (6.0, 2.0)

(19.0, 0.0) (14.0, 21.0) (7.0, 7.0)
A= | (11.0, -3.0) (11.0 (3.0

.0, 6.0) .0, 2.0)

Chapter 8. Linear Algebra Subprograms 309

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV,
SSLMX, and DSLMX — Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix

Purpose

SSPMYV, DSPMV, CHPMYV, ZHPMYV, SSYMV, DSYMV, CHEMYV, and ZHEMV
compute the matrix-vector product for either a real symmetric matrix or a complex
Hermitian matrix, using the scalars « and 8, matrix A, and vectors x and y:

y<By+aAx

SSLMX and DSLMX compute the matrix-vector product for a real symmetric
matrix, using the scalar «, matrix A, and vectors x and y:

yey+oAx

The following storage modes are used:

* For SSPMV, DSPMV, CHPMYV, and ZHPMYV, matrix A is stored in upper- or
lower-packed storage mode.

* For SSYMV, DSYMV, CHEMYV, and ZHEMYV, matrix A is stored in upper or
lower storage mode.

* For SSLMX and DSLMX, matrix A is stored in lower-packed storage mode.
Table 67. Data Types

o B A Xy Subprogram

Short-precision real SSPMYV, SSYMV, and SSLMX
Long-precision real DSPMYV, DSYMV, and DSLMX
Short-precision complex CHPMV and CHEMV
Long-precision complex ZHPMYV and ZHEMV

Note: SSPMV and DSPMYV are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLMX and DSLMX, which are provided only for
compatibility with earlier releases of ESSL.

Syntax

Fortran CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)
CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CALL SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy)

C and C++ sspmv | dspmv | chpmv | zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy);

ssymv | dsymv | chemv | zhemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy);

sslmx | dslmx (n, alpha, ap, x, incx, y, incy);

On Entry
uplo indicates the storage mode used for matrix A, where:

If uplo = 'U’, A is stored in upper-packed or upper storage mode.

310 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

alpha

ap

Ilda

incx

beta

If uplo = 'L', A is stored in lower-packed or lower storage mode.
Specified as: a single character. It must be 'U’" or 'L".

is the number of elements in vectors x and y and the order of
matrix A.

Specified as: a fullword integer; n = 0.

is the scaling constant a.

Specified as: a number of the data type indicated in [Table 67 on
_

has the following meaning:

For SSPMV and DSPMYV, ap is the real symmetric matrix A of order
n, stored in upper- or lower-packed storage mode.

For CHPMV and ZHPMY, ap is the complex Hermitian matrix A of
order n, stored in upper- or lower-packed storage mode.

For SSLMX and DSLMX, ap is the real symmetric matrix A of order
n, stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in [Table 67 on page]

has the following meaning:

For SSYMV and DSYMYV, a is the real symmetric matrix A of order
n, stored in upper or lower storage mode.

For CHEMV and ZHEMYV, g is the complex Hermitian matrix A of
order n, stored in upper or lower storage mode.

Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 67 on page 310}

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ilda = n.
is the vector x of length n.

Specified as: a one-dimensional array of (at least) length
1+(n=1) lincx |, containing numbers of the data type indicated in
[Table 67 on page 310}

is the stride for vector x.
Specified as: a fullword integer, where:

For SSPMV, DSPMV, CHPMV, ZHPMYV, SSYMV, DSYMV, CHEMY,
and ZHEMV, incx < 0 or incx > 0.

For SSLMX and DSLMX, incx can have any value.

is the scaling constant S.

Specified as: a number of the data type indicated in [Table 67 on

is the vector y of length n.

Specified as: a one-dimensional array of (at least) length
1+(n=1) lincy |, containing numbers of the data type indicated in
[Table 67 on page 310]

Chapter 8. Linear Algebra Subprograms 311

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

incy is the stride for vector y.

Specified as: a fullword integer; incy > 0 or incy < 0.

On Return

y is the vector y of length #, containing the result of the
computation. Returned as: a one-dimensional array, containing
numbers of the data type indicated in [Table 67 on page 310}

1. All subroutines accept lowercase letters for the uplo argument.

2. The vector y must have no common elements with vector x or matrix A;
otherwise, results are unpredictable. See [Concepts” on page 55/

3. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see
[Matrix” on page 65 For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see [“Complex Hermitian Matrix” on page 69

Function

These subroutines perform the computations described in the two sections below.
See references [B6], [37], and [82]. For SSPMV, DSPMV, CHPMV, ZHPMYV, SSYMYV,
DSYMV, CHEMYV, and ZHEMY, if n is zero or if « is zero and B is one, no
computation is performed. For SSLMX and DSLMX, if n or « is zero, no
computation is performed.

For SSLMX, SSPMV, SSYMV, CHPMYV, and CHEMY, intermediate results are
accumulated in long precision. However, several intermediate stores may occur for
each element of the vector y.

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV,
and ZHEMV

These subroutines compute the matrix-vector product for either a real symmetric
matrix or a complex Hermitian matrix:

y<By+aAx

where:

y is a vector of length n.

o is a scalar.

B is a scalar.

A is a real symmetric or complex Hermitian matrix of order n.

x is a vector of length n.

It is expressed as follows:

312 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

W B2 ayp -y || X

yn yn anl "'ann xn

For SSLMX and DSLMX

These subroutines compute the matrix-vector product for a real symmetric matrix
stored in lower-packed storage mode:

yey+oAx
where:

y is a vector of length n.

« is a scalar.

A is a real symmetric matrix of order 7.
x is a vector of length n.

It is expressed as follows:

321 N ay -y || %

yn yn anl "'ann xn

Error Conditions

Computational Errors
None

Input Argument Errors
uplo # 'L' or 'U'

n <0

lda < n

Ida = 0

incx = 0

incy = 0

o hrwD -

Examples

Example 1
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

8.0 4.0 2.0
4.0 6.0 7.0
2.0 7.0 3.0

Chapter 8. Linear Algebra Subprograms 313

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

Call Statement and Input:
UPLO N ALPHA AP X [INCX BETA Y INCY

CALL SSPMV('L' , 3 ,1.0 ,AP,X,1,1.0,Y,2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)

Y = (5.0, ., 3.0, ., 2.0)
Output:

Y = (39.0, ., 34.0, . , 25.0)
Example 2

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 1.0. The real
symmetric matrix A of order 3 is stored in upper-packed storage mode. It uses the
same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY

CALL SSPMV('U' , 3, 1.0 , AP, X, -2,2.0,VY,1)

AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
X = (4.0, ., 2.0, ., 1.0)

Y = (6.0, 5.0, 4.0)

Output:

Y = (36.0, 54.0, 36.0)
Example 3

This example shows vector x and y with positive stride and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

(1.0, 0.0) (3.0, 5.0) (2.0, -3.0)
(3.0, -5.0) (7.0, 0.0) (4.0, -8.0)
(2.0, 3.0) (4.0, 8.0) (6.0, 0.0)

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA INCY

Y
I [N A
Y

CALL CHPMV('L' , 3 , ALPHA , AP , X , 1 , BETA, Y , 2)

ALPHA = (1.0, 0.0)

AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
(4.0, 8.0), (6.0, .))

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

BETA = (1.0, 0.0)

Y = ((1.0, 0.0), ., (2.0, -1.0), . , (2.0, 1.0))

Output:

Y = ((32.0, 21.0), ., (87.0, -8.0), . , (32.0, 64.0))

314 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

Example 4

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0, 2.0). The
complex Hermitian matrix A of order 3 is stored in upper-packed storage mode. It
uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these

values.

Call Statement and Input:

UI|°L0 lil ALFl’HA ?P)l(IN(|ZX Bll-:TA TIN(llY
CALL CHPMV('U' , 3, ALPHA , AP , X , -2 , BETA , Y , 2)
ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
BETA = (0.0, 0.0)
Y =(not relevant)
Output:
Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))
Example 5

This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 1.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY

CALL SSYMV('L* , 3,10 ,A,3,X,1,1.0,Y,2)

8.0 .
A=1]4.0 6.0 .

2.0 7.0 3.0
X = (3.0, 2.0, 1.0)
Y = (5.0, ., 3.0, ., 2.0)
Output:
Y = (39.0, ., 34.0, . , 25.0)
Example 6

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 1.0. The real
symmetric matrix A of order 3 is stored in upper storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY

CALL SSYMV('U' , 3,10 ,A,4,X,-2,20,Y,1)

Chapter 8. Linear Algebra Subprograms 315

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

316

8.0 4.0 2.0
A= 6.0 7.0

3.0
X = (4.0, ., 2.0, ., 1.0)
Y = (6.0, 5.0, 4.0
Output:
A = (36.0, 54.0, 36.0)
Example 7

This example shows vector x and y with positive stride and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA A
|
CALL CHEMV('L' , 3 , ALPHA , A

LDA X INCX BETA Y
T B |
3,X,1,BETA, Y

INCY
|
2)

B s

ALPHA = (1.0, 0.0)

{ (1.0, .) . .
A = | (3.0, -5.0) (7.0, .) .
[(2.0, 3.0) (4.0, 8.0) (6.0, .) J

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

BETA = (1.0, 0.0)

Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
Output:

Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))
Example 8

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0, 2.0). The
complex Hermitian matrix A of order 3 is stored in upper storage mode. It uses the
same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:

UPLO N ALPHA A
| |
CALL CHEMV('U' , 3 , ALPHA , A

LDA X INCX BETA Y
[A |
3,X, -2, BETA, Y

INCY
|
2)

ALPHA = (1.0, 0.0)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

(1.0, .) (3.0, 5.0) (2.0, -3.0)

A = . (7.0, .) (4.0, -8.0)
. . (6.0, .)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

BETA = (0.0, 0.0)

Y =(not relevant)

Output:

Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))
Example 9

This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3. Matrix A is:

8.0 4.0 2.0

4.0 6.0 7.0

2.0 7.0 3.0
Call Statement and Input:

N ALPHA AP X INCX Y INCY

R R
CALL SSIMX(3 , 1.0 , AP , X , 1 , Y ,2)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, ., 3.0, ., 2.0)
Output:
Y = (39.0, ., 34.0, ., 25.0)

Chapter 8. Linear Algebra Subprograms 317

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and
DSLR1 — Rank-One Update of a Real Symmetric or Complex Hermitian
Matrix

Purpose

SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1 compute the rank-one update of a
real symmetric matrix, using the scalar &, matrix A, vector x, and its transpose xl:

A<A+axxt

CHPR, ZHPR, CHER, and ZHER compute the rank-one update of a complex
Hermitian matrix, using the scalar «, matrix A, vector x, and its conjugate
transpose M

A<A+axxH

The following storage modes are used:

* For SSPR, DSPR, CHPR, and ZHPR, matrix A is stored in upper- or
lower-packed storage mode.

* For SSYR, DSYR, CHER, and ZHER, matrix A is stored in upper or lower
storage mode.

e For SSLR1 and DSLR1, matrix A is stored in lower-packed storage mode.
Table 68. Data Types

A, x o Subprogram
Short-precision real Short-precision real SSPR, SSYR, and SSLR1
Long-precision real Long-precision real DSPR, DSYR, and DSLR1
Short-precision complex Short-precision real CHPR and CHER
Long-precision complex Long-precision real ZHPR and ZHER

Note: SSPR and DSPR are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLR1 and DSLR1, which are only provided for
compatibility with earlier releases of ESSL.

Syntax

Fortran CALL SSPR | DSPR | CHPR | ZHPR (uplo, n, alpha, x, incx, ap)
CALL SSYR | DSYR | CHER | ZHER (uplo, n, alpha, x, incx, a, lda)

CALL SSLR1 | DSLR1 (n, alpha, x, incx, ap)

C and C++ sspr | dspr | chpr | zhpr (uplo, n, alpha, x, incx, ap);
ssyr | dsyr | cher | zher (uplo, n, alpha, x, incx, a, lda);

sslrl | dslrl (n, alpha, x, incx, ap);

On Entry
uplo indicates the storage mode used for matrix A, where:

If uplo = 'U’, A is stored in upper-packed or upper storage mode.

318 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

alpha

incx

ap

Ida

On Return
ap

If uplo = 'L', A is stored in lower-packed or lower storage mode.
Specified as: a single character. It must be 'U’" or 'L".

is the number of elements in vector x and the order of matrix A.
Specified as: a fullword integer; n = 0.

is the scaling constant a.

Specified as: a number of the data type indicated in [Table 68 on
_

is the vector x of length n.

Specified as: a one-dimensional array of (at least) length
1+(n-1) lincx |, containing numbers of the data type indicated in
[Table 68 on page 318

is the stride for vector x.
Specified as: a fullword integer, where:

For SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, and ZHER,
incx < 0 or incx > 0.

For SSLR1 and DSLR1, incx can have any value.
has the following meaning:

For SSPR and DSPR, ap is the real symmetric matrix A of order n,
stored in upper- or lower-packed storage mode.

For CHPR and ZHPR, ap is the complex Hermitian matrix A of
order n, stored in upper- or lower-packed storage mode.

For SSLR1 and DSLR1, ap is the real symmetric matrix A of order
n, stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in [Table 68 on page]

has the following meaning:

For SSYR and DSYR, a is the real symmetric matrix A of order n,
stored in upper or lower storage mode.

For CHER and ZHER, a is the complex Hermitian matrix A of
order n, stored in upper or lower storage mode.

Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 68 on page 318]

is the leading dimension of the array specified for a.

Specified as: a fullword integer; Ida > 0 and Ida = n.

is the matrix A of order n, containing the results of the
computation. Returned as: a one-dimensional array, containing
numbers of the data type indicated in[Table 68 on page 318

is the matrix A of order n, containing the results of the
computation. Returned as: a two-dimensional array, containing
numbers of the data type indicated in [Table 68 on page 318|

Chapter 8. Linear Algebra Subprograms 319

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

Notes

1. All subroutines accept lowercase letters for the uplo argument.

2. The vector x must have no common elements with matrix A; otherwise, results
are unpredictable. See|”Concepts” on page 55)

3. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # 0.0, they are set to zero.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see
[Matrix” on page 65/ For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see ['Complex Hermitian Matrix” on page 69|

Function

These subroutines perform the computations described in the two sections below.
See references [@], , and . If n or a is 0, no computation is performed.

For CHPR and CHER, intermediate results are accumulated in long precision. For
SSPR, SSYR, and SSLR1, intermediate results are accumulated in long precision on
some platforms.

For SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1

These subroutines compute the rank-one update of a real symmetric matrix:
A<cA+oxx’
where:

A is a real symmetric matrix of order n.
o is a scalar.
x is a vector of length n.

x" is the transpose of vector x.

It is expressed as follows:

Clll e aln

a a a

nl *** “nn nl *** “nn n

For CHPR, ZHPR, CHER, and ZHER

These subroutines compute the rank-one update of a complex Hermitian matrix:
AcA+oox™

where:

A is a complex Hermitian matrix of order n.

o is a scalar.

x is a vector of length n.

x™ is the conjugate transpose of vector x.

320 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

It is expressed as follows:

all ...al all ...al

n n

a a a

nl *** “nn nl *** “nn n

Error Conditions

Computational Errors
None

nput Argument Errors
uplo # 'L' or 'U'

n <0

incx = 0

lda = 0

Ida < n

arODS

Examples

Example 1

Ry
=
—_

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

This example shows a vector x with a positive stride, and a real symmetric matrix
A of order 3, stored in lower-packed storage mode. Matrix A is:

8.0 4.0 2.0
4.0 6.0 7.0
2.0 7.0 3.0
Call Statement and Input:
UPLO N ALPHA X INCX AP

CALL SSPR('L' , 3, 1.0, X, 1 , AP)

X = (3.0, 2.0, 1.0)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
Output:

AP = (17.e, 10.0, 5.0, 10.0, 9.0, 4.0)
Example 2

This example shows a vector x with a negative stride, and a real symmetric matrix
A of order 3, stored in upper-packed storage mode. It uses the same input matrix

A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X [INCX AP

CALL SSPR('U" , 3, 1.0 , X, -2, AP)

X = (1., ., 2.0, ., 3.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
Output:

Chapter 8. Linear Algebra Subprograms 321

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

AP = (17.0, 10.0, 10.0, 5.0, 9.0, 4.0)

Example 3
This example shows a vector x with a positive stride, and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

(1.0, 0.0) (3.0, 5.0) (2.0, -3.0)
(3.0, -5.0) (7.0, 0.0) (4.0, -8.0)
(2.0, 3.0) (4.0, 8.0) (6.0, 0.0)

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX AP

CALL CHPR('L" , 3, 1.0 , X, 1, AP)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
(4.0, 8.0), (6.0, .))

Output:

AP = ((6.0, 0.0), (7.0, -13.0), (13.0, 1.0), (23.0, 0.0),
(16.0, 24.0), (31.0, 0.0))

Example 4

This example shows a vector x with a negative stride, and a complex Hermitian
matrix A of order 3, stored in upper-packed storage mode. It uses the same input
matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX AP

CALL CHPR('U' , 3, 1.0, X, -2, AP)

X = ((3.0, 4.0), ., (4.0, 0.0), ., (1.0, 2.0))

AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),
(4.0, -8.0), (6.0, .))

Output:

AP = ((6.0, 0.0), (7.0, 13.0), (23.0, 0.0), (13.0, -1.0),
(16.0, -24.0), (31.0, 0.0))

Example 5

This example shows a vector x with a positive stride, and a real symmetric matrix
A of order 3, stored in lower storage mode. It uses the same input matrix A as in
Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA

CALL SSYR('L' , 3,10, X, 1,A,3)

322 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

X = (3.0, 2.0, 1.0)
8.0 .
A = 4.0 6.0 .
2.0 7.0 3.0
Output:
17.0 .
A = 10.0 10.0 .
5.0 9.0 4.0J

Example 6

This example shows a vector x with a negative stride, and a real symmetric matrix
A of order 3, stored in upper storage mode. It uses the same input matrix A as in
Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA

CALL SSYR('U' , 3 ,1.06 ,X,-2,A,4)

X = (1.0, ., 2.0, ., 3.0)
8.0 4.0 2.0
A = 6.0 7.0
3.0
Output:
[17.0]

Example 7

This example shows a vector x with a positive stride, and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA

|
CALL CHER('L' , 3, 1.0 , X, 1, A, 3)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

| ey o]

Chapter 8. Linear Algebra Subprograms 323

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

A = l(3.0, -5.0) (7.0, .) . }
(2.0, 3.0) (4.0, 8.0) (6.0, .)
Output:
{ (6.0, 0.0) .
A = (7.0, -13.0) (23.0, 0.0) .
[(13.0, 1.0) (16.0, 24.0) (31.0, 0.0) J
Example 8

This example shows a vector x with a negative stride, and a complex Hermitian
matrix A of order 3, stored in upper storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA

CALL CHER('U' , 3, 1.0 , X, -2, A, 3)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

(1.0, .) (3.0, 5.0) (2.0, -3.0)

A = . (7.0, .) (4.0, -8.0)
. (6.0, .)
Output:
(6.0, 0.0) (7.0, 13.0) (13.0, -1.0)
A = . (23.0, 0.0) (16.0, -24.0)
. . (31.0, 0.0)

Example 9

This example shows a vector x with a positive stride, and a real symmetric matrix
A of order 3, stored in lower-packed storage mode. It uses the same input matrix A
as in Example 1.

Call Statement and Input:
N ALPHA X INCX AP

CALL SSLR1(3, 1.0 , X, 1 , AP)

X = (3.0, 2.0, 1.0)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
Output:

AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

324 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHERZ2,
SSLR2, and DSLR2 — Rank-Two Update of a Real Symmetric or
Complex Hermitian Matrix

Purpose

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2 compute the rank-two update of
a real symmetric matrix, using the scalar «, matrix A, vectors x and y, and their
transposes xT and yT:

A ¢« A+oxy' + oyx"

CHPR2, ZHPR2, CHER2, and ZHER2, compute the rank-two update of a complex
Hermitian matrix, using the scalar «, matrix A, vectors x and y, and their conjugate
transposes a2 and yH:

A — A+ oxy” + o

The following storage modes are used:

e For SSPR2, DSPR2, CHPR?2, and ZHPR2, matrix A is stored in upper- or
lower-packed storage mode.

* For SSYR2, DSYR2, CHER?2, and ZHER?2, matrix A is stored in upper or lower
storage mode.

* For SSLR2 and DSLR2, matrix A is stored in lower-packed storage mode.
Table 69. Data Types

oA x Y Subprogram
Short-precision real SSPR2, SSYR2, and SSLR2
Long-precision real DSPR2, DSYR2, and DSLR2
Short-precision complex CHPR2 and CHER2
Long-precision complex ZHPR2 and ZHER2

Note: SSPR2 and DSPR2 are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLR2 and DSLR2, which are only provided for
compatibility with earlier releases of ESSL.

Syntax

Fortran CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap)
CALL SSYR2 | DSYR2 | CHER2 | ZHER?2 (uplo, n, alpha, x, incx, y, incy, a, lda)

CALL SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap)

C and C++ sspr2 | dspr2 | chpr2 | zhpr2 (uplo, n, alpha, x, incx, y, incy, ap);

ssyr2 | dsyr2 | cher2 | zher2 (uplo, n, alpha, x, incx, y, incy, a, lda);

sslr2 | dslr2 (n, alpha, x, incx, y, incy, ap);

Chapter 8. Linear Algebra Subprograms 325

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

On Entry
uplo

alpha

incx

incy

ap

indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.
If uplo = 'L', A is stored in lower-packed or lower storage mode.
Specified as: a single character. It must be 'U' or 'L".

is the number of elements in vectors x and y and the order of
matrix A.

Specified as: a fullword integer; n = 0.

is the scaling constant .

Specified as: a number of the data type indicated in [Table 69 on

is the vector x of length n.

Specified as: a one-dimensional array of (at least) length
1+(n-1) lincx |, containing numbers of the data type indicated in
[Table 69 on page 325|

is the stride for vector x.
Specified as: a fullword integer, where:

For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and
ZHER?2, incx < 0 or incx > 0.

For SSLR2 and DSLR?2, incx can have any value.
is the vector y of length n.

Specified as: a one-dimensional array of (at least) length
1+(n=1) lincy |, containing numbers of the data type indicated in
[Table 69 on page 325|

is the stride for vector y.
Specified as: a fullword integer, where:

For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and
ZHER2, incy < 0 or incy > 0.

For SSLR2 and DSLR?2, incy can have any value.
has the following meaning:

For SSPR2 and DSPR2, ap is the real symmetric matrix A of order
n, stored in upper- or lower-packed storage mode.

For CHPR2 and ZHPR2, ap is the complex Hermitian matrix A of
order n, stored in upper- or lower-packed storage mode.

For SSLR2 and DSLR2, ap is the real symmetric matrix A of order
n, stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in [Table 69 on page]

B2

has the following meaning:

For SSYR2 and DSYR?, a is the real symmetric matrix A of order n,
stored in upper or lower storage mode.

326 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Notes

Function

For CHER2 and ZHER?2, 4 is the complex Hermitian matrix A of
order n, stored in upper or lower storage mode.

Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 69 on page 325

lda is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and lda = n.

On Return

ap is the matrix A of order n, containing the results of the
computation. Returned as: a one-dimensional array, containing
numbers of the data type indicated in [Table 69 on page 325|

a is the matrix A of order n, containing the results of the

computation. Returned as: a two-dimensional array, containing
numbers of the data type indicated in|Table 69 on page 325|

All subroutines accept lowercase letters for the uplo argument.

The vectors x and y must have no common elements with matrix A; otherwise,
results are unpredictable. See [“Concepts” on page 55

On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # zero, the imaginary parts of the diagonal elements
are set to zero.

For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see
[Matrix” on page 65] For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see[“Complex Hermitian Matrix” on page 69|

These subroutines perform the computation described in the two sections below.
See references [@], , and . If n or « is zero, no computation is performed.

For SSPR2, SSYR2, SSLR2, CHPR2, and CHER?2, intermediate results are
accumulated in long precision.

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2

These subroutines compute the rank-two update of a real symmetric matrix:

A<« A+ oy’ + oyx"

where:

A is a real symmetric matrix of order .

o is a scalar.
x is a vector of length n.

XT

is the transpose of vector x.

y is a vector of length n.

T

y

is the transpose of vector y.

It is expressed as follows:

Chapter 8. Linear Algebra Subprograms 327

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

ap - dyy ap .- dyy X1
..(_..+a.[y1yn]
a;;l ann a}.’ll ann xn
N
va | | []
Y

CHPR2, ZHPR2, CHER2, and ZHER2

These subroutines compute the rank-two update of a complex Hermitian matrix:

A« A+ oaxy™ + apxt

where:

A is a complex Hermitian matrix of order n.
o is a scalar.

x is a vector of length n.

x™ is the conjugate transpose of vector x.

y is a vector of length n.

y'' is the conjugate transpose of vector y.

It is expressed as follows:

ayy ... ay, ayy .. ay, X,
<~ . +a ' [.)_/1 .)_/n]
a;:zl Ay a;.al 'a;m Xn
N1
va || [F 5]
Y,

Error Conditions

Computational Errors
None

328 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

nput Argument Errors
uplo # 'L' or 'U'

n <0

incx = 0

incy = 0

lda = 0

Ida < n

ogrOD S

Examples

Example 1
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

N B> 0
[cRoNo)
~N o B
[cRoNo)
[SSER NN \N]
[cRoNo)

Call Statement and Input:
UPLO N ALPHA X INCX INCY AP

Y
[R R R
Y

CALL SSPR2('L' , 3, 1.0, X, 1, , 2, AP)

X = (3.0, 2.0, 1.0)

Y = (5.0, ., 3.0, ., 2.0)

AP - (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
Output:

AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)
Example 2

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 3.0. The real
symmetric matrix A of order 3 is stored in upper-packed storage mode. It uses the
same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y [INCY AP

CALL SSPR2('U' , 3 ,1.0 , X, -2,Y,2,ApP)

X = (1.0, ., 2.0, ., 3.0)

Y = (5.0, ., 3.0, .,2.0)

AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
Output:

AP = (38.0, 23.0, 18.0, 13.0, 14.0, 7.0)
Example 3

This example shows vector x and y with positive stride and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

(1.0, 0.0) (3.0, 5.0) (2.0, -3.0)
(3.0, -5.0) (7.0, 0.0) (4.0, -8.0)
(2.0, 3.0) (4.0, 8.0) (6.0, 0.0)

Chapter 8. Linear Algebra Subprograms 329

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:

UPLO N ALPHA INCX Y INCY AP

X
[R
X

CALL CHPR2('L' , 3 , ALPHA , X , 1 , Y , 2, AP)

ALPHA = (1.0, 0.0)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

Y = ((1.0, 0.0), . , (2.0, -1.0), ., (2.0, 1.0))

AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
(4.0, 8.0), (6.0, .))

Output:

AP = ((3.0, 0.0), (7.0, -10.0), (9.0, 4.0), (23.0, 0.0),
(14.0, 23.0), (26.0, 0.0))

Example 4

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0,2.0). The
complex Hermitian matrix A of order 3 is stored in upper-packed storage mode. It
uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if a # zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP

|
CALL CHPR2('U' , 3 , ALPHA , X , -2 , Y , 2, AP)

ALPHA = (1.0, 0.0)

X = ((3.0, 4.0), . , (4.0, 0.0), ., (1.0, 2.0))

\ = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

AP = ((L.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),
(4.0, -8.0), (6.0, .))

Output:

AP = ((3.0, 0.0), (7.0, 10.0), (23.0, 0.0), (9.0, -4.0),
(14.0, -23.0), (26.0, 0.0))

Example 5

This example shows vectors x and y with positive strides, and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA

|
CALL SSYR2('L' , 3, 1.0, X,1,Y,2,A,3)

X
Y

(0, 1.0)
(5.0, ., 3.0, ., 2.0)

r 1

330 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Example 6

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 3.0. The real
symmetric matrix A of order 3 is stored in upper storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA

CALL SSYR2('U' , 3 ,1.0 , X, -2,Y,2,A,4)

X = (1.0, ., 2.0, ., 3.0)
Y = (5.0, ., 3.0, ., 2.0)
8.0 4.0 2.0
A = . 6.0 7.0
. 3.0
Output:
38.0 23.0 13.0
A = . 18.0 14.0
. . 7.0
Example 7

This example shows vector x and y with positive stride, and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:

UPLO N ALPHA X INCX Y INCY A LDA
A A A

CALL CHER2('L' , 3 , ALPHA , X , 1, Y, 2, A, 3)

ALPHA = (1.0, 0.0)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

Chapter 8. Linear Algebra Subprograms 331

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

(1.0, .) .
A = (3.0, -5.0) (7.0, .) .
(2.0, 3.0) (4.0, 8.0) (6.0, .)

Output:

(3.0, 0.0) .
A = (7.0, -10.0) (23.0, 0.0) .

(9.0, 4.0) (14.0, 23.0) (26.0, 0.0)
Example 8

This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0, 2.0). The
complex Hermitian matrix A of order 3 is stored in upper storage mode. It uses the
same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if « # zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA

CALL CHER2('U' , 3 , ALPHA , X , -2 ,Y , 2 , A, 3)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), ., (4.0, 0.0), ., (1.0, 2.0))
Y = ((1.0, 0.0), ., (2.0, -1.0), ., (2.0, 1.0))
[(1.0, .) (3.0, 5.0) (2.0, -3.0)]
A = . (7.0, .) (4.0, -8.0) J
. . (6.0, .)
Output:
(3.0, 0.0) (7.0, 10.0) (9.0, -4.0)
A= . (23.0, 0.0) (14.0, -23.0)
. . (26.0, 0.0)
Example 9

This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. It uses the same input
matrix A as in Example 1.

Call Statement and Input:
N ALPHA X INCX Y INCY AP

|
CALL SSLR2(3, 1.0 , X, 1 ,Y,2 ,AP)

X = (3.0, 2.0, 1.0)

Y = (5.0, ., 3.0, ., 2.0)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
Output:

332 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

Chapter 8. Linear Algebra Subprograms 333

SGBMV, DGBMV, CGBMYV, and ZGBMV

SGBMV, DGBMV, CGBMV, and ZGBMV — Matrix-Vector Product for a
General Band Matrix, Its Transpose, or Its Conjugate Transpose

Purpose

SGBMYV and DGBMV compute the matrix-vector product for either a real general
band matrix or its transpose, where the general band matrix is stored in
BLAS-general-band storage mode. It uses the scalars o and f3, vectors x and y, and
general band matrix A or its transpose:

y<py+aAx

y ¢ By+aA'x

CGBMYV and ZGBMV compute the matrix-vector product for either a complex
general band matrix, its transpose, or its conjugate transpose, where the general

band matrix is stored in BLAS-general-band storage mode. It uses the scalars « and
B, vectors x and y, and general band matrix A, its transpose, or its conjugate

transpose:

y ¢ Py+aAx

y ¢ By+oA'x

y ¢ By+oAtlx

Table 70. Data Types

o B xy A Subprogram

Short-precision real SGBMV

Long-precision real DGBMV

Short-precision complex CGBMV

Long-precision complex ZGBMV

Syntax
Fortran CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y,
incy)
C and C++ sgbmv | dgbmv | cgbmv | zgbmv (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);

On Entry

transa indicates the form of matrix A to use in the computation, where:
If transa = 'N', A is used in the computation.
If transa = 'T', A" is used in the computation.
If transa = 'C', A™ is used in the computation.
Specified as: a single character. It must be 'N', 'T', or 'C".

m is the number of rows in matrix A, and:

If transa

'N', it is the length of vector y.

If transa = '"T" or 'C’, it is the length of vector x.

Specified as: a fullword integer; m = 0.

334 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

ml

mu

alpha

lda

incx

beta

SGBMV, DGBMV, CGBMYV, and ZGBMV

is the number of columns in matrix A, and:

If transa = 'N', it is the length of vector x.

If transa = '"T" or 'C, it is the length of vector y.
Specified as: a fullword integer; n = 0.

is the lower band width ml of the matrix A.
Specified as: a fullword integer; ml = 0.

is the upper band width mu of the matrix A.
Specified as: a fullword integer; mu = 0.

is the scaling constant a.

Specified as: a number of the data type indicated in|Table 70 on|
is the m by n general band matrix A, stored in BLAS-general-band

storage mode. It has an upper band width mu and a lower band
width ml. Also:

If transa = 'N', A is used in the computation.
If transa = 'T', AT is used in the computation.

If transa = 'C', A" is used in the computation.

Note: No data should be moved to form AT or AY; that is, the
matrix A should always be stored in its untransposed form
in BLAS-general-band storage mode.

Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 70 on page 334} where Ida = ml+mu+1.

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and lda = ml+mu+1.
is the vector x, where:

If transa = 'N, it has length n.

If transa = 'T" or 'C), it has length m.

Specified as: a one-dimensional array, containing numbers of the
data type indicated in [Table 70 on page 334} where:

If transa = 'N', it must have at least 1+(n—1) | incx| elements.

If transa = 'T' or 'C', it must have at least 1+(m—1) l incx| elements.
is the stride for vector x.

Specified as: a fullword integer; incx > 0 or incx < 0.

is the scaling constant S.

Specified as: a number of the data type indicated in [Table 70 on
page 354

is the vector y, where:
If transa = 'N', it has length m.
If transa = 'T" or 'C', it has length n.

Chapter 8. Linear Algebra Subprograms 335

SGBMV, DGBMV, CGBMYV, and ZGBMV

Specified as: a one-dimensional array, containing numbers of the
data type indicated in [Table 70 on page 334} where:

If transa = 'N, it must have at least 1+(m—1) lincy| elements.
If transa = 'T" or 'C, it must have at least 1+(n—1) lincy | elements.
incy is the stride for vector y.

Specified as: a fullword integer; incy > 0 or incy < 0.

On Return

y is the vector y, containing the result of the computation, where:
If transa = 'N', it has length m.
If transa = 'T" or 'C), it has length n.

Returned as: a one-dimensional array, containing numbers of the
data type indicated in [Table 70 on page 334]

Notes

1. For SGBMV and DGBMY, if you specify 'C' for the transa argument, it is
interpreted as though you specified 'T'.
2. All subroutines accept lowercase letters for the transa argument.

3. Vector y must have no common elements with matrix A or vector x; otherwise,
results are unpredictable. See [’Concepts” on page 55

4. To achieve optimal performance, use Ida = mu+ml+1.

5. For general band matrices, if you specify ml = m or mu = n, ESSL assumes,
only for purposes of the computation, that the lower band width is m—1 or the
upper band width is n—1, respectively. However, ESSL uses the original values
for ml and mu for the purposes of finding the locations of element a,; and all
other elements in the array specified for A, as described in [“General Band|
Matrix” on page 76 For an illustration of this technique, see ["Example 4” on|

[page 339.|

6. For a description of how a general band matrix is stored in BLAS-general-band
storage mode in an array, see [‘General Band Matrix” on page 76

Function

The possible computations that can be performed by these subroutines are
described in the following sections. Varying implementation techniques are used
for this computation to improve performance. As a result, accuracy of the
computational result may vary for different computations.

In all the computations, general band matrix A is stored in its untransposed form
in an array, using BLAS-general-band storage mode.

For SGBMV and CGBMY, intermediate results are accumulated in long precision.
Occasionally, for performance reasons, these intermediate results are truncated to
short precision and stored.

See references [@], , , , and . No computation is performed if m or n

is 0 or if « is zero and B is one.

General Band Matrix
For SGBMV, DGBMYV, CGBMYV, and ZGBMYV, the matrix-vector product for a
general band matrix is expressed as follows:

336 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGBMV, DGBMV, CGBMYV, and ZGBMV

y<By+oAx

where:

x is a vector of length n.
y is a vector of length m.
« is a scalar.

B is a scalar.

A is an m by n general band matrix, having a lower band width of ml and an
upper band width of mu.

Transpose of a General Band Matrix

For SGBMV, DGBMYV, CGBMYV, and ZGBMYV, the matrix-vector product for the
transpose of a general band matrix is expressed as:

y < By+aA'x

where:

x is a vector of length m.

y is a vector of length n.

o is a scalar.

B is a scalar.

A" is the transpose of an m by n general band matrix A, having a lower band
width of ml and an upper band width of mu.

Conjugate Transpose of a General Band Matrix

For CGBMYV and ZGBMYV, the matrix-vector product for the conjugate transpose of
a general band matrix is expressed as follows:

y ¢ By+oAtlx

where:

x is a vector of length m.

y is a vector of length 7.

« is a scalar.

B is a scalar.

A" is the conjugate transpose of an m by n general band matrix A of order 7,
having a lower band width of ml and an upper band width of mu.

Chapter 8. Linear Algebra Subprograms 337

SGBMV, DGBMV, CGBMYV, and ZGBMV

338

Error Conditions

Computational Errors
None

Input Argument Errors
transa # 'N', 'T', or 'C’

m < 0

n<20

ml < 0

mu < 0

lda = 0

lda < ml+mu+1

incx = 0

incy = 0

COND O AN

Examples

Example 1

This example shows how to use SGBMV to perform the computation y«pfy+aAx,
where TRANSA is equal to 'N', and the following real general band matrix A is used
in the computation. Matrix A is:

1.0 1.0 1.0 0.0
2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0
0.0 5.0 5.0 5.0

Call Statement and Input:

TRANSAM N ML MU ALPHA A LDA X INCX BETA Y INCY
| S N L | ||
CALL SGBMV('N" , 5,4 ,3,2, 20 ,A,8,X,1 ,10.0,Y,2)
.. 1.0 2.0
. 1.0 2.0 3.0
1.0 2.0 3.0 4.0
A = |2.0 3.0 4.0 5.0
3.0 4.0 5.0 .
4.0 5.0 .
X = (1.0, 2.0, 3.0, 4.0)
Y = (1.0, ., 2.0, .,3.0, ., 4.0, .,5.0,.)
Output:
Y = (22.0, ., 60.0, . , 90.0, . , 120.0, . , 140.0, .)
Example 2

This example shows how to use SGBMV to perform the computation y ¢ fy+aA’x,
where TRANSA is equal to 'T', and the transpose of a real general band matrix A is
used in the computation. It uses the same input as Example 1.

Call Statement and Input:

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGBMV, DGBMV, CGBMYV, and ZGBMV

TRANSAM N ML MU ALPHA A LDA X INCX BETA Y INCY
ST TR B S RSP B L S RPN A
Output:
\ = (70.0, ., 130.0, . , 140.0, . , 148.0, .)
Example 3

This example shows how to use CGBMYV to perform the computation y<fy+aA™x,
where TRANSA is equal to 'C', and the complex conjugate of the following general
band matrix A is used in the computation. Matrix A is:

(1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0)
(2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0)
(3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0)
(4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0)
(0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (0.0, 0.0)
Call Statement and Input:
TRANSA M T TL TU ALTHA ? LTA T ITCX BTTA T INCY
CALL CGBMV('C' , 5,4 ,3,2 ,ALPHA ,A,8,X,1 ,BETA,Y , 2)
. (1.0, 1.0) (2.0, 2.0)
(1.0, 1.0) (2.0, 2.0) (3.0, 3.0)
(1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0)
A = (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0)
(3.0, 3.0) (4.0, 4.0) (5.0, 5.0) .
(4.0, 4.0) (5.0, 5.0)
X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0), (4.0, 5.0),
(5.0, 6.0))
ALPHA = (1.0, 1.0)
BETA = (10.0, 0.0)
Y = ((1.e, 2.0), ., (2.0, 3.0), ., (3.0, 4.0), .,
(4.0, 5.0), .)
Output:
Y = ((70.0, 100.0), . , (130.0, 170.0), . ,
(140.0, 180.0), . , (148.0, 186.0), .)
Example 4

This example shows how to use SGBMV to perform the computation y«fy+aAx,
where ml = m and mu = n, TRANSA is equal to 'N', and the following real general
band matrix A is used in the computation. Matrix A is:

S wWw N -
[oNoNoNo]
BN
[cNoNoNo]
BN
[N oo Nao]
BN
[oNoNoNo]
B w N
[oNoNoNo]

Call Statement and Input:
TRANSAM N ML MU ALPHA A LDA X INCX BETA INCY

Y
S A N R S R A I B
Y

CALL SGBMV('N' , 4 ,5,6,5, 2.06,A,12,Xx,1 ,10.0,Y,2)

Chapter 8. Linear Algebra Subprograms 339

SGBMV, DGBMV, CGBMYV, and ZGBMV

. 1.0
. 1.0 2.0
. 1.0 2.0 3.0
. 1.0 2.0 3.0 4.0
A = 1.0 2.0 3.0 4.0
2.0 3.0 4.0
3.0 4.0
4.0
X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, ., 2.0, ., 3.0, ., 4.0, .)
Output:
Y = (40.0, . , 80.0, ., 120.0, . , 160.0, .)

340 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSBMV, DSBMV, CHBMYV, and ZHBMV

SSBMV, DSBMV, CHBMV, and ZHBMV — Matrix-Vector Product for a
Real Symmetric or Complex Hermitian Band Matrix

Purpose

SSBMV and DSBMV compute the matrix-vector product for a real symmetric band
matrix. CHBMV and ZHBMV compute the matrix-vector product for a complex
Hermitian band matrix. The band matrix A is stored in either upper- or
lower-band-packed storage mode. It uses the scalars o and B, vectors x and y, and
band matrix A:

y<By+oAx

y<By+aAx

Table 71. Data Types

opB xy A Subprogram

Short-precision real SSBMV

Long-precision real DSBMV

Short-precision complex CHBMV

Long-precision complex ZHBMV

Syntax

Fortran CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
C and C++ ssbmv | dsbmv | chbmv | zhbmv (uplo, n, k, alpha, a, Ida, x, incx, beta, y, incy);

On Entry

uplo indicates the storage mode used for matrix A, where either the
upper or lower triangle can be stored:
If uplo = 'U', A is stored in upper-band-packed storage mode.
If uplo = 'L', A is stored in lower-band-packed storage mode.
Specified as: a single character. It must be 'U’' or 'L".

n is the order of matrix A and the number of elements in vectors x
and y.
Specified as: a fullword integer; n = 0.

k is the half band width k of the matrix A.
Specified as: a fullword integer; k = 0.

alpha is the scaling constant a.
Specified as: a number of the data type indicated in

a is the real symmetric or complex Hermitian band matrix A of order

n, having a half band width of k, where:
If uplo = 'U’, A is stored in upper-band-packed storage mode.
If uplo

'L', A is stored in lower-band-packed storage mode.

Specified as: an Ida by (at least) n array, containing numbers of the

data type indicated in where Ida = k+1.

Chapter 8. Linear Algebra Subprograms 341

SSBMV, DSBMV, CHBMYV, and ZHBMV

342

Ida is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ida = k+1.
x is the vector x of length n.
Specified as: a one-dimensional array of (at least) length
1+(n-1) lincx |, containing numbers of the data type indicated in
[Table 71 on page 341|
incx is the stride for vector x.
Specified as: a fullword integer; incx > 0 or incx < 0.
beta is the scaling constant S.
Specified as: a number of the data type indicated in[Table 71 on
y is the vector y of length n.
Specified as: a one-dimensional array of (at least) length 7,
containing numbers of the data type indicated in [Table 71 on page]
I
incy is the stride for vector y.
Specified as: a fullword integer; incy > 0 or incy < 0.
On Return
Y is the vector y of length #, containing the result of the

Notes

Function

computation. Returned as: a one-dimensional array, containing
numbers of the data type indicated in [Table 71 on page 341}

. All subroutines accept lowercase letters for the uplo argument.

Vector y must have no common elements with matrix A or vector x; otherwise,
results are unpredictable. See [’Concepts” on page 55

To achieve optimal performance in these subroutines, use lda = k+1.

The imaginary parts of the diagonal elements of the complex Hermitian matrix
A are assumed to be zero, so you do not have to set these values.

For real symmetric and complex Hermitian band matrices, if you specify k = n,
ESSL assumes, only for purposes of the computation, that the half band width
of matrix A is n—1; that is, it processes matrix A, of order n, as though it is a
(nonbanded) real symmetric or complex Hermitian matrix. However, ESSL uses
the original value for k for the purposes of finding the locations of element a;
and all other elements in the array specified for A, as described in the storage
modes referenced in the next note. For an illustration of this technique, see
[“Example 3” on page 344

For a description of how a real symmetric band matrix is stored, see
“Upper-Band-Packed Storage Mode” on page 82| or|[“Lower-Band-Packed|
Storage Mode” on page 83.|For a description of how a complex Hermitian band
matrix is stored, see [“Complex Hermitian Matrix” on page 69|

These subroutines perform the following matrix-vector product, using a real
symmetric or complex Hermitian band matrix A, stored in either upper- or
lower-band-packed storage mode:

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSBMV, DSBMV, CHBMYV, and ZHBMV

y<By+oAx

where:

x and y are vectors of length n.
a and f are scalars.

A is an real symmetric or complex Hermitian band matrix of order n, having a half
bandwidth of k.

For SSBMV and CHBMY, intermediate results are accumulated in long precision.
Occasionally, for performance reasons, these intermediate results are truncated to
short precision and stored.

See references [@] [@] , and [82]]. No computation is performed if 7 is 0 or if
« is zero and B is one.

Error Conditions

Computational Errors
None

nput Argument Errors
uplo # 'U' or 'L'

n <0

k<0

Ida = 0

lda < k+1

incx = 0

incy = 0

NogorOND =S

Examples

Example 1

This example shows how to use SSBMV to perform the matrix-vector product,
where the real symmetric band matrix A of order 7 and half band width of 3 is
stored in upper-band-packed storage mode. Matrix A is:

OO0
[coNoNoNoNoNo)
SO MNDN -
[oNoNoNoNoNoNo)
DWW WWWMN =
[cNoNoNoNoNoNo)
PR PR PRPOON—
[oNoNoNoNoNoNo)
oo wWwNh o
[cNoNoNoNoNoNo)
[Mo WE BN N o No]
o oNoNoNoNoNo)
N NG SN oNoNo]
[oNoNoNoNoNoNo)

Call Statement and Input:

UPLO N K ALPHA A LDA X INCX BETA Y INCY
R S N P R | ||
CALL SSBMV('U' , 7 ,3,2.0 ,A,5,X,1 ,10.0,Y,2)
. 1.0 2.0 3.0 4.0
. 1.0 2.0 3.0 4.0 5.0
A= 1.0 2.0 3.0 4.0 5.0 6.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0

Chapter 8. Linear Algebra Subprograms 343

SSBMV, DSBMV, CHBMYV, and ZHBMV

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

i = (1.0, .,2.0,.,3.0,.,4.0,.,5.0,.,6.0,.,7.0)

Output:

Y = (30.0, ., 78.0, ., 148.0, . , 244.0, . , 288.0, . ,
316.0, . , 322.0)

Example 2

This example shows how to use CHBMYV to perform the matrix-vector product,
where the complex Hermitian band matrix A of order 7 and half band width of 3
is stored in lower-band-packed storage mode. Matrix A is:

(1.0, 0.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
(1.0, -1.0) (2.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0)
(1.0, -1.0) (2.0, -2.0) (3.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0)
(1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0)

(0.0, 0.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, 0.0) (5.0, 5.0) (5.0, 5.0)

(0.0, 0.0) (0.0, 0.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) (6.0, 0.0) (6.0, 6.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, -4.0) (5.0, -5.0) (6.0, -6.0) (7.0, 0.0)

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not need to set these values.
Call Statement and Input:
UPLO N K ALPHA ? LTA T ITCX BTTA T INCY
CALL CHBMV('L* , 7,3 , ALPHA , A, 5, X, 1 ,BETA, Y, 2)
ALPHA = (2.0, 0.0)
BETA = (10.0, 0.0)
(1.0, .) (2.0, .) (3.0, .) (4.0, .) (5.0, .) (6.0, .) (7.0, .)
(1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0)
A = (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) .
(1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) .
X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0),
(5.0, 5.0), (6.0, 6.0), (7.0, 7.0))
Y = ((1.0, 1.0), ., (2.0, 2.0), ., (3.0, 3.0), ,
(4.0, 4.0), ., (5.0, 5.0), ., (6.0, 6.0), s
(7.0, 7.0))
Output:
Y = ((48.0, 12.0), . , (124.0, 32.0), . , (228.0, 68.0), . ,
(360.0, 128.0), . , (360.0, 216.0), . ,
(300.0, 332.0), . , (168.0, 476.0))
Example 3

This example shows how to use SSBMV to perform the matrix-vector product,
where n = k. Matrix A is a real 5 by 5 symmetric band matrix with a half band
width of 5, stored in upper-band-packed storage mode. Matrix A is:

344 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSBMV, DSBMV, CHBMYV, and ZHBMV

1.0 1.0 1.0 1.0 1.0
1.0 2.0 2.0 2.0 2.0
1.0 2.0 3.0 3.0 3.0
1.0 2.0 3.0 4.0 4.0
1.0 2.0 3.0 4.0 5.0

Call Statement and Input:

UPLO N K ALPHA A LDA X INCX BETA Y INCY
L N P I]
CALL SSBMV('U* , 5,5 ,2.0 ,A,7,X,1 ,10.0,Y,2)
. 1.0
. 1.0 2.0
A = . . 1.0 2.0 3.0
. 1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0 5.0
X = (l.e, 2.0, 3.0, 4.0, 5.0)
Y = (1.6, .,2.0,.,30,.,40,.,5.0,.)
Output:
Y = (40.0, ., 78.0, ., 112.0, . , 140.0, . , 160.0, .)

Chapter 8. Linear Algebra Subprograms 345

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV
— Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose

Purpose

STRMV, DTRMV, STPMV, and DTPMV compute one of the following matrix-vector
products, using the vector x and triangular matrix A or its transpose:

x<Ax
xcATx

CTRMYV, ZTRMV, CTPMYV, and ZTPMV compute one of the following
matrix-vector products, using the vector x and triangular matrix A, its transpose, or
its conjugate transpose:

x<Ax
xcATx
xcAx

Matrix A can be either upper or lower triangular, where:

* For the _TRMV subroutines, it is stored in upper- or lower-triangular storage
mode, respectively.

* For the _TPMV subroutines, it is stored in upper- or lower-triangular-packed
storage mode, respectively.

Table 72. Data Types

A x Subprogram
Short-precision real STRMV and STPMV
Long-precision real DTRMV and DTPMV
Short-precision complex CTRMV and CTPMV
Long-precision complex ZTRMV and ZTPMV
Syntax
Fortran CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, Ida, x, incx)
CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx)
C and C++ strmv | dtrmv | ctrmv | ztrmv (uplo, transa, diag, n, a, lda, x, incx);

stpmv | dtpmv | ctpmv | ztpmv (uplo, transa, diag, n, ap, x, incx);

On Entry
uplo indicates whether matrix A is an upper or lower triangular matrix,
where:
If uplo = 'U’, A is an upper triangular matrix.
If uplo = 'L', A is a lower triangular matrix.
Specified as: a single character. It must be 'U' or 'L".
transa indicates the form of matrix A to use in the computation, where:

346 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Notes

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

diag

Ilda

ap

incx

On Return

X

If transa = 'N', A is used in the computation.
If transa = 'T', A" is used in the computation.
If transa = 'C', A™ is used in the computation.

Specified as: a single character. It must be 'N', 'T", or 'C".
indicates the characteristics of the diagonal of matrix A, where:
If diag = 'U', A is a unit triangular matrix.

If ding = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N".

is the order of triangular matrix A.

Specified as: a fullword integer; 0 = n =< Ida.

is the upper or lower triangular matrix A of order 7, stored in

upper- or lower-triangular storage mode, respectively.

Note: No data should be moved to form AT or A™; that is, the

matrix A should always be stored in its untransposed form.
Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 72 on page 346]

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ida = n.

is the upper or lower triangular matrix A of order #, stored in
upper- or lower-triangular-packed storage mode, respectively.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in[Table 72 on page|
346,

is the vector x of length 7.

Specified as: a one-dimensional array of (at least) length
1+(n-1) lincx |, containing numbers of the data type indicated in
[Table 72 on page 346]

is the stride for vector x.

Specified as: a fullword integer; incx > 0 or incx < 0.

is the vector x of length 7, containing the results of the
computation. Returned as: a one-dimensional array, containing
numbers of the data type indicated in [Table 72 on page 346)

1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.

2. For STRMV, DTRMYV, STPMYV, and DTPMV if you specify 'C' for the transa
argument, it is interpreted as though you specified T

3. Matrix A and vector x must have no common elements; otherwise, results are
unpredictable.

4. ESSL assumes certain values in your array for parts of a triangular matrix. As a
result, you do not have to set these values. For unit triangular matrices, the

Chapter 8. Linear Algebra Subprograms 347

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and
lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see [“Triangular Matrix” on page 73/

Function

These subroutines can perform the following matrix-vector product computations,
using the triangular matrix A, its transpose, or its conjugate transpose, where A
can be either upper or lower triangular:

x<Ax
xcATx
x<Aty (for CTRMV, ZTRMV, CTPMV, and ZTPMV only)

where:
x is a vector of length n.

A is an upper or lower triangular matrix of order n. For _TRMYV, it is stored in
upper- or lower-triangular storage mode, respectively. For _TPMYV, it is stored in
upper- or lower-triangular-packed storage mode, respectively.

See references and . If n is 0, no computation is performed.

Error Conditions

Computational Errors
None

nput Argument Errors
uplo # 'L' or 'U'

transa = "T', 'N', or 'C'
diag = 'N'or 'U'

n<0

Ida = 0

lda < n

incx = 0

NookwN =T

Examples

Example 1

This example shows the computation x¢Ax. Matrix A is a real 4 by 4 lower
triangular matrix that is unit triangular, stored in lower-triangular storage mode.
Vector x is a vector of length 4. Matrix A is:

[cNoNoNo)

S~ W
W =
oo
—_
o

WN ==
o oo

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

348 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

Call Statement and Input:

UPLO TRANSA DIAG N A
| | |
CALL STRMV('L' , 'N', 'U' , 4, A

]

A= |10 .
2.0 3.0 .
3.0 4.0 3.0
X = (1.0, 2.0, 3.0, 4.0)
Output:
X = (1.0, 3.0, 11.0, 24.0)
Example 2

This example shows the computation x¢A"x. Matrix A is a real 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular storage mode.
Vector x is a vector of length 4. Matrix A is:

1.0 2.0
1.0

=N W
[cNoNo)
_= W o

[cNoNoNo]

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:

UPLO TRANSA DIAG N A
| | (I
CALL STRMV('U* , 'T" , 'U' , 4, A

[2.0 3.0 2.0
A = . 2.0 5.0
. 3.0
X = (5.0, 4.0, 3.0, 2.0)
Output:
X = (5.0, 14.0, 26.0, 41.0)
Example 3

This example shows the computation x¢A"x. Matrix A is a complex 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular storage mode.
Vector x is a vector of length 4. Matrix A is:

H

(1.0, 0.0) (2.0 (3.
. (1.0 (2.
(1.

DN W

B
B

[oNoNo)
[eNoNo]
———
—_~ e~
=W o1 N
[cNoNoNO]
P

ol

(=)

~

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Chapter 8. Linear Algebra Subprograms 349

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

Call Statement and Input:

UPLO TRANSA DIAG T ? LTA T ITCX

CALL CTRMV('U' , 'C', 'U' , 4, A, 4 ,X,1)
[. (2.0, 2.0) (3.0, 3.0) (2.0, 2.0)]
A= | . (2.0, 2.0) (5.0, 5.0)
. (3.0, 3.0)

X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))
Output:
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))
Example 4

This example shows the computation x¢<Ax. Matrix A is a real 4 by 4 lower
triangular matrix that is unit triangular, stored in lower-triangular-packed storage
mode. Vector x is a vector of length 4. Matrix A is:

WN ==
[cNoNoRo)
S~ W =
[N o Nl
[N o)

w =

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:

UPLO TRANSA DIAG N AP

X
| I
CALL STPMV('L' , 'N', 'U' , 4, AP, X

AP = (., 1.0, 2.0, 3.0, ., 3.0, 4.0, ., 3.0, .)
X = (1.0, 2.0, 3.0, 4.0)

Output:

X = (1.0, 3.0, 11.0, 24.0)

Example 5

This example shows the computation x¢A"x. Matrix A is a real 4 by 4 upper
triangular matrix that is not unit triangular, stored in upper-triangular-packed
storage mode. Vector x is a vector of length 4. Matrix A is:

1.0 2.0 3.0 2.0
2.0 2.0 5.0
3.0 3.0
1.0
Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| I
CALL STPMV('U' , 'T' , 'N' , 4 , AP, X, 1)

AP
X

(

1. 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
(5.

0, 2.0, 2.0, 3.0
0, 4.0, 3.0, 2.0

Uy

)

350 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

Output:
X = (5.0, 18.0, 32.0, 41.0)
Example 6

This example shows the computation x¢A"x. Matrix A is a complex 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular-packed storage

mode. Vector x is a vector of length 4. Matrix A is:

B

[(1.0, 0.0) (2.0, 2.0) (3.0,
. (1.0, 0.0) (2.0,
[. (1.0

Note: Because matrix A is unit triangular, the diagonal elements are not

or\:w
OOO

B

.0) (2.
.0) (5.
.0) (3.
(1.

|—lwu1l'\.)
OOOD
D WO
[eoNoRo]

s

—_——— —
| I

referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:

UPLO TRANSA DIAG N AP X INCX
I T T
CALL CTPMV('U' , 'C' , 'U' , 4 , AP, X, 1)
AP =(.,(20,20),.,(3.0,3.0),(20 2.0), .,
(2.0, 2.0), (5.0, 5.0), (3.0, 3.0)
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3. 0) (2 0, 2.0))
Output:
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Chapter 8. Linear Algebra Subprograms

351

STBMV, DTBMV, CTBMV, and ZTBMV

STBMV, DTBMV, CTBMV, and ZTBMV — Matrix-Vector Product for a
Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose

Purpose

STBMV and DTBMV compute one of the following matrix-vector products, using
the vector x and triangular band matrix A or its transpose:

x<Ax
xcATx

CTBMYV and ZTBMV compute one of the following matrix-vector products, using
the vector x and triangular band matrix A, its transpose, or its conjugate transpose:

x<Ax
x<ATx
x<AHx

Matrix A can be either upper or lower triangular and is stored in upper- or
lower-triangular-band-packed storage mode, respectively.

Table 73. Data Types

A x Subprogram

Short-precision real STBMV

Long-precision real DTBMV

Short-precision complex CTBMV

Long-precision complex ZTBMV

Syntax

Fortran CALL STBMV | DTBMV | CTBMV | ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx)
C and C++ stbmv | dtbmv | ctbmv | ztbmv (uplo, transa, diag, n, k, a, Ida, x, incx);

On Entry

uplo indicates whether matrix A is an upper or lower triangular band
matrix, where:

If uplo = 'U', A is an upper triangular matrix.
If uplo = 'L', A is a lower triangular matrix.
Specified as: a single character. It must be 'U' or 'L'".
transa indicates the form of matrix A to use in the computation, where:
If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', A™ is used in the computation.

Specified as: a single character. It must be 'N', 'T", or 'C".
diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

352 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Notes

lda

STBMV, DTBMV, CTBMV, and ZTBMV

If ding = 'N', A is not a unit triangular matrix.
Specified as: a single character. It must be 'U' or 'N".

is the order of triangular band matrix A. Specified as: a fullword
integer; n = 0.

is the upper or lower band width k of the matrix A.
Specified as: a fullword integer; k = 0.

is the upper or lower triangular band matrix A of order #, stored
in upper- or lower-triangular-band-packed storage mode,
respectively.

Note: No data should be moved to form AT or A that is, the

matrix A should always be stored in its untransposed form.
Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 73 on page 352}

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ida = k+1.
is the vector x of length 7.

Specified as: a one-dimensional array of (at least) length
1+(n-1) lincx |, containing numbers of the data type indicated in
[Table 73 on page 352}

incx is the stride for vector x.

Specified as: a fullword integer; incx > 0 or incx < 0.

On Return

X

is the vector x of length 7, containing the results of the
computation. Returned as: a one-dimensional array, containing
numbers of the data type indicated in [Table 73 on page 352}

. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.

For STBMV and DTBMYV, if you specify 'C' for the transa argument, it is
interpreted as though you specified 'T".

Matrix A and vector x must have no common elements; otherwise, results are
unpredictable.

To achieve optimal performance in these subroutines, use Ida = k+1.

For unit triangular matrices, the elements of the diagonal are assumed to be 1.0
for real matrices and (1.0, 0.0) for complex matrices. As a result, you do not
have to set these values.

For both upper and lower triangular band matrices, if you specify k = n, ESSL

assumes, only for purposes of the computation, that the upper or lower band

width of matrix A is n-1; that is, it processes matrix A, of order #, as though it
is a (nonbanded) triangular matrix. However, ESSL uses the original value for k
for the purposes of finding the locations of element 2,;, and all other elements
in the array specified for A, as described in [“Triangular Band Matrix” on page]

For an illustration of this technique, see[“Example 4” on page 356/

Chapter 8. Linear Algebra Subprograms 353

STBMV, DTBMV, CTBMV, and ZTBMV

354

7. For a description of triangular band matrices and how they are stored in upper-
and lower-triangular-band-packed storage mode, see [“Triangular Band Matrix”|

8. If you are using a lower triangular band matrix, you may want to use this
alternate approach instead of using lower-triangular-band-packed storage
mode. Leave matrix A in full-matrix storage mode when you pass it to ESSL
and specify the Ida argument to be /da+1, which is the leading dimension of
matrix A plus 1. ESSL then processes the matrix elements in the same way as
though you had set them up in lower-triangular-band-packed storage mode.

Function

These subroutines can perform the following matrix-vector product computations,
using the triangular band matrix A, its transpose, or its conjugate transpose, where
A can be either upper or lower triangular:

x<Ax

xeA'x

x¢A"x (for CTBMV and ZTBMV only)

where:

x is a vector of length n.

A is an upper or lower triangular band matrix of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively.

See references [@], , and . If n is 0, no computation is performed.

Error Conditions

Computational Errors
None

nput-Argument Errors
uplo = 'L' or 'U’

transa = '"T', 'N', or 'C'
diag = 'N' or 'U'

n<0

k<0

Ida = 0

lda < k+1

incx = 0

ONogrOD=ZF

Examples

Example 1
This example shows the computation x¢<Ax. Matrix A is a real 7 by 7 upper
triangular band matrix with a half band width of 3 that is not unit triangular,

stored in upper-triangular-band-packed storage mode. Vector x is a vector of length
7. Matrix A is:

1.0 1.0 1.0 1.0 0.0 0.0 0.0
0.0 2.0 2.0 2.0 2.0 0.0 0.0
0.0 0.0 3.0 3.0 3.0 3.0 0.0
0.0 0.0 0.0 4.0 4.0 4.0 4.0
0.0 0.0 0.0 0.0 5.0 5.0 5.0

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
Call Statement and Input:
UPLO TRANSA DIAG N K A
||
CALL STBMV('U' , 'N" , 'N' , 7,3, A
. 1.0 2.0 3.0
. 1.0 2.0 3.0 4.0
A = . 1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0 6.0
X = (l.e, 2.0, 3.0, 4.0, 5.0, 6.
Output:
X = (l0.0, 28.0, 54.0, 88.0, 90.
Example 2

STBMV, DTBMV, CTBMV, and ZTBMV

0.0 6.0 6.0
0.0 0.0 7.0
LDA X INCX
I
»5,X,1)
4.9

5.0

6.0

7.0

0, 7.0)

0, 78.0, 49.0)

This example shows the computation x¢A"x. Matrix A is a real 7 by 7 lower
triangular band matrix with a half band width of 3 that is not unit triangular,

stored in lower-triangular-band-packed
7. Matrix A is:

1.0 0.0 0.0 0.0
1.0 2.0 0.0 0.0
1.0 2.0 3.0 0.0
1.0 2.0 3.0 4.0
0.0 2.0 3.0 4.0
0.0 0.0 3.0 4.0
0.0 0.0 0.0 4.0
Call Statement and Input:
UPLO TRANSA DIAG N K A
R I
CALL STBMV('L' , 'T*, 'N' , 7,3, A
1.0 2.0 3.0 4.0 5.0 6.0
1.0 2.0 3.0 4.0 5.0 6.0
A = 1.0 2.0 3.0 4.0 5.0 .
1.0 2.0 3.0 4.0 . .
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.
Output:
X = (10.0, 28.0, 54.0, 88.0, 90.
Example 3

storage mode. Vector x is a vector of length

[NGNS RoNoNoNo)
[cNoNoNoNoNoNo]
[e N NoNoNoNoNo]
[cNoNoNoNoNoNol
N NoloNoNoNoNo)
[cNoNoNoNoNoNO]

INCX

7.0]
]
0, 7.0)

0, 78.0, 49.0)

This example shows the computation x¢A"x. Matrix A is a complex 7 by 7 upper
triangular band matrix with a half band width of 3 that is not unit triangular,

stored in upper-triangular-band-packed
7. Matrix A is:

storage mode. Vector x is a vector of length

Chapter 8. Linear Algebra Subprograms 355

STBMV, DTBMV, CTBMV, and ZTBMV

- (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) -
(0.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0)
(0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0)
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0)
(0.0, 0.0) (6.0, 0.0) (0.0, 0.0) (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (5.0, 5.0)
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (6.0, 6.0) (6.0, 6.0)
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (7.0, 7.0)
Call Statement and Input:
UPLO TRANSA DIAG lil ||(? LI|JA)l(IlilCX
CALL CTBMV('U* , 'C" , 'N' , 7,3 ,A,5,X,1)
. . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0)
. (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0)
A = . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0)
(1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) (7.0, 7.0)
X = ((1.0, 2.0), (2.0, 4.0), (3.0, 6.0), (4.0, 8.0),
(5.0, 10.0), (6.0, 12.0), (7.0, 14.0))
Output:
X = ((1.0, 2.0), (7.0, 9.0), (24.0, 23.0), (58.0, 46.0),
(112.0, 79.0), (186.0, 122.0), (280.0, 175.0))
Example 4

This example shows the computation x¢A"x, where k > n. Matrix A is a real 4 by 4
upper triangular band matrix with a half band width of 5 that is not unit
triangular, stored in upper-triangular-band-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

1.0 1.0 1.0 1.0
2.0 2.0 2.0
3.0 3.0
. 4.0
Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | [O A N R
CALL STBMV('U' , 'T" , 'N' , 4,5 ,A,6,X,1)

A= .
. . 1.0
. 1.0 2.0
. 1.0 2.0 3.0
1.0 2.0 3.0 4.0
X = (1.0, 2.0, 3.0, 4.0)
Output:
X = (1.0, 5.0, 14.0, 30.0)

356 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSMMX

Sparse Matrix-Vector Subprograms

This section contains the sparse matrix-vector subprogram descriptions.

Chapter 8. Linear Algebra Subprograms 357

DSMMX

DSMMX — Matrix-Vector Product for a Sparse Matrix in
Compressed-Matrix Storage Mode

Purpose

This subprogram computes the matrix-vector product for sparse matrix A, stored
in compressed-matrix storage mode, using the matrix and vectors x and y:

y<Ax

where A, x, and y contain long-precision real numbers. You can use DSMTM to
transpose matrix A before calling this subroutine. The resulting computation
performed by this subroutine is then y<A'x.

Syntax
Fortran CALL DSMMX (m, nz, ac, ka, Ida, x, y)
C and C++ dsmmx (m, nz, ac, ka, Ida, x, y);

Notes

On Entry

m
nz

ac

ka

Ida

Y
On Return
Yy

is the number of rows in sparse matrix A and the number of
elements in vector y. Specified as: a fullword integer; m = 0.

is the maximum number of nonzero elements in each row of sparse
matrix A. Specified as: a fullword integer; nz = 0.

is the m by n sparse matrix A, stored in compressed-matrix storage
mode in an array, referred to as AC. Specified as: an Ida by (at least)
nz array, containing long-precision real numbers.

is the array, referred to as KA, containing the column numbers of
the matrix A elements stored in the corresponding positions in
array AC. Specified as: an Ida by (at least) nz array, containing
fullword integers, where 1 = (elements of KA) = n.

is the size of the leading dimension of the arrays specified for ac
and ka. Specified as: a fullword integer; Ida > 0 and Ida = m.

is the vector x of length n. Specified as: a one-dimensional array of
(at least) length 7, containing long-precision real numbers.

See

is the vector y of length m, containing the result of the
computation. Returned as: a one-dimensional array of (at least)
length m, containing long-precision real numbers.

1. Matrix A must have no common elements with vectors x and y; otherwise,
results are unpredictable.

2. For the KA array, where there are no corresponding nonzero elements in AC, you

must still fill in a number between 1 and #. See the [“Example” on page 360.

3. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see [“Compressed-Matrix Storage Mode” on page 91

358 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSMMX

4. If your sparse matrix is stored by rows, as defined in [‘Storage-by-Rows” on|
bage 96 you should first use the DSRSM utility subroutine, described in
“DSRSM — Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode” on page 1024 to convert your sparse matrix
to compressed-matrix storage mode.

Function

The matrix-vector product is computed for a sparse matrix, stored in compressed
matrix mode:

y<Ax
where:

A is an m by n sparse matrix, stored in compressed-matrix storage mode in arrays
AC and KA.

x is a vector of length n.
y is a vector of length m.

It is expressed as follows:

V1 aypp .- 4y, X1

ym aml amn xn

See reference [@I If m is 0, no computation is performed; if nz is 0, output vector
y is set to zero, because matrix A contains all zeros.

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, you should first convert your sparse matrix to compressed-matrix
storage mode by using the DSRSM utility subroutine described in [“DSRSM
Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage|
Mode” on page 1024

Error Conditions

Computational Errors
None

Input-Argument Errors

1. m< 0
2. lda =0
3. m > lda
4. nz <0

Chapter 8. Linear Algebra Subprograms 359

DSMMX

Examples

Example
This example shows the matrix-vector product computed for the following sparse
matrix A, which is stored in compressed-matrix storage mode in arrays AC and KA.

Matrix A is:
4.0 0.0 7.0 0.0 0.0 0.0
3.0 4.0 0.0 2.0 0.0 0.0
0.0 2.0 4.0 0.0 4.0 0.0
0.0 0.0 7.0 4.0 0.0 1.0
1.0 0.0 0.0 3.0 4.0 0.0
1.0 1.0 0.0 0.0 3.0 4.0
Call Statement and Input:
M Nz AC KA LDA X Y
| I
CALL DSMMX(6 , 4 , AC, KA, 6, X, Y)
4.0 7.0 0.0 0.0
4.0 3.0 2.0 0.0
AC = 4.0 2.0 4.0 0.0
4.0 7.0 1.0 0.0
4.0 1.0 3.0 0.0
4.0 1.0 1.0 3.0
1 311
2 1 4 1
KA = 3 2 51
4 3 6 1
5 1 4 1
6 1 2 5
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
Output:
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

360 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSMTM

DSMTM — Transpose a Sparse Matrix in Compressed-Matrix Storage

Mode
Purpose
This subprogram transposes sparse matrix A, stored in compressed-matrix storage
mode, where A contains long-precision real numbers.
Syntax
Fortran CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux)
C and C++ dsmtm (m, nz, ac, ka, lda, n, nt, at, kt, Idt, aux, naux);

On Entry

m is the number of rows in sparse matrix A. Specified as: a fullword
integer; m = 0.

nz is the maximum number of nonzero elements in each row of sparse
matrix A. Specified as: a fullword integer; nz = 0.

ac is the m by n sparse matrix A, stored in compressed-matrix storage
mode in an array, referred to as AC. Specified as: an Ida by (at least)
nz array, containing long-precision real numbers.

ka is the array, referred to as KA, containing the column numbers of
the matrix A elements stored in the corresponding positions in
array AC. Specified as: an Ida by (at least) nz array, containing
fullword integers, where 1 = (elements of KA) = n.

Ida is the size of the leading dimension of the arrays specified for ac
and ka. Specified as: a fullword integer; Ida > 0 and Ida = m.

n is the number of columns in sparse matrix A. Specified as: a
fullword integer; 0 = n = [dt and n =2 (maximum column index in
KA).

nt is the number of columns in output arrays AT and KT that are
available for use. Specified as: a fullword integer; nt > 0.

at See ["On Return” on page 362

kt See ["On Return” on page 362

ldt is the size of the leading dimension of the arrays specified for at
and kt. Specified as: a fullword integer; Idt > 0 and Idt = n.

aux has the following meaning:
If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its
size is specified by naux.

Specified as: an area of storage, containing long-precision real
numbers. They can have any value.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

Chapter 8. Linear Algebra Subprograms 361

DSMTM

If naux = 0 and error 2015 is unrecoverable, DSMTM dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux = n.

On Return

n is the number of rows in the transposed matrix A". Returned as: a
fullword integer; n = (maximum column index in KA).

nt is the maximum number of nonzero elements, nt, in each row of
the transposed matrix A". Returned as: a fullword integer; nt = m.

at is the 1 by (at least) m sparse matrix transpose A", stored in
compressed-matrix storage mode in an array, referred to as AT.
Returned as: an Idt by (at least) nt array, containing long-precision
real numbers.

kt is the array, referred to as KT, containing the column numbers of
the transposed matrix AT elements, stored in the corresponding
positions in array AT. Returned as: an [dt by (at least) nt array,
containing fullword integers, where 1 = (elements of KT) = m.

Notes

1. In your C program, arguments n and nt must be passed by reference.

2. The value specified for input argument nt should be greater than or equal to
the number of nonzero elements you estimate to be in each row of the
transposed sparse matrix A. The output value is less than or equal to the input
value you specify.

3. For the KA array, where there are no corresponding nonzero elements in AC, you
must still fill in a number between 1 and 7. See the [“Example” on page 363

4. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see [“Compressed-Matrix Storage Mode” on page 91

5. If your sparse matrix is stored by rows, as defined in ["Storage-by-Rows” on|
bage 96 you should first use the DSRSM utility subroutine, described in
“DSRSM — Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode” on page 1024 to convert your sparse matrix
to compressed-matrix storage mode.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see|“Using Auxiliary|
[Storage in ESSL” on page 32|

Function

A sparse matrix A, stored in arrays AC and KA in compressed-matrix storage mode,
is transposed, forming A", and is stored in arrays AT and KT in compressed-matrix
storage mode. See reference . This subroutine is provided for when you want
to do a matrix-vector product using a transposed matrix, A". First, you transpose a
matrix, A, using this subroutine, then you call DSMMX with the transposed matrix
A", This results in the following computation being performed: y<A™x.

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, you should first convert your sparse matrix to compressed-matrix
storage mode by using the DSRSM utility subroutine described in ["DSRSM
Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage
Mode” on page 1024

362 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSMTM

Error Conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

m,n <0

Ida, Idt < 1

lda < m

ldt < n

nz <0

n is less than the maximum column index in KA.

nt or ldt are too small.

When the following two errors occur, arrays AT, KT, and AUX are overwritten:

NGO AN~

naux < n
nt =0

9. Error 2015 is recoverable or naux#0, and naux is too small—that is, less than the
minimum required value. Return code 1 is returned if error 2015 is recoverable.

Examples

Example
This example shows how to transpose the following 5 by 4 sparse matrix A, which
is stored in compressed-matrix storage mode in arrays AC and KA. Matrix A is:

11.0 0.0 0.0 0.0
21.0 0.0 23.0 0.0
0.0 0.0 33.0 34.0
0.0 42.0 0.0 44.0
1.0 0.0 53.0 0.0

[5

The resulting 4 by 5 matrix transpose A", stored in compressed-matrix storage
mode in arrays AT and KT, is as follows. Matrix AT is:

11.0 2

[$]

[cNoNoRo]
PwWwoOo o
[N oNo R
S
[oNoNoNo)
[$)]
O WO
[cNoNoRo]

[cNoNoNo]
PO MNO

1.
0.
23.
0.

co o
w w
S

As shown here, the value of N is larger than the actual number of columns in the
matrix A. On output, the exact number of rows in the transposed matrix is
returned in the output argument N.

On output, row 6 of AT and KT is is not accessed or modified by the subroutine.
Column 4 and row 5 are accessed and modified. They are of no use in further
computations and will not be used, because NT = 3 and M = 4.

Call Statement and Input:
M NZ AC KA LDA N NT AT KT LDT AUX NAUX

CALL DSMTM(5 , 2 , AC , KA, 5,5 ,4 , AT , KT, 6, AUX,5)

Chapter 8. Linear Algebra Subprograms 363

DSMTM

11.
21.
AC = 33.
42.
51.

23.
34.
44,
53.

[oNoNoNoNo)
[cNoNoNoNo)

=~

=

Il
=N W
w s B W

Output:

n nu
w

NT

11.
42.
AT = 33.
34.

21.

(S}

23.
44,

[eNoNo oo
[eNoNoNoNo)
o
OO WO
[cNoNoNoNo)
[oNoNoNoNo)
IR
[cNoNo oo

5

1}
W ws =
= BN =N
== O = Ol
= e

364 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSDMX

DSDMX — Matrix-Vector Product for a Sparse Matrix or Its Transpose
in Compressed-Diagonal Storage Mode

Purpose

This subprogram computes the matrix-vector product for square sparse matrix A,
stored in compressed-diagonal storage mode, using either the matrix or its
transpose, and vectors x and y:

y<Ax
y<A'x

where A, x, and y contain long-precision real numbers.

Syntax
Fortran CALL DSDMX (iopt, n, nd, ad, Ida, trans, la, x, y)
C and C++ dsdmx (iopt, n, nd, ad, Ida, trans, la, x, y);

On Entry
iopt

nd

ad

Ilda

trans

indicates the storage variation used for sparse matrix A, stored in
compressed-diagonal storage mode, where:

If iopt = 0, matrix A is a general sparse matrix, where all the
nonzero diagonals in matrix A are used to set up the storage
arrays.

If iopt = 1, matrix A is a symmetric sparse matrix, where only the
nonzero main diagonal and one of each of the unique nonzero
diagonals are used to set up the storage arrays.

Specified as: a fullword integer; iopt = 0 or 1.

is the order of sparse matrix A and the number of elements in
vectors x and y. Specified as: a fullword integer; n = 0.

is the number of diagonals stored in the columns of array AD, as
well as the number of columns in AD and the number of elements
in array LA. Specified as: a fullword integer; nd = 0.

is the sparse matrix A of order n, stored in compressed diagonal
storage in an array, referred to as AD. The iopt argument indicates
the storage variation used for storing matrix A. The trans argument
indicates the following:

If trans = 'N', A is used in the computation.
If trans = 'T', A" is used in the computation.

Note: No data should be moved to form AT; that is, the matrix A
should always be stored in its untransposed form.

Specified as: an Ida by (at least) nd array, containing long-precision
real numbers; Ida = n.

is the size of the leading dimension of the array specified for ad.
Specified as: a fullword integer; Ida > 0 and Ida = n.

indicates the form of matrix A to use in the computation, where:

Chapter 8. Linear Algebra Subprograms 365

DSDMX

If trans = 'N', A is used in the computation.

If trans = 'T', A" is used in the computation.
Specified as: a single character; trans = 'N' or 'T".

la is the array, referred to as LA, containing the diagonal numbers k
for the diagonals stored in each corresponding column in array AD.
(For an explanation of how diagonal numbers are assigned, see
[“Compressed-Diagonal Storage Mode” on page 92.)

Specified as: a one-dimensional array of (at least) length nd,
containing fullword integers; 1-n = LA(i)) = n-1.

x is the vector x of length n. Specified as: a one-dimensional array,
containing long-precision real numbers.

y See O Retarn’]

On Return

Y is the vector y of length #, containing the result of the
computation. Returned as: a one-dimensional array, containing
long-precision real numbers.

Notes
1. All subroutines accept lowercase letters for the trans argument.
2. Matrix A must have no common elements with vectors x and y; otherwise,
results are unpredictable.
3. For a description of how sparse matrices are stored in compressed-diagonal
storage mode, see ["Compressed-Diagonal Storage Mode” on page 92)
Function

The matrix-vector product of a square sparse matrix or its transpose, is computed
for a matrix stored in compressed-diagonal storage mode:

y<Ax
y<A'x

where:
A is a sparse matrix of order 1, stored in compressed-diagonal storage mode in AD
and LA, using the storage variation for either general or symmetric sparse matrices,

as indicated by the iopt argument.

x and y are vectors of length n.

It is expressed as follows for y<Ax:

366 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSDMX

N ap ... dyy, Xy

Yn Ay o Ay Xy

It is expressed as follows for y«A'x:

N ap -4y Xy

yn aln ann xn

If n is 0, no computation is performed; if nd is 0, output vector y is set to zero,
because matrix A contains all zeros.

Error Conditions

Computational Errors
None

Input-Argument Errors
1. iopt # Oor1l

n <0

Ida = 0

n > lda

trans # 'N'or 'T'

nd <0

LA(j) = —n or LA(j) 2 n, foranyj = 1, n

Nook~ON

Examples

Example 1

This example shows the matrix-vector product using trans = 'N', which is
computed for the following sparse matrix A of order 6. The matrix is stored in
compressed-matrix storage mode in arrays AD and LA using the storage variation
for general sparse matrices, storing all nonzero diagonals. Matrix A is:

4.0 0.0 7.0 0.0 0.0 0.0
3.0 4.0 0.0 2.0 0.0 0.0
0.0 2.0 4.0 0.0 4.0 0.0
0.0 0.0 7.0 4.0 0.0 1.0
1.0 0.0 0.0 3.0 4.0 0.0
1.0 1.0 0.0 0.0 3.0 4.0
Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
I R N E A
CALL DSDMX(©®6 , 6 , 5, AD, 6, 'N'" , LA, X, Y)

Chapter 8. Linear Algebra Subprograms 367

DSDMX

=

o

1]
PO NI NI
[cNoNoNoNoNo]
el cRoNoNo)
[cNoNoNRoNo N
e NoNoNo]
[cNoNoNoNoNo]
WwWwNND WO
[N oNoRoNoNo)
OO BN
[ocNoNoNoNoNo]

(09 _59 _45 _19 2)
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

>
n n

Output:
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

Example 2

This example shows the matrix-vector product using trans = 'N', which is
computed for the following sparse matrix A of order 6. The matrix is stored in
compressed-matrix storage mode in arrays AD and LA using the storage variation
for symmetric sparse matrices, storing the nonzero main diagonal and one of each
of the unique nonzero diagonals. Matrix A is:

11.0 0.0 13.0 0.0 15.0 0.0
0.0 22.0 0.0 24.0 0.0 26.0
13.0 0.0 33.0 0.0 35.0 0.0
0.0 24.0 0.0 44.0 0.0 46.0
15.0 0.0 35.0 0.0 55.0 0.0
0.0 26.0 0.0 46.0 0.0 66.0

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X

CALL DSDMX(1 , 6 ,3 ,AD, 6, 'N'" , LA, X,

<~—=<

11.0 13.0 0.0

22.0 24.0 0.0
AD = 33.0 35.0 0.0

44.0 46.0 0.0

55.0 0.0 15.0

66.0 0.0 26.0
LA = (09 29 _4)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
Output:
Y = (125.0, 296.0, 287.0, 500.0, 395.0, 632.0)
Example 3

This example is the same as Example 1 except that it shows the matrix-vector
product for the transpose of a matrix, using trans = "T'. It is computed using the
transpose of the following sparse matrix A of order 6, which is stored in
compressed-matrix storage mode in arrays AD and LA, using the storage variation
for general sparse matrices, storing all nonzero diagonals. It uses the same matrix
A as in Example 1.

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X

Y
L (Y A A
Y

CALL DSDMX(® ,6 , 5, AD, 6, 'T", LA, X,

368 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

DSDMX

AD =(same as input AD in Example 1)
LA =(same as input LA in Example 1)
X =(same as input X in Example 1)
Output:

Y = (21.0, 20.0, 47.0, 35.0, 50.0, 28.0)

Chapter 8. Linear Algebra Subprograms 369

DSDMX

370 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 9. Matrix Operations

The matrix operation subroutines are described in this chapter.

Overview of the Matrix Operation Subroutines

Some of the matrix operation subroutines were designed in accordance with the

Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the callin
application program. For details on the Level 3 BLAS, see reference

matrix operation subroutines also include the commonly used matrix operations:
addition, subtraction, multiplication, and transposition

Table 74. List of Matrix Operation Subroutines

. The

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Matrix Addition for General Matrices or Their Transposes SGEADD DGEADD
CGEADD ZGEADD
Matrix Subtraction for General Matrices or Their Transposes SGESUB DGESUB
CGESUB ZGESUB
Matrix Multiplication for General Matrices, Their Transposes, or SGEMUL DGEMUL
Conjugate Transposes CGEMUL ZGEMUL
DGEMLPS
Matrix Multiplication for General Matrices, Their Transposes, or SGEMMS DGEMMS @
Conjugate Transposes Using Winograd’s Variation of Strassen’s CGEMMS ZGEMMS
Algorithm
Combined Matrix Multiplication and Addition for General SGEMM"* DGEMM* @
Matrices, Their Transposes, or Conjugate Transposes CGEMM* ZGEMM*
Matrix-Matrix Product Where One Matrix is Real or Complex SSYMM* DSYMM* 410
Symmetric or Complex Hermitian CSYMM* ZSYMM®*
CHEMM®* ZHEMM*
Triangular Matrix-Matrix Product STRMM* DTRMM®*
CTRMM* ZTRMM*
Rank-K Update of a Real or Complex Symmetric or a Complex SSYRK* DSYRK* 124
Hermitian Matrix CSYRK* ZSYRK*
CHERK* ZHERK*
Rank-2K Update of a Real or Complex Symmetric or a Complex SSYR2K* DSYR2K*
Hermitian Matrix CSYR2K* ZSYR2K*
CHER2K* ZHER2K*
General Matrix Transpose (In-Place) SGETMI DGETMI
CGETMI ZGETMI
General Matrix Transpose (Out-of-Place) SGETMO DGETMO 140)
CGETMO ZGETMO

* Level 3 BLAS

programs. Documentation for this subroutine is no longer provided.

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

© Copyright IBM Corp. 1991, 2004

371

Use Considerations

This section describes some key points about using the matrix operations
subroutines.

Specifying Normal, Transposed, or Conjugate Transposed
Input Matrices

On each invocation, the matrix operation subroutines can perform one of several
possible computations, using different forms of the input matrices A and B. For the
real and complex versions of the subroutines, there are four and nine
combinations, respectively, depending on the characters specified for the transa and
transb arguments:

'N' Normal form
T Transposed form
'C' Conjugate transposed form

The four and nine possible combinations are defined as follows:

Real Combinations Complex Combinations
AB AB
A'B A'B
A"B
AB”" AB"
ATBT ATBT
A"BT
ABY
ATBH
APBY

Transposing or Conjugate Transposing:

This section describes some key points about using transposed and conjugate
transposed matrices.

On Input

In every case, the input arrays for the matrix, its transpose, or its conjugate
transpose should be stored in the original untransposed form. You then specify the
desired form of the matrix to be used in the computation in the transa or transb

arguments. For a description of matrix transpose and matrix conjugate transpose,
see [“Matrices” on page 61.]

On Output

If you want to compute the transpose or the conjugate transpose of a matrix
operation—that is, the output stored in matrix C—you should use the matrix
identities described in for each subroutine description. Examples are
provided in the subroutine descriptions to show the use of these matrix identities.

This accomplishes the transpose or conjugate transpose as part of the multiply
operation.

372 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Performance and Accuracy Considerations

This section describes some key points about performance and accuracy in the
matrix operations subroutines.

In General

1. The matrix operation subroutines use algorithms that are tuned specifically to
the workstation processors they run on. The techniques involve using any one
of several computational methods, based on certain operation counts and sizes
of data.

2. The short-precision multiplication subroutines provide increased accuracy by
partially accumulating results in long precision.

3. Strassen’s method is not stable for certain row or column scalings of the input
matrices A and B. Therefore, for matrices A and B with divergent exponent
values, Strassen’s method may give inaccurate results. For these cases, you
should use the _GEMUL or _GEMM subroutines.

4. There are ESSL-specific rules that apply to the results of computations on the

workstation processors using the ANSI/IEEE standards. For details, see |”What|

Data Type Standards Are Used by ESSL, and What Exceptions Should You

Know About?” on page 44.]

For Large Matrices

If you are using large square matrices in your matrix multiplication operations,
you get better performance by using SGEMMS, DGEMMS, CGEMMS, and
ZGEMMS. These subroutines use Winograd’s variation of Strassen’s algorithm for
both real and complex matrices.

For Combined Operations

If you want to perform a combined matrix multiplication and addition with
scaling, SGEMM, DGEMM, CGEMM, and ZGEMM provide better performance
than if you perform the parts of the computation separately in your program. See
references and [@]

Chapter 9. Matrix Operations 373

SGEADD, DGEADD, CGEADD, and ZGEADD

Matrix Operation Subroutines

This section contains the matrix operation subroutine descriptions.

374 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEADD, DGEADD, CGEADD, and ZGEADD

SGEADD, DGEADD, CGEADD, and ZGEADD — Matrix Addition for
General Matrices or Their Transposes

Purpose

These subroutines can perform any one of the following matrix additions, using
matrices A and B or their transposes, and matrix C:

C<A+B

C<A"+B

C<A+B'

C<A'+B'

Table 75. Data Types

A, B, C Subroutine

Short-precision real SGEADD

Long-precision real DGEADD

Short-precision complex CGEADD

Long-precision complex ZGEADD

Syntax
Fortran CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, Idb, transb, c, ldc, m, n)
C and C++ sgeadd | dgeadd | cgeadd | zgeadd (a, Ida, transa, b, 1db, transb, c, ldc, m, n);

On Entry

a is the matrix A, where:
If transa = 'N', A is used in the computation, and A has m rows
and n columns.
If transa = 'T', A" is used in the computation, and A has 1 rows
and m columns.
Note: No data should be moved to form AT; that is, the matrix A

should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in where:
If transa = 'N, its size must be Ida by (at least) n.
If transa = 'T', its size must be Ida by (at least) m.

lda is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:
If transa = 'N', lda =z m.
If transa = "T'", lda = n.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

Chapter 9. Matrix Operations 375

SGEADD, DGEADD, CGEADD, and ZGEADD

376

Idb

transb

ldc

On Return

c

Notes

If transa = 'T', AT is used in the computation.
Specified as: a single character; transa = 'N' or 'T".
is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows
and 7 columns.

If transb = 'T', BT is used in the computation, and B has n rows
and m columns.

Note: No data should be moved to form BT; that is, the matrix B
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 75 on page 375| where:

If transb = 'N, its size must be Idb by (at least) .

If transb = 'T', its size must be Idb by (at least) m.

is the leading dimension of the array specified for b.
Specified as: a fullword integer; Idb > 0 and:

If transb = 'N', Idb = m.

'T', ldb = n.

If transb
indicates the form of matrix B to use in the computation, where:
If transb = 'N', B is used in the computation.

If transb = 'T', B" is used in the computation.

Specified as: a single character; transb = 'N' or 'T".

See

is the leading dimension of the array specified for c.

Specified as: a fullword integer; Idc > 0 and Ildc = m.

is the number of rows in matrix C.

Specified as: a fullword integer; 0 = m = Idc.

is the number of columns in matrix C.

Specified as: a fullword integer; 0 < n.

is the m by n matrix C, containing the results of the computation.
Returned as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 75 on page 375|

1. All subroutines accept lowercase letters for the transa and transb arguments.

2. Matrix C must have no common elements with matrices A or B. However, C

with B if transb = 'N'. Otherwise, results are unpredictable. See

may (exactly) coincide with A if transa = 'N', and C may (exactly) coincide

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEADD, DGEADD, CGEADD, and ZGEADD

Function

The matrix sum is expressed as follows, where A, b,j, and cjj are elements of
matrices A, B, and C, respectively:

= al-j+bij for C<A+B

= a;+b; for C<A+B"

a;+b;; for C<A™+B

i = a;+b; for C<A™+BT
fori=1mandj=1,n

=

o000
= . .
I

If m or n is 0, no computation is performed.

Special Usage

You can compute the transpose C' of each of the four computations listed under
by using the following matrix identities:

(A+B)T = A™+B!
(A+BNHT = AT+B
(AT™+B)T = A+BT
(AT™+BNHT = A+B

Be careful that your output array receiving C' has dimensions large enough to
hold the transposed matrix. See [“Example 4” on page 379]

Error Conditions

Input Argument Errors
Ida, 1db, ldc =

2. m,n <0

3. m > ldc

4. transa, transb # 'N' or 'T"
5. transa = 'N'and m > lda
6. transa = 'T'and n > lda
7. transb = 'N'and m > Idb
8. transb = 'T' and n > Idb

Examples
Example 1

This example shows the computation C<A+B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B, in which it is
contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M

N
N P O R
3

CALL SGEADD(A , 6 , 'N' , B, 4, 'N' ,C,5,4,3)

110000.0 120000.0 130000.0
210000.0 220000.0 230000.0
A = 310000.0 320000.0 330000.0
410000.0 420000.0 430000.0

Chapter 9. Matrix Operations 377

SGEADD, DGEADD, CGEADD, and ZGEADD

11.0 12.0 13.0
B = 21.0 22.0 23.0

31.0 32.0 33.0

41.0 42.0 43.0
Output:

110011.0 120012.0 130013.0
210021.0 220022.0 230023.0
C = 310031.0 320032.0 330033.0
410041.0 420042.0 430043.0

Example 2
This example shows the computation C<A™+B, where A, B, and C are the same size
as arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
|

CALL SGEADD(A , 3, 'T" ,B, 4, 'N" ,C,4,4,3)

110000.0 120000.0 130000.0 140000.0
A = 210000.0 220000.0 230000.0 240000.0
310000.0 320000.0 330000.0 340000.0

11.0 12.0 13.0
B = 21.0 22.0 23.0

31.0 32.0 33.0

41.0 42.0 43.0
Output:

110011.0 210012.0 310013.0
C = 120021.0 220022.0 320023.0
130031.0 230032.0 330033.0
140041.0 240042.0 340043.0

Example 3
This example shows computation C<A+B*, where A is contained in a larger array
A, and B and C are the same size as arrays B and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M

N
R R N A
3

CALL SGEADD(A , 5, 'N' , B, 3, 'T" ,C,4,4,3)

110000.0 120000.0 130000.0
210000.0 220000.0 230000.0
A = 310000.0 320000.0 330000.0
410000.0 420000.0 430000.0

378 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEADD, DGEADD, CGEADD, and ZGEADD

110011.0 120021.0 130031.0
C = 210012.0 220022.0 230032.0
310013.0 320023.0 330033.0
410014.0 420024.0 430034.0

Example 4
This example shows how to produce the transpose of the result of the computation
performed in |[“Example 3” on page 378) C<A+B”, which uses the calling sequence:

CALL SGEADD(A , 5, 'N' , B, 3, 'T',C,4,4,3)

You instead code a calling sequence for C"'<«A"+B, as shown below, where the
resulting matrix C* in the output array CT is the transpose of the matrix in the
output array C in Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
[“Special Usage” on page 377

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC

D
R |
CALL SGEADD(A , 5, 'T' , B, 3, 'N' ,CT, 4

110000.0 120000.0 130000.0
210000.0 220000.0 230000.0
A = 310000.0 320000.0 330000.0
410000.0 420000.0 430000.0

M
|
3

Output:

110011.0 210012.0 310013.0 410014.0
cr = 120021.0 220022.0 320023.0 420024.0
130031.0 230032.0 330033.0 430034.0

Example 5
This example shows the computation C<A"+B", where A, B, and C are the same
size as the arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M

N
[R I A
3

CALL SGEADD(A , 3, 'T' ,B,3,'T" ,C,4,4,3)

Chapter 9. Matrix Operations 379

SGEADD, DGEADD, CGEADD, and ZGEADD

110000.0 120000.0 130000.0 140000.0
A = 210000.0 220000.0 230000.0 240000.0
310000.0 320000.0 330000.0 340000.0

110011.0 210021.0 310031.0
C = 120012.0 220022.0 320032.0
130013.0 230023.0 330033.0
140014.0 240024.0 340034.0

Example 6

This example shows the computation C<A+B, where A, B, and C are contained in
larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input:

A LDA TRANSA B LDB TRANSB (|: L[l)C I\l’l lil
| [B
CALL CGEADD(A , 6 , 'N* ,B,5, 'N ,C,5,4,3)
(1.0, 5.0) (9.0, 2.0) (1.0, 9.0)
(2.0, 4.0) (8.0, 3.0) (1.0, 8.0)
A = (3.0, 3.0) (7.0, 5.0) (1.0, 7.0)
(6.0, 6.0) (3.0, 6.0) (1.0, 4.0)
(1.0, 8.0) (2.0, 7.0) (3.0, 2.0)
(4.0, 4.0) (6.0, 8.0) (6.0, 3.0)
B = (6.0, 2.0) (4.0, 5.0) (4.0, 5.0)
(7.0, 2.0) (6.0, 4.0) (1.0, 6.0)
Output
(2.0, 13.0) (11.0, 9.0) (4.0, 11.0)
(6.0, 8.0) (14.0, 11.0) (7.6, 11.0)
C = (9.0, 5.0) (11.0, 10.0) (5.0, 12.0)
0, 10.0) (

(13.0, 8.0) (9. 2.0, 10.0)

380 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGESUB, DGESUB, CGESUB, and ZGESUB

SGESUB, DGESUB, CGESUB, and ZGESUB — Matrix Subtraction for
General Matrices or Their Transposes

Purpose

These subroutines can perform any one of the following matrix subtractions, using
matrices A and B or their transposes, and matrix C:

C<A-B

C<A™-B

C<A-B'

C<A™-B*

Table 76. Data Types

A, B, C Subroutine

Short-precision real SGESUB

Long-precision real DGESUB

Short-precision complex CGESUB

Long-precision complex ZGESUB

Syntax
Fortran CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, Idb, transb, c, ldc, m, n)
C and C++ sgesub | dgesub | cgesub | zgesub (a, Ida, transa, b, ldb, transb, c, ldc, m, n);

On Entry

a is the matrix A, where:
If transa = 'N', A is used in the computation, and A has m rows
and 7 columns.
If transa = 'T', A" is used in the computation, and A has 1 rows
and m columns.
Note: No data should be moved to form AT; that is, the matrix A

should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in where:
If transa = 'N, its size must be Ida by (at least) n.
If transa = 'T', its size must be Ida by (at least) m.

lda is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:
If transa = 'N', lda =z m.
If transa = "T'", lda = n.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

Chapter 9. Matrix Operations 381

SGESUB, DGESUB, CGESUB, and ZGESUB

382

Idb

transb

ldc

On Return

c

Notes

If transa = 'T', AT is used in the computation.
Specified as: a single character; transa = 'N' or 'T".
is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows
and 7 columns.

If transb = 'T', BT is used in the computation, and B has n rows
and m columns.

Note: No data should be moved to form BT; that is, the matrix B
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 75 on page 375| where:

If transb = 'N, its size must be Idb by (at least) .

If transb = 'T', its size must be Idb by (at least) m.

is the leading dimension of the array specified for b.
Specified as: a fullword integer; Idb > 0 and:

If transb = 'N', Idb = m.

'T', ldb = n.

If transb
indicates the form of matrix B to use in the computation, where:
If transb = 'N', B is used in the computation.

If transb = 'T', B" is used in the computation.

Specified as: a single character; transb = 'N' or 'T".

See

is the leading dimension of the array specified for c.

Specified as: a fullword integer; Idc > 0 and Ildc = m.

is the number of rows in matrix C.

Specified as: a fullword integer; 0 = m = Idc.

is the number of columns in matrix C.

Specified as: a fullword integer; 0 < n.

is the m by n matrix C, containing the results of the computation.
Returned as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 76 on page 381}

1. All subroutines accept lowercase letters for the transa and transb arguments.

2. Matrix C must have no common elements with matrices A or B. However, C

with B if transb = 'N'. Otherwise, results are unpredictable. See

may (exactly) coincide with A if transa = 'N', and C may (exactly) coincide

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGESUB, DGESUB, CGESUB, and ZGESUB

Function

The matrix subtraction is expressed as follows, where a
matrices A, B, and C, respectively:

b

ii» by, and ¢;; are elements of

ii—bij for C<A-B

a p—
= a;-b; for C<A-BT
a —

NI~

1 Jt

i~b; for C<A'-B
T T
ij = aﬂ_bﬂ fOI‘ CGA _B

fori=1mandj=1,n

o000
N N

If m or n is 0, no computation is performed.

Special Usage
You can compute the transpose C' of each of the four computations listed under
by using the following matrix identities:

(A-B)T = AT-B!
(A-BHT = AT™-B
(A™-B)T = A-BT
(AT-BHT = A-B

Be careful that your output array receiving C' has dimensions large enough to
hold the transposed matrix. See [“Example 5” on page 385

Error Conditions

Computational Errors
None

Input-Argument Errors
1. Ida, Idb, ldc = 0

2. m,n <0

3. m > ldc

4. transa, transb # 'N' or 'T"'
5. transa = 'N'and m > lda
6. transa = '"T'and n > lda
7. transb = 'N'and m > Idb
8. transb = 'T" and n > Idb

Examples
Example 1

This example shows the computation C<A—B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B, in which it is
contained.

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC

D
| |1 ||
CALL SGESUB(A , 6 , 'N' ,B,4,'N ,C,5

110000.0 120000.0 130000.0
210000.0 220000.0 230000.0
A = | 310000.0 320000.0 330000.0 |

Chapter 9. Matrix Operations 383

SGESUB, DGESUB, CGESUB, and ZGESUB

410000.0 420000.0 430000.0

-11.0 -12.0 -13.0
B = -21.0 -22.0 -23.0
-31.0 -32.0 -33.0
-41.0 -42.0 -43.0

Output:
110011.0 120012.0 130013.0
210021.0 220022.0 230023.0
C = | 310031.0 320032.0 330033.0
410041.0 420042.0 430043.0
Example 2

This example shows the computation C<A"-B, where A, B, and C are the same size
as arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N

CALL SGESUB(A , 3, 'T" ,B, 4, 'N" ,C,4,4,3)

110000.0 120000.0 130000.0 140000.0
A = 210000.0 220000.0 230000.0 240000.0
310000.0 320000.0 330000.0 340000.0

-11.0 -12.0 -13.0
B = -21.0 -22.0 -23.0
-31.0 -32.0 -33.0
-41.0 -42.0 -43.0

Output:
110011.0 210012.0 310013.0
C = | 120021.0 220022.0 320023.0
130031.0 230032.0 330033.0
140041.0 240042.0 340043.0
Example 3

This example shows computation C<A-B*, where A is contained in a larger array
A, and B and C are the same size as arrays B and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N

CALL SGESUB(A , 5, 'N' ,B,3,'T" ,C,4,4,3)

110000.0 120000.0 130000.0
210000.0 220000.0 230000.0

384 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGESUB, DGESUB, CGESUB, and ZGESUB

A = 310000.0 320000.0 330000.0
410000.0 420000.0 430000.0

-11.0 -12.0 -13.0 -14.0
B = -21.0 -22.0 -23.0 -24.0
-31.0 -32.0 -33.0 -34.0

Output:
110011.0 120021.0 130031.0
C = | 210012.0 220022.0 230032.0
310013.0 320023.0 330033.0
410014.0 420024.0 430034.0
Example 4

This example shows the computation C¢<A"™-B”, where A, B, and C are the same
size as the arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M

N
[A R I A
3

CALL SGESUB(A, 3, 'T" ,B,3,'T" ,C,4, 4,

110000.0 120000.0 130000.0 140000.0
A = 210000.0 220000.0 230000.0 240000.0
310000.0 320000.0 330000.0 340000.0

)

-11.0 -12.0 -13.0 -14.0
B = -21.0 -22.0 -23.0 -24.0
-31.0 -32.0 -33.0 -34.0

Output:
110011.0 210021.0 310031.0
C = 120012.0 220022.0 320032.0
130013.0 230023.0 330033.0
140014.0 240024.0 340034.0
Example 5

This example shows how to produce the transpose of the result of the computation
performed in C<A"-B", which uses the calling sequence:

CALL SGESUB(A , 3, 'T" , B, 3, 'T',C,4,4,3)

You instead code a calling sequence for C'<A-B, as shown below, where the
resulting matrix C'in the output array CT is the transpose of the matrix in the
output array C in Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
[“Special Usage” on page 383)

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC
|

M
|
CALL SGESUB(A , 3, 'N' , B, 3, 'N' ,CT,3,3

)

Chapter 9. Matrix Operations 385

SGESUB, DGESUB, CGESUB, and ZGESUB

110000.0 120000.0 130000.0 140000.0
A = 210000.0 220000.0 230000.0 240000.0
310000.0 320000.0 330000.0 340000.0

-11.0 -12.0 -13.0 -14.0
B = -21.0 -22.0 -23.0 -24.0
-31.0 -32.0 -33.0 -34.0

Output:

110011.0 120012.0 130013.0 140014.0
cr = 210021.0 220022.0 230023.0 240024.0
310031.0 320032.0 330033.0 340034.0

Example 6
This example shows the computation C«A-B, where A, B, and C are contained in
larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input:

? LDA TR?NSA T LTB TR?NSB T LTC T T
CALL CGESUB(A , 6 , 'N'* ,B,5, 'N ,C,5,4,3)
_ (1.0, 5.0) (9.0, 2.0) (1.0, 9.0)-
(2.0, 4.0) (8.0, 3.0) (1.0, 8.0)
A = (3.0, 3.0) (7.0, 5.0) (1.0, 7.0)
(6.0, 6.0) (3.0, 6.0) (1.0, 4.0)
_ (1.0, 8.0) (2.0, 7.0) (3.0, 2.0)-
(4.0, 4.0) (6.0, 8.0) (6.0, 3.0)
B = (6.0, 2.0) (4.0, 5.0) (4.0, 5.0)
(7.0, 2.0) (6.0, 4.0) (1.0, 6.0)
Output
(0.0, -3.0) (7.0, -5.0) (-2.0, 7.0)
(-2.0, 0.0) (2.0, -5.0) (-5.0, 5.0)
C = (-3.0, 1.0) (3.0, 0.0) (-3.0, 2.0)
(-1.0, 4.0) (-3.0, 2.0) (0.0, -2.0)

386 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL — Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes

Purpose

SGEMUL and DGEMUL can perform any one of the following matrix
multiplications, using matrices A and B or their transposes, and matrix C:

C<AB
C<A"B

C<AB"
C<A'B"

CGEMUL and ZGEMUL can perform any one of the following matrix
multiplications, using matrices A and B, their transposes or their conjugate
transposes, and matrix C:

C<AB
C<A'B
C<A"B

C<AB" C<AB"
C<A'B" C<A™B"
Ce<A"'B" C<A"'B"

Table 77. Data Types

A, B, C Subroutine
Short-precision real SGEMUL
Long-precision real DGEMUL
Short-precision complex CGEMUL
Long-precision complex ZGEMUL

Syntax
Fortran CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, Ida, transa, b, Idb, transb, c, ldc, 1, m, n)
C and C++ sgemul | dgemul | cgemul | zgemul (a, Ida, transa, b, 1db, transb, c, ldc, I, m, n);

On Entry

a

is the matrix A, where:

If transa = 'N', A is used in the computation, and A has | rows and
m columns.

If transa = 'T', AT is used in the computation, and A has m rows
and [columns.

If transa = 'C', A is used in the computation, and A has m rows
and [columns.

Note: No data should be moved to form AT or A™; that is, the
matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the

data type indicated in where:

If transa = 'N, its size must be Ida by (at least) m.
If transa = 'T" or 'C, its size must be Ida by (at least) .

Chapter 9. Matrix Operations 387

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Ilda

transa

Idb

transb

ldc

is the leading dimension of the array specified for a.

Specified as: a fullword integer; Ida > 0 and:

If transa = 'N', lda = 1.

If transa = '"T' or 'C', lda = m.

indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', A™ is used in the computation.

Specified as: a single character; transa = 'N' or 'T' for SGEMUL and
DGEMUL; transa = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.

is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows
and 7 columns.

If transb = 'T', BT is used in the computation, and B has n rows
and m columns.

If transb = 'C', B is used in the computation, and B has n rows

and m columns.

Note: No data should be moved to form BT or BY; that is, the
matrix B should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 77 on page 387, where:

If transb = 'N', its size must be Idb by (at least) n.

If transb = "T" or 'C', its size must be Idb by (at least) m.

is the leading dimension of the array specified for b.

Specified as: a fullword integer; Idb > 0 and:

If transb = 'N', Idb =z m.

If transb = 'T" or 'C', ldb = n.

indicates the form of matrix B to use in the computation, where:
If transb = 'N', B is used in the computation.

If transb = 'T', B" is used in the computation.

If transb = 'C', B" is used in the computation.

Specified as: a single character; transb = 'N' or 'T' for SGEMUL and
DGEMUL; transb = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.

See [“On Return” on page 389,

is the leading dimension of the array specified for c.
Specified as: a fullword integer; Idc > 0 and Idc = I.
is the number of rows in matrix C.

Specified as: a fullword integer; 0 = [= Idc.

388 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

m has the following meaning, where:
If transa = 'N', it is the number of columns in matrix A.
If transa = 'T" or 'C’, it is the number of rows in matrix A.
In addition:
If transb = 'N', it is the number of rows in matrix B.
If transb = 'T" or 'C/, it is the number of columns in matrix B.
Specified as: a fullword integer; m = 0.
n is the number of columns in matrix C.

Specified as: a fullword integer; n = 0.

On Return

c is the | by n matrix C, containing the results of the computation.
Returned as: an Idc by (at least) n numbers of the data type
indicated in [Table 77 on page 387

Notes

1. All subroutines accept lowercase letters for the transa and transb arguments.

2. Matrix C must have no common elements with matrices A or B; otherwise,
results are unpredictable. See [“Concepts” on page 55

Function

The matrix multiplication is expressed as follows, where a;, by;, and c;; are elements
of matrices A, B, and C, respectively:

Chapter 9. Matrix Operations 389

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

k=1

¢ = Zaki by for C « A" B
k=1

;=D ayby for C« A" B
k=1

C;: :Zalkb]k fOI‘C(—ABT
k=1

c; = Zaki by for C « A" B'

c; = Zﬁki by forC« A" B'

c; = Zaik I;jk for C < A B"

¢; =D agb, forC« A" B"

¢; =) ayb,; for C« A" B"

for i=117and j=1n

See reference . If I or n is 0, no computation is performed. If | and n are greater
than 0, and m is 0, an [by n matrix of zeros is returned.

Special Usage

Equivalence Rules
By using the following equivalence rules, you can compute the transpose C" or the
conjugate transpose C'' of some of the computations performed by these

subroutines:

Transpose Conjugate Transpose
(AB)" = B"A"T (AB)"! = BHA™
(A"™B)T = B"A (A"B)" = BHA
(AB")T = BAT (ABHT = BA™
(ATB")T = BA (AFBHT = BA

When coding the calling sequences for these cases, be careful to code your matrix
arguments and dimension arguments in the order indicated by the rule. Also, be
careful that your output array, receiving CT or C*, has dimensions large enough to
hold the resulting transposed or conjugate transposed matrix. See [“Example 2” on|
lpage 392 and [“Example 4” on page 393

390 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Error Conditions

Resource Errors

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Unable to allocate internal work area (CGEMUL and ZGEMUL only).

Computational Errors

None

Input Argument Errors
Ida, 1db, ldc <

2. I, mn<20

3. I > lde

4. transa, transb #

5. transa, transb #

6. transa = N'and ! > lda

7. transa = 'T' or 'C' and m > lda

8. transb = N'and m > Ildb

9. transb = '"T' or 'C' and n > Idb
Examples

Example 1

'N' or "T" for SGEMUL and DGEMUL
'‘N', 'T', or 'C' for CGEMUL and ZGEMUL

This example shows the computation C<AB, where A, B, and C are contained in
larger arrays A, B, and C, respectively.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB

CALL SGEMUL(A , 8

Output:

1
AW N =
(oo NoNoNo N

S Wk N
[oNoNoNoNo)

23.
-4,

-3.
-5.
15.0

w
[oNoNoRoNo]

12.
-5.

-7.
6.

[cNoNoNoNoNo]

[cNoNoNoNo]

INI

-1.
1.
-1.
2.
-2.
1.

-1.
-1.

-1.

[cNoNoNoNoNo]

[cNoNoNONo]

[cNoRoNoNoNo)

W N

[oNoNoNONo]

PO P WwWMN

[cNoNoNoNoNO]

5B969

[cNoRoNoNoNo)

N OMN B

INI

[cNoNoNoNoNol

Chapter 9. Matrix Operations

391

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Example 2
This example shows how to produce the transpose of the result of the computation
performed in |[“Example 1” on page 391| C<AB, which uses the calling sequence:

CALL SGEMUL (A,8,'N',B,6,'N',C,7,6,5,4)

You instead code a calling sequence for C'«B"A", as shown below, where the
resulting matrix C_in the output array CT is the transpose of the matrix in the
output array C in Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
[“Special Usage” on page 390)

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC L M N
[[I | |
CALL SGEMUL(B , 6 , 'T" , A, 8, 'T" ,CT,5,4,5,6)
1.0 -1.0 0.0 2.0
2.0 2.0 -1.0 -2.0
B = 1.0 0.0 -1.0 1.0
-3.0 -1.0 1.0 -1.0
4.0 2.0 -1.0 1.0
1.0 2.0 -1.0 -1.0 4.0
2.0 0.0 1.0 1.0 -1.0
1.0 -1.0 -1.0 1.0 2.0
A = | -3.0 2.0 2.0 2.0 0.0
4.0 0.0 -2.0 1.0 -1.0
-1.0 -1.0 1.0 -3.0 2.0
Output:
23.0 -4.0 3.0 -3.0 -5.0 15.0
12.0 -5.0 0.0 5.0 -7.0 6.0
cT = | -6.0 1.0 1.0 -2.0 4.0 -5.0
2.0 3.0 4.0 -10.0 4.0 6.0
Example 3

This example shows the computation C<A"B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC L M N
[Y R A A B B
CALL SGEMUL(A , 4, 'T' ,B,3,'N' ,C,5,3,3,6)
1.0 -3.0 2.0
A= | 2.0 4.0 0.0
1.0 -1.0 -1.0

392 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

1.0 -3.06 2.0 2.
B = 2.0 4.0 0.0 0.

1.6 -1.06 -1.0 -1.
Output:

6.0 4.0 1.0 1

4.0 26.0 -5.0 -5
C = 1.0 -5.0 5.0 5
Example 4

[oNo N o]

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

0 -1.0 2.0
6 1.0 -2.0
06 -1.0 1.0
0.0 -1.0
8.0 -15.0
-1.0 3.0

This example shows how to produce the transpose of the result of the computation

performed in [“Example 3” on page 392) C<A"B, which uses the calling sequence:

CALL SGEMUL (A,4,'T',B,

3,'N",C,5,3,3,6)

You instead code the calling sequence for C'«B'A, as shown below, where the
resulting matrix C' in the output array CT is the transpose of the matrix in the
output array C in Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see

[“Special Usage” on page 390)

Call Statement and Input:
A LDA TRANSA B

CALL SGEMUL(B , 3, 'T* , A

1.0 -3.0 2.0 2.
B = 2.0 4.0 0.0 0.
1.0 -1.0 -1.0 -1.
1.0 -3.0 2.0
A = |20 4.0 0.0
1.0 -1.0 -1.0
Output:
6.0 4.0 1.0
4.0 26.0 -5.0
1.0 -5.0 5.0
T o= 1.0 -5.0 5.0
0.0 8.0 -1.0
-1.0 -15.0 3.0
Example 5

LDB TRANSB C LDC L M N
| [I

E] 4 s INI s CT E] 8 E] 6 E] 3 E] 3)

0 -1.0 2.0

o 1.0 -2.0

0 -1.0 1.0

This example shows the computation C<AB”, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the array B in which it

is contained.

Call Statement and Input:

Chapter 9. Matrix Operations 393

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

394

A LDA TRANSA B LDB TRANSB C LDC L M N
| L [R
CALL SGEMUL(A , 4, 'N* ,B,3,'T" ,C,5,3,2,3)
1.0 -3.0
A = |20 4.0
1.0 -1.0
1.0 -3.0
B = |2.0 4.0
1.0 -1.0
Output:
[10.0 -10.0 4.0]
-10.0 20.0 -2.0
c = 4.0 -2.0 2.0
Example 6

This example shows the computation C<A'BT, where A, B, and C are the same size
as the arrays A, B, and C in which they are contained. (Based on the dimensions of
the matrices, A is actually a column vector, and C is actually a row vector.)

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC L M N
|| I A I I
CALL SGEMUL(A , 3, 'T* ,B,3,'T" ,C,1,1,3,3)
1.0
A = | 2.0
1.0
1.0 -3.0 2.0
B = |20 4.6 0.0
1.0 -1.0 -1.0 J
Output:
B = [-3.0 10.0 -2.0]
Example 7

This example shows the computation C<A'B using complex data, where A, B, and
C are contained in larger arrays A, B, and C, respectively.

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC L M N
| | [[R N
CALL CGEMUL(A , 6, 'T" ,B,7,'N ,C,3,2,3,3)
(1.0, 2.0) (3.0, 4.0)
(4.0, 6.0) (7.0, 1.0)
A = | (6.0, 3.0) (2.0, 5.0)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

_ (1.0, 9.0) (2.0, 6.0) (5.0, 6.0)

(2.0, 5.0) (6.0, 2.0) (6.0, 4.0)

(2.0, 6.0) (5.0, 4.0) (2.0, 6.0)
B = . . .
Output:

(-45.0, 85.0) (20.0, 93.0) (-13.0, 110.0)
C = | (-50.0, 90.0) (12.0, 79.0) (3.0, 94.0)
Example 8

This example shows the computation C¢<AB" using complex data, where A and C
are contained in larger arrays A and C, respectively, and B is the same size as the

array B in which it is contained.

Call Statement and Input:

A LDA TRANSA B LDB TRANSB C LDC L M N
L (Y A A A R
CALL CGEMUL(A , 4, 'N' ,B,3,'C ,C,4,3,2,3)

i 1
(1.0, 2.0) (-3.0, 2.0)
A= | (2.0, 6.0) (4.0, 5.0)
(1.6, 2.0) (-1.0, 8.0)
(1.0, 3.0) (-3.0, 2.0)
B = | (2.0, 5.0) (4.0, 6.0)
(1.6, 1.0) (-1.0, 9.0)

(20.0, -1.0) (12.0, 25.0) (24.0, 26.0)
C = (18.0, -23.0) (80.0, -2.0) (49.0, -37.0)
(26.0, -23.0) (56.0, 37.0) (76.0, 2.0)

Chapter 9. Matrix Operations

395

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS — Matrix Multiplication
for General Matrices, Their Transposes, or Conjugate Transposes
Using Winograd’s Variation of Strassen’s Algorithm

Purpose

These subroutines use Winograd’s variation of the Strassen’s algorithm to perform
the matrix multiplication for both real and complex matrices. SGEMMS and
DGEMMS can perform any one of the following matrix multiplications, using
matrices A and B or their transposes, and matrix C:

C<AB C<ABT
C<A'B C<ATBT

CGEMMS and ZGEMMS can perform any one of the following matrix
multiplications, using matrices A and B, their transposes or their conjugate
transposes, and matrix C:

C<AB C<AB" C<AB"
C<A'B C<A'"B" C<A"B"
C<A"B C<AYBT C<AHBH
Table 78. Data Types
A, B, C aux Subroutine
Short-precision real Short-precision real SGEMMS
Long-precision real Long-precision real DGEMMS
Short-precision complex Short-precision real CGEMMS
Long-precision complex Long-precision real ZGEMMS
Syntax
Fortran CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, Idb, transb, c, ldc, I, m, n,
aux, naux)
C and C++ sgemms | dgemms | cgemms | zgemms (a, Ida, transa, b, 1db, transb, c, ldc, I, m, n, aux, naux);
On Entry
a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has | rows and
m columns.

If transa = 'T', AT is used in the computation, and A has m rows
and [columns.

If transa = 'C', A™ is used in the computation, and A has m rows

and [columns.

Note: No data should be moved to form AT or A that is, the
matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the

data type indicated in where:

396 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

lda

transa

Idb

transb

ldc

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

If transa = 'N, its size must be Ida by (at least) m.

"

If transa = 'T" or 'C, its size must be Ida by (at least) .

is the leading dimension of the array specified for a.

Specified as: a fullword integer; Ida > 0 and:

If transa = 'N', lda = 1.

If transa = 'T' or 'C', lda = m.

indicates the form of matrix A to use in the computation, where:
If transa = 'N', A is used in the computation.

If transa = 'T', A" is used in the computation.

If transa = 'C', A™ is used in the computation.

Specified as: a single character; transa = 'N' or 'T' for SGEMMS
and DGEMMS; transa = 'N', 'T', or 'C' for CGEMMS and
ZGEMMS.

is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows
and 7 columns.

If transb = 'T', BT is used in the computation, and B has n rows
and m columns.

If transb = 'C', BY is used in the computation, and B has n rows
and m columns.

Note: No data should be moved to form BT or BY; that is, the
matrix B should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 78 on page 396 where:

If transb = 'N, its size must be Idb by (at least) n.

If transb = 'T' or 'C', its size must be Idb by (at least) m.

is the leading dimension of the array specified for b.

Specified as: a fullword integer; Idb > 0 and:

If transb = 'N', ldb = m.

If transb = 'T' or 'C', ldb = n.

indicates the form of matrix B to use in the computation, where:

If transb

'N', B is used in the computation.

If transb = 'T', B is used in the computation.

If transb = 'C', B" is used in the computation.

Specified as: a single character; transb = 'N' or 'T' for SGEMMS
and DGEMMS; transb = 'N', 'T', or 'C' for CGEMMS and
ZGEMMS.

See [“On Return” on page 399)

is the leading dimension of the array specified for c.

Chapter 9. Matrix Operations 397

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

aux

naux

Specified as: a fullword integer; Idc > 0 and ldc = [.

is the number of rows in matrix C.

Specified as: a fullword integer; 0 = [= Idc.

has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

If transa = 'T" or 'C’, it is the number of rows in matrix A.
In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.
Specified as: a fullword integer; m = 0.

is the number of columns in matrix C.

Specified as: a fullword integer; n = 0.

has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, is the storage work area used by this subroutine. Its
size is specified by naux.

Specified as: an area of storage containing numbers of the data
type indicated in [Table 78 on page 396

is the size of the work area specified by aux—that is, the number of
elements in aux.

Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEMMS, DGEMMS,
CGEMMS, and ZGEMMS dynamically allocate the work area used
by the subroutine. The work area is deallocated before control is
returned to the calling program.

Otherwise,

When this subroutine uses Strassen’s algorithm:
* For SGEMMS and DGEMMS:

Use naux = max[(n)(l), 0.7m(l+n)].
* For CGEMMS and ZGEMMS:

Use naux = max[(n)(l), 0.7m(l+n)]+nb1+nb2, where:
If | = n, then nbl = (I)(n+20) and nb2 = max[(n)(]), (m)(n+20)].
If | < n, then nbl =z (m)(n+20) and nb2 = max[(n)(l), (I)(m+20)].

When this subroutine uses the direct method (_GEMUL), use
naux = 0.

Notes:

1. In most cases, these formulas provide an overestimate.

2. For an explanation of when this subroutine uses the direct
method versus Strassen’s algorithm, see|“Notes” on page 399

398 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Notes

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

On Return

c is the | by n matrix C, containing the results of the computation.
Returned as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 78 on page 396

1. There are two instances when these subroutines use the direct method
(_GEMUL), rather than using Strassen’s algorithm:

* When either or both of the input matrices are small
¢ For CGEMMS and ZGEMMS, when input matrices A and B overlap

In these instances when the direct method is used, the subroutine does not use
auxiliary storage, and you can specify naux = 0.

2. For CGEMMS and ZGEMMS, one of the input matrices, A or B, is rearranged
during the computation and restored to its original form on return. Keep this in
mind when diagnosing an abnormal termination.

3. All subroutines accept lowercase letters for the transa and transb arguments.

4. Matrix C must have no common elements with matrices A or B; otherwise,
results are unpredictable. See [“Concepts” on page 55

5. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see [“Using Auxiliary]
[Storage in ESSL” on page 32|

Function

The matrix multiplications performed by these subroutines are functionally
equivalent to those performed by SGEMUL, DGEMUL, CGEMUL, and ZGEMUL.
For details on the computations performed, see ["Function” on page 389,

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS use Winograd'’s variation of the
Strassen’s algorithm with minor changes for tuning purposes. (See pages 45 and 46
in reference .) The subroutines compute matrix multiplication for both real and
complex matrices of large sizes. Complex matrix multiplication uses a special
technique, using three real matrix multiplications and five real matrix additions.
Each of these three resulting matrix multiplications then uses Strassen’s algorithm.

Strassen’s Algorithm

The steps of Strassen’s algorithm can be repeated up to four times by these
subroutines, with each step reducing the dimensions of the matrix by a factor of
two. The number of steps used by this subroutine depends on the size of the input
matrices. Each step reduces the number of operations by about 10% from the
normal matrix multiplication. On the other hand, if the matrix is small, a normal

matrix multiplication is performed without using the Strassen’s algorithm, and no
improvement is gained. For details about small matrices, see

Complex Matrix Multiplication

The complex multiplication is performed by forming the real and imaginary parts
of the input matrices. These subroutines uses three real matrix multiplications and
five real matrix additions, instead of the normal four real matrix multiplications
and two real matrix additions. Using only three real matrix multiplications allows
the subroutine to achieve up to a 25% reduction in matrix operations, which can
result in a significant savings in computing time for large matrices.

Chapter 9. Matrix Operations 399

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

Accuracy Considerations

Strassen’s method is not stable for certain row or column scalings of the input
matrices A and B. Therefore, for matrices A and B with divergent exponent values
Strassen’s method may give inaccurate results. For these cases, you should use the
_GEMUL or _GEMM subroutines.

Special Usage
The equivalence rules, defined for matrix multiplication of A and B 1n
[Usage” on page 390 also apply to these subroutines. You should use the
equivalence rules when you want to transpose or conjugate transpose the result of
the multiplication computation. When coding the calling sequences for these cases,
be careful to code your matrix arguments and dimension arguments in the order
indicated by the rule. Also, be careful that your output array, receiving C' or C",
has dimensions large enough to hold the resulting transposed or conjugate
transposed matrix. See [“Example 2” on page 392 and [“Example 4” on page 393 |

Error Conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input Argument Errors

Ida, ldb, ldc = 0

L, mmn<0

I > ldc

transa, transb # 'N' or 'T' for SGEMMS and DGEMMS

transa, transb # 'N', 'T', or 'C' for CGEMMS and ZGEMMS

transa = 'N'and | > Ida

transa = 'T" or 'C' and m > lda

transb = 'N' and m > Idb

transb = 'T' or 'C' and n > Idb

Error 2015 is recoverable or naux#0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

CONOOR~WN

—_

Examples

Example 1

This example shows the computation C<AB, where A, B, and C are contained in

larger arrays A, B, and C, respectively. It shows how to code the calling sequence

for SGEMMS, but does not use the Strassen algorithm for doing the computation.
The calhng sequence is shown below. The input and output, other than auxiliary
storage, is the same as in [“Example 1” on page 391| for SGEMUL.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC

D
[Y N L T
7

CALL SGEMMS(A , 8, 'N'* , B, 6, 'N' ,C,

M N AUX NAUX

Example 2
This example shows the computation C<AB", where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the array B in which it

400 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

is contained. The arrays contain complex data. This example shows how to code
the calling sequence for CGEMMS, but does not use the Strassen algorithm for
doing the computation. The calling sequence is shown below. The input and
output, other than auxiliary storage, is the same as in[“Example 8” on page 395 for
CGEMUL.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC

D
[Y N L R I
4

CALL CGEMMS(A , 4, 'N' ,B, 3, 'C" ,C,

M N AUX NAUX

, 2,3 ,AU,0)

w—r

Chapter 9. Matrix Operations 401

SGEMM, DGEMM, CGEMM, and ZGEMM

SGEMM, DGEMM, CGEMM, and ZGEMM — Combined Matrix
Multiplication and Addition for General Matrices, Their Transposes, or
Conjugate Transposes

Purpose

SGEMM and DGEMM can perform any one of the following combined matrix
computations, using scalars « and 8, matrices A and B or their transposes, and

matrix C:
C <« aAB+SC C« O(ABT+BC
C « aA"B+8C C « aA"B"+8C

CGEMM and ZGEMM can perform any one of the following combined matrix
computations, using scalars « and 8, matrices A and B, their transposes or their
conjugate transposes, and matrix C:

C « tAB+B8C C « xAB™+8C C « aAB"+8C
C <« cA"B+BC C « cA"B"+8C C « cA"BH+8C
C <« aA"'B+BC C « aA"B"+BC C <« aA"BY+BC

Table 79. Data Types

A/B C o f Subroutine
Short-precision real SGEMM
Long-precision real DGEMM
Short-precision complex CGEMM
Long-precision complex ZGEMM
Syntax
Fortran CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, I, n, m, alpha, a, Ida, b, Idb, beta, c,
ldc)
C and C++ sgemm | dgemm | cgemm | zgemm (transa, transb, I, n, m, alpha, a, Ida, b, 1db, beta, c, ldc);
On Entry
transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.
If transa = 'T', A" is used in the computation.

If transa

'C', A™ is used in the computation.

Specified as: a single character; transa = 'N', 'T', or 'C".

transb indicates the form of matrix B to use in the computation, where:
If transb = 'N', B is used in the computation.
If transb = 'T', B" is used in the computation.
If transb = 'C', B™ is used in the computation.

Specified as: a single character; transb = 'N', 'T', or 'C".

402 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

alpha

lda

SGEMM, DGEMM, CGEMM, and ZGEMM

is the number of rows in matrix C.

Specified as: a fullword integer; 0 = [= Idc.

is the number of columns in matrix C.

Specified as: a fullword integer; n = 0.

has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.
If transa = 'T' or 'C’, it is the number of rows in matrix A.
In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = '"T" or 'C/, it is the number of columns in matrix B.
Specified as: a fullword integer; m = 0.

is the scalar «.

Specified as: a number of the data type indicated in [Table 79 on

is the matrix A, where:

If transa = 'N', A is used in the computation, and A has | rows and
m columns.

If transa = 'T', AT is used in the computation, and A has m rows
and [columns.

If transa = 'C', A is used in the computation, and A has m rows

and [columns.

Note: No data should be moved to form AT or A™; that is, the
matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 79 on page 402} where:

If transa = 'N, its size must be Ida by (at least) m.

"

If transa = 'T" or 'C, its size must be Ida by (at least) .
is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:

If transa = 'N', lda =z .

If transa = 'T' or 'C', lda = m.

is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows
and n columns.

If transb = 'T', B is used in the computation, and B has n rows
and m columns.

If transb = 'C', B is used in the computation, and B has n rows
and m columns.

Chapter 9. Matrix Operations 403

SGEMM, DGEMM, CGEMM, and ZGEMM

Idb

beta

ldc

On Return

c

Notes

Note: No data should be moved to form BT or B that is, the
matrix B should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 79 on page 402} where:

If transb = 'N', its size must be Idb by (at least) n.

If transb = 'T' or 'C', its size must be Idb by (at least) m.
is the leading dimension of the array specified for b.
Specified as: a fullword integer; Idb > 0 and:

If transb = 'N', Idb = m.

If transb = "T" or 'C', Idb = n.

is the scalar B.

Specified as: a number of the data type indicated in [Table 79 on

is the [by n matrix C.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 79 on page 402}

is the leading dimension of the array specified for c.

Specified as: a fullword integer; Idc > 0 and Idc = [.

is the | by n matrix C, containing the results of the computation.
Returned as: an ldc by (at least) n array, containing numbers of the
data type indicated in [Table 79 on page 402|

1. All subroutines accept lowercase letters for the transa and transb arguments.

2. For SGEMM and DGEMV, if you specify 'C' for the transa or transb argument,
it is interpreted as though you specified 'T".

3. Matrix C must have no common elements with matrices A or B; otherwise,
results are unpredictable. See [“Concepts” on page 55

Function

The combined matrix addition and multiplication is expressed as follows, where
i byj, and c;; are elements of matrices A, B, and C, respectively:

404 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMM, DGEMM, CGEMM, and ZGEMM

¢; =|ad ayby | +PBc; for C« od B +PpC
k=1

¢y =| oY ayby | +Be; for C«ad" B+BC
k=1

¢; =| oY @by | +Be; for €« ad" B +BC

c.=|ay azb, | +Bc for C<«oadB" +pC

)

c,; = aZaki by | +Bc; for C « ad" B" +BC

)

c,; = och_zki by | +Bc; for C « ad” B' +BC

)

c; = aZaikb_jk +Bc¢; for C < oA B" +BC

Y

c; = ocZaki Z7jk +Bc, for C < od" B" +BC

)

¢; =| oY @by | +Bc; for €« ad” B" +pC

ij ij

for i=1 17 and j=1n

See references and . In the following three cases, no computation is
performed:

e lis 0.

* nis0.

e Bis1and ais 0.

Assuming the above conditions do not exist, if § # 1 and m is 0, then SC is
returned.

Special Usage

Equivalence Rules

The equivalence rules, defined for matrix multiplication of A and B in
[Usage” on page 390, also apply to the matrix multiplication part of the
computation performed by this subroutine. You should use the equivalent rules
when you want to transpose or conjugate transpose the multiplication part of the
computation. When coding the calling sequences for these cases, be careful to code
your matrix arguments and dimension arguments in the order indicated by the
rule. Also, be careful that your input and output array C has dimensions large
enough to hold the resulting matrix. See [“Example 4” on page 408

Chapter 9. Matrix Operations 405

SGEMM, DGEMM, CGEMM, and ZGEMM

Error Conditions

Resource Errors
Unable to allocate internal work area (CGEMM and ZGEMM only).

Computational Errors
None

Input Argument Errors
Ida, 1db, Idc =

2. I,mn<20

3. 1 > ldc

4. transa, transb # 'N', 'T', or 'C’

5. transa = 'N'and | > lda

6. transa = '"T' or 'C' and m > lda

7. transb = 'N'and m > Idb

8. transb = 'T' or 'C' and n > Idb
Examples

Example 1

This example shows the computation C<«aAB+BC, where A, B, and C are contained
in larger arrays A, B, and C, respectively.

Call Statement and Input:
TRANSA TRANSB L N

|
CALL SGEMM('N' , 'N' , 6,4,

1.0 2.0 -1.0 -1.0 4.0
2.0 0.0 1.0 1.0 -1.0
1.0 -1.6 -1.0 1.0 2.0
A = -3.0 2.0 2.0 2.0 0.0
4.0 0.0 -2.0 1.0 -1.0
-1.0 -1.0 1.0 -3.0 2.0
1.0 -1.0 0.0 2.0
2.0 2.0 -1.0 -2.0
B = 1.0 0.0 -1.0 1.0
-3.0 -1.0 1.0 -1.0
4.0 2.0 -1.0 1.0

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5
C = 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5
Output:

24.0 13.0 -5.0 3.0

-3.0 -4.0 2.0 4.0

406 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMM, DGEMM, CGEMM, and ZGEMM

4.0 1.0 2.0 5.0
C = |-2.0 6.0 -1.0 -9.0
-4.0 -6.0 5.0 5.0
16.0 7.0 -4.0 7.0
Example 2

This example shows the computation C<««AB"+BC, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B in which it is
contained.

Call Statement and Input:

TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
A A O R N N
CALL SGEMM('N* , 'T' ,3,3,2,1.0,A,4,8B,3,20,C,5)
1.0 -3.0
A = | 2.0 4.0
1.0 -1.0
1.0 -3.0
B = | 2.0 4.0
1.0 -1.0
0.5 0.5 0.5
0.5 0.5 0.5
C = 0.5 0.5 0.5
Output:
11.0 -9.0 5.0
-9.0 21.0 -1.0
c = 5.0 -1.0 3.0
Example 3

This example shows the computation C«aAB+BC using complex data, where A, B,
and C are contained in larger arrays, A, B, and C, respectively.

Call Statement and Input:

TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
[N L O N e

CALL CGEMM('N' , 'N' , 6,2 ,3 ,ALPHA , A, 8,B,4 ,BETA,C, 8)
ALPHA = (1.0, 0.0)
BETA = (2.0, 0.0)

(1.0, 5.0) (9.0, 2.0) (1.0, 9.0)

(2.0, 4.0) (8.0, 3.0) (1.0, 8.0)

(3.0, 3.0) (7.0, 5.0) (1.0, 7.0)
A = | (4.0, 2.0) (4.0, 7.0) (1.0, 5.0)

(5.0, 1.0) (5.0, 1.0) (1.0, 6.0)

(6.0, 6.0) (3.0, 6.0) (1.0, 4.0)

Chapter 9. Matrix Operations 407

SGEMM, DGEMM, CGEMM, and ZGEMM

_ (1.0, 8.0) (2.0, 7.0)_
B = | (4.0, 4.0) (6.0, 8.0)
(6.0, 2.0) (4.0, 5.0)
_ (6.5, 0.0) (0.5, o.o)_
(0.5, 0.0) (0.5, 0.0)
(0.5, 0.0) (0.5, 0.0)
c = | (0.5, 0.0) (0.5, 0.0)
(6.5, 0.0) (0.5, 0.0)
(0.5, 0.0) (0.5, 0.0)
Output:
_ (-22.0, 113.0) (-35.0, 142.0)_
(-19.0, 114.0) (-35.0, 141.0)
(-20.0, 119.0) (-43.0, 146.0)
c = | (-27.0, 110.0) (-58.0, 131.0)
(8.0, 103.0) (0.0, 112.0)
(-55.0, 116.0) (-75.0, 135.0)
Example 4

This example shows how to obtain the conjugate transpose of AB™.

(4B")" = BA" = BA"

This shows the conjugate transpose of the computation performed in
for CGEMUL, which uses the following calling sequence:

CALL CGEMUL(A , 4, 'N' , B, 3, 'C',C,4,3,2,3)

You instead code the calling sequence for C<BC+aBA™, where B = 0, « = 1, and
the array C has the correct dimensions to receive the transposed matrix. Because 8

is zero, BC = 0. For a description of all the matrix identities, see [“Special Usage”]

Call Statement and Input:

TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | [R |

CALL CGEMM('N' , 'C' , 3,3 ,2,ALPHA , B, 3, A, 3, BETA, C, 4)
ALPHA = (1.0, 0.0)
BETA = (0.0, 0.0)

(1.0, 3.0) (-3.0, 2.0)
B = | (2.0, 5.0) (4.0, 6.0)

(1.0, 1.0) (-1.0, 9.0)

408 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEMM, DGEMM, CGEMM, and ZGEMM

(1.0, 2.0) (-3.0, 2.0)
A = (2.0, 6.0) (4.0, 5.0)

(1.0, 2.0) (-1.0, 8.0)
C =(not relevant)
Output:

(20.0, 1.0) (18.0, 23.0) (26.0, 23.0)
C = (12.0, -25.0) (80.0, 2.0) (56.0, -37.0)
(24.0, -26.0) (49.0, 37.0) (76.0, -2.0)

Example 5

This example shows the computation C¢+aA"B"+BC using complex data, where A,
B, and C are the same size as the arrays A, B, and C, in which they are contained.
Because f is zero, BC = 0. (Based on the dimensions of the matrices, A is actually a

column vector, and C is actually a row vector.)

Call Statement and Input:

TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | || | [O N ||
CALL CGEMM('T' , 'C' , , 3,3 ,ALPHA , A,3,B,3,BETA,C, 1)
ALPHA = (1.0, 1.0)
BETA = (0.0, 0.0)
(1.0, 2.0)]
A = (2.0, 5.0)
(1.0, 6.0)
(1.0, 6.0) (-3.0, 4.0) (2.0, 6.0)
B = (2.0, 3.0) (4.0, 6.0) (0.0, 3.0)
(1.0, 3.0) (-1.0, 6.0) (-1.0, 9.0)
C =(not relevant)
Output:
C = [(86.0, 44.0) (58.0, 70.0) (121.0, 55.0)]

Chapter 9. Matrix Operations

409

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM —
Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric
or Complex Hermitian

Purpose

These subroutines compute one of the following matrix-matrix products, using the
scalars o and B and matrices A, B, and C:
1. C«aAB+SC

2. C«aBA+BC

where matrix A is stored in either upper or lower storage mode, and:
* For SSYMM and DSYMM, matrix A is real symmetric.

* For CSYMM and ZSYMM, matrix A is complex symmetric.

* For CHEMM and ZHEMM, matrix A is complex Hermitian.

Table 80. Data Types

o A, BB C Subprogram
Short-precision real SSYMM
Long-precision real DSYMM
Short-precision complex CSYMM and CHEMM
Long-precision complex ZSYMM and ZHEMM
Syntax
Fortran CALL SSYMM | DSYMM | CSYMM | ZSYMM | CHEMM | ZHEMM (side, uplo, m, n, alpha, a,
Ida, b, ldb, beta, c, ldc)
C and C++ ssymm | dsymm | csymm | zsymm | chemm | zhemm (side, uplo, m, n, alpha, a, lda, b, 1db, beta,
¢, ldc);
On Entry
side indicates whether matrix A is located to the left or right of
rectangular matrix B in the equation used for this computation,
where:
If side = 'L', A is to the left of B, resulting in equation 1.
If side = 'R, A is to the right of B, resulting in equation 2.
Specified as: a single character. It must be L' or 'R".
uplo indicates the storage mode used for matrix A, where:
If uplo = 'U’, A is stored in upper storage mode.
If uplo = 'L', A is stored in lower storage mode.
Specified as: a single character. It must be 'U' or 'L".
m is the number of rows in rectangular matrices B and C, and:

If side = 'L', m is the order of matrix A.
Specified as: a fullword integer; 0 = m = Idb, m = Idc, and:

If side = 'L', m = lda.

410 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

alpha

lda

Idb

beta

ldc

On Return

c

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

is the number of columns in rectangular matrices B and C, and:
If side = 'R', n is the order of matrix A.

Specified as: a fullword integer; n = 0 and:

If side = R', n = lda.

is the scalar a.

Specified as: a number of the data type indicated in|Table 80 on|
_

is the real symmetric, complex symmetric, or complex Hermitian
matrix A, where:

If side = 'L', A is order m.
If side = 'R', A is order n.

and where it is stored as follows:

If uplo = 'U’, A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 80 on page 410} where:

If side = 'L, its size must be Ida by (at least) m.

If side = 'R, it size must be Ida by (at least) n.

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:

If side = 'L, lda = m.

If side = 'R', Ida = n.

is the m by n rectangular matrix B.

Specified as: an Idb by (at least) n array, containing numbers of the
data type indicated in [Table 80 on page 410}

is the leading dimension of the array specified for b.
Specified as: a fullword integer; Idb > 0 and Idb = m.

is the scalar B.

Specified as: a number of the data type indicated in [Table 80 on

is the m by n rectangular matrix C.

Specified as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 80 on page 410}

is the leading dimension of the array specified for c.

Specified as: a fullword integer; Idc > 0 and ldc = m.

is the m by n matrix C, containing the results of the computation.

Returned as: an Idc by (at least) n _array, containing numbers of the
data type indicated in [Table 80 on page 410

Chapter 9. Matrix Operations 411

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

412

Notes

1. These subroutines accept lowercase letters for the side and uplo arguments.

2. Matrices A, B, and C must have no common elements; otherwise, results are
unpredictable.

3. If matrix A is upper triangular (uplo = 'U'), these subroutines use only the data
in the upper triangular portion of the array. If matrix A is lower triangular,
(uplo = 'L'), these subroutines use only the data in the lower triangular portion
of the array. In each case, the other portion of the array is altered during the
computation, but restored before exit.

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A
are assumed to be zero, so you do not have to set these values.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see [“Symmetric Matrix” on page 65.|For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
[“Complex Hermitian Matrix” on page 69.|

Function

These subroutines can perform the following matrix-matrix product computations
using matrix A, which is real symmetric for SSYMM and DSYMM, complex
symmetric for CSYMM and ZSYMM, and complex Hermitian for CHEMM and

ZHEMM:

1. C<«aAB+BC

2. C«aBA+BC
where:

o and B are scalars.

A is a matrix of the type indicated above, stored in upper or lower storage
mode. It is order m for equation 1 and order n for equation 2.

B and C are m by n rectangular matrices.

See references and . In the following two cases, no computation is
performed:

* normisO.

* B is one and « is zero.

Error Conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors
m < 0

m > Idb

m > ldc

n<0

Ida, ldb, ldc = 0

side # L' or 'R'

uplo # 'L' or 'U'

side = 'L'and m > Ida
side = 'R'and n > lda

CONOOAWND =

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Examples

Example 1

This example shows the computation C<«aAB+BC, where A is a real symmetric
matrix of order 5, stored in upper storage mode, and B and C are 5 by 4
rectangular matrices.

Call Statement and Input:

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
A U
CALL SSYMm('L*, 'U' , 5,4, 20 ,A,8,B,6,1.0,C,5)
1.0 2.0 -1.0 -1.0 4.0
0.0 1.0 1.0 -1.0
-1.0 1.0 2.0
A = 2.0 0.0
-1.0
1.0 -1.0 0.0 2.0
2.0 2.0 -1.0 -2.0
B = 1.0 0.0 -1.0 1.0
-3.0 -1.0 1.0 -1.0
4.0 2.0 -1.0 1.0
23.0 12.0 -6.0 2.0
-4.0 -5.0 1.0 3.0
C = 5.0 6.0 -1.0 -4.0
-4.0 1.0 0.0 -5.0
8.0 -4.0 -2.0 13.0
Output:
69.0 36.0 -18.0 6.0
-12.0 -15.0 3.0 9.0
C = 15.0 18.0 -3.0 -12.0
-12.0 3.0 0.0 -15.0
8.0 -20.0 -2.0 35.0
Example 2

This example shows the computation C<«aAB+BC, where A is a real symmetric
matrix of order 3, stored in lower storage mode, and B and C are 3 by 6
rectangular matrices.

Call Statement and Input:

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
I L N P A Y A B
CALL SSYMM('L' , 'L' , 3,6, 2.6 ,A,4,B,3,20,C,5)
1.0 .
A= | 2.0 4.0
1.0 -1.0 -1.0

Chapter 9. Matrix Operations 413

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

414

1.0 -3.0 2.0 2.0 -1.0 2.0
B = 2.0 4.0 0.0 0.0 1.0 -2.0

1.0 -1.06 -1.0 -1.0 -1.0 1.0

6.0 4.0 1.0 1.0 0.0 -1.0

9.0 11.6 5.0 5.6 3.0 -5.0
C = -2.0 -6.0 3.0 3.0 -1.0 32.0
Output:

24.0 16.0 4.0 4.0 0.0 -4.0
36.0 44.0 20.0 20.0 12.0 -20.0
C = -8.0 -24.0 12.0 12.0 -4.0 12.0

Example 3

This example shows the computation C«aBA+SC, where A is a real symmetric
matrix of order 3, stored in upper storage mode, and B and C are 2 by 3
rectangular matrices.

Call Statement and Input:

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | [R N T

CALL SSYMM('R' , 'U' , 2,3, 2.6 ,A,4,B,3,1.0,C,5)
1.0 -3.0 1.0
A= | . 40 -1.0
2.0
1.0 -3.0 3.0
B = | 2.0 4.0 -1.0

13.0 -18.0 10.0
-11.0 11.0 -4.0
C = .
Output:
[39.0 -54.0 30.0]
-33.0 33.0 -12.0
C =

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Example 4

This example shows the computation C«aBA+BC, where A is a real symmetric
matrix of order 3, stored in lower storage mode, and B and C are 3 by 3 square
matrices.

Call Statement and Input:

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
[I A A A R F A
CALL SSymm('R' , 'L"* , 3,3 ,-1.06 ,A,3,B,3,1.0,C, 3)
1.0
A = 2.0 10.0
1.0 11.0 4.0
1.0 -3.0 2.0
B = 2.0 4.0 0.0
1.0 -1.0 -1.0
1.0 5.0 -9.0
c = |-3.06 10.0 -2.0
-2.0 8.0 0.0
Output:

4.0 11.0 15.0
C = -13.0 -34.0 -48.0
0.0 27.0 14.0

Example 5

This example shows the computation C<«aBA+BC, where A is a complex symmetric
matrix of order 3, stored in upper storage mode, and B and C are 2 by 3
rectangular matrices.

Call Statement and Input:

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
[A |
CALL CSYMM('R' , 'U' , 2,3 , ALPHA , A , 4 , B, 3 , BETA, C, 5)
ALPHA = (2.0, 3.0)
BETA = (1.0, 6.0)
(1.0, 5.0) (-3.0, 2.0) (1.0, 6.0)
A = . (4.0, 5.0) (-1.0, 4.0)
(2.0, 5.0)
(1.0, 1.0) (-3.0, 2.0) (3.0, 3.0)
B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0)
(13.0, 6.0) (-18.0, 6.0) (10.0, 7.0)
(-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0)
c = : .

Chapter 9. Matrix Operations 415

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Output:

(-96.0, 72.0) (-141.0, -226.0) (-112.0, 38.0) }
(-230.0, -269.0) (-133.0, -23.0) (-272.0, -198.0)

Example 6

This example shows the computation C«aBA+BC, where A is a complex Hermitian
matrix of order 3, stored in lower storage mode, and B and C are 3 by 3 square
matrices.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values.

Call Statement and Input:

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | I O R N
CALL CHEMM('R* , 'L'" , 2 , 3 , ALPHA , A, 4 ,B , 3, BETA, C, 5)
ALPHA = (2.0, 3.0)
BETA = (1.0, 6.0)
(.o, .)
A = (3.0, 2.0) (4.0, .)
(-1.0, 6.0) (1.0, 4.0) (2.0,)
(1.0, 1.0) (-3.0, 2.0) (3.0, 3.0)
B = (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0)
(13.0, 6.0) (-18.0, 6.0) (l0.0, 7.0)
(-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0)
C = . .
Output:
(-137.0, 17.0) (-158.0, -102.0) (-39.0, 141.0)
(-154.0, -77.0) (-63.0, 186.0) (159.0, 104.0)
C = . . .

416 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

STRMM, DTRMM, CTRMM, and ZTRMM

STRMM, DTRMM, CTRMM, and ZTRMM — Triangular Matrix-Matrix

Product
Purpose
STRMM and DTRMM compute one of the following matrix-matrix products, using
the scalar «, rectangular matrix B, and triangular matrix A or its transpose:
1. BcxAB 3. BcaBA
2. B«aA"B 4. B«aBA"
CTRMM and ZTRMM compute one of the following matrix-matrix products, using
the scalar «, rectangular matrix B, and triangular matrix A, its transpose, or its
conjugate transpose:
1. BcxAB 3. BcaBA 5. B«aA"B
2. B«aA™B 4. BcaBAT 6. BcaBA™
Table 81. Data Types
A, B, « Subroutine
Short-precision real STRMM
Long-precision real DTRMM
Short-precision complex CTRMM
Long-precision complex ZTRMM
Syntax
Fortran CALL STRMM | DTRMM | CTRMM | ZTRMM (side, uplo, transa, diag, m, n, alpha, a, Ida, b, 1db)
C and C++ strmm | dtrmm | ctrmm | ztrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, 1db);

On Entry

side

uplo

transa

indicates whether the triangular matrix A is located to the left or
right of rectangular matrix B in the equation used for this
computation, where:

If side = 'L', A is to the left of B in the equation, resulting in either
equation 1, 2, or 5.

If side = 'R, A is to the right of B in the equation, resulting in
either equation 3, 4, or 6.

Specified as: a single character. It must be 'L’ or 'R'.

indicates whether matrix A is an upper or lower triangular matrix,
where:

If uplo = 'U’, A is an upper triangular matrix.
If uplo = 'L', A is a lower triangular matrix.
Specified as: a single character. It must be 'U' or 'L'".

indicates the form of matrix A to use in the computation, where:

Chapter 9. Matrix Operations 417

STRMM, DTRMM, CTRMM, and ZTRMM

diag

alpha

lda

If transa = 'N', A is used in the computation, resulting in either
equation 1 or 3.

If transa = 'T', A" is used in the computation, resulting in either
equation 2 or 4.

If transa = 'C', A™ is used in the computation, resulting in either
equation 5 or 6.

Specified as: a single character. It must be 'N', 'T', or 'C".
indicates the characteristics of the diagonal of matrix A, where:
If ding = 'U', A is a unit triangular matrix.

If ding = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'".

is the number of rows in rectangular matrix B, and:

If side = 'L', m is the order of triangular matrix A.

Specified as: a fullword integer, where:

If side = 'L',0 = m = Ida and m = Idb.

If sidle = R', 0 = m = Idb.

is the number of columns in rectangular matrix B, and:
If side = 'R, n is the order of triangular matrix A.
Specified as: a fullword integer; n = 0 and:

If side = 'R', n = lda.

is the scalar a.

Specified as: a number of the data type indicated in [Table 81 on

is the triangular matrix A, of which only the upper or lower
triangular portion is used, where:

If side = 'L', A is order m.
If side = 'R', A is order n.

Note: No data should be moved to form A" or AY; that is, the
matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 81 on page 417} where:

If side = 'L, its size must be Ida by (at least) m.

If side = 'R, it size must be Ida by (at least) n.

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:

If side = 'L, lda = m.

If side = 'R', lda

v

n.

is the m by n rectangular matrix B.

418 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

STRMM, DTRMM, CTRMM, and ZTRMM

Specified as: an Idb by (at least) n array, containing numbers of the
data type indicated in [Table 81 on page 417}

ldb is the leading dimension of the array specified for b.
Specified as: a fullword integer; Idb > 0 and ldb = m.
On Return
b is the m by n matrix B, containing the results of the computation.

Notes

5.

Function

Returned as: an Idb by (at least) n array, containing numbers of the
data type indicated in [Table 81 on page 417}

. These subroutines accept lowercase letters for the side, uplo, transa, and diag

arguments.

For STRMM and DTRMM,, if you specify 'C' for the transa argument, it is
interpreted as though you specified T'.

Matrices A and B must have no common elements; otherwise, results are
unpredictable.

ESSL assumes certain values in your array for parts of a triangular matrix. As a
result, you do not have to set these values. For unit triangular matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

For a description of triangular matrices and how they are stored, see
[“Triangular Matrix” on page 73

These subroutines can perform the following matrix-matrix product computations,
using the triangular matrix A, its transpose, or its conjugate transpose, where A
can be either upper- or lower-triangular:

1.
2.
3.

o

B<«xAB

B<«acA'B

B<axA"'B (for CTRMM and ZTRMM only)
where:

o is a scalar.
A is a triangular matrix of order m.
B is an m by n rectangular matrix.

B<«aBA

B<aBAT

B<aBA™ (for CTRMM and ZTRMM only)
where:

o is a scalar.
A is a triangular matrix of order n.
B is an m by n rectangular matrix.

See references [B4] and . If n or m is 0, no computation is performed.

Chapter 9. Matrix Operations 419

STRMM, DTRMM, CTRMM, and ZTRMM

Error Conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors
1. m <0

n<20

Ida, Idb = 0

side # 'L' or 'R’

uplo # 'L' or 'U'

transa # "T', 'N', or 'C’
diag # 'N' or 'U'

side = L' and m > lda
m > Idb

side = R' and n > lda

COXNIT AWM

—

Examples

Example 1
This example shows the computation B<caAB, where A is a 5 by 5 upper triangular
matrix that is not unit triangular, and B is a 5 by 3 rectangular matrix.

Call Statement and Input:

SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| I | I
CALL STRMM('L' , 'U" , 'N* , 'N' , 5,3, 1.6 ,A,7,B,6)
3.0 -1.0 2.0 2.0 1.0
. -2.0 4.0 -1.0 3.0
. =3.0 0.0 2.0
A = . 4.0 -2.0
. 1.0
2.0 3.0 1.0
5.0 5.0 4.0
B = 0.6 1.0 2.0
3.0 1.0 -3.0
-1.0 2.0 1.0J
Output:
[6.0 10.0 -2.0]
-16.0 -1.0 6.0
B = -2.0 1.0 -4.0
14.06 0.0 -14.0
-1.0 2.0 1.0

420 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Example 2
This example shows the computation B«xA"B, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 4 rectangular matrix.

STRMM, DTRMM, CTRMM, and ZTRMM

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB

|
CALL STRMM('L'

-1.0
A =

1.0

3.0
B = -2.0

4.0

2.0
Output:

-1.0

2.0
B = 10.0

14.0

-3.0
Example 3

, U, T, N, 5,4, 1.0 ,A,7,B,6)
4.0 -2.0 2.0 3.0
2.0 2.0 2.0 2.0
-3.0 -1.0 4.0
1.0 0.0
2.0
2.0 3.0 4.0
3.0 -1.0 2.0
-1.0 0.0 1.0
4.0 -3.0 -3.0
2.0 2.0 2.0 J
2.0 -3.0 -4.0
2.0 -14.0 -12.0
5.0 -8.0 -7.0
15.0 1.0 8.0
4.0 3.0 16.0

This example shows the computation B¢caBA, where A is a 5 by 5 lower triangular
matrix that is not unit triangular, and B is a 3 by 5 rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB

CALL STRMM('R'

Output:

B W= w

, 'L, N, N, 3,5, 1.0 ,A,7,B,4)
.0 .

.0 1.0 .

.0 0.0 -2.0 .

.0 -1.0 2.0 -1.0

4.0 -1.0 -1.0 -1.0

1.0 -1.0 0.0 3.0

-1.0 -3.0 0.0 2.0

Chapter 9. Matrix Operations 421

STRMM, DTRMM, CTRMM, and ZTRMM

10.06 4.0 0.0 0.0 1.0
B = | 10.0 14.0 -4.0 6.0 -3.0

-8.06 2.0 -5.0 4.0 -2.0
Example 4

This example shows the computation B«caBA, where A is a 6 by 6 upper triangular
matrix that is unit triangular, and B is a 1 by 6 rectangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB

|
CALL STRMM('R' , 'U' , 'N' , 'U' , 1,6,

1.0 ,A,7,8B,2)
2.0 -3.0 1.0 2.0 4.0
0.0 1.0 1.0 -2.0
4.0 -1.0 1.0
A = 0.0 -1.0
2.0
B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 }
Output:
B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 }
Example 5

This example shows the computation B«xA™B, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 1 rectangular matrix.

Call Statement and Input:

422

SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | I
CALL CTRMM('L' , 'U' , 'C' , 'N' , 5,1, ALPHA, A, 6 ,B ,6)
ALPHA = (1.0, 0.0)
(-4.0, 1.0) (4.0, -3.0) (-1.6, 3.0) (0.6, 0.0) (-1.8, 0.0)
(-2.6, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0)
A= . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0)
(4.0, -4.0) (2.0, 0.0)
. (2.0, -1.0)
(3.0, 4.0)
(-4.0, 2.0)
B = | (-5.0, 0.0)

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

STRMM, DTRMM, CTRMM, and ZTRMM

-
_ W
=X

|

-19.0) 1
21.0)
-8.0)
-7.0)
2.0)

Chapter 9. Matrix Operations 423

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK — Rank-K
Update of a Real or Complex Symmetric or a Complex Hermitian

Matrix

Purpose

Table 82. Data Types

These subroutines compute one of the following rank-k updates, where matrix C is
stored in either upper or lower storage mode. SSYRK, DSYRK, CSYRK, and ZSYRK
use the scalars o and B, real or complex matrix A or its transpose, and real or
complex symmetric matrix C to compute:

1. C <« aAAT+BC
2. C«aATA+BC

CHERK and ZHERK use the scalars o and 8, complex matrix A or its complex
conjugate transpose, and complex Hermitian matrix C to compute:

3. C <« aAAY4BC
4. C <« aAP'A+BC

A C o B Subprogram
Short-precision real Short-precision real SSYRK
Long-precision real Long-precision real DSYRK
Short-precision complex Short-precision complex CSYRK
Long-precision complex Long-precision complex ZSYRK
Short-precision complex Short-precision real CHERK
Long-precision complex Long-precision real ZHERK

Syntax
Fortran CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a, lda,
beta, c, ldc)
C and C++ ssyrk | dsyrk | csyrk | zsyrk | cherk | zherk (uplo, trans, n, k, alpha, a, Ida, beta, c, Idc);
On Entry
uplo indicates the storage mode used for matrix C, where:
If uplo = 'U’, C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.
Specified as: a single character. It must be 'U' or 'L".
trans indicates the form of matrix A to use in the computation, where:

If trans = 'N', A is used, resulting in equation 1 or 3.

If trans = 'T', A" is used, resulting in equation 2.

If trans = 'C', A™ is used, resulting in equation 4.
Specified as: a single character, where:
For SSYRK and DSYRK, it must be 'N', 'T', or 'C'.

For CSYRK and ZSYRK, it must be 'N' or 'T".

424 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

alpha

Ilda

beta

ldc

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

For CHERK and ZHERK, it must be 'N' or 'C'.

is the order of matrix C.

Specified as: a fullword integer; 0 = n < ldc and:

If trans = 'N', then n = lda.

has the following meaning, where:

If trans = 'N', it is the number of columns in matrix A.
If trans = 'T' or 'C/, it is the number of rows in matrix A.
Specified as: a fullword integer; k = 0 and:

If trans = 'T' or 'C', then k = lda.

is the scalar o.

Si ecified as: a number of the data type indicated in|Table 82 on|

pag 4

is the rectangular matrix A, where:
If trans = 'N', A is n by k.
If trans = '"T' or 'C', A is k by n.

Note: No data should be moved to form AT or A that is, the
matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 82 on page 424} where:

If trans = 'N', its size must be Ilda by (at least) k.

If trans = "T" or 'C', its size must be Ilda by (at least) n.
is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:

If trans = 'N', lda = n.

If trans = 'T' or 'C', lda = k.

is the scalar B.

Specified as: a number of the data type indicated in [Table 82 on
_

is matrix C of order n, which is real symmetric, complex
symmetric, or complex Hermitian, where:

If uplo = 'U’, C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.

Specified as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 82 on page 424}

is the leading dimension of the array specified for c.

Specified as: a fullword integer; Idc > 0 and ldc = n.

Chapter 9. Matrix Operations 425

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

On Return

c is matrix C of order n, which is real symmetric, complex
symmetric, or complex Hermitian, containing the results of the
computation, where:

If uplo = 'U’, C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.

Returned as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 82 on page 424}

Notes

1. These subroutines accept lowercase letters for the uplo and trans arguments.

2. For SSYRK and DSYRK, if you specify 'C' for the trans argument, it is
interpreted as though you specified 'T".

3. Matrices A and C must have no common elements; otherwise, results are
unpredictable.

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix C
are assumed to be zero, so you do not have to set these values. On output, they
are set to zero, except when f is one and « or k is zero, in which case no
computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see [“Symmetric Matrix” on page 65)For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
[“Complex Hermitian Matrix” on page 69.|

Function

These subroutines can perform the following rank-k updates. For SSYRK and
DSYRK, matrix C is real symmetric. For CSYRK and ZSYRK, matrix C is complex
symmetric. They perform:

1. C<«aAA™+BC

2. C<aATA+BC

For CHERK and ZHERK, matrix C is complex Hermitian. They perform:
3. C<aAAP+BC

4. CeaA"A+BC

where:

o and B are scalars.

A is a rectangular matrix, which is n by k for equations 1 and 3, and is k by n for
equations 2 and 4.

C is a matrix of order n of the type indicated above, stored in upper or lower
storage mode.

See references and . In the following two cases, no computation is
performed:

* nis0.

* B is one, and « is zero or k is zero.

426 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

Assuming the above conditions do not exist, if § is not one, and « is zero or k is
zero, then BC is returned.

Error Conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors
1.

Ida, ldc = 0

2. ldc < n

3. kkn<0

4. uplo # 'U or 'L

5. trans # 'N', 'T', or 'C' for SSYRK and DSYRK

6. trans # 'N' or 'T' for CSYRK and ZSYRK

7. trans # 'N' or 'C' for CHERK and ZHERK

8. trans = N'and lda < n

9. trans = 'T' or 'C' and Ida < k
Examples

Example 1

This example shows the computation C<0AA"+BC, where A is an 8 by 2 real
rectangular matrix, and C is a real symmetric matrix of order 8, stored in upper
storage mode.

Call Statement and Input:

UTLO TR?NS T T ALTHA ? LTA BTTA T LTC
CALL SSYRK('U' , 'N*, 8,2, 1.0 ,A,9,1.06,C, 10)
0.0 8.0
1.0 9.0
2.0 10.0
3.0 11.0
A = 4.0 12.0
5.0 13.0
6.0 14.0
7.0 15.0
0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0
. 2.0 4.0 7.0 11.0 16.0 22.0 29.0
. 5.0 8.0 12.0 17.0 23.0 30.0
. 9.0 13.0 18.0 24.0 31.0
C = . 14.0 19.0 25.0 32.0
20.0 26.0 33.0
. 27.0 34.0
. 35.0
Output:

Chapter 9. Matrix Operations 427

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

64.0 73.0 83.0 94.0 106.0 119.0 133.0 148.0
84.0 96.0 109.0 123.0 138.0 154.0 171.0
109.0 124.0 140.0 157.0 175.0 194.0
. . 139.0 157.0 176.0 196.0 217.0
c = 174.0 195.0 217.0 240.0
214.0 238.0 263.0
259.0 286.0
309.0
Example 2

This example shows the computation C¢<xA"A+BC, where A is a 3 by 8 real
rectangular matrix, and C is a real symmetric matrix of order 8, stored in lower
storage mode.

Call Statement and Input:

UPLO TRANS N K ALPHA A LDA BETA C LDC
| | I R R B

CALL SSYRK('L, 'T", 8,3, 1.0 ,A,4,1.0,C, 8)

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0
A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0

2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0

0.0 .

1.0 8.0 .

2.0 9.0 15.0 .
C = |3.0 10.0 16.0 21.0 .

4.0 11.0 17.0 22.0 26.0

5.0 12.0 18.0 23.0 27.0 30.0 .

6.0 13.0 19.0 24.0 28.0 31.0 33.0 .

7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0
Output:

5.0 .

15.0 58.0 .

25.0 95.0 164.0 .
C = | 35.0 132.0 228.0 323.0 .

45.0 169.0 292.0 414.0 535.0 .

55.0 206.0 356.0 505.0 653.0 800.0 .

65.0 243.0 420.0 596.0 771.0 945.0 1118.0 .

75.0 280.0 484.0 687.0 889.0 1090.0 1290.0 1489.0
Example 3

This example shows the computation C<aAA™+BC, where A is a 3 by 5 complex
rectangular matrix, and C is a complex symmetric matrix of order 3, stored in
upper storage mode.

Call Statement and Input:

UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | [|
CALL CSYRK('U' , 'N', 3,5, ALPHA , A , 3, BETA , C , 4)
ALPHA = (1.0, 1.0)
BETA = (1.0, 1.0)

428 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

(2.0, 0
A= | (3.0, 3
(1.0, 3
(2.0, 1.
c = .
Output:
C =
Example 4

This example shows the computation C<adA™A+BC, where A is a 5 by 3 complex
rectangular matrix, and C is a complex Hermitian matrix of order 3, stored in

[eNoRo
———

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

—_——

N 00 W

[cNoNo
v .

lower storage mode.

(<]

(-57.0, 13.0) (-63.
. (-28.

.0)
.0)
.0)

.0)

79.

0)
.0)

.0, 7.0) (0.0, 0.0)
.0, 4.0) (1.0, 2.0)
.0, 2.0) (2.0, 2.0)
70.0)
103.0)
75.0)

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero.

Call Statement and Input:

UPLO TRANS N

|
CALL CHERK('L' ,

(2.0,
(3.0,
A = (1.0,
(3.0,
(1.0,
(6.0,
C = (3.0,
(9.0, 1
Output:
(138.0,
C = (65.09

(134.0,

O wWwWwwo

(88.0, -88.0)

| | T ALTHA ? LTA BTTA ? LTC
'c', 3,5 1.6 ,A,5,1.0 ,C, 4)
0) (3.0, 2.0) (4.0, 1.0)
0) (8.0, 0.0) (2.0, 5.0)
0) (2.0, 1.0) (6.0, 0.0)
0) (8.0, 0.0) (2.0, 5.0)
0) (3.0, 0.0) (6.0, 7.0)
) .
0) (10.0, .) .
.0) (12.0, 2.0) (3.0, .)
0.0) .
80.0) (165.0, 0.0)
46.0) (199.

0, 0.0)

Chapter 9. Matrix Operations

429

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K —
Rank-2K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

Purpose

These subroutines compute one of the following rank-2k updates, where matrix C
is stored in upper or lower storage mode. SSYR2K, DSYR2K, CSYR2K, and
ZSYR2K use the scalars a and B, real or complex matrices A and B or their
transposes, and real or complex symmetric matrix C to compute:

1. C <« tAB"™+aBA™+BC
2. C <« cA"B+aBTA+BC

CHER2K and ZHER2K use the scalars a and 8, complex matrices A and B or their
complex conjugate transposes, and complex Hermitian matrix C to compute:

3. C < 0AB" + aBA" + BC

4. C < ad"B + aB"4 + BC

Table 83. Data Types

A,B,C, « B Subprogram
Short-precision real Short-precision real SSYR2K
Long-precision real Long-precision real DSYR2K
Short-precision complex Short-precision complex CSYR2K
Long-precision complex Long-precision complex ZSYR2K
Short-precision complex Short-precision real CHER2K
Long-precision complex Long-precision real ZHER2K
Syntax
Fortran CALL SSYR2K | DSYR2K | CSYR2K | ZSYR2K | CHER2K | ZHER2K (uplo, trans, n, k, alpha, a,
Ida, b, ldb, beta, c, ldc)
C and C++ ssyr2k | dsyr2k | csyr2k | zsyr2k | cher2k | zher2k (uplo, trans, n, k, alpha, a, lda, b, 1db, beta, c,
ldc);
On Entry
uplo indicates the storage mode used for matrix C, where:
If uplo = 'U’, C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.
Specified as: a single character. It must be 'U' or 'L".
trans indicates the form of matrices A and B to use in the computation,

where:

If trans = 'N', A and B are used, resulting in equation 1 or 3.

If trans

'T', AT and B" are used, resulting in equation 2.

430 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

alpha

lda

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

If trans = 'C', A™ and B" are used, resulting in equation 4.
Specified as: a single character, where:

For SSYR2K and DSYR2K, it must be 'N', 'T", or 'C".

For CSYR2K and ZSYR2K, it must be 'N' or "T".

For CHER2K and ZHER2K, it must be 'N' or 'C'.

is the order of matrix C.

Specified as: a fullword integer; 0 = n = Idc and:

If trans = 'N', then n = Ida and n = Idb.

has the following meaning, where:

If trans = 'N, it is the number of columns in matrices A and B.
If trans = '"T' or 'C/, it is the number of rows in matrices A and B.
Specified as: a fullword integer; k = 0 and:

If trans = 'T' or 'C', then k = Ida and k = Idb.

is the scalar o.

Specified as: a number of the data type indicated in [Table 83 on

is the rectangular matrix A, where:
If trans = 'N', A is n by k.
If trans = 'T' or 'C', A is k by n.

Note: No data should be moved to form AT or A that is, the
matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 83 on page 430} where:

If trans = 'N', its size must be Ilda by (at least) k.

If trans = 'T" or 'C', its size must be Ilda by (at least) n.
is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and:

If trans = 'N', lda = n.

If trans = 'T" or 'C', lda = k.

is the rectangular matrix B, where:

If trans = 'N', B is n by k.

If trans = 'T" or 'C', B is k by n.

Note: No data should be moved to form BT or B that is, the
matrix B should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the
data type indicated in [Table 83 on page 430} where:

If trans = 'N', its size must be Idb by (at least) k.

Chapter 9. Matrix Operations 431

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

432

If trans = 'T" or 'C', its size must be Idb by (at least) n.
ldb is the leading dimension of the array specified for b.

Specified as: a fullword integer; Idb > 0 and:

If trans = 'N', Idb = n.

If trans = 'T" or 'C', ldb = k.

beta is the scalar B.

Specified as: a number of the data type indicated in [Table 83 on
_

c is matrix C of order n, which is real symmetric, complex
symmetric, or complex Hermitian, where:

If uplo = 'U’, C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.

Specified as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 83 on page 430]

Idc is the leading dimension of the array specified for c.

Specified as: a fullword integer; Idc > 0 and Ildc = n.

On Return

c is matrix C of order n, which is real symmetric, complex
symmetric, or complex Hermitian, containing the results of the
computation, where:

If uplo = 'U’, C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.

Returned as: an Idc by (at least) n array, containing numbers of the
data type indicated in [Table 83 on page 430}

Notes

1. These subroutines accept lowercase letters for the uplo and trans arguments.

2. For SSYR2K and DSYR2K, if you specify 'C' for the trans argument, it is
interpreted as though you specified 'T".

3. Matrices A and B must have no common elements with matrix C; otherwise,
results are unpredictable.

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix C
are assumed to be zero, so you do not have to set these values. On output, they
are set to zero, except when f is one and « or k is zero, in which case no
computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see [“‘Symmetric Matrix” on page 65For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
[“Complex Hermitian Matrix” on page 69.|

Function

These subroutines can perform the following rank-2k updates. For SSYR2K and
DSYR2K, matrix C is real symmetric. For CSYR2K and ZSYR2K, matrix C is
complex symmetric. They perform:

1. C <« aAB" + aBA" + BC

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

2. C<aA'B + aB'A + pC

For CHER2K and ZHERZ2K, matrix C is complex Hermitian. They perform:

3. C < oAB" + aBA"™ + BC
4. C < ad"B + aB"4 + BC

where:
o and B are scalars.

A and B are rectangular matrices, which are n by k for equations 1 and 3, and are k
by n for equations 2 and 4.

C is a matrix of order n of the type indicated above, stored in upper or lower
storage mode.

See references , @, and . In the following two cases, no computation is
performed:

* nis 0.

* fBis one, and « is zero or k is zero.

Assuming the above conditions do not exist, if § is not one, and « is zero or k is
zero, then BC is returned.

Error Conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors
1. Ida, Idb, ldc = 0

2. ldc <n

3. kkn<0

4. uplo # 'U or L'

5. trans # 'N', 'T', or 'C' for SSYR2K and DSYR2K

6. trans # 'N' or 'T' for CSYR2K and ZSYR2K

7. trans # 'N' or 'C' for CHER2K and ZHER2K

8. trans = N' and lda < n

9. trans = T or 'C' and lda < k

10. trans = 'N'and ldb < n

11. trans = 'T' or 'C' and Ildb < k
Examples

Example 1

This example shows the computation C<«adAB"+aBA"+BC, where A and B are 8 by 2
real rectangular matrices, and C is a real symmetric matrix of order 8, stored in
upper storage mode.

Chapter 9. Matrix Operations 433

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

Call Statement and Input:

UPLO TRANS T T ALTHA ? LTA T LTB BTTA T LTC
CALL SSYR2Kk('U' , 'N*, 8,2, 1.0 ,A,9,B,8,1.0,C, 10)
0.0 8.0
1.0 9.0
2.0 10.0
3.0 11.0
A = 4.0 12.0
5.0 13.0
6.0 14.0
7.0 15.0
15.0 7.0
14.0 6.0
13.0 5.0
B = 12.0 4.0
11.0 3.0
10.0 2.0
9.0 1.0
8.0 0.0
0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0
2.0 4.0 7.0 11.0 16.0 22.0 29.0
5.0 8.0 12.0 17.0 23.0 30.0
9.0 13.0 18.0 24.0 31.0
C = 14.0 19.0 25.0 32.0
20.0 26.0 33.0
27.0 34.0
35.0
Output:
112.0 127.0 143.0 160.0 178.0 197.0 217.0 238.0
138.0 150.0 163.0 177.0 192.0 208.0 225.0
157.0 166.0 176.0 187.0 199.0 212.0
. . . 169.0 175.0 182.0 190.0 199.0
C = 174.0 177.0 181.0 186.0
172.0 172.0 173.0
163.0 160.0
147.0

Example 2

This example shows the computation C¢<aA"B+aB"A+BC, where A and B are 3 by 8
real rectangular matrices, and C is a real symmetric matrix of order 8, stored in
lower storage mode.

Call Statement and Input:

UPLO TRANS N K ALPHA A
| | | |
CALL SSYR2K('L' , 'T', 8,3, 1.0 , A

B BETA C LDC

D
[T
5,1.0,C,8)

434 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

0.0 3.0 6.0 9.0 12.0 15.
A= |1.0 4.0 7.0 10.0 13.0 1
2.0 5.0 8.0 11.0 14.0 17.
1.0 2.0 3.0 4.0 5.0 6.0
2.0 3.0 4.0 5.0 6.0 7.0
B = |3.0 4.0 5.0 6.0 7.0 8.0
0.0 .
1.0 8.0 .
2.0 9.0 15.0 .
C = |3.0 10.0 16.0 21.0 .
4.0 11.0 17.0 22.0 26.0
5.0 12.0 18.0 23.0 27.0
6.0 13.0 19.0 24.0 28.0
7.0 14.0 20.0 25.0 29.0
Output:
16.0 .
38.0 84.0 .
60.0 124.0 187.0 .
c = 82.0 164.0 245.0 325.0 .
104.0 204.0 303.0 401.0 498.0
126.0 244.0 361.0 477.0 592.0
148.0 284.0 419.0 553.0 686.0
170.0 324.0 477.0 629.0 780.0
Example 3

0

35.0

0 949.0 .
0 1079.0 1227.0

This example shows the computation C<¢AB"+aBA™+8C, where A and B are 3 by 5
complex rectangular matrices, and C is a complex symmetric matrix of order 3,

stored in lower storage mode.

Call Statement and Input:

UPLO TRANS N K ALPHA
I]
CALL CSYR2K('L' , 'N', 3, 5, ALPHA
ALPHA = (l.0, 1.0)
BETA = (1.0, 1.0)
(2.0, 5.0) (3.0, 2.0) (4.0,
A = (3.0, 3.0) (8.0, 5.0) (2.0,
(1.0, 3.0) (2.0, 1.0) (6.0,
(1.0, 5.0) (6.0, 2.0) (3.0,
B = (2.0, 4.0) (7.0, 5.0) (2.0,
(3.0, 5.0) (8.0, 1.0) (1.0,
(2.0, 3.0) .
C = (1.0, 9.0) (3.0, 3.0)

o1 o1

o1 01—

.0)

N B

NN O
XN
— — —

.0)

.0)
.0)
.0)

S
—_ 0 o
(oo No)
—

Chapter 9. Matrix Operations 435

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

[(4.0, 5.0) (6.0, 7.0) (8.0, 3.0) J

Output:

(-101.0, 121.0) .)
(-182.0, 192.0) (-274.0, 248.0) .
{ (-98.0, 146.0) (-163.0, 205.0) (-151.0, 115.0)J

C =

Example 4
This example shows the computation:

C < od"B +aB"4 +BC

where A and B are 5 by 3 complex rectangular matrices, and C is a complex
Hermitian matrix of order 3, stored in upper storage mode.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On

output, they are set to zero.

Call Statement and Input:

UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
S O A A A I

CALL CHER2K('U' , 'C', 3,5, ALPHA,A,5,B,5,1.0 ,C, 4)
ALPHA = (1.0, 1.0)

(2.0, 0.0) (3.0, 2.0) (4.0, 1.0)

(3.0, 3.0) (8.0, 0.0) (2.0, 5.0)
A = (1.0, 3.0) (2.0, 1.0) (6.0, 0.0)

(3.0, 3.0) (8.0, 0.0) (2.0, 5.0)

(1.0, 9.0) (3.0, 0.0) (6.0, 7.0)

(4.0, 5.0) (6.0, 7.0) (8.0, 0.0)

(1.0, 9.0) (3.0, 0.0) (6.0, 7.0)
B = (3.0, 3.0) (8.0, 0.0) (2.0, 5.0)

(1.0, 3.0) (2.0, 1.0) (6.0, 0.0)

(2.0, 0.0) (3.0, 2.0) (4.0, 1.0)

(6.0, .) (3.0, 4.0) (9.0, 1.0)
c = . (10.0, .) (12.0, 2.0)

. (3.0, .)

Output:

(102.0, 0.0) (56.0, -143.0) (244.0, -96.0)
c = . (174.0, 0.0) (238.0, 78.0)

(363.0, 0.0)

436 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGETMI, DGETMI, CGETMI, and ZGETMI

SGETMI, DGETMI, CGETMI, and ZGETMI — General Matrix Transpose

(In-Place)
Purpose
These subroutines transpose an n by n matrix A in place—that is, in matrix A:
AcA”
Table 84. Data Types
A Subroutine
Short-precision real SGETMI
Long-precision real DGETMI
Short-precision complex CGETMI
Long-precision complex ZGETMI
Syntax
Fortran CALL SGETMI | DGETMI | CGETMI | ZGETMI (a, Ida, n)
C and C++ sgetmi | dgetmi | cgetmi | zgetmi (a, Ida, n);
On Entry
a is the matrix A having n rows and #n columns.
Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 84|
Ida is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ida z n.
n is the number of rows and columns in matrix A.
Specified as: a fullword integer; n = 0.
On Return
a is the n by n matrix A", containing the results of the matrix
transpose operation Returned as: an Ida by (at least) n array,
containing numbers of the data type indicated in|Table 84
Notes
1. To achieve optimal performance in these subroutines, specify an even value for
lda. An odd value may degrade performance.
2. To achieve optimal performance in CGETM]I, align the array specified for a on a
doubleword boundary.
Function

Matrix A is transposed in place; that is, the n rows and n columns in matrix A are
exchanged. For matrix A with elements a;;, where i, j = 1, n, the in-place transpose
is expressed as a; = a; fori, j = 1, n.

For the following input matrix A:

Chapter 9. Matrix Operations 437

SGETMI, DGETMI, CGETMI, and ZGETMI

If n is 0, no computation is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors

1. n < Qorn > lda
2. lda =0

Examples

Example
This example shows an in-place matrix transpose of matrix A having 5 rows and 5
columns.

Call Statement and Input:

A LDA N
| |
CALL SGETMI(A(2,3) , 10 , 5)
1.0 6.0 11.0 16.0 21.0
2.0 7.0 12.0 17.0 22.0
3.0 8.0 13.0 18.0 23.0
A = 4.0 9.0 14.0 19.0 24.0
5.0 10.0 15.0 20.0 25.0
Output:
{. 1.0 2.0 3.0 4.0 5.0}
. . 6.0 7.0 8.0 9.0 10.0
. . 11.0 12.0 13.0 14.0 15.0
A = | . . 16.0 17.0 18.0 19.0 20.0 |

438 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGETMI, DGETMI, CGETMI, and ZGETMI

21.0 22.0 23.0 24.0 25.0 |

Chapter 9. Matrix Operations 439

SGETMO, DGETMO, CGETMO, and ZGETMO

SGETMO, DGETMO, CGETMO, and ZGETMO — General Matrix

Transpose (Out-of-Place)

Purpose

These subroutines transpose an m by n matrix A out of place, returning the result

in matrix B:

B<AT

Table 85. Data Types

A, B Subroutine
Short-precision real SGETMO
Long-precision real DGETMO
Short-precision complex CGETMO
Long-precision complex ZGETMO
Syntax
Fortran CALL SGETMO | DGETMO | CGETMO | ZGETMO (a, lda, m, n, b, 1db)
C and C++ sgetmo | dgetmo | cgetmo | zgetmo (a, Ida, m, n, b, 1dD);

On Entry

a

lda

Idb

On Return
b

is the matrix A having m rows and n columns.

Specified as: an Ida by (at least) n array, containing numbers of the
data type indicated in [Table 85

is the leading dimension of the array specified for a.
Specified as: a fullword integer; Ida > 0 and Ida =z m.

is the number of rows in matrix A and the number of columns in
matrix B.

Specified as: a fullword integer; m = 0.

is the number of columns in matrix A and the number of rows in
matrix B.

Specified as: a fullword integer; n = 0.
See
is the leading dimension of the array specified for b.

Specified as: a fullword integer; Idb > 0 and Idb = n.

is the matrix B having n rows and m columns, containing the
results of the matrix transpose operation, A'. Returned as: an Idb
by (at least) m array, containing numbers of the data type indicated
.

440 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Notes

SGETMO, DGETMO, CGETMO, and ZGETMO

1. The matrix B must have no common elements with matrix A; otherwise, results

are unpredictable. See[“Concepts” on page 55

2. To achieve optimal performance in CGETMO, align the arrays specified for a

and b on doubleword boundaries.

Function

Matrix A is transposed out of place; that is, the m rows and n columns in matrix A

are stored in n rows and m columns of matrix B. For matrix A with elements a
where i = 1, m and j = 1, n, the out-of-place transpose is expressed as b;; =

i=1mandj =1, n

For the following input matrix A:

If m or n is 0, no computation is performed.

Error Conditions

Computational Errors
None

Input-Argument Errors
1. m < Qorm > Ilda

2. n<Qorn > Idb
3. lda =0
4. Idb =0

IA 1A

Examples

Example 1

a;; for

This example shows an out-of-place matrix transpose of matrix A, having 5 rows

and 4 columns, with the result going into matrix B.

Call Statement and Input:
A LDA M N B LDB

| |
CALL SGETMO(A(2,3) , 10 , 5, 4 , B(2,2) , 6)

Chapter 9. Matrix Operations

441

SGETMO, DGETMO, CGETMO, and ZGETMO

1.0 6.0 11.0 16.0
2.0 7.0 12.0 17.0
3.0 8.0 13.0 18.0
A= 4.0 9.0 14.0 19.0
5.0 10.6 15.0 20.0
Output:
1.0 2.0 3.0 4.0 5.0
B = 6.0 7.0 8.0 9.0 10.0
11.0 12.0 13.0 14.0 15.0
16.0 17.0 18.0 19.0 20.0
Example 2

This example uses the same input matrix A as in Example 1 to show that
transposes can be achieved in the same array as long as the input and output data
do not overlap. On output, the input data is not overwritten in the array.

Call Statement and Input:

T A A N
CALL SGETMO(A(2,3) , 10, 5, 4, A(7,1) , 10)
1.0 6.0 11.0 16.0
2.0 7.0 12.0 17.0
3.0 8.0 13.0 18.0
A = 4.0 9.0 14.0 19.0
. . 5.0 10.0 15.0 20.0
1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0
11.0 12.0 13.0 14.0 15.0
16.0 17.0 18.0 19.0 20.0

442 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Chapter 10. Linear Algebraic Equations

The linear algebraic equation subroutines, provided in four areas, are described in

this chapter.

Overview of the Linear Algebraic Equation Subroutines

This section describes the subroutines in each of the four linear algebraic equation

areas:

« [“Dense Linear Algebraic Equation Subroutines”]

* [“Banded Linear Algebraic Equation Subroutines” on page 445|

* [“Sparse Linear Algebraic Equation Subroutines” on page 445|

* [“Linear Least Squares Subroutines” on page 446

Note: Some of the linear algebraic equations were designed in accordance with the

Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these
subprograms do not comply with the standard as approved, IBM will
consider updating them to do so. If IBM updates these subprograms, the

updates could require modifications of the calling application program. For
details on the Level 2 and 3 BLAS, see references [34] and . For details
on the LAPACK routines, see reference [§].

Dense Linear Algebraic Equation Subroutines
The dense linear algebraic equation subroutines provide solutions to linear systems

of equations for both real and complex general matrices and their transposes,

positive definite real symmetric and complex Hermitian matrices, real symmetric
indefinite matrices and triangular matrices. Some of these subroutines correspond
to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references

, , and .

Table 86. List of Dense Linear Algebraic Equation Subroutines

Short-Precision

Long-Precision

Descriptive Name Subroutine Subroutine Page
General Matrix Factorization and Multiple Right-Hand Side SGESV~ DGESV~
Solve CGESV~ ZGESV~
General Matrix Factorization SGETRF# DGETRF» 156
CGETRF# ZGETRF»
SGEF DGEF ke
CGEF ZGEF
DGEFPS
General Matrix, Its Transpose, or Its Conjugate Transpose SGETRS” DGETRS” @
Multiple Right-Hand Side Solve CGETRS” ZGETRS#
SGESM DGESM
CGESM ZGESM
General Matrix, Its Transpose, or Its Conjugate Transpose Solve | SGES DGES 163
CGES ZGES
General Matrix Factorization, Condition Number Reciprocal, and | SGEFCD DGEFCD
Determinant
Positive Definite Real Symmetric Matrix Factorization and SPPSV~ DPPSV# 481
Multiple Right-Hand Side Solve CPPSV~ ZPPSV#

© Copyright IBM Corp. 1991, 2004

443

Table 86. List of Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision

Long-Precision

Descriptive Name Subroutine Subroutine Page
Positive Definite Real Symmetric or Complex Hermitian Matrix | SPOSV# DPOSV#
Factorization and Multiple Right-Hand Side Solve CPOSV~ ZPOSV~
Positive Definite Real Symmetric or Complex Hermitian Matrix | SPOTRF* DPOTRF# @
Factorization CPOTRF# ZPOTRF»

SPOF DPOF

CPOF ZPOF

SPPTRF# DPPTRF#

CPPTRF” ZPPTRF#

SPPF DPPF

DPPFPS

Positive Definite Real Symmetric or Complex Hermitian Matrix | SPOTRS” DPOTRS” @
Multiple Right-Hand Side Solve CPOTRS* ZPOTRS*

SPOSM DPOSM

CPOSM ZPOSM

SPPTRS” DPPTRS”

CPPTRS” ZPPTRS”
Positive Definite Real Symmetric Matrix Solve SPPS DPPS
Positive Definite Real Symmetric Matrix Factorization, Condition | SPPFCD DPPFCD
Number Reciprocal, and Determinant SPOFCD DPOFCD
Symmetric Indefinite Matrix Factorization and Multiple DBSSV
Right-Hand Side Solve
Symmetric Indefinite Matrix Factorization DBSTRF
Symmetric Indefinite Matrix Multiple Right-Hand Side Solve DBSTRS
General Matrix Inverse, Condition Number Reciprocal, and SGETRI® DGETRI”
Determinant CGETRI® ZGETRI#

SGEICD DGEICD
Positive Definite Real Symmetric or Complex Hermitian Matrix |SPOTRI* DPOTRI#
Inverse, Condition Number Reciprocal, and Determinant CPOTRI® ZPOTRI®

SPPTRI* DPPTRI#

SPPICD DPPICD

SPOICD DPOICD
Solution of a Triangular System of Equations with a Single STRSV™ DTRSV™
Right-Hand Side CTRSV™ ZTRSV™

STPSV™ DTPSV™

CTPSV™ ZTPSv+
Solution of Triangular Systems of Equations with Multiple STRSM* DTRSM*
Right-Hand Sides CTRSM* ZTRSM*
Triangular Matrix Inverse STRTRI® DTRTRI# Bes|

CTRTRI» ZTRTRI®

STPTRI® DTPTRI®

CTPTRI® ZTPTRI®

STRIS DTRIS

STPIS DTPI®

“ Level 2 BLAS
* Level 3 BLAS

A LAPACK

S This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

programs. Documentation for this subroutine is no longer provided.

444

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Banded Linear Algebraic Equation Subroutines

The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for real general band matrices, real positive definite
symmetric band matrices, real or complex general tridiagonal matrices, real

positive definite symmetric tridiagonal matrices, and real or complex triangular

band matrices.

Table 87. List of Banded Linear Algebraic Equation Subroutines

Short- Precision |Long- Precision

Descriptive Name Subroutine Subroutine Page

General Band Matrix Factorization SGBF DGBF

General Band Matrix Solve SGBS DGBS

Positive Definite Symmetric Band Matrix Factorization SPBF DPBF
SPBCHF DPBCHF

Positive Definite Symmetric Band Matrix Solve SPBS DPBS
SPBCHS DPBCHS

General Tridiagonal Matrix Factorization SGTF DGTF

General Tridiagonal Matrix Solve SGTS DGTS @

General Tridiagonal Matrix Combined Factorization and Solve with | SGTNP DGTNP @

No Pivoting CGTNP ZGTNP

General Tridiagonal Matrix Factorization with No Pivoting SGTNPF DGTNPF @
CGTNPF ZGTNPF

General Tridiagonal Matrix Solve with No Pivoting SGTNPS DGTNPS @
CGTNPS ZGTNPS

Positive Definite Symmetric Tridiagonal Matrix Factorization SPTF DPTF @

Positive Definite Symmetric Tridiagonal Matrix Solve SPTS DPTS ko7

Triangular Band Equation Solve STBSV™ DTBSV™ @
CTBSV™ ZTBSV™

“ Level 2 BLAS

Sparse Linear Algebraic Equation Subroutines

The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their

transposes and for sparse symmetric matrices.

Table 88. List of Sparse Linear Algebraic Equation Subroutines

Long- Precision

Descriptive Name Subroutine Page
General Sparse Matrix Factorization Using Storage by Indices, Rows, or DGSF 615
Columns

General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or | DGSS
Columns

General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve DGKEFS 625
Using Skyline Storage Mode

Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline DSKFS
Storage Mode

Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored | DSRIS

by Rows

Chapter 10. Linear Algebraic Equations

445

Table 88. List of Sparse Linear Algebraic Equation Subroutines (continued)

Long- Precision
Descriptive Name Subroutine Page
Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve DSMCGS 671
Using Compressed-Matrix Storage Mode
Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve DSDCG 679
Using Compressed-Diagonal Storage Mode
General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode | DSMGCG$
General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode | DSDGCG 694
S These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs. Use DSRIS instead.

Linear Least Squares Subroutines

The linear least squares subroutines provide least squares solutions to linear
systems of equations for real general matrices. Three methods are provided: one
that uses the singular value decomposition; one that uses a QR decomposition with
column pivoting; and another that uses a QR decomposition without column
pivoting. Some of these subroutines correspond to the LAPACK routines described
in reference [EI

Table 89. List of Linear Least Squares Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Singular Value Decomposition for a General Matrix SGESVF DGESVF 702
Linear Least Squares Solution for a General Matrix Using the SGESVS DGESVS
Singular Value Decomposition
General Matrix QR Factorization DGEQRF# 715
Linear Least Squares Solution for a General Matrix DGELS” 719
Linear Least Squares Solution for a General Matrix with Column |SGELLS DGELLS 726
Pivoting
~ LAPACK

Dense and Banded Linear Algebraic Equation Considerations

This section provides some key points about using the dense and banded linear
algebraic equation subroutines.

Use Considerations

To solve a system of equations, you have two choices:

* Use the combined factorization-and-solve subroutine for the type of matrix you
have.

* Use both the factorization subroutine and the solve subroutine for the type of
matrix you have. When doing so, note the following:

— Each factorization subroutine should be followed in your program by the
corresponding solve subroutine. The output from the factorization subroutine
should be used as input to the solve subroutine.

— To solve a system of equations with one or more right-hand sides, follow the
call to the factorization subroutine with one or more calls to a solve
subroutine or one call to a multiple solve subroutine.

446 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

Performance and Accuracy Considerations

1.

Except in a few instances, the _GTNP subroutines provide better performance
than the _GTNPF and _GTNPS subroutines. For details, see the subroutine
descriptions.

The general subroutines (dense and banded) use partial pivoting for accuracy
and fast performance.

The short-precision subroutines provide increased accuracy by accumulating
intermediate results in long precision. Occasionally, for performance reasons,
these intermediate results are stored.

There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see |”What|
Data Type Standards Are Used by ESSL, and What Exceptions Should You|
Know About?” on page 44.]

Sparse Matrix Direct Solver Considerations

This section provides some key points about using the sparse matrix direct solver
subroutines.

Use Considerations

1.

To solve a sparse system of equations by a direct method, you must use both
the factorization and solve subroutines. The factorization subroutine should be
followed in your program by the corresponding solve subroutine; that is, the
output from the factorization subroutine should be used as input to the solve
subroutine.

To solve a system of equations with one or more right-hand sides, follow the
call to the factorization subroutine with one or more calls to the solve
subroutine.

The amount of storage required for the arrays depends on the sparsity pattern
of the matrix. The requirement that [na > 2nz on entry to DGSF does not
guarantee a successful run of the program. Some programs may be terminated
because of the large number of fill-ins generated upon factorization. Fill-ins
generated in a program depend on the structure of each matrix. If a large
number of fill-ins is anticipated when factoring a matrix, the value of Ina
should be large enough to accommodate your problem.

Performance and Accuracy Considerations

1.

To make the subroutine more efficient, an input matrix comprised of all
nonzero elements is preferable. See the syntax description of each subroutine
for details.

DGSF optionally checks the validity of the indices and pointers of the input
matrix. Use of this option is suggested; however, it may affect performance. For
details, see the syntax description for DGSF.

In DGSS, if there are multiple sparse right-hand sides to be solved, you should
take advantage of the sparsity by selecting a proper value for jopt (such as

jopt = 10 or 11). If there is only one right-hand side to be solved, it is
suggested that you do not exploit the sparsity.

In DGSF, the value you enter for the lower bound of all elements in the matrix
(RPARM(1)) affects the accuracy of the result. Specifying a larger number allows
you to gain some performance; however, you may lose some accuracy in the
solution.

Chapter 10. Linear Algebraic Equations 447

5. In DGSE the threshold pivot tolerance (RPARM(2)) is used to select pivots. A
value that is close to 0.0 approaches no pivoting. A value close to 1.0
approaches partial pivoting. A value of 0.1 is considered to be a good
compromise between numerical stability and sparsity.

6. If the ESSL subroutine performs storage compressions, you receive an attention
message. When this occurs, the performance of this subroutine is affected. You
can improve the performance by increasing the value specified for Ina.

7. There are ESSL-specific rules that apply to the results of computations on_the

workstation processors using the ANSI/IEEE standards. For details, see |“What|

Data Type Standards Are Used by ESSL, and What Exceptions Should You|

Know About?” on page 44.]

Sparse Matrix Skyline Solver Considerations

This section provides some key points about using the sparse matrix skyline solver
subroutines.

Use Considerations

1. To solve a system of equations with one or more right-hand sides, where the
matrix is stored in skyline storage mode, you can use either of the following
methods. The factored output matrix is the same for both of these methods.

* Call the skyline subroutine with the combined factor-and-solve option.

¢ Call the skyline subroutine with the factor-only option, followed in your
program by a call to the same subroutine with the solve-only option. The
factored output matrix resulting from the factorization should be used as
input to the same subroutine to do the solve. You can solve for the
right-hand sides in a single call or in individual calls.

You also have the option of doing a partial factorization, where the subroutine
assumes that the initial part of the input matrix is already factored. It then
factors the remaining rows and columns. If you want, you can factor a very
large matrix progressively by using this option.

2. Forward elimination can be done with or without scaling the right-hand side
by the diagonal matrix elements. To perform the computation without scaling,
call DGKFS with the normal solve-only option, and define the upper triangular
skyline matrix (AU) as a diagonal. To perform the computation with scaling, call
DGKFS with the transpose solve-only, option and define the lower triangular
skyline matrix (AL) as a diagonal.

3. Back substitution can be done with or without scaling the right-hand side by
the diagonal matrix elements. To perform the computation without scaling, call
DGKEFS with the transpose solve-only option, and define the upper triangular
skyline matrix (AU) as a diagonal. To perform the computation with scaling, call
DGKEFS with the normal solve-only option, and define the lower triangular
skyline matrix (AL) as a diagonal.

Performance and Accuracy Considerations

1. For optimal performance, use diagonal-out skyline storage mode for both your
input and output matrices. If you specify profile-in skyline storage mode for
your input matrix, and either you do not plan to use the factored output or
you plan to do a solve only, it is more efficient to specify diagonal-out skyline
storage mode for your output matrix. These rules apply to all the
computations.

448 ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

2. In some cases, elapsed time may be reduced significantly by using the
combined factor-and-solve option to solve for all right-hand sides at once, in
conjunction with the factorization, rather than doing the factorization and solve
separately.

3. If you do a solve only, and you solve for more than one right-hand side, it is
most efficient to call the skyline subroutine once with all right-hand sides,
rather than once for each right-hand side.

4. The skyline subroutines allow some control over processing of the pivot
(diagonal) elements of the matrix during the factorization phase. Pivot
processing is controlled by IPARM(10) through IPARM(15) and RPARM(10)
through RPARM(15). If a pivot occurs within a range that is designated to be
fixed (IPARM(0) = 1, IPARM(10) = 1, and the appropriate element IPARM(11)
through IPARM(15) = 1), it is replaced with the corresponding element of
RPARM(11) through RPARM(15). Should this pivot fix-up occur, you receive an
attention message. This message indicates that the matrix being factored may
be unstable (singular or not definite). The results produced in this situation
may be inaccurate, and you should review them carefully.

Sparse Matrix Iterative Solver Considerations

This section provides some key points about using the sparse matrix iterative
solver subroutines.

Use Considerations

If you need to solve linear systems with different right-hand sides but with the
same matrix using the preconditioned algorithms, you can reuse the incomplete
factorization computed during the first call to the subroutine.

Performance and Accuracy Considerations

1. The DSMCG and DSMGCG subroutines are provided for migration purposes
from earlier releases of ESSL. You get better performance and a wider choice of
algorithms if you use the DSRIS subroutine.

2. To select the sparse matrix subroutine that provides the best performance, you
must consider the sparsity pattern of the matrix. From this, you can determine
the most efficient storage mode for your sparse matrix. ESSL provides a
number of versions of the sparse matrix iterative solve subroutines. They
operate on sparse matrices stored in row-wise, diagonal, and
compressed-matrix storage modes. These storage modes are described in
[“Sparse Matrix” on page 90.|

Storage-by-rows is generally applicable. You should use this storage mode
unless your matrices are already set up in one of the other storage modes. If,
however, your matrix has a regular sparsity pattern—that is, where the nonzero
elements are concentrated along a few diagonals—you may want to use
compressed-diagonal storage mode. This can save some storage space.
Compressed-matrix storage mode is provided for migration purposes from
earlier releases of ESSL and is not intended for use. (You get better performance
and a wider choice of algorithms if you use the DSRIS subroutine, which uses
storage-by-rows.)

3. The performance achieved in the sparse matrix iterative solver subroutines
depends on the value specified for the relative accuracy €. For details, see
for each subroutine.

4. You can select the iterative algorithm you want to use to solve your linear
system. The methods include conjugate gradient (CG), conjugate gradient

Chapter 10. Linear Algebraic Equations 449

squared (CGS), generalized minimum residual (GMRES), more smoothly
converging variant of the CGS method (Bi-CGSTAB), or transpose-free
quasi-minimal residual method (TFQMR).

For a general sparse or positive definite symmetric matrix, the iterative
algorithm may fail to converge for one of the following reasons:

* The value of € is too small, asking for too much precision.

¢ The maximum number of iterations is too small, allowing too few iterations
for the algorithm to converge.

¢ The matrix is not positive real; that is, the symmetric part, (A+AT)/2, is not
positive definite.

* The matrix is ill-conditioned, which may cause overflows during the
computation.

These algorithms have a tendency to generate underflows that may hurt overall

performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Linear Least Squares Considerations

450

This section provides some key points about using the linear least squares
subroutines.

Use Considerations

If you want to use a singular value decomposition method to compute the minimal
norm linear least squares solution of AX=B, calls to SGESVF or DGESVF should be
followed by calls to SGESVS or DGESVS, respectively.

Performance and Accuracy Considerations

1.

Least squares solutions obtained by using a singular value decomposition
require more storage and run time than those obtained using a QR
decomposition with column pivoting. The singular value decomposition
method, however, is a more reliable way to handle rank deficiency.

The short-precision subroutines provide increased accuracy by accumulating
intermediate results in long precision. Occasionally, for performance reasons,
these intermediate results are stored.

The accuracy of the resulting singular values and singular vectors varies
between the short- and long-precision versions of each subroutine. The degree
of difference depends on the size and conditioning of the matrix computation.

There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see |“What|

Data Type Standards Are Used by ESSL, and What Exceptions Should You|

Know About?” on page 44.|

ESSL for AIX and ESSL for Linux on POWER, Version 4 Release 2, Guide and Reference

SGEF, DGEF, CGEF, and ZGEF

Dense Linear Algebra