
Tivoli Workload Scheduler LoadLeveler

Using and Administering

Version 3 Release 4

SA22-7881-06

���

Tivoli Workload Scheduler LoadLeveler

Using and Administering

Version 3 Release 4

SA22-7881-06

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 689.

Seventh Edition (October 2006)

This edition applies to version 3, release 4 of IBM Tivoli Workload Scheduler LoadLeveler (product numbers

5765-E69 and 5724-I23) and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SA22-7881-05. Significant changes or additions to the text and illustrations are indicated by a

vertical line (|) to the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you can send your comments to the address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you want a reply, be sure to include your name, address, and telephone or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

©Copyright 1986, 1987, 1988, 1989, 1990, 1991 by the Condor Design Team.

©Copyright International Business Machines Corporation 1986, 2006. All rights reserved. US Government Users

Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii

Who should use this book xiii

Conventions and terminology used in this book xiii

Prerequisite and related information xiv

IBM System Blue Gene Solution documentation xv

Using LookAt to look up message explanations . . xv

How to send your comments xv

Summary of changes xvii

Part 1. Overview of TWS

LoadLeveler concepts and operation 1

Chapter 1. What is LoadLeveler? 3

LoadLeveler basics 3

LoadLeveler: A network job management and

scheduling system 4

Job definition 4

Machine definition 5

How LoadLeveler schedules jobs 7

How LoadLeveler daemons process jobs 7

The master daemon 8

The Schedd daemon 9

The startd daemon 10

The negotiator daemon 12

The kbdd daemon 13

The gsmonitor daemon 13

The LoadLeveler job cycle 14

LoadLeveler job states 18

Consumable resources 21

Consumable resources and AIX Workload

Manager 22

Overview of reservations 23

Fair share scheduling overview 25

Chapter 2. Getting a quick start using

the default configuration 27

What you need to know before you begin 27

Using the default configuration files 27

LoadLeveler for Linux quick start 28

Quick installation 28

Quick configuration 28

Quick verification 28

Post-installation considerations 29

Starting LoadLeveler 29

Location of directories following installation . . 30

Chapter 3. What operating systems are

supported by LoadLeveler? 33

AIX and Linux compatibility 33

Restrictions for LoadLeveler for Linux 34

Features not supported in Linux 34

Restrictions for LoadLeveler AIX and Linux

mixed clusters 35

Part 2. Configuring and managing

the TWS LoadLeveler environment . 37

Chapter 4. Configuring the LoadLeveler

environment 39

Modifying a configuration file 40

Defining LoadLeveler administrators 41

Defining a LoadLeveler cluster 41

Choosing a scheduler 42

Setting negotiator characteristics and policies . . 43

Specifying alternate central managers 44

Defining network characteristics 45

Specifying file and directory locations 45

Configuring recording activity and log files . . . 46

Setting up file system monitoring 50

Defining LoadLeveler machine characteristics . . . 51

Defining job classes that a LoadLeveler machine

will accept 51

Specifying how many jobs a machine can run . . 52

Defining security mechanisms 52

Configuring LoadLeveler to use cluster security

services 53

Defining usage policies for consumable resources . . 56

Enabling support for bulk data transfer and rCxt

blocks 57

Gathering job accounting data 57

Collecting job resource data on serial and parallel

jobs 58

Collecting job resource data based on machines 58

Collecting job resource data based on events . . 59

Collecting job resource information based on user

accounts 59

Collecting the accounting information and

storing it into files 60

Producing accounting reports 60

Correlating AIX and LoadLeveler accounting

records 61

64-bit support for accounting functions 61

Example: Setting up job accounting files 61

Managing job status through control expressions . . 63

How control expressions affect jobs 63

Tracking job processes 64

Querying multiple LoadLeveler clusters 65

Handling switch-table errors 66

Providing additional job-processing controls through

installation exits 66

Controlling the central manager scheduling cycle 67

Handling DCE security credentials 68

 iii

|
||
||
||
||
||
||
||
||
||
||

Handling an AFS token 69

Filtering a job script 70

Writing prolog and epilog programs 70

Using your own mail program 75

Chapter 5. Defining LoadLeveler

resources to administer 77

Steps for modifying an administration file 77

Defining machines 78

Planning considerations for defining machines . 79

Machine stanza format and keyword summary 79

Examples: Machine stanzas 80

Defining adapters 80

Configuring dynamic adapters 81

Configuring InfiniBand adapters 81

Adapter stanza format and keyword summary 82

Examples: Adapter stanzas 82

Defining classes 83

Using limit keywords 83

Allowing users to use a class 86

Class stanza format and keyword summary . . 86

Examples: class stanzas 86

Defining user substanzas in class stanzas 88

Examples: substanzas 88

Defining users 91

User stanza format and keyword summary . . . 91

Examples: User stanzas 91

Defining groups 92

Group stanza format and keyword summary . . 92

Examples: Group stanzas 92

Defining clusters 93

Cluster stanza format and keyword summary . . 93

Examples: Cluster stanzas 94

Chapter 6. Performing additional

administrator tasks 95

Setting up the environment for parallel jobs . . . 96

Scheduling considerations for parallel jobs . . . 96

Steps for reducing job launch overhead for

parallel jobs 96

Steps for allowing users to submit interactive

POE jobs 97

Setting up a class for parallel jobs 98

Setting up a parallel master node 99

Configuring LoadLeveler to support MPICH jobs 99

Configuring LoadLeveler to support MVAPICH

jobs 100

Configuring LoadLeveler to support

MPICH-GM jobs 100

Using the BACKFILL scheduler 101

Tips for using the BACKFILL scheduler . . . 104

Example: BACKFILL scheduling 104

Using an external scheduler 105

Replacing the default LoadLeveler scheduling

algorithm with an external scheduler 106

Customizing the configuration file to define an

external scheduler 107

Steps for getting information about the

LoadLeveler cluster, its machines, and jobs . . 108

Assigning resources and dispatching jobs . . . 112

Example: Changing scheduler types 115

Preempting and resuming jobs 116

Overview of preemption 116

Planning to preempt jobs 117

Steps for configuring a scheduler to preempt

jobs 120

Configuring LoadLeveler to support reservations 121

Steps for configuring reservations in a

LoadLeveler cluster 121

Collecting accounting data for reservations . . 126

Steps for integrating LoadLeveler with AIX

Workload Manager 127

LoadLeveler support for checkpointing jobs . . . 129

Checkpoint keyword summary 129

Planning considerations for checkpointing jobs 130

AIX checkpoint and restart limitations 131

Naming checkpoint files and directories . . . 134

Removing old checkpoint files 135

LoadLeveler scheduling affinity support 136

Configuring LoadLeveler to use scheduling

affinity 136

Linux CPU affinity support 137

Assigning Linux CPU affinity to application

processes 138

LoadLeveler multicluster support 139

Configuring a LoadLeveler multicluster 140

Steps for configuring a LoadLeveler multicluster 141

Steps for securing communications within a

LoadLeveler multicluster 143

LoadLeveler Blue Gene support 143

Configuring LoadLeveler Blue Gene support 145

Blue Gene advance reservation support . . . 147

Blue Gene fair share scheduling support . . . 147

Blue Gene heterogeneous memory support . . 147

Using fair share scheduling 148

Fair share scheduling keywords 148

Reconfiguring fair share scheduling keywords 150

Example: three groups share a LoadLeveler

cluster 151

Example: two thousand students share a

LoadLeveler cluster 152

Querying Information about fair share

scheduling 153

Resetting fair share scheduling 153

Saving historic data 153

Restoring saved historic data 153

Procedure for recovering a job spool 154

Chapter 7. Using LoadLeveler’s GUI to

perform administrator tasks 155

Job-related administrative actions 155

Machine-related administrative actions 158

Part 3. Submitting and managing

TWS LoadLeveler jobs 163

Chapter 8. Building and submitting

jobs 165

Building a job command file 165

iv TWS LoadLeveler: Using and Administering

||

||
|
||

 | |
 | |
 | |

 | |

Using multiple steps in a job command file . . 166

Examples: Job command files 167

Editing job command files 171

Defining resources for a job step 171

Working with coscheduled job steps 171

Submitting coscheduled job steps 171

Determining priority for coscheduled job steps 171

Supporting preemption of coscheduled job steps 172

Coscheduled job steps and commands and APIs 172

Termination of coscheduled steps 173

Using bulk data transfer 173

Preparing a job for checkpoint/restart 174

Preparing a job for preemption 177

Submitting a job command file 177

Submitting a job using a submit-only machine 178

Working with parallel jobs 178

Scheduler support for parallel jobs 178

Step for controlling whether LoadLeveler copies

environment variables to all executing nodes . . 179

Ensuring that parallel jobs in a cluster run on

the correct levels of PE and LoadLeveler

software 179

Task-assignment considerations 180

Submitting jobs that use striping 182

Running interactive POE jobs 188

Running MPICH, MVAPICH, and MPICH-GM

jobs 188

Examples: Building parallel job command files 191

Obtaining status of parallel jobs 196

Obtaining allocated host names 197

Working with reservations 197

Understanding the reservation life cycle . . . 198

Creating new reservations 200

Submitting jobs to run under a reservation . . 202

Removing bound jobs from the reservation . . 203

Querying existing reservations 204

Modifying existing reservations 204

Canceling existing reservations 205

Submitting jobs requesting scheduling affinity . . 205

Submitting and monitoring jobs in a LoadLeveler

multicluster 205

Steps for submitting jobs in a LoadLeveler

multicluster environment 206

Submitting and monitoring Blue Gene jobs . . . 208

Chapter 9. Managing submitted jobs 211

Querying the status of a job 211

Working with machines 211

Displaying currently available resources 212

Setting and changing the priority of a job 212

Example: How does a job’s priority affect

dispatching order? 213

Placing and releasing a hold on a job 213

Canceling a job 214

Checkpointing a job 214

Chapter 10. Example: Using

commands to build, submit, and

manage jobs 215

Chapter 11. Using LoadLeveler’s GUI

to build, submit, and manage jobs . . 217

Building jobs 217

Editing the job command file 229

Submitting a job command file 230

Displaying and refreshing job status 231

Sorting the Jobs window 232

Changing the priority of your jobs 232

Placing a job on hold 233

Releasing the hold on a job 233

Canceling a job 233

Modifying consumable resources and other job

attributes 233

Taking a checkpoint 234

Adding a job to a reservation 234

Removing a job from a reservation 234

Displaying and refreshing machine status 235

Sorting the Machines window 236

Finding the location of the central manager . . . 237

Finding the location of the public scheduling

machines 237

Finding the type of scheduler in use 237

Specifying which jobs appear in the Jobs window 237

Specifying which machines appear in Machines

window 238

Saving LoadLeveler messages in a file 238

Part 4. TWS LoadLeveler

interfaces reference 241

Chapter 12. Configuration file

reference 243

Configuration file syntax 243

Numerical and alphabetical constants 244

Mathematical operators 244

64-bit support for configuration file keywords

and expressions 244

Configuration file keyword descriptions 244

User-defined keywords 293

LoadLeveler variables 294

Variables to use for setting dates 299

Variables to use for setting times 299

Chapter 13. Administration file

reference 301

Administration file structure and syntax 301

Stanza characteristics 303

Syntax for limit keywords 304

64-bit support for administration file keywords 305

Administration file keyword descriptions 306

Chapter 14. Job command file

reference 333

Job command file syntax 333

Serial job command file 333

Parallel job command file 334

Syntax for limit keywords 334

64-bit support for job command file keywords 335

Contents v

||
||
||
||
||
||

|
||

Job command file keyword descriptions 336

Job command file variables 372

Run-time environment variables 374

Job command file examples 375

Chapter 15. Graphical user interface

(GUI) reference 377

Starting the GUI 377

Specifying GUI options 377

The LoadLeveler main window 378

Getting help using the GUI 379

Differences between LoadLeveler’s GUI and

other graphical user interfaces 379

GUI typographic conventions 379

64-bit support for the GUI 380

Customizing the GUI 380

Syntax of an Xloadl file 380

Modifying windows and buttons 380

Creating your own pull-down menus 381

Customizing fields on the Jobs window and the

Machines window 382

Modifying help panels 383

Chapter 16. Commands 385

llacctmrg - Collect machine history files 387

llbind - Bind job steps to a reservation 389

llcancel - Cancel a submitted job 392

llchres - Change attributes of a reservation . . . 395

llckpt - Checkpoint a running job step 400

llclass - Query class information 403

llclusterauth - Generates public and private keys 408

llctl - Control LoadLeveler daemons 409

lldbconvert - Job migration utility 414

llextRPD - Extract data from an RSCT peer domain 415

llfavorjob - Reorder system queue by job 419

llfavoruser - Reorder system queue by user . . . 421

llfs - Fair share scheduling queries and operations 422

llhold - Hold or release a submitted job 426

llinit - Initialize machines in the LoadLeveler

cluster 429

llmkres - Make a reservation 431

llmodify - Change attributes of a submitted job

step 435

llmovejob - Move a single idle job from the local

cluster to another cluster 440

llmovespool - Move job records 442

llpreempt - Preempt a submitted job step 444

llprio - Change the user priority of submitted job

steps 447

llq - Query job status 449

llqres - Query a reservation 468

llrmres - Cancel a reservation 474

llrunscheduler - Run the central manager’s

scheduling algorithm 476

llstatus - Query machine status 477

llsubmit - Submit a job 494

llsummary - Return job resource information for

accounting 496

Chapter 17. Application programming

interfaces (APIs) 503

64-bit support for the LoadLeveler APIs 505

AIX APIs 505

Linux APIs 506

Accounting API 506

GetHistory subroutine 507

llacctval user exit 509

Checkpointing API 510

ckpt subroutine 511

ll_ckpt subroutine 512

ll_init_ckpt subroutine 515

ll_set_ckpt_callbacks subroutine 517

ll_unset_ckpt_callbacks subroutine 518

Configuration API 519

ll_config_changed subroutine 520

ll_read_config subroutine 521

Data access API 522

Using the data access API 522

Understanding the LoadLeveler data access

object model 523

Understanding the Blue Gene object model . . 524

Understanding the Class object model 524

Understanding the Cluster object model . . . 525

Understanding the Fairshare object model . . . 525

Understanding the Job object model 525

Understanding the Machine object model . . . 527

Understanding the MCluster object model . . . 528

Understanding the Reservations object model 528

Understanding the Wlmstat object model . . . 529

ll_deallocate subroutine 530

ll_free_objs subroutine 531

ll_get_data subroutine 532

ll_get_objs subroutine 574

ll_next_obj subroutine 577

ll_query subroutine 578

ll_reset_request subroutine 579

ll_set_request subroutine 580

Examples of using the data access API 584

Error handling API 590

ll_error subroutine 591

Fair share scheduling API 592

ll_fair_share subroutine 593

Query API 595

ll_free_jobs subroutine 596

ll_free_nodes subroutine 597

ll_get_jobs subroutine 598

ll_get_nodes subroutine 599

Reservation API 600

ll_bind subroutine 601

ll_change_reservation subroutine 604

ll_init_reservation_param subroutine 608

ll_make_reservation subroutine 609

ll_remove_reservation subroutine 612

Submit API 614

llfree_job_info subroutine 615

llsubmit subroutine 616

monitor_program user exit 618

Workload management API 619

ll_cluster subroutine 620

ll_cluster_auth subroutine 622

vi TWS LoadLeveler: Using and Administering

||

 | |
 | |
 | |

 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

ll_control subroutine 624

ll_modify subroutine 628

ll_move_job subroutine 632

ll_move_spool subroutine 634

ll_preempt subroutine 637

ll_preempt_jobs subroutine 639

ll_run_scheduler subroutine 642

ll_start_job subroutine 643

ll_start_job_ext subroutine 645

ll_terminate_job subroutine 649

Appendix A. Troubleshooting

LoadLeveler 651

Frequently asked questions 651

Why won’t LoadLeveler start? 651

Why won’t my job run? 652

Why won’t my parallel job run? 654

Why won’t my checkpointed job restart? . . . 655

Why won’t my submit-only job run? 656

Why won’t my job run on a cluster with both

AIX and Linux machines? 656

Does my Linux machine support CPU affinity? 656

Why does a job stay in the Pending (or Starting)

state? 657

What happens to running jobs when a machine

goes down? 657

What happens if the central manager isn’t

operating? 658

How do I recover resources allocated by a

Schedd machine? 660

Why can’t I find a core file on Linux? 660

Why am I seeing inconsistencies in my llfs

output? 661

What happens if errors are found in my

configuration or administration file? 661

Other questions 661

Troubleshooting in a multicluster environment . . 663

How do I determine if I am in a multicluster

environment? 663

How do I determine how my multicluster

environment is defined and what are the

inbound and outbound hosts defined for each

cluster? 663

Why is my multicluster environment not

enabled? 663

How do I find log messages from my

multicluster defined installation exits? 663

Why won’t my remote job be submitted or

moved? 664

Why did the CLUSTER_REMOTE_JOB_FILTER

not update the job with all of the statements I

defined? 665

How do I find my remote job? 665

Why won’t my remote job run? 665

Why does llq -X all show no jobs running when

there are jobs running? 666

Helpful hints 666

Scaling considerations 666

Hints for running jobs 666

Hints for using machines 669

History files and Schedd 670

Getting help from IBM 670

Appendix B. Sample command output 673

llclass -l command output listing 673

llq -l command output listing 674

llq -l command output listing for a Blue Gene

enabled system 676

llq -l -x command output listing 676

llstatus -l command output listing 678

llstatus -l -b command output listing 679

llsummary -l -x command output listing 681

Appendix C. LoadLeveler port usage 685

Accessibility features for TWS

LoadLeveler 687

Accessibility features 687

Keyboard navigation 687

IBM and accessibility 687

Notices 689

Trademarks 691

Glossary 693

Index 697

Contents vii

||

||

|
||
 | |

viii TWS LoadLeveler: Using and Administering

Figures

 1. Example of a LoadLeveler cluster 3

 2. LoadLeveler job steps 5

 3. Multiple roles of machines 6

 4. High-level job flow 14

 5. Job is submitted to LoadLeveler 15

 6. LoadLeveler authorizes the job 16

 7. LoadLeveler prepares to run the job 16

 8. LoadLeveler starts the job 17

 9. LoadLeveler completes the job 17

10. How control expressions affect jobs 64

11. Format of a machine stanza 80

12. Format of an adapter stanza 82

13. Format of a class stanza 86

14. Format of a user substanza 88

15. Format of a user stanza 91

16. Format of a group stanza 92

17. Format of a cluster stanza 93

18. Multicluster Example 94

19. Job command file with multiple steps 166

20. Job command file with multiple steps and

one executable 167

21. Job command file with varying input

statements 167

22. Using LoadLeveler variables in a job

command file 169

23. Job command file used as the executable 170

24. Striping over multiple networks 185

25. Striping over a single network 186

26. POE job command file – multiple tasks per

node 192

27. POE sample job command file – invoking

POE twice 192

28. MPICH job command file - sample 1 193

29. MPICH job command file - sample 2 193

30. MPICH-GM job command file - sample 1 194

31. MPICH-GM job command file - sample 2 195

32. MVAPICH job command file - sample 1 195

33. MVAPICH job command file - sample 2 196

34. Using LOADL_PROCESSOR_LIST in a shell

script 197

35. Building a job command file 215

36. LoadLeveler build a job window 218

37. Format of administration file stanzas 302

38. Format of administration file substanzas 302

39. Sample administration file stanzas 302

40. Sample administration file stanza with user

substanzas 303

41. Serial job command file 334

42. Main window of the LoadLeveler GUI 378

43. Creating a new pull-down menu 382

44. TWS LoadLeveler Blue Gene object model 524

45. TWS LoadLeveler Class object model 525

46. TWS LoadLeveler Cluster object model 525

47. TWS LoadLeveler Fairshare object model 525

48. TWS LoadLeveler Job object model 527

49. TWS LoadLeveler Machine object model 528

50. TWS LoadLeveler MCluster object model 528

51. TWS LoadLeveler Reservations object model 528

52. TWS LoadLeveler Wlmstat object model 529

53. Obtaining machine, job, and cluster

information with the data access API . . . 584

54. Extracting job accounting information from a

history file 588

55. When the primary central manager is

unavailable 659

56. Multiple central managers 659

 ix

||
||

||

 | |
 | |
 | |
 | |
 | |

 | |

 | |

 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

x TWS LoadLeveler: Using and Administering

Tables

 1. Summary of typographic conventions xiv

 2. IBM System Blue Gene Solution

documentation xv

 3. Topics in the TWS LoadLeveler overview 1

 4. Major topics in TWS LoadLeveler: Using and

Administering 1

 5. LoadLeveler daemons 7

 6. startd determines whether its own state

permits a new job to run 11

 7. Job state descriptions and abbreviations 18

 8. Location and description of product directories

following installation 30

 9. Location and description of directories for

submit-only LoadLeveler 31

 10. Roadmap of tasks for TWS LoadLeveler

administrators 37

 11. Roadmap of administrator tasks related to

using or modifying the LoadLeveler

configuration file 39

 12. Roadmap for defining LoadLeveler cluster

characteristics 41

 13. Default locations for all of the files and

directories 45

 14. Log control statements 46

 15. Roadmap of configuration tasks for securing

LoadLeveler operations 53

 16. Roadmap of tasks for gathering job accounting

data 58

 17. Collecting account data - modifying the

configuration file 61

 18. Roadmap of administrator tasks accomplished

through installation exits 66

 19. Roadmap of tasks for modifying the

LoadLeveler administration file 77

 20. Types of limit keywords 83

 21. Enforcing job step limits 84

 22. Setting limits 85

 23. Roadmap of additional administrator tasks 95

 24. Roadmap of BACKFILL scheduler tasks 103

 25. Roadmap of tasks for using an external

scheduler 106

 26. Effect of LoadLeveler keywords under an

external scheduler 106

 27. Roadmap of tasks for using preemption 116

 28. Preemption methods for which LoadLeveler

automatically resumes preempted jobs . . . 119

 29. Preemption methods for which administrator

or user intervention is required 119

 30. Roadmap of reservation tasks for

administrators 121

 31. Roadmap of tasks for checkpointing jobs 129

 32. Deciding where to define the directory for

staging executables 130

 33. Linux platforms for CPU affinity 138

 34. Multicluster support subtasks and associated

instructions 139

 35. Multicluster support related topics 139

 36. Subtasks for configuring a LoadLeveler

multicluster 140

 37. Blue Gene subtasks and associated

instructions 145

 38. Blue Gene related topics and associated

information 145

 39. Blue Gene configuring subtasks and

associated instructions 145

 40. Learning about building and submitting jobs 163

 41. Roadmap of user tasks for building and

submitting jobs 165

 42. Standard files for the five job steps 168

 43. Checkpoint configurations 175

 44. Parallel keywords supported by the

LL_DEFAULT, BACKFILL, and API

schedulers 179

 45. Valid combinations of task assignment

keywords are listed in each column 180

 46. node and total_tasks 181

 47. Blocking 181

 48. Unlimited blocking 182

 49. Roadmap of tasks for reservation owners and

users 198

 50. Reservation states, abbreviations, and usage

notes 198

 51. Instructions for submitting a job to run under

a reservation 203

 52. Submitting and monitoring jobs in a

LoadLeveler multicluster 205

 53. Roadmap of user tasks for managing

submitted jobs 211

 54. How LoadLeveler handles job priorities 213

 55. User tasks available through the GUI 217

 56. GUI fields and input 219

 57. Nodes dialog box 223

 58. Network dialog box fields 224

 59. Build a job dialog box fields 225

 60. Limits dialog box fields 227

 61. Checkpointing dialog box fieldsF 228

 62. Blue Gene job fields 228

 63. Modifying the job command file with the Edit

pull-down menu 230

 64. Modifying the job command file with the

Tools pull-down menu 230

 65. Saving and submitting information 230

 66. Sorting the jobs window 232

 67. Sorting the machines window 236

 68. Specifying which jobs appear in the Jobs

window 237

 69. Specifying which machines appear in

Machines window 238

 70. Learning about LoadLeveler interfaces 241

 71. Configuration subtasks 243

 72. Administration file subtasks 301

 xi

|
||
|
||

73. Notes on 64-bit support for administration

file keywords 305

 74. Summary of possible values set for the

env_copy keyword in the administration file . 313

 75. Sample user and group settings for the

max_reservations keyword 322

 76. Job command file subtasks 333

 77. Notes on 64-bit support for job command file

keywords 335

 78. Example of a selection table 379

 79. Decision table 379

 80. Decision table actions 380

 81. Window identifiers in the Xloadl file 381

 82. Resource variables for all the windows and

the buttons 381

 83. Modifying help panels 383

 84. LoadLeveler command summary 385

 85. llmodify options and keywords 438

 86. LoadLeveler API summary 503

 87. BLUE_GENE specifications for ll_get_data

subroutine 533

 88. CLASSES specifications for ll_get_data

subroutine 537

 89. CLUSTER specifications for ll_get_data

subroutine 540

 90. FAIRSHARE specifications for ll_get_data

subroutine 541

 91. JOBS specifications for ll_get_data subroutine 542

 92. MACHINES specifications for ll_get_data

subroutine 566

 93. MCLUSTERS specifications for ll_get_data

subroutine 571

 94. RESERVATIONS specifications for ll_get_data

subroutine 572

 95. WLMSTAT specifications for ll_get_data

subroutine 573

 96. query_daemon summary 574

 97. query_flags summary 580

 98. object_filter value related to the query flags

value 581

 99. enum LL_reservation_data type 605

100. How nodes should be arranged in the node

list 647

101. Why your job might not be running 652

102. Why your job might not be running 655

103. Troubleshooting running jobs when a

machine goes down 657

104. LoadLeveler default port usage 685

xii TWS LoadLeveler: Using and Administering

 | |
 | |

 | |

 | |

About this book

IBM® Tivoli® Workload Scheduler (TWS) LoadLeveler® provides various ways of

scheduling and managing applications for best performance and most efficient use

of resources. LoadLeveler manages both serial and parallel jobs over a cluster of

machines or servers, which may be desktop workstations, dedicated servers, or

parallel machines. This book describes how to configure and administer this

LoadLeveler cluster environment, and to submit and manage jobs that run on

machines in the cluster.

Note: IBM LoadLeveler has been rebranded and is now referred to as “Tivoli

Workload Scheduler LoadLeveler” (short name: TWS LoadLeveler). This

change is intended to extend the existing Tivoli Workload Scheduler

functionality to better address the cluster and Grid computing environments

and to increase the availability of LoadLeveler.

Who should use this book

This book is intended for two separate audiences:

v Personnel who are responsible for installing, configuring and managing the

LoadLeveler cluster environment. These people are called LoadLeveler

administrators. LoadLeveler administrative tasks include:

– Setting up configuration and administration files

– Maintaining the LoadLeveler product

– Setting up the distributed environment for allocating batch jobs
v Users who submit and manage serial and parallel jobs to run in the LoadLeveler

cluster.

Both LoadLeveler administrators and general users should be experienced with the

UNIX® commands. Administrators also should be familiar with:

v Cluster system management techniques such as SMIT, as it is used in the AIX®

environment

v Networking and NFS or AFS® protocols

Conventions and terminology used in this book

Throughout the TWS LoadLeveler product documentation:

v TWS LoadLeveler for Linux Multiplatform includes:

– IBM System servers with AMD Opteron or Intel® EM64T processors

– IBM System x™ servers

– IBM BladeCenter® Intel processor-based servers

– IBM Cluster 1350™

Note: IBM Tivoli Workload Scheduler LoadLeveler is supported when running

Linux on non-IBM Intel-based and AMD hardware servers.

Supported hardware includes:

– Servers with Intel 32-bit and Intel Extended Memory 64 Technology

(EM64T)

– Servers with Advanced Micro Devices (AMD) 64-bit technology
v Note that in this document:

 xiii

|
|
|
|
|

|
|

|
|
|
|

|

– LoadLeveler is also referred to as Tivoli Workload Scheduler LoadLeveler and

TWS LoadLeveler.

– Switch_Network_Interface_For_HPS is also referred to as HPS or High

Performance Switch.

Table 1 describes the typographic conventions used in this book.

 Table 1. Summary of typographic conventions

Typographic Usage

Bold v Bold words or characters represent system elements that you must use

literally, such as commands, flags, and path names.

v Bold words also indicate the first use of a term included in the glossary.

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for book titles and for general emphasis in text.

Constant

width

Examples and information that the system displays appear in constant

width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and

syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means

“or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on

the keyboard. For example, <Enter> refers to the key on your terminal or

workstation that is labeled with the word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more

times.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example,

<Ctrl-c> means that you hold down the control key while pressing <c>.

\ The continuation character is used in coding examples in this book for

formatting purposes.

Prerequisite and related information

The Tivoli Workload Scheduler LoadLeveler publications are:

v Installation Guide, GI10-0763

v Using and Administering, SA22-7881

v Diagnosis and Messages Guide, GA22-7882

To access all TWS LoadLeveler documentation, refer to the IBM Cluster

Information Center, which contains the most recent TWS LoadLeveler

documentation in PDF and HTML formats. This Web site is located at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

A LoadLeveler Documentation Updates file also is maintained on this Web site.

The LoadLeveler Documentation Updates file contains updates to the TWS

LoadLeveler documentation. These updates include documentation corrections and

clarifications that were discovered after the TWS LoadLeveler books were

published.

xiv TWS LoadLeveler: Using and Administering

|
|

|
|

|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both the current TWS LoadLeveler books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order

To easily locate a book in the IBM Publications Center, supply the book’s

publication number. The publication number for each of the TWS LoadLeveler

books is listed after the book title in the preceding list.

IBM System Blue Gene Solution documentation

Table 2 lists the IBM System Blue Gene® Solution publications that are available

from the IBM Redbooks™ Web site at the following URLs:

 Table 2. IBM System Blue Gene Solution documentation

Publication Name URL

Blue Gene/L: System Administration http://www.redbooks.ibm.com/abstracts/sg247178.html

Blue Gene/L: Hardware Overview and Planning http://www.redbooks.ibm.com/abstracts/sg246796.html

Blue Gene/L: Application Development http://www.redbooks.ibm.com/abstracts/sg247179.html

Unfolding the IBM eServer Blue Gene Solution http://www.redbooks.ibm.com/abstracts/sg246686.html

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX and Linux®:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

How to send your comments

Your feedback is important in helping us to produce accurate, high-quality

information. If you have any comments about this book or any other TWS

LoadLeveler documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Include the book title and order number, and, if applicable, the specific location

of the information you have comments on (for example, a page number or a

table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

To contact the IBM cluster development organization, send your comments by

e-mail to: cluster@us.ibm.com

About this book xv

http://www.ibm.com/shop/publications/order
http://www.redbooks.ibm.com/abstracts/sg247178.html
http://www.redbooks.ibm.com/abstracts/sg246796.html
http://www.redbooks.ibm.com/abstracts/sg247179.html
http://www.redbooks.ibm.com/abstracts/sg246686.html
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

xvi TWS LoadLeveler: Using and Administering

Summary of changes

The following sections summarize changes to the IBM Tivoli Workload Scheduler

(TWS) LoadLeveler product and TWS LoadLeveler library for each new release or

major service update for a given product version. Within each book in the library, a

vertical line to the left of text and illustrations indicates technical changes or

additions made to the previous edition of the book.

Changes to TWS LoadLeveler for this release or update include:

v New information:

– Enhanced job spool recovery has been added:

- The llmovespool command has been added to move the job records from

the spool of one managing Schedd to another managing Schedd in the local

cluster. For more information, see “llmovespool - Move job records” on

page 442.

- The Move Spool menu item has been added to the Machines window

Admin pull-down menu in the graphical user interface (GUI) to allow you

to move job spool records from the specified spool directory to the Schedd

daemon that is running on the selected machine.
– A new communication scheme has been introduced in TWS LoadLeveler to

provide reliable and fast job launch performance and improved scalability.

– Multiple top-dog support has been incorporated into the TWS LoadLeveler

BACKFILL scheduler, which allows one or more top dogs to be allocated a

future start time. The TWS LoadLeveler scheduler will determine that there

are insufficient resources for some jobs to start, and for those jobs, it will

compute the earliest future start times. The resources will be allocated to the

top-dog jobs and remaining jobs in the queue will be backfilled so that

top-dog jobs are not delayed.

For more information, see “Using the BACKFILL scheduler” on page 101.

– Coscheduling function has been added to:

- Enable TWS LoadLeveler to coschedule multiple job steps while placing

minimal restrictions on the type and number of resource requirements that

can be specified within the coscheduled job steps

- Allow coscheduled job steps to take advantage of the current

state-of-the-art job scheduling paradigms, such as top-dog reservation,

BACKFILL, preemption, and reservations, which are presently supported in

the TWS LoadLeveler product

For more information, see “Working with coscheduled job steps” on page 171.

– The following TWS LoadLeveler Blue Gene support has been enhanced,

including:

- Advance reservations has been extended to include the reservation of Blue

Gene resources. For more information, see “Blue Gene advance reservation

support” on page 147.

- Fair share scheduling has been extended to include Blue Gene resources.

The Blue Gene resource usage is an additional set of information that is

made available by TWS LoadLeveler, which can be used to influence job

priorities. For more information, see “Blue Gene fair share scheduling

support” on page 147.

 xvii

- TWS LoadLeveler now allows users to request Blue Gene compute nodes

(C-nodes) with a certain amount of memory in the same way as TWS

LoadLeveler currently allows for non-Blue Gene nodes. For more

information, see “Blue Gene heterogeneous memory support” on page 147.

- Preemption support for Blue Gene jobs has been enabled, so Blue Gene jobs

now have the same preemption support as non-Blue Gene jobs.
– The TWS LoadLeveler product has been extended to include support for

InfiniBand adapters in SUSE Linux Enterprise Server (SLES) 9 on POWER

TWS LoadLeveler clusters. InfiniBand adapters on any other platform are not

supported. This support does not place new constraints on the submit nodes

or where the central manager runs. Preemption is not supported on TWS

LoadLeveler for Linux when running in an InfiniBand cluster environment.

For more information, see “Configuring InfiniBand adapters” on page 81.

– Support for SLES 10 has been added.

Note: SLES 10 is not supported on the Myrinet switch.

– MPICH job management has been integrated with TWS LoadLeveler.

Operations allowed for Parallel Environment (PE) parallel jobs are supported

for MPICH parallel jobs. For more information, see “Configuring LoadLeveler

to support MPICH jobs” on page 99.

– The smt keyword has been introduced in the TWS LoadLeveler job command

file to enable or disable dynamic simultaneous multithreading (SMT). This

keyword can also be set in the job class stanza in the TWS LoadLeveler

administration file so that all parallel jobs submitted in that class will run

with SMT on or off by default.

For more information, see the smt keyword in the Chapter 14, “Job command

file reference,” on page 333.

– The restriction on the maximum number of reservations allowed in a cluster

has been removed.

– OpenAFS 1.4.1 is now supported on the RedHat Enterprise Linux 3.0 and

RedHat Enterprise Linux 4.0 distributions on the x86 and x86_64 platforms. If

you are using TWS LoadLeveler with OpenAFS 1.2.11 on RedHat Enterprise

Linux 3.0 you will need to upgrade to OpenAFS 1.4.1 when you upgrade to

this version of TWS LoadLeveler.

– In this release of TWS LoadLeveler, we are offering you an opportunity to

preview our first steps toward a Web-based user interface with sample

programs. Your input is invaluable in our efforts to revitalize and modernize

our user interface. For more information, see the README file for the sample

in the samples/llwebui subdirectory of the release directory.

– A new topic has been added to help you find information about quickly

starting TWS LoadLeveler using the default configuration. For more

information, see Chapter 2, “Getting a quick start using the default

configuration,” on page 27.

– A new topic has been added to help you find TWS LoadLeveler port usage

information. For more information, see Appendix C, “LoadLeveler port

usage,” on page 685.

v Changed information:

– Release 3 of TWS LoadLeveler no longer supports switches other than the SP

Switch2 and the High Performance Switch.

– In previous releases of TWS LoadLeveler, when a job is submitted it

automatically gets a requirements statement defined for the Arch and Opsys

xviii TWS LoadLeveler: Using and Administering

LoadLeveler reserved words. The values assigned are determined by the

operating system and node where the submission parsing was done. For

example:

Requirements: (Arch == "R6000") && (OpSys == "AIX52")

In this release of TWS LoadLeveler, this automatic definition of the

requirements keyword has been removed. Administrators still need to use the

lldbconvert utility to convert jobs from TWS LoadLeveler 3.3 to the TWS

LoadLeveler 3.4 format. See “lldbconvert - Job migration utility” on page 414

for more information.

– This is the last release that will provide the following functions:

- The scheduling of parallel jobs with the default scheduler

(SCHEDULER_TYPE=LL_DEFAULT)

- The following API functions: ll_get_nodes, ll_get_jobs, and ll_start_job

v Deleted information:

The following function is no longer supported and the information has been

removed:

– Gang scheduler

– Network queuing system (NQS)

– SP Switch (csss, css0, and css1)

– Distributed Computing Environment (DCE)

– Parallel Job API

– Parallel System Support Programs (PSSP)

Summary of changes xix

xx TWS LoadLeveler: Using and Administering

Part 1. Overview of TWS LoadLeveler concepts and operation

Setting up IBM Tivoli Workload Scheduler (TWS) LoadLeveler involves defining

machines, users, jobs, and how they interact, in such a way that TWS LoadLeveler

is able to run jobs quickly and efficiently. If you are unfamiliar with the TWS

LoadLeveler product, consider reading one or more of the introductory topics

listed in Table 3.

 Table 3. Topics in the TWS LoadLeveler overview

To learn about: Read the following:

TWS LoadLeveler interfaces, operations,

and the lifecycle of a job

Chapter 1, “What is LoadLeveler?,” on page 3

Using the default configuration for

getting a quick start

Chapter 2, “Getting a quick start using the default

configuration,” on page 27

Specific products and features that are

required for or available through the

TWS LoadLeveler environment

Chapter 3, “What operating systems are supported

by LoadLeveler?,” on page 33

Once you have a basic understanding of the TWS LoadLeveler product and its

interfaces, you can find more details in the topics listed in Table 4.

 Table 4. Major topics in TWS LoadLeveler: Using and Administering

To learn about: Read the following:

Performing administrator tasks Part 2, “Configuring and managing the TWS

LoadLeveler environment,” on page 37

Performing general user tasks Part 3, “Submitting and managing TWS

LoadLeveler jobs,” on page 163

Using TWS LoadLeveler interfaces Part 4, “TWS LoadLeveler interfaces reference,” on

page 241

 1

|
|
|
|

2 TWS LoadLeveler: Using and Administering

Chapter 1. What is LoadLeveler?

LoadLeveler is a job management system that allows users to run more jobs in less

time by matching the jobs’ processing needs with the available resources.

LoadLeveler schedules jobs, and provides functions for building, submitting, and

processing jobs quickly and efficiently in a dynamic environment.

Figure 1 shows the different environments to which LoadLeveler can schedule jobs.

Together, these environments comprise the LoadLeveler cluster.

 As Figure 1 also illustrates, a LoadLeveler cluster can include submit-only machines,

which allow users to have access to a limited number of LoadLeveler features.

Throughout all the topics, the terms workstation, machine, node, and operating system

instance (OSI) refer to the machines in your cluster. In LoadLeveler, an OSI is

treated as a single instance of an operating system image.

LoadLeveler basics

LoadLeveler has various types of interfaces that enable users to create and submit

jobs and allow system administrators to configure the system and control running

jobs. These interfaces include:

v Control files that define the elements, characteristics, and policies of LoadLeveler

and the jobs it manages. These files are the configuration file, the administration

file, and job command file.

v The command line interface, which gives you access to basic job and

administrative functions.

v A graphical user interface (GUI), which provides system access similar to the

command line interface. Experienced users and administrators may find the

command line interface more efficient than the GUI for job and administrative

functions.

JS21 and JS20
running Linux

Cluster 1350
running Linux

IBM BladeCenter

IBM eServer

p5 and pSeries
running AIX

IBM eServer

Submit-only
workstations

LoadLeveler
cluster

Figure 1. Example of a LoadLeveler cluster

 3

v An application programming interface (API), which allows application programs

written by users and administrators to interact with the LoadLeveler

environment.

The commands, GUI, and APIs permit different levels of access to administrators

and users. User access is typically restricted to submitting and managing

individual jobs, while administrative access allows setting up system

configurations, job scheduling, and accounting.

Using either the command line or the GUI, users create job command files that

instruct the system on how to process information. Each job command file consists

of keywords followed by the user defined association for that keyword. For

example, the keyword executable tells LoadLeveler that you are about to define

the name of a program you want to run. Therefore, executable = longjob tells

LoadLeveler to run the program called longjob.

After creating the job command file, you invoke LoadLeveler commands to

monitor and control the job as it moves through the system. LoadLeveler monitors

each job as it moves through the system using process control daemons. However,

the administrator maintains ultimate control over all LoadLeveler jobs by defining

job classes that control how and when LoadLeveler will run a job.

In addition to setting up job classes, the administrator can also control how jobs

move through the system by specifying the type of scheduler. LoadLeveler has

several different scheduler options that start jobs using specific algorithms to

balance job priority with available machine resources.

When LoadLeveler administrators are configuring clusters and when users are

planning jobs, they need to be aware of the machine resources available in the

cluster. These resources include items like the number of CPUs and the amount of

memory available for each job. Because resource availability will vary over time,

LoadLeveler defines them as consumable resources.

LoadLeveler: A network job management and scheduling system

A network job management and job scheduling system, such as LoadLeveler, is a

software program that schedules and manages jobs that you submit to one or more

machines under its control. LoadLeveler accepts jobs that users submit and reviews

the job requirements. LoadLeveler then examines the machines under its control to

determine which machines are best suited to run each job.

Job definition

LoadLeveler schedules your jobs on one or more machines for processing. The

definition of a job, in this context, is a set of job steps. For each job step, you can

specify a different executable (the executable is the part of the job that gets

processed). You can use LoadLeveler to submit jobs which are made up of one or

more job steps, where each job step depends upon the completion status of a

previous job step. For example, Figure 2 on page 5 illustrates a stream of job steps:

LoadLeveler basics

4 TWS LoadLeveler: Using and Administering

Each of these job steps is defined in a single job command file. A job command

file specifies the name of the job, as well as the job steps that you want to submit,

and can contain other LoadLeveler statements.

LoadLeveler tries to execute each of your job steps on a machine that has enough

resources to support executing and checkpointing each step. If your job command

file has multiple job steps, the job steps will not necessarily run on the same

machine, unless you explicitly request that they do.

You can submit batch jobs to LoadLeveler for scheduling. Batch jobs run in the

background and generally do not require any input from the user. Batch jobs can

either be serial or parallel. A serial job runs on a single machine. A parallel job is a

program designed to execute as a number of individual, but related, processes on

one or more of your system’s nodes. When executed, these related processes can

communicate with each other (through message passing or shared memory) to

exchange data or synchronize their execution.

For parallel jobs, LoadLeveler interacts with Parallel Operating Environment (POE)

to allocate nodes, assign tasks to nodes, and launch tasks.

Machine definition

For LoadLeveler to schedule a job on a machine, the machine must be a valid

member of the LoadLeveler cluster. A cluster is the combination of all of the

different types of machines that use LoadLeveler.

To make a machine a member of the LoadLeveler cluster, the administrator has to

install the LoadLeveler software onto the machine and identify the central manager

(described in “Roles of machines”). Once a machine becomes a valid member of

the cluster, LoadLeveler can schedule jobs to it.

Roles of machines

Each machine in the LoadLeveler cluster performs one or more roles in scheduling

jobs:

v Scheduling Machine: When a job is submitted, it gets placed in a queue

managed by a scheduling machine. This machine contacts another machine that

Q

Q

Q

Job
job command file

Job step 1

Job step 2

Job step 3

End program

exit status = y

exit status = x

exit status = y

exit status = x

1. Copy data from tape
2. Check exit status

Format and print results

1. Process data
2. Check exit status

Figure 2. LoadLeveler job steps

LoadLeveler basics

Chapter 1. What is LoadLeveler? 5

serves as the central manager for the entire LoadLeveler cluster. This scheduling

machine asks the central manager to find a machine that can run the job, and

also keeps persistent information about the job. Some scheduling machines are

known as public scheduling machines, meaning that any LoadLeveler user can

access them. These machines schedule jobs submitted from submit-only

machines:

v Central Manager Machine: The role of the central manager is to examine the

job’s requirements and find one or more machines in the LoadLeveler cluster

that will run the job. Once it finds the machine(s), it notifies the scheduling

machine.

v Executing Machine: The machine that runs the job is known as the executing

machine.

v Submitting Machine: This type of machine is known as a submit-only machine.

It participates in the LoadLeveler cluster on a limited basis. Although the name

implies that users of these machines can only submit jobs, they can also query

and cancel jobs. Users of these machines also have their own Graphical User

Interface (GUI) that provides them with the submit-only subset of functions. The

submit-only machine feature allows workstations that are not part of the

LoadLeveler cluster to submit jobs to the cluster.

Keep in mind that one machine can assume multiple roles, as shown in Figure 3.

Machine availability

There may be times when some of the machines in the LoadLeveler cluster are not

available to process jobs; for instance, when the owners of the machines have

decided to make them unavailable. This ability of LoadLeveler to allow users to

restrict the use of their machines provides flexibility and control over the resources.

Machine owners can make their personal workstations available to other

LoadLeveler users in several ways. For example, you can specify that:

v The machine will always be available

v The machine will be available only between certain hours

v The machine will be available when the keyboard and mouse are not being used

interactively.

Central
manager

Executing
machine

Executing
machine

Scheduling
machine

Scheduling
machine

Scheduling
machine

LoadLeveler
cluster

Submit-only
machines

Executing
machine

Figure 3. Multiple roles of machines

LoadLeveler basics

6 TWS LoadLeveler: Using and Administering

Owners can also specify that their personal workstations never be made available

to other LoadLeveler users.

How LoadLeveler schedules jobs

When a user submits a job, LoadLeveler examines the job command file to

determine what resources the job will need. LoadLeveler determines which

machine, or group of machines, is best suited to provide these resources, then

LoadLeveler dispatches the job to the appropriate machines. To aid this process,

LoadLeveler uses queues. A job queue is a list of jobs that are waiting to be

processed. When a user submits a job to LoadLeveler, the job is entered into an

internal database– which resides on one of the machines in the LoadLeveler

cluster– until it is ready to be dispatched to run on another machine.

Once LoadLeveler examines a job to determine its required resources, the job is

dispatched to a machine to be processed. A job can be dispatched to either one

machine, or– in the case of parallel jobs– to multiple machines. Once the job

reaches the executing machine, the job runs.

Jobs do not necessarily get dispatched to machines in the cluster on a first-come,

first-serve basis. Instead, LoadLeveler examines the requirements and

characteristics of the job and the availability of machines, and then determines the

best time for the job to be dispatched.

LoadLeveler also uses job classes to schedule jobs to run on machines. A job class

is a classification to which a job can belong. For example, short running jobs may

belong to a job class called short_jobs. Similarly, jobs that are only allowed to run

on the weekends may belong to a class called weekend. The system administrator

can define these job classes and select the users that are authorized to submit jobs

of these classes.

You can specify which types of jobs will run on a machine by specifying the types

of job classes the machine will support. LoadLeveler also examines a job’s priority

to determine when to schedule the job on a machine. A priority of a job is used to

determine its position among a list of all jobs waiting to be dispatched.

“The LoadLeveler job cycle” on page 14 describes job flow in the LoadLeveler

environment in more detail.

How LoadLeveler daemons process jobs

LoadLeveler has its own set of daemons that control the processes moving jobs

through the LoadLeveler cluster. The LoadLeveler daemons are programs that run

continuously and control the processes that move jobs through the LoadLeveler

cluster. A master daemon (LoadL_master) runs on all machines in the LoadLeveler

cluster and manages other daemons.

Table 5 summarizes these daemons, which are described in further detail in topics

immediately following the table.

 Table 5. LoadLeveler daemons

Daemon Description

LoadL_master Referred to as the master daemon. Runs on all machines in

the LoadLeveler cluster and manages other daemons.

LoadLeveler basics

Chapter 1. What is LoadLeveler? 7

Table 5. LoadLeveler daemons (continued)

Daemon Description

LoadL_schedd Referred to as the Schedd daemon. Receives jobs from the

llsubmit command and manages them on machines

selected by the negotiator daemon (as defined by the

administrator).

LoadL_startd Referred to as the startd daemon. Monitors job and

machine resources on local machines and forwards

information to the negotiator daemon.

The startd daemon spawns the starter process

(LoadL_starter) which manages running jobs on the

executing machine.

LoadL_negotiator Referred to as the negotiator daemon. Monitors the status

of each job and machine in the cluster. Responds to queries

from llstatus and llq commands. Runs on the central

manager machine.

LoadL_kbdd Referred to as the keyboard daemon. Monitors keyboard

and mouse activity.

LoadL_GSmonitor Referred to as the gsmonitor daemon. Monitors for down

machines based on the heartbeat responses of the

MACHINE_UPDATE_INTERVAL time period.

The master daemon

The master daemon runs on every machine in the LoadLeveler cluster, except the

submit-only machines. The real and effective user ID of this daemon must be root.

The master daemon determines whether to start any other daemons by checking

the START_DAEMONS keyword in the global or local configuration file. If the

keyword is set to true, the daemons are started. If the keyword is set to false, the

master daemon terminates and generates a message.

The master daemon will not start on a Linux machine if SEC_ENABLEMENT is

set to CTSEC. If the master daemon does not start, no other daemons will start.

On the machine designated as the central manager, the master runs the negotiator

daemon. The master also controls the central manager backup function. The

negotiator runs on either the primary or an alternate central manager. If a central

manager failure is detected, one of the alternate central managers becomes the

primary central manager by starting the negotiator.

The master daemon starts and if necessary, restarts all the LoadLeveler daemons

that the machine it resides on is configured to run. As part of its startup procedure,

this daemon executes the .llrc file (a dummy file is provided in the bin

subdirectory of the release directory). You can use this script to customize your

local configuration file, specifying what particular data is stored locally. This

daemon also runs the kbdd daemon, which monitors keyboard and mouse activity.

When the master daemon detects a failure on one of the daemons that it is

monitoring, it attempts to restart it. Because this daemon recognizes that certain

situations may prevent a daemon from running, it limits its restart attempts to the

number defined for the RESTARTS_PER_HOUR keyword in the configuration file.

If this limit is exceeded, the master daemon forces all daemons including itself to

exit.

LoadLeveler daemons

8 TWS LoadLeveler: Using and Administering

When a daemon must be restarted, the master sends mail to the administrators

identified by the LOADL_ADMIN keyword in the configuration file. The mail

contains the name of the failing daemon, its termination status, and a section of the

daemon’s most recent log file. If the master aborts after exceeding

RESTARTS_PER_HOUR, it will also send that mail before exiting.

The master daemon may perform the following actions in response to an llctl

command:

v Kill all daemons and exit (stop keyword)

v Kill all daemons and execute a new master (recycle keyword)

v Rerun the .llrc file, reread the configuration files, stop or start daemons as

appropriate for the new configuration files (reconfig keyword)

v Send drain request to startd and (drain keyword)

v Send flush request to startd and send result to caller (flush keyword)

v Send suspend request to startd and send result to caller (suspend keyword)

v Send resume request to startd and Schedd, and send result to caller (resume

keyword)

The Schedd daemon

The Schedd daemon receives jobs sent by the llsubmit command and manages

those jobs to machines selected by the negotiator daemon. The Schedd daemon is

started, restarted, signalled, and stopped by the master daemon.

The Schedd daemon can be in any one of the following activity states:

Available This machine is available to schedule jobs.

Drained The Schedd machine accepts no more jobs. There are no jobs in

starting or running state. Jobs in the Idle state are drained,

meaning they will not get dispatched.

Draining The Schedd daemon is being drained by the administrator but

some jobs are still running. The state of the machine remains

Draining until all running jobs complete. At that time, the machine

status changes to Drained.

Down The daemon is not running on this machine. The Schedd daemon

enters this state when it has not reported its status to the

negotiator. This can occur when the machine is actually down, or

because there is a network failure.

The Schedd daemon performs the following functions:

v Assigns new job identifiers when requested by the job submission process (for

example, by the llsubmit command).

v Receives new jobs from the llsubmit command. A new job is received as a job

object for each job step. A job object is the data structure in memory containing

all the information about a job step. The Schedd forwards the job object to the

negotiator daemon as soon as it is received from the submit command.

v Maintains on disk copies of jobs submitted locally (on this machine) that are

either waiting or running on a remote (different) machine. The central manager

can use this information to reconstruct the job information in the event of a

failure. This information is also used for accounting purposes.

v Responds to directives sent by the administrator through the negotiator daemon.

The directives include:

– Run a job.

– Change the priority of a job.

LoadLeveler daemons

Chapter 1. What is LoadLeveler? 9

– Remove a job.

– Hold or release a job.

– Send information about all jobs.
v Sends job events to the negotiator daemon when:

– Schedd is restarting.

– A new series of job objects are arriving.

– A job is started.

– A job was rejected, completed, removed, or vacated. Schedd determines the

status by examining the exit status returned by the startd.
v Communicates with the Parallel Operating Environment (POE) when you run an

interactive POE job.

v Requests that a remote startd daemon end a job.

v Receives accounting information from startd.

v Receives requests for reservations.

v Collects resource usage data when jobs terminate and stores it as historic fair

share data in the $(SPOOL) directory.

v Sends historic fair share data to the central manager when it is updated or when

the Schedd daemon is restarted.

v Maintains and stores records of historic CPU and Blue Gene utilization for users

and groups known to the Schedd.

v Passes the historic CPU and Blue Gene utilization data to the central manager.

The startd daemon

The startd daemon monitors the status of each job, reservation, and machine in the

cluster, and forwards this information to the negotiator daemon. The startd also

receives and executes job requests originating from remote machines. The master

daemon starts, restarts, signals, and stops the startd daemon.

Checkpoint/restart is not supported in LoadLeveler for Linux. If a checkpointed

job is sent to a Linux node, the Linux node will reject the job.

The startd daemon can be in any one of the following states:

Busy The maximum number of jobs are running on this machine as

specified by the MAX_STARTERS configuration keyword.

Down The daemon is not running on this machine. The startd daemon

enters this state when it has not reported its status to the

negotiator. This can occur when the machine is actually down, or

because there is a network failure.

Drained The startd machine will not accept any new jobs. No jobs are

running when startd is in the drained state.

Draining The startd daemon is being drained by the administrator, but some

jobs are still running. The machine remains in the draining state

until all of the running jobs have completed, at which time the

machine status changes to drained. The startd daemon will not

accept any new jobs while in the draining state.

Flush Any running jobs have been vacated (terminated and returned to

the queue to be redispatched). The startd daemon will not accept

any new jobs.

Idle The machine is not running any jobs.

None LoadLeveler is running on this machine, but no jobs can run here.

LoadLeveler daemons

10 TWS LoadLeveler: Using and Administering

|
|

|

Running The machine is running one or more jobs and is capable of running

more.

Suspend All LoadLeveler jobs running on this machine are stopped (cease

processing), but remain in virtual memory. The startd daemon will

not accept any new jobs.

The startd daemon performs these functions:

v Runs a time-out procedure that includes building a snapshot of the state of the

machine that includes static and dynamic data. This time-out procedure is run at

the following times:

– After a job completes.

– According to the definition of the POLLING_FREQUENCY keyword in the

configuration file.
v Records the following information in LoadLeveler variables and sends the

information to the negotiator.

– State (of the startd daemon)

– EnteredCurrentState

– Memory

– Disk

– KeyboardIdle

– Cpus

– LoadAvg

– Machine

– Adapter

– AvailableClasses
v Calculates the SUSPEND, RESUME, CONTINUE, and VACATE expressions

through which you can manage job status.

v Receives job requests from the Schedd daemon to:

– Start a job

– Preempt or resume a job

– Vacate a job

– Cancel
When the Schedd daemon tells the startd daemon to start a job, the startd

determines whether its own state permits a new job to run:

 Table 6. startd determines whether its own state permits a new job to run

If: Then this happens:

Yes, it can start a new

job

The startd forks a starter process.

No, it cannot start a

new job

The startd rejects the request for one of the following reasons:

v Jobs have been suspended, flushed, or drained

v The job limit set for the MAX_STARTERS keyword has been

reached

v There are not enough classes available for the designated job class

v Receives requests from the master (through the llctl command) to do one of the

following:

– Drain (drain keyword)

– Flush (flush keyword)

– Suspend (suspend keyword)

– Resume (resume keyword)

LoadLeveler daemons

Chapter 1. What is LoadLeveler? 11

v For each request, startd marks its own new state, forwards its new state to the

negotiator daemon, and then performs the appropriate action for any jobs that

are active.

v Receives notification of keyboard and mouse activity from the kbdd daemon

v Periodically examines the process table for LoadLeveler jobs and accumulates

resources consumed by those jobs. This resource data is used to determine if a

job has exceeded its job limit and for recording in the history file.

v Send accounting information to Schedd.

The starter process

The startd daemon spawns a starter process after the Schedd daemon tells the

startd daemon to start a job. The starter process manages all the processes

associated with a job step. The starter process is responsible for running the job

and reporting status back to the startd daemon.

The starter process performs these functions:

v Processes the prolog and epilog programs as defined by the JOB_PROLOG and

JOB_EPILOG keywords in the configuration file. The job will not run if the

prolog program exits with a return code other than zero.

v Handles authentication. This includes:

– Authenticates AFS, if necessary

– Verifies that the submitting user is not root

– Verifies that the submitting user has access to the appropriate directories in

the local file system.
v Runs the job by forking a child process that runs with the user ID and all

groups of the submitting user. That child process creates a new process group of

which it is the process group leader, and executes the user’s program or a shell.

The starter process is responsible for detecting the termination of any process

that it forks. To ensure that all processes associated with a job are terminated

after the process forked by the starter terminates, process tracking must be

enabled. To configure LoadLeveler for process tracking, see “Tracking job

processes” on page 64.

v Responds to vacate and suspend orders from the startd.

The negotiator daemon

The negotiator daemon maintains status of each job and machine in the cluster

and responds to queries from the llstatus and llq commands. The negotiator

daemon runs on a single machine in the cluster (the central manager machine).

This daemon is started, restarted, signalled, and stopped by the master daemon.

In a mixed cluster, the negotiator daemon must run on an AIX node.

The negotiator daemon receives status messages from each Schedd and startd

daemon running in the cluster. The negotiator daemon tracks:

v Which Schedd daemons are running

v Which startd daemons are running, and the status of each startd machine.

If the negotiator does not receive an update from any machine within the time

period defined by the MACHINE_UPDATE_INTERVAL keyword, then the

negotiator assumes that the machine is down, and therefore the Schedd and startd

daemons are also down.

The negotiator also maintains in its memory several queues and tables which

determine where the job should run.

LoadLeveler daemons

12 TWS LoadLeveler: Using and Administering

The negotiator performs the following functions:

v Receives and records job status changes from the Schedd daemon.

v Schedules jobs based on a variety of scheduling criteria and policy options. Once

a job is selected, the negotiator contacts the Schedd that originally created the

job.

v Handles requests to:

– Set priorities

– Query about jobs, machines, classes, and reservations

– Change reservation attributes

– Bind jobs to reservations

– Remove a reservation

– Remove a job

– Hold or release a job

– Favor or unfavor a user or a job.
v Receives notification of Schedd resets indicating that a Schedd has restarted.

The kbdd daemon

The kbdd daemon monitors keyboard and mouse activity. The kbdd daemon is

spawned by the master daemon if the X_RUNS_HERE keyword in the

configuration file is set to true.

The kbdd daemon notifies the startd daemon when it detects keyboard or mouse

activity; however, kbdd is not interrupt driven. It sleeps for the number of seconds

defined by the POLLING_FREQUENCY keyword in the LoadLeveler

configuration file, and then determines if X events, in the form of mouse or

keyboard activity, have occurred. For more information on the configuration file,

see Chapter 5, “Defining LoadLeveler resources to administer,” on page 77.

The gsmonitor daemon

The gsmonitor daemon is not available in LoadLeveler for Linux.

The negotiator daemon monitors for down machines based on the heartbeat

responses of the MACHINE_UPDATE_INTERVAL time period. If the negotiator

has not received an update after two MACHINE_UPDATE_INTERVAL periods,

then it marks the machine as down, and notifies the Schedd to remove any jobs

running on that machine. The gsmonitor daemon (LoadL_GSmonitor) allows this

cleanup to occur more reliably. The gsmonitor daemon uses the Group Services

Application Programming Interface (GSAPI) to monitor machine availability on

peer domains and to notify the negotiator quickly when a machine is no longer

reachable.

If the GSMONITOR_DOMAIN keyword was not specified in the LoadLeveler

configuration file, then LoadLeveler will try to determine if the machine is running

in a peer (cluster) domain. The gsmonitor must run in a peer domain. The

gsmonitor will detect that it is running in an active peer domain, then it will use

the RMC API to determine the node numbers and names of machines running in

the cluster.

If the administrator sets up a LoadLeveler administration file that contains OSIs

spanning several peer domains then a gsmonitor daemon must be started in each

domain. A gsmonitor daemon can monitor only the OSIs contained in the domain

within which it is running. The administrator specifies which OSIs run the

LoadLeveler daemons

Chapter 1. What is LoadLeveler? 13

|
|
|
|
|
|

gsmonitor daemon by specifying GSMONITOR_RUNS_HERE=TRUE in the local

configuration file for that OSI. The default for GSMONITOR_RUNS_HERE is

False.

The gsmonitor daemon should be run on one or two nodes in the peer domain. By

running LoadL_GSmonitor on more than one node in a domain you will have a

backup in case one of the nodes that the monitor is running on goes down.

LoadL_GSmonitor subscribes to the Group Services system-defined host

membership group, which is represented by the HA_GS_HOST_MEMBERSHIP

Group Services keyword. This group monitors every configured node in the

system partition and every node in the active peer domain.

Notes:

1. The Group Services routines need to be run as root, so the LoadL_GSmonitor

executable must be owned by root and have the setuid permission bit enabled.

2. It will not cause a problem to run more than one LoadL_GSmonitor daemon

per peer domain, this will just cause the negotiator to be notified by each

running daemon.

3. For more information about the Group Services subsystem, see the RSCT

Administration Guide, SA22-7889 for peer domains.

4. For more information about GSAPI, see Group Services Programming Guide and

Reference, SA22-7355.

The LoadLeveler job cycle

The following description and sequence of diagrams illustrate the flow of job

information through the LoadLeveler cluster.

 The managing machine in a LoadLeveler cluster is known as the central manager.

There are also machines that act as schedulers, and machines that serve as the

executing machines. The arrows in Figure 4 illustrate the following:

v Arrow 1 indicates that a job has been submitted to LoadLeveler.

v Arrow 2 indicates that the scheduling machine contacts the central manager to

inform it that a job has been submitted, and to find out if a machine exists that

matches the job requirements.

Central
manager

Executing
machine

Executing
machine

Executing
machine

Scheduling
machine

1

2 3

4Scheduling
machine

Scheduling
machine

Job

Figure 4. High-level job flow

LoadLeveler daemons

14 TWS LoadLeveler: Using and Administering

|
|
|

v Arrow 3 indicates that the central manager checks to determine if a machine

exists that is capable of running the job. Once a machine is found, the central

manager informs the scheduling machine which machine is available.

v Arrow 4 indicates that the scheduling machine contacts the executing machine

and provides it with information regarding the job. In this case, the scheduling

and executing machines are different machines in the cluster, but they do not

have to be different; the scheduling and executing machines may be the same

physical machine.

Figure 4 on page 14 is broken down into the following more detailed diagrams

illustrating how LoadLeveler processes a job. The diagrams indicate specific job

states for this example, but do not list all of the possible states for LoadLeveler

jobs. A complete list of job states appears in “LoadLeveler job states” on page 18.

1. Submit a LoadLeveler job:

Figure 5 illustrates that the Schedd daemon runs on the scheduling machine.

This machine can also have the startd daemon running on it. The negotiator

daemon resides on the central manager machine. The arrows in Figure 5

illustrate the following:

v Arrow 1 indicates that a job has been submitted to the scheduling machine.

v Arrow 2 indicates that the Schedd daemon, on the scheduling machine,

stores all of the relevant job information on local disk.

v Arrow 3 indicates that the Schedd daemon sends job description information

to the negotiator daemon. At this point, the submitted job is in the Idle state.
2. Permit to run:

Q
Q
QQ

Q

Central manager

3

negotiator daemon
LoadLeveler
cluster

2

Scheduling
machine

schedd daemon

Idle

1

Figure 5. Job is submitted to LoadLeveler

LoadLeveler job cycle

Chapter 1. What is LoadLeveler? 15

In Figure 6, arrow 4 indicates that the negotiator daemon authorizes the Schedd

daemon to begin taking steps to run the job. This authorization is called a

permit to run. Once this is done, the job is considered Pending or Starting.

3. Prepare to run:

In Figure 7, arrow 5 illustrates that the Schedd daemon contacts the startd

daemon on the executing machine and requests that it start the job. The

executing machine can either be a local machine (the machine to which the job

was submitted) or another machine in the cluster. In this example, the local

machine is not the executing machine.

4. Initiate job:

Q
Q
QQ

Central manager

4

negotiator daemon

Scheduling
machine

schedd daemon

Pending or Starting

Figure 6. LoadLeveler authorizes the job

Q
Q
QQ

Central manager

Executing machine

5

negotiator daemon

startd daemon

Scheduling
machine

schedd daemon
remote

local

startd daemon

Pending or Starting

Figure 7. LoadLeveler prepares to run the job

LoadLeveler job cycle

16 TWS LoadLeveler: Using and Administering

The arrows in Figure 8 illustrate the following:

v Arrow 6 indicates that the startd daemon on the executing machine spawns a

starter process for the job.

v Arrow 7 indicates that the Schedd daemon sends the starter process the job

information and the executable.

v Arrow 8 indicates that the Schedd daemon notifies the negotiator daemon

that the job has been started and the negotiator daemon marks the job as

Running.

The starter forks and executes the user’s job, and the starter parent waits for

the child to complete.

5. Complete job:

QQ
Q
QQ

1010

101010

1010
1010Q

Central manager

Executing machine

6
7

8

negotiator daemon

startd daemon

starter

Scheduling
machine

schedd daemon

Running

Figure 8. LoadLeveler starts the job

Q
Q
QQ

Q

Central manager

Executing machine

9

10

11

negotiator daemon

startd daemon

starter

Scheduling
machine

schedd daemon

Complete pending or
Completed

Q

Figure 9. LoadLeveler completes the job

LoadLeveler job cycle

Chapter 1. What is LoadLeveler? 17

The arrows in Figure 9 on page 17 illustrate the following:

v Arrow 9 indicates that when the job completes, the starter process notifies

the startd daemon.

v Arrow 10 indicates that the startd daemon notifies the Schedd daemon.

v Arrow 11 indicates that the Schedd daemon examines the information it has

received, and forwards it to the negotiator daemon. At this point, the job is

in Completed or Complete Pending state.

LoadLeveler job states

As LoadLeveler processes a job, the job moves through various states, which are

listed in Table 7. Job states that include “Pending,” such as Complete Pending and

Vacate Pending, are intermediate, temporary states.

Some options on LoadLeveler interfaces are valid only for jobs in certain states. For

example, the llmodify command has options that apply only to jobs that are in the

Idle state, or in states that are similar to it. To determine which job states are

similar to the Idle state, use the “Similar to...” column in Table 7, which indicates

whether a particular job state is similar to the Idle, Running, or Terminating state.

A dash (—) indicates that the state is not similar to an Idle, Running, or

Terminating state.

 Table 7. Job state descriptions and abbreviations

Job state Similar to

Idle or

Running

state?

Abbreviation

in displays /

output

Description

Canceled Terminating CA The job was canceled either by a user or

by an administrator.

Checkpointing Running CK Indicates that a checkpoint has been

initiated.

Completed Terminating C The job has completed.

Complete

Pending

Terminating CP The job is in the process of being

completed.

Deferred Idle D The job will not be assigned to a machine

until a specified date. This date may have

been specified by the user in the job

command file, or may have been

generated by the negotiator because a

parallel job did not accumulate enough

machines to run the job. Only the

negotiator places a job in the Deferred

state.

Idle Idle I The job is being considered to run on a

machine, though no machine has been

selected.

LoadLeveler job cycle

18 TWS LoadLeveler: Using and Administering

Table 7. Job state descriptions and abbreviations (continued)

Job state Similar to

Idle or

Running

state?

Abbreviation

in displays /

output

Description

Not Queued Idle NQ The job is not being considered to run on

a machine. A job can enter this state

because the associated Schedd is down,

the user or group associated with the job

is at its maximum maxqueued or maxidle

value, or because the job has a

dependency which cannot be determined.

For more information on these keywords,

see “Controlling the mix of idle and

running jobs” on page 668. (Only the

negotiator places a job in the NotQueued

state.)

Not Run — NR The job will never be run because a

dependency associated with the job was

found to be false.

Pending Running P The job is in the process of starting on one

or more machines. (The negotiator

indicates this state until the Schedd

acknowledges that it has received the

request to start the job. Then the

negotiator changes the state of the job to

Starting. The Schedd indicates the

Pending state until all startd machines

have acknowledged receipt of the start

request. The Schedd then changes the

state of the job to Starting.)

Preempted Running E The job is preempted. This state applies

only when LoadLeveler uses the suspend

method to preempt the job.

Preempt

Pending

Running EP The job is in the process of being

preempted. This state applies only when

LoadLeveler uses the suspend method to

preempt the job.

Rejected Idle X The job is rejected.

Reject Pending Idle XP The job did not start. Possible reasons

why a job is rejected are: job requirements

were not met on the target machine, or

the user ID of the person running the job

is not valid on the target machine. After a

job leaves the Reject Pending state, it is

moved into one of the following states:

Idle, User Hold, or Removed.

Removed Terminating RM The job was stopped by LoadLeveler.

Remove

Pending

Terminating RP The job is in the process of being

removed, but not all associated machines

have acknowledged the removal of the

job.

Resume Pending Running MP The job is in the process of being

resumed.

Job states

Chapter 1. What is LoadLeveler? 19

Table 7. Job state descriptions and abbreviations (continued)

Job state Similar to

Idle or

Running

state?

Abbreviation

in displays /

output

Description

Running Running R The job is running: the job was dispatched

and has started on the designated

machine.

Starting Running ST The job is starting: the job was dispatched,

was received by the target machine, and

LoadLeveler is setting up the environment

in which to run the job. For a parallel job,

LoadLeveler sets up the environment on

all required nodes. See the description of

the “Pending” state for more information

on when the negotiator or the Schedd

daemon moves a job into the Starting

state.

System Hold Idle S The job has been put in system hold.

Terminated Terminating TX If the negotiator and Schedd daemons

experience communication problems, they

may be temporarily unable to exchange

information concerning the status of jobs

in the system. During this period of time,

some of the jobs may actually complete

and therefore be removed from the

Schedd’s list of active jobs. When

communication resumes between the two

daemons, the negotiator will move such

jobs to the Terminated state, where they

will remain for a set period of time

(specified by the

NEGOTIATOR_REMOVE_COMPLETED

keyword in the configuration file). When

this time has passed, the negotiator will

remove the jobs from its active list.

User & System

Hold

Idle HS The job has been put in both system hold

and user hold.

User Hold Idle H The job has been put in user hold.

Vacated Idle V The job started but did not complete. The

negotiator will reschedule the job

(provided the job is allowed to be

rescheduled). Possible reasons why a job

moves to the Vacated state are: the

machine where the job was running was

flushed, the VACATE expression in the

configuration file evaluated to True, or

LoadLeveler detected a condition

indicating the job needed to be vacated.

For more information on the VACATE

expression, see “Managing job status

through control expressions” on page 63.

Vacate Pending Idle VP The job is in the process of being vacated.

Job states

20 TWS LoadLeveler: Using and Administering

Consumable resources

Consumable resources are assets available on machines in your LoadLeveler

cluster. They are called ″resources″ because they model the commodities or services

available on machines (including CPUs, real memory, virtual memory, software

licenses, disk space). They are considered ″consumable″ because job steps use

specified amounts of these commodities when the step is running. Once the step

finishes, the resource becomes available for another job step.

Consumable resources which model the characteristics of a specific machine (such

as the number of CPUs or the number of specific software licenses available only

on that machine) are called machine resources. Consumable resources which model

resources that are available across the LoadLeveler cluster (such as floating

software licenses) are called floating resources. For example, consider a

configuration with 10 licenses for a given program (which can be used on any

machine in the cluster). If these licenses are defined as floating resources, all 10 can

be used on one machine, or they can be spread across as many as 10 different

machines.

The LoadLeveler administrator can specify:

v Consumable resources to be considered by LoadLeveler’s scheduling algorithms

v Quantity of resources available on specific machines

v Quantity of floating resources available on machines in the cluster

v Consumable resources to be considered in determining the priority of executing

machines

v Default amount of resources consumed by a job step of a specified job class

v Whether CPU and real memory resources should be enforced using AIX

workload manager (WLM)

v Whether all jobs submitted need to specify resources

Users submitting jobs can specify the resources consumed by each task of a job

step.

LoadLeveler for AIX supports memory and I/O adapter affinity options for

improving IBM System p5™ and System p4™ machine performance. Memory and

adapter affinity are where performance gains occur when jobs are limited to a

specific multiple chip module (MCM). LoadLeveler makes use of the Resource Set

(RSet) APIs available in AIX 5L™ for this purpose, attaching a task’s processes to

run only on CPUs of a single MCM. On an affinity-enabled system, the

administrator can configure LoadLeveler to use RSets for tasks, based on

consumable CPUs or based on the RSets specified in the job command file. For

more information on scheduling affinity, see “LoadLeveler scheduling affinity

support” on page 136.

Notes:

1. When software licenses are used as a consumable resource, LoadLeveler does

not attempt to obtain software licenses or to verify that software licenses have

been obtained. However, by providing a user exit that can be invoked as a

submit filter, the LoadLeveler administrator can provide code to first obtain the

required license and then allow the job step to run. For more information on

filtering job scripts, see “Filtering a job script” on page 70.

2. LoadLeveler scheduling algorithms use the availability of requested

consumable resources to determine the machine or machines on which a job

will run. Consumable resources (except for CPU and real memory) are used

only for scheduling purposes and are not enforced. Instead, LoadLeveler’s

negotiator daemon keeps track of the consumable resources available by

Consumable resources

Chapter 1. What is LoadLeveler? 21

|
|
|
|
|
|
|
|
|
|

reducing them by the amount requested when a job step is scheduled, and

increasing them when a consuming job step completes.

3. If a job is preempted, the job continues to use all consumable resources except

for ConsumableCpus and ConsumableMemory (real memory) which are made

available to other jobs.

4. When the network adapters on a machine support RDMA, the machine is

automatically given a consumable resource called RDMA with an available

quantity defined by the limit on the number of concurrent jobs that use RDMA.

For machines with ″Switch Network Interface for HPS″ network adapters, this

limit is 4.

5. When steps require RDMA, either because they request bulkxfer or because

they request rcxtblocks on at least one network statement, the job is

automatically given a resource requirement for 1 RDMA.

Consumable resources and AIX Workload Manager

If the administrator has indicated that resources should be enforced, LoadLeveler

uses AIX Workload Manager (WLM) to give greater control over CPU and real

memory resource allocation. WLM monitors system resources and regulates their

allocation to processes running on AIX. These actions prevent jobs from interfering

with each other when they have conflicting resource requirements. WLM achieves

this control by creating different classes of service and allowing attributes to be

specified for those classes.

LoadLeveler dynamically generates WLM classes with specific resource

entitlements. A single WLM class is created for each job step and the process id of

that job step is assigned to that class. This is done for each node that a job step is

assigned to execute on. LoadLeveler then defines resource shares or limits for that

class depending on the LoadLeveler enforcement policy defined. These resource

shares or limits represent the job’s requested resource usage in relation to the

amount of resources available on the machine.

When the enforcement policy is shares, LoadLeveler assigns a share value to the

class based on the resources requested for the job step (one unit of resource equals

one share). When the job step process is executing, AIX WLM dynamically

calculates a desired resource entitlement based on the WLM class share value of

the job step and the total number of shares requested by all active WLM classes. It

is important to note that AIX WLM will only enforce these target percentages

when the resource is under contention.

When the enforcement policy is limits (soft or hard), LoadLeveler assigns a

percentage value to the class based on the resources requested for the job step and

the total machine resources. This resource percentage is enforced regardless of any

other active WLM classes. A soft limit indicates the maximum amount of the

resource that can be made available when there is contention for the resources.

This maximum can be exceeded if no one else requires the resource. A hard limit

indicates the maximum amount of the resource that can be made available even if

there is no contention for the resources.

Note: A WLM class is active for the duration of a job step’s execution and is

deleted when the job step completes. There is a limit of 27 active WLM

classes per machine. Therefore, when resources are being enforced, only 27

job steps can be executing on one machine.

For more information on integrating LoadLeveler with AIX Workload Manager, see

“Steps for integrating LoadLeveler with AIX Workload Manager” on page 127.

Consumable resources

22 TWS LoadLeveler: Using and Administering

Overview of reservations

Under the BACKFILL scheduler only, LoadLeveler allows authorized users to make

reservations, which specify a time period during which specific node resources are

reserved for exclusive use by particular users or groups. This capability is known

in the computing industry as advance reservation. Normally, jobs wait to be

dispatched until the resources they require become available. Through the use of

reservations, wait time can be reduced because the jobs have exclusive use of the

node resources (CPUs, memory, disk drives, communication adapters, and so on)

as soon as the reservation period begins.

Note: Advance reservation supports Blue Gene resources including the Blue Gene

compute nodes. For more information, see “Blue Gene advance reservation

support” on page 147.

In addition to reducing wait time, reservations also are useful for:

v Running a workload that needs to start or finish at a particular time. The job

steps must be associated with, or bound to, the reservation before LoadLeveler

can run them during the reservation period.

v Setting aside a set of nodes for maintenance purposes. In this case, job steps are

not bound to the reservation.

Only bound job steps may run on the reserved nodes, which means that a bound

job step competes for reserved resources only with other job steps that are bound

to the same reservation.

The following sequence of events describes, in general terms, how you can set up

and use reservations in the LoadLeveler environment. It also describes how

LoadLeveler manages activities related to the use of reservations.

1. Configuring LoadLeveler to support reservations

An administrator uses specific keywords in the configuration and

administration files to define general reservation policies. These keywords

include:

v max_reservations, which defines both:

– The users or groups that will be allowed to create reservations. To be

authorized to create reservations, LoadLeveler administrators also must

have the max_reservations keyword set in their own user or group

stanzas.

– How many reservations users may own.
v max_reservation_duration, which defines the maximum duration for

reservations.

v reservation_permitted, which defines the nodes that may be used for

reservations.

Administrators also may configure LoadLeveler to collect accounting data

about reservations when the reservations complete or are canceled.

2. Creating reservations

After LoadLeveler is configured for reservations, an administrator or

authorized user may create specific reservations, defining reservation attributes

that include:

v The start time and the duration of the reservation. The start and end times

for a reservation are based on the time-of-day (TOD) clock on the central

manager machine.

Overview of reservations

Chapter 1. What is LoadLeveler? 23

|
|
|

v The nodes to be reserved. Until the reservation period actually begins, the

selected nodes are available to run any jobs; when the reservation starts, only

jobs bound to the reservation may run on the reserved nodes.

v The users or groups that may use the reservation.

LoadLeveler assigns a unique ID to the reservation, and returns that ID to the

owner.

After the reservation is successfully created:

v Reservation owners may:

– Modify, query, and cancel their reservations.

– Allow other LoadLeveler users or groups to submit jobs to run during a

reservation period.

– Submit jobs to run during a reservation period.
v Users or groups that are allowed to use the reservation also may query

reservations, and submit jobs to run during a reservation period. To run jobs

during a reservation period, users must bind job steps to the reservation. You

may bind both batch and interactive POE job steps to a reservation.
3. Preparing for the start of a reservation

During the preparation time for a reservation, LoadLeveler:

v Preempts any jobs that are still running on the reserved nodes.

v Checks the condition of reserved nodes, and notifies the reservation owner

and LoadLeveler administrators by e-mail of any situations that might

require the reservation owner or an administrator to take corrective action.

Such conditions include:

– Reserved nodes that are down, suspended, no longer in the LoadLeveler

cluster, or otherwise unavailable for use.

– Non-preemptable job steps that cannot finish running before the

reservation start time.

During this time, reservation owners may modify, cancel, and add users or

groups to their reservations. Owners and users or groups that are allowed to

use the reservation may query the reservation or bind job steps to it.

4. Starting the reservation

When the reservation period begins, LoadLeveler dispatches job steps that are

bound to the reservation.

After the reservation period begins, reservation owners may modify, cancel,

and add users or groups to their reservations. Owners and users or groups that

are allowed to use the reservation may query the reservation or bind job steps

to it.

During the reservation period, LoadLeveler ignores system preemption rules

for bound job steps; however, LoadLeveler administrators may use the

llpreempt command to manually preempt bound job steps.

When the reservation ends or is canceled:

v LoadLeveler unbinds all job steps from the reservation. At this point, the

unbound job steps compete with all other LoadLeveler jobs for available

resources.

v If accounting data is being collected for the reservation, LoadLeveler also

updates the reservation history file.

For more detailed information and instructions for setting up and using

reservations, see:

v “Configuring LoadLeveler to support reservations” on page 121.

v “Working with reservations” on page 197.

Overview of reservations

24 TWS LoadLeveler: Using and Administering

Fair share scheduling overview

Fair share scheduling in LoadLeveler provides a way to divide resources in a

LoadLeveler cluster among users or groups of users. Historic resource usage data

that is collected at the time the job ends can be used to influence job priorities to

achieve the resource usage proportions allocated to users or groups of users in the

LoadLeveler configuration files. The resource usage data will decay over time so

that the relatively recent historic resource usage will have the most influence on

job priorities. The CPU resources in the cluster and the Blue Gene resources are

currently supported by fair share scheduling.

For information about configuring fair share scheduling in LoadLeveler, see “Using

fair share scheduling” on page 148.

Fair share scheduling

Chapter 1. What is LoadLeveler? 25

|
|
|
|
|
|
|
|

Fair share scheduling

26 TWS LoadLeveler: Using and Administering

Chapter 2. Getting a quick start using the default

configuration

If you are very familiar with UNIX and Linux system administration and job

scheduling, follow the steps listed to get LoadLeveler up and running on your

network quickly in a default configuration. This default configuration will merely

enable you to submit serial jobs; for a more complex setup, see Chapter 4,

“Configuring the LoadLeveler environment,” on page 39.

What you need to know before you begin

LoadLeveler sets up the following default values for the configuration information:

v loadl is the recommended LoadLeveler user ID and the LoadLeveler group ID.

LoadLeveler daemons run under this user ID to perform file I/O, and many

LoadLeveler files are owned by this user ID.

v The home directory of loadl is the configuration directory.

v LoadL_config is the name of the configuration file.

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Using the default configuration files

Perform the following steps to use the default configuration files:

Note: You can find samples of the LoadL_admin and LoadL_config files in the

release directory (in the samples subdirectory).

1. Ensure that the installation procedure has completed successfully and that the

configuration file, LoadL_config, exists in LoadLeveler’s home directory or in

the directory specified by the LoadLConfig keyword.

2. Identify yourself as the LoadLeveler administrator in the LoadL_config file

using the LOADL_ADMIN keyword. The syntax of this keyword is:

LOADL_ADMIN = list_of_user_names (required)

Where list_of_user_names is a blank-delimited list of those individuals who

will have administrative authority.

Refer to “Defining LoadLeveler administrators” on page 41 for more

information.

3. Define a machine to act as the LoadLeveler central manager by coding one

machine stanza as follows in the administration file, which is called

LoadL_admin. (Replace machine_name with the actual name of the machine.)

machine_name: type = machine

central_manager = true

Do not specify more than one machine as the central manager. Also, if during

installation, you ran llinit with the -cm flag, the central manager is already

defined in the LoadL_admin file because the llinit command takes parameters

that you entered and updates the administration and configuration files. See

“Defining machines” on page 78 for more information.

 27

|

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

LoadLeveler for Linux quick start

If you would like to quickly install and configure LoadLeveler for Linux and

submit a serial job on a single node, follow the steps in the following procedures.

Note: This setup is for a single node only and the node used for this example is:

c197blade1b05.ppd.pok.ibm.com.

Quick installation

Note: This installation is for RHEL 4 System x servers, but the same method is

applicable to all other systems. You must install the corresponding license

RPM for the system you are installing on. This installation assumes that the

LoadLeveler RPMs are located at: /mnt/cdrom/.

1. Log on to node c197blade1b05.ppd.pok.ibm.com as root, which is the node you

are installing on.

2. Install the license RPM by entering the following command:

rpm -ivh /mnt/cdrom/LoadL-full-license-RH4-X86-3.4.0.0-0.i386.rpm

3. Change to the LoadLeveler installation path by entering the following the

command:

cd /opt/ibmll/LoadL/sbin

4. Run the LoadLeveler installation script by entering:

./install_ll -y -d /mnt/cdrom

5. Add a UNIX group for LoadLeveler users (make sure the group ID is correct)

by entering the following command:

groupadd -g 1000 loadl

6. Add a UNIX user for LoadLeveler (make sure the user ID is correct) by

entering the following command:

useradd -c "LoadLeveler User" -d /home/loadl -s /bin/bash -u 1001 -g 1000 -m loadl

Quick configuration

1. Change the log in to the newly created LoadLeveler user by entering the

following command:

su - loadl

2. Add the LoadLeveler bin directory to the search path:

export PATH=$PATH:/opt/ibmll/LoadL/full/bin

3. Run the LoadLeveler initialization script:

/opt/ibmll/LoadL/full/bin/llinit -local /tmp/loadl -release /opt/ibmll/LoadL/full -cm

c197blade1b05.ppd.pok.ibm.com

Quick verification

1. Start LoadLeveler by entering the following command:

llctl start

You should receive a response similar to the following:

llctl: Attempting to start LoadLeveler on host c197blade1b05.ppd.pok.ibm.com

LoadL_master 3.4.0.0 rven0632a 2006/08/09 RHEL 4.0 140

CentralManager = c197blade1b05.ppd.pok.ibm.com

[loadl@c197blade1b05 bin]$

2. Check LoadLeveler status by entering the following command:

llstatus

You should receive a response similar to the following:

28 TWS LoadLeveler: Using and Administering

|
|

|
|

|
|

|

|
|
|
|

|
|

|

|
|
|

|

|

|

|
|

|

|
|

|

|

|
|

|

|

|

|
|
|

|

|

|
|

|
|
|
|

|

|
|

Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys

c197blade1b05.ppd.pok.ibm Avail 0 0 Idle 0 0.00 1 i386 Linux2

i386/Linux2 1 machines 0 jobs 0 running task

Total Machines 1 machines 0 jobs 0 running task

The Central Manager is defined on c197blade1b05.ppd.pok.ibm.com

The BACKFILL scheduler is in use

All machines on the machine_list are present.

[loadl@c197blade1b05 bin]$

3. Submit a sample job, by entering the following command:

llsubmit /opt/ibmll/LoadL/full/samples/job1.cmd

You should receive a response similar to the following:

llsubmit: The job "c197blade1b05.ppd.pok.ibm.com.1" with 2 job steps /

 has been submitted.

[loadl@c197blade1b05 samples]$

4. Display the LoadLeveler job queue, by entering the following command:

llq

You should receive a response similar to the following:

Id Owner Submitted ST PRI Class Running On

------------------------ ---------- ----------- -- --- ------------ -----------

c197blade1b05.1.0 loadl 8/15 17:25 R 50 No_Class c197blade1b05

c197blade1b05.1.1 loadl 8/15 17:25 I 50 No_Class

2 job step(s) in queue, 1 waiting, 0 pending, 1 running, 0 held, 0 preempted

[loadl@c197blade1b05 samples]$

5. Check output files into the home directory (/home/loadl) by entering the

following command:

ls -ltr job*

You should receive a response similar to the following:

-rw-rw-r-- 1 loadl loadl 1940 Aug 15 17:26 job1.c197blade1b05.1.0.out

-rw-rw-rw- 1 loadl loadl 1940 Aug 15 17:27 job1.c197blade1b05.1.1.out

[loadl@c197blade1b05 ~]$

Post-installation considerations

This information explains how to start (or restart) and stop LoadLeveler. It also

tells you where files are located after you install LoadLeveler, and it points you to

troubleshooting information.

Starting LoadLeveler

You can start LoadLeveler using any LoadLeveler administrator user ID as defined

in the configuration file. To start all of the machines that are defined in machine

stanzas in the administration file, enter:

llctl -g start

The central manager machine is the first started, followed by other machines in the

order listed in the administration file. See “llctl - Control LoadLeveler daemons”

on page 409 for more information.

By default, llctl uses rsh to start LoadLeveler on the target machine. Other

mechanisms, such as ssh can be used by setting the LL_RSH_COMMAND

configuration keyword in LoadL_config. However you choose to start LoadLeveler

on remote hosts, you must have the authority to run commands remotely on that

host.

Chapter 2. Getting a quick start using the default configuration 29

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

You can verify that the machine has been properly configured by running the

sample jobs in the appropriate samples directory (job1.cmd, job2.cmd, and

job3.cmd). You must read the job2.cmd and job3.cmd files before submitting them

because job2 must be edited and a C program must be compiled to use job3. It is a

good idea to copy the sample jobs to another directory before modifying them; you

must have read/write permission to the directory in which they are located. You

can use the llsubmit command to submit the sample jobs from several different

machines and verify that they complete (see “llsubmit - Submit a job” on page

494).

If you are running AFS and some jobs do not complete, you might need to use the

AFS fs command (fs listacl) to ensure that the you have write permission to the

spool, execute, and log directories.

If you are running with cluster security services enabled and some jobs do not

complete, ensure that you have write permission to the spool, execute, and log

directories. Also ensure that the user ID is authorized to run jobs on the submitting

machine (the identity of the user must exist in the .rhosts file of the user on the

machine on which the job is being run).

Note: LoadLeveler for Linux does not support cluster security services.

If you are running submit-only LoadLeveler, once the LoadLeveler pool is up and

running, you can use the llsubmit, llq, and llcancel commands from the

submit-only machines. For more information about these commands, see

v “llsubmit - Submit a job” on page 494

v “llq - Query job status” on page 449

v “llcancel - Cancel a submitted job” on page 392

You can also invoke the LoadLeveler graphical user interface xloadl_so from the

submit-only machines (see Chapter 15, “Graphical user interface (GUI) reference,”

on page 377).

Location of directories following installation

After installation, the product directories shown in Table 8 reside on disk. The

installation process creates only those directories required to service the

LoadLeveler options specified during the install. For AIX, release_directory indicates

/usr/lpp/LoadL/full and for Linux, it indicates /opt/ibmll/LoadL/full.

 Table 8. Location and description of product directories following installation

Directory Description

release_directory/bin Part of the release directory containing

daemons, commands, and other binaries

release_directory/lib Part of the release directory containing

product libraries and resource files

release_directory/man Part of the release directory containing man

pages

release_directory/samples Part of the release directory containing

sample administration and configuration files

and sample jobs

release_directory/include Part of the release directory containing

header files for the application programming

interfaces.

30 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|

|

|

|

|
|
|

|

|
|
|
|

||

||

||
|

||
|

||
|

||
|
|

||
|
|

Table 8. Location and description of product directories following installation (continued)

Directory Description

Local directory spool, execute, and log directories for each

machine in the cluster

Home directory Administration and configuration files, and

symbolic links to the release directory

/usr/lpp/LoadL/codebase Configuration tasks for AIX

Table 9 shows the location of directories for submit-only LoadLeveler:

 Table 9. Location and description of directories for submit-only LoadLeveler

Directory Description

release_directory/so/bin Part of the release directory containing

commands.

release_directory/so/man Part of the release directory containing man

pages

release_directory/so/samples Part of the release directory containing

sample administration and configuration

files.

release_directory/so/lib Contains libraries and graphical user

interface resource files

Home directory Contains administration and configuration

files

If you have a mixed LoadLeveler cluster of AIX and Linux machines, you might

want to make the following symbolic links:

v On AIX, as root, enter:

mkdir -p /opt/ibmll

ln -s /usr/lpp/LoadL /opt/ibmll/LoadL

v On Linux, as root, enter:

mkdir -p /usr/lpp

ln -s /opt/ibmll/LoadL /usr/lpp/LoadL

With the addition of these symbolic links, a user application can use either

/usr/lpp/LoadL or /opt/ibmll/LoadL to refer to the location of LoadLeveler files

regardless of whether the application is running on AIX or Linux.

If LoadLeveler will not start following installation, see “Why won’t LoadLeveler

start?” on page 651 for troubleshooting information.

Chapter 2. Getting a quick start using the default configuration 31

|

||

||
|

||
|

||
|

|

||

||

||
|

||
|

||
|
|

||
|

||
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|

32 TWS LoadLeveler: Using and Administering

Chapter 3. What operating systems are supported by

LoadLeveler?

LoadLeveler supports three operating systems:

v AIX 5L

IBM’s AIX 5L is an open UNIX operating environment that conforms to The

Open Group UNIX 98 Base Brand industry standard. It provides high levels of

integration, flexibility, and reliability and operates on IBM System p™, and IBM

eServer™ Cluster 1600 servers and workstations.

AIX 5L supports the concurrent operation of 32- and 64-bit applications, with

key internet technologies such as Java™ and XML parser for Java included as

part of the base operating system.

A strong affinity between AIX and Linux permits popular applications

developed on Linux to run on AIX 5L with a simple recompilation.

v Linux

LoadLeveler supports the following distributions of Linux:

– Red Hat® Enterprise Linux (RHEL) 3 and RHEL 4 on IA-32 servers

– RHEL 3 and RHEL 4 on AMD Opteron or Intel EM64T processors

– RHEL 4 on IBM POWER servers

– SUSE Linux Enterprise Server (SLES) 9 and SLES 10 on IA-32 servers

– SLES 9 and SLES 10 on IBM POWER servers

– SLES 9 and SLES 10 on AMD Opteron or Intel EM64T processors

Note: IBM Tivoli Workload Scheduler LoadLeveler is supported when running

Linux on non-IBM Intel-based and AMD hardware servers.

Supported hardware includes:

– Servers with Intel 32-bit and Intel Extended Memory 64 Technology

(EM64T)

– Servers with Advanced Micro Devices (AMD) 64-bit technology
v IBM System Blue Gene Solution

While no LoadLeveler processes actually run on the Blue Gene machine,

LoadLeveler can interact with the Blue Gene machine and supports the

scheduling of jobs to the machine.

Note: For models of the Blue Gene system such as Blue Gene/S, which can only

run a single job at a time, LoadLeveler does not have to be configured to

schedule resources for Blue Gene jobs. For such systems, serial jobs can be

used to submit work to the front end node for the Blue Gene system.

AIX and Linux compatibility

LoadLeveler 3.4 for Linux is compatible with LoadLeveler 3.4 for AIX. Its

command line interfaces, graphical user interfaces, and application programming

interfaces (APIs) are the same as they have been for AIX. The formats of the job

command file, configuration file, and administration file also remain the same.

System administrators can set up and maintain a LoadLeveler cluster consisting of

some machines running LoadLeveler for AIX and some machines running

 33

|
|
|
|

|

|

|

|

|

|

|
|

|
|
|
|

LoadLeveler for Linux. This is called a mixed cluster. In this mixed cluster jobs can

be submitted from either AIX or Linux machines. Jobs submitted to a Linux job

queue can be dispatched to an AIX machine for execution, and jobs submitted to

an AIX job queue can be dispatched to a Linux machine for execution.

Although the LoadLeveler products for AIX and Linux are compatible, they do

have some differences in the level of support for specific features. For further

details, see the following topics:

v “Restrictions for LoadLeveler for Linux.”

v “Features not supported in Linux.”

v “Restrictions for LoadLeveler AIX and Linux mixed clusters” on page 35.

Restrictions for LoadLeveler for Linux

LoadLeveler for Linux supports a subset of the features that are available in the

LoadLeveler for AIX product. The following features are available, but are subject

to restrictions:

v 32-bit applications using the LoadLeveler APIs

LoadLeveler for Linux supports only the 32-bit LoadLeveler API library

(libllapi.so) on the following platforms:

– RHEL 3 and RHEL 4 on IBM IA-32 xSeries® servers

– SLES 9 and SLES 10 on IBM IA-32 xSeries servers

Applications linked to the LoadLeveler APIs on these platforms must be 32-bit

applications.

v 64–bit applications using the LoadLeveler APIs

LoadLeveler for Linux supports only the 64-bit LoadLeveler API library

(libllapi.so) on the following platforms:

– RHEL 3 and RHEL 4 on IBM xSeries servers with AMD Opteron or Intel

EM64T processors

– RHEL 4 on POWER™ servers

– SLES 9 on IBM xSeries servers with AMD Opteron or Intel EM64T processors

– SLES 9 and SLES 10 on POWER servers

Applications linked to the LoadLeveler APIs on these platforms must be 64-bit

applications.

v Support for AFS file systems

LoadLeveler for Linux support for authenticated access to AFS file systems is

limited to RHEL 3 and RHEL 4 on xSeries servers and IBM xSeries servers with

AMD Opteron or Intel EM64T processors. It is not available on systems running

SLES 9 or SLES 10.

v Support for preempting jobs under the BACKFILL scheduler

In LoadLeveler for AIX, you can use several methods for preempting jobs under

the BACKFILL scheduler; LoadLeveler for Linux supports all of these methods

except for one: suspend. If you request preemption through the suspend method

on LoadLeveler for Linux, preemption will not occur.

Features not supported in Linux

LoadLeveler 3.4 for Linux supports a subset of the features that are available in the

LoadLeveler 3.4 for AIX product. The following features are not supported:

v MCM scheduling affinity

MCM scheduling affinity is not supported by LoadLeveler for Linux.

v RDMA consumable resource

RDMA consumable resources are not supported by LoadLeveler for Linux.

Supported operating systems

34 TWS LoadLeveler: Using and Administering

|

|

|
|
|
|

v User context RDMA blocks

User context RDMA blocks are not supported by LoadLeveler for Linux.

v Checkpoint/restart

LoadLeveler for AIX uses a number of features that are specific to the AIX

kernel to provide support for checkpoint/restart of user applications running

under LoadLeveler. Checkpoint/restart is not available in this release of

LoadLeveler for Linux.

v Process tracking

On AIX, the process tracking feature is implemented as a kernel extension. Using

this feature, LoadLeveler for AIX is able to ensure that when a job managed by

LoadLeveler has terminated no processes or threads associated with this job are

left behind and continue to consume or hold resources. Process tracking is not

supported in this release of LoadLeveler for Linux.

v AIX Workload management (WLM)

WLM can strictly control use of system resources. LoadLeveler for AIX uses

WLM to enforce the use of a number of consumable resources defined by

LoadLeveler (such as ConsumableCpus and ConsumableMemory). This

enforcement of consumable resources usage through WLM is not available in

this release of LoadLeveler for Linux.

v CtSec security

LoadLeveler for AIX can exploit CtSec (Cluster Security Services) security

functions. These functions authenticate the identity of users and programs

interacting with LoadLeveler. These features are not available in this release of

LoadLeveler for Linux.

v LoadL_GSmonitor daemon

The LoadL_GSmonitor daemon in the LoadLeveler for AIX product uses the

Group Services Application Programming Interface (GSAPI) to monitor machine

availability and notify the LoadLeveler Central Manager when a machine is no

longer reachable. This daemon is not available in the LoadLeveler for Linux

product.

v Task guide tool

v Dynamic adapter setup

LoadLeveler for AIX can be configured to dynamically determine adapter

characteristics, including those associated with the Switch Network Interface for

the IBM eServer pSeries® High Performance Switch. This feature is not

supported by LoadLeveler for Linux.

v System error log

Each LoadLeveler daemon has its own log file where information relevant to its

operation is recorded. In addition to this feature which exists on all platforms,

LoadLeveler for AIX also uses the errlog function to record critical LoadLeveler

events into the AIX system log. Support for an equivalent Linux function is not

available in this release.

Restrictions for LoadLeveler AIX and Linux mixed clusters

When operating a LoadLeveler cluster that contains AIX 5L and Linux machines,

the following restrictions apply:

v Nodes running LoadLeveler for AIX 3.3 must be at 3.3.0.1 or later.

v All nodes in a mixed LoadLeveler cluster must run LoadLeveler version 3.2 or

later.

v The Central Manager node must run a version of LoadLeveler equal to or higher

than any LoadLeveler version being run on a node in the cluster.

Supported operating systems

Chapter 3. What operating systems are supported by LoadLeveler? 35

v CtSec security features cannot be used.

v AIX jobs that use checkpointing must be sent to AIX nodes for execution. This

can be done by either defining and specifying job checkpointing for job classes

that exist only on AIX nodes or by coding appropriate requirements expressions.

Checkpointing jobs that are sent to a Linux node will be rejected by the

LoadL_startd daemon running on the Linux node.

v WLM and Process tracking are supported in a mixed cluster. However,

enforcement of the use of consumable resources will occur through WLM on

AIX nodes only. Similarly, the functions associated with Process Tracking are

effective only on AIX nodes.

v For the BACKFILL scheduler, LoadLeveler for Linux does not support

preempting jobs through the suspend method. In a mixed cluster, if you request

preemption through the suspend method, the specified jobs running under AIX

will be preempted, but those jobs running on Linux nodes will not be

preempted.

Supported operating systems

36 TWS LoadLeveler: Using and Administering

Part 2. Configuring and managing the TWS LoadLeveler

environment

After installing IBM Tivoli Workload Scheduler (TWS) LoadLeveler, you may

customize it by modifying both the configuration file and the administration file.

The configuration file contains many parameters that you can set or modify that

will control how TWS LoadLeveler operates. The administration file optionally lists

and defines the machines in the TWS LoadLeveler cluster and the characteristics of

classes, users, and groups.

To easily manage TWS LoadLeveler, you should have one global configuration file

and only one administration file, both centrally located on a machine in the TWS

LoadLeveler cluster. Every other machine in the cluster must be able to read the

configuration and administration file that are located on the central machine.

You may have multiple local configuration files that specify information specific to

individual machines.

TWS LoadLeveler does not prevent you from having multiple copies of

administration files, but you need to be sure to update all the copies whenever you

make a change to one. Having only one administration file prevents any confusion.

Table 10 identifies where you can find more information about using configuration

and administration files to modify the TWS LoadLeveler environment.

 Table 10. Roadmap of tasks for TWS LoadLeveler administrators

To learn about: Read the following:

Controlling how TWS LoadLeveler

operates by customizing the global or

local configuration file

Chapter 4, “Configuring the LoadLeveler

environment,” on page 39

Controlling TWS LoadLeveler resources

by customizing an administration file

Chapter 5, “Defining LoadLeveler resources to

administer,” on page 77

Additional ways to modify TWS

LoadLeveler that require customization

of both the configuration and

administration files

Chapter 6, “Performing additional administrator

tasks,” on page 95

Ways to control or monitor TWS

LoadLeveler operations by using the

TWS LoadLeveler commands, GUI, and

APIs

v Chapter 16, “Commands,” on page 385

v Chapter 7, “Using LoadLeveler’s GUI to

perform administrator tasks,” on page 155

v Chapter 17, “Application programming

interfaces (APIs),” on page 503

 37

38 TWS LoadLeveler: Using and Administering

Chapter 4. Configuring the LoadLeveler environment

One of your main tasks as system administrator is to configure LoadLeveler. To

configure LoadLeveler, you need to know what the configuration information is

and where it is located. Configuration information includes the following:

v The LoadLeveler user ID and group ID

v The configuration directory

v The global configuration file

Configuring LoadLeveler involves modifying the configuration files that specify

the terms under which LoadLeveler can use machines. There are two types of

configuration files:

v Global Configuration File: This file by default is called the LoadL_config file and it

contains configuration information common to all nodes in the LoadLeveler

cluster.

v Local Configuration File: This file is generally called LoadL_config.local (although

it is possible for you to rename it). This file contains specific configuration

information for an individual node. The LoadL_config.local file is in the same

format as LoadL_config and the information in this file overrides any

information specified in LoadL_config. It is an optional file that you use to

modify information on a local machine. Its full pathname is specified in the

LoadL_config file by using the LOCAL_CONFIG keyword. See “Specifying file

and directory locations” on page 45 for more information.

You can run your installation with default values set by LoadLeveler, or you can

change any or all of them. Table 11 lists topics that discuss how you may configure

the LoadLeveler environment by modifying the configuration file.

 Table 11. Roadmap of administrator tasks related to using or modifying the LoadLeveler

configuration file

To learn about: Read the following:

Using the default

configuration files shipped

with LoadLeveler

Chapter 2, “Getting a quick start using the default

configuration,” on page 27

Modifying the global and

local configuration files

“Modifying a configuration file” on page 40

Defining major elements of

the LoadLeveler configuration

v “Defining LoadLeveler administrators” on page 41

v “Defining a LoadLeveler cluster” on page 41

v “Defining LoadLeveler machine characteristics” on page

51

v “Defining security mechanisms” on page 52

v “Defining usage policies for consumable resources” on

page 56

v “Steps for configuring a LoadLeveler multicluster” on

page 141

 39

Table 11. Roadmap of administrator tasks related to using or modifying the LoadLeveler

configuration file (continued)

To learn about: Read the following:

Enabling optional

LoadLeveler functions

v “Enabling support for bulk data transfer and rCxt blocks”

on page 57

v “Gathering job accounting data” on page 57

v “Managing job status through control expressions” on

page 63

v “Tracking job processes” on page 64

v “Querying multiple LoadLeveler clusters” on page 65

Modifying LoadLeveler

operations through

installation exits

“Providing additional job-processing controls through

installation exits” on page 66

Modifying a configuration file

By taking a look at the configuration files that come with LoadLeveler, you will

find that there are many parameters that you can set. In most cases, you will only

have to modify a few of these parameters. In some cases, though, depending upon

the LoadLeveler nodes, network connection, and hardware availability, you may

need to modify additional parameters.

All LoadLeveler commands, daemons, and processes read the administration and

configuration files at start up time. If you change the administration or

configuration files after LoadLeveler has already started, any LoadLeveler

command or process, such as the LoadL_starter process, will read the newer

version of the files while the running daemons will continue to use the data from

the older version. To ensure that all LoadLeveler commands, daemons, and

processes use the same configuration data, run the reconfiguration command on all

machines in the cluster each time the administration or configuration files are

changed.

To override the defaults, you must update the following keywords in the

/etc/LoadL.cfg file:

LoadLUserid

Specifies the LoadLeveler user ID.

LoadLGroupid

Specifies the LoadLeveler group ID.

LoadLConfig

Specifies the full path name of the configuration file.

Note that if you change the LoadLeveler user ID to something other than loadl,

you will have to make sure your configuration files are owned by this ID.

If Cluster Security (CtSec) services is enabled, make sure you update the unix.map

file if the LoadLUserid is specified as something other than loadl. Refer to “Steps

for enabling CtSec services” on page 54 for more details.

You can also override the /etc/LoadL.cfg file. For an example of when you might

want to do this, see “Querying multiple LoadLeveler clusters” on page 65.

Before you modify a configuration file, you need to:

Customizing the configuration file

40 TWS LoadLeveler: Using and Administering

v Ensure that the installation procedure has completed successfully and that the

configuration file, LoadL_config, exists in LoadLeveler’s home directory or in

the directory specified in /etc/LoadL.cfg. For additional details about installation,

see TWS LoadLeveler: Installation Guide.

v Know how to correctly specify keywords in the configuration file. For

information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

v Identify yourself as the LoadLeveler administrator using the LOADL_ADMIN

keyword.

After you finish modifying the configuration file, notify LoadLeveler daemons by

issuing the llctl command with either the reconfig or recycle keyword. Otherwise,

LoadLeveler will not process the modifications you made to the configuration file.

Defining LoadLeveler administrators

Specify the LOADL_ADMIN keyword with a list of user names of those

individuals who will have administrative authority. These users are able to invoke

the administrator-only commands such as llctl, llfavorjob, and llfavoruser. These

administrators can also invoke the administrator-only GUI functions. For more

information, see Chapter 7, “Using LoadLeveler’s GUI to perform administrator

tasks,” on page 155.

LoadLeveler administrators on this list also receive mail describing problems that

are encountered by the master daemon. When CtSec is enabled, the

LOADL_ADMIN list is used only as a mailing list. For more information, see

“Defining security mechanisms” on page 52.

An administrator on a machine is granted administrative privileges on that

machine. It does not grant him administrative privileges on other machines. To be

an administrator on all machines in the LoadLeveler cluster, either specify your

user ID in the global configuration file with no entries in the local configuration

file, or specify your user ID in every local configuration file that exists in the

LoadLeveler cluster.

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Defining a LoadLeveler cluster

Table 12 lists the topics that discuss how you can define the characteristics of the

LoadLeveler cluster.

 Table 12. Roadmap for defining LoadLeveler cluster characteristics

To learn about: Read the following:

Defining characteristics of

specific LoadLeveler daemons

v “Choosing a scheduler” on page 42

v “Setting negotiator characteristics and policies” on page

43

v “Specifying alternate central managers” on page 44

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 41

Table 12. Roadmap for defining LoadLeveler cluster characteristics (continued)

To learn about: Read the following:

Defining other cluster

characteristics

v “Defining network characteristics” on page 45

v “Specifying file and directory locations” on page 45

v “Configuring recording activity and log files” on page

46

v “Setting up file system monitoring” on page 50

Correctly specifying

configuration file keywords

Chapter 12, “Configuration file reference,” on page 243

Working with daemons and

machines in a LoadLeveler

cluster

v “llctl - Control LoadLeveler daemons” on page 409

v “llinit - Initialize machines in the LoadLeveler cluster”

on page 429

Choosing a scheduler

This topic discusses the types of schedulers available, which you may specify using

the configuration file keyword SCHEDULER_TYPE. For information about

configuration file keyword syntax and other details, see Chapter 12, “Configuration

file reference,” on page 243.

LL_DEFAULT This scheduler runs both serial and parallel jobs, but is primarily

meant for serial jobs. It efficiently uses CPU time by scheduling

jobs on what otherwise would be idle nodes (and workstations). It

does not require that users set a wall clock limit. Also, this

scheduler starts, suspends, and resumes jobs based on workload.

The default scheduler uses a reservation method to schedule

parallel jobs. A possible drawback to the reservation method occurs

when LoadLeveler tries to schedule a job requiring a large number

of nodes. As LoadLeveler reserves nodes for the job, the reserved

nodes will be idle for a period of time. Also, if the job cannot

accumulate all the nodes it needs to run, the job may not get

dispatched.

 See “Scheduler support for parallel jobs” on page 178 for

information on which keywords associated with parallel jobs are

supported by the default scheduler.

BACKFILL This scheduler runs both serial and parallel jobs, but is primarily

meant for parallel jobs. The objective of BACKFILL scheduling is to

maximize the use of resources to achieve the highest system

efficiency, while preventing potentially excessive delays in starting

jobs with large resource requirements. These large jobs can run

because the BACKFILL scheduler does not allow jobs with smaller

resource requirements to continuously use up resource before the

larger jobs can accumulate enough resource to run.

 The BACKFILL scheduler supports:

v The scheduling of multiple tasks per node.

v The scheduling of multiple user space tasks per adapter.

v The preemption of jobs.

v The use of reservations.

These functions are not supported by the default LoadLeveler

scheduler.

Customizing the configuration file

42 TWS LoadLeveler: Using and Administering

For more information about the BACKFILL scheduler, see “Using

the BACKFILL scheduler” on page 101.

API This keyword option allows you to enable an external scheduler,

such as the Extensible Argonne Scheduling sYstem (EASY). The

API option is intended for installations that want to create a

scheduling algorithm for parallel jobs based on site-specific

requirements.

 For more information about external schedulers, see “Using an

external scheduler” on page 105.

Setting negotiator characteristics and policies

You may set the following negotiator characteristics and policies. For information

about configuration file keyword syntax and other details, see Chapter 12,

“Configuration file reference,” on page 243.

v Prioritize the queue maintained by the negotiator

Each job step submitted to LoadLeveler is assigned a system priority number,

based on the evaluation of the SYSPRIO keyword expression in the

configuration file of the central manager. The LoadLeveler system priority

number is assigned when the central manager adds the new job step to the

queue of job steps eligible for dispatch. Once assigned, the system priority

number for a job step is not changed, except under the following circumstances:

– An administrator or user issues the llprio command to change the system

priority of the job step.

– The value set for the NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

keyword is not zero.

– An administrator uses the llmodify command with the -s option to alter the

system priority of a job step.

– A program with administrator credentials uses the ll_modify subroutine to

alter the system priority of a job step.

Job steps assigned higher SYSPRIO numbers are considered for dispatch before

job steps with lower numbers.

For related information, see the following topics:

– “Controlling the central manager scheduling cycle” on page 67.

– “Setting and changing the priority of a job” on page 212.

– “llmodify - Change attributes of a submitted job step” on page 435.

– “ll_modify subroutine” on page 628.
v Prioritize the order of executing machines maintained by the negotiator

Each executing machine is assigned a machine priority number, based on the

evaluation of the MACHPRIO keyword expression in the configuration file of

the central manager. The LoadLeveler machine priority number is updated every

time the central manager updates its machine data. Machines assigned higher

MACHPRIO numbers are considered to run jobs before machines with lower

numbers. For example, a machine with a MACHPRIO of 10 is considered to run

a job before a machine with a MACHPRIO of 5. Similarly, a machine with a

MACHPRIO of -2 would be considered to run a job before a machine with a

MACHPRIO of -3.

Note that the MACHPRIO keyword is valid only on the machine where the

central manager is running. Using this keyword in a local configuration file has

no effect.

When you use a MACHPRIO expression that is based on load average, the

machine may be temporarily ordered later in the list immediately after a job is

scheduled to that machine. This temporary drop in priority happens because the

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 43

negotiator adds a compensating factor to the startd machine’s load average

every time the negotiator assigns a job. For more information, see “the

NEGOTIATOR_LOADAVG_INCREMENT keyword” on page 271.

v Specify additional negotiator policies

This topic lists keywords that were not mentioned in the previous configuration

steps. Unless your installation has special requirements for any of these

keywords, you can use them with their default settings.

– NEGOTIATOR_INTERVAL

– NEGOTIATOR_CYCLE_DELAY

– NEGOTIATOR_CYCLE_TIME_LIMIT

– NEGOTIATOR_LOADAVG_INCREMENT

– NEGOTIATOR_PARALLEL_DEFER

– NEGOTIATOR_PARALLEL_HOLD

– NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

– NEGOTIATOR_REJECT_DEFER

– NEGOTIATOR_REMOVE_COMPLETED

– NEGOTIATOR_RESCAN_QUEUE

Specifying alternate central managers

In one of your machine stanzas specified in the administration file, you specified

that the machine would serve as the central manager. It is possible for some

problem to cause this central manager to become unusable such as network

communication or software or hardware failures. In such cases, the other machines

in the LoadLeveler cluster believe that the central manager machine is no longer

operating. To remedy this situation, you can assign one or more alternate central

managers in the machine stanza to take control.

The following machine stanza example defines the machine deep_blue as an

alternate central manager:

deep_blue: type=machine

central_manager = alt

If the primary central manager fails, the alternate central manager then becomes

the central manager. The alternate central manager is chosen based upon the order

in which its respective machine stanza appears in the administration file.

When an alternate becomes the central manager, jobs will not be lost, but it may

take a few minutes for all of the machines in the cluster to check in with the new

central manager. As a result, job status queries may be incorrect for a short time.

When you define alternate central managers, you should set the following

keywords in the configuration file:

v CENTRAL_MANAGER_HEARTBEAT_INTERVAL

v CENTRAL_MANAGER_TIMEOUT

In the following example, the alternate central manager will wait for 30 intervals,

where each interval is 45 seconds:

Set a 45 second interval

CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 45

Set the number of intervals to wait

CENTRAL_MANAGER_TIMEOUT = 30

Customizing the configuration file

44 TWS LoadLeveler: Using and Administering

For more information on central manager backup, refer to “What happens if the

central manager isn’t operating?” on page 658. For information about configuration

file keyword syntax and other details, see Chapter 12, “Configuration file

reference,” on page 243.

Defining network characteristics

A port number is an integer that specifies the port to use to connect to the

specified daemon. You can define these port numbers in the configuration file or

the /etc/services file or you can accept the defaults. LoadLeveler first looks in the

configuration file for these port numbers. If LoadLeveler does not find the value in

the configuration file, it looks in the /etc/services file. If the value is not found in

this file, the default is used.

See Appendix C, “LoadLeveler port usage,” on page 685 for more information.

Specifying file and directory locations

The configuration file provided with LoadLeveler specifies default locations for all

of the files and directories. You can modify their locations using the keywords

shown in Table 13. Keep in mind that the LoadLeveler installation process installs

files in these directories and these files may be periodically cleaned up. Therefore,

you should not keep any files that do not belong to LoadLeveler in these

directories.

Managing distributed software systems is a primary concern for all system

administrators. Allowing users to share file systems to obtain a single,

network-wide image, is one way to make managing LoadLeveler easier.

 Table 13. Default locations for all of the files and directories

To specify the

location of the: Specify this keyword:

Administration

file

ADMIN_FILE

Local

configuration

file

LOCAL_CONFIG

Local directory The following subdirectories reside in the local directory. It is possible that

the local directory and LoadLeveler’s home directory are the same.

v COMM

v EXECUTE

v LOG

v SPOOL and HISTORY

Tip: To maximize performance, you should keep the log, spool, and

execute directories in a local file system. Also, to measure the performance

of your network, consider using one of the available products, such as

Toolbox/6000.

Release

directory

RELEASEDIR

The following subdirectories are created during installation and they

reside in the release directory. You can change their locations.

v BIN

v LIB

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 45

|
|
|
|
|
|

|

Table 13. Default locations for all of the files and directories (continued)

To specify the

location of the: Specify this keyword:

Core dump

directory

You may specify alternate directories to hold core dumps for the daemons

and starter process:

v MASTER_COREDUMP_DIR

v NEGOTIATOR_COREDUMP_DIR

v SCHEDD_COREDUMP_DIR

v STARTD_COREDUMP_DIR

v GSMONITOR_COREDUMP_DIR

v KBDD_COREDUMP_DIR

v STARTER_COREDUMP_DIR

When specifying core dump directories, be sure that the access

permissions are set so the LoadLeveler daemon or process can write to

the core dump directory. The permissions set for path names specified in

the keywords just mentioned must allow writing by both root and the

LoadLeveler ID. The permissions set for the path name specified for the

STARTER_COREDUMP_DIR keyword must allow writing by root, the

LoadLeveler ID, and any user who can submit LoadLeveler jobs.

The simplest way to be sure the access permissions are set correctly is to

set them the same as are set for the /tmp directory.

If a problem with access permissions prevents a LoadLeveler daemon or

process from writing to a core dump directory, then a message will be

written to the log, and the daemon or process will continue using the

default /tmp directory for core files.

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Configuring recording activity and log files

The LoadLeveler daemons and processes keep log files according to the

specifications in the configuration file. A number of keywords are used to describe

where LoadLeveler maintains the logs and how much information is recorded in

each log. These keywords, shown in Table 14, are repeated in similar form to

specify the pathname of the log file, its maximum length, and the debug flags to

be used.

“Controlling debugging output” on page 47 describes the events that can be

reported through logging controls.

“Saving log files” on page 49 describes the configuration keyword to use to save

logs for problem diagnosis.

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

 Table 14. Log control statements

Daemon/

Process

Log File (required)

(See note 1)

Max Length (required)

(See note 2)

Debug Control (required)

(See note 4)

Master MASTER_LOG =

path

MAX_MASTER_LOG = bytes MASTER_DEBUG = flags

Customizing the configuration file

46 TWS LoadLeveler: Using and Administering

Table 14. Log control statements (continued)

Daemon/

Process

Log File (required)

(See note 1)

Max Length (required)

(See note 2)

Debug Control (required)

(See note 4)

Schedd SCHEDD_LOG =

path

MAX_SCHEDD_LOG = bytes SCHEDD_DEBUG = flags

Startd STARTD_LOG = path MAX_STARTD_LOG = bytes STARTD_DEBUG = flags

Starter STARTER_LOG =

path

MAX_STARTER_LOG = bytes STARTER_DEBUG = flags

Negotiator NEGOTIATOR_LOG

= path

MAX_NEGOTIATOR_LOG = bytes NEGOTIATOR_DEBUG = flags

Kbdd KBDD_LOG = path MAX_KBDD_LOG = bytes KBDD_DEBUG = flags

GSmonitor GSMONITOR_LOG

= path

MAX_GSMONITOR_LOG = bytes GSMONITOR_DEBUG = flags

Notes:

1. When coding the path for the log files, it is not necessary that all LoadLeveler daemons keep their log files in the

same directory, however, you will probably find it a convenient arrangement.

2. There is a maximum length, in bytes, beyond which the various log files cannot grow. Each file is allowed to

grow to the specified length and is then saved to an .old file. The .old files are overwritten each time the log is

saved, thus the maximum space devoted to logging for any one program will be twice the maximum length of its

log file. The default length is 64KB. To obtain records over a longer period of time, that don’t get overwritten, you

can use the SAVELOGS keyword in the local or global configuration files. See “Saving log files” on page 49 for

more information on extended capturing of LoadLeveler logs.

You can also specify that the log file be started anew with every invocation of the daemon by setting the TRUNC

statement to true as follows:

v TRUNC_MASTER_LOG_ON_OPEN = true|false

v TRUNC_STARTD_LOG_ON_OPEN = true|false

v TRUNC_SCHEDD_LOG_ON_OPEN = true|false

v TRUNC_KBDD_LOG_ON_OPEN = true|false

v TRUNC_STARTER_LOG_ON_OPEN = true|false

v TRUNC_NEGOTIATOR_LOG_ON_OPEN = true|false

v TRUNC_GSMONITOR_LOG_ON_OPEN = true|false

3. LoadLeveler creates temporary log files used by the starter daemon. These files are used for synchronization

purposes. When a job starts, a StarterLog.pid file is created. When the job ends, this file is appended to the

StarterLog file.

4. Normally, only those who are installing or debugging LoadLeveler will need to use the debug flags, described in

“Controlling debugging output” The default error logging, obtained by leaving the right side of the debug control

statement null, will be sufficient for most installations.

Controlling debugging output

You can control the level of debugging output logged by LoadLeveler programs.

The following flags are presented here for your information, though they are used

primarily by IBM personnel for debugging purposes:

D_ACCOUNT

Logs accounting information about processes. If used, it may slow down the

network.

D_ACCOUNT_DETAIL

Logs detailed accounting information about processes. If used, it may slow

down the network and increase the size of log files.

D_ADAPTER

Logs messages related to adapters.

D_AFS

Logs information related to AFS credentials.

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 47

|
|
|

D_CKPT

Logs information related to checkpoint and restart

D_DAEMON

Logs information regarding basic daemon set up and operation, including

information on the communication between daemons.

D_DBX

Bypasses certain signal settings to permit debugging of the processes as they

execute in certain critical regions.

D_EXPR

Logs steps in parsing and evaluating control expressions.

D_FAIRSHARE

Displays messages related to fair share scheduling in the daemon logs. In the

global configuration file, D_FAIRSHARE can be added to SCHEDD_DEBUG

and NEGOTIATOR_DEBUG.

D_FULLDEBUG

Logs details about most actions performed by each daemon but doesn’t log

as much activity as setting all the flags.

D_HIERARCHICAL

Used to enable messages relating to problems related to the transmission of

hierarchical messages. A hierarchical message is sent from an originating

node to lower ranked receiving nodes.

D_JOB

Logs job requirements and preferences when making decisions regarding

whether a particular job should run on a particular machine.

D_KERNEL

Activates diagnostics for errors involving the process tracking kernel

extension.

D_LOAD

Displays the load average on the startd machine.

D_LOCKING

Logs requests to acquire and release locks.

D_LXCPUAFNT

Logs messages related to Linux CPU affinity. This flag is only valid for the

startd daemon.

D_MACHINE

Logs machine control functions and variables when making decisions

regarding starting, suspending, resuming, and aborting remote jobs.

D_MUSTER

Logs information related to multicluster processing.

D_NEGOTIATE

Displays the process of looking for a job to run in the negotiator. It only

pertains to this daemon.

D_PCRED

Directs that extra debug should be written to a file if the setpcred() function

call fails.

D_PROC

Logs information about jobs being started remotely such as the number of

bytes fetched and stored for each job.

D_QUEUE

Logs changes to the job queue.

D_REFCOUNT

Logs activity associated with reference counting of internal LoadLeveler

objects.

Customizing the configuration file

48 TWS LoadLeveler: Using and Administering

D_RESERVATION

Logs reservation information in the negotiator and Schedd daemon logs.

D_RESERVATION can be added to SCHEDD_DEBUG and

NEGOTIATOR_DEBUG.

D_RESOURCE

Logs messages about the management and consumption of resources. These

messages are recorded in the negotiator log.

D_SCHEDD

Displays how the Schedd works internally.

D_SDO

Displays messages detailing LoadLeveler objects being transmitted between

daemons and commands.

D_SECURITY

Logs information related to Cluster Security (CtSec) services identities.

D_STANZAS

Displays internal information about the parsing of the administration file.

D_STARTD

Displays how the startd works internally.

D_STARTER

Displays how the starter works internally.

D_STREAM

Displays messages detailing socket I/O.

D_SWITCH

Logs entries related to switch activity and LoadLeveler Switch Table Object

data.

D_THREAD

Displays the ID of the thread producing the log message. The thread ID is

displayed immediately following the date and time. This flag is useful for

debugging threaded daemons.

D_XDR

Logs information regarding External Data Representation (XDR)

communication protocols.

 For example:

SCHEDD_DEBUG = D_CKPT D_XDR

Causes the scheduler to log information about checkpointing user jobs and

exchange xdr messages with other LoadLeveler daemons. These flags will

primarily be of interest to LoadLeveler implementers and debuggers.

The LL_COMMAND_DEBUG environment variable can be set to a string of

debug flags the same way as the *_DEBUG configuration keywords are set.

Normally, LoadLeveler commands and APIs do not print debug messages, but

with this environment variable set, the requested classes of debugging messages

will be logged to stderr. For example:

LL_COMMAND_DEBUG="D_ALWAYS D_STREAM" llstatus

will cause the llstatus command to print out debug messages related to I/O to

stderr.

Saving log files

By default, LoadLeveler stores only the two most recent iterations of a daemon’s

log file (<daemon name>Log, and <daemon name>Log.old). Occasionally, for problem

diagnosing, users will need to capture LoadLeveler logs over an extended period.

Users can specify that all log files be saved to a particular directory by using the

SAVELOGS keyword in a local or global configuration file. Be aware that

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 49

|
|
|

|
|
|

|
|
|
|
|

|

|
|

LoadLeveler does not provide any way to manage and clean out all of those log

files, so users must be sure to specify a directory in a file system with enough

space to accommodate them. This file system should be separate from the one used

for the LoadLeveler log, spool, and execute directories.

Each log file is represented by the name of the daemon that generated it, the exact

time the file was generated, and the name of the machine on which the daemon is

running. When you list the contents of the SAVELOGS directory, the list of log file

names looks like this:

NegotiatorLogNov02.16:10:39.123456.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:42.987654.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:46.564123.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:48.234345.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:51.123456.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:53.566987.c163n10.ppd.pok.ibm.com

StarterLogNov02.16:09:19.622387.c163n10.ppd.pok.ibm.com

StarterLogNov02.16:09:51.499823.c163n10.ppd.pok.ibm.com

StarterLogNov02.16:10:30.876546.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:09:05.543677.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:09:26.688901.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:09:47.443556.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:10:12.712680.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:10:37.342156.c163n10.ppd.pok.ibm.com

StartLogNov02.16:09:05.697753.c163n10.ppd.pok.ibm.com

StartLogNov02.16:09:26.881234.c163n10.ppd.pok.ibm.com

StartLogNov02.16:09:47.231234.c163n10.ppd.pok.ibm.com

StartLogNov02.16:10:12.125556.c163n10.ppd.pok.ibm.com

StartLogNov02.16:10:37.961486.c163n10.ppd.pok.ibm.com

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Setting up file system monitoring

You can use the file system keywords to monitor the file system space or inodes

used by LoadLeveler for:

v Logs

v Saving executables

v Spool information

v History files

You can also use the file system keywords to take preventive action and avoid

problems caused by running out of file system space or inodes. This is done by

setting the frequency that LoadLeveler checks the file system free space or inodes

and by setting the upper and lower thresholds that initialize system responses to

the free space or inodes available. By setting a realistic span between the lower and

upper thresholds, you will avoid excessive system actions.

The file system monitoring keywords are:

v FS_INTERVAL

v FS_NOTIFY

v FS_SUSPEND

v FS_TERMINATE

v INODE_NOTIFY

v INODE_SUSPEND

v INODE_TERMINATE

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Customizing the configuration file

50 TWS LoadLeveler: Using and Administering

Defining LoadLeveler machine characteristics

You can use the following keywords to define the characteristics of machines in the

LoadLeveler cluster. For information about configuration file keyword syntax and

other details, see Chapter 12, “Configuration file reference,” on page 243.

v ARCH

v CLASS

v CUSTOM_METRIC

v CUSTOM_METRIC_COMMAND

v FEATURE

v GSMONITOR_RUNS_HERE

v MAX_STARTERS

v SCHEDD_RUNS_HERE

v SCHEDD_SUBMIT_AFFINITY

v STARTD_RUNS_HERE

v START_DAEMONS

v VM_IMAGE_ALGORITHM

v X_RUNS_HERE

Defining job classes that a LoadLeveler machine will accept

The following examples illustrate possible ways of defining job classes.

v Example 1

This example specifies multiple classes:

Class = No_Class(2)

or

Class = { "No_Class" "No_Class" }

The machine will only run jobs that have either defaulted to or explicitly

requested class No_Class. A maximum of two LoadLeveler jobs are permitted to

run simultaneously on the machine if the MAX_STARTERS keyword is not

specified. See “Specifying how many jobs a machine can run” on page 52 for

more information on MAX_STARTERS.

v Example 2

This example specifies multiple classes:

Class = No_Class(1) Small(1) Medium(1) Large(1)

or

Class = { "No_Class" "Small" "Medium" "Large" }

The machine will only run a maximum of four LoadLeveler jobs that have either

defaulted to, or explicitly requested No_Class, Small, Medium, or Large class. A

LoadLeveler job with class IO_bound, for example, would not be eligible to run

here.

v Example 3

This example specifies multiple classes:

Class = B(2) D(1)

or

Class = { "B" "B" "D" }

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 51

The machine will run only LoadLeveler jobs that have explicitly requested class

B or D. Up to three LoadLeveler jobs may run simultaneously: two of class B

and one of class D. A LoadLeveler job with class No_Class, for example, would

not be eligible to run here.

Specifying how many jobs a machine can run

To specify how many jobs a machine can run, you need to take into consideration

both the MAX_STARTERS keyword and the Class statement, which described in

more detail in “Defining LoadLeveler machine characteristics” on page 51.

For example, if the configuration file contains these statements:

Class = A(1) B(2) C(1)

MAX_STARTERS = 2

then the machine can run a maximum of two LoadLeveler jobs simultaneously. The

possible combinations of LoadLeveler jobs are:

v A and B

v A and C

v B and B

v B and C

v Only A, or only B, or only C

If this keyword is specified together with a Class statement, the maximum number

of jobs that can be run is equal to the lower of the two numbers. For example, if:

MAX_STARTERS = 2

Class = class_a(1)

then the maximum number of job steps that can be run is one (the Class statement

defines one class).

If you specify MAX_STARTERS keyword without specifying a Class statement, by

default one class still exists (called No_Class). Therefore, the maximum number of

jobs that can be run when you do not specify a Class statement is one.

Note: If the MAX_STARTERS keyword is not defined in either the global

configuration file or the local configuration file, the maximum number of

jobs that the machine can run is equal to the number of classes in the Class

statement.

Defining security mechanisms

LoadLeveler can be configured to control authentication and authorization of

LoadLeveler functions by using Cluster Security (CtSec) services, a subcomponent

of Reliable Scalable Cluster Technology (RSCT), which uses the host-based

authentication (HBA) as an underlying security mechanism.

LoadLeveler permits only one security service to be configured at a time. You can

skip this topic if you do not plan to use this security feature or if you plan to use

the credential forwarding provided by the llgetdce and llsetdce program pair.

Refer to “Using the alternative program pair: llgetdce and llsetdce” on page 68 for

more information.

LoadLeveler for Linux does not support CtSec security.

Customizing the configuration file

52 TWS LoadLeveler: Using and Administering

LoadLeveler can be enabled to interact with OpenSSL for secure multicluster

communications

Table 15 lists the topics that explain LoadLeveler daemons and how you may

define their characteristics and modify their behavior.

 Table 15. Roadmap of configuration tasks for securing LoadLeveler operations

To learn about: Read the following:

Securing LoadLeveler

operations using cluster

security services

v “Configuring LoadLeveler to use cluster security

services”

v “Steps for enabling CtSec services” on page 54

v “Limiting which security mechanisms LoadLeveler can

use” on page 56

Enabling LoadLeveler to secure

multicluster communication

with OpenSSL

“Steps for securing communications within a LoadLeveler

multicluster” on page 143

Correctly specifying

configuration file keywords

Chapter 12, “Configuration file reference,” on page 243

Configuring LoadLeveler to use cluster security services

Cluster security (CtSec) services allows a software component to authenticate and

authorize the identity of one of its peers or clients.

When configured to use CtSec services, LoadLeveler will:

v Authenticate the identity of users and programs interacting with LoadLeveler.

v Authorize users and programs to use LoadLeveler services. It prevents

unauthorized users and programs from misusing resources or disrupting

services.

To use CtSec services, all nodes running LoadLeveler must first be configured as

part of a cluster running Reliable Scalable Cluster Technology (RSCT). For details

on CtSec services administration, see IBM Reliable Scalable Cluster Technology for AIX

5L and Linux Administration Guide, SA22-7889.

CtSec services are designed to use multiple security mechanisms and each security

mechanism must be configured for LoadLeveler. At the present time, directions are

provided only for configuring the host-based authentication (HBA) security

mechanism for LoadLeveler’s use. If CtSec is configured to use additional security

mechanisms that are not configured for LoadLeveler’s use, then the LoadLeveler

configuration file keyword SEC_IMPOSED_MECHS must be specified. This

keyword is used to limit the security mechanisms that will be used by CtSec

services to only those that are configured for use by LoadLeveler.

Authorization is based on user identity. When CtSec services are enabled for

LoadLeveler, user identity will differ depending on the authentication mechanism

in use. A user’s identity in UNIX host-based authentication is the user’s network

identity which is comprised of the user name and host name, such as

user_name@host.

LoadLeveler uses CtSec services to authorize owners of jobs, administrators and

LoadLeveler daemons to perform certain actions. CtSec services uses its own

identity mapping file to map the clients’ network identity to a local identity when

performing authorizations. A typical local identity is the user name without a

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 53

hostname. The local identities of the LoadLeveler administrators must be added as

members of the group specified by the keyword SEC_ADMIN_GROUP. The local

identity of the LoadLeveler user name must be added as the sole member of the

group specified by the keyword SEC_SERVICES_GROUP. The LoadLeveler

Services and Administrative groups, those identified by the keywords

SEC_SERVICES_GROUP and SEC_ADMIN_GROUP, must be the same across all

nodes in the LoadLeveler cluster. To ensure consistency in performing tasks which

require owner, administrative or daemon privileges across all nodes in the

LoadLeveler cluster, user network identities must be mapped identically across all

nodes in the LoadLeveler cluster. If this is not the case, LoadLeveler authorizations

may fail.

Steps for enabling CtSec services

To enable LoadLeveler to use CtSec services, perform the following steps:

1. Include, in the Trusted Host List, the host names of all hosts with which

communications may take place. If LoadLeveler tries to communicate with a

host not on the Trusted Host List the message: The host identified in the

credentials is not a trusted host on this system will occur. Additionally, the

system administrator should ensure that public keys are manually exchanged

between all hosts in the LoadLeveler cluster. Refer to IBM Reliable Scalable

Cluster Technology for AIX 5L and Linux Administration Guide, SA22-7889 for

information on setting up Trusted Host Lists and manually transferring public

keys.

2. Create user IDs. Each LoadLeveler administrator and the LoadLeveler user ID

need to be created, if they don’t already exist. You can do this through SMIT or

the mkuser command.

3. The unix.map file must contain the correct value for the service name ctloadl

which specifies the LoadLeveler user name. If you have configured

LoadLeveler to use loadl as the LoadLeveler user name, either by default or by

specifying loadl in the LoadLUserid keyword of the /etc/LoadL.cfg file, nothing

needs to be done. The default map file will contain the ctloadl service name

already assigned to loadl. If you have configured a different user name in the

LoadLUserid keyword of the /etc/LoadL.cfg file, you will need to make sure

that the /var/ct/cfg/unix.map file exists and that it assigns the same user name

to the ctloadl service name. If the /var/ct/cfg/unix.map file does not exist, create

one by copying the default map file /usr/sbin/rsct/cfg/unix.map. Do not modify

the default map file.

If the value of the LoadLUserid and the value associated with ctloadl are not

the same a security services error which indicates a UNIX identity mismatch

will occur.

4. To map network identities to local identities, add entries to the global mapping

file of each machine in the LoadLeveler cluster. This file is located at:

/var/ct/cfg/ctsec_map.global. If this file doesn’t yet exist, you should copy the

default global mapping file to this location—don’t modify the default mapping

file. The default global mapping file, which is shared among all CtSec services

exploiters, is located at /usr/sbin/rsct/cfg/ctsec_map.global. See IBM Reliable

Scalable Cluster Technology for AIX 5L: Technical Reference, SA22-78900 for more

information on the mapping file.

When adding names to the global mapping file, enter more specific entries

ahead of the other, less specific entries. Remember that you must update the

global mapping file on each machine in the LoadLeveler cluster, and each

mapping file has to be updated with the security services identity of each

member of the administrator group, the services group, and the users.

Therefore, you would have entries like this:

Customizing the configuration file

54 TWS LoadLeveler: Using and Administering

unix:brad@mach1.pok.ibm.com=bradleyf

unix:brad@mach2.pok.ibm.com=bradleyf

unix:brad@mach3.pok.ibm.com=bradleyf

unix:marsha@mach2.pok.ibm.com=marshab

unix:marsha@mach3.pok.ibm.com=marshab

unix:loadl@mach1.pok.ibm.com=loadl

unix:loadl@mach2.pok.ibm.com=loadl

unix:loadl@mach3.pok.ibm.com=loadl

However, if you’re sure your LoadLeveler cluster is secure, you could specify

mapping for all machines this way:

unix:brad@*=bradleyf

unix:marsha@*=marshab

unix:loadl@*=loadl

This indicates that the UNIX network identity of the users brad, marsha and

loadl will map to their respective security services identities on every machine

in the cluster. Refer to IBM Reliable Scalable Cluster Technology for AIX 5L: RSCT

Technical Reference, SA22-7800 for a description of the syntax used in the

ctsec_map.global file.

5. Create UNIX groups. The LoadLeveler administrator group and services group

need to be created for every machine in the cluster and should contain the local

identities of members. This can be done either by using SMIT or the mkgroup

command.

For example, to create the group lladmin which lists the LoadLeveler

administrators:

mkgroup "users=sam,betty,loadl" lladmin

These groups must be created on each machine in the LoadLeveler cluster and

must contain the same entries.

To create the group llsvcs which lists the identity under which LoadLeveler

daemons run using the default id of loadl:

mkgroup users=loadl llsvcs

These groups must be created on each machine in the LoadLeveler cluster and

must contain the same entries.

6. Add or update these keywords in the LoadLeveler configuration file:

SEC_ENABLEMENT=CTSEC

SEC_ADMIN_GROUP=name of lladmin group

SEC_SERVICES_GROUP=group name that contains identities of LoadLeveler daemons

The SEC_ENABLEMENT=CTSEC keyword indicates that CtSec services

mechanism should be used. SEC_ADMIN_GROUP points to the name of the

UNIX group which contains the local identities of the LoadLeveler

administrators. The SEC_SERVICES_GROUP keyword points to the name of

the UNIX group which contains the local identity of the LoadLeveler daemons.

All LoadLeveler daemons run as the LoadLeveler user ID. Refer to step 5 for

discussion of the administrators and services groups.

7. Update the .rhosts file in each user’s home directory. This file is used to

identify which UNIX identities can run LoadLeveler jobs on the local host

machine. If the file does not exist in a user’s home directory, you must create it.

The .rhosts file must contain entries which specify all host and user

combinations allowed to submit jobs which will run as the local user, either

explicitly or through the use of wildcards.

Entries in the .rhosts file are specified this way:

HostNameField [UserNameField]

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 55

Refer to IBM AIX Files Reference, SC23-4168 for further details about the .rhosts

file format.

Tips for configuring LoadLeveler to use CtSec services: When using CtSec

services for LoadLeveler, each machine in the LoadLeveler cluster must be set up

properly. CtSec authenticates network identities based on trust established between

individual machines in a cluster, based on local host configurations. Because of this

it is possible for most of the cluster to run correctly but to have transactions from

certain machines experience authentication or authorization problems.

If unexpected authentication or authorization problems occur in a LoadLeveler

cluster with CtSec enabled, check that the steps in “Steps for enabling CtSec

services” on page 54 were correctly followed for each machine in the LoadLeveler

cluster.

If any machine in a LoadLeveler cluster is improperly configured to run CtSec you

may see that:

v Users cannot perform user tasks (such as cancel) for jobs they submitted.

Either the machine the job was submitted from or the machine the user

operation was submitted from (or both) do not contain mapping files for the

user that specify the same security services identity. The user should attempt the

operation from the same machine the job was submitted from and record the

results. If the user still cannot perform a user task on a job they submitted, then

they should contact the LoadLeveler administrator who should review the steps

in “Steps for enabling CtSec services” on page 54.

v LoadLeveler daemons fail to communicate.

When LoadLeveler daemons communicate they must first authenticate each

other. If the daemons cannot authenticate a message will be put in the daemon

log indicating an authentication failure. Ensure the Trusted Hosts List on all

LoadLeveler nodes contains the correct entries for all of the nodes in the

LoadLeveler cluster. Also, make sure that the LoadLeveler Services group on all

nodes of the LoadLeveler cluster contains the local identity for the LoadLeveler

user name. The ctsec_map.global must contain mapping rules to map the

LoadLeveler user name from every machine in the LoadLeveler cluster to the

local identity for the LoadLeveler user name. An example of what may happen

when daemons fail to communicate is that an Alternate Central Manager may

take over while the Primary Central Manager is still active. This can occur when

the Alternate Central Manager does not trust the Primary Central Manager.

Limiting which security mechanisms LoadLeveler can use

As more security mechanisms become available, they must be configured for

LoadLeveler’s use. If there are security mechanisms configured for CtSec that are

not configured for LoadLeveler’s use, then the LoadLeveler configuration file

keyword SEC_IMPOSED_MECHS must specify the mechanisms configured for

LoadLeveler.

Defining usage policies for consumable resources

The LoadLeveler scheduler can schedule jobs based on the availability of

consumable resources. You can use the following keywords to configure

consumable resources:

v ENFORCE_RESOURCE_MEMORY

v ENFORCE_RESOURCE_POLICY

v ENFORCE_RESOURCE_SUBMISSION

v ENFORCE_RESOURCE_USAGE

Customizing the configuration file

56 TWS LoadLeveler: Using and Administering

v FLOATING_RESOURCES

v RESOURCES

v SCHEDULE_BY_RESOURCES

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Enabling support for bulk data transfer and rCxt blocks

On AIX systems with device drivers and network adapters that support remote

direct-memory access (RDMA), LoadLeveler supports bulk data transfer for jobs

that use either the Internet or User Space communication protocol mode. For jobs

using the Internet protocol (IP jobs), LoadLeveler does not monitor or control the

use of bulk transfer. For User Space jobs that request bulk transfer, however,

LoadLeveler creates a consumable RDMA resource, and limits RDMA resources to

only four for a single machine.

You do not need to perform specific configuration or job-definition tasks to enable

bulk transfer for LoadLeveler jobs that use the IP network protocol. LoadLeveler

cannot affect whether IP communication uses bulk transfer; the implementation of

IP where the job runs determines whether bulk transfer is supported.

To enable User Space jobs to use bulk data transfer, however, you must update the

LoadLeveler configuration file to include the value RDMA in the

SCHEDULE_BY_RESOURCES list.

Example:

 SCHEDULE_BY_RESOURCES = RDMA others

For additional information about using bulk data transfer and job-definition

requirements, see “Using bulk data transfer” on page 173.

Gathering job accounting data

Your organization may have a policy of charging users or groups of users for the

amount of resources that their jobs consume. You can do this using LoadLeveler’s

accounting feature. Using this feature, you can produce accounting reports that

contain job resource information for completed serial and parallel jobs. You can

also view job resource information on jobs that are continuing to run.

The following keywords allow you to control accounting functions:

v ACCT

v ACCT_VALIDATION

v GLOBAL_HISTORY

v HISTORY_PERMISSION

v JOB_ACCT_Q_POLICY

v JOB_LIMIT_POLICY

For example, the following section of the configuration file specifies that the

accounting function is turned on. It also identifies the default module used to

perform account validation and the directory containing the global history files:

ACCT = A_ON A_VALIDATE

ACCT_VALIDATION = $(BIN)/llacctval

GLOBAL_HISTORY = $(SPOOL)

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 57

Table 16 lists the topics related to configuring, gathering and using job accounting

data.

 Table 16. Roadmap of tasks for gathering job accounting data

To learn about: Read the following:

Configuring LoadLeveler to

gather job accounting data

v “Collecting job resource data on serial and parallel jobs”

v “Collecting job resource data based on machines”

v “Collecting job resource data based on events” on page 59

v “Collecting job resource information based on user

accounts” on page 59

v “Collecting accounting data for reservations” on page 126

v “Collecting the accounting information and storing it into

files” on page 60

v “64-bit support for accounting functions” on page 61

v “Example: Setting up job accounting files” on page 61

Managing accounting data v “Producing accounting reports” on page 60

v “Correlating AIX and LoadLeveler accounting records” on

page 61

v “llacctmrg - Collect machine history files” on page 387

v “llsummary - Return job resource information for

accounting” on page 496

Correctly specifying

configuration file keywords

Chapter 12, “Configuration file reference,” on page 243

Collecting job resource data on serial and parallel jobs

Information on completed serial and parallel jobs is gathered using the UNIX wait3

system call. Information on non-completed serial and parallel jobs is gathered in a

platform-dependent manner by examining data from the UNIX process.

Accounting information on a completed serial job is determined by accumulating

resources consumed by that job on the machines that ran the job. Similarly,

accounting information on completed parallel jobs is gathered by accumulating

resources used on all of the nodes that ran the job.

You can also view resource consumption information on serial and parallel jobs

that are still running by specifying the -x option of the llq command. To enable llq

-x, specify the following keywords in the configuration file:

v ACCT = A_ON A_DETAIL

v JOB_ACCT_Q_POLICY = number

Collecting job resource data based on machines

LoadLeveler can collect job resource usage information for every machine on

which a job may run. A job may run on more than one machine because it is a

parallel job or because the job is vacated from one machine and rescheduled to

another machine.

To enable recording of resources by machine, you need to specify ACCT = A_ON

A_DETAIL in the configuration file.

The machine’s speed is part of the data collected. With this information, an

installation can develop a charge back program which can charge more or less for

Customizing the configuration file

58 TWS LoadLeveler: Using and Administering

resources consumed by a job on different machines. For more information on a

machine’s speed, refer to the machine stanza information. See “Defining machines”

on page 78.

Collecting job resource data based on events

In addition to collecting job resource information based upon machines used, you

can gather this information based upon an event or time that you specify. For

example, you may want to collect accounting information at the end of every work

shift or at the end of every week or month. To collect accounting information on

all machines in this manner, use the llctl command with the capture parameter:

llctl -g capture eventname

eventname is any string of continuous characters (no white space is allowed) that

defines the event about which you are collecting accounting data. For example, if

you were collecting accounting data on the graveyard work shift, your command

could be:

llctl -g capture graveyard

This command allows you to obtain a snapshot of the resources consumed by

active jobs up to and including the moment when you issued the command. If you

want to capture this type of information on a regular basis, you can set up a

crontab entry to invoke this command regularly. For example:

sample crontab for accounting

shift crontab 94/8/5

Set up three shifts, first, second, and graveyard shift.

Crontab entries indicate the end of shift.

#M H d m day command

00 08 * * * /u/loadl/bin/llctl -g capture graveyard

00 16 * * * /u/loadl/bin/llctl -g capture first

00 00 * * * /u/loadl/bin/llctl -g capture second

For more information on the llctl command, refer to “llctl - Control LoadLeveler

daemons” on page 409. For more information on the collection of accounting

records, see “llq - Query job status” on page 449.

Collecting job resource information based on user accounts

If your installation is interested in keeping track of resources used on an account

basis, you can require all users to specify an account number in their job command

files. They can specify this account number with the account_no keyword which is

explained in detail in “Job command file keyword descriptions” on page 336.

Interactive POE jobs can specify an account number using the

LOADL_ACCOUNT_NO environment variable.

LoadLeveler validates this account number by comparing it against a list of

account numbers specified for the user in the user stanza in the administration file.

Account validation is under the control of the ACCT keyword in the configuration

file. The routine that performs the validation is called llacctval. You can supply

your own validation routine by specifying the ACCT_VALIDATION keyword in

the configuration file. The following are passed as character string arguments to

the validation routine:

v User name

v User’s login group name

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 59

v Account number specified on the Job

v Blank separated list of account numbers obtained from the user’s stanza in the

administration file.

The account validation routine must exit with a return code of zero if the

validation succeeds. If it fails, the return code is a nonzero number.

Collecting the accounting information and storing it into files

LoadLeveler stores the accounting information that it collects in a file called history

in the spool directory of the machine that initially scheduled this job, the Schedd

machine. Data on parallel jobs are also stored in the history files.

Resource information collected on the LoadLeveler job is constrained by the

capabilities of the wait3 system call. Information for processes which fork child

processes will include data for those child processes as long as the parent process

waits for the child process to terminate. Complete data may not be collected for

jobs which are not composed of simple parent/child processes. For example, if you

have a LoadLeveler job which invokes an rsh command to execute a function on

another machine, the resources consumed on the other machine will not be

collected as part of the LoadLeveler accounting data.

LoadLeveler accounting uses the following types of files:

v The local history file which is local to each Schedd machine is where job

resource information is first recorded. These files are usually named history and

are located in the spool directory of each Schedd machine, but you may specify

an alternate name with the HISTORY keyword in either the global or local

configuration file.

v The global history file is a combination of the history files from some or all of

the machines in the LoadLeveler cluster merged together. The command

llacctmrg is used to collect files together into a global file. As the files are

collected from each machine, the local history file for that machine is reset to

contain no data. The file is named globalhist.YYYYMMDDHHmm. You may

specify the directory in which to place the file when you invoke the llacctmrg

command or you can specify the directory with the GLOBAL_HISTORY

keyword in the configuration file. The default value set up in the sample

configuration file is the local spool directory.

Producing accounting reports

You can produce three types of reports using either the local or global history file.

These reports are called the short, long, and extended versions. As their names

imply, the short version of the report is a brief listing of the resources used by

LoadLeveler jobs. The long version provides more comprehensive detail with

summarized resource usage, and the extended version of the report provides the

comprehensive detail with detailed resource usage.

If you do not specify a report type, you will receive the default short version. The

short report displays the number of jobs along with the total CPU usage according

to user, class, group, and account number. The extended version of the report

displays all of the data collected for every job.

v For examples of the short and extended versions of the report, see “llsummary -

Return job resource information for accounting” on page 496.

v For information on the accounting APIs, refer to Chapter 17, “Application

programming interfaces (APIs),” on page 503.

Customizing the configuration file

60 TWS LoadLeveler: Using and Administering

Correlating AIX and LoadLeveler accounting records

For jobs running on AIX systems, you can use a job accounting key to correlate

AIX accounting records with LoadLeveler accounting records. The job accounting

key uniquely identifies each job step. LoadLeveler derives this key from the job

key and the date and time at which the job entered the queue (see the QDate

variable description). The key is associated with the starter process for the job step

and any of its child processes.

For checkpointed jobs, LoadLeveler does not change the job accounting key,

regardless of how it restarts the job step. Jobs restarted from a checkpoint file or

through a new job step retain the job accounting key for the original job step.

To access the job accounting key for a job step, you can use the following

interfaces:

v The llsummary command, requesting the long version of the report. For details

about using this command, see “llsummary - Return job resource information for

accounting” on page 496.

v The GetHistory subroutine. For details about using this subroutine, see

“GetHistory subroutine” on page 507.

v The ll_get_data subroutine, through the LL_StepAcctKey specification. For

details about using this subroutine, see “ll_get_data subroutine” on page 532.

For information about AIX accounting records, see the system accounting topic in

AIX 5L System Management Guide: Operating System and Devices.

64-bit support for accounting functions

LoadLeveler 64-bit support for accounting functions includes:

v Statistics of jobs such as usage, limits, consumable resources, and other 64-bit

integer data are preserved in the history file as rusage64, rlimit64 structures and

as data items of type int64_t.

v The LL_job_step structure defined in llapi.h allows access to the 64-bit data

items either as data of type int64_t or as data of type int32_t. In the latter case,

the returned values may be truncated.

v The llsummary command displays 64-bit information where appropriate.

v The data access API supports both 64-bit and 32-bit access to accounting and

usage information in a history file. See “Examples of using the data access API”

on page 584 for an example of how to use the ll_get_data subroutine to access

information stored in a LoadLeveler history file.

Example: Setting up job accounting files

The sample procedure shown in Table 17 walks you through the process of

collecting account data. You can perform all of the steps or just the ones that apply

to your situation.

1. Edit the configuration file according to the following table:

 Table 17. Collecting account data - modifying the configuration file

Edit this keyword: To:

ACCT Turn accounting and account validation on and off and specify

detailed accounting.

ACCT_VALIDATION Specify the account validation routine.

GLOBAL_HISTORY Specify a directory in which to place the global history files.

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 61

2. Specify account numbers and set up account validation by performing the

following steps:

a. Specify a list of account numbers a user may use when submitting jobs, by

using the account keyword in the user stanza in the administration file.

b. Instruct users to associate an account number with their job, by using the

account_no keyword in the job command file.

Alternative: You may use the LoadLeveler GUI to associate account

numbers with jobs:

Select File → Build a Job from the main window.

 � The Build a Job window appears.

Type The account number in the account_no field on the Build a Job

window.

Press OK

 � The window closes and you return to the main window.
c. Specify the ACCT_VALIDATION keyword in the configuration file that

identifies the module that will be called to perform account validation. The

default module is called llacctval. You can replace this module with your

installation’s own accounting routine by specifying a new module with this

keyword.
3. Specify machines and their weights by using the speed keyword in a machine’s

machine stanza in the administration file.

Also, if you have in your cluster machines of differing speeds and you want

LoadLeveler accounting information to be normalized for these differences,

specify cpu_speed_scale=true in each machine’s respective machine stanza.

For example, suppose you have a cluster of two machines, called A and B,

where Machine B is three times as fast as Machine A. Machine A has

speed=1.0, and Machine B has speed=3.0. Suppose a job runs for 12 CPU

seconds on Machine A. The same job runs for 4 CPU seconds on Machine B.

When you specify cpu_speed_scale=true, the accounting information collected

on Machine B for that job shows the normalized value of 12 CPU seconds

rather than the actual 4 CPU seconds.

4. Merge multiple files collected from each machine into one file, using the

llacctmrg command.

Alternative: You may use the LoadLeveler GUI to merge the files:

Select A machine from the Machines window

Select Admin → Collect Account Data... from the Machines window.

 � A window appears prompting you to enter a directory name where

the file will be placed. If no directory is specified, the directory

specified with the GLOBAL_HISTORY keyword in the global

configuration file is the default directory.

Press OK

 � The window closes and you return to the main window.
5. Report job information on all the jobs in the history file, using the llsummary

command.

Alternative: You may use the LoadLeveler GUI to report job information:

Select Admin → Create Account Report... from the Machines window.

Customizing the configuration file

62 TWS LoadLeveler: Using and Administering

Note: If you want to receive an extended accounting report, select the

extended cascading button.

 � A window appears prompting you to enter the following information:

v A short, long, or extended version of the output. The short version is

the default version.

v Start and end date ranges for the report. If no date is specified, the

default is to report all of the data in the report.

v The name of the input data file.

v The name of the output data file.

Press OK

 � The window closes and you return to the main window. The report

appears in the Messages window if no output data file was specified.

Managing job status through control expressions

You can control running jobs by using five control functions as Boolean expressions

in the configuration file. These functions are useful primarily for serial jobs. You

define the expressions, using normal C conventions, with the following functions:

v START

v SUSPEND

v CONTINUE

v VACATE

v KILL

The expressions are evaluated for each job running on a machine using both the

job and machine attributes. Some jobs running on a machine may be suspended

while others are allowed to continue.

The START expression is evaluated twice; once to see if the machine can accept

jobs to run and second to see if the specific job can be run on the machine. The

other expressions are evaluated after the jobs have been dispatched and in some

cases, already running.

When evaluating the START expression to determine if the machine can accept

jobs, Class != "Z" evaluates to true only if Z is not in the class definition. This

means that if two different classes are defined on a machine, Class != "Z" (where Z

is one of the defined classes) always evaluates to false when specified in the

START expression and, therefore, the machine will not be considered to start jobs.

Typically, machine load average, keyboard activity, time intervals, and job class are

used within these various expressions to dynamically control job execution.

For additional information about:

v Time-related variables that you may use for this keyword, see “Variables to use

for setting times” on page 299.

v Coding these control expressions in the configuration file, see Chapter 12,

“Configuration file reference,” on page 243.

How control expressions affect jobs

After LoadLeveler selects a job for execution, the job can be in any of several

states. Figure 10 on page 64 shows how the control expressions can affect the state

a job is in. The rectangles represent job or daemon states (Idle, Completed,

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 63

Running, Suspended, and Vacating) and the diamonds represent the control

expressions (Start, Suspend, Continue, Vacate, and Kill).

Criteria used to determine when a LoadLeveler job will enter Start, Suspend,

Continue, Vacate, and Kill states are defined in the LoadLeveler configuration files

and they can be different for each machine in the cluster. They can be modified to

meet local requirements.

Tracking job processes

When a job terminates, its orphaned processes may continue to consume or hold

resources, thereby degrading system performance, or causing jobs to hang or fail.

Process tracking allows LoadLeveler to cancel any processes (throughout the entire

cluster), left behind when a job terminates. Process tracking is required to do

preemption by the suspend method when running either the BACKFILL or API

schedulers. Process tracking is optional in all other cases.

Idle

False

False

False

False

False

True

True

True

True

True

Suspended

Completed

Vacating

Start

Suspend

Continue

Vacate

Kill

Running

Figure 10. How control expressions affect jobs

Customizing the configuration file

64 TWS LoadLeveler: Using and Administering

When process tracking is enabled, all child processes are terminated when the

main process terminates. This will include any background or orphaned processes

started in the prolog, epilog, user prolog, and user epilog.

LoadLeveler for Linux does not support process tracking.

There are two keywords used in specifying process tracking:

PROCESS_TRACKING

To activate process tracking, set PROCESS_TRACKING=TRUE in the

LoadLeveler global configuration file. By default, PROCESS_TRACKING is

set to FALSE.

PROCESS_TRACKING_EXTENSION

This keyword specifies the path to the kernel extension binary LoadL_pt_ke in

the local or global configuration file. If the

PROCESS_TRACKING_EXTENSION keyword is not supplied, then

LoadLeveler will search the default directory $HOME/bin.

The process tracking kernel extension is not unloaded when the startd daemon

terminates. Therefore if a mismatch in the version of the loaded kernel extension

and the installed kernel extension is found when the startd starts up the daemon

will exit. In this case a reboot of the node is needed to unload the currently loaded

kernel extension. If you install a new version of LoadLeveler which contains a new

version of the kernel extension you may need to reboot the node.

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Querying multiple LoadLeveler clusters

This topic applies only to those installations having more than one LoadLeveler

cluster, where the separate clusters have not been organized into a multicluster

environment. To organize separate LoadLeveler clusters into a multicluster

environment, see “LoadLeveler multicluster support” on page 139.

You can query, submit, or cancel jobs in multiple LoadLeveler clusters by setting

up a master configuration file for each cluster and using the LOADL_CONFIG

environment variable to specify the name of the master configuration file that the

LoadLeveler commands must use. The master configuration file must be located in

the /etc directory and the file name must have a format of base_name.cfg where

base_name is a user defined identifier for the cluster.

The default name for the master configuration file is /etc/LoadL.cfg. The format for

the LOADL_CONFIG environment variable is LOADL_CONFIG=/etc/
base_name.cfg or LOADL_CONFIG=base_name. When you use the form

LOADL_CONFIG=base_name, the prefix /etc and suffix .cfg are appended to the

base_name.

The following example explains how you can set up a machine to query multiple

clusters:

You can configure /etc/LoadL.cfg to point to the configuration files for the ″default″

cluster, and you can configure /etc/othercluster.cfg to point to the configuration

files of another cluster which the user can select.

For example, you can enter the following query command:

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 65

$ llq

The llq command uses the configuration from /etc/LoadL.cfg and queries job

information from the ″default″ cluster.

To send a query to the cluster defined in the configuration file of

/etc/othercluster.cfg, enter:

$ env LOADL_CONFIG=othercluster llq

Note that the machine from which you issue the llq command is considered as a

submit-only machine by the other cluster.

Handling switch-table errors

You may use the following configuration file keywords to control how LoadLeveler

responds to switch-table errors:

v ACTION_ON_SWITCH_TABLE_ERROR

v DRAIN_ON_SWITCH_TABLE_ERROR

v RESUME_ON_SWITCH_TABLE_ERROR_CLEAR

For information about configuration file keyword syntax and other details, see

Chapter 12, “Configuration file reference,” on page 243.

Providing additional job-processing controls through installation exits

LoadLeveler allows administrators to further configure the environment through

installation exits. Table 18 lists these additional job-processing controls.

 Table 18. Roadmap of administrator tasks accomplished through installation exits

To learn about: Read the following:

Writing a program to control when jobs

are scheduled to run

“Controlling the central manager scheduling

cycle” on page 67

Writing a pair of programs to override

the default LoadLeveler DCE

authentication method

“Handling DCE security credentials” on page 68

Writing a program to refresh an AFS

token when a job starts

“Handling an AFS token” on page 69

Writing a program to check or modify

job requests when they are submitted

“Filtering a job script” on page 70

Writing programs to run before and

after job requests

“Writing prolog and epilog programs” on page 70

Overriding the LoadLeveler default

mail notification method

“Using your own mail program” on page 75

Defining a cluster metric to determine

where a remote job is distributed

See the CLUSTER_METRIC configuration

keyword description in Chapter 12, “Configuration

file reference,” on page 243.

Defining cluster user mapper for

multicluster environment

See the CLUSTER_USER_MAPPER configuration

keyword description in Chapter 12, “Configuration

file reference,” on page 243.

Correctly specifying configuration file

keywords

Chapter 12, “Configuration file reference,” on page

243

Customizing the configuration file

66 TWS LoadLeveler: Using and Administering

Controlling the central manager scheduling cycle

To determine when to run the LoadLeveler scheduling algorithm, the central

manager uses the values set in the configuration file for the

NEGOTIATOR_INTERVAL and the NEGOTIATOR_CYCLE_DELAY keywords.

The central manager will run the scheduling algorithm every

NEGOTIATOR_INTERVAL seconds, unless some event takes place such as the

completion of a job or the addition of a machine to the cluster. In such cases, the

scheduling algorithm is run immediately. When NEGOTIATOR_CYCLE_DELAY is

set, a minimum of NEGOTIATOR_CYCLE_DELAY seconds will pass between the

central manager’s scheduling attempts, regardless of what other events might take

place. When the NEGOTIATOR_INTERVAL is set to zero, the central manager

will not run the scheduling algorithm until instructed to do so by an authorized

process. This setting enables your program to control the central manager’s

scheduling activity through one of the following:

v The llrunscheduler command.

v The ll_run_scheduler subroutine.

Both the command and the subroutine instruct the central manager to run the

scheduling algorithm.

You might choose to use this setting if, for example, you want to write a program

that directly controls the assignment of the system priority for all LoadLeveler jobs.

In this particular case, you would complete the following steps to control system

priority assignment and the scheduling cycle:

1. Decide the following:

v Which system priority value to assign to jobs from specific sources or with

specific resource requirements.

v How often the central manager should run the scheduling algorithm. Your

program has to be designed to issue the ll_run_scheduler subroutine at

regular intervals; otherwise, LoadLeveler will not attempt to schedule any

job steps.

You also need to understand how changing the system priority affects the job

queue. After you successfully use the ll_modify subroutine or the llmodify

command to change system priority values, LoadLeveler will not readjust the

values for those job steps when the negotiator recalculates priorities at regular

intervals set through the

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword. Also, you

can change the system priority for jobs only when those jobs are in the Idle

state or a state similar to it. To determine which job states are similar to the

Idle state or to the Running state, see the table in “LoadLeveler job states” on

page 18.

2. Code a program to use LoadLeveler APIs to perform the following functions:

a. Use the Data Access APIs to obtain data about all jobs.

b. Determine whether jobs have been added or removed.

c. Use the ll_modify subroutine to set the system priority for the LoadLeveler

jobs. The values you set through this subroutine will not be readjusted

when the negotiator recalculates job step priorities.

d. Use the ll_run_scheduler subroutine to instruct the central manager to run

the scheduling algorithm.

e. Set a timer for the scheduling interval, to repeat the scheduling instruction

at regular intervals. This step is required to replace the effect of setting the

configuration keyword NEGOTIATOR_CYCLE_DELAY, which LoadLeveler

ignores when NEGOTIATOR_INTERVAL is set to zero.
3. In the configuration file, set values for the following keywords:

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 67

|
|
|
|
|
|
|

v Set the NEGOTIATOR_INTERVAL keyword to zero to stop the central

manager from automatically recalculating system priorities for jobs.

v (Optional) Set the SYSPRIO_THRESHOLD_TO_IGNORE_STEP keyword to

specify a threshold value. If the system priority assigned to a job step is less

than this threshold value, the job will remain idle.
4. Issue the llctl command with either the reconfig or recycle keyword.

Otherwise, LoadLeveler will not process the modifications you made to the

configuration file.

5. (Optional) To make sure that the central manager’s automatic scheduling

activity has been disabled (by setting the NEGOTIATOR_INTERVAL keyword

to zero), use the llstatus command.

6. Run your program under a user ID with administrator authority.

Once this procedure is complete, you might want to use one or more of the

following commands to make sure that jobs are scheduled according to the correct

system priority. The value of q_sysprio in command output indicates the system

priority for the job step.

v Use the command llq -s to detect whether a job step is idle because its system

priority is below the value set for the

SYSPRIO_THRESHOLD_TO_IGNORE_STEP keyword.

v Use the command llq -l to display the previous system priority for a job step.

v When unusual circumstances require you to change system priorities manually:

1. Use the command llmodify -s to set the system priority for LoadLeveler jobs.

The values you set through this command will not be readjusted when the

negotiator recalculates job step priorities.

2. Use the llrunscheduler command to instruct the central manager to run the

scheduling algorithm.

Handling DCE security credentials

You can write a pair of programs to override the default LoadLeveler DCE

authentication method. To enable the programs, use the

DCE_AUTHENTICATION_PAIR keyword in your configuration file:

v As an alternative, you can also specify the program pair:

DCE_AUTHENTICATION_PAIR = $(BIN)/llgetdce, $(BIN)/llsetdce

Specifying the DCE_AUTHENTICATION_PAIR keyword enables LoadLeveler

support for forwarding DCE credentials to LoadLeveler jobs. You may override the

default function provided by LoadLeveler to establish DCE credentials by

substituting your own programs.

Using the alternative program pair: llgetdce and llsetdce

The program pair, llgetdce and llsetdce, forwards DCE credentials by copying

credential cache files from the submitting machine to the executing machines.

While this technique may require less overhead, it has been known to produce

credentials on the executing machines which are not fully capable of being

forwarded by rsh commands. This is the only pair of programs offered in earlier

releases of LoadLeveler.

Forwarding DCE credentials

An example of a credentials object is a character string containing the DCE

principle name and a password. program1 writes the following to standard output:

v The length of the handle to follow

v The handle

Customizing the configuration file

68 TWS LoadLeveler: Using and Administering

If program1 encounters errors, it writes error messages to standard error.

program2 receives the following as standard input:

v The length of the handle to follow

v The same handle written by program1

program2 writes the following to standard output:

v The length of the login context to follow

v An exportable DCE login context, which is the idl_byte array produced from the

sec_login_export_context DCE API call. For more information, see the DCE

Security Services API chapter in the Distributed Computing Environment for

AIX Application Development Reference.

v A character string suitable for assigning to the KRB5CCNAME environment

variable This string represents the location of the credentials cache established in

order for program2 to export the DCE login context.

If program2 encounters errors, it writes error messages to standard error. The parent

process, the LoadLeveler starter process, writes those messages to the starter log.

For examples of programs that enable DCE security credentials, see the

samples/lldce subdirectory in the release directory.

Handling an AFS token

You can write a program, run by the scheduler, to refresh an AFS token when a job

is started. To invoke the program, use the AFS_GETNEWTOKEN keyword in

your configuration file.

Before running the program, LoadLeveler sets up standard input and standard

output as pipes between the program and LoadLeveler. LoadLeveler also sets up

the following environment variables:

LOADL_STEP_OWNER

The owner (UNIX user name) of the job

LOADL_STEP_COMMAND

The name of the command the user’s job step invokes.

LOADL_STEP_CLASS

The class this job step will run.

LOADL_STEP_ID

The step identifier, generated by LoadLeveler.

LOADL_JOB_CPU_LIMIT

The number of CPU seconds the job is limited to.

LOADL_WALL_LIMIT

The number of wall clock seconds the job is limited to.

LoadLeveler writes the following current AFS credentials, in order, over the

standard input pipe:

v The ktc_principal structure indicating the service.

v The ktc_principal structure indicating the client.

v The ktc_token structure containing the credentials.

The ktc_principal structure is defined in the AFS header file afs_rxkad.h. The

ktc_token structure is defined in the AFS header file afs_auth.h.

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 69

LoadLeveler expects to read these same structures in the same order from the

standard output pipe, except these should be refreshed credentials produced by the

installation exit.

The installation exit can modify the passed credentials (to extend their lifetime)

and pass them back, or it can obtain new credentials. LoadLeveler takes whatever

is returned and uses it to authenticate the user prior to starting the user’s job.

Filtering a job script

You can write a program to filter a job script when the job is submitted to the local

cluster and when the job is submitted from a remote cluster. This program can, for

example, modify defaults or perform site specific verification of parameters. To

invoke the local job filter, specify the SUBMIT_FILTER keyword in your

configuration file. To invoke the remote job filter, specify the

CLUSTER_REMOTE_JOB_FILTER keyword in your configuration file. For more

information on these keywords, see the SUBMIT_FILTER or

CLUSTER_REMOTE_JOB_FILTER keyword in Chapter 12, “Configuration file

reference,” on page 243.

LoadLeveler sets the following environment variables when the program is

invoked:

LOADL_ACTIVE

LoadLeveler version

LOADL_STEP_COMMAND

Job command file name

LOADL_STEP_ID

The job identifier, generated by LoadLeveler

LOADL_STEP_OWNER

The owner (UNIX user name) of the job

For details about specific keyword syntax and use in the configuration file, see

Chapter 12, “Configuration file reference,” on page 243.

Writing prolog and epilog programs

An administrator can write prolog and epilog installation exits that can run before

and after a LoadLeveler job runs, respectively.

Prolog and epilog programs fall into two types:

v Those that run as the LoadLeveler user ID.

v Those that run in a user’s environment.

Depending on the type of processing you want to perform before or after a job

runs, specify one or more of the following configuration file keywords, in any

combination:

v To run a prolog or epilog program under the LoadLeveler user ID, specify

JOB_PROLOG or JOB_EPILOG, respectively.

v To run a prolog or epilog program under the user’s environment, specify

JOB_USER_PROLOG or JOB_USER_EPILOG, respectively.

You do not have to provide a prolog/epilog pair of programs. You may, for

example, use only a prolog program that runs under the LoadLeveler user ID.

For details about specific keyword syntax and use in the configuration file, see

Chapter 12, “Configuration file reference,” on page 243.

Customizing the configuration file

70 TWS LoadLeveler: Using and Administering

Note: If process tracking is enabled and your prolog or epilog program invokes

the mailx command, set the sendwait variable to prevent the background

mail process from being killed by process tracking.

A user environment prolog or epilog runs with AFS authentication if installed and

enabled. For security reasons, you must code these programs on the machines

where the job runs and on the machine that schedules the job. If you do not define

a value for these keywords, the user environment prolog and epilog settings on the

executing machine are ignored.

The user environment prolog and epilog can set environment variables for the job

by sending information to standard output in the following format:

env id = value

Where:

id Is the name of the environment variable

value Is the value (setting) of the environment variable

For example, the user environment prolog sets the environment variable

STAGE_HOST for the job:

#!/bin/sh

echo env STAGE_HOST=shd22

Coding conventions for prolog programs

The prolog program is invoked by the starter process. Once the starter process

invokes the prolog program, the program obtains information about the job from

environment variables.

Syntax:

prolog_program

Where prolog_program is the name of the prolog program as defined in the

JOB_PROLOG keyword.

No arguments are passed to the program, but several environment variables are

set. For more information on these environment variables, see “Run-time

environment variables” on page 374.

The real and effective user ID of the prolog process is the LoadLeveler user ID. If

the prolog program requires root authority, the administrator must write a secure

C or Perl program to perform the desired actions. You should not use shell scripts

with set uid permissions, since these scripts may make your system susceptible to

security problems.

Return code values:

0 The job will begin.

If the prolog program is ended with a signal, the job does not begin and a message

is written to the starter log.

Sample prolog programs:

v Sample of a prolog program for korn shell

#!/bin/ksh

Set up environment

set -a

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 71

. /etc/environment

. /.profile

export PATH="$PATH:/loctools/lladmin/bin"

export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_STEP_ID.prolog"

Do set up based upon job step class

case $LOADL_STEP_CLASS in

 # A OSL job is about to run, make sure the osl filesystem is

 # mounted. If status is negative then filesystem cannot be

 # mounted and the job step should not run.

 "OSL")

 mount_osl_files >> $LOG

 if [status = 0]

 then EXIT_CODE=1

 else

 EXIT_CODE=0

 fi

 ;;

A simulation job is about to run, simulation data has to

be made available to the job. The status from copy script must

be zero or job step cannot run.

"sim")

 copy_sim_data >> $LOG

if [status = 0]

 then EXIT_CODE=0

 else

 EXIT_CODE=1

 fi

 ;;

All other job will require free space in /tmp, make sure

enough space is available.

*)

 check_tmp >> $LOG

 EXIT_CODE=$?

 ;;

esac

The job step will run only if EXIT_CODE == 0

exit $EXIT_CODE

v Sample of a prolog program for C shell

#!/bin/csh

Set up environment

source /u/loadl/.login

setenv PATH "${PATH}:/loctools/lladmin/bin"

setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_STEP_ID}.prolog"

Do set up based upon job step class

switch ($LOADL_STEP_CLASS)

 # A OSL job is about to run, make sure the osl filesystem is

 # mounted. If status is negative then filesystem cannot be

 # mounted and the job step should not run.

 case "OSL":

 mount_osl_files >> $LOG

 if ($status < 0) then

 set EXIT_CODE = 1

 else

 set EXIT_CODE = 0

 endif

 breaksw

A simulation job is about to run, simulation data has to

be made available to the job. The status from copy script must

be zero or job step cannot run.

Customizing the configuration file

72 TWS LoadLeveler: Using and Administering

case "sim":

 copy_sim_data >> $LOG

 if ($status == 0) then

 set EXIT_CODE = 0

 else

 set EXIT_CODE = 1

 endif

 breaksw

All other job will require free space in /tmp, make sure

enough space is available.

default:

 check_tmp >> $LOG

 set EXIT_CODE = $status

 breaksw

endsw

The job step will run only if EXIT_CODE == 0

exit $EXIT_CODE

Coding conventions for epilog programs

The installation defined epilog program is invoked after a job step has completed.

The purpose of the epilog program is to perform any required clean up such as

unmounting file systems, removing files, and copying results. The exit status of

both the prolog program and the job step is set in environment variables.

Syntax:

epilog_program

Where epilog_program is the name of the epilog program as defined in the

JOB_EPILOG keyword.

No arguments are passed to the program but several environment variables are set.

These environment variables are described in “Run-time environment variables” on

page 374. In addition, the following environment variables are set for the epilog

programs:

LOADL_PROLOG_EXIT_CODE

The exit code from the prolog program. This environment variable is set

only if a prolog program is configured to run.

LOADL_USER_PROLOG_EXIT_CODE

The exit code from the user prolog program. This environment variable is

set only if a user prolog program is configured to run.

LOADL_JOB_STEP_EXIT_CODE

The exit code from the job step.

Note: To interpret the exit status of the prolog program and the job step, convert

the string to an integer and use the macros found in the sys/wait.h file.

These macros include:

v WEXITSTATUS: gives you the exit code

v WTERMSIG: gives you the signal that terminated the program

v WIFEXITED: tells you if the program exited

v WIFSIGNALED: tells you if the program was terminated by a signal

The exit codes returned by the WEXITSTATUS macro are the valid codes.

However, if you look at the raw numbers in sys/wait.h, the exit code may

appear to be 256 times the expected return code. The numbers in sys/wait.h

are the wait3 system calls.

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 73

Sample epilog programs:

v Sample of an epilog program for korn shell

#!/bin/ksh

Set up environment

set -a

. /etc/environment

. /.profile

export PATH="$PATH:/loctools/lladmin/bin"

export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_STEP_ID.epilog"

if [[-z $LOADL_PROLOG_EXIT_CODE]]

then

echo "Prolog did not run" >> $LOG

else

echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG

fi

if [[-z $LOADL_USER_PROLOG_EXIT_CODE]]

 then

 echo "User environment prolog did not run" >> $LOG

 else

 echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG

fi

if [[-z $LOADL_JOB_STEP_EXIT_CODE]]

 then

 echo "Job step did not run" >> $LOG

 else

 echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG

fi

Do clean up based upon job step class

case $LOADL_STEP_CLASS in

 # A OSL job just ran, unmount the filesystem.

 "OSL")

 umount_osl_files >> $LOG

 ;;

 # A simulation job just ran, remove input files.

 # Copy results if simulation was successful (second argument

 # contains exit status from job step).

 "sim")

 rm_sim_data >> $LOG

 if [$2 = 0]

 then copy_sim_results >> $LOG

 fi

 ;;

Clean up /tmp

*)

 clean_tmp >> $LOG

 ;;

esac

v Sample of an epilog program for C shell

#!/bin/csh

Set up environment

source /u/loadl/.login

setenv PATH "${PATH}:/loctools/lladmin/bin"

setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_STEP_ID}.prolog"

if (${?LOADL_PROLOG_EXIT_CODE}) then

echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG

Customizing the configuration file

74 TWS LoadLeveler: Using and Administering

else

echo "Prolog did not run" >> $LOG

endif

if (${?LOADL_USER_PROLOG_EXIT_CODE}) then

 echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG

 else

 echo "User environment prolog did not run" >> $LOG

endif

if (${?LOADL_JOB_STEP_EXIT_CODE}) then

 echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG

 else

 echo "Job step did not run" >> $LOG

endif

Do clean up based upon job step class

switch ($LOADL_STEP_CLASS)

 # A OSL job just ran, unmount the filesystem.

 case "OSL":

 umount_osl_files >> $LOG

 breaksw

A simulation job just ran, remove input files.

Copy results if simulation was successful (second argument

contains exit status from job step).

case "sim":

 rm_sim_data >> $LOG

 if ($argv{2} == 0) then

 copy_sim_results >> $LOG

 endif

 breaksw

Clean up /tmp

default:

 clean_tmp >> $LOG

 breaksw

endsw

Using your own mail program

You can write a program to override the LoadLeveler default mail notification

method. You can use this program, for example, to display your own messages to

users when a job completes, or to automate tasks such as sending error messages

to a network manager.

The syntax for the program is the same as it is for standard UNIX mail programs;

the command is called with the following arguments:

v -s to indicate a subject.

v A pointer to a string containing the subject.

v A pointer to a string containing a list of mail recipients.

The mail message is taken from standard input.

To enable this program to replace the default mail notification method, use the

MAIL keyword in the configuration file. For details about specific keyword syntax

and use in the configuration file, see Chapter 12, “Configuration file reference,” on

page 243.

Customizing the configuration file

Chapter 4. Configuring the LoadLeveler environment 75

76 TWS LoadLeveler: Using and Administering

Chapter 5. Defining LoadLeveler resources to administer

After installing LoadLeveler, you may customize it by modifying the

administration file. The administration file optionally lists and defines the

machines in the LoadLeveler cluster and the characteristics of classes, users, and

groups.

LoadLeveler does not prevent you from having multiple copies of administration

files, but you need to be sure to update all the copies whenever you make a

change to one. Having only one administration file prevents any confusion.

Table 19 lists the LoadLeveler resources you may define by modifying the

administration file.

 Table 19. Roadmap of tasks for modifying the LoadLeveler administration file

To learn about: Read the following:

Modifying the administration

file

“Steps for modifying an administration file”

Defining LoadLeveler

resources to administer

v “Defining machines” on page 78

v “Defining adapters” on page 80

v “Defining classes” on page 83

v “Defining users” on page 91

v “Defining groups” on page 92

v “Defining clusters” on page 93

Correctly specifying

administration file keywords

Chapter 13, “Administration file reference,” on page 301

Steps for modifying an administration file

All LoadLeveler commands, daemons, and processes read the administration and

configuration files at start up time. If you change the administration or

configuration files after LoadLeveler has already started, any LoadLeveler

command or process, such as the LoadL_starter process, will read the newer

version of the files while the running daemons will continue to use the data from

the older version. To ensure that all LoadLeveler commands, daemons, and

processes use the same configuration data, run the reconfiguration command on all

machines in the cluster each time the administration or configuration files are

changed.

Before you begin: You need to:

v Ensure that the installation procedure has completed successfully and that the

administration file, LoadL_admin, exists in LoadLeveler’s home directory. For

additional details about installation, see TWS LoadLeveler: Installation Guide.

v Know how to correctly specify keywords in the administration file. For

information about administration file keyword syntax and other details, see

Chapter 13, “Administration file reference,” on page 301.

v (Optional) Know how to correctly issue the llextRPD command, if you choose to

use it (see “llextRPD - Extract data from an RSCT peer domain” on page 415).

 77

Perform the following steps to modify the administration file, LoadL_admin:

1. Identify yourself as a LoadLeveler administrator using the LOADL_ADMIN

keyword.

2. In the administration file, provide the following stanza types:

v One machine stanza to define the central manager for the LoadLeveler

cluster. You also may create machine stanzas for other machines in the

LoadLeveler cluster.

You can use the llextRPD command to automatically create machine stanzas.

v (Optional) An adapter stanza for each type of network adapter that you want

LoadLeveler jobs to be able to request.

You can use the llextRPD command to automatically create adapter stanzas.
3. (Optional) Specify one or more of the following stanza types:

v A class stanza for each set of LoadLeveler jobs that have similar

characteristics or resource requirements.

v A user stanza for specific users, if their requirements do not match those

characteristics defined in the default user stanza.

v A group stanza for each set of LoadLeveler users that have similar

characteristics or resource requirements.
4. (Optional) You may specify values for additional administration file keywords,

which are listed and described in “Administration file keyword descriptions”

on page 306.

5. Notify LoadLeveler daemons by issuing the llctl command with either the

reconfig or recycle keyword. Otherwise, LoadLeveler will not process the

modifications you made to the administration file.

Defining machines

The information in a machine stanza defines the characteristics of that machine.

You do not have to specify a machine stanza for every machine in the LoadLeveler

cluster, but you must have one machine stanza for the machine that will serve as

the central manager.

If you do not specify a machine stanza for a machine in the cluster, the machine

and the central manager still communicate and jobs are scheduled on the machine

but the machine is assigned the default values specified in the default machine

stanza. If there is no default stanza, the machine is assigned default values set by

LoadLeveler.

Any machine name used in the stanza must be a name which can be resolved to

an IP address. This name is referred to as an interface name because the name can

be used for a program to interface with the machine. Generally, interface names

match the machine name, but they do not have to.

By default, LoadLeveler will append the DNS domain name to the end of any

machine name without a domain name appended before resolving its address. If

you specify a machine name without a domain name appended to it and you do

not want LoadLeveler to append the DNS domain name to it, specify the name

using a trailing period. You may have a need to specify machine names in this way

if you are running a cluster with more than one nameserving technique. For

example, if you are using a DNS nameserver and running NIS, you may have

some machine names which are resolved by NIS which you do not want

LoadLeveler to append DNS names to. In situations such as this, you also want to

specify name_server keyword in your machine stanzas.

Customizing the administration file

78 TWS LoadLeveler: Using and Administering

Under the following conditions, you must have a machine stanza for the machine

in question:

v If you set the MACHINE_AUTHENTICATE keyword to true in the

configuration file, then you must create a machine stanza for each node that

LoadLeveler includes in the cluster.

v If the machine’s hostname (the name of the machine returned by the UNIX

hostname command) does not match an interface name. In this case, you must

specify the interface name as the machine stanza name and specify the

machine’s hostname using the alias keyword.

v If the machine’s hostname does match an interface name but not the correct

interface name.

For information about automatically creating machine stanzas, see “llextRPD -

Extract data from an RSCT peer domain” on page 415.

Planning considerations for defining machines

Before customizing the administration file, consider the following:

v Node availability

Some workstation owners might agree to accept LoadLeveler jobs only when

they are not using the workstation themselves. Using LoadLeveler keywords,

these workstations can be configured to be available at designated times only.

v Common name space

To run jobs on any machine in the LoadLeveler cluster, a user needs the same

uid (the user ID number for a user) and gid (the group ID number for a group)

on every machine in the cluster.

For example, if there are two machines in your LoadLeveler cluster, machine_1

and machine_2, user john must have the same user ID and login group ID in the

/etc/passwd file on both machines. If user john has user ID 1234 and login group

ID 100 on machine_1, then user john must have the same user ID and login

group ID in /etc/passwd on machine_2. (LoadLeveler requires a job to run with

the same group ID and user ID of the person who submitted the job.)

If you do not have a user ID on one machine, your jobs will not run on that

machine. Also, many commands, such as llq, will not work correctly if a user

does not have a user ID on the central manager machine.

However, there are cases where you may choose to not give a user a login ID on

a particular machine. For example, a user does not need an ID on every

submit-only machine; the user only needs to be able to submit jobs from at least

one such machine. Also, you may choose to restrict a user’s access to a Schedd

machine that is not a public scheduler; again, the user only needs access to at

least one Schedd machine.

v Resource handling

Some nodes in the LoadLeveler cluster might have special software installed that

users might need to run their jobs successfully. You should configure

LoadLeveler to distinguish those nodes from other nodes using, for example,

machine features.

Machine stanza format and keyword summary

Machine stanzas take the following format. Default values for keywords appear in

bold:

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 79

Examples: Machine stanzas

v Example 1

In this example, the machine is being defined as the central manager.

machine_a: type = machine

central_manager = true # central manager runs here

v Example 2

This example sets up a submit-only node. Note that the submit-only keyword in

the example is set to true, while the schedd_host keyword is set to false. You

must also ensure that you set the schedd_host to true on at least one other node

in the cluster.

machine_b: type = machine

central_manager = false # not the central manager

schedd_host = false # not a scheduling machine

submit_only = true # submit only machine

alias = machineb # interface name

v Example 3

In the following example, machine_c is the central manager and has an alias

associated with it:

machine_c: type = machine

central_manager = true # central manager runs here

schedd_host = true # defines a public scheduler

alias = brianne

Defining adapters

An adapter stanza identifies network adapters that are available on the machines

in the LoadLeveler cluster. If you want LoadLeveler jobs to be able to request

specific adapters, you must either specify adapter stanzas or configure dynamic

adapters in the administration file.

Note the following when using an adapter stanza:

v An adapter stanza is required for each adapter stanza name you specify on the

adapter_stanzas keyword of the machine stanza.

label: type = machine

adapter_stanzas = stanza_list

alias = machine_name

central_manager = true | false | alt

cpu_speed_scale = true | false

machine_mode = batch | interactive | general

master_node_exclusive = true | false

max_jobs_scheduled = number

name_server = list

pool_list = pool_numbers

reservation_permitted = true | false

resources = name(count) name(count) ... name(count)

schedd_fenced = true | false

schedd_host = true | false

spacct_excluse_enable = true | false

speed = number

submit_only = true | false

Figure 11. Format of a machine stanza

Customizing the administration file

80 TWS LoadLeveler: Using and Administering

v The adapter_name, interface_address and interface_name keywords are

required.

For information about creating adapter stanzas, see “llextRPD - Extract data from

an RSCT peer domain” on page 415 for peer domains.

Configuring dynamic adapters

LoadLeveler can dynamically determine the adapters in any operating system

instance (OSI) that has RSCT installed. LoadLeveler must be told on an OSI basis if

it is to handle dynamic adapter configuration changes for that OSI. The

specification of whether to use dynamic or static adapter configuration for an OSI

is done through the presence or absence of the machine stanza’s adapter_stanzas

keyword.

If a machine stanza in the administration file contains an adapter_stanzas

statement then this is taken as a directive by the LoadLeveler administrator to use

only those specified adapters. For this OSI, LoadLeveler will not perform any

dynamic adapter configuration or processing. If an adapter change occurs in this

OSI then the administrator will have to make the corresponding change in the

administration file and then stop and restart or reconfigure the LoadLeveler startd

daemon to pick up the adapter changes. If an OSI (machine stanza) in the

administration file does not contain the adapter_stanzas keyword then this is taken

as a directive by the LoadLeveler administrator for LoadLeveler to dynamically

configure the adapters for that OSI. For that OSI, LoadLeveler will determine what

adapters are present at startup via calls to the RMCAPI. If an adapter change

occurs during execution in the OSI then LoadLeveler will automatically detect and

handle the change without requiring a restart or reconfiguration.

Configuring InfiniBand adapters

InfiniBand adapters, known as host channel adapters (HCAs) can be multiported.

Tasks can use ports of an HCA independently, which allows them to be allocated

by the scheduling algorithm independently.

Note: InfiniBand adapters are supported in SUSE Linux Enterprise Server (SLES) 9

on POWER TWS LoadLeveler clusters.

An InfiniBand adapter can have multiple adapter ports. Each port on the

InfiniBand adapter can be connected to one network and will be managed by TWS

LoadLeveler as a switch adapter. InfiniBand adapter ports derive their resources

and usage state from the InfiniBand adapter with which they are associated, but

are allocated to jobs separately.

If you want LoadLeveler jobs to be able to request InfiniBand adapters, you must

either specify adapter stanzas or configure dynamic adapters in the administration

file. The InfiniBand ports are identified to TWS LoadLeveler in the same way other

adapters are. Stanzas are specified in the administration file if static adapters are

used and the ports are discovered by RSCT if dynamic adapters are used.

The port_number administration keyword has been added to support an

InfiniBand port. The port_number keyword specifies the port number of the

InfiniBand adapter port. Only InfiniBand ports are managed and displayed by

TWS LoadLeveler; the InfiniBand adapter itself is not. The adapter stanza for

InfiniBand support only contains the adapter port information. There is no

InfiniBand adapter information in the adapter stanza (see example 2 in “Examples:

Adapter stanzas” on page 82).

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 81

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Notes:

1. TWS LoadLeveler distributes the switch adapter windows of the InfiniBand

adapter equally among its ports and the allocation is not adjusted should all of

the resources on one port be consumed.

2. The InfiniBand ports determine their usage state and availability from their

InfiniBand adapter. If one port is in use exclusively, no other ports on the

adapter can be used for any other job.

3. If you have a mixed cluster where some nodes use the InfiniBand adapter and

some nodes use the HPS adapter, you have to organize the nodes into pools so

that the job is only dispatched to nodes with the same kind of switch adapter.

4. There is no change to the way the InfiniBand adapters are requested on the job

command file network statement; that is, InfiniBand adapters are requested the

same way as any other adapter would be.

5. Because InfiniBand adapters do not support rCxt blocks, jobs that would

otherwise use InfiniBand adapters, but which also request rCxt blocks with the

rcxtblks keyword on the network statement will remain in the idle state. This

behavior is consistent with how other adapters (for example, the HPS) behave

in the same situation. You can use the llstatus -a command to see rCxt blocks

on adapters (see “llstatus - Query machine status” on page 477 for more

information).

Adapter stanza format and keyword summary

An adapter stanza has the following format:

Examples: Adapter stanzas

v Example 1: Specifying an HPS adapter

In the following example, the adapter stanza called

“c121s0n10.ppd.pok.ibm.com” specifies an HPS adapter. Note that

c121s0n10.ppd.pok.ibm.com is also specified on the adapter_stanzas keyword of

the machine stanza for the “yugo” machine.

 yugo: type=machine

 adapter_stanzas = c121s0n10.ppd.pok.ibm.com

 ...

c121s0n10.ppd.pok.ibm.com: type = adapter

 adapter_name = sn0

 network_type = switch

 interface_address = 192.168.0.10

 interface_name = c121s0n10.ppd.pok.ibm.com

 multilink_address = 10.10.10.10

 logical_id = 2

label: type = adapter

adapter_name = name

adapter_type = type

device_driver_name = name

interface_address = IP_address

interface_name = name

logical_id = id

multilink_address = ip_address

multilink_list = adapter_name <, adapter_name>*

network_id = id

network_type = type

port_number = number

switch_node_number = integer

Figure 12. Format of an adapter stanza

Customizing the administration file

82 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni0

 network_id = 1

c121f2rp02.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.66.74

 interface_name = c121f2rp02.ppd.pok.ibm.com

 device_driver_name = ent0

v Example 2: Specifying an InfiniBand adapter

In the following example, the port_number specifies the port number of the

InfiniBand adapter port:

192.168.9.58: type = adapter

 adapter_name = ib1

 network_type = InfiniBand

 interface_address = 192.168.9.58

 interface_name = 192.168.9.58

 logical_id = 23

 adapter_type = InfiniBand

 device_driver_name = ehca0

 network_id = 18338657682652659714

 port_number = 2

Defining classes

The information in a class stanza defines characteristics for that class. These

characteristics can include the quantities of consumable resources that may be used

by a class per machine or cluster.

Within a class stanza, you can have optional user substanzas that define policies

that apply to a user’s job steps that need to use this class. For more information

about user substanzas, see “Defining user substanzas in class stanzas” on page 88.

For information about user stanzas, see “Defining users” on page 91.

Using limit keywords

A limit is the amount of a resource that a job step or a process is allowed to use.

(A process is a dispatchable unit of work.) A job step may be made up of several

processes.

Limits include both a hard limit and a soft limit. When a hard limit is exceeded,

the job is usually terminated. When a soft limit is exceeded, the job is usually

given a chance to perform some recovery actions. Limits are enforced either per

process or per job step, depending on the type of limit. For parallel jobs steps,

which consist of multiple tasks running on multiple machines, limits are enforced

on a per task basis.

The class stanza includes the limit keywords shown in Table 20, which allow you

to control the amount of resources used by a job step or a job process.

 Table 20. Types of limit keywords

Limit How the limit is enforced

ckpt_time_limit Per job step

core_limit Per process

cpu_limit Per process

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 83

|
|
|
|
|
|
|
|
|
|
|

|

Table 20. Types of limit keywords (continued)

Limit How the limit is enforced

data_limit Per process

default_wall_clock_limit Per job step

file_limit Per process

job_cpu_limit Per job step

rss_limit Per process

stack_limit Per process

wall_clock_limit Per job step

For example, a common limit is the cpu_limit, which limits the amount of CPU

time a single process can use. If you set cpu_limit to five hours and you have a job

step that forks five processes, each process can use up to five hours of CPU time,

for a total of 25 CPU hours. Another limit that controls the amount of CPU used is

job_cpu_limit. For a serial job step, if you impose a job_cpu_limit of five hours,

the entire job step (made up of all five processes) cannot consume more than five

CPU hours. For information on using this keyword with parallel jobs, see

“job_cpu_limit keyword” on page 353.

You can specify limits in either the class stanza of the administration file or in the

job command file. The lower of these two limits will be used to run the job even if

the system limit for the user is lower. For more information, see:

v “Enforcing limits”

v “Administration file keyword descriptions” on page 306 or “Job command file

keyword descriptions” on page 336

Enforcing limits

LoadLeveler depends on the underlying operating system to enforce process limits.

Users should verify that a process limit such as rss_limit is enforced by the

operating system, otherwise setting it in LoadLeveler will have no effect.

Exceeding job step limits: When a hard limit is exceeded LoadLeveler sends a

non-trappable signal (except in the case of a parallel job) to the process group that

LoadLeveler created for the job step. When a soft limit is exceeded, LoadLeveler

sends a trappable signal to the process group. Any job application that intends to

trap a signal sent by LoadLeveler must ensure that all processes in the process

group set up the appropriate signal handler.

All processes in the job step normally receive the signal. The exception to this rule

is when a child process creates its own process group. That action isolates the

child’s process, and its children, from any signals that LoadLeveler sends. Any

child process creating its own process group is still known to process tracking. So,

if process tracking is enabled, all the child processes are terminated when the main

process terminates.

Table 21 summarizes the actions that the LoadL_starter daemon takes when a job

step limit is exceeded.

 Table 21. Enforcing job step limits

Type of Job When a Soft Limit is Exceeded When a Hard Limit is Exceeded

Serial SIGXCPU or SIGKILL issued SIGKILL issued

Customizing the administration file

84 TWS LoadLeveler: Using and Administering

Table 21. Enforcing job step limits (continued)

Type of Job When a Soft Limit is Exceeded When a Hard Limit is Exceeded

Parallel SIGXCPU issued to both the user

program and to the parallel

daemon

SIGTERM issued

On systems that do not support SIGXCPU, LoadLeveler does not distinguish

between hard and soft limits. When a soft limit is reached on these platforms,

LoadLeveler issues a SIGKILL.

Enforcing per process limits: For per process limits, what happens when your job

reaches and exceeds either the soft limit or the hard limit depends on the operating

system you are using.

When a job forks a process that exceeds a per process limit, such as the CPU limit,

the operating system (not LoadLeveler) terminates the process by issuing a

SIGXCPU. As a result, you will not see an entry in the LoadLeveler logs indicating

that the process exceeded the limit. The job will complete with a 0 return code.

LoadLeveler can only report the status of any processes it has started.

If you need more specific information, refer to your operating system

documentation.

How LoadLeveler uses hard limits: See Table 22 for more information on

specifying limits.

 Table 22. Setting limits

If the hard limit is: Then LoadLeveler does the following:

Set in both the class stanza and the

job command file

Smaller of the two limits is taken into consideration. If

the smaller limit is the job limit, the job limit is then

compared with the user limit set on the machine that

runs the job. The smaller of these two values is used.

If the limit used is the class limit, the class limit is

used without being compared to the machine limit.

Not set in either the class stanza or

the job command file

User per process limit set on the machine that runs

the job is used.

Set in the job command file and is

less than its respective job soft limit

The job is not submitted.

Set in the class stanza and is less

than its respective class stanza soft

limit

Soft limit is adjusted downward to equal the hard

limit.

Specified in the job command file Hard limit must be greater than or equal to the

specified soft limit and less than or equal to the limit

set by the administrator in the class stanza of the

administration file.

Note: If the per process limit is not defined in the

administration file and the hard limit defined by the

user in the job command file is greater than the limit

on the executing machine, then the hard limit is set to

the machine limit.

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 85

Allowing users to use a class

In a class stanza, you may define a list of users or a list of groups to identify those

who may use the class. To do so, use the include_users or include_groups

keyword, respectively, or you may use both keywords. If you specify both

keywords, a particular user must satisfy both the include_users and the

include_groups restrictions for the class. This requirement means that a particular

user must be defined not only in a User stanza in the administration file, but also

in one of the following ways:

v The user’s name must appear in the include_users keyword in a Group stanza

whose name corresponds to a name in the include_groups keyword of the Class

stanza.

v The user’s name must appear in the include_groups keyword of the Class

stanza. For information about specifying a user name in a group list, see the

include_groups keyword description in “Administration file keyword

descriptions” on page 306.

Class stanza format and keyword summary

Class stanzas are optional. Class stanzas take the following format. Default values

for keywords appear in bold.

Examples: class stanzas

v Example 1: Creating a class that excludes certain users

class_a: type=class # class that excludes users

priority=10 # ClassSysprio

exclude_users=green judy # Excluded users

label: type = class

admin= list

ckpt_dir = directory

ckpt_time_limit = hardlimit,softlimit

class_comment = "string"

core_limit = hardlimit,softlimit

cpu_limit = hardlimit,softlimit

data_limit = hardlimit,softlimit

default_resources = name(count) name(count)...name(count)

env_copy = all | master

exclude_groups = list

exclude_users = list

file_limit = hardlimit,softlimit

include_groups = list

include_users = list

job_cpu_limit = hardlimit,softlimit

master_node_requirement = true | false

max_node = number

max_processors = number

max_protocol_instances = number

max_top_dogs = number

max_total_tasks = number

maxjobs = number

nice = value

priority = number

rss_limit = hardlimit,softlimit

smt = yes | no

stack_limit = hardlimit,softlimit

total_tasks = number

wall_clock_limit = hardlimit,softlimit

default_wall_clock_limit = hardlimit,softlimit

Figure 13. Format of a class stanza

Customizing the administration file

86 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v Example 2: Creating a class for small-size jobs

small: type=class # class for small jobs

priority=80 # ClassSysprio (max=100)

cpu_limit=00:02:00 # 2 minute limit

data_limit=30mb # max 30 MB data segment

default_resources=ConsumbableVirtualMemory(10mb) # resources consumed by each

ConsumableCpus(1) resA(3) floatinglicenseX(1) # task of a small job step if

 # resources are not explicitly

 # specified in the job command file

ckpt_time_limit=3:00,2:00 # 3 minute hardlimit,

 # 2 minute softlimit

core_limit=10mb # max 10 MB core file

file_limit=50mb # max file size 50 MB

stack_limit=10mb # max stack size 10 MB

rss_limit=35mb # max resident set size 35 MB

include_users = bob sally # authorized users

v Example 3: Creating a class for medium-size jobs

medium: type=class # class for medium jobs

priority=70 # ClassSysprio

cpu_limit=00:10:00 # 10 minute run time limit

data_limit=80mb,60mb # max 80 MB data segment

 # soft limit 60 MB data segment

ckpt_time_limit=5:00,4:30 # 5 minute hardlimit,

 # 4 minute 30 second softlimit to checkpoint

core_limit=30mb # max 30 MB core file

file_limit=80mb # max file size 80 MB

stack_limit=30mb # max stack size 30 MB

rss_limit=100mb # max resident set size 100 MB

job_cpu_limit=1800,1200 # hard limit is 30 minutes,

 # soft limit is 20 minutes

v Example 4: Creating a class for large-size jobs

large: type=class # class for large jobs

priority=60 # ClassSysprio

cpu_limit=00:10:00 # 10 minute run time limit

data_limit=120mb # max 120 MB data segment

default_resources=ConsumableVirtualMemory(40mb) # resources consumed

ConsumableCpus(2) resA(8) floatinglicenseX(1) resB(1) # by each task of

 # a large job step if resources are not

 # explicitly specified in the job command file

ckpt_time_limit=7:00,5:00 # 7 minute hardlimit,

 # 5 minute softlimit to checkpoint

core_limit=30mb # max 30 MB core file

file_limit=120mb # max file size 120 MB

stack_limit=unlimited # unlimited stack size

rss_limit=150mb # max resident set size 150 MB

job_cpu_limit = 3600,2700 # hard limit 60 minutes

 # soft limit 45 minutes

wall_clock_limit=12:00:00,11:59:55 # hard limit is 12 hours

v Example 5: Creating a class for master node machines

sp-6hr-sp: type=class # class for master node machines

priority=50 # ClassSysprio (max=100)

ckpt_time_limit=25:00,20:00 # 25 minute hardlimit,

 # 20 minute softlimit to checkpoint

cpu_limit = 06:00:00 # 6 hour limit

job_cpu_limit = 06:00:00 # hard limit is 6 hours

core_limit = lmb # max 1MB core file

master_node_requirement = true # master node definition

v Example 6: Creating a class for MPICH-GM jobs

MPICHGM: type=class # class for MPICH-GM jobs

default_resources = gmports(1) # one gmports resource is consumed by each

 # task, if resources are not explicitly

 # specified in the job command file

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 87

Defining user substanzas in class stanzas

In a class stanza, you might define user substanzas using the same syntax as you

would for any stanza in the LoadLeveler administration file. A user substanza

within a class stanza defines policies that apply to job steps submitted by that user

and belonging to that class. User substanzas are optional and are independent of

user stanzas (for information about user stanzas, see “Defining users” on page 91).

Class stanzas that contain user substanzas have the following format:

When defining substanzas within other stanzas, you must use opening and closing

braces ({ and }) to mark the beginning and the end of the stanza and substanza.

The only keywords that are supported in a user substanza are type (required),

maxidle, maxjobs, maxqueued, and max_total_tasks. For detailed descriptions of

these keywords, see “Administration file keyword descriptions” on page 306.

Examples: substanzas

In the following example, the default machine and class stanzas do not require

braces, but the parallel class stanza does require them. Without braces to open and

close the parallel stanza, it would not be clear that the default user and dept_head

user stanza belong to the parallel class:

default:

 type = machine

 central_manager = false

 schedd_host = true

default:

 type = class

 wall_clock_limit = 60:00,30:00

parallel: {

 type = class

 # Allow at most 50 running jobs for class parallel

 maxjobs = 50

 # Allow at most 10 running jobs for any single

 # user of class parallel

 default: {

 type = user

 maxjobs = 10

 }

 # Allow user dept_head to run as many as 20 jobs

 # of class parallel

 dept_head: {type = user

 maxjobs = 20

label: {

 type = class

 label: {

 type = user

 maxidle = number

 maxjobs = number

 maxqueued = number

 max_total_tasks = number

 }

}

Figure 14. Format of a user substanza

Customizing the administration file

88 TWS LoadLeveler: Using and Administering

}

}

dept_head: type = user

 maxjobs = 30

When user substanzas are used in class stanzas, a default user substanza can be

defined. Each class stanza can have its own default user substanza, and even the

default class stanza can have a default user substanza. In this example, the default

user substanza in the default class indicates that for any combination of class and

user, the limits maxidle=20 and maxqueued=30 apply, and that maxjobs and

max_total_tasks are unlimited. Some of these values are overridden in the physics

class stanza. Here is an example of how class stanzas can be configured:

default: {

 type = class

 default: {

 type = user

 maxidle = 20

 maxqueued = 30

 maxjobs = -1

 max_total_tasks = -1

 }

}

physics: {

 type = class

 default: {

 type = user

 maxjobs = 10

 max_total_tasks = 128

 }

 john: {

 type = user

 maxidle = 10

 maxjobs = 14

 }

 jane: {

 type = user

 max_total_tasks = 192

 }

}

In the following example, the physics stanza shows which values are inherited

from which stanzas:

physics: {

 type = class

 default: {

 type = user

 # inherited from default class, default user

 # maxidle = 20

 # inherited from default class, default user

 # maxqueued = 30

 # overrides value of -1 in default class, default user

 maxjobs = 10

 # overrides value of -1 in default class, default user

 max_total_tasks = 128

 }

 john: {

 type = user

 # overrides value of 10 in default user

 maxidle = 10

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 89

inherited from default user, which was inherited

 # from default class, default user

 # maxqueued = 30

 # overrides value of 10 in default user

 maxjobs = 14

 # inherited from default user

 # max_total_tasks = 128

 }

 jane: {

 type = user

 # inherited from default user, which was inherited

 # from default class, default user

 # maxidle = 20

 # inherited from default user, which was inherited

 # from default class, default user

 # maxqueued = 30

 # inherited from default user

 # maxjobs = 10

 # overrides value of 128 in default user

 max_total_tasks = 192

 }

}

Any user other than john and jane who submits jobs of class physics is subject to

the constraints in the default user substanza in the physics class stanza. Should

john or jane submit jobs of any class other than physics, they are subject to the

constraints in the default user substanza in the default class stanza.

In addition to specifying a default user substanza within the default class stanza,

an administrator can specify other user substanzas in the default class stanza. It is

important to note that all class stanzas will inherit all user substanzas from the

default class stanza.

Note: An important rule to understand is that a user substanza within a class

stanza will inherit its values from the user substanza in the default class

stanza first, if a substanza for that user is present. The next location a user

substanza inherits values from is the default user substanza within the same

class stanza.

When no default stanzas or substanzas are provided, the LoadLeveler default for

all four keywords is -1 or unlimited.

If a user substanza is provided for a user on the class exclude_users list,

exclude_users takes precedence and the user substanza will be effectively ignored

because that user cannot use the class at all. On the other hand, when

include_users is used in a class, the presence of a user substanza implies that the

user is permitted to use the class (it is as if the user were present on the

include_users list).

Customizing the administration file

90 TWS LoadLeveler: Using and Administering

Defining users

The information specified in a user stanza defines the characteristics of that user.

You can have one user stanza for each user but this is not necessary. If an

individual user does not have their own user stanza, that user uses the defaults

defined in the default user stanza.

User stanza format and keyword summary

User stanzas take the following format:

For more information about the keywords listed in the user stanza format, see

Chapter 13, “Administration file reference,” on page 301.

Examples: User stanzas

v Example 1

In this example, user fred is being provided with a user stanza. User fred's jobs

will have a user priority of 100. If user fred does not specify a job class in the

job command file, the default job class class_a will be used. In addition, he can

have a maximum of 15 jobs running at the same time.

Define user stanzas

fred: type = user

priority = 100

default_class = class_a

maxjobs = 15

v Example 2

This example explains how a default interactive class for a parallel job is set by

presenting a series of user stanzas and class stanzas. This example assumes that

users do not specify the LOADL_INTERACTIVE_CLASS environment variable.

default: type =user

 default_interactive_class = red

 default_class = blue

carol: type = user

 default_class = single double

 default_interactive_class = ijobs

steve: type = user

 default_class = single double

ijobs: type = class

label: type = user

account = list

default_class = list

default_group = group name

default_interactive_class = class name

env_copy = all | master

fair_shares = number

max_node = number

max_processors = number

max_reservation_duration = number

max_reservations = number

max_total_tasks = number

maxidle = number

maxjobs = number

maxqueued = number

priority = number

total_tasks = number

Figure 15. Format of a user stanza

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 91

wall_clock_limit = 08:00:00

red: type = class

 wall_clock_limit = 30:00

If the user Carol submits an interactive job, the job is assigned to the default

interactive class called ijobs. The job is assigned a wall clock limit of 8 hours. If

the user Steve submits an interactive job, the job is assigned to the red class

from the default user stanza. The job is assigned a wall clock limit of 30

minutes.

v Example 3

In this example, Jane’s jobs have a user priority of 50, and if she does not specify

a job class in her job command file the default job class small_jobs is used. This

user stanza does not specify the maximum number of jobs that Jane can run at

the same time so this value defaults to the value defined in the default stanza.

Also, suppose Jane is a member of the primary UNIX group “staff.” Jobs

submitted by Jane will use the default LoadLeveler group “staff.” Lastly, Jane

can use three different account numbers.

Define user stanzas

jane: type = user

priority = 50

default_class = small_jobs

default_group = Unix_Group

account = dept10 user3 user4

Defining groups

LoadLeveler groups are another way of granting control to the system

administrator. Although a LoadLeveler group is independent from a UNIX group,

you can configure a LoadLeveler group to have the same users as a UNIX group

by using the include_users keyword.

Group stanza format and keyword summary

The information specified in a group stanza defines the characteristics of that

group. Group stanzas are optional and take the following format:

For more information about the keywords listed in the group stanza format, see

Chapter 13, “Administration file reference,” on page 301.

Examples: Group stanzas

v Example 1

label: type = group

admin = list

env_copy = all | master

fair_shares = number

exclude_users = list

include_users = list

max_node = number

max_processors = number

max_reservation_duration = number

max_reservations = number

max_total_tasks = number

maxidle = number

maxjobs = number

maxqueued = number

priority = number

total_tasks = number

Figure 16. Format of a group stanza

Customizing the administration file

92 TWS LoadLeveler: Using and Administering

In this example, the group name is department_a. The jobs issued by users

belonging to this group will have a priority of 80. There are three members in

this group.

Define group stanzas

department_a: type = group

priority = 80

include_users = susann holly fran

v Example 2

In this example, the group called great_lakes has five members and these user’s

jobs have a priority of 100:

Define group stanzas

great_lakes: type = group

priority = 100

include_users = huron ontario michigan erie superior

Defining clusters

The cluster stanza defines the LoadLeveler multicluster environment. Any cluster

that wants to participate in the multicluster must have cluster stanzas defined for

all clusters with which the local cluster interacts. If you have a cluster stanza

defined, LoadLeveler is configured to be in the multicluster environment.

Cluster stanza format and keyword summary

Cluster stanzas are optional. Cluster stanzas take the following format. Default

values for keywords appear in bold.

The cluster stanza label must define a unique cluster name within the multicluster

environment.

label: type = cluster

exclude_classes = class_name[(cluster_name)] ...

exclude_groups = group_name[(cluster_name)] ...

exclude_users = user_name[(cluster_name)] ...

inbound_hosts = hostname[(cluster_name)] ...

inbound_schedd_port = port_number

include_classes = class_name[(cluster_name)] ...

include_groups = group_name[(cluster_name)] ...

include_users = user_name[(clustername)] ...

local = true | false

multicluster_security = SSL

outbound_hosts = hostname[(cluster_name)] ...

secure_schedd_port = port_number

ssl_cipher_list = cipher_list

Figure 17. Format of a cluster stanza

Customizing the administration file

Chapter 5. Defining LoadLeveler resources to administer 93

Examples: Cluster stanzas

 Figure 18 shows a simple multicluster with three clusters defined as members.

Cluster1 has defined an alternate port number for the Schedds running in its

cluster by setting the SCHEDD_STREAM_PORT = 1966. All of the other clusters need to

define what port to use when connecting to the inbound Schedds of cluster1 by

specifying the inbound_schedd_port = 1966 keyword in the cluster1 stanza.

Cluster2 has a single machine connected to cluster1 and 2 machines connected to

cluster3. Cluster3 has a single machine connected to both cluster2 and cluster1.

Each cluster would set the local keyword to true for their cluster stanza in the

cluster’s administration file.

Multicluster with 3 clusters defined as members

cluster1: type=cluster

 outbound_hosts = M2(cluster2) M1(cluster3)

 inbound_hosts = M2(cluster2) M1(cluster3)

 inbound_schedd_port = 1966

cluster2: type=cluster

 outbound_hosts = M3(cluster1) M4(cluster3)

 inbound_hosts = M3(cluster1) M4(cluster3) M5(cluster3)

cluster3: type=cluster

 outbound_hosts = M6

 inbound_hosts = M6

cluster1

M1

M2

cluster2

M4M3

M5

cluster3

M7M6

SCHEDD_STREAM_PORT = 1966

Figure 18. Multicluster Example

Customizing the administration file

94 TWS LoadLeveler: Using and Administering

Chapter 6. Performing additional administrator tasks

Table 23 lists additional ways to modify the LoadLeveler environment that either

require an administrator to customize both the configuration and administration

files, or require the use of the LoadLeveler commands or APIs.

 Table 23. Roadmap of additional administrator tasks

To learn about: Read the following:

Setting up the environment for

parallel jobs

“Setting up the environment for parallel jobs” on page

96

Configuring and using alternative

schedulers

v “Using the BACKFILL scheduler” on page 101

v “Using an external scheduler” on page 105

v “Example: Changing scheduler types” on page 115

Using additional features available

with an alternative scheduler

v “Preempting and resuming jobs” on page 116

v “Configuring LoadLeveler to support reservations”

on page 121

Working with AIX’s workload

balancing component

“Steps for integrating LoadLeveler with AIX Workload

Manager” on page 127

Enabling LoadLeveler’s

checkpoint/restart function

“LoadLeveler support for checkpointing jobs” on page

129

Enabling LoadLeveler’s affinity

support

v LoadLeveler scheduling affinity for AIX (see

“LoadLeveler scheduling affinity support” on page

136)

v LoadLeveler CPU affinity for Linux (see “Linux CPU

affinity support” on page 137)

Enabling LoadLeveler’s

multicluster support

v “LoadLeveler multicluster support” on page 139

v “Configuring a LoadLeveler multicluster” on page

140

Enabling LoadLeveler’s Blue Gene

support

v “LoadLeveler Blue Gene support” on page 143

v “Configuring LoadLeveler Blue Gene support” on

page 145

Enabling LoadLeveler’s fair share

scheduling support

v “Fair share scheduling overview” on page 25

v “Using fair share scheduling” on page 148

Moving job records from a down

Schedd to another Schedd within

the local cluster

v “Procedure for recovering a job spool” on page 154

v “llmovespool - Move job records” on page 442

Correctly specifying configuration

and administration file keywords

v Chapter 12, “Configuration file reference,” on page

243

v Chapter 13, “Administration file reference,” on page

301

Managing LoadLeveler operations

v Querying status v “llclass - Query class information” on page 403

v “llq - Query job status” on page 449

v “llqres - Query a reservation” on page 468

v “llstatus - Query machine status” on page 477

 95

|
|
|

|

|

Table 23. Roadmap of additional administrator tasks (continued)

To learn about: Read the following:

v Changing attributes of submitted

jobs

v “llfavorjob - Reorder system queue by job” on page

419

v “llfavoruser - Reorder system queue by user” on

page 421

v “llmodify - Change attributes of a submitted job

step” on page 435

v “llprio - Change the user priority of submitted job

steps” on page 447

v Changing the state of submitted

jobs

v “llcancel - Cancel a submitted job” on page 392

v “llhold - Hold or release a submitted job” on page

426

Setting up the environment for parallel jobs

This topic describes the following administration tasks that apply to parallel jobs:

v Scheduling support

v Reducing job launch overhead

v Submitting interactive POE jobs

v Setting up a class

v Setting up a parallel master node

v Configuring MPICH jobs

v Configuring MVAPICH jobs

v Configuring MPICH-GM jobs

For information on submitting parallel jobs, see “Working with parallel jobs” on

page 178.

Scheduling considerations for parallel jobs

For parallel jobs, LoadLeveler supports BACKFILL scheduling for efficient use of

system resources. These schedulers run both serial and parallel jobs, but they are

meant primarily for installations running parallel jobs.

BACKFILL scheduling also supports:

v Multiple tasks per node

v Multiple user space tasks per adapter

v Preemption

Specify the LoadLeveler scheduler using the SCHEDULER_TYPE keyword. For

more information on this keyword and supported scheduler types, see “Choosing a

scheduler” on page 42.

Steps for reducing job launch overhead for parallel jobs

Administrators may define a number of LoadLeveler starter processes to be ready

and waiting to handle job requests. Having this pool of ready processes reduces

the amount of time LoadLeveler needs to prepare jobs to run. You also may control

how environment variables are copied for a job. Reducing the number of

environment variables that LoadLeveler has to copy reduces the amount of time

LoadLeveler needs to prepare jobs to run.

Setting up the environment for parallel jobs

96 TWS LoadLeveler: Using and Administering

Before you begin: You need to know:

v How many jobs might be starting at the same time. This estimate determines

how many starter processes to have LoadLeveler start in advance, to be ready

and waiting for job requests.

v The type of parallel jobs that typically are used. If IBM Parallel Environment

(PE) is used for parallel jobs, PE copies the user’s environment to all executing

nodes. In this case, you may configure LoadLeveler to avoid redundantly

copying the same environment variables.

v How to correctly specify configuration keywords. For details about specific

keyword syntax and use:

– In the administration file, see Chapter 13, “Administration file reference,” on

page 301.

– In the configuration file, see Chapter 12, “Configuration file reference,” on

page 243.

Perform the following steps to configure LoadLeveler to reduce job launch

overhead for parallel jobs.

1. In the local or global configuration file, specify the number of starter processes

for LoadLeveler to automatically start before job requests are submitted. Use

the PRESTARTED_STARTERS keyword to set this value.

Tip: The default value of 1 should be sufficient for most installations.

2. If typical parallel jobs use a facility such as Parallel Environment, which copies

user environment variables to all executing nodes, set the env_copy keyword in

the class, user, or group stanzas to specify that LoadLeveler only copy user

environment variables to the master node by default.

Rules:

v Users also may set this keyword in the job command file. If the env_copy

keyword is set in the job command file, that setting overrides any setting in

the administration file. For more information, see “Step for controlling

whether LoadLeveler copies environment variables to all executing nodes”

on page 179.

v If the env_copy keyword is set in more than one stanza in the administration

file, LoadLeveler determines the setting to use by examining all values set in

the applicable stanzas. See the table in theenv_copy administration file

keyword to determine what value LoadLeveler will use.
3. Notify LoadLeveler daemons by issuing the llctl command with either the

reconfig or recycle keyword. Otherwise, LoadLeveler will not process the

modifications you made to the configuration and administration files.

When you are done with this procedure, you can use the POE stderr and

LoadLeveler logs to trace actions during job launch.

Steps for allowing users to submit interactive POE jobs

Perform the following steps to set up your system so that users can submit

interactive POE jobs to LoadLeveler.

1. Make sure that you have installed LoadLeveler and defined LoadLeveler

administrators. See “Defining LoadLeveler administrators” on page 41 for

information on defining LoadLeveler administrators.

2. If running user space jobs, LoadLeveler must be configured to use switch

adapters. A way to do this is to run the llextRPD command to extract node

and adapter information from the RSCT peer domain. See “llextRPD - Extract

data from an RSCT peer domain” on page 415 for additional information.

Setting up the environment for parallel jobs

Chapter 6. Performing additional administrator tasks 97

3. In the configuration file, define your scheduler to be the LoadLeveler

BACKFILL scheduler by specifying SCHEDULER_TYPE = BACKFILL. See

“Choosing a scheduler” on page 42 for more information.

4. In the administration file, specify batch, interactive, or general use for nodes.

You can use the machine_mode keyword in the machine stanza to specify the

type of jobs that can run on a node; you must specify either interactive or

general if you are going to run interactive jobs.

5. In the administration file, configure optional functions, including:

v Setting up pools: you can organize nodes into pools by using the pool_list

keyword in the machine stanza. See “Defining machines” on page 78 for

more information.

v Enabling SP™ exclusive use accounting: you can specify that the accounting

function on an SP system be informed that a job step has exclusive use of a

machine by specifying spacct_exclusive_enable = true in the machine stanza

(as shown in the previous example).

See “Defining machines” on page 78 for more information on these

keywords.
6. Consider setting up a class stanza for your interactive POE jobs. See “Setting

up a class for parallel jobs” for more information. Define this class to be your

default class for interactive jobs by specifying this class name on the

default_interactive_class keyword. See “Defining users” on page 91 for more

information.

Setting up a class for parallel jobs

To define the characteristics of parallel jobs run by your installation you should set

up a class stanza in the administration file and define a class (in the Class

statement in the configuration file) for each task you want to run on a node.

Suppose your installation plans to submit long-running parallel jobs, and you want

to define the following characteristics:

v Only certain users can submit these jobs

v Jobs have a 30 hour run time limit

v A job can request a maximum of 60 nodes and 120 total tasks

v Jobs will have a relatively low run priority

The following is a sample class stanza for long-running parallel jobs which takes

into account these characteristics:

long_parallel: type=class

wall_clock_limit = 1800

include_users = jack queen king ace

priority = 50

total_tasks = 120

max_node = 60

maxjobs = 2

Note the following about this class stanza:

v The wall_clock_limit keyword sets a wall clock limit of 1800 seconds (30 hours)

for jobs in this class

v The include_users keyword allows four users to submit jobs in this class

v The priority keyword sets a relative priority of 50 for jobs in this class

v The total_tasks keyword specifies that a user can request up to 120 total tasks

for a job in this class

Setting up the environment for parallel jobs

98 TWS LoadLeveler: Using and Administering

v The max_node keyword specifies that a user can request up to 60 nodes for a

job in this class

v The maxjobs keyword specifies that a maximum of two jobs in this class can run

simultaneously

Suppose users need to submit job command files containing the following

statements:

node = 30

tasks_per_node = 4

In your LoadL_config file, you must code the Class statement such that at least 30

nodes have four or more long_parallel classes defined. That is, the configuration

file for each of these nodes must include the following statement:

Class = { "long_parallel" "long_parallel" "long_parallel" "long_parallel" }

or

Class = long_parallel(4)

For more information, see “Defining LoadLeveler machine characteristics” on page

51.

Setting up a parallel master node

LoadLeveler allows you to define a parallel master node that LoadLeveler will use

as the first node for a job submitted to a particular class. To set up a parallel

master node, code the following keywords in the node’s class and machine stanzas

in the administration file:

MACHINE STANZA: (optional)

mach1: type = machine

master_node_exclusive = true

CLASS STANZA: (optional)

pmv3: type = class

master_node_requirement = true

Specifying master_node_requirement = true forces all parallel jobs in this class to

use–as their first node–a machine with the master_node_exclusive = true setting.

For more information on these keywords, see “Defining machines” on page 78 and

“Defining classes” on page 83.

Configuring LoadLeveler to support MPICH jobs

The MPICH package can be configured so that LoadLeveler will be used to spawn

all tasks in a MPICH application. Using LoadLeveler to spawn MPICH tasks

allows LoadLeveler to accumulate accounting data for the tasks and also allows

LoadLeveler to ensure that all tasks are terminated when the job completes.

For LoadLeveler to spawn the tasks of a MPICH job, the MPICH package must be

configured to use the LoadLeveler llspawn.stdio command when starting tasks. To

configure MPICH to use llspawn.stdio, set the environment variable

RSHCOMMAND to the location of the llspawn.stdio command and run the

configure command for the MPICH package.

On Linux systems, enter the following:

export RSHCOMMAND=/opt/ibmll/LoadL/full/bin/llspawn.stdio

./configure

Setting up the environment for parallel jobs

Chapter 6. Performing additional administrator tasks 99

|

|
|
|
|

|
|
|
|
|

|

|
|

Note: This configuration works on MPICH-1.2.7. Additional documentation for

MPICH is available from the Argonne National Laboratory web site at

http://www-unix.mcs.anl.gov/mpi/mpich1/.

Configuring LoadLeveler to support MVAPICH jobs

To run MVAPICH jobs under LoadLeveler control, you must specify the llspawn

command to replace the default RSHCOMMAND value during software

configuration.

The compiled MVAPICH implementation code uses the llspawn command to start

tasks under LoadLeveler control. This allows LoadLeveler to have total control

over the remote tasks for accounting and cleanup.

To configure the MVAPICH code to use the llspawn command as

RSHCOMMAND, change the mpirun_rsh.c program source code by following

these steps before compiling MVAPICH:

1. Replace:

Void child_handler(int);

with:

Void child_handler(int);

Void term_handler(int);

2. For Linux, replace:

#define RSH_CMD “/usr/bin/rsh”

#define RSH_CMD “/usr/bin/ssh”

with:

#define RSH_CMD “/opt/ibmll/LoadL/full/bin/llspawn”

#define SSH_CMD “/opt/ibmll/LoadL/full/bin/llpsawn”

3. Replace:

signal(SIGCHLD, child_handler);

with:

signal(SIGCHLD, SIG_IGN);

signal(SIGTERM, term_handler);

4. Add the definition for term_handler function at the end:

Void term_handler(int signal)

{

 exit(0);

}

Configuring LoadLeveler to support MPICH-GM jobs

To run MPICH-GM jobs under LoadLeveler control, you need to configure the

MPICH-GM implementation you are using by specifying the llspawn command as

RSHCOMMAND. The compiled MPICH-GM implementation code uses the

llspawn command to start tasks under LoadLeveler control. This allows

LoadLeveler to have total control over the remote tasks for accounting and

cleanup.

To configure the MPICH-GM code to use the llspawn command as

RSHCOMMAND, change the mpich.make.gcc script before compiling the

MPICH-GM:

Replace:

Setenv RSHCOMMAND /usr/bin/rsh

Setting up the environment for parallel jobs

100 TWS LoadLeveler: Using and Administering

|
|
|

|

|
|
|

|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

|
|
|

|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

|

http://www-unix.mcs.anl.gov/mpi/mpich1/

with:

Setenv RSHCOMMAND /opt/ibmll/LoadL/full/bin/llspawn

LoadLeveler does not manage the GM ports on the Myrinet switch. For

LoadLeveler to keep track of the GM ports they must be identified as LoadLeveler

consumable resources.

Perform the following steps to use consumable resources to manage GM ports:

1. Pick a name for the GM port resource.

Example: As an example, this procedure assumes the name is gmports, but you

may use another name.

Tip: Users who submit MPICH-GM jobs need to know the name that you

define for the GM port resource.

2. In the LoadLeveler configuration file, specify the GM port resource name on

the SCHEDULE_BY_RESOURCES keyword.

Example:

SCHEDULE_BY_RESOURCES = gmports

Tip: If the SCHEDULE_BY_RESOURCES keyword already is specified in the

configuration file, you can just add the GM port resource name to other values

already listed.

3. In the administration file, specify how many GM ports are available on each

machine. Use the resources keyword to specify the GM port resource name and

the number of GM ports.

Example:

resources=gmports(n)

Tips:

v The resources keyword also must appear in the job command file for an

MPICH-GM job.

Example:

resources=gmports(1)

v To determine the value of n use either the number specified in the GM

documentation or the number of GM ports you have successfully used.

Certain system configurations may not support all available GM ports, so

you might need to specify a lower value for the gmports resource than what

is actually available.
4. Issue the llctl command with either the reconfig or recycle keyword.

Otherwise, LoadLeveler will not process the modifications you made to the

configuration and administration files.

For information about submitting MPICH-GM jobs, see “Running MPICH,

MVAPICH, and MPICH-GM jobs” on page 188.

Using the BACKFILL scheduler

The BACKFILL scheduling algorithm in LoadLeveler is designed to maximize the

use of resources to achieve the highest system efficiency, while preventing

potentially excessive delays in starting jobs with large resource requirements. These

large jobs can run because the BACKFILL scheduler does not allow jobs with

smaller resource requirements to continuously use up resources before the larger

jobs can accumulate enough resources to run. While BACKFILL can be used for

both serial and parallel jobs, the potential advantage is greater with parallel jobs.

Setting up the environment for parallel jobs

Chapter 6. Performing additional administrator tasks 101

|

|

|

Job steps are arranged in a queue based on their SYSPRIO order as they arrive

from the Schedd nodes in the cluster. The queue can be periodically reordered

depending on the value of the RECALCULATE_SYSPRIO_INTERVAL keyword.

In each dispatching cycle, as determined by the NEGOTIATOR_INTERVAL and

NEGOTIATOR_CYCLE_DELAY configuration keywords, the BACKFILL algorithm

examines these job steps sequentially in an attempt to find available resources to

run each job step, then dispatches those steps to run. Once the BACKFILL

algorithm encounters a job step for which it cannot immediately find enough

resources, that job step becomes known as a ″top dog″. The BACKFILL algorithm

can allocate multiple top dogs in the same dispatch cycle. By using the

MAX_TOP_DOGS configuration keyword (for more information, see Chapter 12,

“Configuration file reference,” on page 243), you can define the maximum number

of top dogs that the central manager will allocate. For each top dog, the BACKFILL

algorithm will attempt to calculate the earliest time at which enough resources will

become free to run the corresponding top dog. This is based on the assumption

that each currently running job step will run until its hard wall clock limit is

reached and that when a job step terminates, the resources which that step has

been using will become available. The time at which enough currently running job

steps will have terminated, meaning enough resources have become available to

run a top dog, is called top dog’s future start time. The future start time of each

top dog is effectively guaranteed for the remainder of the execution of the

BACKFILL algorithm. The resources that each top dog will use at its corresponding

start time and for its duration, as specified by its hard wall clock limit, are

reserved (not to be confused with the reservation feature available in LoadLeveler).

Note: A job that is bound to a reservation is not considered for top-dog

scheduling, so there is no top-dog scheduling performed inside reservations.

In some cases, it may not be possible to calculate the future start time of a job step.

Consider, for example, a case where there are 20 nodes in the cluster and a job step

requires 24 nodes to run. Even when all nodes in the cluster are idle, it will not be

possible for this job step to run. Only the addition of nodes to the cluster would

allow the job step to run, and there is no way the BACKFILL algorithm can make

any assumptions about when that could take place. In situations like this, the job

step is not considered a ″top dog″, no resources are ″reserved″, and the BACKFILL

algorithm goes on to the next job step in the queue.

The BACKFILL scheduling algorithm classifies job steps into three distinct types:

REGULAR, TOP DOG, and BACKFILL:

v The REGULAR job step is a job step for which enough resources are currently

available and no top dogs have yet been allocated.

v The TOP DOG job step is a job step for which not enough resources are

currently available, but enough resources are available at a future time and one

of the following conditions is met:

– The TOP DOG job step is not expected to run at a time when any other top

dog is expected to run.

– If the TOP DOG is expected to run at a time when some other top dogs are

expected to run, then it cannot be using resources reserved by such top dogs.
v The BACKFILL job step is a job step for which enough resources are currently

available and one of the following conditions is met:

– The BACKFILL job step is expected to complete before the future start times

of all top dogs, based on the hard wall clock limit of the BACKFILL job step.

Using the BACKFILL scheduler

102 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

– If the BACKFILL job step is not expected to complete before the future start

time of at least one top dog, then it cannot be using resources reserved by the

top dogs that are expected to start before BACKFILL job step is expected to

complete.

The following example shows how the BACKFILL scheduling algorithm might

classify the job steps:

job1: REGULAR - can start now

job2: REGULAR - can start now

job3: TOP DOG - can’t start now, can start at 13:00

job4: BACKFILL - can start now, completes by 12:30

job5: BACKFILL - can start now, completes by 12:00

job6: BACKFILL - can start now, completes by 14:00, /

 doesn’t need resources reserved for job3

job7: TOP DOG - can’t start now, can start at 12:30 and complete by 13:30, /

 doesn’t need resources reserved for job3

job8: BACKFILL - can start now, completes by 12:00

job9: BACKFILL - can start now, completes by 15:00, /

 doesn’t need resources reserved for job3 and job7

Because of the conditions imposed on dispatching BACKFILL job steps, it is

possible for lower priority job steps to be scheduled ahead of and delay the

dispatching of higher priority job steps. However, the highest priority job steps in

the queue, or the ″top dogs″, are guaranteed not to be delayed any longer once

they become the ″top dogs″.

For coscheduled jobs, remember the following:

v If a coscheduled step becomes a top dog, then resource is reserved for all job

steps in the set of coscheduled steps.

v A coscheduled step will be backfilled only when all job steps in the set of

coscheduled steps can be backfilled.

Table 24 provides a roadmap of BACKFILL scheduler tasks.

 Table 24. Roadmap of BACKFILL scheduler tasks

Subtask Associated instructions (see . . .)

Configuring the BACKFILL

scheduler

v “Choosing a scheduler” on page 42

v “Tips for using the BACKFILL scheduler” on page 104

v “Example: BACKFILL scheduling” on page 104

Using additional LoadLeveler

features available under the

BACKFILL scheduler

v “Preempting and resuming jobs” on page 116

v “Configuring LoadLeveler to support reservations” on

page 121

Use the BACKFILL scheduler

to dispatch and manage jobs

v “Scheduler support for parallel jobs” on page 178

v “llclass - Query class information” on page 403

v “llmodify - Change attributes of a submitted job step” on

page 435

v “llpreempt - Preempt a submitted job step” on page 444

v “llq - Query job status” on page 449

v “llsubmit - Submit a job” on page 494

v “Data access API” on page 522

v “Error handling API” on page 590

v “ll_modify subroutine” on page 628

v “ll_preempt subroutine” on page 637

Using the BACKFILL scheduler

Chapter 6. Performing additional administrator tasks 103

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|

Tips for using the BACKFILL scheduler

Note the following when using the BACKFILL scheduler:

v To use this scheduler, either users must set a wall-clock limit in their job

command file or the administrator must define a wall-clock limit value for the

class to which a job is assigned. Jobs with the wall_clock_limit of unlimited

cannot be used to backfill because they may not finish in time.

v Using wall clock limits that accurately reflect the actual running time of the job

steps will result in a more efficient utilization of resources. When a job step’s

wall clock limit is substantially longer than the amount of time the job step

actually needs, it results in two inefficiencies in the BACKFILL algorithm:

– The future start time of a ″top dog″ will be calculated to be much later due to

the long wall clock limits of the running job steps, leaving a larger window

for BACKFILL job steps to run. This causes the ″top dog″ to start later than it

would have if more accurate wall clock limits had been given.

– A job step is less likely to be backfilled if its wall clock limit is longer because

it is more likely to run past the future start time of a ″top dog″.
v You should use only the default settings for the START expression and the other

job control functions described in “Managing job status through control

expressions” on page 63. If you do not use these default settings, jobs will still

run but the scheduler will not be as efficient. For example, the scheduler will not

be able to guarantee a time at which the highest priority job will run.

v You should configure any multiprocessor (SMP) nodes such that the number of

jobs that can run on a node (determined by the MAX_STARTERS keyword) is

always less than or equal to the number of processors on the node.

v Due to the characteristics of the BACKFILL algorithm, in some cases this

scheduler may not honor the MACHPRIO statement. For more information on

MACHPRIO, see “Setting negotiator characteristics and policies” on page 43.

v When using PREEMPT_CLASS rules it is helpful to create a SYSPRIO

expression which is consistent with the preemption rules. This can be done by

using the ClassSysprio built-in variable with a multiplier, such as SYSPRIO:

(ClassSysprio * 10000) - QDate. If classes which appear on the left-hand side

of PREEMPT_CLASS rules are given a higher priority than those which appear

on the right, preemption won’t be required as often because the job steps which

can preempt will be higher in the queue than the job steps which can be

preempted.

v Entering llq -s against a top-dog step will display that this step is a top-dog.

Example: BACKFILL scheduling

On a rack with 10 nodes, 8 of the nodes are being used by Job A. Job B has the

highest priority in the queue, and requires 10 nodes. Job C has the next highest

priority in the queue, and requires only two nodes. Job B has to wait for Job A to

finish so that it can use the freed nodes. Because Job A is only using 8 of the 10

nodes, the BACKFILL scheduler can schedule Job C (which only needs the two

available nodes) to run as long as it finishes before Job A finishes (and Job B

starts). To determine whether or not Job C has time to run, the BACKFILL

scheduler uses Job C’s wall_clock_limit value to determine whether or not it will

finish before Job A ends. If Job C has a wall_clock_limit of unlimited, it may not

finish before Job B’s start time, and it won’t be dispatched.

Using the BACKFILL scheduler

104 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|

|

Using an external scheduler

The LoadLeveler API provides interfaces that allow an external scheduler to

manage the assignment of resources to jobs and dispatching those jobs. The

primary interfaces for the tasks of an external scheduler are:

v ll_query to obtain information about the LoadLeveler cluster, the machines of

the cluster, jobs and AIX Workload Manager

v ll_get_data to obtain information about specific objects such as jobs, machines

and adapters

There are two interfaces for starting a LoadLeveler job: ll_start_job and

ll_start_job_ext. Both support starting serial jobs. ll_start_job_ext should be used

to start parallel jobs because it allows control over which adapters are used by the

communication protocols of each task. Without this control, it is impossible to

assure that each task uses the same network for communication over a given

protocol.

The steps for dispatching jobs with an external scheduler are:

1. Gather information about the LoadLeveler cluster (ll_query(CLUSTER)).

2. Gather information about the machines in the LoadLeveler cluster (

ll_query(MACHINES)).

3. Gather information about the jobs in the cluster (ll_query(JOBS)).

4. Determine the resources that are currently free. (See the note that follows.)

5. Determine which jobs to start. Assign resources to jobs to be started and

dispatch (ll_start_job_ext(LL_start_job_info_ext*)).

6. Repeat steps 1 through 5.

When an external scheduler is used, the LoadLeveler Negotiator does not keep

track of the resources used by jobs started by the external scheduler. There are two

ways that an external scheduler can keep track of the free resources available for

starting new jobs. The method that should be used depends on whether the

external scheduler runs continuously while all scheduling is occurring or is

executed to start a finite number of jobs and then terminates:

v If the external scheduler runs continuously, it should query the total resources

available in the LoadLeveler system with ll_query and ll_get_data. Then it can

keep track of the resource assigned to jobs it starts while they are running and

return the resources to the available pool when the jobs complete.

v If the external scheduler is executed to start a finite number of jobs and then

terminates, it must determine the pool of available resources when it first starts.

It can do this by first querying the total resources in the LoadLeveler system

using ll_query and ll_get_data. Then it would query the jobs in the system

(again using ll_query), looking for jobs that are running. For each running job, it

would remove the resources used by the job from the available pool. After all

the running jobs are processed, the available pool would indicate the amount of

free resource for starting new jobs.

To find out more about dispatching jobs with an external scheduler, use the

information in Table 25 on page 106.

Using an external scheduler

Chapter 6. Performing additional administrator tasks 105

Table 25. Roadmap of tasks for using an external scheduler

Subtask Associated instructions (see . . .)

Learn about the LoadLeveler functions

that are limited or not available when

you use an external scheduler

“Replacing the default LoadLeveler scheduling

algorithm with an external scheduler”

Prepare the LoadLeveler environment

for using an external scheduler

“Customizing the configuration file to define an

external scheduler” on page 107

Use an external scheduler to dispatch

jobs

v “Steps for getting information about the

LoadLeveler cluster, its machines, and jobs” on

page 108

v “Assigning resources and dispatching jobs” on

page 112

Replacing the default LoadLeveler scheduling algorithm with

an external scheduler

It is important to know how LoadLeveler keywords and commands behave when

you replace the default LoadLeveler scheduling algorithm with an external

scheduler. LoadLeveler scheduling keywords and commands fall into the following

categories:

v Keywords not involved in scheduling decisions are unchanged.

v Keywords kept in the job object or in the machine which are used by the

LoadLeveler default scheduler have their values maintained as before and

passed to the query API.

v Keywords used only by the LoadLeveler default scheduler have no effect.

Table 26 discusses specific keywords and commands and how they behave when

you disable the default LoadLeveler scheduling algorithm.

 Table 26. Effect of LoadLeveler keywords under an external scheduler

Keyword type / name Notes

Job command file keywords

class This value is provided by the query APIs. Machines

chosen by ll_start_job must have the class of the job

available or the request will be rejected.

dependency Supported as before. Job objects for which

dependency cannot be evaluated (because a previous

step has not run) are maintained in the NotQueued

state, and attempts to start them via ll_start_job will

result in an error. If the dependency is met,

ll_start_job can start the proc.

hold ll_start_job cannot start a job that is in Hold status.

min_processors ll_start_job must specify at least this number of

processors.

max_processors ll_start_job must specify no more than this number

of processors.

preferences Passed to the query API.

requirements ll_start_job returns an error if the machine(s)

specified do not match the requirements of the job.

This includes Disk and Virtual Memory

requirements.

Using an external scheduler

106 TWS LoadLeveler: Using and Administering

Table 26. Effect of LoadLeveler keywords under an external scheduler (continued)

Keyword type / name Notes

startdate The job remains in the Deferred state until the

startdate specified in the job is reached. ll_start_job

cannot start a job in the Deferred state.

user_priority Used in calculating the system priority (as described

in “Setting and changing the priority of a job” on

page 212). The system priority assigned to the job is

available through the query API. No other control of

the order in which jobs are run is enforced.

Administration file keywords

master_node_exclusive Ignored

master_node_requirement Ignored

max_jobs_scheduled Ignored

max_reservations Ignored

max_reservation_duration Ignored

max_total_tasks Ignored

maxidle Supported

maxjobs Ignored

maxqueued Supported

priority Used to calculate the system priority (where

appropriate).

speed Available through the query API.

Configuration file keywords

MACHPRIO Calculated but is not used.

MAX_STARTERS Calculated, and if starting the job causes this value

to be exceeded, ll_start_job returns an error.

SYSPRIO Calculated and available to the query API.

NEGOTIATOR_PARALLEL_DEFER Ignored

NEGOTIATOR_PARALLEL_HOLD Ignored

NEGOTIATOR_RESCAN_QUEUE Ignored

NEGOTIATOR_RECALCULATE_

SYSPRIO_INTERVAL

Works as before. Set this value to 0 if you do not

want the system priorities of job objects recalculated.

Customizing the configuration file to define an external

scheduler

To use an external scheduler, one of the tasks you must perform is setting the

configuration file keyword SCHEDULER_TYPE to the value API. This keyword

option provides a time-based (rather than an event-based) interface. That is, your

application must use the Query API to poll LoadLeveler at specific times for

machine and job information.

When you enable a scheduler type of API, you must specify

AGGREGATE_ADAPTERS=NO to make the individual switch adapters available

to the external scheduler. This means the external scheduler receives each

individual adapter connected to the network, instead of collectively grouping them

together. You’ll see each adapter listed individually in the llstatus -l command

Using an external scheduler

Chapter 6. Performing additional administrator tasks 107

output. When this keyword is set to YES, the llstatus -l command will show an

aggregate adapter which contains information on all switch adapters on the same

network. For detailed information about individual switch adapters, issue the

llstatus -a command.

You also may use the PREEMPTION_SUPPORT keyword, which specifies the

level of preemption support for a cluster. Preemption allows for a running job step

to be suspended so that another job step can run.

Steps for getting information about the LoadLeveler cluster,

its machines, and jobs

Perform the following steps to retrieve and use information about the LoadLeveler

cluster, machines, jobs and AIX Workload Manager:

1. Create a query object for the kind of information you want.

Example: To query machine information, code the following instruction:

LL_element * query_element = ll_query(MACHINES);

2. Customize the query to filter the specific information you want. You can filter

the list of objects for which you want information. For some queries, you can

also filter how much information you want.

Example: The following lines customize the query for just hosts

node01.ibm.com and node02.ibm.com and to return the information contained

in the llstatus -f command:

char * hostlist[] = { "node01.ibm.com","node02.ibm.com",NULL };

ll_set_request(query_element,QUERY_HOST,hostlist,STATUS_LINE);

3. Once the query has been customized:

a. Submit it using ll_get_objs, which returns the first object that matches the

query.

b. Interrogate the returned object using the ll_get_data command to retrieve

specific attributes. Depending on the information being queried for, the

query may be directed to a specific node and a specific daemon on that

node.

Example: A JOBS query for all data may be directed to the negotiator, Schedd

or the history file. If it is directed to the Schedd, you must specify the host of

the Schedd you are interested in. The following demonstrates retrieving the

name of the first machine returned by the query constructed previously:

 int machine_count;

 int rc;

 LL_element * element =ll_get_objs(query_element,LL_CM,NULL,&machine_count,&rc)

 char * mname;

 ll_get_data(element,LL_MachineName,&mname);

Because there is only one negotiator in a LoadLeveler cluster, the host does not

have to be specified. The third parameter is the address of an integer that will

receive the count of objects returned and the fourth parameter is the address of

an integer that will receive the completion code of the call. If the call fails,

NULL is returned and the location pointed to by the fourth parameter is set to

a reason code. If the call succeeds, the value returned is used as the first

parameter to a call to ll_get_data. The second parameter to ll_get_data is a

specification that indicates what attribute of the object is being interrogated.

The third parameter to ll_get_data is the address of the location into which to

store the result. ll_get_data returns zero if it is successful and nonzero if an

error occurs. It is important that the specification (the second parameter to

ll_get_data) be valid for the object passed in (the first parameter) and that the

Using an external scheduler

108 TWS LoadLeveler: Using and Administering

address passed in as the third parameter point to the correct type for the

specification. Undefined, potentially dangerous behavior will occur if either of

these conditions is not met.

Example: Retrieving specific information about machines

The following example demonstrates printing out the name and adapter list of all

machines in the LoadLeveler cluster. The example could be extended to retrieve all

of the information available about the machines in the cluster such as memory,

disk space, pool list, features, supported classes, and architecture, among other

things. A similar process would be used to retrieve information about the cluster

overall.

 int i, w, rc;

 int machine_count;

 LL_element * query_elem;

 LL_element * machine;

 LL_element * adapter;

 char * machine_name;

 char * adapter_name;

 int * window_list;

 int window_count;

 /* First we need to obtain a query element which is used to pass */

 /* parameters in to the machine query */

 if ((query_elem = ll_query(MACHINES)) == NULL)

 {

 fprintf(stderr,"Unable to obtain query element\n");

 /* without the query object we will not be able to do anything */

 exit(-1);

 }

 /* Get information relating to machines in the LoadLeveler cluster. */

 /* QUERY_ALL: we are querying all machines */

 /* NULL: since we are querying all machines we do not need to */

 /* specify a filter to indicate which machines */

 /* ALL_DATA: we want all the information available about the machine */

 rc=ll_set_request(query_elem,QUERY_ALL,NULL,ALL_DATA);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_set_request\n"rc);

 /* Without customizing the query we cannot proceed */

 exit(rc);

 }

 /* If successful, ll_get_objs() returns the first object that */

 /* satisfies the criteria that are set in the query element and */

 /* the parameters. In this case those criteris are: */

 /* A machine (from the type of query object) */

 /* LL_CM: that the negotiator knows about */

 /* NULL: since there is only one negotiator we don’t have to */

 /* specify which host it is on */

 /* The number of machines is returned in machine_count and the */

 /* return code is returned in rc */

 machine = ll_get_objs(query_elem,LL_CM,NULL,&machine_count,&rc);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_get_objs\n"rc);

 /* query was not successful -- we cannot proceed but we need to */

 /* release the query element */

 if(ll_deallocate(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to deallocate invalid query element\n");

Using an external scheduler

Chapter 6. Performing additional administrator tasks 109

}

 exit(rc);

 }

 printf("Number of Machines = %d\n", machine_count);

 i = 0;

 while(machine!=NULL)

 {

 printf("--\n");

 printf("Machine %d:\n", i);

 int rc = ll_get_data(machine,LL_MachineName,&machine_name);

 if(0==rc)

 {

 printf("Machine name = %s\n",machine_name);

 }

 else

 {

 printf("Error %d returned attempting to get machine name\n",rc);

 }

 printf("Adapters\n");

 ll_get_data(machine,LL_MachineGetFirstAdapter,&adapter);

 while(adapter != NULL)

 {

 rc = ll_get_data(adapter,LL_AdapterName,&adapter_name);

 if(0!=rc)

 {

 printf("Error %d returned attempting to get adapter name\n",rc);

 }

 else

 {

 /* Because the list of windows on an adapter is returned */

 /* as an array of integers, we also need to know how big */

 /* the list is. First we query the window count, */

 /* storing the result in an integer, then we query for */

 /* the list itself, storing the result in a pointer to */

 /* an integer. The window list is allocated for us so */

 /* we need to free it when we are done */

 printf("%s : ",adapter_name);

 ll_get_data(adapter,LL_AdapterTotalWindowCount,&window_count);

 ll_get_data(adapter,LL_AdapterWindowList,&window_list);

 for (w = 0;w<iBuffer;w++)

 {

 printf("%d ",window_list[w]);

 }

 printf("\n");

 }

 free(window_list);

 /* After the first object has been gotten, GetNext returns */

 /* the next until the list is exhausted */

 ll_get_data(machine,LL_MachineGetNextAdapter,&adapter);

 }

 printf("\n");

 i++;

 machine = ll_next_obj(query_elem);

 }

 /* First we need to release the individual objects that were */

 /* obtained by the query */

 if(ll_free_objs(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to free invalid query element\n");

 }

Using an external scheduler

110 TWS LoadLeveler: Using and Administering

/* Then we need to release the query itself */

 if(ll_deallocate(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to deallocate invalid query element\n");

 }

Example: Retrieving information about jobs

The following example demonstrates retrieving information about jobs up to the

point of starting a job:

 int i, rc;

 int job_count;

 LL_element * query_elem;

 LL_element * job;

 LL_element * step;

 int step_state;

 /* First we need to obtain a query element which is used to pass */

 /* parameters in to the jobs query */

 if ((query_elem = ll_query(JOBS)) == NULL)

 {

 fprintf(stderr,"Unable to obtain query element\n");

 /* without the query object we will not be able to do anything */

 exit(-1);

 }

 /* Get information relating to Jobs in the LoadLeveler cluster. */

 printf("Jobs Information ==\n\n");

 /* QUERY_ALL: we are querying all jobs */

 /* NULL: since we are querying all jobs we do not need to */

 /* specify a filter to indicate which jobs */

 /* ALL_DATA: we want all the information available about the job */

 rc=ll_set_request(query_elem,QUERY_ALL,NULL,ALL_DATA);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_set_request\n"rc);

 /* Without customizing the query we cannot proceed */

 exit(rc);

 }

 /* If successful, ll_get_objs() returns the first object that */

 /* satisfies the criteria that are set in the query element and */

 /* the parameters. In this case those criteris are: */

 /* A job (from the type of query object) */

 /* LL_CM: that the negotiator knows about */

 /* NULL: since there is only one negotiator we don’t have to */

 /* specify which host it is on */

 /* The number of jobs is returned in job_count and the */

 /* return code is returned in rc */

 job = ll_get_objs(query_elem,LL_CM,NULL,&job_count,&rc);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_get_objs\n"rc);

 /* query was not successful -- we cannot proceed but we need to */

 /* release the query element */

 if(ll_deallocate(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to deallocate invalid query element\n");

 }

 exit(rc);

 }

 printf("Number of Jobs = %d\n", job_count);

 step = NULL;

Using an external scheduler

Chapter 6. Performing additional administrator tasks 111

while(job!=NULL)

 {

 /* Each job is composed of one or more steps which are started */

 /* individually. We need to check the state of the job’s steps */

 ll_get_data(job,LL_JobGetFirstStep,&step);

 while(step!=NULL)

 {

 ll_get_data(step,LL_StepState,&step_state);

 /* We are looking for steps that are in idle state. The */

 /* state is returned as an int so we cast it to */

 /* enum StepState as declared in llapi.h */

 if((enum StepState)step_state == STATE_IDLE)

 break;

 }

 /* If we exit the loop with a valid step, it is the one to start */

 /* otherwise we need to keep looking */

 if(step != NULL)

 break;

 ll_next_obj(query_elem);

 }

 if(step==NULL)

 {

 printf("No step to start\n");

 exit(0);

 }

Assigning resources and dispatching jobs

In “Example: Retrieving information about jobs” on page 111, we reached the point

where a step to start was identified. In a real external scheduler, the decision

would be reached after consideration of all the idle jobs and constructing a priority

value based on attributes such as class and submit time, all of which are accessible

through ll_get_data. Next, the list of available machines would be examined to

determine whether a set exists with sufficient resources to run the job. This process

also involves determining the size of that set of machines using attributes of the

step such as number of nodes, instances of each node and tasks per node. The

LoadLeveler data query API allows access to that information about each job but

the interface for starting the job does not require that the machine and adapter

resource match the specifications when the job was submitted. For example, a job

could be submitted specifying node=4 but could be started by an external

scheduler on a single node only. Similarly, the job could specify the LAPI protocol

with network.lapi=... but be started and told to use the MPI protocol. This is not

considered an error since it is up to the scheduler to interpret (and enforce, if

necessary), the specifications in the job command file.

In allocating adapter resources for a step, it is important that the order of the

adapter usages be consistent with the structure of the step. In some environments a

task can use multiple instances of adapter windows for a protocol. If the protocol

requests striping (sn_all), an adapter window (or set of windows if instances are

used) is allocated on each available network. If multiple protocols are used by the

task (eg. MPI and LAPI), each protocol defines its own set of windows. The array

of adapter usages passed in to ll_start_job_ext must group the windows for all of

the instances on one network for the same protocol together. If the protocol

requests striping, that grouping must be immediately followed by the grouping for

the next network. If the task uses multiple protocols, the set of adapter usages for

the first protocol must be immediately followed by the set for the next protocol.

Each task will have exactly the same pattern of adapter usage entries.

Corresponding entries across all the tasks represent a communication path and

Using an external scheduler

112 TWS LoadLeveler: Using and Administering

|

must be able to communicate with each other. If the usages are for User Space

communication, a network table will be loaded for each set of corresponding

entries.

All of the job command file keywords for specifying job structure such as

total_tasks, tasks_per_node, node=min,max and blocking are supported by the

ll_start_job_ext interface but users should ensure that they understand the

LoadLeveler model that is created for each combination when constructing the

adapter usage list for ll_start_job_ext. Jobs that are submitted with node=number

and tasks_per_node result in more regular LoadLeveler models and are easier to

create adapter usage lists for.

In the following example, it is assumed that the step found to be dispatched will

run on one machine with two tasks, each task using one switch adapter window

for MPI communication. The name of the machine to run on is contained in the

variable use_machine (char*), the names of the switch adapters are contained in

use_adapter_1 (char *) and use_adpater_2 (char *) and the adapter windows on

those adapters in use_window_1 int) and use_window_2 (int), respectively.

Further more, each adapter will be allocated 1M of memory.

If the network adapters that the external scheduler assigns to the job allocate

communication buffers in rCxt blocks instead of bytes (the Switch Network

Interface for HPS is an example of such a network adapter), the api_rcxtblocks

field of adapterUsage should be used to specify the number of rCxt blocks to

assign instead of the mem field.

 LL_start_job_info_ext *start_info;

 char * pChar;

 LL_element * step;

 LL_element * job;

 int rc;

 char * submit_host;

 char * step_id;

 start_info = (LL_start_job_info_ext *)(malloc(sizeof(LL_start_job_info_ext)));

 if(start_info == NULL)

 {

 fprintf(stderr, "Out of memory.\n");

 return;

 }

 /* Create a NULL terminated list of target machines. Each task */

 /* must have an entry in this list and the entries for tasks on the */

 /* same machine must be sequential. For example, if a job is to run */

 /* on two machines, A and B, and three tasks are to run on each */

 /* machine, the list would be: AAABBB */

 /* Any specifications on the job when it was submitted such as */

 /* nodes, total_tasks or tasks_per_node must be explicitly queried */

 /* and honored by the external scheduler in order to take effect. */

 /* They are not automatically enforced by LoadLeveler when an */

 /* external scheduler is used. */

 /* */

 /* In this example, the job will only be run on one machine */

 /* with only one task so the machine list consists of only 1 machine */

 /* (plus the terminating NULL entry) */

 start_info->nodeList = (char **)malloc(2*sizeof(char *));

 if (!start_info->nodeList)

 {

 fprintf(stderr, "Out of memory.\n");

 return;

 }

 start_info->nodeList[0] = strdup(use_machine);

Using an external scheduler

Chapter 6. Performing additional administrator tasks 113

start_info->nodeList[1] = NULL;

 /* Retrieve information from the job to populate the start_info */

 /* structure */

 /* In the interest of brevity, the success of the ll_get_data() */

 /* is not tested. In a real application it shuld be */

 /* The version number is set from the header that is included when */

 /* the application using the API is compiled. This allows for */

 /* checking that the application was compiled with a version of the */

 /* API that is compatible with the version in the library when the */

 /* application is run. */

 start_info->version_num = LL_PROC_VERSION;

 /* Get the first step of the job to start */

 ll_get_data(job,LL_JobGetFirstStep,&step);

 if(step==NULL)

 {

 printf("No step to start\n");

 return;

 }

 /* In order to set the submitting host, cluster number and proc */

 /* number in the start_info structure, we need to parse it out of */

 /* the step id */

 /* First get the submitting host and save it */

 ll_get_data(job,LL_JobSubmitHost,&submit_host);

 start_info->StepId.from_host = strdup(submit_host);

 free(submit_host);

 rc = ll_get_data(step, LL_StepID, &step_id);

 /* The step id format is submit_host.jobno.stepno . Because the */

 /* submit host is a dotted string of indeterminant length, the */

 /* simplest way to detect where the job number starts is to retrieve */

 /* the submit host from the job and skip forward its length in the */

 /* step id. */

 pChar = step_id+strlen(start_info->StepId.from_host)+1;

 /* The next segment is the cluster or job number */

 pChar = strtok(pChar,".");

 start_info->StepId.cluster=atoi(pChar);

 /* The last token is the proc or step number */

 pChar = strtok(NULL,".");

 start_info->StepId.proc = atoi(pChar);

 free(step_id);

 /* For each protocol (eg. MPI or LAPI) on each task, we need to */

 /* specify which adapter to use, whether a window is being used */

 /* (subsystem = "US") or not (subsytem="IP"). If a window is used, */

 /* the window ID and window buffer size must be specified. */

 /* */

 /* The adapter usage entries for the protocols of a task must be */

 /* sequential and the set of entries for tasks on the same node must */

 /* be sequential. For example the twelve entries for a job where */

 /* each task uses one window for MPI and one for LAPI with three */

 /* tasks per node and running on two nodes would be laid out as: */

 /* 1: MPI window for 1st task running on 1st node */

 /* 2: LAPI window for 1st task running on 1st node */

 /* 3: MPI window for 2nd task running on 1st node */

 /* 4: LAPI window for 2nd task running on 1st node */

 /* 5: MPI window for 3rd task running on 1st node */

 /* 6: LAPI window for 3rd task running on 1st node */

 /* 7: MPI window for 1st task running on 2nd node */

 /* 8: LAPI window for 1st task running on 2nd node */

 /* 9: MPI window for 2nd task running on 2nd node */

Using an external scheduler

114 TWS LoadLeveler: Using and Administering

/* 10: LAPI window for 2nd task running on 2nd node */

 /* 11: MPI window for 3rd task running on 2nd node */

 /* 12: LAPI window for 3rd task running on 2nd node */

 /* An improperly ordered adapter usage list may cause the job not to */

 /* be started or, if started, incorrect execution of the job */

 /* */

 /* This example starts the job with two tasks on one machine, using */

 /* one switch adapter window on each task. The protocol is forced */

 /* to MPI and a fixed window size of 1M is used. An actual external */

 /* scheduler application would check the steps requirements and its */

 /* adapter requirements of the step with ll_get_data */

 /* */

 start_info->adapterUsageCount = 2;

 start_info->adapterUsage =

 (LL_ADAPTER_USAGE *)malloc((start_info->adapterUsageCount)

 * sizeof(LL_ADAPTER_USAGE));

 start_info->adapterUsage[0].dev_name = use_adapter_1;

 start_info->adapterUsage[0].protocol = "MPI";

 start_info->adapterUsage[0].subsystem = "US";

 start_info->adapterUsage[0].wid = use_window_1;

 start_info->adapterUsage[0].mem = 1048577;

 start_info->adapterUsage[1].dev_name = use_adapter_2;

 start_info->adapterUsage[1].protocol = "MPI";

 start_info->adapterUsage[1].subsystem = "US";

 start_info->adapterUsage[1].wid = use_window_2;

 start_info->adapterUsage[1].mem = 1048577;

 if ((rc = ll_start_job_ext(start_info)) != API_OK)

 {

 printf("Error %d returned attempting to start Job Step %s.%d.%d on %s\n",

 rc,

 start_info->StepId.from_host,

 start_info->StepId.cluster,

 start_info->StepId.proc,

 start_info->nodeList[0]

);

 }

 else

 {

 printf("ll_start_job_ext() invoked to start job step: "

 "%s.%d.%d on machine: %s.\n\n",

 start_info->StepId.from_host, start_info->StepId.cluster,

 start_info->StepId.proc, start_info->nodeList[0]);

 }

 free(start_info->nodeList[0]);

 free(start_info);

Finally, when the step and job element are no longer in use, ll_free_objs() and

ll_deallocate() should be called on the query element.

Example: Changing scheduler types

You can toggle between the default LoadLeveler scheduler and other types of

schedulers by using the SCHEDULER_TYPE keyword. Changes to

SCHEDULER_TYPE will not take effect at reconfiguration. The administrator must

stop and restart or recycle LoadLeveler when changing SCHEDULER_TYPE. A

combination of changes to SCHEDULER_TYPE and some other keywords may

terminate LoadLeveler.

Using an external scheduler

Chapter 6. Performing additional administrator tasks 115

The following example illustrates how you can toggle between the default

LoadLeveler scheduler and an external scheduler, such as the Extensible Argonne

Scheduling sYstem (EASY), developed by Argonne National Laboratory and

available as public domain code.

If you are running the default LoadLeveler scheduler, perform the following steps

to switch to an external scheduler:

1. In the configuration file, set SCHEDULER_TYPE = API

2. On the central manager machine:

v Issue llctl -g stop and llctl -g start, or

v Issue llctl -g recycle

If you are running an external scheduler, this is how you can re-enable the

LoadLeveler scheduling algorithm:

1. In the configuration file, set SCHEDULER_TYPE = LL_DEFAULT

2. On the central manager machine:

v Issue llctl -g stop and llctl -g start, or

v Issue llctl -g recycle

Preempting and resuming jobs

The BACKFILL scheduler allows LoadLeveler jobs to be preempted so that a

higher priority job step can run. Administrators may specify not only preemption

rules for job classes, but also the method that LoadLeveler uses to preempt jobs.

The BACKFILL scheduler supports various methods of preemption.

LoadLeveler for Linux does not support use of the suspend method under the

BACKFILL scheduler.

Use Table 27 to find more information about preemption.

 Table 27. Roadmap of tasks for using preemption

Subtask Associated instructions (see . . .)

Learn about types of

preemption and what it

means for preempted jobs

“Overview of preemption”

Prepare the LoadLeveler

environment and jobs for

preemption

“Planning to preempt jobs” on page 117

Configure LoadLeveler to use

preemption

“Steps for configuring a scheduler to preempt jobs” on page

120

Overview of preemption

LoadLeveler supports two types of preemption:

v System-initiated preemption

– Automatically enforced by LoadLeveler, except for job steps running under a

reservation.

– Governed by the PREEMPT_CLASS rules defined in the global configuration

file.

– When resources required by an incoming job are in use by other job steps, all

or some of those job steps in certain classes may be preempted according to

the PREEMPT_CLASS rules.

Changing scheduler types

116 TWS LoadLeveler: Using and Administering

– An automatically preempted job step will be resumed by LoadLeveler when

resources become available and conditions such as START_CLASS rules are

satisfied.

– An automatically preempted job step cannot be resumed using llpreempt

command or ll_preempt subroutine.
v User-initiated preemption

– Manually initiated by LoadLeveler administrators using llpreempt command

or ll_preempt subroutine.

– A manually preempted job step cannot be resumed automatically by

LoadLeveler.

– A manually preempted job step can be resumed using llpreempt command or

ll_preempt subroutine. Issuing this command or subroutine, however, does

not guarantee that the job step will successfully be resumed. A manually

preempted job step that was resumed through these interfaces competes for

resources with system-preempted job steps, and will be resumed only when

resources become available.

– All steps in a set of coscheduled job steps will be preempted if one or more

steps in the step is preempted.

– A coscheduled step will not be resumed until all steps in the set of

coscheduled job steps can be resumed.

For the BACKFILL scheduler only, administrators may select which method

LoadLeveler uses to preempt and resume jobs. The suspend method is the default

behavior, and is the preemption method LoadLeveler uses for any external

schedulers that support preemption. For more information about preemption

methods, see “Planning to preempt jobs.”

For a preempted job to be resumed after system- or user-initiated preemption

occurs through a method other than suspend, the restart keyword in the job

command file must be set to yes. Otherwise, LoadLeveler vacates the job step and

removes it from the cluster.

In order to determine the preempt type and preempt method to use when a

coscheduled step preempts another step, an order of precedence for preempt types

and preempt methods has been defined. All steps in the preempting coscheduled

step will be examined and the preempt type and preempt method having the

highest precedence will be used. The order of precedence for preempt type will be

ALL, ENOUGH. The precedence order for preempt method will be remove, vacate,

system hold, user hold, suspend.

When coscheduled steps are running, if one step is preempted as a result of a

system initiated preemption, then all coscheduled steps will be preempted. This

implies that more resource than necessary might be preempted when one of the

steps being preempted is a coscheduled step.

Planning to preempt jobs

Consider the following points when planning to use preemption:

v Avoiding circular preemption under the BACKFILL scheduler

BACKFILL scheduling enables job preemption using rules specified with the

PREEMPT_CLASS keyword. When you are setting up the preemption rules,

make sure that you do not create a circular preemption path. Circular

preemption causes a job class to preempt itself after applying the preemption

rules recursively. For example, the following keyword definitions set up circular

preemption rules on Class_A.:

Preempting and resuming jobs

Chapter 6. Performing additional administrator tasks 117

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

PREEMPT_CLASS[Class_A] = ALL { Class_B }

PREEMPT_CLASS[Class_B] = ALL { Class_C }

PREEMPT_CLASS[Class_C] = ENOUGH { Class_A }

Another example of circular preemption involves allclasses:

PREEMPT_CLASS[Class_A] = ENOUGH {allclasses}

PREEMPT_CLASS[Class_B] = ALL {Class_A}

In this instance, allclasses means all classes except Class_A, any additional

preemption rule preempting Class_A causes circular preemption.

v Understanding implied START_CLASS values

Using the ″ALL″ value in the PREEMPT_CLASS keyword places implied

restrictions on when a job can start. For example,

PREEMPT_CLASS[Class_A] = ALL {Class_B Class_C}

tells LoadLeveler two things:

1. If a new Class_A job is about to run on a node set, then preempt all Class_B

and Class_C jobs on those nodes

2. If a Class_A job is running on a node set, then do not start any Class_B or

Class_C jobs on those nodes

This PREEMPT_CLASS statement also implies the following START_CLASS

expressions:

1. START_CLASS[Class_B] = (Class_A < 1)

2. START_CLASS[Class_C] = (Class_A < 1)

LoadLeveler adds all implied START_CLASS expressions to the START_CLASS

expressions specified in the configuration file. This overrides any existing values

for START_CLASS.

For example, if the configuration file contains the following statements:

PREEMPT_CLASS[Class_A] = ALL {Class_B Class_C}

START_CLASS[Class_B] = (Class_A < 5)

START_CLASS[Class_C] = (Class_C < 3)

When LoadLeveler runs through the configuration process, the

PREEMPT_CLASS statement on the first line generates the two implied

START_CLASS statements. When the implied START_CLASS statements get

added in, the user specified START_CLASS statements are overridden and the

resulting START_CLASS statements are effectively equivalent to:

START_CLASS[Class_B] = (Class_A < 1)

START_CLASS[Class_C] = (Class_C < 3) && (Class_A < 1)

Note: LoadLeveler’s central manager (CM) uses these effective expressions

instead of the original statements specified in the configuration file. The

output from llclass -l displays the original customer specified

START_CLASS expressions.

v Selecting the preemption method under the BACKFILL scheduler

Use Table 28 on page 119 and Table 29 on page 119 to determine which

preemption you want to use for jobs running under the BACKFILL scheduler.

You may define one or more of the following:

– A default preemption method to be used for all job classes, by setting the

DEFAULT_PREEMPT_METHOD keyword in the configuration file.

– A specific preemption method for one or more classes or job steps, by using

an option on:

- The PREEMPT_CLASS statement in the configuration file.

- The llpreempt command, ll_preempt subroutine or ll_preempt_jobs

subroutine.

Preempting and resuming jobs

118 TWS LoadLeveler: Using and Administering

Notes:

1. LoadLeveler for Linux does not support the suspend method of preemption.

2. Process tracking must be enabled in order to use the suspend method to

preempt a job. To configure LoadLeveler for process tracking, see “Tracking

job processes” on page 64.

3. For a preempted job to be resumed after system- or user-initiated preemption

occurs through a method other than suspend and remove, the restart

keyword in the job command file must be set to yes. Otherwise, LoadLeveler

vacates the job step and removes it from the cluster.

 Table 28. Preemption methods for which LoadLeveler automatically resumes preempted jobs

Preemption

method

(abbreviation)

LoadLeveler resumes preempted job:

At this time At this location At this processing point

Suspend (su) When preempting job

completes

On the same nodes At the point of suspension

Vacate (vc) When nodes are

available

Any nodes that meet

job requirements

At the beginning or at the

last successful checkpoint

 Table 29. Preemption methods for which administrator or user intervention is required

Preemption

method

(abbreviation) Required intervention

LoadLeveler resumes preempted job:

At this location At this processing point

Remove (rm) Administrator or user must

resubmit the preempted job

Any nodes that

meet job

requirements,

when they are

available

At the beginning or at

the last successful

checkpoint System Hold

(sh)

Administrator must release

the preempted job

User Hold (uh) User must release the

preempted job

v Understanding how LoadLeveler treats resources held by jobs to be

preempted

When a job step is running, it may be holding the following resources:

– Processors

– Scheduling slots

– Real memory

– ConsumableCpus and ConsumableMemory

– Communication switches, if the PREEMPTION_TYPE keyword is set to FULL

in the configuration file.

When LoadLeveler suspends preemptable jobs running under the BACKFILL

scheduler, certain resources held by those jobs do not become available for the

preempting jobs. These resources include ConsumableVirtualMemory and

floating resources. Under the BACKFILL scheduler only, LoadLeveler releases

these resources when you select a preemption method other than suspend. For

all preemption methods other than suspend, LoadLeveler treats all job-step

resources as available when it preempts the job step.

v Understanding how LoadLeveler processes multiple entries for the same

keywords

If there are multiple entries for the same keyword in either a configuration file

or an administration file, the last entry wins. For example, the following

statements are all valid specifications for the same keyword START_CLASS:

Preempting and resuming jobs

Chapter 6. Performing additional administrator tasks 119

START_CLASS [Class_B] = (Class_A < 1)

START_CLASS [Class_B] = (Class_B < 1)

START_CLASS [Class_B] = (Class_C < 1)

However, all three statements identify Class_B as the incoming class.

LoadLeveler resolves these statements according to the ″last one wins″ rule.

Because of that, the actual value used for the keyword is (Class_C < 1).

Steps for configuring a scheduler to preempt jobs

Before you begin:

v To define rules for starting and preempting jobs, you need to know certain

details about the job characteristics and workload at your installation, including:

– Which jobs require the same resources, or must be run on the same machines,

and so on. This knowledge allows you to group specific jobs into a class.

– Which jobs or classes have higher priority than others. This knowledge allows

you to define which job classes can preempt other classes.
v To correctly configure LoadLeveler to preempt jobs, you might need to refer to

the following information:

– “Choosing a scheduler” on page 42.

– “Planning to preempt jobs” on page 117.

– Chapter 12, “Configuration file reference,” on page 243.

– Chapter 13, “Administration file reference,” on page 301.

– “llctl - Control LoadLeveler daemons” on page 409.

Perform the following steps to configure a scheduler to preempt jobs:

1. In the configuration file, use the SCHEDULER_TYPE keyword to define the

type of LoadLeveler or external scheduler you want to use. Of the LoadLeveler

schedulers, only the BACKFILL scheduler supports preemption.

Rule: If you select the BACKFILL or API scheduler, you must set the

PREEMPTION_SUPPORT configuration keyword to either full or no_adapter.

2. (Optional) In the configuration file, use the DEFAULT_PREEMPT_METHOD

to define the default method that the BACKFILL scheduler should use for

preempting jobs.

Alternatives: You also may set the preemption method through:

v The PREEMPT_CLASS keyword or on the LoadLeveler preemption

command or APIs, which override the setting for the

DEFAULT_PREEMPT_METHOD keyword.

v The LoadLeveler GUI by selecting Admin � Preempt.
3. For either the BACKFILL or API scheduler, to preempt by the suspend method

requires that you set the PROCESS_TRACKING configuration keyword to

true.

4. In the configuration file, use the PREEMPT_CLASS and START_CLASS to

define the preemption and start policies for job classes.

5. In the administration file, use the max_total_tasks keyword to define the

maximum number of tasks that may be run per user, group, or class.

6. On the central manager machine:

v Issue llctl -g stop and llctl -g start, or

v Issue llctl -g recycle

When you are done with this procedure, you can use the llq command to

determine whether jobs are being preempted and resumed correctly. If not, use the

LoadLeveler logs to trace the actions of each daemon involved in preemption to

determine the problem.

Preempting and resuming jobs

120 TWS LoadLeveler: Using and Administering

Configuring LoadLeveler to support reservations

Under the BACKFILL scheduler only, LoadLeveler allows authorized users to make

reservations, which specify a time period during which specific node resources are

reserved for use by particular users or groups. Normally, jobs wait to be

dispatched until the resources they require become available. Through the use of

reservations, wait time can be reduced because only jobs bound to the reservation

may use the node resources as soon as the reservation period begins.

Use Table 30 to find additional information about reservations.

 Table 30. Roadmap of reservation tasks for administrators

Subtask Associated instructions (see . . .)

Learn how reservations work in the

LoadLeveler environment

v “Overview of reservations” on page 23

v “Understanding the reservation life cycle”

on page 198

Configuring a LoadLeveler cluster to

support reservations

v “Steps for configuring reservations in a

LoadLeveler cluster”

v “Examples: Reservation keyword

combinations in the administration file” on

page 123

v “Collecting accounting data for reservations”

on page 126

Working with reservations:

v Creating reservations

v Submitting jobs under a reservation

v Managing reservations

“Working with reservations” on page 197

Correctly coding and using administration

and configuration keywords

v Chapter 13, “Administration file reference,”

on page 301

v Chapter 12, “Configuration file reference,”

on page 243

Steps for configuring reservations in a LoadLeveler cluster

Before you begin:

v You need to know that only the BACKFILL scheduler supports the use of

reservations. For information about configuring the BACKFILL scheduler, see

“Choosing a scheduler” on page 42.

v You need to decide:

– Which users will be allowed to create reservations.

– How many reservations users may own, and how long a duration for their

reservations will be allowed.

– Which nodes will be used for reservations.

– How much setup time is required before the reservation period starts.

– Whether accounting data for reservations is to be saved.
v For examples of possible reservation keyword combinations, see “Examples:

Reservation keyword combinations in the administration file” on page 123.

v For details about specific keyword syntax and use:

– In the administration file, see Chapter 13, “Administration file reference,” on

page 301.

– In the configuration file, see Chapter 12, “Configuration file reference,” on

page 243.

Configuring LoadLeveler for reservations

Chapter 6. Performing additional administrator tasks 121

Perform the following steps to configure reservations:

1. In the administration file, modify the user or group stanzas to authorize users

to create reservations. You may grant the ability to create reservations to an

individual user, a group of users, or a combination of users and groups. To do

so, define the following keywords in the appropriate user or group stanzas:

v max_reservations, to set the maximum number of reservations that a user or

group may have.

v (Optional) max_reservation_duration, to set the maximum amount of time

for the reservation period.

Tip: To quickly set up and use reservations, use one of the following examples:

v To allow every user to create a reservation, add max_reservations=1 to the

default user stanza. Then every administrator or user may create a

reservation, as long as the number of reservations has not reached the limit

for a LoadLeveler cluster.

v To allow a specific group of users to make 10 reservations, add

max_reservations=10 to the group stanza for that LoadLeveler group. Then

every user in that group may create a reservation, as long as the number of

reservations has not reached the limit for that group or for a LoadLeveler

cluster.

See the max_reservations description in Chapter 13, “Administration file

reference,” on page 301 for more information about setting this keyword in the

user or group stanza.

2. In the administration file, modify the machine stanza of each machine that may

be reserved. To do so, set the reservation_permitted keyword to true.

Tip: If you want to allow every machine to be reserved, you do not have to set

this keyword; by default, any LoadLeveler machine may be reserved. If you

want to prevent particular machines from being reserved, however, you must

define a machine stanza for that machine and set the reservation_permitted

keyword to false.

3. In the global configuration file, set reservation policy by specifying values for

the following keywords:

v MAX_RESERVATIONS to specify the maximum number of reservations per

cluster.

Rule: The total number of reservations supported in a LoadLeveler cluster is

10.

v RESERVATION_CAN_BE_EXCEEDED to specify whether LoadLeveler will

be permitted to schedule job steps bound to a reservation when their

expected end times exceed the reservation end time.

The default for this keyword is TRUE, which means that LoadLeveler will

schedule these bound job steps even when they are expected to continue

running beyond the time at which the reservation ends. Whether these job

steps run and successfully complete depends on resource availability, which

is not guaranteed after the reservation ends. In addition, these job steps

become subject to preemption rules after the reservation ends.

Tip: You might want to set this keyword value to FALSE to prevent users

from binding long-running jobs to run under reservations of short duration.

v RESERVATION_MIN_ADVANCE_TIME to define the minimum time

between the time at which a reservation is created and the time at which the

reservation is to start.

Tip: To reduce the impact to the currently running workload, consider

changing the default for this keyword, which allows reservations to begin as

soon as they are created. You may, for example, require reservations to be

Configuring LoadLeveler for reservations

122 TWS LoadLeveler: Using and Administering

made at least one day (1440 minutes) in advance, by specifying

RESERVATION_MIN_ADVANCE_TIME=1440 in the global configuration file.

v RESERVATION_PRIORITY to define whether LoadLeveler administrators

may reserve nodes on which running jobs are expected to end after the start

time for the reservation.

Tip: The default for this keyword is NONE, which means that LoadLeveler will

not reserve a node on which running jobs are expected to end after the start

time for the reservation. If you want to allow LoadLeveler administrators to

reserve specific nodes regardless of the expected end times of job steps

currently running on the node, set this keyword value to HIGH. Note,

however, that setting this keyword value to HIGH might increase the number

of job steps that must be preempted when LoadLeveler sets up the

reservation, and many jobs might remain in Preempted state. This also

applies to Blue Gene job steps.

This keyword value applies only for LoadLeveler administrators; other

reservation owners do not have this capability.

v RESERVATION_SETUP_TIME to define the amount of time LoadLeveler

uses to prepare for a reservation before it is to start.
4. (Optional) In the global configuration file, set controls for the collection of

accounting data for reservations:

v To turn on accounting for reservations, add the A_RES flag to the ACCT

keyword.

v To specify a file other than the default history file to contain the data, use the

RESERVATION_HISTORY keyword.

To learn how to collect accounting data for reservations, see “Collecting

accounting data for reservations” on page 126.

5. If LoadLeveler is already started, to process the changes you made in the

preceding steps, issue the command llctl -g reconfig

Tip: If you have changed the value of only the RESERVATION_PRIORITY

keyword, issue the command llctl reconfig only on the central manager node.

Result: The new keyword values take effect immediately, but they do not

change the attributes of existing reservations.

When you are done with this procedure, you may perform additional tasks

described in “Working with reservations” on page 197.

Examples: Reservation keyword combinations in the

administration file

The following examples demonstrate LoadLeveler behavior when the

max_reservations and max_reservation_duration keywords are set. The examples

assume that only the user and group stanzas listed exist in the LoadLeveler

administration file.

v Example 1: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

rich: type = user

 default_group = group2

This example shows that, by default, no one is allowed to make any

reservations. No one, including LoadLeveler administrators, is permitted to

make any reservations unless the max_reservations keyword is used.

Configuring LoadLeveler for reservations

Chapter 6. Performing additional administrator tasks 123

|
|
|
|
|
|
|
|
|

v Example 2: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

rich: type = user

 default_group = group2

 max_reservations = 5

This example shows how permission to make reservations can be granted to a

specific user through the user stanza only. Because the max_reservations

keyword is not used in any group stanza, by default, the group stanzas neither

grant permissions nor put any restrictions on reservation permissions. User Rich

can make reservations in any group (group2, No_Group, Group_A, and so on),

whether or not the group stanzas exist in the LoadLeveler administration file.

The total number of reservations user Rich can own at any given time is limited

to five.

v Example 3: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

 max_reservations = 5

rich: type = user

 default_group = group2

This example shows how permission to make reservations can be granted to a

group of users through the group stanza only. Because the max_reservations

keyword is not used in any user stanza, by default, the user stanzas neither

grant nor deny permission to make reservations. All users in group2 (Rich, Dave

and Steve) can make reservations, but they must make reservations in group2

because other groups do not grant the permission to make reservations. The

total number of reservations the users in group2 can own at any given time is

limited to five.

v Example 4: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

 max_reservations = 5

rich: type = user

 default_group = group2

 max_reservations = 0

This example shows how permission to make reservations can be granted to a

group of users except one specific user. Because the max_reservations keyword

is set to zero in the user stanza for Rich, he does not have permission to make

any reservation, even though all other users in group2 (Dave and Steve) can

make reservations.

v Example 5: Assume the administration file contains the following stanzas:

default: type = group

 max_reservations = 0

default: type = user

 max_reservations = 0

Configuring LoadLeveler for reservations

124 TWS LoadLeveler: Using and Administering

group2: type = group

 include_users = rich dave steve

 max_reservations = 5

rich: type = user

 default_group = group2

 max_reservations = 5

dave: type = user

 max_reservations = 2

This example shows how permission to make reservations can be granted to

specific user and group pairs. Because the max_reservations keyword is set to

zero in both the default user and group stanza, no one has permission to make

any reservation unless they are specifically granted permission through both the

user and group stanza. In this example:

– User Rich can own at any time up to five reservations in group2 only.

– User Dave can own at any time up to two reservations in group2 only.

The total number of reservations they can own at any given time is limited to

five. No other combination of user or group pairs can make any reservations.

v Example 6: Assume the administration file contains the following stanzas:

default: type = user

 max_reservations = 1

This example permits any user to make one reservation in any group, until the

number of reservations reaches the maximum number allowed in the

LoadLeveler cluster.

v Example 7: Assume the administration file contains the following stanzas:

default: type = group

 max_reservations = 0

default: type = user

 max_reservations = 0

group1: type = group

 max_reservations = 6

 max_reservation_duration = 1440

carol: type = user

 default_group = group1

 max_reservations = 4

 max_reservation_duration = 720

dave: type = user

 default_group = group1

 max_reservations = 4

 max_reservation_duration = 2880

In this example, two users, Carol and Dave, are members of group1. Neither

Carol nor Dave belong to any other group with a group stanza in the

LoadLeveler administration file, although they may use any string as the name

of a LoadLeveler group and belong to it by default.

Because the max_reservations keyword is set to zero in the default group stanza,

reservations can be made only in group1, which has an allotment of six

reservations. Each reservation can have a maximum duration of 1440 minutes

(24 hours).

Considering only the user-stanza attributes for reservations:

– User Carol can make up to four reservations with each having a maximum

duration of 720 minutes (12 hours).

– User Dave can make up to four reservations with each having a maximum

duration of 2880 minutes (48 hours).

Configuring LoadLeveler for reservations

Chapter 6. Performing additional administrator tasks 125

If there are no reservations in the system and user Carol wants to make four

reservations, she may do so. Each reservation can have a maximum duration of

no more than 720 minutes. If Carol attempts to make a reservation with a

duration greater than 720 minutes, LoadLeveler will not make the reservation

because it exceeds the duration allowed for Carol.

Assume that Carol has created four reservations, and user Dave now wants to

create four reservations:

– The number of reservations Dave may make is limited by the state of Carol’s

reservations and the maximum limit on reservations for group1. If the four

reservations Carol made are still being set up, or are active, active shared or

waiting, LoadLeveler will restrict Dave to making only two reservations at

this time.

– Because the value of max_reservation_duration for the group is more

restrictive than max_reservation_duration for user Dave, LoadLeveler

enforces the group value, 1440 minutes.

If Dave belonged to another group that still had reservations available, then he

could make reservations under that group, assuming the maximum number of

reservations for the cluster had not been met. However, in this example, Dave

cannot make any further reservations because they are allowed in group1 only.

Collecting accounting data for reservations

LoadLeveler can collect accounting data for reservations, which are set periods of

time during which node resources are reserved for the use of particular users or

groups. To enable recording of reservation information, specify the following

keywords in the configuration file:

v To turn on accounting for reservations, add the A_RES flag to the ACCT

keyword.

v To specify a file other than the default history file to contain the data, use the

RESERVATION_HISTORY keyword.

See Chapter 12, “Configuration file reference,” on page 243 for details about the

ACCT and RESERVATION_HISTORY keywords.

When these keyword values are set and a reservation ends or is canceled,

LoadLeveler records the following information:

v The reservation ID

v The time at which the reservation was created

v The user ID of the reservation owner

v The name of the owning group

v Requested and actual start times

v Requested and actual duration

v Actual time at which the reservation ended or was canceled

v Whether the reservation was created with the SHARED or REMOVE_ON_IDLE options

v A list of users and a list of groups that were authorized to use the reservation

v The number of reserved nodes

v The names of reserved nodes

This reservation information is appended in a single line to the reservation history

file for the reservation. The format of reservation history data is:

Reservation ID!Reservation Creation Time!Owner!Owning Group!Start Time! \

 Actual Start Time!Duration!Actual Duration!Actual End Time!SHARED(yes|no)! \

REMOVE_ON_IDLE(yes|no)!Users!Groups!Number of Nodes!Nodes!BG C-nodes! \

 BG Connection!BG Shape!Number of BG BPs!BG BPs

In reservation history data:

Configuring LoadLeveler for reservations

126 TWS LoadLeveler: Using and Administering

|
|
|
|

v The unit of measure for start times and end times is the number of seconds since

January 1, 1970.

v The unit of time for durations is seconds.

The following is an example of a reservation history file entry:

bgldd1.rchland.ibm.com.68.r!1150242970!ezhong!group1!1150243200!1150243200! \

 300!300!1150243500!no!no!yang!fvt,dev!1!bgldd1!0!!!0!

bgldd1.rchland.ibm.com.54.r!1150143472!ezhong!No_Group!1153612800!0!60!0! \

 1150243839!no!no!!!0!32!MESH!0x0x0!1!R010(J115)

bgldd1.rchland.ibm.com.70.r!1150244654!ezhong!No_Group!1150244760!1150244760! \

 60!60!1150244820!yes!yes!user1,user2!group1,group2!0!512!MESH!1x1x1!1!R010

To collect the reservation information stored in the history file, use one of the

following:

v The llacctmrg command with the -R option. For llacctmrg command syntax, see

“llacctmrg - Collect machine history files” on page 387.

v The LoadLeveler GUI. From the Machines window, use the LoadLeveler GUI by

selecting one or more machines, then selecting Admin � Collect Reservation

Data and specifying the directory to contain the merged file. If you do not enter

a directory, LoadLeveler uses the directory specified in the GLOBAL_HISTORY

keyword in the configuration file.

To format reservation history data contained in a file, use the sample script

llreshist.pl in directory ${RELEASEDIR}/samples/llres/.

Steps for integrating LoadLeveler with AIX Workload Manager

Another administrative setup task you must consider is whether you want to

enforce resource usage of ConsumableCPUs and ConsumableMemory. If you

want to control these resources, AIX Workload Manager (WLM) can be integrated

with LoadLeveler to balance workloads at the machine level.

WLM is not supported in LoadLeveler for Linux.

Workload balancing is done by assigning relative priorities to job processes. These

job priorities prevent one job from monopolizing system resources when that

resource is under contention.

To integrate LoadLeveler and WLM, perform the following steps:

1. Define ConsumableCpus, ConsumableMemory, or both as consumable

resources in the SCHEDULE_BY_RESOURCES global configuration keyword.

This enables the LoadLeveler scheduler to consider these consumable resources.

2. Define ConsumableCpus, ConsumableMemory, or both in the

ENFORCE_RESOURCE_USAGE global configuration keyword. This enables

enforcement of these consumable resources by AIX WLM.

3. Define hard, soft or shares in the ENFORCE_RESOURCE_POLICY

configuration keyword. This defines what policy is used by LoadLeveler when

setting WLM class resource entitlements.

4. (Optional) Set the ENFORCE_RESOURCE_MEMORY configuration keyword

to true. This setting allows AIX WLM to limit the real memory usage of a

WLM class as precisely as possible. When a class exceeds its limit, all processes

in the class are killed.

Configuring LoadLeveler for reservations

Chapter 6. Performing additional administrator tasks 127

|
|
|
|
|
|

|
|

Rule: ConsumableMemory must be defined in the

ENFORCE_RESOURCE_USAGE keyword in the global configuration file, or

LoadLeveler does not consider the ENFORCE_RESOURCE_MEMORY

keyword to be valid.

Tips:

v When set to true, the ENFORCE_RESOURCE_MEMORY keyword overrides

the policy set through the ENFORCE_RESOURCE_POLICY keyword for

ConsumableMemory only. The ENFORCE_RESOURCE_POLICY keyword

value still applies for ConsumableCpus.

v ENFORCE_RESOURCE_MEMORY may be set in either the global or the

local configuration file. In the global configuration file, this keyword sets the

default value for all the machines in the LoadLeveler cluster. If the keyword

also is defined in a local file, the local setting overrides the global setting.
5. Using the resources keyword in a machine stanza in the administration file,

define the CPU and real memory machine resources available for user jobs.

v The ConsumableCpus reserved word accepts a count value of ″all.″ This

indicates that the initial resource count will be obtained from the Startd

machine update value for CPUs.

v If no resources are defined for a machine, then no enforcement will be done

on that machine.

v If the count specified by the administrator is greater than what the Startd

update indicates, the initial count value will be reduced to match what the

Startd reports.

v If the count specified by the administrator is less than what the Startd

update indicates, the WLM resource shares assigned to a job will be adjusted

to represent that difference and a WLM softlimit will be defined for each

WLM class. For example, if the administrator defines 8 CPUs on a 16 CPU

machine, then a job requesting 4 CPUs will get a share of 4 and a softlimit of

50%.

v Use caution when determining the amount of real memory available for user

jobs. A certain percentage of a machine’s real memory will be dedicated to

the Default and System WLM classes and will not be included in the

calculation of real memory available for users jobs. Start LoadLeveler with

the ENFORCE_RESOURCE_USAGE keyword enabled and issue wlmstat -v

-m. Look at the npg column to determine how much memory is being used

by these classes.
6. Decide if all jobs should have their CPU or real memory resources enforced

and then define the ENFORCE_RESOURCE_SUBMISSION global

configuration keyword.

v If the value specified is true, LoadLeveler will check all jobs at submission

time for the resources keyword. The job’s resources keyword needs to have

the same resources specified as the ENFORCE_RESOURCE_USAGE

keyword in order to be submitted.

v If the value specified is false, no checking will be done and jobs submitted

without the resources keyword will not have resources enforced and may

interfere with other jobs whose resources are enforced.

v To support existing job command files without the resources keyword, the

default_resources keyword in the class stanza can be defined. The

default_resources keyword needs to be defined in the default interactive

class to support interactive jobs.

For more information on the ENFORCE_RESOURCE_USAGE and the

ENFORCE_RESOURCE_SUBMISSION keywords, see “Defining usage policies

for consumable resources” on page 56.

LoadLeveler with AIX Workload Manager

128 TWS LoadLeveler: Using and Administering

LoadLeveler support for checkpointing jobs

Checkpointing is a method of periodically saving the state of a job step so that if

the step does not complete it can be restarted from the saved state. When

checkpointing is enabled, checkpoints can be initiated from within the application

at major milestones, or by the user, administrator or LoadLeveler external to the

application. Both serial and parallel job steps can be checkpointed.

Once a job step has been successfully checkpointed, if that step terminates before

completion, the checkpoint file can be used to resume the job step from its saved

state rather than from the beginning. When a job step terminates and is removed

from the LoadLeveler job queue, it can be restarted from the checkpoint file by

submitting a new job and setting the restart_from_ckpt = yes job command file

keyword. When a job is terminated and remains on the LoadLeveler job queue,

such as when a job step is vacated, the job step will automatically be restarted

from the latest valid checkpoint file. A job can be vacated as a result of flushing a

node, issuing checkpoint and hold, stopping or recycling LoadLeveler or as the

result of a node crash.

To find out more about checkpointing jobs, use the information in Table 31.

 Table 31. Roadmap of tasks for checkpointing jobs

Subtask Associated instructions (see . . .)

Preparing the LoadLeveler

environment for

checkpointing and restarting

jobs

v “Checkpoint keyword summary”

v “Planning considerations for checkpointing jobs” on page

130

v “AIX checkpoint and restart limitations” on page 131

v “Naming checkpoint files and directories” on page 134

Checkpointing and restarting

jobs

v “Checkpointing a job” on page 214

v “Removing old checkpoint files” on page 135

Correctly specifying

configuration and

administration file keywords

v Chapter 12, “Configuration file reference,” on page 243

v Chapter 13, “Administration file reference,” on page 301

Checkpoint keyword summary

The following is a summary of keywords associated with the checkpoint and

restart function.

v Configuration file keywords

– CKPT_CLEANUP_INTERVAL

– CKPT_CLEANUP_PROGRAM

– CKPT_EXECUTE_DIR

– MAX_CKPT_INTERVAL

– MIN_CKPT_INTERVAL

For more information about these keywords, see Chapter 12, “Configuration file

reference,” on page 243.

v Administration file keywords

– ckpt_dir

– ckpt_time_limit

For more information about these keywords, see Chapter 13, “Administration file

reference,” on page 301.

v Job command file keywords

Checkpointing jobs

Chapter 6. Performing additional administrator tasks 129

– checkpoint

– ckpt_dir

– ckpt_execute_dir

– ckpt_file

– ckpt_time_limit

– restart_from_ckpt

For more information about these keywords, see “Job command file keyword

descriptions” on page 336.

Planning considerations for checkpointing jobs

Review the following guidelines before you submit a checkpointing job:

v Plan for jobs that you will restart on different nodes

If you plan to migrate jobs (restart jobs on a different node or set of nodes), you

should understand the difference between writing checkpoint files to a local file

system versus a global file system (such as AFS or GPFS). The ckpt_file, and

ckpt_dir keywords in the job command and configuration files allow you to

write to either type of file system. If you are using a local file system, before

restarting the job from checkpoint, make certain that the checkpoint files are

accessible from the machine on which the job will be restarted.

v Reserve adequate disk space

A checkpoint file requires a significant amount of disk space. The checkpoint

will fail if the directory where the checkpoint file is written does not have

adequate space. For serial jobs, one checkpoint file will be created. For parallel

jobs, one checkpoint file will be created for each task. Since the old set of

checkpoint files are not deleted until the new set of files are successfully created,

the checkpoint directory should be large enough to contain two sets of

checkpoint files. You can make an accurate size estimate only after you have run

your job and noticed the size of the checkpoint file that is created.

v Plan for staging executables

If you want to stage the executable for a job step, use the ckpt_execute_dir

keyword to define the directory where LoadLeveler will save the executable.

This directory cannot be the same as the current location of the executable file,

or LoadLeveler will not stage the executable.

You may define the ckpt_execute_dir keyword in either the configuration file or

the job command file. To decide where to define the keyword, use the

information in Table 32.

 Table 32. Deciding where to define the directory for staging executables

If the ckpt_execute_dir

keyword is defined in: Then the following information applies:

The configuration file only v LoadLeveler stages the executable file in a new subdirectory

of the specified directory. The name of the subdirectory is the

job step ID.

v The user is the owner of the subdirectory and has permission

700.

v If the user issues the llckpt command with the -k option,

LoadLeveler deletes the staged executable.

v LoadLeveler will delete the subdirectory and the staged

executable when the job step ends.

Checkpointing jobs

130 TWS LoadLeveler: Using and Administering

Table 32. Deciding where to define the directory for staging executables (continued)

If the ckpt_execute_dir

keyword is defined in: Then the following information applies:

The job command file only v LoadLeveler stages the executable file in the directory

specified in the job command file.

v The user is the owner of the file and has execute permission

for it.

v The user is responsible for deleting the staged file after the

job step ends.

Both the configuration and

job command files

Neither file (the keyword

is not defined)

LoadLeveler does not stage the executable file for the job step.

v Set your checkpoint file size to the maximum

To make sure that your job can write a large checkpoint file, assign your job to a

job class that has its file size limit set to the maximum (unlimited). In the

administration file, set up a class stanza for checkpointing jobs with the

following entry:

 file_limit = unlimited,unlimited

This statement specifies that there is no limit on the maximum size of a file that

your program can create.

v Choose a unique checkpoint file name

To prevent another job step from writing over your checkpoint file with another

checkpoint file, make certain that your checkpoint file name is unique. The

ckpt_dir and ckpt_file keywords give you control over the location and name of

these files.

For mode information, see “Naming checkpoint files and directories” on page

134.

AIX checkpoint and restart limitations

v The following items cannot be checkpointed:

– Programs that are being run under:

- The dynamic probe class library (DPCL).

- Any debugger.
– MPI programs that are not compiled with mpcc_r, mpCC_r, mpxlf_r,

mpxlf90_r, or mpxlf95_r.

– Processes that use:

- Extended shmat support

- Pinned shared memory segments.
– Sets of processes in which any process is running a setuid program when a

checkpoint occurs.

– Sets of processes if any process is running a setgid program when a

checkpoint occurs.

– Interactive parallel jobs for which POE input or output is a pipe.

– Interactive parallel jobs for which POE input or output is redirected, unless

the job is submitted from a shell that had the CHECKPOINT environment

variable set to yes before the shell was started. If POE is run from inside a

shell script and is run in the background, the script must be started from a

shell started in the same manner for the job to be checkpointable.

– Interactive POE jobs for which the su command was used prior to

checkpointing or restarting the job.
v The node on which a process is restarted must have:

Checkpointing jobs

Chapter 6. Performing additional administrator tasks 131

– The same operating system level (including PTFs). In addition, a restarted

process may not load a module that requires a system call from a kernel

extension that was not present at checkpoint time.

– The same switch type as the node where the checkpoint occurred.

If any threads in a process were bound to a specific processor ID at checkpoint

time, that processor ID must exist on the node where that process is restarted.

v If the LoadLeveler cluster contains nodes running a mix of 32-bit and 64-bit

kernels then applications must be checkpointed and restarted on the same set of

nodes. For more information, see “llckpt - Checkpoint a running job step” on

page 400 and the restart_on_same_nodes keyword description.

v For a parallel job, the number of tasks and the task geometry (the tasks that are

common within a node) must be the same on a restart as it was when the job

was checkpointed.

v Any regular file open in a process when it is checkpointed must be present on

the node where that process is restarted, including the executable and any

dynamically loaded libraries or objects.

v If any process uses sockets or pipes, user callbacks should be registered to save

data that may be ″in flight″ when a checkpoint occurs, and to restore the data

when the process is resumed after a checkpoint or restart. Similarly, any user

shared memory in a parallel task should be saved and restored.

v A checkpoint operation will not begin on a process until each user thread in that

process has released all pthread locks, if held. This can potentially cause a

significant delay from the time a checkpoint is issued until the checkpoint

actually occurs. Also, any thread of a process that is being checkpointed that

does not hold any pthread locks and tries to acquire one will be stopped

immediately. There are no similar actions performed for atomic locks

(_check_lock and _clear_lock, for example).

v Atomic locks must be used in such a way that they do not prevent the releasing

of pthread locks during a checkpoint. For example, if a checkpoint occurs and

thread 1 holds a pthread lock and is waiting for an atomic lock, and thread 2

tries to acquire a different pthread lock (and does not hold any other pthread

locks) before releasing the atomic lock that is being waited for in thread 1, the

checkpoint will hang.

v A process must not hold a pthread lock when creating a new process (either

implicitly using popen, for example, or explicitly using fork) if releasing the lock

is contingent on some action of the new process. Otherwise, a checkpoint could

occur which would cause the child process to be stopped before the parent

could release the pthread lock causing the checkpoint operation to hang.

v The checkpoint operation will hang if any user pthread locks are held across:

– Any collective communication calls in MPI or LAPI

– Calls to mpc_init_ckpt or mp_init_ckpt
v Processes cannot be profiled at the time a checkpoint is taken.

v There can be no devices other than TTYs or /dev/null open at the time a

checkpoint is taken.

v Open files must either have an absolute pathname that is less than or equal to

PATHMAX in length, or must have a relative pathname that is less than or equal

to PATHMAX in length from the current directory at the time they were opened.

The current directory must have an absolute pathname that is less than or equal

to PATHMAX in length.

v Semaphores or message queues that are used within the set of processes being

checkpointed must only be used by processes within the set of processes being

checkpointed. This condition is not verified when a set of processes is

Checkpointing jobs

132 TWS LoadLeveler: Using and Administering

checkpointed. The checkpoint and restart operations will succeed, but

inconsistent results can occur after the restart.

v The processes that create shared memory must be checkpointed with the

processes using the shared memory if the shared memory is ever detached from

all processes being checkpointed. Otherwise, the shared memory may not be

available after a restart operation.

v The ability to checkpoint and restart a process is not supported for B1 and C2

security configurations.

v A process can only checkpoint another process if it can send a signal to the

process. In other words, the privilege checking for checkpointing processes is

identical to the privilege checking for sending a signal to the process. A

privileged process (the effective user ID is 0) can checkpoint any process. A set

of processes can only be checkpointed if each process in the set can be

checkpointed.

v A process can only restart another process if it can change its entire privilege

state (real, saved, and effective versions of user ID, group ID, and group list) to

match that of the restarted process. A set of processes can only be restarted if

each process in the set can be restarted.

v The only DCE function supported is DCE credential forwarding by LoadLeveler

using the DCE_AUTHENTICATION_PAIR configuration keyword. DCE

credential forwarding is for the sole purpose of DFS™ access by the application.

v The following functions will return ENOTSUP if called in a job that has enabled

checkpointing:

– clock_getcpuclockid()

– clock_getres()

– clock_gettime()

– clock_nanosleep()

– clock_settime()

– mlock()

– mlockall()

– mq_close()

– mq_getattr()

– mq_notify()

– mq_open()

– mq_receive()

– mq_send()

– mq_setattr()

– mq_timedreceive()

– mq_timedsend()

– mq_unlink()

– munlock()

– munlockall()

– nanosleep()

– pthread_barrier_destroy()

– pthread_barrier_init()

– pthread_barrier_wait()

– pthread_barrierattr_destroy()

– pthread_barrierattr_getpshared()

– pthread_barrierattr_init()

– pthread_barrierattr_setpshared()

– pthread_condattr_getclock()

– pthread_condattr_setclock()

– pthread_getcpuclockid()

– pthread_mutex_getprioceiling()

Checkpointing jobs

Chapter 6. Performing additional administrator tasks 133

– pthread_mutex_setprioceiling()

– pthread_mutex_timedlock()

– pthread_mutexattr_getprioceiling()

– pthread_mutexattr_getprotocol()

– pthread_mutexattr_setprioceiling()

– pthread_mutexattr_setprotocol()

– pthread_rwlock_timedrdlock()

– pthread_rwlock_timedwrlock()

– pthread_setschedprio()

– pthread_spin_destroy()

– pthread_spin_init()

– pthread_spin_lock()

– pthread_spin_trylock()

– pthread_spin_unlock()

– sched_get_priority_max()

– sched_get_priority_min()

– sched_getparam()

– sched_getscheduler()

– sched_rr_get_interval()

– sched_setparam()

– sched_setscheduler()

– sem_close()

– sem_destroy()

– sem_getvalue()

– sem_init()

– sem_open()

– sem_post()

– sem_timedwait()

– sem_trywait()

– sem_unlink()

– sem_wait()

– shm_open()

– shm_unlink()

– timer_create()

– timer_delete()

– timer_getoverrun()

– timer_gettime()

– timer_settime()

Naming checkpoint files and directories

At checkpoint time, a checkpoint file and potentially an error file will be created.

For jobs which are enabled for checkpoint, a control file may be generated at the

time of job submission. The directory which will contain these files must pre-exist

and have sufficient space and permissions for these files to be written. The name

and location of these files will be controlled through keywords in the job command

file or the LoadLeveler configuration. The file name specified is used as a base

name from which the actual checkpoint file name is constructed. To prevent

another job step from writing over your checkpoint file, make certain that your

checkpoint file name is unique. For serial jobs and the master task (POE) of

parallel jobs, the checkpoint file name will be <basename>.Tag. For a parallel job, a

checkpoint file is created for each task. The checkpoint file name will be

<basename>.Taskid.Tag.

The tag is used to differentiate between a current and previous checkpoint file. A

control file may be created in the checkpoint directory. This control file contains

Checkpointing jobs

134 TWS LoadLeveler: Using and Administering

information LoadLeveler uses for restarting certain jobs. An error file may also be

created in the checkpoint directory. The data in this file is in a machine readable

format. The information contained in the error file is available in mail, LoadLeveler

logs or is output of the checkpoint command. Both of these files are named with

the same base name as the checkpoint file with the extensions .cntl and .err,

respectively.

Naming checkpoint files for serial and batch parallel jobs

The following describes the order in which keywords are checked to construct the

full path name for a serial or batch checkpoint file:

v Base name for the checkpoint file name

1. The ckpt_file keyword in the job command file

2. The default file name [< jobname.>]<job_step_id>.ckpt

Where:

jobname

The job_name specified in the Job Command File. If job_name is not

specified, it is omitted from the default file name

job_step_id

Identifies the job step that is being checkpointed
v Checkpoint Directory Name

1. The ckpt_file keyword in the job command file, if it contains a ″/″ as the first

character

2. The ckpt_dir keyword in the job command file

3. The ckpt_dir keyword specified in the class stanza of the LoadLeveler admin

file

4. The default directory is the initial working directory

Note that two or more job steps running at the same time cannot both write to the

same checkpoint file, since the file will be corrupted.

Naming checkpointing files for interactive parallel jobs

The following describes the order in which keywords and variables are checked to

construct the full path name for the checkpoint file for an interactive parallel job.

v Checkpoint File Name

1. The value of the MP_CKPTFILE environment variable within the POE

process

2. The default file name, poe.ckpt.<pid>
v Checkpoint Directory Name

1. The value of the MP_CKPTFILE environment variable within the POE

process, if it contains a full path name.

2. The value of the MP_CKPTDIR environment variable within the POE

process.

3. The initial working directory.

Note: The keywords ckpt_dir and ckpt_file are not allowed in the command file

for an interactive session. If they are present, they will be ignored and the

job will be submitted.

Removing old checkpoint files

To keep your system free of checkpoint files that are no longer necessary,

LoadLeveler provides two keywords to help automate the process of removing

these files:

v CKPT_CLEANUP_PROGRAM

v CKPT_CLEANUP_INTERVAL

Checkpointing jobs

Chapter 6. Performing additional administrator tasks 135

Both keywords must contain valid values to automate this process. For information

about configuration file keyword syntax and other details, see Chapter 12,

“Configuration file reference,” on page 243.

LoadLeveler scheduling affinity support

Enabling scheduling affinity allows LoadLeveler jobs to utilize the memory and

adapter affinity features available in IBM eServers equipped with System p5 or

System p4 CPU architecture. The Resource Set (RSet) functionality available in AIX

5L is made available for jobs to use in order to take advantage of these affinity

features. Once the scheduling affinity feature has been configured, users can

request scheduling affinity options for their jobs as a requirement or as a

preference.

Memory affinity is a special purpose option for improving performance on IBM

System p5 or System p4 machines. These machines contain Multiple Chip Modules

(MCMs), each containing multiple processors. System memory is attached to these

MCMs. While any processor can access all of the memory in the system, a

processor has faster access and higher bandwidth when addressing memory that is

attached to its own MCM rather than memory attached to the other MCMs in the

system. The concept of affinity also applies to the I/O subsystem. The processors

running on CPUs from an MCM have faster access to the adapters attached to the

I/O slots of that MCM. I/O affinity will be referred to as adapter affinity in this

topic. For more information on memory and adapter affinity, see AIX Performance

Management Guide.

An RSet contains bit maps for CPU and memory pool resources. The RSet APIs

available in AIX 5L can be used to attach RSets to processes. Attaching an RSet to a

process limits the process to only using the resources contained in the RSet. One of

the main uses of RSets is to limit the application processes to run only on the

processors contained in a single MCM and hence to benefit from memory affinity.

For more information on RSets, see AIX System Management Guide: Operating System

and Devices.

Configuring LoadLeveler to use scheduling affinity

Taking advantage of scheduling affinity requires certain changes to LoadLeveler

configuration files for machines, and in some cases, LoadLeveler administration

files. The steps for enabling LoadLeveler to use scheduling affinity are:

Configure one or more machines to enable scheduling affinity

This is accomplished through the use of the RSET_SUPPORT

configuration file keyword. Machines which are configured with this

keyword indicate the ability to service jobs requesting or requiring

scheduling affinity. Enable RSET_SUPPORT with one of these values:

v Choose RSET_MCM_AFFINITY to allow jobs specifying #@rset =

RSET_MCM_AFFINITY to run on this node. The RSET_MCM_AFFINITY

option enables scheduling affinity. When this option is specified,

LoadLeveler will create and attach RSets to task processes so that the

RSet CPUs will be from same MCM..

v Choose RSET_CONSUMABLE_CPUS allow jobs specifying #@rset =

RSET_CONSUMABLE_CPUS to run on this node. The

RSET_CONSUMABLE_CPUS option is used to indicate that all of the

tasks need to be attached to RSets with a number of CPUs equal to the

number of ConsumableCPUs requested by the job. The CPUs will be

selected such that the same CPU will not be shared among different

Checkpointing jobs

136 TWS LoadLeveler: Using and Administering

|
|

|

tasks. Using this option requires LoadLeveler to be configured to use

ConsumableCPUs. The difference between this option and the

RSET_MCM_AFFINITY option is that when this option is specified,

CPUs are selected regardless of their location with respect to an MCM.

v Choose RSET_USER_DEFINED to allow jobs specifying #@rset =

RSET_USER_DEFINED to run on this node. The RSET_USER_DEFINED

option enables scheduling affinity, allowing users more control over

scheduling affinity parameters by allowing the use of user-defined RSets.

Through the use of user-defined RSets. users can utilize new RSet

features before a LoadLeveler implementation is released. This option

also allows users to specify a different number of CPUs in their RSets

depending on the needs of each task.

Note: If you do not plan to create your own RSets and only want to take

advantage of memory or adapter affinity, we suggest using the

RSET_MCM._AFFINITY option. This allows LoadLeveler to

dynamically allocate CPU and adapter resources to meet the

scheduling affinity requirement of the job.
See “Configuration file keyword descriptions” on page 244 for more

information on the RSET_SUPPORT keyword.

Configure LoadLeveler to recognize ConsumableCPUs

 ConsumableCPUs must be enabled on a machine if the RSET_SUPPORT

configuration file keyword is specified with a value of

RSET_CONSUMABLE_CPUS in global configuration file or local

configuration file for the same machine.

 The RSET_MCM_AFFINITY option for keyword RSET_SUPPORT can be

used with or without ConsumableCPUs enabled. The CPU allocation to

task RSets and task MCM selection will be slightly different in these two

scenarios. If ConsumableCPUs is not specified, all CPUs from an MCM

will be included in the task RSet and the MCM where the least number of

tasks is running will be selected for the next task. If ConsumableCPUs is

enabled, the task RSet will have the ConsumableCPUs number of CPUs in

it and for the next task central manager will select an MCM based on

number of unused CPUs available on MCMs.

 ConsumableCPUs can be specified in several ways:

v If a list of CPUs is specified, only CPUs in the list are made available to

LoadLeveler. CPUs specified in this manner must be on nodes that

support RSets.

v If the number, n, of CPUs available for consumption is specified, the first

n CPUs on nodes supporting RSets are marked available to LoadLeveler.

v If the reserved word all is specified, all CPUs on nodes supporting RSets

are marked available to LoadLeveler.

For more information on specifying ConsumableCPUs, see the resource

keyword description in “Administration file keyword descriptions” on

page 306.

Linux CPU affinity support

Linux CPU affinity support allows users to allocate a CPU on a compute node for

the exclusive use of a job. This support is only available if the compute node is

running the Linux kernel 2.6.

LoadLeveler scheduling affinity support

Chapter 6. Performing additional administrator tasks 137

Table 33 illustrates what level of CPU affinity will be supported on each

LoadLeveler platform:

 Table 33. Linux platforms for CPU affinity

CPU type Operating system Type of CPU affinity support

POWER SLES 9, SLES 10, and RHEL4 on

POWER platforms

LOGICAL only

Intel x86 SLES 9, SLES 10, and RHEL4 on Intel

IA-32 32-bit platforms

PHYSICAL and LOGICAL

AMD Opteron and Intel EM64T SLES 9, SLES 10, and RHEL4 on

AMD Opteron 64-bit platforms

PHYSICAL and LOGICAL

ANY RHEL 3 NONE

To enable exclusive allocation of CPUs to jobs, you must set the following

configuration keyword to a value of either LOGICAL or PHYSICAL:

ALLOC_EXCLUSIVE_CPU_PER_JOB = LOGICAL|PHYSICAL

For more information, see the ALLOC_EXCLUSIVE_CPU_PER_JOB configuration

keyword.

Assigning Linux CPU affinity to application processes

The following steps describe how Linux CPU affinity is assigned to application

processes:

1. When Linux CPU affinity support is enabled on a compute node, LoadLeveler

detects the number of processors available on the node at startup.

2. Select the LOGICAL or PHYSICAL option:

v If the LOGICAL option is selected, each processor unit on the node will be

assigned only one job to run. LOGICAL implies to use all available

processors to run jobs. For example, a node with two Intel x86 processors

with hyperthreading turned ON will be treated as a node with four

processors. A node with two dual-core AMD Opteron processors will be

treated as a node with four processors.

v If the PHYSICAL option is selected, one physical processor package will be

assigned only one job to run. The PHYSICAL option is meant to allow a

user to treat hyperthreaded processors and multicore processors as a single

unit so that a job has dedicated computing resources. For example, a node

with two Intel x86 processors with hyperthreading turned ON, will be

treated as a node with two physical processors. Similarly, a node with two

dual-core AMD Opteron processors will be treated as a node with two

physical processors.

Note: LOGICAL and PHYSICAL options will be treated identically on

pSeries servers. In other words, if a pSeries node has n physical

processors and 2n logical processors, the number of available

processors will always be assumed to be 2n.
3. When a job begins running, its CPU affinity is set to one of the available

processors. As long as the job is running, LoadLeveler will not set CPU affinity

of any other job to this processor.

4. When a job completes, the processor on which the job was running will become

available and LoadLeveler might assign it to the next job.

Linux CPU affinity support

138 TWS LoadLeveler: Using and Administering

|
|

|
|

LoadLeveler multicluster support

To provide a more scalable runtime environment and more efficient workload

balancing, you may configure a LoadLeveler multicluster environment. A

LoadLeveler multicluster environment consists of two or more LoadLeveler

clusters, grouped together through network connections that allow the clusters to

share resources. These clusters may be AIX, Linux, or mixed clusters.

Within a LoadLeveler multicluster environment:

v The local cluster is the cluster from which the user submits jobs or issues

commands.

v A remote cluster is a cluster that accepts job submissions and commands from

the local cluster.

v A local gateway Schedd is a Schedd within the local cluster serving as an

inbound point from some remote cluster, an outbound point to some remote

cluster, or both.

v A remote gateway Schedd is a Schedd within a remote cluster serving as an

inbound point from the local cluster, an outbound point to the local cluster, or

both.

v A local central manager is the central manager in the same cluster as the local

gateway Schedd.

v A remote central manager is the central manager in the same cluster as a remote

gateway Schedd.

A LoadLeveler multicluster environment addresses scalability and workload

balancing issues by providing the ability to:

v Distribute workload among LoadLeveler clusters when jobs are submitted.

v Easily access multiple LoadLeveler cluster resources.

v Display information about the multicluster.

v Monitor and control operations in a multicluster.

v Transfer idle jobs from one cluster to another.

v Transfer user input and output files between clusters.

v Enable LoadLeveler to operate in a secure environment where clusters are

separated by a firewall.

Table 34 shows the multicluster support subtasks with a pointer to the associated

instructions:

 Table 34. Multicluster support subtasks and associated instructions

Subtask Associated instructions (see . . .)

Configure a LoadLeveler multicluster “Configuring a LoadLeveler multicluster” on

page 140

Submit and monitor jobs in a LoadLeveler

multicluster

“Submitting and monitoring jobs in a

LoadLeveler multicluster” on page 205

 Table 35. Multicluster support related topics

Related topics Additional information (see . . .)

Administration file: Cluster stanzas “Defining clusters” on page 93

Administration file: Cluster keywords “Administration file keyword descriptions”

on page 306

Configuration file: Cluster keywords “Configuration file keyword descriptions”

on page 244

LoadLeveler multicluster support

Chapter 6. Performing additional administrator tasks 139

Table 35. Multicluster support related topics (continued)

Related topics Additional information (see . . .)

Job command file: Cluster keywords “Job command file keyword descriptions” on

page 336

Commands and APIs Chapter 16, “Commands,” on page 385 or

Chapter 17, “Application programming

interfaces (APIs),” on page 503

Diagnosis and messages TWS LoadLeveler: Diagnosis and Messages

Guide

Configuring a LoadLeveler multicluster

Table 36 lists the subtasks for configuring a LoadLeveler multicluster:

 Table 36. Subtasks for configuring a LoadLeveler multicluster

Subtask Associated instructions (see . . .)

Configure the

LoadLeveler

multicluster

environment

v “Steps for configuring a LoadLeveler multicluster” on page 141

v “Steps for securing communications within a LoadLeveler

multicluster” on page 143

Display information

about the LoadLeveler

multicluster

environment

v Use the llstatus command:

– With the -X option to display information about machines in

the multicluster.

– With the -C option to display information defined in cluster

stanzas in the administration file.

v Use the llclass command with the -X option to display

information about classes on any cluster (local or remote).

v Use the llq command with the -X option to display information

about jobs on any cluster (local or remote).

LoadLeveler multicluster support

140 TWS LoadLeveler: Using and Administering

Table 36. Subtasks for configuring a LoadLeveler multicluster (continued)

Subtask Associated instructions (see . . .)

Monitor and control

operations in the

LoadLeveler

multicluster

environment

Existing LoadLeveler user commands accept the -X option for a

multicluster environment.

Rules:

v Administrator only commands are not applicable in a multicluster

environment.

v The options -x, -W, -s, and -p cannot be specified together with

the -X option on the llmodify command.

v The options -x and -w cannot be specified together with the -X

option on the llq command.

v The -X option on the following commands is restricted to a single

cluster:

– llcancel

– llckpt

– llhold

– llmodify

– llprio

v The following commands are not applicable in a multicluster

environment:

– llacctmrg

– llchres

– lldbconvert

– llextRPD

– llinit

– llmkres

– llqres

– llrmres

– llrunscheduler

– llsummary

Steps for configuring a LoadLeveler multicluster

The primary task for configuring a LoadLeveler multicluster environment is to

enable communication between gateway Schedd daemons on all of the clusters in

the multicluster. To do so requires defining each Schedd daemon as either local or

remote, and defining the inbound and outbound hosts with which the daemon will

communicate.

Before you begin: You need to know that:

v A single machine may be defined as an inbound or outbound host, or as both.

v A single cluster must belong to only one multicluster.

v A single multicluster must consist of 10 or fewer clusters.

v Clusters must have unique host names within the multicluster network domain

space.

v The inbound Schedd becomes the schedd_host of all remote jobs it receives.

Perform the following steps to configure a LoadLeveler multicluster:

1. In the administration file, define one cluster stanza for each cluster in the

LoadLeveler multicluster environment.

Rules:

v You must define one cluster as the local cluster.

v You must code the following required cluster-stanza keywords and variable

values:

LoadLeveler multicluster support

Chapter 6. Performing additional administrator tasks 141

cluster_name: type=cluster

outbound_hosts = hostname[(cluster_name)]

inbound_hosts = hostname[(cluster_name)]

v If you want to allow users to submit remote jobs to the local cluster, the list

of inbound hosts must include the name of the inbound Schedd and the

cluster you are defining as remote or you must specify the name of an

inbound Schedd without any cluster specification so that it defaults to being

an inbound Schedd for all clusters.

v If the configuration file keyword SCHEDD_STREAM_PORT for any cluster

is set to use a port other than the default value of 9605, you must set the

inbound_schedd_port keyword in the cluster stanza for that cluster.
2. (Optional) If the local cluster wants to provide job distribution where users

allow LoadLeveler to select the appropriate cluster for job submission based on

administration defined objectives, then define an installation exit to be executed

at submit time using the CLUSTER_METRIC configuration keyword. You can

use the LoadLeveler data access APIs in this exit to query other clusters for

information about possible metrics, such as the number of jobs in a specified

job class, the number of jobs in the idle queue, or the number of free nodes in

the cluster. For more detailed information, see “CLUSTER_METRIC” on page

250.

Tip: LoadLeveler provides a set of sample exits for you to use as models. These

samples are in the ${RELEASEDIR}/samples/llcluster directory.

3. (Optional) If the local cluster wants to perform user mapping on jobs arriving

from remote clusters, define the CLUSTER_USER_MAPPER configuration

keyword. For more information, see “CLUSTER_USER_MAPPER” on page 252.

4. (Optional) If the local cluster wants to perform job filtering on jobs received

from remote clusters, define the CLUSTER_REMOTE_JOB_FILTER

configuration keyword. For more information, see

“CLUSTER_REMOTE_JOB_FILTER” on page 251.

5. Notify LoadLeveler daemons by issuing the llctl command with either the

reconfig or recycle keyword. Otherwise, LoadLeveler will not process the

modifications you made to the administration file.

Additional considerations:

v Remote jobs are subjected to the same configuration checks as locally submitted

jobs. Examples include account validation, class limits, include lists, and exclude

lists.

v Remote jobs will be processed by the local submit_filter prior to submission to a

remote cluster.

v Any tracker program specified in the API parameters will be invoked upon the

scheduling cluster nodes.

v If a step is enabled for checkpoint and the ckpt_execute_dir is not specified,

LoadLeveler will not copy the executable to the remote cluster, the user must

ensure that executable exists on the remote cluster. If the executable is not in a

shared file system, the executable can be copied to the remote cluster using the

cluster_input_file job command file keyword.

v If the job command file is also the executable and the job is submitted or moved

to a remote cluster, the $(executable) variable will contain the full path name of

the executable on the local cluster from which it came. This differs from the

behavior on the local cluster, where the $(executable) variable will be the

command line argument passed to the llsubmit command. If you only want the

file name, use the $(base_executable) variable.

LoadLeveler multicluster support

142 TWS LoadLeveler: Using and Administering

Steps for securing communications within a LoadLeveler

multicluster

Configuring LoadLeveler to use the OpenSSL library enables it to operate in a

secure environment where clusters are separated by a firewall.

Perform the following steps to configure LoadLeveler to use OpenSSL in a

multicluster environment:

1. Install SSL using the standard platform installation process.

2. Ensure a link exists from the installed SSL library to:

a. /usr/lib/libssl.so for 32-bit Linux platforms.

b. /usr/lib64/libssl.so for 64-bit Linux platforms.

c. /usr/lib/libssl.a for AIX platforms.
3. Create the SSL authorization keys by invoking the llclusterauth command with

the -k option on all local gateway schedds.

Result: LoadLeveler creates a public key, a private key, and a security certificate

for each gateway node.

4. Distribute the public keys to remote gateway schedds on other secure clusters.

This is done by exchanging the public keys with the other clusters you wish to

communicate with.

v for AIX, public keys can be found in the /var/LoadL/ssl/id_rsa.pub file.

v for Linux, public keys can be found in the /var/opt/LoadL/ssl/id_rsa.pub

file.
5. Copy the public keys of the clusters you wish to communicate with into the

authorized_keys directory on your inbound Schedd nodes.

v for AIX, /var/LoadL/ssl/authorized_keys

v for Linux, /var/opt/LoadL/ssl/authorized_keys

v The authorization key files can be named anything within the

authorized_keys directory.
6. Define the cluster stanzas within the LoadLeveler administration file, using the

multicluster_security = SSL keyword. Define the keyword ssl_cipher_list if a

specific OpenSSL cipher encryption method is desired. Use secure_schedd_port

to define the port number to be used for secure inbound transactions to the

cluster.

7. Notify LoadLeveler daemons by issuing the llctl -g command with the recycle

keyword. Otherwise, LoadLeveler will not process the modifications you made

to the administration file.

8. Configure firewalls to accept connections to the secure_schedd_port numbers

you defined in the administration file.

LoadLeveler Blue Gene support

Blue Gene is a massively parallel system based on a scalable cellular architecture

which exploits a very large number of tightly interconnected compute nodes

(C-nodes). Each C-node is based on system-on-a-chip technology, and is comprised

of two PowerPC® 440 processors.

To take advantage of Blue Gene support, you must be using the BACKFILL

scheduler and the Blue Gene system must be at a release 2 or higher.

LoadLeveler multicluster support

Chapter 6. Performing additional administrator tasks 143

While LoadLeveler Blue Gene support is available on all platforms, Blue Gene

software is only supported on IBM POWER servers running SLES 9. This limitation

currently restricts LoadLeveler Blue Gene support to SLES 9 on IBM POWER

servers.

Terms you should know:

v Compute nodes, also called C-nodes, are system-on-a-chip nodes that execute at

most a single job at a time. All the C-nodes are interconnected in a

three-dimensional toroidal pattern. Each C-node has a unique address and

location in the three-dimensional toroidal space. Compute nodes execute the

jobs’ tasks. Compute nodes run a minimal custom operating system called

BLRTS.

v Front End Nodes (FEN) are machines from which users and administrators

interact with Blue Gene. Applications are compiled on and submitted for

execution in the Blue Gene core from FENs. User interactions with applications,

including debugging, are also performed from the FENs.

v The Service Node is dedicated hardware that runs software to control and

manage the Blue Gene system.

v I/O nodes are special nodes that connect the compute nodes to the outside

world. I/O nodes allow processes that are executing in the compute nodes to

perform I/O operations, such as accessing files, and to communicate with the

job management system. Each I/O node serves anywhere from 8 to 64 C-nodes,

depending on the physical configuration.

v mpirun is a program that is executed partly on the Front End Node, and partly

on the Service Node. mpirun controls and monitors the parallel Blue Gene job.

The mpirun program is executed by the user program that is run on the FEN by

LoadLeveler.

v A base partition (BP) is a group of compute nodes connected in a 3D

rectangular pattern and their controlled I/O nodes. A base partition is one of the

basic allocation units for jobs. For example, an allocation for the job will require

at least one base partition, unless an allocation requests a small partition, in

which case sub base partition allocation is possible.

v A small partition is a group of C-nodes which are part of one base partition.

Valid small partitions have size of 32 or 128 C-nodes.

v A partition is a group of base partitions, switches, and switch states allocated to

a job. A partition is predefined or is created on demand to execute a job.

Partitions are physically (electronically) isolated from each other (for example,

messages cannot flow outside an allocated partition). A partition can have the

topology of a mesh or a torus.

v The Control System is a component that serves as the interface to the Blue Gene

system. It contains persistent storage with configuration and status information

on the entire system. It also provides various services to perform actions on the

Blue Gene system, such as launching a job.

v A node card is a group of 32 compute nodes within a base partition. This is the

minimal allocation size for a partition.

v A quarter is a group of 4 node cards. This is a logical grouping of node cards

within a base partition. A quarter, which is 128 compute nodes, is the next

smallest allowed allocation size for a partition after a node card.

v A switch state is a set of internal switch connections which physically ″wire″ the

partition. A switch has a number of incoming and outgoing wires. An internal

switch connection physically connects one incoming wire with one outgoing

wire, setting up a communication path between base partitions.

For more information on the Blue Gene system and Blue Gene terminology refer to

the Blue Gene documentation listed in “IBM System Blue Gene Solution

documentation” on page xv.

LoadLeveler Blue Gene support

144 TWS LoadLeveler: Using and Administering

|
|
|
|

Table 37 lists the Blue Gene subtasks with a pointer to the associated instructions:

 Table 37. Blue Gene subtasks and associated instructions

Subtask Associated instructions (see . . .)

Configure LoadLeveler Blue Gene support “Configuring LoadLeveler Blue Gene

support” on page 145

Submit and monitor Blue Gene jobs “Submitting and monitoring Blue Gene jobs”

on page 208

Table 38 lists the Blue Gene related topics and associated information:

 Table 38. Blue Gene related topics and associated information

Related topic Associated information (see . . .)

Configuration file: Blue Gene keywords “Configuration file keyword descriptions”

on page 244

Job command file: Blue Gene keywords “Job command file keyword descriptions” on

page 336

Commands and APIs Chapter 16, “Commands,” on page 385 or

Chapter 17, “Application programming

interfaces (APIs),” on page 503

Diagnosis and messages TWS LoadLeveler: Diagnosis and Messages

Guide

Configuring LoadLeveler Blue Gene support

Table 39 lists the subtasks for configuring LoadLeveler Blue Gene support along

with a pointer to the associated instructions:

 Table 39. Blue Gene configuring subtasks and associated instructions

Subtask Associated instructions (see . . .)

Configuring

LoadLeveler Blue

Gene support

“Steps for configuring LoadLeveler Blue Gene support”

Display information

about the Blue Gene

system

v Use the llstatus command with the -b option to display

information about the Blue Gene system. The llstatus command

can also be used with the -B option to display information about

Blue Gene base partitions. Using llstatus with the -P option can

be used to display information about Blue Gene partitions.

Display information

about Blue gene jobs

v Use the llsummary command with the -l option to display job

resource information.

v Use the llq command with the -b option to display information

about all Blue Gene jobs.

Steps for configuring LoadLeveler Blue Gene support

The primary task for configuring LoadLeveler Blue Gene support consists of

setting up the environment of the LoadL_negotiator daemon, the environment of

any process that will run Blue Gene jobs, and the LoadLeveler configuration file.

Perform the following steps to configure LoadLeveler Blue Gene support:

1. Configure the LoadL_negotiator daemon to run on a node which has access to

the Blue Gene Control System.

LoadLeveler Blue Gene support

Chapter 6. Performing additional administrator tasks 145

2. Enable Blue Gene support by setting the BG_ENABLED configuration file

keyword to true.

3. (Optional) Set any of the following additional Blue Gene related configuration

file keywords which your setup requires:

v BG_ALLOW_LL_JOBS_ONLY

v BG_CACHE_PARTITIONS

v BG_MIN_PARTITION_SIZE

See “Configuration file keyword descriptions” on page 244 for more

information on these keywords.

4. Set the required environment variables for the LoadL_negotiator daemon and

any process that will run Blue Gene jobs. You can use global profiles to set the

necessary environment variables for all users. Follow these steps to set

environment variables for a LoadLeveler daemon:

a. Add required environment variable settings to global profile.

b. Set the environment as the administrator before invoking llctl start on the

central manager node.

c. Build a shell script which sets the required environments and starts

LoadLeveler, which can be invoked using rsh remotely.

Note: Using the llctl -h or llctl -g command to start the central manager

remotely will not carry the environment variables from the login session

to the LoadLeveler daemons on the remote nodes.

v Specify the full path name of the bridge configuration file by setting the

BRIDGE_CONFIG_FILE environment variable. For details on the contents of

the bridge configuration file, see the Blue Gene/L: System Administration book.

Example:

For ksh:

export BRIDGE_CONFIG_FILE=/var/bluegene/config/bridge.cfg

For csh:

setenv BRIDGE_CONFIG_FILE=/var/bluegene/config/bridge.cfg

v Specify the full path name of the file containing the data required to access

the Blue Gene Control System database by setting the DB_PROPERTY

environment variable. For details on the contents of the database property

file, see the Blue Gene/L: System Administration book.

Example:

For ksh:

export DB_PROPERTY=/var/bluegene/config/db.cfg

For csh:

setenv DB_PROPERTY=/var/bluegene/config/db.cfg

v Specify the hostname of the machine running the Blue Gene control system

by setting the MMCS_SERVER_IP environment variable. For details on the

use of this environment variable, see the Blue Gene/L: System Administration

book.

Example:

For ksh:

export MMCS_SERVER_IP=bluegene.ibm.com

For csh:

setenv MMCS_SERVER_IP=bluegene.ibm.com

LoadLeveler Blue Gene support

146 TWS LoadLeveler: Using and Administering

Blue Gene advance reservation support

Advance reservation supports Blue Gene resources including the Blue Gene

compute nodes. A front end node (FEN), which is used to start a Blue Gene job is

not part of the Blue Gene resources. A Blue Gene reservation only reserves Blue

Gene resources and a Blue Gene job step bound to a reservation uses the reserved

Blue Gene resources and shares a FEN outside the reservation.

Jobs using Blue Gene resources can be submitted to a Blue Gene reservation to run.

A Blue Gene job step can also be used to select what Blue Gene resources to

reserve to make sure the reservation will have enough Blue Gene resources to run

the Blue Gene job step.

For more information about advance reservations, see “Overview of reservations”

on page 23.

Blue Gene fair share scheduling support

Fair share scheduling has been extended to Blue Gene resources as well. The

FAIR_SHARE_TOTAL_SHARES keyword in LoadL_config and the fair_shares

keyword for the user and group stanza in LoadL_admin apply to both the CPU

resources and the Blue Gene resources. When a Blue Gene job step ends, both the

CPU utilization and the Blue Gene resource utilization data will be collected. The

elapsed job running time multiplied by the number of C-nodes allocated to the job

step (the Size Allocated field in the llq -l output) will be counted as the amount

of Blue Gene resource used. The used shares of the Blue Gene resources are

independent of the used shares of the CPU resources and are made available

through the LoadLeveler variables UserUsedBgShares and GroupUsedBgShares.

LoadLeveler variable JobIsBlueGene will indicate whether a job step is a Blue

Gene job step or not. LoadLeveler administrators have flexibility in specifying the

behavior of fair share scheduling by using these variables in the SYSPRIO

expression. The llfs command and the related APIs can also handle requests

related to the Blue Gene resources.

For more information about fair share scheduling, see “Using fair share

scheduling” on page 148.

Blue Gene heterogeneous memory support

The LoadLeveler job command file has a bg_requirements keyword that can be

used to specify the requirements that a Blue Gene base partition must meet to

execute the job step. The Blue Gene compute nodes (C-nodes) in the same base

partition have the same amount of physical memory. The C-nodes in different base

partitions might have different amounts of physical memory. The bg_requirements

job command file keyword allows users to specify the memory requirement on the

Blue Gene C-nodes.

The bg_requirements keyword works like the requirements keyword, but it can

only support memory requirements and applies only to Blue Gene base partitions.

For a Blue Gene job step, the requirements keyword value applies to the front end

node needed by the job step and the bg_requirements keyword value applies to

the Blue Gene base partitions needed by the job step.

LoadLeveler Blue Gene support

Chapter 6. Performing additional administrator tasks 147

|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

Using fair share scheduling

Fair share scheduling in LoadLeveler provides a way to divide resources in a

LoadLeveler cluster among users or groups of users. To fairly share cluster

resources, LoadLeveler can be configured to allocate a proportion of the resources

to each user or group and to let job priorities be adjusted based on how much of

the resources have been used and when they were used. Generally speaking,

LoadLeveler should be configured so that job priorities decrease for a user or

group that has recently used more resources than the allocated proportion and job

priorities should increase for a user or group that has not run any jobs recently.

Administrators can configure the behavior of fair share scheduling through a set of

configuration keywords. They can also query fair share information, save a

snapshot of historic data, reset and restore fair share scheduling, and perform other

functions by using the LoadLeveler llfs command, the GUI, and the corresponding

APIs.

Fair share scheduling also includes Blue Gene resources (see “Blue Gene fair share

scheduling support” on page 147 for more information).

Note: The time of day clocks on all of the nodes in the cluster must be

synchronized in order for fair share scheduling to work properly.

For more information, see the following:

v “llfs - Fair share scheduling queries and operations” on page 422

v Corresponding APIs:

– “ll_fair_share subroutine” on page 593

– “Data access API” on page 522
v Keywords:

– fair_shares

– FAIR_SHARE_INTERVAL

– FAIR_SHARE_INTERVAL

v SYSPRIO expression

Fair share scheduling keywords

The FAIR_SHARE_TOTAL_SHARES global configuration file keyword is used to

specify the total number of shares that each type of resource is divided into. The

fair_shares keyword in a user or group stanza in the administration file specifies

how many shares the user or group is allocated. The ratio of the fair_shares

keyword value in a user or group stanza over the

FAIR_SHARE_TOTAL_SHARES keyword value defines the resource usage

proportion for the user or group. For example, if a user is allocated one third of

the cluster resources, then the ratio of the user’s fair_share value over the

FAIR_SHARE_TOTAL_SHARES keyword value should be one third.

The LoadLeveler SYSPRIO expression can be configured to let job priorities change

to achieve the specified resource usage proportions. Besides changing job priorities,

fair share scheduling does not change in any way how LoadLeveler schedules jobs.

If a job can be scheduled to run, it will be run regardless of whether the owner

and the LoadLeveler group of the job has any shares allocated or not. No matter

how many shares are allocated to a user, if the user does not submit any jobs to

run, then the resource usage proportion for that user cannot be achieved and other

users might be able to use more than their allocated proportions.

LoadLeveler fair share scheduling support

148 TWS LoadLeveler: Using and Administering

|
|

Note: The sum of all allocated shares for users or groups does not have to equal

the value of the FAIR_SHARE_TOTAL_SHARES keyword. The share

allocation can be used as a way to prevent a single user from consuming too

much of the cluster resources and as a way to share the resources as fairly

as possible.

When the value of the FAIR_SHARE_TOTAL_SHARES keyword is greater than 0,

fair share scheduling is on, which means that resource usage data is collected

when every job ends, regardless of the fair_shares values for any user or group.

The collected usage data is converted to used shares for each user and group. The

llfs command can be used to display the allocated and used shares. Turning fair

share scheduling on does not mean that job priorities are affected by fair share

scheduling. You have to configure the SYSPRIO expression to let fair share

scheduling affect job priorities in a way that suits your needs. By default, the value

of the FAIR_SHARE_TOTAL_SHARES keyword is 0 and fair share scheduling is

disabled.

There is a built-in decay mechanism for the historic resource usage data that is

collected when jobs end, that is, the initial resource usage value becomes smaller

and smaller as times goes by. This decay mechanism allows the most recent

resource usage to have more impact on fair share scheduling. The

FAIR_SHARE_INTERVAL global configuration file keyword is used to specify

how fast the decay is. The shorter the interval, the faster the historic data decays.

A resource usage value decays to 5% of its initial value after an elapsed time

period of the same length as the FAIR_SHARE_INTERVAL value. Generally, the

interval should be at least several times larger than the typical job running time in

the cluster to get stable results. A value should be chosen corresponding to how

long the historic resource usage data should have an impact on the current job

priorities.

The LoadLeveler SYSPRIO expression is used to calculate job priorities. A set of

LoadLeveler variables including some related to fair share scheduling can be used

in the SYSPRIO expression in the global configuration file. You can define the

SYSPRIO expression to let fair share scheduling influence the job priorities in a

way that is suitable to your needs. For more information, see the SYSPRIO

expression in Chapter 12, “Configuration file reference.”

When the GroupTotalShares, GroupUsedShares, UserTotalShares,

UserUsedShares, UserUsedBgShares, GroupUsedBgShares, and JobIsBlueGene

and their corresponding user-defined variables are used, you must use the

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL global configuration

keyword to specify a time interval at which the job priorities will be recalculated

using the most recent share usage information.

You can add the following user-defined variables to the LoadL_config global

configuration file to make it easier to specify fair share scheduling in the SYSPRIO

expressions:

v GroupRemainingShares = (GroupTotalShares - GroupUsedShares)

v GroupHasShares = ($(GroupRemainingShares) > 0)

v GroupSharesExceeded = ($(GroupRemainingShares) <= 0)

v UserRemainingShares = (UserTotalShares - UserUsedShares)

v UserHasShares = ($(UserRemainingShares) > 0)

v UserSharesExceeded = ($(UserRemainingShares) <= 0)

v UserRemainingBgShares = (UserTotalShares - UserUsedBgShares)

v UserHasBgShares = ($(UserRemainingBgShares) > 0)

v UserBgSharesExceeded = ($(UserRemainingBgShares) <= 0)

LoadLeveler fair share scheduling support

Chapter 6. Performing additional administrator tasks 149

|
|
|
|
|
|

|
|
|

v GroupRemainingBgShares = (GroupTotalShares - GroupUsedBgShares)

v GroupHasBgShares = ($(GroupRemainingBgShares) > 0)

v GroupBgSharesExceeded = ($(GroupRemainingBgShares) <= 0)

v JobIsNotBlueGene = ! JobIsBlueGene

If fair share scheduling is not turned on, either because the

FAIR_SHARE_INTERVAL keyword value is not positive or because the scheduler

type is not BACKFILL, then the variables will have the following values:

GroupTotalShares: 0

GroupUsedShares: 0

$(GroupRemainingShares): 0

$(GroupHasShares): 0

$(GroupSharesExceeded): 1

UserUsedBgShares: 0

$(UserRemainingBgShares): 0

$(UserHasBgShares): 0

$(UserBgSharesExceeded): 1

If a user has the fair_shares keyword set to 10 in its user stanza and the user has

used up 8 CPU shares and 3 Blue Gene shares, then the variables will have the

following values:

UserTotalShares: 10

UserUsedShares: 8

$(UserRemainingShares): 2

$(UserHasShares): 1

$(UserSharesExceeded): 0

UserUsedBgShares: 3

$(UserRemainingBgShares): 7

$(UserHasBgShares): 1

$(UserBgSharesExceeded): 0

If a group has the fair_shares keyword set to 10 in its group stanza and the group

has used up 15 CPU shares and 0 Blue Gene shares, then the variables will have

the following values:

GroupTotalShares: 10

GroupUsedShares: 15

$(GroupRemainingShares): -5

$(GroupHasShares): 0

$(GroupSharesExceeded): 1

GroupUsedBgShares: 0

$(GroupRemainingBgShares): 10

$(GroupHasBgShares): 1

$(GroupBgSharesExceeded): 0

The values of the following variables for a Blue Gene job step:

JobIsBlueGene: 1

$(JobIsNotBlueGene): 0

The values of the following variables for a non-Blue Gene job step:

JobIsBlueGene: 0

$(JobIsNotBlueGene): 1

Reconfiguring fair share scheduling keywords

LoadLeveler configuration and administration files can be modified to assign new

values to various keywords. After files have been modified, issue the llctl -g

reconfig command to read in the new keyword values. All new keywords

introduced for fair share scheduling become effective right after reconfiguration.

LoadLeveler fair share scheduling support

150 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

Reconfiguring when the Schedd daemons are up

To avoid any inconsistency, change the value of the FAIR_SHARE_INTERVAL

keyword while the central manager and all Schedd daemons are up, then do the

reconfiguration. After the reconfiguration, the following will happen:

v All historic fair share scheduling data will be decayed to the current time using

the old value.

v The old value is replaced with the new value

v The new value will be used from here on

Notes:

1. You must have the same value for the FAIR_SHARE_INTERVAL keyword in

the central manager and the Schedd daemons because the

FAIR_SHARE_INTERVAL keyword determines the rate of decay for the

historic fair share data and the same value on the daemons maintains the data

consistency.

2. There are some LoadLeveler configuration parameters that require restarting

LoadLeveler with llctl recycle for changes to take effect. You can use llctl

recycle when changing fair share parameters also. The effect will be the same

as using llctl reconfig because when the Schedd machine shuts down normally,

the fair share scheduling data will be decayed to the time of the shutdown and

it will be saved.

Reconfiguring when the Schedd daemons are down

If the value for the FAIR_SHARE_INTERVAL keyword has to be changed while a

Schedd daemon is down, the following will happen when the Schedd daemon is

restarted:

v All historic fair share scheduling data will be read in from the disk files in the

$(SPOOL) directory with no change.

v When a new job ends, the historic fair share scheduling data for the owner and

the LoadLeveler group of the job will be updated using the new value and then

sent to the central manager. The new value is used effectively from the time the

data was last updated before the Schedd went down, not from the time of the

reconfiguration as it would normally be.

Example: three groups share a LoadLeveler cluster

For purposes of this example, we will assume the following:

v Three groups of users share a LoadLeveler cluster and each group is to have one

third of the resources

v Historic data will have significant impact for about 10 days

v Groups with unused shares will have much higher job priorities than the groups

which have used up their shares

To setup for fair share scheduling with these assumptions, an administrator could

update the LoadL_config global configuration file as follows:

FAIR_SHARE_TOTAL_SHARES = 99

FAIR_SHARE_INTERVAL = 240

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = 300

GroupRemainingShares = (GroupTotalShares - GroupUsedShares)

GroupHasShares = ($(GroupRemainingShares) > 0)

SYSPRIO : 10000000 * $(GroupHasShares) - QDate

LoadLeveler fair share scheduling support

Chapter 6. Performing additional administrator tasks 151

In the admin file LoadL_admin, add:

chemistry: type = group

 include_users = harold mark kim enci george charlie

 fair_shares = 33

physics: type = group

 include_users = cnyang gchen newton roy

 fair_shares = 33

math: type = group

 include_users = rich dave chris popco

 fair_shares = 33

When user rich in the math group wants to submit a job, the following keyword

can be put into the job command file so that the job will have high priority

through the math group:

#@group=math

If user rich has a job that does not need to be run right away or as soon as

possible (can be run at any time), then he should run the job in a LoadLeveler

group with no shares allocated (for example, the No_Group group). Because the

group No_Group has no shares allocated to it in this example, $(GroupHasShares)

has a value of 0 and the job priority will be lower than those jobs whose group has

unused shares. The job will be run when all higher priority jobs are done or when

it is used to backfill a higher priority job (will be run whenever it can be

scheduled).

Example: two thousand students share a LoadLeveler cluster

For purposes of this example, we will assume the following:

v A university has 2000 students who share a LoadLeveler cluster and every

student is to have the same number of shares of the resources.

v Historic data will have significant impact for about 7 days (because

FAIR_SHARE_INTERVAL is not specified and the default value is 7 days).

v A student with unused shares is to have somewhat higher job priorities and let

the priorities decrease as the number of used shares increase.

The LoadL_config global configuration file should contain the following:

FAIR_SHARE_TOTAL_SHARES = 10000

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = 600

UserRemainingShares = (UserTotalShares - UserUsedShares)

SYSPRIO : 100000 * $(UserRemainingShares) - QDate

In the LoadL_admin admin file, add

default: type = user

 fair_shares = 5

Note: The value fair_shares = 5 is the result of dividing the total shares into the

number of students (10000 ÷ 2000). The number of students can be more or

LoadLeveler fair share scheduling support

152 TWS LoadLeveler: Using and Administering

less than 2000, but the same configuration parameters still prevent a single

user from using too much cluster resources in a short time period.

We can see from the SYSPRIO expression that the larger the number of unused

shares for a student and the earlier the job is submitted, the higher the priority is

for the student’s job.

Querying Information about fair share scheduling

The llfs command, the GUI, and the data access API can be used to query

information about fair share scheduling. The llfs command without any options

displays the allocated and used shares for all users and LoadLeveler groups having

run one or more jobs in the cluster to completion. The -u and -g options can show

the allocated and used shares for any user or LoadLeveler group regardless of

whether they have run any jobs in the cluster. In either case, the user or group

need not have any fair_shares allocated in the LoadL_admin administration file

for the usage to be reported by the llfs command.

Resetting fair share scheduling

The llfs -r command option (or the GUI option Reset historic data), by default,

will start fair share scheduling from the beginning, which means that all the

previous historic data will be lost. This command will not be run unless all Schedd

daemons are up and running.

In case a Schedd daemon is down when this command option is being run, the

request will not be processed. To manually reset fair share scheduling, bring down

the LoadLeveler cluster, remove all fair share data files (fair_share_queue.dir and

fair_share_queue.pag) in the $(SPOOL) directory and then restart the LoadLeveler

cluster.

Saving historic data

The LoadLeveler central manager holds the complete historic fair share data when

it is up. Every Schedd holds a portion of the historic fair share data and the data is

stored on disk in the $(SPOOL) directory. When the central manager is restarted, it

receives the historic fair share data from every Schedd. If a Schedd machine is

down temporarily and the central manager remains up, the data in the central

manager is not affected. In case a Schedd machine is permanently damaged and

the central manager restarts, the central manager will not be able to get all of the

historic fair share data because the data stored on the damaged Schedd is lost. If

the value of FAIR_SHARE_INTERVAL is very large, many days of data on the

damaged Schedd could be lost. To reduce the loss of data, the historic fair share

data in the central manager can be saved to disk periodically. Recovery can be

done using the latest saved data when a Schedd machine is permanently out of

service. The llfs -s command, the GUI, or the ll_fair_share API can be used to save

a snapshot of the historic data in the central manager to a file.

Restoring saved historic data

You can use the llfs -r command option, the GUI, or the ll_fair_share API to

restore fair share scheduling to a previously saved state. For the file name, specify

a file you saved previously using llfs -s.

If the central manager goes down and restarts again, the historic data stored in an

out of service Schedd machine is not reported to the central manager. If the Schedd

LoadLeveler fair share scheduling support

Chapter 6. Performing additional administrator tasks 153

machine will not be brought back to service at all, then the administrator can

consider restoring fair share scheduling to a state corresponding to the latest saved

file.

Procedure for recovering a job spool

The llmovespool command is intended for recovery purposes only. Jobs being

managed by a down Schedd are unable to clean up resources or move to

completion. These jobs need their job records transferred to another Schedd. The

llmovespool command moves the job records from the spool of one managing

Schedd to another managing Schedd in the local cluster. All moved jobs retain

their original job identifiers.

It is very important that the Schedd that created the job records to be moved is not

running during the move operation. Jobs within the job queue database will be

unrecoverable if the job queue is updated during the move by any process other

than the llmovespool command.

The llmovespool command operates on a set of job records, these records are

updated as the command executes. When a job is successfully moved, the records

for that job are deleted. Job records that are not moved because of a recoverable

failure, like the original Schedd not being fenced, may have the llmovespool

command executed against them again. It is very important that a Schedd never

reads the job records from the spool being moved. Jobs will be unrecoverable if

more than one Schedd is considered to be the managing Schedd.

The procedure for recovering a job spool is:

1. Move the files located in the spool directory to be transferred to another

directory before entering the llmovespool command in order to guarantee that

no other Schedd process is updating the job records.

2. Add the statement schedd_fenced=true to the machine stanza of the original

Schedd node in order to guarantee that the central manager ignores

connections from the original managing Schedd, and to prevent conflicts from

arising if the original Schedd is restarted after the llmovespool command has

been run. See the schedd_fenced=true keyword in Chapter 13, “Administration

file reference,” on page 301 for more information.

3. Reconfigure the central manager node so that it recognizes that the original

Schedd is ″fenced″.

4. Issue the llmovespool command providing the spool directory where the job

records are stored. The command displays a message that the transfer has

started and reports status for each job as it is processed. For more information

about the llmovespool command, see “llmovespool - Move job records” on

page 442. For more information about the ll_move_spool API, see

“ll_move_spool subroutine” on page 634.

LoadLeveler fair share scheduling support

154 TWS LoadLeveler: Using and Administering

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

Chapter 7. Using LoadLeveler’s GUI to perform administrator

tasks

The end user can perform many tasks more efficiently and faster using the

graphical user interface (GUI) but there are certain tasks that end users cannot

perform unless they have the proper authority. If you are defined as a LoadLeveler

administrator in the LoadLeveler configuration file then you are immediately

granted administrative authority and can perform the administrative tasks

discussed in this topic. To find out how to grant someone administrative authority,

see “Defining LoadLeveler administrators” on page 41.

You can access LoadLeveler administrative commands using the Admin pull-down

menu on both the Jobs window and the Machines window of the GUI. The Admin

pull-down menu on the Jobs window corresponds to the command options

available in the llhold, llfavoruser, and llfavorjob commands. The Admin

pull-down menu on the Machines window corresponds to the command options

available in the llctl command.

The main window of the GUI has three sub-windows: one for job status with

pull-down menus for job-related commands, one for machine status with

pull-down menus for machine-related commands, and one for messages and logs

(see “The LoadLeveler main window” on page 378 in the Chapter 15, “Graphical

user interface (GUI) reference,” on page 377). There are a variety of facilities

available that allow you to sort and select the items displayed.

Job-related administrative actions

You access the administrative commands that act on jobs through the Admin

pull-down menu in the Jobs window of the GUI.

You can perform the following tasks with this menu:

Favor Users Allows you to favor users. This means that you can select one or

more users whose jobs you want to move up in the job queue. This

corresponds to the llfavoruser command.

Select Admin from the Jobs window

Select Favor User

 �The Order by User window appears.

Type in

The name of the user whose jobs you want to favor.

Press OK

Unfavor Users

Allows you to unfavor users. This means that you want to unfavor

the user’s jobs which you previously favored. This corresponds to

the llfavoruser command.

Select Admin from the Jobs window

Select Unfavor User

 �The Order by User window appears.

 155

Type in

The name of the user for whom you want to unfavor their

jobs.

Press OK

Favor Jobs Allows you to select a job that you want to favor. This corresponds

to the llfavorjob command.

Select One or more jobs from the Jobs window

Select Admin from the Jobs window

Select Favor Job

 �The selected jobs are favored.

Press OK

Unfavor Jobs Allows you select a job that you want to unfavor. This corresponds

to the llfavorjob command.

Select One or more jobs from the Jobs window

Select Admin from the Jobs window

Select Unfavor Job

 �Unfavors the jobs that you previously selected.

Syshold Allows you to place a system hold on a job. This corresponds to

the llhold command.

Select A job from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Syshold to place a system hold on the job.

Release From Hold

Allows you to release the system hold on a job. This corresponds

to the llhold command.

Select A job from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Release From Hold to release the system hold on the job.

Preempt Available when using the BACKFILL or external schedulers.

Preempt allows you to place the selected jobs in preempted state.

This action corresponds to the llpreempt command.

Select One or more jobs from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Preempt

Resume Preempted Job

Available only when using the BACKFILL or external schedulers.

Resume Preempted Job allows you to remove user-initiated

preemption (initiated using the Preempt menu option or the

llpreempt command) from the selected jobs. This action

corresponds to the llpreempt -r command.

Select One or more jobs from the Jobs window

Select Admin pull-down menu from the Jobs window

Administrative uses of the GUI

156 TWS LoadLeveler: Using and Administering

Select Resume Preempted Job

Prevent Preempt

Available only when using the BACKFILL or API scheduler.

Prevent Preempt allows you to place the selected running job into

a non-preemptable state. When the BACKFILL or API scheduler is

in use, this is equivalent to the llmodify -p nopreempt command.

Select One job from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Prevent Preempt

Allow Preempt

Available only when using the BACKFILL or API scheduler, Allow

Preempt makes the unpreemptable job preemptable again. When

the BACKFILL or API scheduler is in use, this is equivalent to the

llmodify -p preempt command.

Select One or more jobs from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Allow Preempt

Extend Wallclock Limits

Allows you to extend the wallclock limits by the number of

minutes specified. This corresponds to the llmodify -W command.

Select Admin pull-down window from the Jobs window

Select Extend Wallclock Limit

 �The Extend Wallclock Limits window appears.

Type in

The number of minutes to extend the wallclock limit.

Press OK

Modify Job Priority

Allows you to modify the system priority of a job step. This

corresponds to the llmodify -s command.

Select Admin pull-down window from the Jobs window

Select Modify Job Priority

 �The Modify Job Priority window appears.

Type in

An integer value for system priority.

Press OK

Move to another cluster

Allows you to move an idle job from the local cluster to another.

This menu items appears only when a mulitcluster environment is

configured. It corresponds to the llmovejob command.

Select Admin pull-down window from the Jobs window

Select Modify Job Priority

 �The Move Job to Another Cluster window appears.

Select The name of the target cluster.

Administrative uses of the GUI

Chapter 7. Using LoadLeveler’s GUI to perform administrator tasks 157

Press OK

Machine-related administrative actions

You access the administrative commands that act on machines using the Admin

pull-down menu in the Machines window of the GUI.

Using the GUI pull-down menu, you can perform the tasks described in this topic.

Start All Starts LoadLeveler on all machines listed in machine stanzas

beginning with the central manager. Submit-only machines are

skipped. Use this option when specifying alternate central

managers in order to ensure the primary central manager starts

before any alternate central manager attempts to serve as central

manager.

Select Admin from the Machines window.

Select Start All

Start LoadLeveler

Allows you to start LoadLeveler on selected machines.

Select One or more machines on which you want to start

LoadLeveler.

Select Admin from the Machines window.

Select Start LoadLeveler

Start Drained Allows you to start LoadLeveler with startd drained on selected

machines.

Select One or more machines on which you want startd drained.

Select Admin from the Machines window.

Select Start Drained

Stop LoadLeveler

Allows you to stop LoadLeveler on selected machines.

Select One or more machines on which you want to stop

LoadLeveler.

Select Admin from the Machines window.

Select Stop LoadLeveler.

Stop All Stops LoadLeveler on all machines listed in machine stanzas.

Submit-only machines are skipped.

Select Admin from the Machines window.

Select Stop All

Reconfig Forces all daemons to reread the configuration files

Select The machine on which you want to operate. To reconfigure

this xloadl session, choose reconfig but do not select a

machine.

Select Admin from the Machines window.

Select reconfig

Recycle Stops all LoadLeveler daemons and restarts them.

Administrative uses of the GUI

158 TWS LoadLeveler: Using and Administering

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select recycle

Configuration Tasks

Starts Configuration Tasks wizard

Select Admin from the Machines window.

Select Config Tasks

Note: Use the invoking script lltg to start the wizard outside of

xloadl. This option will appear on the pull-down only if the

LoadL.tguides fileset is installed.

Drain Allows no more LoadLeveler jobs to begin running on this

machine but it does allow running jobs to complete.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select drain.

 A cascading menu allows you to select either daemons,

Schedd, startd, or startd by class. If you select daemons,

both the startd and the Schedd on the selected machine

will be drained. If you select Schedd, only the Schedd on

the selected machine will be drained. If you select startd,

only the startd on the selected machine will be drained. If

you select startd by class, a window appears which allows

you to select classes to be drained.

Flush Terminates running jobs on this host and sends them back to the

system queue to await redispatch. No new jobs are redispatched to

this machine until resume is issued. Forces a checkpoint if jobs are

enabled for checkpointing.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select flush

Suspend Suspends all jobs on this host.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select suspend

Resume Resumes all jobs on this machine.

Select The machine on which you want to operate.

Select Admin from the Machines window

Select resume

 A cascading menu allows you to select either daemons,

Schedd, startd, or startd by class. If you select daemons,

both machines will be resumed. If you select Schedd, only

the Schedd on the selected machine will be resumed. If you

select startd, only the startd on the selected machine will

Administrative uses of the GUI

Chapter 7. Using LoadLeveler’s GUI to perform administrator tasks 159

be resumed. If you select startd by class, a window

appears which allows you to select classes to be resumed.

Purge Schedd Allows you to purge (remove) all of the jobs scheduled by the

Schedd on the selected machines. To use this option you must first

specify schedd_fenced=true in the machine stanza for this machine

and reconfigure the central manager. For more information on

using this option, see “How do I recover resources allocated by a

Schedd machine?” on page 660.

Select One or more machines whose Schedd is down and will be

down long enough to necessitate that you recover the

resources allocated to jobs scheduled by that Schedd

Select Admin pull-down menu from the Machines window

Select

Purge Schedd

Press OK

Capture Data Collects information on the machines selected.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select Capture Data.

Collect Account Data

Collects accounting data on the machines selected.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select Collect Account Data.

 A window appears prompting you to enter the name of the

directory in which you want the collected data stored.

Collect Reservation Data

Collects reservation data on the machines selected.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select Collect Reservation Data.

 A window appears prompting you to enter the name of the

directory in which you want the collected data stored.

Create Account Report

Creates an accounting report for you.

Select Admin → Create Account Report...

 Note: If you want to receive an extended accounting

report, select the extended cascading button.

 A window appears prompting you to enter the following

information:

v A short, long, or extended version of the output. The

short version is the default.

v The user ID

v The class name

Administrative uses of the GUI

160 TWS LoadLeveler: Using and Administering

v The LoadL (LoadLeveler) group name

v The UNIX group name

v The Allocated host

v The job ID

v The report Type

v The section

v A start and end date for the report. If no date is

specified, the default is to report all of the data in the

report.

v The name of the input data file.

v The name of the output data file. This is the same as

stdout.

Press OK

 The window closes and you return to the main window.

The report appears in the Messages window if no output

data file was specified.

Move Spool Moves the job records from the spool of one managing Schedd to

another managing Schedd in the local cluster. This is intended for

recovery purposes only.

Select One Schedd machine from the Machines window.

Select Admin from the Machines window.

Select Move Spool

 A window is displayed prompting you to enter the

directory containing the job records to be moved.

Press OK

Version Displays version and release data for LoadLeveler on the machines

selected in an information window.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select version

Fair Share Scheduling

Provides fair share scheduling functions (see “llfs - Fair share

scheduling queries and operations” on page 422).

Select Admin from the Machines window.

Select Fair Share Scheduling

A cascading menu allows you to select one of the following:

v Show

Displays fair share scheduling information for all users or for

specified users and groups.

v Save historic data

Saves fair share scheduling information into the directory

specified.

v Restore historic data

Restores fair share scheduling data to a state corresponding to a

file previously saved by Save historic data or the llfs -s

command.

Administrative uses of the GUI

Chapter 7. Using LoadLeveler’s GUI to perform administrator tasks 161

||
|
|

||

||

||

|
|

||

v Reset historic data

Erases all historic CPU data to reset fair share scheduling.

Administrative uses of the GUI

162 TWS LoadLeveler: Using and Administering

Part 3. Submitting and managing TWS LoadLeveler jobs

After an administrator installs IBM Tivoli Workload Scheduler (TWS) LoadLeveler

and customizes the environment, general users can build and submit jobs to

exploit the many features of the TWS LoadLeveler runtime environment.

The topics listed Table 40 will help you learn about building and submitting jobs:

 Table 40. Learning about building and submitting jobs

To learn about: Read the following:

Creating and submitting serial and

parallel jobs

Chapter 8, “Building and submitting jobs,” on

page 165

Controlling and monitoring TWS

LoadLeveler jobs

Chapter 9, “Managing submitted jobs,” on page

211

Ways to control or monitor TWS

LoadLeveler operations by using the

TWS LoadLeveler commands, GUI, and

APIs

v Chapter 16, “Commands,” on page 385

v Chapter 10, “Example: Using commands to

build, submit, and manage jobs,” on page 215

v Chapter 11, “Using LoadLeveler’s GUI to build,

submit, and manage jobs,” on page 217

v Chapter 17, “Application programming

interfaces (APIs),” on page 503

 163

164 TWS LoadLeveler: Using and Administering

Chapter 8. Building and submitting jobs

Table 41 lists the tasks that general users perform to run LoadLeveler jobs.

 Table 41. Roadmap of user tasks for building and submitting jobs

To learn about: Read the following:

Building jobs v “Building a job command file”

v “Editing job command files” on page 171

v “Defining resources for a job step” on page 171

v “Working with coscheduled job steps” on page 171

v “Using bulk data transfer” on page 173

v “Preparing a job for checkpoint/restart” on page 174

v “Preparing a job for preemption” on page 177

Submitting jobs v “Submitting a job command file” on page 177

v “llsubmit - Submit a job” on page 494

Working with parallel jobs “Working with parallel jobs” on page 178

Working with reserved node

resources and the jobs that use

them

“Working with reservations” on page 197

Correctly specifying job

command file keywords

Chapter 14, “Job command file reference,” on page 333

Building a job command file

Before you can submit a job or perform any other job related tasks, you need to

build a job command file. A job command file describes the job you want to

submit, and can include LoadLeveler keyword statements. For example, to specify

a binary to be executed, you can use the executable keyword, which is described

later in this topic. To specify a shell script to be executed, the executable keyword

can be used; if it is not used, LoadLeveler assumes that the job command file itself

is the executable.

The job command file can include the following:

v LoadLeveler keyword statements: A keyword is a word that can appear in job

command files. A keyword statement is a statement that begins with a

LoadLeveler keyword. These keywords are described in “Job command file

keyword descriptions” on page 336.

v Comment statements: You can use comments to document your job command

files. You can add comment lines to the file as you would in a shell script.

v Shell command statements: If you use a shell script as the executable, the job

command file can include shell commands.

v LoadLeveler variables: See “Job command file variables” on page 372 for more

information.

You can build a job command file either by using the Build a Job window on the

GUI or by using a text editor.

 165

|

Using multiple steps in a job command file

To specify a stream of job steps, you need to list each job step in the job command

file. You must specify one queue statement for each job step. Also, the executables

for all job steps in the job command file must exist when you submit the job. For

most keywords, if you specify the keyword in a job step of a multi-step job, its

value is inherited by all proceeding job steps. Exceptions to this are noted in the

keyword description.

LoadLeveler treats all job steps as independent job steps unless you use the

dependency keyword. If you use the dependency keyword, LoadLeveler

determines whether a job step should run based upon the exit status of the

previously run job step.

For example, Figure 19 contains two separate job steps. Notice that step1 is the

first job step to run and that step2 is a job step that runs only if step1 exits with

the correct exit status.

 In Figure 19, step1 is called the sustaining job step. step2 is called the dependent job

step because whether or not it begins to run is dependent upon the exit status of

step1. A single sustaining job step can have more than one dependent job steps

and a dependent job step can also have job steps dependent upon it.

In Figure 19, each job step has its own executable, input, output, and error

statements. Your job steps can have their own separate statements, or they can use

those statements defined in a previous job step. For example, in Figure 20 on page

167, step2 uses the executable statement defined in step1:

This job command file lists two job steps called "step1"

and "step2". "step2" only runs if "step1" completes

with exit status = 0. Each job step requires a new

queue statement.

@ step_name = step1

@ executable = executable1

@ input = step1.in1

@ output = step1.out1

@ error = step2.err1

@ queue

@ dependency = (step1 == 0)

@ step_name = step2

@ executable = executable2

@ input = step2.in1

@ output = step2.out1

@ error = step2.err1

@ queue

Figure 19. Job command file with multiple steps

Building a job command file

166 TWS LoadLeveler: Using and Administering

Examples: Job command files

v Example 1: Generating multiple jobs with varying outputs

To run a program several times, varying the initial conditions each time, you

could can multiple LoadLeveler scripts, each specifying a different input and

output file as described in Figure 22 on page 169. It would probably be more

convenient to prepare different input files and submit the job only once, letting

LoadLeveler generate the output files and do the multiple submissions for you.

Figure 21 illustrates the following:

– You can refer to the LoadLeveler name of your job symbolically, using

$(jobid) and $(stepid) in the LoadLeveler script file.

– $(jobid) refers to the job identifier.

– $(stepid) refers to the job step identifier and increases after each queue

command. Therefore, you only need to specify input, output, and error

statements once to have LoadLeveler name these files correctly.

Assume that you created five input files and each input file has different initial

conditions for the program. The names of the input files are in the form

longjob.in.x, where x is 0–4.

Submitting the LoadLeveler script shown in Figure 21 results in your program

running five times, each time with a different input file. LoadLeveler generates

the output file from the LoadLeveler job step IDs. This ensures that the results

from the different submissions are not merged.

To submit the job, type the command:

llsubmit longjob.cmd

LoadLeveler responds by issuing the following:

This job command file uses only one executable for

both job steps.

@ step_name = step1

@ executable = executable1

@ input = step1.in1

@ output = step1.out1

@ error = step1.err1

@ queue

@ dependency = (step1 == 0)

@ step_name = step2

@ input = step2.in1

@ output = step2.out1

@ error = step2.err1

@ queue

Figure 20. Job command file with multiple steps and one executable

@ executable = longjob

@ input = longjob.in.$(stepid)

@ output = longjob.out.$(jobid).$(stepid)

@ error = longjob.err.$(jobid).$(stepid)

@ queue

@ queue

@ queue

@ queue

@ queue

Figure 21. Job command file with varying input statements

Building a job command file

Chapter 8. Building and submitting jobs 167

submit: The job "ll6.23" with 5 job steps has been submitted.

Table 42 lists the standard input files, standard output files, and standard error

files for the five job steps:

 Table 42. Standard files for the five job steps

Job Step Standard Input Standard Output Standard Error

ll6.23.0 longjob.in.0 longjob.out.23.0 longjob.err.23.0

ll6.23.1 longjob.in.1 longjob.out.23.1 longjob.err.23.1

ll6.23.2 longjob.in.2 longjob.out.23.2 longjob.err.23.2

ll6.23.3 longjob.in.3 longjob.out.23.3 longjob.err.23.3

ll6.23.4 longjob.in.4 longjob.out.23.4 longjob.err.23.4

v Example 2: Using LoadLeveler variables in a job command file

Figure 22 on page 169 shows how you can use LoadLeveler variables in a job

command file to assign different names to input and output files. This example

assumes the following:

– The name of the machine from which the job is submitted is lltest1

– The user’s home directory is /u/rhclark and the current working directory is

/u/rhclark/OSL

– LoadLeveler assigns a value of 122 to $(jobid).

In Job Step 0:

– LoadLeveler creates the subdirectories oslsslv_out and oslsslv_err if they do

not exist at the time the job step is started.

In Job Step 1:

– The character string rhclark denotes the home directory of user rhclark in

input, output, error, and executable statements.

– The $(base_executable) variable is set to be the “base” portion of the

executable, which is oslsslv.

– The $(host) variable is equivalent to $(hostname). Similarly, $(jobid) and

$(stepid) are equivalent to $(cluster) and $(process), respectively.

In Job Step 2:

– This job step is executed only if the return codes from Step 0 and Step 1 are

both equal to zero.

– The initial working directory for Step 2 is explicitly specified.

Building a job command file

168 TWS LoadLeveler: Using and Administering

v Example 3: Using the job command file as the executable

The name of the sample script shown in Figure 23 on page 170 is run_spice_job.

This script illustrates the following:

– The script does not contain the executable keyword. When you do not use

this keyword, LoadLeveler assumes that the script is the executable. (Since the

name of the script is run_spice_job, you can add the executable =

run_spice_job statement to the script, but it is not necessary.)

– The job consists of four job steps (there are 4 queue statements). The spice3f5

and spice2g6 programs are invoked at each job step using different input data

files:

- spice3f5: Input for this program is from the file spice3f5_input_x where x

has a value of 0, 1, and 2 for job steps 0, 1, and 2, respectively. The name of

this file is passed as the first argument to the script. Standard output and

standard error data generated by spice3f5 are directed to the file

spice3f5_output_x. The name of this file is passed as second argument to

Job step 0 ==

The names of the output and error files created by this job step are:

output: /u/rhclark/OSL/oslsslv_out/lltest1.122.0.out

error : /u/rhclark/OSL/oslsslv_err/lltest1_122_0_err

@ job_name = OSL

@ step_name = step_0

@ executable = oslsslv

@ arguments = -maxmin=min -scale=yes -alg=dual

@ environment = OSL_ENV1=20000; OSL_ENV2=500000

@ requirements = (Arch == "R6000") && (OpSys == "AIX53")

@ input = test01.mps.$(stepid)

@ output = $(executable)_out/$(host).$(jobid).$(stepid).out

@ error = $(executable)_err/$(host)_$(jobid)_$(stepid)_err

@ queue

Job step 1 ==

The names of the output and error files created by this job step are:

output: /u/rhclark/OSL/oslsslv_out/lltest1.122.1.out

error : /u/rhclark/OSL/oslsslv_err/lltest1_122_1_err

@ step_name = step_1

@ executable = rhclark/$(job_name)/oslsslv

@ arguments = -maxmin=max -scale=no -alg=primal

@ environment = OSL_ENV1=60000; OSL_ENV2=500000; \

 OSL_ENV3=70000; OSL_ENV4=800000;

@ input = rhclark/$(job_name)/test01.mps.$(stepid)

@ output = rhclark/$(job_name)/$(base_executable)_out/$(hostname).$(cluster).$(process).out

@ error = rhclark/$(job_name)/$(base_executable)_err/$(hostname)_$(cluster)_$(process)_err

@ queue

Job step 2 ==

The names of the output and error files created by this job step are:

output: /u/rhclark/OSL/oslsslv_out/lltest1.122.2.out

error : /u/rhclark/OSL/oslsslv_err/lltest1_122_2_err

@ step_name = OSL

@ dependency = (step_0 == 0) && (step_1 == 0)

@ comment = oslsslv

@ initialdir = /u/rhclark/$(step_name)

@ arguments = -maxmin=min -scale=yes -alg=dual

@ environment = OSL_ENV1=300000; OSL_ENV2=500000

@ input = test01.mps.$(stepid)

@ output = $(comment)_out/$(host).$(jobid).$(stepid).out

@ error = $(comment)_err/$(host)_$(jobid)_$(stepid)_err

@ queue

Figure 22. Using LoadLeveler variables in a job command file

Building a job command file

Chapter 8. Building and submitting jobs 169

the script. In job step 3, the names of the input and output files are

spice3f5_input_benchmark1 and spice3f5_output_benchmark1,

respectively.

- spice2g6: Input for this program is from the file spice2g6_input_x.

Standard output and standard error data generated by spice2g6 together

with all other standard output and standard error data generated by this

script are directed to the files spice_test_output_x and spice_test_error_x,

respectively. In job step 3, the name of the input file is

spice2g6_input_benchmark1. The standard output and standard error files

are spice_test_output_benchmark1 and spice_test_error_benchmark1.

All file names that are not fully qualified are relative to the initial working

directory /home/loadl/spice. LoadLeveler will send the job steps 0 and 1 of

this job to a machine for that has a real memory of 64 MB or more for

execution. Job step 2 most likely will be sent to a machine that has more that

128 MB of real memory and has the ESSL library installed since these

preferences have been stated using the LoadLeveler preferences keyword.

LoadLeveler will send job step 3 to the machine ll5.pok.ibm.com for

execution because of the explicit requirement for this machine in the

requirements statement.

#!/bin/ksh

@ job_name = spice_test

@ account_no = 99999

@ class = small

@ arguments = spice3f5_input_$(stepid) spice3f5_output_$(stepid)

@ input = spice2g6_input_$(stepid)

@ output = $(job_name)_output_$(stepid)

@ error = $(job_name)_error_$(stepid)

@ initialdir = /home/loadl/spice

@ requirements = ((Arch == "R6000") && \

(OpSys == "AIX53") && (Memory > 64))

@ queue

@ queue

@ preferences = ((Memory > 128) && (Feature == "ESSL"))

@ queue

@ class = large

@ arguments = spice3f5_input_benchmark1 spice3f5_output_benchmark1

@ requirements = (Machine == "ll5.pok.ibm.com")

@ input = spice2g6_input_benchmark1

@ output = $(job_name)_output_benchmark1

@ error = $(job_name)_error_benchmark1

@ queue

OS_NAME=`unamè

case $OS_NAME in

 AIX)

 echo "Running $OS_NAME version of spice3f5" > $2

 AIX_bin/spice3f5 < $1 >> $2 2>&1

 echo "Running $OS_NAME version of spice2g6"

 AIX_bin/spice2g6

 ;;

 *)

 echo "spice3f5 for $OS_NAME is not available" > $2

 echo "spice2g6 for $OS_NAME is not available"

 ;;

esac

Figure 23. Job command file used as the executable

Building a job command file

170 TWS LoadLeveler: Using and Administering

Editing job command files

After you build a job command file, you can edit it using the editor of your choice.

You may want to change the name of the executable or add or delete some

statements.

When you create a job command file, it is considered the job executable unless you

specify otherwise by using the executable keyword in the job command file.

LoadLeveler copies the executable to the spool directory unless the checkpoint

keyword was set to yes or interval. Jobs that are to be checkpointed cannot be

moved to the spool directory. Do not make any changes to the executable while the

job is still in the queue–it could affect the way that job runs.

Defining resources for a job step

The LoadLeveler user may use the resources keyword in the job command file to

specify the resources to be consumed by each task of a job step. If the resources

keyword is specified in the job command file, it overrides any default_resources

specified by the administrator for the job step’s class.

For example, the following job requests one CPU and one FRM license for each of

its tasks:

resources = ConsumableCpus(1) FRMlicense(1)

If this were specified in a serial job step, one CPU and one FRM license would be

consumed while the job step runs. If this were a parallel job step, then the number

of CPUs and FRM licenses consumed while the job step runs would depend upon

how many tasks were running on each machine. For more information on

assigning tasks to nodes, see “Task-assignment considerations” on page 180.

Working with coscheduled job steps

LoadLeveler allows you to specify that a group of two or more steps within a job

are to be coscheduled. Coscheduled steps are dispatched at the same time.

Submitting coscheduled job steps

The coschedule = true keyword has been added in the job command file to specify

which steps within a job are to be coscheduled. All steps within a job with the

coschedule keyword set to true will be coscheduled. The coscheduled steps will

continue to be stored as individual steps in both memory and in the job queue, but

when performing certain operations, such as scheduling, the steps will be managed

as a single entity. An operation initiated on one of the coscheduled steps will cause

the operation to be performed on all other steps (unless the coscheduling

dependency between steps is broken).

Determining priority for coscheduled job steps

Coscheduled steps are supported only with the BACKFILL scheduler. The

LoadLeveler BACKFILL scheduler will only dispatch the set of coscheduled steps

when enough resource is available for all steps in the set to start. If the set of

coscheduled steps cannot be started immediately, but enough resource will be

available in the future, then the resource for all the steps will be reserved. In this

case, only one of the coscheduled steps will be designated as a top dog, but

enough resources will be reserved for all coscheduled steps and all the steps will

be dispatched when the top dog step is started. The coscheduled step with the

Building a job command file

Chapter 8. Building and submitting jobs 171

|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

highest priority in the current job queue will be designated as the primary

coscheduled step and all other steps will be secondary coscheduled steps. The

primary coscheduled step will determine when the set of coscheduled steps will be

scheduled. The priority for all other coscheduled steps is ignored.

Supporting preemption of coscheduled job steps

Preemption of coscheduled steps is supported with the following restrictions:

v In order for a step S to be preemptable by a coscheduled step, all steps in the set

of coscheduled steps must be able to preempt step S.

v In order for a step S to preempt a coscheduled step, all steps in the set of

coscheduled steps must be preemptable by step S.

v The set of job steps available for preemption will be the same for all coscheduled

steps. Any resource made available by preemption for one coscheduled step will

be available to all other coscheduled steps.

To determine the preempt type and preempt method to use when a coscheduled

step preempts another step, an order of precedence for preempt types and preempt

methods has been defined. All steps in the preempting coscheduled step are

examined and the preempt type and preempt method having the highest

precedence are used. The order of precedence for preempt type will be ALL and

ENOUGH. The precedence order for preempt method is:

v Remove

v Vacate

v System Hold

v User hold

v Suspend

For more information about preempt types and methods, see “Planning to preempt

jobs” on page 117.

When coscheduled steps are running, if one step is preempted as a result of a

system-initiated preemption, then all coscheduled steps are preempted. When

determining an optimal preempt set, the BACKFILL scheduler does not consider

coscheduled steps as a single entity. All coscheduled steps are in the initial

preempt set, but the final preempt set might not include all coscheduled steps, if

the scheduler determines the resources of some coscheduled steps are not

necessary to start the preempting job step. This implies that more resource than

necessary might be preempted when a coscheduled step is in the set of steps to be

preempted because regardless of whether or not all coscheduled steps are in the

preempt set, if one coscheduled step is preempted, then all coscheduled steps will

be preempted.

Coscheduled job steps and commands and APIs

Commands and APIs that operate on job steps are impacted by coscheduled steps.

For the llbind, llcancel, llhold, and llpreempt commands, even if all coscheduled

steps are not in the list of targeted steps, the requested operation is performed on

all coscheduled steps.

For the llmkres and llchres commands, a coscheduled job step cannot be specified

when using the -j or -f flags. For the llckpt command, you cannot specify a

coscheduled job step using the -u flag.

Building a job command file

172 TWS LoadLeveler: Using and Administering

|
|
|
|

|

|

|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

Termination of coscheduled steps

If a coscheduled step is dispatched but cannot be started and is rejected by the

startd daemon or the starter process, then all coscheduled steps are rejected. If a

running step is removed or vacated by LoadLeveler as a result of a system related

failure, then all coscheduled steps are removed or vacated. If a running step is

vacated as a result of the VACATE expression evaluating to true for the step, then

all coscheduled steps are vacated.

Using bulk data transfer

On AIX systems with device drivers and network adapters that support remote

direct-memory access (RDMA), LoadLeveler supports bulk data transfer for jobs

that use either the Internet or User Space communication protocol mode. For jobs

using the Internet protocol (IP jobs), LoadLeveler does not monitor or control the

use of bulk transfer. For User Space jobs that request bulk transfer, however,

LoadLeveler creates a consumable RDMA resource requirement. Machines with

network adapters that support RDMA are automatically given an RDMA

consumable resource with an available amount of four. Each step that requests

bulk transfer consumes one RDMA resource on each machine on which that step

runs.

The RDMA resource is similar to user-defined consumable resources except in one

important way: A user-specified resource requirement is consumed by every task

of the job assigned to a machine, whereas the RDMA resource is consumed once

on a machine no matter how many tasks of the job are running on the machine.

Other than that exception, LoadLeveler handles the RDMA resource as it does all

other consumable resources. LoadLeveler displays RDMA resources in the output

of the following commands:

v llq -l

v llstatus -l

v llstatus -R

v llsummary -l

Bulk transfer is supported only on systems where the device driver of the network

adapters supports RDMA. To determine which systems will support bulk transfer,

use the llstatus command with either the -l or -R flag to display machines with

adapters that support RDMA (supporting machines will have an RDMA resource

listed in the command output).

Under certain conditions, LoadLeveler displays a total count of RDMA resources as

less than four:

v If jobs that LoadLeveler does not manage use RDMA, the amount of available

RDMA resource reported to the Negotiator is reduced by the amount consumed

by the unmanaged jobs.

v In rare situations, LoadLeveler jobs can fail to release their adapter resources

before reporting to the Negotiator that they have completed. In these situations,

the amount of available RDMA reported to the Negotiator is reduced by the

amount consumed by the unreleased adapter resources. When the adapter

resources are eventually released, the RDMA resource they consumed becomes

available again.

These conditions do not require corrective action.

You do not need to perform specific job-definition tasks to enable bulk transfer for

LoadLeveler jobs that use the IP network protocol. LoadLeveler cannot affect

Building a job command file

Chapter 8. Building and submitting jobs 173

|

|
|
|
|
|
|

whether IP communication uses bulk transfer; the implementation of IP where the

job runs determines whether bulk transfer is supported.

To enable User Space jobs to use bulk data transfer, however, all of the following

tasks must be completed. If you omit one or more of these steps, the job will run

but will not be able to use bulk transfer.

v A LoadLeveler administrator must update the LoadLeveler configuration file to

include the value RDMA in the SCHEDULE_BY_RESOURCES list.

Example:

 SCHEDULE_BY_RESOURCES = RDMA others

v Users must request bulk transfer for their LoadLeveler jobs, using one of the

following methods:

– Specifying the bulkxfer keyword in the LoadLeveler job command file.

Example:

 #@ bulkxfer=yes

If users specify this keyword for jobs that use the IP communication protocol,

LoadLeveler ignores the bulkxfer keyword.

– Specifying a POE line command parameter on interactive jobs.

Example:

poe_job -use_bulk_xfer=yes

– Specifying an environment variable on interactive jobs.

Example:

export MP_USE_BULK_XFER=yes

 poe_job

v Because LoadLeveler honors the bulk transfer request only for LAPI or MPI jobs,

users must ensure that the network keyword in the job command file specifies

the MPI, LAPI, or MPI_LAPI protocol for user space communication.

Examples:

network.MPI =sn_single,not_shared,US,HIGH

network.MPI_LAPI =sn_single,not_shared,US,HIGH

Preparing a job for checkpoint/restart

LoadLeveler has the ability to checkpoint your entire job step, and to allow a job

step to restart from the last checkpoint. When a job step is checkpointed, the entire

state of each process of that job step is saved by the operating system. On AIX, this

checkpoint capability is built in to the base operating system.

Use the information in Table 43 on page 175 to correctly configure your job for

checkpointing.

Using bulk data transfer

174 TWS LoadLeveler: Using and Administering

|
|
|
|

Table 43. Checkpoint configurations

To specify that: Do this:

Your job is

checkpointable

v Add either one of the following two options to your job

command file:

1. checkpoint = yes

This enables your job to checkpoint in any of the following

ways:

– The application can initiate the checkpoint. This is only

available on AIX.

– Checkpoint from a program which invokes the ll_ckpt API.

– Checkpoint using the llckpt command.

– As the result of a flush command.

OR

2. checkpoint = interval

This enables your job to checkpoint in any of the following

ways:

– The application can initiate the checkpoint. This is only

available on AIX.

– Checkpoint from a program which invokes the ll_ckpt API.

– Checkpoint using the llckpt command.

– Checkpoint automatically taken by LoadLeveler.

– As the result of a flush command.

v If you would like your job to checkpoint itself, use the API

ll_init_ckpt in your serial application, or mpc_init_ckpt for

parallel jobs to cause the checkpoint to occur. This is only

available on AIX.

Your job step’s

executable is to be

copied to the execute

node

Add the ckpt_execute_dir keyword to the job command file.

Preparing a job for checkpoint/restart

Chapter 8. Building and submitting jobs 175

|
|

|
|

|
|
|
|

Table 43. Checkpoint configurations (continued)

To specify that: Do this:

LoadLeveler

automatically

checkpoints your job

at preset intervals

1. Add the following option to your job command file:

checkpoint = interval

This enables your job to checkpoint in any of the following

ways:

v Checkpoint automatically at preset intervals

v Checkpoint initiated from user application. This is only

available on AIX.

v Checkpoint from a program which invokes the ll_ckpt API

v Checkpoint using the llckpt command

v As the result of a flush command

2. The system administrators must set the following two keywords

in the configuration file to specify how often LoadLeveler

should take a checkpoint of the job. These two keywords are:

MIN_CKPT_INTERVAL = number

Where number specifies the initial period, in seconds,

between checkpoints taken for running jobs.

MAX_CKPT_INTERVAL = number

Where number specifies the maximum period, in seconds,

between checkpoints taken for running jobs.

The time between checkpoints will be increased after each

checkpoint within these limits as follows:

v The first checkpoint is taken after a period of time equal to the

MIN_CKPT_INTERVAL has passed.

v The second checkpoint is taken after LoadLeveler waits twice as

long (MIN_CKPT_INTERVAL X 2)

v The third checkpoint is taken after LoadLeveler waits twice as

long again (MIN_CKPT_INTERVAL X 4) before taking the third

checkpoint.

LoadLeveler continues to double this period until the value of

MAX_CKPT_INTERVAL has been reached, where it stays for the

remainder of the job.

A minimum value of 900 (15 minutes) and a maximum value of

7200 (2 hours) are the defaults.

You can set these keyword values globally in the global

configuration file so that all machines in the cluster have the same

value, or you can specify a different value for each machine by

modifying the local configuration files.

Your job will not be

checkpointed

Add the following option to your job command file:

v checkpoint = no

This will disable checkpoint.

Preparing a job for checkpoint/restart

176 TWS LoadLeveler: Using and Administering

|
|

Table 43. Checkpoint configurations (continued)

To specify that: Do this:

Your job has

successfully

checkpointed and

terminated. The job

has left the

LoadLeveler job queue

and you want

LoadLeveler to restart

your executable from

an existing checkpoint

file.

1. Add the following option to your job command file:

v restart_from_ckpt = yes

2. On AIX, specify the name of the checkpoint file by setting the

following job command file keywords to specify the directory

and file name of the checkpoint file to be used:

v ckpt_dir

v ckpt_file

When the job command file is submitted, a new job will be started

that uses the specified checkpoint file to restart the previously

checkpointed job.

The job command file which was used to submit the original job

should be used to restart from checkpoint. The only modifications

to this file should be the addition of restart_from_ckpt = yes and

ensuring ckpt_dir and ckpt_file point to the appropriate checkpoint

file.

Your job has

successfully

checkpointed. The job

has been vacated and

remains on the

LoadLeveler job

queue.

When the job restarts, if a checkpoint file is available, the job will

be restarted from that file.

If a checkpoint file is not available upon restart, the job will be

started from the beginning.

Preparing a job for preemption

Depending on various configuration options, LoadLeveler may preempt your job

so that a higher priority job step can run. Administrators may:

v Configure LoadLeveler or external schedulers to preempt jobs through various

methods.

v Specify preemption rules for job classes.

v Manually preempt your job using LoadLeveler interfaces.

To ensure that your job can be resumed after preemption, set the restart keyword

in the job command file to yes.

Submitting a job command file

After building a job command file, you can submit it for processing either to a

machine in the LoadLeveler cluster or one outside of the cluster. (See “Querying

multiple LoadLeveler clusters” on page 65 for information on submitting a job to a

machine outside the cluster.) You can submit a job command file either by using

the GUI or the llsubmit command.

When you submit a job, LoadLeveler assigns a job identifier and one or more step

identifiers.

The LoadLeveler job identifier consists of the following:

machine name

The name of the machine which assigned the job identifier.

Preparing a job for checkpoint/restart

Chapter 8. Building and submitting jobs 177

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

jobid A number given to a group of job steps that were initiated from the same

job command file.

The LoadLeveler step identifier consists of the following:

job identifier

The job identifier.

stepid A number that is unique for every job step in the job you submit.

If a job command file contains multiple job steps, every job step will have the same

jobid and a unique stepid.

For an example of submitting a job, see Chapter 10, “Example: Using commands to

build, submit, and manage jobs,” on page 215.

In a multicluster environment, job and step identifiers are assigned by the local

cluster and are retained by the job regardless of what cluster the job runs in.

Submitting a job using a submit-only machine

You can submit jobs from submit-only machines. Submit-only machines allow

machines that do not run LoadLeveler daemons to submit jobs to the cluster. You

can submit a job using either the submit-only version of the GUI or the llsubmit

command.

To install submit-only LoadLeveler, follow the procedure in the TWS LoadLeveler:

Installation Guide.

In addition to allowing you to submit jobs, the submit-only feature allows you to

cancel and query jobs from a submit-only machine.

Working with parallel jobs

LoadLeveler allows you to schedule parallel batch jobs that have been written

using the following:

v On AIX 5L and Linux:

– IBM Parallel Environment (PE)

– MPICH, which is an open-source, portable implementation of the

Message-Passing Interface Standard developed by Argonne National

Laboratory

– MPICH-GM, which is a port of MPICH on top of Myrinet GM code
v On Linux:

– MVAPICH, which is a high performance implementation of MPI-1 over

InfiniBand based on MPICH support for PE is available in this release of

LoadLeveler for Linux

Scheduler support for parallel jobs

Several LoadLeveler job command language keywords are associated with parallel

jobs. Whether a keyword is appropriate is dependent upon the type of

LoadLeveler scheduler you are running.

Table 44 on page 179 shows you the parallel keywords supported by LoadLeveler’s

LL_DEFAULT, BACKFILL, and API schedulers. If your administrator disabled the

LL_DEFAULT LoadLeveler scheduler to run an external scheduler, see “Replacing

Submitting a job command file

178 TWS LoadLeveler: Using and Administering

|

|

|
|
|

|

|

|
|
|

the default LoadLeveler scheduling algorithm with an external scheduler” on page

106 for an explanation of which keywords are supported.

 Table 44. Parallel keywords supported by the LL_DEFAULT, BACKFILL, and API schedulers

Keywords supported by the LL_DEFAULT

scheduler

Keywords supported by the BACKFILL and

API schedulers

v max_processors

v min_processors

v Adapter requirement

v network

v node

v node_usage

v tasks_per_node

v total_tasks

v task_geometry

v blocking

These keywords are used in the examples in this topic, and are described in more

detail in “Job command file keyword descriptions” on page 336.

Step for controlling whether LoadLeveler copies environment

variables to all executing nodes

You may specify that LoadLeveler is to copy, either to all executing nodes or to

only the master executing node, the environment variables that are specified in the

environment job command file statement for a parallel job.

Before you begin: You need to know:

v Whether Parallel Environment (PE) will be used to run the parallel job; if so,

then LoadLeveler does not have to copy the application environment to the

executing nodes.

v How to correctly specify the env_copy keyword. For information about keyword

syntax and other details, see the env_copy keyword description.

v To specify whether LoadLeveler is to copy environment variables to only the

master node, or to all executing nodes, use the #@ env_copy keyword in the job

command file.

Alternative: You can use the Job Builder window in the LoadLeveler GUI to

specify a value for this keyword.

Ensuring that parallel jobs in a cluster run on the correct

levels of PE and LoadLeveler software

If support for parallel POE jobs is required, users must be aware that when

LoadLeveler uses Parallel Environment for parallel job submission, that the PE

software requires the same level of PE to be used throughout the parallel job.

Different levels of PE cannot be mixed. For example, PE 4.3 supports only

LoadLeveler 3.4, and PE 4.2 supports only LoadLeveler 3.3. Therefore, a POE

parallel job cannot run some of its tasks on LoadLeveler 3.4 machines and the

remaining tasks on LoadLeveler 3.3 machines.

The requirements keyword of the job command file can be used to ensure that all

the tasks of a POE job run on compatible levels of PE and LoadLeveler software in

a cluster. Here are three examples showing different ways this can be done:

1. If the following requirements statement is included in the job command file,

LoadLeveler’s central manager will select only 3.4 or higher machines with the

appropriate OpSys level for this job step.

@ requirements = (LL_Version >= "3.4") && (OpSys == "AIX53")

Working with parallel jobs

Chapter 8. Building and submitting jobs 179

|
|
|
|
|
|
|

|
|
|

|

The requirements expression should contain the OpSys specification because

the llsubmit command automatically adds the OpSys of the submitting machine

to the other job requirements unless an OpSys requirement has already been

explicitly specified.

2. If a requirements statement such as the following is specified, the tasks of a

POE job will see a consistent environment when ″hostname1″ and ″hostname2″

run the same levels of PE and LoadLeveler software.

@ requirements = (Machine == { "hostname1" "hostname2" }) && (OpSys == "AIX53")

3. If the mixed cluster has been partitioned into 3.4 and 3.3 LoadLeveler pools,

then you may use a requirements statement similar to one of the two following

statements to select machines running the same levels of software.

v # @ requirements = (Pool == 33) && (OpSys == "AIX53")

v # @ requirements = (Pool == 32) && (OpSys == "AIX52")

Here, it is assumed that all the 3.4 machines in this mixed cluster are assigned

to pool 33 and all 3.3 machines are assigned to pool 32. A LoadLeveler

administrator can use the pool_list keyword of the machine stanza of the

LoadLeveler administration file to assign machines to pools.

If a statement such as # @ executable = /bin/poe is specified in a job command

file, and if the job is intended to be run on 3.3 machines, then it is important that

the job be submitted from a 3.3 machine. When the ″executable″ keyword is used,

LoadLeveler will copy the associated binary on the submitting machine and send it

to a running machine for execution. In this example, the POE program will fail if

the submitting and the running machines are at different software levels. In a

mixed cluster, this problem can be circumvented by not using the executable

keyword in the job command file. By omitting this keyword, the job command file

itself is the shell script that will be executed. If this script invokes a local version of

the POE binary then there is no compatibility problem at run time.

Task-assignment considerations

You can use the keywords listed in Table 45 to specify how LoadLeveler assigns

tasks to nodes. With the exception of unlimited blocking, each of these methods

prioritizes machines in an order based on their MACHPRIO expressions. Various

task assignment keywords can be used in combination, and others are mutually

exclusive.

 Table 45. Valid combinations of task assignment keywords are listed in each column

Keyword Valid Combinations

total_tasks X X

tasks_per_node X X

node = <min, max> X

node = <number> X X

min_processors X X

max_processors X X

task_geometry X

blocking X

The following examples show how each allocation method works. For each

example, consider a 3-node SP with machines named ″N1,″ ″N2,″ and ″N3″. The

Working with parallel jobs

180 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

machines’ order of priority, according to the values of their MACHPRIO

expressions, is: N1, N2, N3. N1 has 4 initiators available, N2 has 6, and N3 has 8.

node and total_tasks

When you specify the node keyword with the total_tasks keyword, the assignment

function will allocate all of the tasks in the job step evenly among however many

nodes you have specified. If the number of total_tasks is not evenly divisible by

the number of nodes, then the assignment function will assign any larger groups to

the first nodes on the list that can accept them. In this example, 14 tasks must be

allocated among 3 nodes:

@ node=3

@ total_tasks=14

Table 46 shows the machine, available initiators, and assigned tasks:

 Table 46. node and total_tasks

Machine Available Initiators Assigned Tasks

N1 4 4

N2 6 5

N3 8 5

The assignment function divides the 14 tasks into groups of 5, 5, and 4, and begins

at the top of the list, to assign the first group of 5. The assignment function starts

at N1, but because there are only 4 available initiators, cannot assign a block of 5

tasks. Instead, the function moves down the list and assigns the two groups of 5 to

N2 and N3, the assignment function then goes back and assigns the group of 4

tasks to N1.

node and tasks_per_node

When you specify the node keyword with the tasks_per_node keyword, the

assignment function will assign tasks in groups of the specified value among the

specified number of nodes.

@ node = 3

@ tasks_per_node = 4

blocking

When you specify blocking, tasks are allocated to machines in groups (blocks) of

the specified number (blocking factor). The assignment function will assign one

block at a time to the machine which is next in the order of priority until all of the

tasks have been assigned. If the total number of tasks are not evenly divisible by

the blocking factor, the remainder of tasks are allocated to a single node. The

blocking keyword must be specified with the total_tasks keyword. For example:

@ blocking = 4

@ total_tasks = 17

Where blocking specifies that a job’s tasks will be assigned in blocks, and 4

designates the size of the blocks. Table 47 shows how a blocking factor of 4 would

work with 17 tasks:

 Table 47. Blocking

Machine Available Initiators Assigned Tasks

N1 4 4

N2 6 5

Working with parallel jobs

Chapter 8. Building and submitting jobs 181

Table 47. Blocking (continued)

Machine Available Initiators Assigned Tasks

N3 8 8

The assignment function first determines that there will be 4 blocks of 4 tasks, with

a remainder of one task. Therefore, the function will allocate the remainder with

the first block that it can. N1 gets a block of four tasks, N2 gets a block, plus the

remainder, then N3 gets a block. The assignment function begins again at the top

of the priority list, and N3 is the only node with enough initiators available, so N3

ends up with the last block.

unlimited blocking

When you specify unlimited blocking, the assignment function will allocate as

many jobs as possible to each node; the function prioritizes nodes primarily by

how many initiators each node has available, and secondarily on their MACHPRIO

expressions. This method allows you to allocate tasks among as few nodes as

possible. To specify unlimited blocking, specify ″unlimited″ as the value for the

blocking keyword. The total_tasks keyword must also be specified with unlimited

blocking. For example:

@ blocking = unlimited

@ total_tasks = 17

Table 48 lists the machine, available initiators, and assigned tasks for unlimited

blocking:

 Table 48. Unlimited blocking

Machine Available Initiators Assigned Tasks

N3 8 8

N2 6 6

N1 4 3

The assignment function begins with N3 (because N3 has the most initiators

available), and assigns 8 tasks, N2 takes six, and N1 takes the remaining 3.

task_geometry

The task_geometry keyword allows you to specify which tasks run together on the

same machines, although you cannot specify which machines. In this example, the

task_geometry keyword groups 7 tasks to run on 3 nodes:

@ task_geometry = {(5,2)(1,3)(4,6,0)}

The entire task_geometry expression must be enclosed within braces. The task IDs

for each node must be enclosed within parenthesis, and must be separated by

commas. The entire range of task IDs that you specify must begin with zero, and

must end with the task ID which is one less than the total number of tasks. You

can specify the task IDs in any order, but you cannot skip numbers (the range of

task IDs must be complete). Commas may only appear between task IDs, and

spaces may only appear between nodes and task IDs.

Submitting jobs that use striping

When communication between parallel tasks occurs only over a single device such

as en0, the application and the device are gated by each other. The device must

wait for the application to fill a communication buffer before it transmits the buffer

and the application must wait for the device to transmit and empty the buffer

before it can refill the buffer. Thus the application and the device must wait for

each other and this wastes time.

Working with parallel jobs

182 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|

The technique of striping refers to using two or more communication paths to

implement a single communication path as perceived by the application. As the

application sends data, it fills up a buffer on one device. As that buffer is

transmitted over the first device, the application’s data begins filling up a second

buffer and the application perceives no delay in being able to write. When the

second buffer is full, it begins transmission over the second device and the

application moves on to the next device. When all devices have been used, the

application returns to the first device. Much, if not all of the buffer on the first

device has been transmitted while the application wrote to the buffers on the other

devices so the application waits for a minimal amount of time or possibly does not

wait at all.

LoadLeveler supports striping in two ways. When multiple switch planes or

networks are present, striping over them is indicated by requesting sn_all

(multiple networks).

If multiple adapters are present on the same network and the communication

subsystem, such as LAPI, supports striping over multiple adapters on the same

network, specifying the instances keyword on the network statement requests

striping over adapters on the same network. The instances keyword specifies the

number of adapters on a single network to stripe on. It is possible to stripe over

multiple networks and over multiple adapters on each network by specifying both

sn_all and a value for instances greater than one. For HPS adapters, only

machines that are connected to both networks are considered for sn_all jobs.

v User space striping: When sn_all is specified on a network statement with US

mode, LoadLeveler commits an equivalent set of adapter resources (adapter

windows and memory) on each of the networks present in the system to the job

on each node where the job runs. The communication subsystem is initialized to

indicate that it should use the user space communication protocol on all the

available switch adapters to service communication requests on behalf of the

application.

v IP striping: When the sn_all device is specified on a network statement with the

IP mode, LoadLeveler attempts to locate the striped IP address associated with

the switch adapters, known as the multi-link address. If it is successful, it passes

the multi-link address to POE for use. If multi-link addresses are not available,

LoadLeveler instructs POE to use the IP address of one of the switch adapters.

The IP address that is used is different each time a choice has to be made in an

attempt to balance the adapter use. Multi-link addresses must be configured on

the system prior to running LoadLeveler and they are specified with the

multilink_address keyword on the switch adapter stanza in the administration

file. If a multi-link address is specified for a node, LoadLeveler assigns the

multi-link address and multi-link IP name to the striping adapter on that node.

If a multi-link address is not present on a node, the sn_all adapter associated

with the node will not have an IP address or IP name. If not all of the nodes of

a system have multi-link addresses but some do, LoadLeveler will only dispatch

jobs that request IP striping to nodes that have multi-link addresses.

Jobs that request striping (both user space and IP) can be submitted to nodes

with only one switch adapter. In that situation, the result is the same as if the

job requested no striping.

Note: When configured, a multi-link address is associated with the virtual ml0

device. The IP address of this device is the multi-link address. The

llextRPD program will create a stanza for the ml0 device that will appear

similar to Ethernet or token ring adapter stanzas except that it will

include the multilink_list keyword that lists the adapters it performs

Working with parallel jobs

Chapter 8. Building and submitting jobs 183

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

striping over. As with any other device with an IP address, the ml0 device

can be requested in IP mode on the network statement. Doing so would

yield a comparable effect to requesting sn_all IP except that no checking

would be performed by LoadLeveler to ensure the associated adapters are

actually working. Thus it would be possible to dispatch a job that

requested communication over ml0 only to have the job fail because the

switch adapters that ml0 stripes over were down.

v Striping over one network: If the instances keyword is specified on a network

statement with a value greater than one, LoadLeveler allocates multiple sets of

resources for the protocol using as many sets as the instances keyword

specified. For User Space jobs, these sets are adapter windows and memory. For

IP jobs, these sets are IP addresses. If multiple adapters exist on each node on

the same network, then these sets of adapter resources will be distributed among

all the available adapters on the same network. Even though LoadLeveler will

allocate resources to support striping over a single network, the communication

subsystem must be capable of exploiting these resources in order for them to be

used.

Understanding striping over multiple networks

Striping over multiple networks involves establishing a communication path using

one or more of the available communication networks or switch fabrics. How those

paths are established depends on the network adapter that is present. For the SP

Switch2 family of adapters, it is not necessary to acquire communication paths

among all tasks on all fabrics as long as there is at least one fabric over which all

tasks can communicate. However, each adapter on a machine, if it is available,

must use exactly the same adapter resources (window and memory amount) as the

other adapters on that machine. Switch Network Interface for HPS adapters are not

required to use exactly the same resources on each network, but in order for a

machine to be selected, there must be an available communication path on all

networks.

Working with parallel jobs

184 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Consider these sample scenarios using the network configuration as shown in

Figure 24 where the adapters are from the SP Switch2 family:

v If a three node job requests striping over networks, it will be dispatched to Node

1, Node 2 and Node 4 where it can communicate on Network B as long as the

adapters on each machine have a common window free and sufficient memory

available. It cannot run on Node 3 because that node only has a common

communication path with Node 2, namely Network A.

v If a three node job does not request striping, it will not be run because there are

not enough adapters connected to Network A to run the job. Notice both the

adapter connected to Network A on Node 1 and the adapter connected to

Network A on Node 4 are both at fault. SP Switch2 family adapters can only use

the adapter connected to Network A for non-striped communication.

v If a three node job requests striped IP and some but not all of the nodes have

multi-linked addresses, the job will only be dispatched to the nodes that have

the multi-link addresses.

Consider these sample scenarios using the network configuration as shown in

Figure 24 where the adapters are Switch Network Interface for HPS adapters:

v If a three node job requests striping over networks, it will not be dispatched

because there are not three nodes that have active connections to both networks.

v If a three node job does not request striping, it can be run on Node 1, Node 2,

and Node 4 because they have an active connection to network B.

Adapter A

Adapter B
fault

fault

fault

Node 1

Adapter A

Adapter B

Node 2

Switch
Network A

Switch
Network B

Adapter A

Adapter B

Node 3

Adapter A

Adapter B

Node 4

Figure 24. Striping over multiple networks

Working with parallel jobs

Chapter 8. Building and submitting jobs 185

|

|
|
|

|
|
|
|
|

v If a three node job requests striped IP and some but not all of the nodes have

multi-linked addresses, the job will only be dispatched to the nodes that have

the multi-link addresses.

Note that for all adapter types, adapters are allocated to a step that requests

striping based on what the node knows is the available set of networks or fabrics.

LoadLeveler expects each node to have the same knowledge about available

networks. If this is not true, it is possible for tasks of a step to be assigned

adapters which cannot communicate with tasks on other nodes.

Similarly, LoadLeveler expects all adapters that are identified as being on the same

Network ID or fabric ID to be able to communicate with each other. If this is not

true, such as when LoadLeveler operates with multiple, independent sets of

networks, other attributes of the Step, such as the requirements expression, must

be used to ensure that only nodes from a single network set are considered for the

step.

As you can see from these scenarios, LoadLeveler will find enough nodes on the

same communication path to run the job. If enough nodes connected to a common

communication path cannot be found, no communication can take place and the

job will not run.

Understanding striping over a single network

Striping over a single network is only supported by Switch Network Interface for

HPS adapters.

Figure 25 shows a network configuration where the adapters support striping over

a single network.

Adapter A

Instance 0

Instance 1

Instance 2

Adapter B

fault

Node 1

Adapter A

Adapter B

Node 2

Adapter A

Adapter B

Node 3

A

A

A
A

B

B

Switch
Network 0

Figure 25. Striping over a single network

Working with parallel jobs

186 TWS LoadLeveler: Using and Administering

|

|
|
|

Both Adapter A and Adapter B on a node are connected to Network 0. The entire

oval represents the physical network and the concentric ovals (shaded differently)

represent the separate communication paths created for a job by the instances

keyword on the network statement. In this case a three node job requests two

instances for communication. On Node 1, adapter A is used for instance 0 and

adapter B is used for instance 1. There is no requirement to use the same adapter

for the same instance so on Node 2, adapter B was used for instance 0 and adapter

A for instance 1.

On Node 3, where a fault is keeping adapter B from connecting to the network,

adapter A is used for both instance 0 and instance 1 and Node 3 is available for

the job to use.

The network itself does not impose any limitation on the total number of

communication paths that can be active at a given time for either a single job or all

the jobs using the network. As long as nodes with adapter resources are available,

additional communication paths can be created.

Examples: Requesting striping in network statements

You request that a job be run using striping with the network statement in your

job command file. The default when instances is not specified for a job in the

network statement is controlled by the class stanza keyword for sn_all. For more

information on the network and max_protocol_instances statements, see the

keyword descriptions in “Job command file keyword descriptions” on page 336.

Shown here are examples of IP and user space network modes:

v Example 1: Requesting striping using IP mode

To submit a job using IP striping, your network statement would look like this:

network.MPI = sn_all,,IP

v Example 2: Requesting striping using user space mode

To submit a job using user space striping, your network statement would look

like this:

network.MPI = sn_all,,US

v Example 3: Requesting striping over a single network

To request IP striping over multiple adapter on a single network, the network

statement would look like this:

network.MPI = sn_single,,IP,,instances=2

If the nodes on which the job runs have two or more adapters on the same

network, two different IP addresses will be allocated to each task for MPI

communication. If only one adapter exists per network, the same IP address will

be used twice for each task for MPI communication.

v Example 4: Requesting striping over multiple networks and multiple adapters

on the same network

To submit a user space job that will stripe MPI communication over multiple

adapters on all networks present in the system the network statement would

look like this:

network.MPI = sn_all,,US,,instances=2

If, on a node where the job runs, there are two adapters on each of the two

networks, one adapter window would be allocated from each adapter for MPI

communication by the job. If only one network were present with two adapters,

one adapter window from each of the two adapters would be used. If two

Working with parallel jobs

Chapter 8. Building and submitting jobs 187

|
|
|
|
|

|

|

networks were present but each only had one adapter on it, two adapter

windows from each adapter would be used to satisfy the request for two

instances.

Running interactive POE jobs

POE will accept LoadLeveler job command files; however, you can still set the

following environment variables to define specific LoadLeveler job attributes before

running an interactive POE job:

LOADL_ACCOUNT_NO

The account number associated with the job.

LOADL_INTERACTIVE_CLASS

The class to which the job is assigned.

MP_TASK_AFFINITY

The affinity preferences requested for the job.

For information on other POE environment variables, see IBM Parallel Environment

for AIX; Operation and Use, Volume 1.

For an interactive POE job, LoadLeveler does not start the POE process therefore

LoadLeveler has no control over the process environment or resource limits.

You also may run interactive POE jobs under a reservation. For additional details

about reservations and submitting jobs to run under them, see “Working with

reservations” on page 197.

Interactive POE jobs cannot be submitted to a remote cluster.

Running MPICH, MVAPICH, and MPICH-GM jobs

LoadLeveler for AIX 5L and Linux support three open-source implementations of

the Message-Passing Interface (MPI).

MPICH is an open-source, portable implementation of the MPI Standard

developed by Argonne National Laboratory. It contains a complete implementation

of version 1.2 of the MPI Standard and also significant parts of MPI-2, particularly

in the area of parallel I/O. MPICH, MVAPICH, and MPICH-GM are the three MPI

implementations supported by LoadLeveler for AIX 5L and Linux:

v Additional documentation for MPICH is available from the Argonne National

Laboratory web site at http://www-unix.mcs.anl.gov/mpi/mpich/
index.htm#docs.

v MVAPICH is a high performance implementation of MPI-1 over InfiniBand

based on MPICH. Additional documentation for MVAPICH is available at the

Ohio State University web site at http://nowlab.cse.ohio-state.edu/projects/
mpi-iba/.

v MPICH-GM is a port of MPICH on top of GM (ch_gm). GM is a low-level

message-passing system for Myrinet Networks. Additional documentation for

MPICH-GM is available from the Myrinet web site at http://www.myri.com/
scs/.

For either MPICH, MVAPICH, or MPICH-GM, LoadLeveler allocates the machines

to run the parallel job and starts the implementation specific script as master task.

Some of the options of implementation specific scripts might not be required or are

not supported when used with LoadLeveler.

Working with parallel jobs

188 TWS LoadLeveler: Using and Administering

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

http://www-unix.mcs.anl.gov/mpi/mpich/index.htm#docs
http://www-unix.mcs.anl.gov/mpi/mpich/index.htm#docs
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
http://www.myri.com/scs/
http://www.myri.com/scs/

The following standard mpirun script options are not supported:

-map <list>

The mpirun script can either take a machinefile or a mapping of the machines

in which to run the mpirun job. If both the machinefile and map are specified,

then the map list overrides the machinefile. Because we want LoadLeveler to

decide which nodes to run on, use the machinefile specified by the

environment variable LOADL_HOSTFILE. Specifying a mapping of the host

name is not supported.

-allcpus

This option is only supported when the -machinefile option is used. The

mpirun script will run the job using all machines specified in the machine file,

without the need to specify the -np option. Without specifying machinefile,

the mpirun script will look in the default machines <arch> file to find the

machines on which to run the job. The machines defined in the default file

might not match what LoadLeveler has selected, which will cause the job to be

removed.

-exclude <list>

This option is not supported because if you specified a machine in the exclude

list that has already been scheduled by LoadLeveler to run the job, the job will

be removed.

-dbg

This option might be used to select a debugger. This option is used to select a

debugger to be used with the mpirun script. LoadLeveler currently does not

support running interactive MPICH jobs, so starting mpirun jobs under a

debugger is not supported.

-ksq

This option keeps the send queue. This is useful if you expect later to attach

totalview to the running (or deadlocked) job, and want to see the send queues.

This option is used for debugging purposes when attaching the mpirun job to

totalview. Since we do not support running debuggers under LoadLeveler

MPICH job management, this option is not supported.

-machinedir <directory>

This option looks for the machine files in the indicated directory. LoadLeveler

will create a machinefile that contains the host name for each task in the

mpirun job. The environment variable LOADL_HOSTFILE contains the full

path to the machinefile. A different machinefile is created per job and stored

in the LoadLeveler execute directory. Because there might be multiple jobs

running at one time, we do not want the mpirun script to choose any file in

the execute directory because it might not be the correct file that the central

manager has assigned to the job step. This option is therefore not supported,

use the -machinefile option instead.
v When using MPICH, the mpirun script is run on the first machine allocated to

the job. The mpirun script starts the actual execution of the parallel tasks on the

other nodes included in the LoadLeveler cluster using llspawn.stdio as

RSHCOMMAND.

The following option of MPICHs mpirun script is not supported.

-nolocal

This option specifies not to run on the local machine. The default behavior

of MPICH (p4) is that the first MPI process is always spawned on the

machine which mpirun has invoked. The -nolocal option disables the

default behavior and does not run the MPI process on the local node. Under

Working with parallel jobs

Chapter 8. Building and submitting jobs 189

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

LoadLeveler’s MPICH Job management, it is required that at least one task

is run on the local node, so the -nolocal option should not be used.
v When using MVAPICH, the mpirun_rsh command is run on the first machine

allocated to the job as master task. The mpirun_rsh command starts the actual

execution of parallel tasks on the other nodes included in the LoadLeveler

cluster using llspawn as RSHCOMMAND.

The following options of MVAPICHs mpirun_rsh command are not supported

when used with LoadLeveler.

-rsh

Specifies to use rsh for connecting.

-ssh

Specifies to use ssh for connecting. The -rsh and -ssh options are supported,

but the behavior has been changed to run mpirun_rsh jobs under

LoadLeveler MPICH job manager. Replace the -rsh and -ssh commands with

llspawn before compiling mpirun_rsh. Even if you select -rsh and -ssh, the

llspawn command is actually used in place of -rsh and -ssh at runtime.

-xterm

Runs remote processes under xterm. This option starts an xterm window for

each task in the mpirun job and runs the remote shell with the application

inside the xterm window. This will not work under LoadLeveler because the

llspawn command replaces the remote shell (rsh or ssh) and llspawn is not

kept alive to the end of the application process.

-debug

Runs each process under the control of gdb. This option is used to select a

debugger to be used with mpirun jobs. LoadLeveler currently does not

support running interactive MPICH jobs so starting mpirun jobs under a

debugger is not supported. This option also requires xterm to be working

properly as it opens gdb under an xterm window. Since we do not support

the -xterm option, the -debug option is also not supported.

h1 h2....

Specifies the names of hosts where processes should run. The mpirun_rsh

script can either take a host file or read in the names of the hosts, h1 h2 and

so on, in which to run the mpirun job. If both host file and list of machines

are specified in the mpirun_rsh arguments, mpirun_rsh will have an error

parsing the arguments. Because we want LoadLeveler to decide which nodes

to run on, you should use the host list specified by the environment variable

LOADL_HOSTFILE. Specifying the names of the hosts is not supported.
v When using MPICH-GM, the mpirun.ch_gm script is run on the first machine

allocated to the job as master task. The mpirun.ch_gm script starts the actual

execution of the parallel tasks on the other nodes included in the LoadLeveler

cluster using the llspawn command as RSHCOMMAND.

The following options of MPICH-GMs mpirun script are not supported when

used with LoadLeveler.

--gm-kill <n>

This is an option that allows you to kill all remaining processes <n> seconds

after the first one dies or exits. Do not specify this option when running the

application under LoadLeveler, because LoadLeveler will handle the cleanup

of the tasks.

--gm-tree-spawn

This is an option that uses a a two-level spawn tree to launch the processes

in an effort to reduce the load on any particular host. Because LoadLeveler

Working with parallel jobs

190 TWS LoadLeveler: Using and Administering

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

is providing its own scalable method for spawning the application tasks

from the master host, using the llspawn command, spawning processes in a

tree-like fashion is not supported.

-totalview

This option is used to select a totalview debugging session to be used with

the mpirun script. LoadLeveler currently does not support running

interactive MPICH jobs, so starting mpirun jobs under a debugger is not

supported.

-r This is an optional option for MPICH-GM, which forces the removal of the

shared memory files. Because this option is not required, it is not supported.

If you specify this option, it will be ignored.

-ddt

This option is used to select a DDT debugging session to be used with the

mpirun script. LoadLeveler currently does not support running interactive

MPICH jobs, so starting mpirun jobs under a debugger is not supported.

Sample programs are available:

v See “MPICH sample job command file” on page 192 for a sample MPICH job

command file.

v See “MPICH-GM sample job command file” on page 194 for a sample

MPICH-GM job command file.

v See “MVAPICH” on page 195 for a sample MVAPICH job command file.

v The LoadLeveler samples directory also contains sample files:

– On AIX 5L, use directory /usr/lpp/LoadL/full/samples/llmpich

– On Linux, use directory /opt/ibmll/LoadL/full/samples/llmpich

These sample files include:

– ivp.c: A simple MPI application that you may run as an MPICH, MVAPICH,

or MPICH-GM job.

– Job command files to run the ivp.c program as a batch job:

- For MPICH: mpich_ivp.cmd

- For MPICH-GM: mpich_gm_ivp.cmd

Examples: Building parallel job command files

This topic contains sample job command files for the following parallel

environments:

v IBM AIX Parallel Operating Environment (POE)

v MPICH

v MPICH-GM

v MVAPICH

POE sample job command file

Figure 26 on page 192 is a sample job command file for POE.

Working with parallel jobs

Chapter 8. Building and submitting jobs 191

|
|
|

|
|
|
|
|

||
|
|

|
|
|
|

|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

Figure 26 shows the following:

v The total number of nodes requested is a minimum of eight and a maximum of

10 (node=8,10). Two tasks run on each node (tasks_per_node=2). Thus the total

number of tasks can range from 16 to 20.

v Each task of the job will run using the LAPI protocol in US mode with a switch

adapter (network.LAPI=sn_all,US,,instances=1), and using the MPI protocol in

US mode with a switch adapter (network.MPI=sn_all,US,,instances=1).

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

Figure 27 is a second sample job command file for POE

 Figure 27 shows the following:

v POE is invoked twice, through my_POE_setup_program and

my_POE_main_program.

v The job requests a minimum of two nodes and a maximum of eight nodes

(node=2,8).

v The job by default runs one task per node.

v The job uses the MPI protocol with a switch adapter in IP mode

(network.MPI=sn_single,shared,IP).

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

MPICH sample job command file

Figure 28 on page 193 is a sample job command file for MPICH.

@ job_type = parallel

@ environment = COPY_ALL

@ output = poe.out

@ error = poe.error

@ node = 8,10

@ tasks_per_node = 2

@ network.LAPI = sn_all,US,,instances=1

@ network.MPI = sn_all,US,,instances=1

@ wall_clock_limit = 60

@ executable = /usr/bin/poe

@ arguments = /u/richc/My_POE_program -euilib "us"

@ class = POE

@ queue

Figure 26. POE job command file – multiple tasks per node

@ job_type = parallel

@ input = poe.in.1

@ output = poe.out.1

@ error = poe.err

@ node = 2,8

@ network.MPI = sn_single,shared,IP

@ wall_clock_limit = 60

@ class = POE

@ queue

/usr/bin/poe /u/richc/my_POE_setup_program -infolevel 2

/usr/bin/poe /u/richc/my_POE_main_program -infolevel 2

Figure 27. POE sample job command file – invoking POE twice

Working with parallel jobs

192 TWS LoadLeveler: Using and Administering

|
|

Note: You can also specify the job_type=parallel keyword and invoke the mpirun

script to run an MPICH job. In that case, the mpirun script would use rsh

or ssh and not the llspawn command.

Figure 28 shows that in the following job command file statement:

/opt/mpich/bin/mpirun -np $LOADL_TOTAL_TASKS -machinefile \

$LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

-np

Specifies the number of parallel processes.

LOADL_TOTAL_TASKS

Is the environment variable set by LoadLeveler with the number of parallel

processes of the job step.

-machinefile

Specifies the machine list file.

LOADL_HOSTFILE

Is the environment variable set by LoadLeveler with the file name that contains

host names assigned to the parallel job step.

The following is another example of a MPICH job command file:

Figure 29 shows the following:

v The mpirun script is specified as a value of the executable job command file

keyword.

v The following mpirun script arguments are specified with the arguments job

command file keyword:

-np $LOADL_TOTAL_TASKS -machinefile $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

! /bin/ksh

LoadLeveler JCF file for running an MPICH job

@ job_type = MPICH

@ node = 4

@ tasks_per_node = 2

@ output = mpich_test.$(cluster).$(process).out

@ error = mpich_test.$(cluster).$(process).err

@ queue

echo "--"

echo LOADL_STEP_ID=$LOADL_STEP_ID

echo "--"

/opt/mpich/bin/mpirun -np $LOADL_TOTAL_TASKS -machinefile \

 $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

Figure 28. MPICH job command file - sample 1

! /bin/ksh

LoadLeveler JCF file for running an MPICH job

@ job_type = MPICH

@ node = 4

@ tasks_per_node = 2

@ output = mpich_test.$(cluster).$(process).out

@ error = mpich_test.$(cluster).$(process).err

@ executable = /opt/mpich/bin/mpirun

@ arguments = -np $LOADL_TOTAL_TASKS -machinefile \

 $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

@ queue

Figure 29. MPICH job command file - sample 2

Working with parallel jobs

Chapter 8. Building and submitting jobs 193

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

-np

Specifies the number of parallel processes.

LOADL_TOTAL_TASKS

Is the environment variable set by LoadLeveler with the number of parallel

processes of the job step.

-machinefile

Specifies the machine list file.

LOADL_HOSTFILE

Is the environment variable set by LoadLeveler with file name, which

contains host names assigned to the parallel job step.

MPICH-GM sample job command file

Figure 30 is a sample job command file for MPICH-GM.

Figure 30 shows the following:

v The statement # @ resources = gmports(1) specifies that each task consumes one

GM port. This is how LoadLeveler limits the number of GM ports

simultaneously in use on any machine. This resource name is the name you

specified in schedule_by_resources in the configuration file and each machine

stanza in the administration file must define GM ports and specify the quantity

of GM ports available on each machine. Use the llstatus -R command to confirm

the names and values of the configured and available consumable resources.

v In the following job command file statement:

/opt/mpich/bin/mpirun.ch_gm -np $LOADL_TOTAL_TASKS \

 -machinefile $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_gm_test

/opt/mpich/bin/mpirun.ch_gm

Specifies the location of the mpirun.ch_gm script shipped with the

MPICH-GM implementation that runs the MPICH-GM application.

-np

Specifies the number of parallel processes.

-machinefile

Specifies the machine list file.

LOADL_HOSTFILE

Is the environment variable set by LoadLeveler with file name, which

contains host names assigned to the the parallel job step.

#! /bin/ksh

LoadLeveler JCF file for running an MPICH-GM job

@ job_type = MPICH

@ resources = gmports(1)

@ node = 4

@ tasks_per_node = 2

@ output = mpich_gm_test.$(cluster).$(process).out

@ error = mpich_gm_test.$(cluster).$(process).err

@ queue

echo "--"

echo LOADL_STEP_ID=$LOADL_STEP_ID

echo "--"

/opt/mpich/bin/mpirun.ch_gm -np $LOADL_TOTAL_TASKS -machinefile \

$LOADL_HOSTFILE /common/NFS/ll_bin/mpich_gm_test

Figure 30. MPICH-GM job command file - sample 1

Working with parallel jobs

194 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

Figure 31 is another sample job command file for MPICH-GM.

Figure 31 shows the following:

v The mpirun_gm script is specified as value of the executable job command file

keyword.

v The following mpirun_gm script arguments are specified with the arguments job

command file keyword:

-np $LOADL_TOTAL_TASKS -machinefile $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

-np

Specifies the number of parallel processes.

LOADL_TOTAL_TASKS

Is the environment variable set by LoadLeveler with the number of parallel

processes of the job step.

-machinefile

Specifies the machine list file.

LOADL_HOSTFILE

Is the environment variable set by LoadLeveler with file name, which

contains host names assigned to the parallel job step.

MVAPICH

Figure 32 is a sample job command file for MVAPICH:

Figure 32 shows that in the following job command file statement:

/opt/mpich/bin/mpirun_rsh -np $LOADL_TOTAL_TASKS -machinefile \

 $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

#! /bin/ksh

LoadLeveler JCF file for running an MPICH-GM job

@ job_type = MPICH

@ resources = gmports(1)

@ node = 4

@ tasks_per_node = 2

@ output = mpich_gm_test.$(cluster).$(process).out

@ error = mpich_gm_test.$(cluster).$(process).err

@ executable = /opt/mpich/bin/mpirun.ch_gm

@ arguments = -np $LOADL_TOTAL_TASKS -machinefile \

$LOADL_HOSTFILE /common/NFS/ll_bin/mpich_gm_test

@ queue

Figure 31. MPICH-GM job command file - sample 2

! /bin/ksh

LoadLeveler JCF file for running an MVAPICH job

@ job_type = MPICH

@ node = 4

@ tasks_per_node = 2

@ output = mvapich_test.$(cluster).$(process).out

@ error = mvapich_test.$(cluster).$(process).err

@ queue

echo "--"

echo LOADL_STEP_ID=$LOADL_STEP_ID

echo "--"

/opt/mpich/bin/mpirun_rsh -np $LOADL_TOTAL_TASKS -machinefile \

 $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

Figure 32. MVAPICH job command file - sample 1

Working with parallel jobs

Chapter 8. Building and submitting jobs 195

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

-np

Specifies the number of parallel processes.

LOADL_TOTAL_TASKS

Is the environment variable set by LoadLeveler with the number of parallel

processes of the job step.

-machinefile

Specifies the machine list file.

LOADL_HOSTFILE

Is the environment variable set by LoadLeveler with file name, which contains

host names assigned to the parallel job step.

 Figure 32 on page 195 is another sample job command file for MVAPICH:

Figure 33 shows the following:

v The mpirun_rsh command is specified as value for the executable job command

file keyword.

v The following mpirun_rsh command arguments are specified with the

arguments job command file keyword:

-np $LOADL_TOTAL_TASKS -machinefile $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

-np

Specifies the number of parallel processes.

LOADL_TOTAL_TASKS

Is the environment variable set by LoadLeveler with the number of parallel

processes of the job step.

-machinefile

Specifies the machine list file.

LOADL_HOSTFILE

Is the environment variable set by LoadLeveler with file name, which

contains host names assigned to the parallel job step.

Obtaining status of parallel jobs

Both end users and LoadLeveler administrators can obtain status of parallel jobs in

the same way as they obtain status of serial jobs – either by using the llq

command or by viewing the Jobs window on the graphical user interface (GUI). By

issuing llq -l, or by using the Job Actions → Details selection in xloadl, users get a

list of machines allocated to the parallel job. If you also need to see task instance

information use the -x option in addition to the -l option (llq -l -x). See “llq -

! /bin/ksh

LoadLeveler JCF file for running an MVAPICH job

@ job_type = MPICH

@ node = 4

@ tasks_per_node = 2

@ output = mvapich_test.$(cluster).$(process).out

@ error = mvapich_test.$(cluster).$(process).err

@ executable = /opt/mpich/bin/mpirun_rsh

@ arguments = -np $LOADL_TOTAL_TASKS -machinefile \

 $LOADL_HOSTFILE /common/NFS/ll_bin/mpich_test

@ queue

Figure 33. MVAPICH job command file - sample 2

Working with parallel jobs

196 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|

Query job status” on page 449 for samples of output using the -x and -l options

with the llq command. As an alternative, you can also use the GUI and select: Job

Actions → Extended Details.

Obtaining allocated host names

llq -l output includes information on allocated host names. Another way to obtain

the allocated host names is with the LOADL_PROCESSOR_LIST environment

variable, which you can use from a shell script in your job command file as shown

in Figure 34.

This example uses LOADL_PROCESSOR_LIST to perform a remote copy of a local

file to all of the nodes, and then invokes POE. Note that the processor list contains

an entry for each task running on a node. If two tasks are running on a node,

LOADL_PROCESSOR_LIST will contain two instances of the host name where the

tasks are running. The example in Figure 34 removes any duplicate entries.

Note that LOADL_PROCESSOR_LIST is set by LoadLeveler, not by the user. This

environment variable is limited to 128 hostnames. If the value is greater than the

128 limit, the environment variable is not set.

Working with reservations

Under the BACKFILL scheduler only, LoadLeveler allows authorized users to make

reservations, which specify a time period during which specific node resources are

reserved for use by particular users or groups.

#!/bin/ksh

@ output = my_POE_program.$(cluster).$(process).out

@ error = my_POE_program.$(cluster).$(process).err

@ class = POE

@ job_type = parallel

@ node = 8,12

@ network.MPI = sn_single,shared,US

@ queue

tmp_file="/tmp/node_list"

rm -f $tmp_file

Copy each entry in the list to a new line in a file so

that duplicate entries can be removed.

for node in $LOADL_PROCESSOR_LIST

 do

 echo $node >> $tmp_file

 done

Sort the file removing duplicate entries and save list in variable

nodelist= sort -u /tmp/node_list

for node in $nodelist

 do

 rcp localfile $node:/home/userid

 done

rm -f $tmp_file

/usr/bin/poe /home/userid/my_POE_program

Figure 34. Using LOADL_PROCESSOR_LIST in a shell script

Working with parallel jobs

Chapter 8. Building and submitting jobs 197

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Use Table 49 to find information about working with reservations.

 Table 49. Roadmap of tasks for reservation owners and users

Subtask Associated instructions (see . . .)

Learn how reservations work in the

LoadLeveler environment

v “Overview of reservations” on page 23

v “Understanding the reservation life cycle”

Creating new reservations “Creating new reservations” on page 200

Managing jobs that run under a

reservation

v “Submitting jobs to run under a reservation” on

page 202

v “Removing bound jobs from the reservation” on

page 203

Managing existing reservations v “Querying existing reservations” on page 204

v “Modifying existing reservations” on page 204

v “Canceling existing reservations” on page 205

Using the LoadLeveler interfaces for

reservations

v Chapter 16, “Commands,” on page 385

v “Reservation API” on page 600

Understanding the reservation life cycle

From the time at which LoadLeveler creates a reservation through the time the

reservation ends or is canceled, a reservation goes through various states, which

are indicated in command listings and other displays or output. Understanding

these states is important because the current state of a reservation dictates what

actions you can take; for example, if you want to modify the start time for a

reservation, you may do so only while the reservation is in Waiting state. Table 50

lists the possible reservation states, their abbreviations, and usage notes.

 Table 50. Reservation states, abbreviations, and usage notes

Reservation

state

Abbreviation

in displays /

output

Usage notes

Waiting W When LoadLeveler first creates a reservation, the

reservation is in Waiting state. While the reservation is in

this state:

v Only administrators and reservation owners may

modify, cancel, and add users or groups to the

reservation.

v Administrators, reservation owners, and users or groups

that are allowed to use the reservation may query it, and

submit jobs to run during the reservation period.

Working with reservations

198 TWS LoadLeveler: Using and Administering

Table 50. Reservation states, abbreviations, and usage notes (continued)

Reservation

state

Abbreviation

in displays /

output

Usage notes

Setup S LoadLeveler changes the state of a reservation from

Waiting to Setup just before the start time of the

reservation. The actual time at which LoadLeveler places

the reservation in Setup state depends on the value set for

the RESERVATION_SETUP_TIME keyword in the

configuration file.

While the reservation is in Setup state:

v Only administrators and reservation owners may

modify, cancel, and add users or groups to the

reservation.

v Administrators, reservation owners, and users or groups

that are allowed to use the reservation may query it, and

submit jobs to run during the reservation period.

During this setup period, LoadLeveler:

v Stops scheduling unbound job steps to reserved nodes.

v Preempts any jobs that are still running on the nodes

that are reserved through this reservation. To preempt

the running jobs, LoadLeveler uses the preemption

method specified through the

DEFAULT_PREEMPT_METHOD keyword in the

configuration file.

Note: The default value for

DEFAULT_PREEMPT_METHOD is SU (suspend),

which is not supported in all environments, and the

default value for PREEMPTION_SUPPORT is NONE. If

you want preemption to take place at the start of the

reservation, make sure the cluster is configured for

preemption (see “Steps for configuring a scheduler to

preempt jobs” on page 120 for more information).

Active A At the reservation start time, LoadLeveler changes the

reservation state from Setup to Active. It also dispatches

only job steps that are bound to the reservation, until the

reservation completes or is canceled.

LoadLeveler does not dispatch bound job steps that:

v Require certain resources, such as floating consumable

resources, that are not available during the reservation

period.

v Have expected end times that exceed the end time of the

reservation. By default, LoadLeveler allows such jobs to

run, but their completion is subject to resource

availability. (An administrator may configure

LoadLeveler to prevent such jobs from running.)

These bound job steps remain idle unless the required

resources become available.

While the reservation is in Active state:

v Only administrators and reservation owners may

modify, cancel, and add users or groups to the

reservation.

v Administrators, reservation owners, and users or groups

that are allowed to use the reservation may query it, and

submit jobs to run during the reservation period.

Working with reservations

Chapter 8. Building and submitting jobs 199

Table 50. Reservation states, abbreviations, and usage notes (continued)

Reservation

state

Abbreviation

in displays /

output

Usage notes

Active_Shared AS At the reservation start time, LoadLeveler changes the

reservation state from Setup to Active. It also dispatches

only job steps that are bound to the reservation, unless the

reservation was created with the SHARED mode. In this case,

if reserved resources are still available after LoadLeveler

dispatches any bound job steps that are eligible to run,

LoadLeveler changes the reservation state to

Active_Shared, and begins dispatching job steps that are

not bound to the reservation. Once the reservation state

changes to Active_Shared, it remains in that state until the

reservation completes or is canceled. During this time,

LoadLeveler dispatches both bound and unbound job

steps, pending resource availability; bound job steps are

considered before unbound job steps.

The conditions under which LoadLeveler will not dispatch

bound job steps are the same as those listed in the notes

for the Active state.

The actions that administrators, reservation owners, and

users may perform are the same as those listed in the

notes for the Active state.

Canceled CA When a reservation owner, administrator, or LoadLeveler

issues a request to cancel the reservation, LoadLeveler

changes the state of a reservation to Canceled and unbinds

any job steps bound to this reservation. When the

reservation is in this state, no one can modify or submit

jobs to this reservation.

Complete C When a reservation end time is reached, LoadLeveler

changes the state of a reservation to Complete. When the

reservation is in this state, no one can modify or submit

jobs to this reservation.

Creating new reservations

You must be an authorized user or member of an authorized group to successfully

create a reservation. LoadLeveler administrators define authorized users by adding

the max_reservations keyword to the user or group stanza in the administration

file. The max_reservations keyword setting also defines how many reservations

you are allowed to own. Ask your administrator whether you are authorized to

create reservations.

To be authorized to create reservations, LoadLeveler administrators also must have

the max_reservations keyword set in their user or group stanza.

To create a reservation, use the llmkres command. When you create a reservation,

you must:

v Specify the start time and duration of the reservation. Use the -t and -d

command options, respectively.

v Explicitly specify nodes through one the following methods, which are mutually

exclusive. You must use only one method when you request LoadLeveler to

create a reservation.

Working with reservations

200 TWS LoadLeveler: Using and Administering

– The -n option on the llmkres command instructs LoadLeveler to reserve a

number of nodes. LoadLeveler may select any unreserved node to satisfy a

reservation. This command option is perhaps the easiest to use, because you

need to know only how many nodes you want, not specific node

characteristics.

The minimum number of nodes a reservation must have is 1.

– The -h option on the llmkres command instructs LoadLeveler to reserve

specific nodes.

– The -f option on the llmkres command instructs LoadLeveler to submit the

specified job command file, and reserve appropriate nodes for the first job

step in the job command file. Through this action, all job steps for the job are

bound to the reservation. If the reservation request fails, LoadLeveler changes

the state for all job steps for this job to NotQueued, and will not schedule any

of those job steps to run.

– The -j option on the llmkres command instructs LoadLeveler to reserve

appropriate nodes for that job step. Through this action, the job step is bound

to the reservation. If the reservation request fails, the job step remains in the

same state as it was before.
v The -c option on the llmkres command instructs LoadLeveler to reserve a

number of Blue Gene compute nodes (C-nodes). The -j and -f option also reserve

Blue Gene resources if the job type is bluegene.

You also may define other reservation attributes, including:

v Whether additional users or groups are allowed to use the reservation. Use the

-U or -G command options, respectively.

v Whether the reservation will be in one or both of these optional modes:

– SHARED mode: When you use the -s command option, LoadLeveler allows

reserved resources to be shared by job steps that are not associated with a

reservation. This mode enables the efficient use of reserved resources; if the

bound job steps do not use all of the reserved resources, LoadLeveler can

schedule unbound job steps as well so the resources do not remain idle.

Unless you specify this mode, however, only job steps bound to the

reservation may use the reserved resources.

– REMOVE_ON_IDLE mode: When you use the -i command option, LoadLeveler

automatically cancels the reservation when all bound job steps that can run

finish running. Using this mode is efficient because it prevents LoadLeveler

from wasting reserved resources when no jobs are available to use them.

Selecting this mode is especially useful for workloads that will run

unattended.

Additional rules apply to the use of these options; see “llmkres - Make a

reservation” on page 431 for details.

Alternatives:

v Use the ll_make_reservation and the ll_init_reservation_param subroutines in a

program.

v Use the LoadLeveler GUI by selecting File � Reservations � Create a

reservation.

Tips:

v If your user ID is not authorized to create reservations but you are member of a

group with authority to create reservations, you must use the -g option to

specify the name of the authorized group on the llmkres command.

Working with reservations

Chapter 8. Building and submitting jobs 201

|
|
|

v Only reservations in waiting and in use are counted toward the limit of allowed

reservations set through the max_reservations keyword. LoadLeveler does not

count reservations that already have ended or are in the process of being

canceled.

v Although you may create more than one reservation for a particular node or set

of nodes, only one of those reservations may be active at a time. If LoadLeveler

determines that the reservation you are requesting will overlap with another

reservation, LoadLeveler fails the create request. No reservation periods for the

same set of machines can overlap.

If the create request is successful, LoadLeveler assigns and returns to the owner a

unique reservation identifier, in the form host.rid.r, where:

host The name of the machine which assigned the reservation identifier.

rid A number assigned to the reservation by LoadLeveler.

r The letter r is used to distinguish a reservation identifier from a job step

identifier.

The following are examples of reservation identifiers:

c94n16.80.r

c94n06.1.r

For details about the LoadLeveler interfaces for creating reservations, see:

v “llmkres - Make a reservation” on page 431.

v “ll_make_reservation subroutine” on page 609 and “ll_init_reservation_param

subroutine” on page 608.

Submitting jobs to run under a reservation

LoadLeveler administrators, reservation owners, and authorized users may submit

jobs to run under a reservation. You may bind both batch and interactive POE job

steps to a reservation, both before a reservation starts or while it is active.

Before you begin:

v If you are a reservation owner and used the -f or -j options on the llmkres

command when you created the reservation, you do not have to perform the

steps listed in Table 51 on page 203. Those command options automatically bind

the job steps to the reservation. To find out whether a particular job step is

bound to a reservation, use the command llq -l and check the listing for a

reservation ID.

v To find out which reservation IDs you may use, check with your LoadLeveler

administrator, or enter the command llqres -l and check the names in the Users

or Groups fields (under the Modification time field) in the output listing. If your

user name or a group name to which you belong appears in these output fields,

you are authorized to use the reservation.

v LoadLeveler cannot guarantee that certain resources will be available during a

reservation period. If you submit job steps that require these resources,

LoadLeveler will bind the job steps to the reservation, but will not dispatch

them unless the resources become available during the reservation. These

resources include:

– Specific nodes that were not reserved under this reservation.

– Floating consumable resources for a cluster.

– Resources that are not released through preemption, such as virtual memory

and adapters.

Working with reservations

202 TWS LoadLeveler: Using and Administering

Also, your job step will be bound to the reservation but will remain idle when

the job step requires more nodes than the number of reserved nodes.

v Whether bound job steps are successfully dispatched depends not only on

resource availability, but also on administration file keywords that set maximum

numbers, including:

– max_jobs_scheduled

– maxidle

– maxjobs

– maxqueued

If LoadLeveler determines that scheduling a bound job will exceed one or more

of these configured limits, your job will remain idle unless conditions permit

scheduling at a later time during the reservation period.

 Table 51. Instructions for submitting a job to run under a reservation

To bind this

type of job: Use these instructions:

Already

submitted

jobs

Use the llbind command

Alternatives:

v Use the ll_bind_reservation subroutine in a program.

v From the Jobs window, use the LoadLeveler GUI by selecting one or more

jobs, then selecting Actions � Bind to reservation, and selecting the ID of

the reservation to which you want to bind these jobs.

Result: LoadLeveler either sets the reservation ID for each job step that can

be bound to the reservation, or sends a failure notification for the bind

request.

A new,

unsubmitted

job

1. Specify the reservation ID through the LL_RES_ID environment variable.

Tip: You may examine but cannot modify this environment variable using

a job command filter.

2. Use the llsubmit command to submit the job.

Result: If the job can be bound to the requested reservation, LoadLeveler

sets the reservation ID for each job step that can be bound to the

reservation. Otherwise, if the job step cannot be bound to the reservation,

LoadLeveler changes the job state to NotQueued. To change the job step’s

state to Idle, issue the llbind -r command.

Use the llqres command or llq command with the -l option to check the success or

failure of the binding request for each job step.

For details about the LoadLeveler interfaces for submitting jobs under reservations,

see:

v “llbind - Bind job steps to a reservation” on page 389.

v “ll_bind subroutine” on page 601.

v “llsubmit - Submit a job” on page 494.

Removing bound jobs from the reservation

LoadLeveler administrators, reservation owners, and authorized users may use the

llbind command to unbind one or more existing jobs from a reservation.

Alternatives:

v Use the ll_bind_reservation subroutine in a program.

Working with reservations

Chapter 8. Building and submitting jobs 203

v From the Jobs window, use the LoadLeveler GUI by selecting one or more jobs,

then selecting Actions � Unbind from reservation, and selecting the ID of the

reservation from which you want to unbind these jobs.

Result: LoadLeveler either unbinds the jobs from the reservation, or sends a failure

notification for the unbind request. Use the llqres or llq command to check the

success or failure of the remove request.

For details about the LoadLeveler interfaces for removing bound jobs from the

reservation, see:

v “llbind - Bind job steps to a reservation” on page 389.

v “ll_bind subroutine” on page 601.

Querying existing reservations

Any LoadLeveler administrator or user can issue the llqres and llq commands to

request specific information about reservations:

v Various options are available to filter reservations to be displayed.

v To show details of specific reservations, use the llqres command with the -l

option.

v To show job steps that are bound to specific reservations, use the llq command

with the -R option.

Alternative: Use the LoadLeveler GUI by selecting File � Reservations.

For details about:

v Reservation attributes and llqres command syntax, see “llqres - Query a

reservation” on page 468.

v llq command syntax, see “llq - Query job status” on page 449.

Modifying existing reservations

Only administrators and reservation owners may use the llchres command to

modify one or more attributes of a reservation. Certain attributes cannot be

changed after a reservation has become active. Typical uses for the llchres

command include the following:

v Using the command llchres -U +newuser1 newuser2 to allow additional users to

submit jobs to the reservation.

v If a reservation was made through the command llmkres -h free but

LoadLeveler cannot include a particular node because it is down, you can use

the command llchres -h +node to add the node to the reserved node list when

that node becomes available again.

v If a reserved node is down after the reservation becomes active, a LoadLeveler

administrator can use:

– The command llchres -h -node to remove that node from the reservation.

– The command llchres -h +1 to add another node to the reservation.

Alternatives:

v Use the ll_change_reservation subroutine in a program.

v Use the LoadLeveler GUI by selecting File � Reservations � Modify a

reservation.

For details about the LoadLeveler interfaces for modifying reservations, see:

v “llchres - Change attributes of a reservation” on page 395.

v “ll_change_reservation subroutine” on page 604.

Working with reservations

204 TWS LoadLeveler: Using and Administering

|

|
|
|
|

Canceling existing reservations

Only administrators and reservation owners may use the llrmres command to

cancel one or more reservations.

Alternatives:

v Use the ll_remove_reservation subroutine in a program.

v Use the LoadLeveler GUI by selecting File � Reservations � Cancel a

reservation.

Result: If the cancel request can be granted, LoadLeveler:

1. Unbinds all jobs associated with the reservation to be removed.

2. Removes the reservation.

Use the llqres command to check the success or failure of the remove request.

For details about the LoadLeveler interfaces for canceling reservations, see:

v “llrmres - Cancel a reservation” on page 474.

v “ll_remove_reservation subroutine” on page 612.

Submitting jobs requesting scheduling affinity

A user can request that a job use scheduling affinity by setting the RSET job

command file keyword. Specify RSET with a value of:

v RSET_MCM_AFFINITY to have LoadLeveler schedule the job to machines

where RSET_SUPPORT is enabled with a value of RSET_MCM_AFFINITY.

v RSET_CONSUMABLE_CPUS to have LoadLeveler schedule the job to machines

where RSET_SUPPORT is enabled with a value of

RSET_CONSUMABLE_CPUS.

v user_defined_rset to have LoadLeveler schedule the job to machines where

RSET_SUPPORT is enabled with a value of RSET_USER_DEFINED;

user_defined_rset is the name of a valid user-defined RSet.

Specifying the RSET job command file keyword defaults to requesting memory

affinity as a requirement and adapter affinity as a preference. Scheduling affinity

options can be customized by using the job command file keyword

MCM_AFFINITY_OPTIONS. For more information on these keywords, see “Job

command file keyword descriptions” on page 336.

Note: If a job specifies memory or adapter affinity scheduling as a requirement,

LoadLeveler will only consider machines where RSET_SUPPORT is set to

RSET_MCM_AFFINITY. If there are not enough machines satisfying the

memory affinity requirements, the job will stay in the idle state.

Submitting and monitoring jobs in a LoadLeveler multicluster

Table 52 shows the subtasks and associated instructions for submitting and

monitoring jobs in a LoadLeveler multicluster:

 Table 52. Submitting and monitoring jobs in a LoadLeveler multicluster

Subtask Associated instructions (see . . .)

Prepare and submit a job

in the LoadLeveler

multicluster

“Steps for submitting jobs in a LoadLeveler multicluster

environment” on page 206

Working with reservations

Chapter 8. Building and submitting jobs 205

Table 52. Submitting and monitoring jobs in a LoadLeveler multicluster (continued)

Subtask Associated instructions (see . . .)

Display information about

a job in the LoadLeveler

multicluster environment

v Use the llq -X cluster_name command to display information

about jobs on remote clusters.

v Use llq -x -d to display the user’s job command file keyword

statements.

v Use llq -X cluster_name -l to obtain multicluster specific

information.

Transfer an idle job from

one cluster to another

cluster

Use the llmovejob command, which is described in “llmovejob

- Move a single idle job from the local cluster to another

cluster” on page 440.

Steps for submitting jobs in a LoadLeveler multicluster

environment

In a multicluster environment, you may specify either of the following:

v That a job is to run on a particular cluster.

v That LoadLeveler is to decide which cluster is best from the list of clusters,

based on an administrator-defined metric. If any is specified, the job is

submitted to the best cluster, based on an administrator-defined metric.

The following procedure explains how to prepare your job to be submitted in the

multicluster environment.

Before you begin: You need to know that:

v Only batch jobs are supported in the LoadLeveler multicluster environment.

LoadLeveler will fail any interactive jobs that you attempt to submit in a

multicluster environment.

v LoadLeveler assigns all steps of a multistep job to the same cluster.

v Job identifiers are assigned by the local cluster and are retained by the job

regardless of what cluster the job executes in.

v Remote jobs are subjected to the same configuration checks as locally submitted

jobs. Examples include account validation, class limits, include lists, and exclude

lists.

Perform the following steps to submit jobs in a LoadLeveler multicluster

environment.

1. If files used by your job need to be copied between clusters, you must specify

the job files to be copied from the local to the remote cluster in the job

command file. Use the cluster_input_file and cluster_output_file keywords to

specify these files.

Rules:

v Any local file specified for copy must be accessible from the local gateway

Schedd machines. Input files must be readable. Directories and permissions

must be in place to write output files.

v Any remote file specified for copy must be accessible from the remote

gateway Schedd machines. Directories and permissions must be in place to

write input files. Output files must be readable when the job terminates.

v To copy more than one file, these keywords can be specified multiple times.

Alternative: Use the LoadLeveler GUI by selecting File � Build a Job and

editing the Cluster Input File and Cluster Output File fields.

Submitting jobs requesting scheduling affinity

206 TWS LoadLeveler: Using and Administering

Tip: Each instance of these keywords allows you to specify a single local file

and a single remote file. If your job requires copying multiple files (for

example, all files in a directory), you may want to use a procedure to

consolidate the multiple files into a single file rather than specify multiple

cluster_file statements in the job command file. The following is an example of

how you could consolidate input files:

a. Use the tar command to produce a single tar file from multiple files.

b. On the cluster_input_file keyword, specify the file that resulted from the

tar command processing.

c. Modify your job command file such that it uses the tar command to restore

the multiple files from the tar file prior to invoking your application.
2. In the job command file, specify the clusters to which LoadLeveler may submit

the job. The cluster_list keyword is a blank-delimited list of cluster names or

the reserved word any where:

v A single cluster name indicates that the job is to be submitted to that cluster.

v A list of multiple cluster names indicates that the job is to be submitted to

one of the clusters as determined by the installation exit

CLUSTER_METRIC.

v The reserved word any indicates that the job is to be submitted to any

cluster defined by the installation exit CLUSTER_METRIC.
Alternatives:

a. From the Jobs window, use the LoadLeveler GUI by selecting Tools � Set

Cluster.

b. You can specify the clusters to which LoadLeveler can submit your job on

the llsubmit command using the -X option. To do the same using the

LoadLeveler GUI, select File � Submit a Job, then select Change Cluster

and Submit.
3. Use the llsubmit command or the LoadLeveler GUI to submit the job.

Note: Using Set Cluster when submitting from the Build a Job window,

cluster_list is set in the generated job command file, while when using

the Submit a Job window, the -X option is set on the submit.

Tip: You may use the -X option on the llsubmit command to specify:

-X {cluster_list | any}

Is a blank-delimited list of cluster names or the reserved word any

where:

v A single cluster name indicates that the job is to be submitted to that

cluster.

v A list of multiple cluster names indicates that the job is to be

submitted to one of the clusters as determined by the installation exit

CLUSTER_METRIC.

v The reserved word any indicates that the job is to be submitted to

any cluster defined by the installation exit CLUSTER_METRIC.

The llsubmit command displays the assigned local outbound Schedd, the

assigned remote inbound Schedd, the scheduling cluster and the job identifier

when the remote job has been successfully submitted. Use the -q flag to stop

these additional messages from being displayed.

Note: If a remote job is submitted with a list of clusters or the reserved word

any and the installation exit CLUSTER_METRIC is not specified, the

remote job is not submitted.

Submitting jobs requesting scheduling affinity

Chapter 8. Building and submitting jobs 207

When you are done, you can use commands to display information about the

submitted job; for example:

v Use llq -l -X cluster_name -j job_id where cluster_name and job_id were displayed

by the llsubmit command to display information about the remote job.

v Use llq -l -X cluster_list to display the long listing about jobs, including

scheduling cluster, submitting cluster, user-requested cluster, cluster input and

output files.

v Use llq -X all to display information about all jobs in all configured clusters.

You can also use the LoadLeveler GUI to display information about your job.

When you invoke xloadl in a multicluster environment, you will be prompted to

open a window for other configured clusters. The title for remote clusters is in the

form local_cluster→remote_cluster, where local_cluster is the cluster of the

machine where you started xloadl, and remote_cluster is a remote cluster you

selected. The jobs window contains the jobs running on that remote cluster.

Submitting and monitoring Blue Gene jobs

The following procedure explains how to prepare your job to be submitted to the

Blue Gene system. The submission of Blue Gene jobs is similar to the submission

of other job types.

Before you begin: You need to know that checkpointing Blue Gene jobs is not

currently supported.

Tip: Use the llstatus command to check if Blue Gene support is enabled and

whether Blue Gene is currently present. The llstatus command will display:

The BACKFILL scheduler with Blue Gene support is in use

Blue Gene is present

when Blue Gene is support is enabled and Blue Gene is currently present

Perform the following steps to submit Blue Gene jobs:

1. In the job command file, set the job type to Blue Gene by specifying:

#@job_type = bluegene

2. Specify the size or shape of the Blue Gene job or the Blue Gene partition in

which the job will run.

v The size of the Blue Gene job can be specified by using the job command file

keyword bg_size to specify the size of the job. For more information, see the

detailed description of the bg_size keyword .

v The shape of the Blue Gene job can be specified by using the job command

file keyword bg_shape to specify the shape of the job. If you require the

specific shape you specified, you may wish to specify the bg_rotate keyword

to false. For more information on these keywords, see the detailed

descriptions of the bg_shape keyword and bg_rotate keyword.

v The partition in which the Blue Gene job is run can be specified using the

bg_partition job command file keyword. For more information, see the

detailed description of the bg_partition keyword.
3. Specify any other job command file keywords you require, including the

bg_connection and bg_requirements Blue Gene job command file keywords.

See “Job command file keyword descriptions” on page 336 for more

information on job command file keywords.

4. Upon completing your job command file, submit the job using the llsubmit

command.

Submitting jobs requesting scheduling affinity

208 TWS LoadLeveler: Using and Administering

|
|

|
|
|
|

Alternative: Use the Build a Job window in the LoadLeveler GUI and select the

radio button for Blue Gene under Job Type. Then the Blue Gene button can be

clicked to request Blue Gene job request attributes. The generated job command

file can be saved or submitted.

When you are done, you can use the llq -b command to display information about

Blue Gene jobs in short form. For more information see “llq - Query job status” on

page 449.

You can also use the LoadLeveler GUI to display the status of a Blue Gene job.

From the Jobs window, after selecting one or more jobs, select Actions � Blue

Gene Job Status.

Example:

The following is a sample job command file for a Blue Gene job:

@ job_name = bgsample

@ job_type = bluegene

@ comment = "BGL Job by Size"

@ error = $(job_name).err

@ output = $(job_name).out

@ environment = COPY_ALL;

@ wall_clock_limit = 200:00,200:00

@ notification = always

@ notify_user = sam

@ bg_size = 1024

@ bg_connection = torus

@ class = 2bp

@ queue

/usr/bin/mpirun -exe /bgscratch/sam/com -verbose 2 -args "-o 100 -b 64 -r"

Submitting jobs requesting scheduling affinity

Chapter 8. Building and submitting jobs 209

Submitting jobs requesting scheduling affinity

210 TWS LoadLeveler: Using and Administering

Chapter 9. Managing submitted jobs

Table 53 lists the tasks and sources of additional information for managing

LoadLeveler jobs.

 Table 53. Roadmap of user tasks for managing submitted jobs

To learn about: Read the following:

Displaying information about

a submitted job or its

environment

v “Querying the status of a job”

v “Working with machines”

v “Displaying currently available resources” on page 212

v “llclass - Query class information” on page 403

v “llq - Query job status” on page 449

v “llstatus - Query machine status” on page 477

v “llsummary - Return job resource information for

accounting” on page 496

Changing the priority of a

submitted job

v “Setting and changing the priority of a job” on page 212

v “llmodify - Change attributes of a submitted job step” on

page 435

Changing the state of a

submitted job

v “Placing and releasing a hold on a job” on page 213

v “Canceling a job” on page 214

v “llhold - Hold or release a submitted job” on page 426

v “llcancel - Cancel a submitted job” on page 392

Checkpointing a submitted

job

v “Checkpointing a job” on page 214

v “llckpt - Checkpoint a running job step” on page 400

Querying the status of a job

Once you submit a job, you can query the status of the job to determine, for

example, if it is still in the queue or if it is running. You also receive other job

status related information such as the job ID and the submitting user ID. You can

query the status of a LoadLeveler job either by using the GUI or the llq command.

For an example of querying the status of a job, see Chapter 10, “Example: Using

commands to build, submit, and manage jobs,” on page 215.

Querying the status of a job using a submit-only machine: In addition to

allowing you to submit and cancel jobs, a submit-only machine allows you to

query the status of jobs. You can query a job using either the submit-only version

of the GUI or by using the llq command. For information on llq, see “llq - Query

job status” on page 449.

Working with machines

You can perform the following types of tasks related to machines:

v Display machine status

When you submit a job to a machine, the status of the machine automatically

appears in the Machines window on the GUI. This window displays machine

related information such as the names of the machines running jobs, as well as

 211

the machine’s architecture and operating system. For detailed information on

one or more machines in the cluster, you can use the Details option on the

Actions pull-down menu. This will provide you with a detailed report that

includes information such as the machine’s state and amount of installed

memory.

For an example of displaying machine status, see Chapter 10, “Example: Using

commands to build, submit, and manage jobs,” on page 215.

v Display central manager

The LoadLeveler administrator designates one of the machines in the

LoadLeveler cluster as the central manager. When jobs are submitted to any

machine, the central manager is notified and decides where to schedule the jobs.

In addition, it keeps track of the status of machines in the cluster and jobs in the

system by communicating with each machine. LoadLeveler uses this information

to make the scheduling decisions and to respond to queries.

Usually, the system administrator is more concerned about the location of the

central manager than the typical end user but you may also want to determine

its location. One reason why you might want to locate the central manager is if

you want to browse some configuration files that are stored on the same

machine as the central manager.

v Display public scheduling machines

Public scheduling machines are machines that participate in the scheduling of

LoadLeveler jobs on behalf of users at submit-only machines and users at other

workstations that are not running the Schedd daemon. You can find out the

names of all these machines in the cluster.

Submit-only machines allow machines that are not part of the LoadLeveler

cluster to submit jobs to the cluster for processing.

Displaying currently available resources

The LoadLeveler user can get information about currently available resources by

using the llstatus command with either the -F, or -R options. The -F option

displays a list of all of the floating resources associated with the LoadLeveler

cluster. The -R option lists all of the consumable resources associated with all of

the machines in the LoadLeveler cluster. The user can specify a hostlist with the

llstatus command to display only the consumable resources associated with

specific hosts.

Setting and changing the priority of a job

LoadLeveler uses the priority of a job to determine its position among a list of all

jobs waiting to be dispatched. LoadLeveler schedules jobs based on the adjusted

system priority, which takes in account both system priority and user priority:

User priority

Every job has a user priority associated with it. A job with a higher priority

runs before a job with a lower priority (when both jobs are owned by the

same user). You can set this priority through the user_priority keyword in

the job command file, and modify it through the llprio command. See

“llprio - Change the user priority of submitted job steps” on page 447 for

more information.

System priority

Every job has a system priority associated with it. Administrators can set

this priority in the configuration file using the SYSPRIO keyword

212 TWS LoadLeveler: Using and Administering

expression. The SYSPRIO expression can contain class, group, and user

priorities, as shown in the following example:

SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

The SYSPRIO expression is evaluated by LoadLeveler to determine the

overall system priority of a job. To determine which jobs to run first,

LoadLeveler does the following:

1. Assigns a system priority value when the negotiator adds the new job

to the queue of jobs eligible for dispatch.

2. Orders jobs first by system priority.

3. Assigns jobs belonging to the same user and the same class an adjusted

system priority, which takes all the system priorities and orders them

by user priority. Jobs with a higher adjusted system priority are

scheduled ahead of jobs with a lower adjusted system priority.

Only administrators may modify the system priority through the llmodify

command with the -s option. See “llmodify - Change attributes of a

submitted job step” on page 435 for more information.

Example: How does a job’s priority affect dispatching order?

To understand how a job’s priority affects dispatching order, consider the sample

jobs in Table 54, which lists the priorities assigned to jobs submitted by two users,

Rich and Joe. Two of the jobs belong to Joe, and three belong to Rich. User Joe has

two jobs (Joe1 and Joe2) in Class A with SYSPRIOs of 9 and 8 respectively. Since

Joe2 has the higher user priority (20), and because both of Joe’s jobs are in the

same class, Joe2’s priority is swapped with that of Joe1 when the adjusted system

priority is calculated. This results in Joe2 getting an adjusted system priority of 9,

and Joe1 getting an adjusted system priority of 8. Similarly, the Class A jobs

belonging to Rich (Rich1 and Rich3) also have their priorities swapped. The

priority of the job Rich2 does not change, since this job is in a different class (Class

B).

 Table 54. How LoadLeveler handles job priorities

Job User Priority

System Priority

(SYSPRIO) Class

Adjusted

System Priority

Rich1 50 10 A 6

Joe1 10 9 A 8

Joe2 20 8 A 9

Rich2 100 7 B 7

Rich3 90 6 A 10

Placing and releasing a hold on a job

You may place a hold on a job and thereby cause the job to remain in the queue

until you release it.

There are two types of holds: a user hold and a system hold. Both you and your

LoadLeveler administrator can place and release a user hold on a job. Only a

LoadLeveler administrator, however, can place and release a system hold on a job.

Chapter 9. Managing submitted jobs 213

You can place a hold on a job or release the hold either by using the GUI or the

llhold command. For examples of holding and releasing jobs, see Chapter 10,

“Example: Using commands to build, submit, and manage jobs,” on page 215.

As a user or an administrator, you can also use the startdate keyword to place a

hold on a job. This keyword allows you to specify when you want to run a job.

Canceling a job

You can cancel one of your jobs that is either running or waiting to run by using

either the GUI or the llcancel command. You can use llcancel to cancel

LoadLeveler jobs, including jobs from a submit-only machine.

For more information about the llcancel command, see “llcancel - Cancel a

submitted job” on page 392.

Checkpointing a job

Checkpointing is a method of periodically saving the state of a job so that, if for

some reason, the job does not complete, it can be restarted from the saved state.

Checkpoints can be taken either under the control of the user application or

external to the application.

On AIX only, the LoadLeveler API ll_init_ckpt is used to initiate a serial

checkpoint from the user application. For initiating checkpoints from within a

parallel application, the API mpc_init_ckpt should be used. These APIs allow the

writer of the application to determine at what points in the application it would be

appropriate save the state of the job. To enable parallel applications to initiate

checkpointing, you must use the APIs provided with the Parallel Environment (PE)

program. For information on parallel checkpointing, see IBM Parallel Environment

for AIX: Operation and Use, Volume 1.

It is also possible to checkpoint a program running under LoadLeveler outside the

control of the application. There are several ways to do this:

v Use the llckpt command to initiate checkpoint for a specific job step. See “llckpt

- Checkpoint a running job step” on page 400 for more information.

v Checkpoint from a program which invokes the ll_ckpt API to initiate checkpoint

of a specific job step. See “ll_ckpt subroutine” on page 512 for more information.

v Have LoadLeveler automatically checkpoint all running jobs that have been

enabled for checkpoint.To enable this automatic checkpoint, specify checkpoint

= interval in the job command file.

v As the result of an llctl flush command.

Note: For interactive parallel jobs, the environment variable CHECKPOINT must

be set to yes in the environment prior to starting the parallel application or

the job will not be enabled for checkpoint. For more information see IBM

Parallel Environment for AIX: MPI Programming Guide.

214 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|

|
|

|
|

Chapter 10. Example: Using commands to build, submit, and

manage jobs

The following procedure presents a series of simple tasks that a user might

perform using commands. For additional information about individual commands

noted in the procedure, see Chapter 16, “Commands,” on page 385.

1. Build your job command file by using a text editor to create a script file. Into

the file enter the name of the executable, other keywords designating such

things as output locations for messages, and the necessary LoadLeveler

statements, as shown in Figure 35:

2. You can optionally edit the job command file you created in step 1.

3. To submit the job command file that you created in step 1, use the llsubmit

command:

llsubmit longjob.cmd

LoadLeveler responds by issuing a message similar to:

submit: The job "wizard.22" has been submitted.

Where wizard is the name of the machine to which the job was submitted and

22 is the job identifier (ID). You may want to record the identifier for future use

(although you can obtain this information later if necessary).

4. To display the status of the job you just submitted, use the llq command. This

command returns information about all jobs in the LoadLeveler queue:

llq wizard.22

Where wizard is the machine name to which you submitted the job, and 22 is

the job ID. You can also query this job using the command llq wizard.22.0,

where 0 is the step ID.

5. To change the priority of a job, use the llprio command. To increase the priority

of the job you submitted by a value of 10, enter:

llprio +10 wizard.22.0

You can change the user priority of a job that is in the queue or one that is

running. This only affects jobs belonging to the same user and the same class. If

you change the priority of a job in the queue, the job’s priority increases or

decreases in relation to your other jobs in the queue. If you change the priority

of a job that is running, it does not affect the job while it is running. It only

affects the job if the job re-enters the queue to be dispatched again. For more

information, see “Setting and changing the priority of a job” on page 212.

This job command file is called longjob.cmd. The

executable is called longjob, the input file is longjob.in,

the output file is longjob.out, and the error file is

longjob.err.

@ executable = longjob

@ input = longjob.in

@ output = longjob.out

@ error = longjob.err

@ queue

Figure 35. Building a job command file

 215

6. To place a temporary hold on a job in a queue, use the llhold command. This

command only takes effect if jobs are in the Idle or NotQueued state. To place a

hold on wizard.22.0, enter:

llhold wizard.22.0

7. To release the hold you placed in step 6, use the llhold command:

llhold -r wizard.22.0

8. To display the status of the machine to which you submitted a job, use the

llstatus command:

llstatus -l wizard

9. To cancel wizard.22.0, use the llcancel command:

llcancel wizard.22.0

216 TWS LoadLeveler: Using and Administering

Chapter 11. Using LoadLeveler’s GUI to build, submit, and

manage jobs

This topic describes tasks a user may need to accomplish through the graphical

user interface (GUI). You do not have to perform the tasks in the order listed. You

may perform certain tasks before others without any difficulty; however, some

tasks must be performed prior to others for succeeding tasks to work. For example,

you cannot submit a job if you do not have a job command file that you built

using either the GUI or an editor.

The tasks included in this topic are listed in Table 55.

 Table 55. User tasks available through the GUI

Subtask Associated information (see...)

Building and submitting

jobs

v “Building jobs”

v “Editing the job command file” on page 229

v “Submitting a job command file” on page 230

Obtaining job status v “Displaying and refreshing job status” on page 231

v “Specifying which jobs appear in the Jobs window” on page

237

v “Sorting the Jobs window” on page 232

Managing a submitted job v “Changing the priority of your jobs” on page 232

v “Placing a job on hold” on page 233

v “Releasing the hold on a job” on page 233

v “Canceling a job” on page 233

Working with machines v “Displaying and refreshing machine status” on page 235

v “Specifying which machines appear in Machines window” on

page 238

v “Sorting the Machines window” on page 236

v “Finding the location of the central manager” on page 237

v “Finding the location of the public scheduling machines” on

page 237

Saving LoadLeveler

messages in a file

“Saving LoadLeveler messages in a file” on page 238

Building jobs

From the Jobs window:

SELECT File → Build a Job

 � The dialog box shown in Figure 36 on page 218 appears:

 217

Complete those fields for which you want to override what is

currently specified in your skel.cmd defaults file. Sample skel.cmd

and mcluster_skel.cmd files are found in the samples subdirectory

Figure 36. LoadLeveler build a job window

Using the GUI

218 TWS LoadLeveler: Using and Administering

|

|
|
|

of the release directory. You can update this file to define defaults

for your site, and then update the *skelfile resource in Xloadl to

point to your new skel.cmd file. If you want a personal defaults

file, copy skel.cmd to one of your directories, edit the file, and

update the *skelfile resource in .Xdefaults. Table 56 shows the

fields displayed in the Build a Job window:

 Table 56. GUI fields and input

Field Input

Executable Name of the program to run. It must be an executable file.

Optional. If omitted, the command file is executed as if it were a shell

script.

Arguments Parameters to pass to the program.

Required only if the executable requires them.

Stdin Filename to use as standard input (stdin) by the program.

Optional. The default is /dev/null.

Stdout Filename to use as standard output (stdout) by the program.

Optional. The default is /dev/null.

Stderr Filename to use as standard error (stderr) by the program.

Optional. The default is /dev/null.

Cluster Input File A comma delimited local and remote pathname pair, representing the

local file to copy to the remote location. If you have more than one pair

to enter, the More button will display a Cluster Input Files input

window.

Optional. The default is no files are copied.

Cluster Output

File

A comma delimited local and remote pathname pair, representing the

local file destination to copy to the remote file into. If you have more

than one pair to enter, the More button will display a Cluster Output

Files input window.

Optional. The default is no files are copied.

Initialdir Initial directory. LoadLeveler changes to this directory before running

the job.

Optional. The default is your current working directory.

Notify User User id of person to notify regarding status of submitted job.

Optional. The default is your userid.

StartDate Month, day, and year in the format mm/dd/yyyy. The job will not start

before this date.

Optional. The default is to run the job as soon as possible.

StartTime Hour, minute, second in the format hh:mm:ss. The job will not start

before this time.

Optional. The default is to run the job as soon as possible.

If you specify StartTime but not StartDate, the default StartDate is the

current day. If you specify StartDate but not StartTime, the default

StartTime is 00:00:00. This means that the job will start as soon as

possible on the specified date.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 219

Table 56. GUI fields and input (continued)

Field Input

Priority Number between 0 and 100, inclusive.

Optional. The default is 50.

This is the user priority. For more information on this priority, refer to

“Setting and changing the priority of a job” on page 212.

Image size Number in kilobytes that reflects the maximum size you expect your

program to grow to as it runs.

Optional.

Class Class name. The job will only run on machines that support the

specified class name. Your system administrator defines the class names.

Optional:

v Press the Choices button to get a list of available classes.

v Press the Details button under the class list to obtain long listing

information about classes.

Hold Hold status of the submitted job. Permitted values are:

user User hold

system System hold (only valid for LoadLeveler

administrators)

usersys User and system hold (only valid for LoadLeveler

administrators)

Note: The default is a no-hold state.

Account Number Number associated with the job. For use with the llacctmrg and

llsummary commands for acquiring job accounting data.

Optional. Required only if the ACCT keyword is set to A_VALIDATE in

the configuration file.

Environment Your initial environment variables when your job starts. Separate

environment specifications with semicolons.

Optional.

Copy

Environment

All or Master, to indicate whether the environment variables specified in

the keyword Environment are copied to all nodes or just to the master

node of a parallel job.

Optional.

Shell The name of the shell to use for the job.

Optional. If not specified, the shell used in the owner’s password file

entry is used. If none is specified, /bin/sh is used.

Group The LoadLeveler group name to which the job belongs.

Optional.

Step Name The name of this job step.

Optional.

Using the GUI

220 TWS LoadLeveler: Using and Administering

Table 56. GUI fields and input (continued)

Field Input

Node Usage How the node is used. Permitted values are:

shared The node can be shared with other tasks of other job

steps. This is the default.

not shared The node cannot be shared.

slice not shared Has the same meaning as not shared. It is provided

for compatibility.

Dependency A Boolean expression defining the relationship between the job steps.

Optional.

Large Page Whether or not the job step requires Large Page memory.

yes Use Large Page memory if available, otherwise use

regular memory.

mandatory Use of Large Page memory is mandatory.

no Do not use Large Page memory.

Bulk Transfer Indicates to the communication subsystem whether it should use the

bulk transfer mechanism to communicate between tasks.

yes Use bulk transfer.

no Do not use bulk transfer.

Optional.

Rset What type of RSet support is requested. Permitted values are:

rset_mcm_affinity

Requests scheduling affinity.

 Use the MCM options button to specify task allocation method,

memory affinity preference or requirement, and adapter affinity

preference or requirement.

rset_consumable_cpus

Requests nodes where rset_support is set to

rset_consumable_cpus.

rset_name

Requests a user defined RSet and nodes with rset_support set

to rset_user_defined.

Optional.

Comments Comments associated with the job. These comments help to distinguish

one job from another job.

Optional.

SMT Indicates whether a job requires dynamic simultaneous multithreading

(SMT) function.

yes The job requires SMT function.

no The job does not require SMT function.

Note: The fields that appear in this table are what you see when viewing the Build a Job

window. The text in these fields does not necessarily correspond with the keywords listed in

“Job command file keyword descriptions” on page 336.

 See “Job command file keyword descriptions” on page 336 for

information on the defaults associated with these keywords.

SELECT A Job Type if you want to change the job type.

 Your choices are:

Serial Specifies a serial job. This is the default.

Parallel Specifies a parallel job.

Blue Gene Specifies a bluegene job.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 221

||
|
||
||

|

MPICH Specifies a MPICH job.

 Note that the job type you select affects the choices that are active

on the Build A Job window.

SELECT a Notification option.

 Your choices are:

Always Notify you when the job starts, completes, and if it

incurs errors.

Complete Notify you when the job completes. This is the

default option as initially defined in the skel.cmd

file.

Error Notify you if the job cannot run because of an

error.

Never Do not notify you.

Start Notify you when the job starts.

SELECT a Restart option.

 Your choices are:

No This job is not restartable. This is the default.

Yes Restart the job.

SELECT To restart the job on the same nodes from which it was vacated.

 Your choices are:

No Restart the job on any available nodes.

Yes Restart the job on the same nodes it ran on

previously. This option is valid after a job has been

vacated.

Note that there is no default for the selection.

SELECT a Checkpoint option.

 Your choices are:

No Do not checkpoint the job. This is the default.

Yes Yes, checkpoint the job at intervals you determine.

See the checkpoint keyword for more information.

Interval Yes, checkpoint the job at intervals determined by

LoadLeveler. See the checkpoint keyword for more

information.

SELECT To start from a checkpoint file

 Your choices are:

No Do not start the job from a checkpoint file (start job from

beginning).

Yes Yes, restart the job from an existing checkpoint file when

you submit the job. The file name must be specified by the

job command file. The directory name may be specified by

the job command file, configuration file, or default location.

SELECT Coschedule if you want steps within a job to be scheduled and

dispatched at the same time.

 Your choices are:

No Disables coscheduling for your job step.

Yes Allows coscheduling to occur for your job step.

Using the GUI

222 TWS LoadLeveler: Using and Administering

||

||
|

|
||
||

Notes:

1. This keyword is not inherited by other job steps.

2. The default is No.

3. The coscheduling funtion is only available with the

BACKFILL scheduler.

SELECT Nodes (available when the job type is parallel)

 � The Nodes dialog box appears.

 Complete the necessary fields to specify node information for a

parallel job (see Table 57). Depending upon which model you

choose, different fields will be available; any unavailable fields will

be desensitized. LoadLeveler will assign defaults for any fields that

you leave blank. For more information, see the appropriate job

command file keyword (listed in parentheses) in “Job command

file keyword descriptions” on page 336.

 Table 57. Nodes dialog box

Field Available in: Input

Min # of

Nodes

Tasks Per

Node Model

and Tasks

with Uniform

Blocking

Model

Minimum number of nodes required for

running the parallel job (node keyword).

Optional. The default is one.

Max # of

Nodes

Tasks Per

Node Model

Maximum number of nodes required for

running the parallel job (node keyword).

Optional. The default is the minimum

number of nodes.

Tasks per

Node

Tasks Per

Node Model

The number of tasks of the parallel job you

want to run per node (tasks_per_node

keyword).

Optional.

Total Tasks Tasks with

Uniform

Blocking

Model, and

Custom

Blocking

Model

The total number of tasks of the parallel

job you want to run on all available nodes

(total_tasks keyword).

Optional for Uniform, required for Custom

Blocking. The default is one.

Blocking Custom

Blocking

Model

The number of tasks assigned (as a block)

to each consecutive node until all of a job’s

tasks have been assigned (blocking

keyword)

Task

Geometry

Custom

Geometry

Model

The task ids of each task that you want to

run on each node. You can use the ″Set

Geometry″ button for step-by-step

directions (task_geometry keyword).

SELECT Close to return to the Build a Job dialog box.

SELECT Network (available when the job type is parallel)

 � The Network dialog box appears.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 223

|
|
|
|
|

The Network dialog box consists of two parts: The top half of the

panel is for MPI, and the bottom half is for LAPI. Click on the

check box to the left of MPI or LAPI to activate the part of the

panel for which you want to specify network information. If you

want to use MPI with LAPI, click on both:

v The MPI check box.

v The check box for Share windows between MPI and LAPI.

Complete those fields for which you want to specify network

information (see Table 58). For more information, see the network

keyword description in “Job command file keyword descriptions”

on page 336.

 Table 58. Network dialog box fields

Field Input

MPI (MPI/LAPI) Select:

v Only the MPI check box to use the Message Passing

Interface (MPI) protocol only.

v Both the MPI check box and the Share windows

between MPI and LAPI check box to use both MPI

and the Low-level Application Programming

Interface (LAPI) protocols. This selection

corresponds to setting the network keyword in the

job command file to MPI_LAPI.

Optional.

LAPI Select the LAPI check box to use Low-level

Application Programming Interface (LAPI) protocol

only.

Optional.

Adapter/Network Select an adapter name or a network type from the

list.

Required for each protocol you select.

Adapter Usage Specifies that the adapter is either shared or not

shared.

Optional. The default is shared.

Communication

Mode

Specifies the communication subsystem mode used by

the communication protocol that you specify and can

be either IP (Internet Protocol) or US (User Space).

Optional. The default is IP.

Communication

Level

Implies the amount of memory to be allocated to each

window for User Space mode. Allocation can be Low,

Average, or High. It is ignored by

Switch_Network_Interface_For_HPS adapters.

Instances Specifies the number of windows or IP addresses the

communication subsystem should allocate to this

protocol.

Optional. The default is 1 unless sn_all is specified for

network and then the default is max.

Using the GUI

224 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|

Table 58. Network dialog box fields (continued)

Field Input

rCxt Blocks The number of user rCxt blocks requested for each

window used by the associated protocol. It is

recognized only by

Switch_Network_Interface_For_HPS adapters.

Optional.

SELECT Close to return to the Build a Job dialog box.

SELECT Requirements

 � The Requirements dialog box appears.

 Complete those fields for which you want to specify requirements

(see Table 59). Defaults are used for those fields that you leave

blank. LoadLeveler dispatches your job only to one of those

machines with resources that matches the requirements you

specify.

 Table 59. Build a job dialog box fields

Field Input

Architecture

(see note 2)

Machine type. The job will not run on any other machine

type.

Optional. The default is the architecture of your current

machine.

Operating

System

(see note 2)

Operating system. The job will not run on any other

operating system.

Optional. The default is the operating system of your

current machine.

Disk Amount of disk space in the execute directory. The job

will only run on a machine with at least this much disk

space.

Optional. The default is defined in your local

configuration file.

Memory Amount of memory. The job will only run on a machine

with at least this much memory.

Optional. The default is defined in your local

configuration file.

Large Page

Memory

Amount of Large Page Memory, in megabytes. The job

step requires at least this much Large Page Memory to

run.

Optional.

Total Memory Amount of total (regular and Large Page Memory) in

megabytes needed to run the job step.

Optional.

Machines Machine names. The job will only run on the specified

machines.

Optional.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 225

|
|
|
|

|

Table 59. Build a job dialog box fields (continued)

Field Input

Features Features. The job will only run on machines with specified

features.

Optional.

Pool Specifies the number associated with the pool you want to

use. All available pools listed in the administration file

appear as choices. The default is to select nodes from any

pool.

LoadLeveler

Version

Specifies the version of LoadLeveler, in dotted decimal

format, on the machine where you want the job to run.

For example: 3.3.0.0 specifies that your job will run on a

machine running LoadLeveler Version 3.3.0.0 or higher.

Optional.

Connectivity A number from 0.0 through 1.0, representing the average

connectedness of the node’s managed adapters.

Requirement Requirements. The job will only run if these requirements

are met.

Notes:

1. If you enter a resource that is not available, you will NOT receive a

message. LoadLeveler holds your job in the Idle state until the resource

becomes available. Therefore, make certain that the spelling of your

entry is correct. You can issue llq -s jobID to find out if you have a job

for which requirements were not met.

2. If you do not specify an architecture or operating system, LoadLeveler

assumes that your job can run only on your machine’s architecture and

operating system. If your job is not a shell script that can be run

successfully on any platform, you should specify a required

architecture and operating system.

SELECT Close to return to the Build a Job dialog box.

SELECT Resources

 � The Resources dialog box appears.

 This dialog box allows you to set the amount of defined

consumable resources required for a job step. Resources with an ″*″

appended to their names are not in the

SCHEDULE_BY_RESOURCES list. For more information, see the

resources keyword.

SELECT Close to return to the Build a Job dialog box.

SELECT Preferences

 � The Preferences dialog box appears.

 This dialog box is similar to the Requirements dialog box, with the

exception of the Adapter choice, which is not supported as a

Preference. Complete the fields for those parameters that you want

to specify. These parameters are not binding. For any preferences

that you specify, LoadLeveler attempts to find a machine that

matches these preferences along with your requirements. If it

cannot find the machine, LoadLeveler chooses the first machine

that matches the requirements.

Using the GUI

226 TWS LoadLeveler: Using and Administering

SELECT Close to return to the Build a Job dialog box.

SELECT Limits

 � The Limits dialog box appears.

 Complete the fields for those limits that you want to impose upon

your job (see Table 60). If you type copy in any field except

wall_clock_limit or job_cpu_limit, the limits in effect on the

submit machine are used. If you leave any field blank, the default

limits in effect for your userid on the machine that runs the job are

used. For more information, see “Using limit keywords” on page

83.

 Table 60. Limits dialog box fields

Field Input

CPU Limit Maximum amount of CPU time that the submitted job can

use. Express the amount as:

[[hours:]minutes:]seconds[.fraction]

For example, 12:56:21 is 12 hours, 56 minutes, and 21

seconds.

Optional

Data Limit Maximum amount of the data segment that the submitted

job can use. Express the amount as:

integer[.fraction][units]

Optional

Core Limit Maximum size of a core file.

Optional

RSS Limit Maximum size of the resident set size. It is the largest

amount of physical memory a user’s process can allocate.

Optional

File Limit Maximum size of a file that is created.

Optional

Stack Limit Maximum size of the stack.

Optional

Job CPU Limit Maximum total CPU time to be used by all processes of a

serial job step or if a parallel job, then this is the total CPU

time for each LoadL_starter process and its descendants

for each job step of a parallel job.

Optional

Wall Clock

Limit

Maximum amount of elapsed time for which a job can

run.

Optional

SELECT Close to return to the Build a Job dialog box.

SELECT Checkpointing to specify checkpoint options (available when the

checkpoint option is set to Yes or Interval)

 � The checkpointing dialog box appears.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 227

Complete those fields for which you want to specify checkpoint

information (see Table 61). For detailed information on specific

keywords, see “Job command file keyword descriptions” on page

336.

 Table 61. Checkpointing dialog box fieldsF

Field Input

Ckpt File Specifies a checkpoint file. The serial default is :

$(job_name).$(host).$(domain).$(jobid).$(stepid).ckpt

Ckpt

Directory

Specifies a checkpoint directory name.

Ckpt Execute

Directory

Specifies a directory to use for staging the checkpoint

executable file.

Ckpt Time

Limits

Sets the limits for the elapsed time a job can take

checkpointing.

SELECT Close to return to the Build a Job dialog box.

SELECT Blue Gene (available when the job type is bluegene)

 � The Blue Gene window appears.

 Complete the necessary fields to specify information for a Blue

Gene job (see Table 62). Depending upon which request type you

choose, different fields will be available; any unavailable fields will

be desensitized. For more information, see the appropriate job

command file keyword (listed in parentheses) in “Job command

file keyword descriptions” on page 336.

 Table 62. Blue Gene job fields

Field Available

when

requesting

by:

Input

of Compute

Nodes

Size The requested size in number of compute

nodes that describes the size of the

partition for this Blue Gene job. (bg_size)

Shape Shape The requested shape of the requested Blue

Gene job. The units of each dimension of

the shape are in number of base partitions,

XxYxZ, where X, Y, and Z are the number

of base partitions in the X-direction,

Y-direction, and Z-direction. (bg_shape)

Partition

Name

Partition The name of an existing partition in the

Blue Gene system where the requested job

should run. (bg_partition)

Connection

Type

Size and

Shape

The kinds of Blue Gene partitions that can

be selected for this job. You can select

Torus, Mesh, or Prefer Torus.

(bg_connection)

Optional. The default is Mesh.

Using the GUI

228 TWS LoadLeveler: Using and Administering

Table 62. Blue Gene job fields (continued)

Field Available

when

requesting

by:

Input

Rotate

Dimensions

Shape Whether to consider all possible rotations

of the specified shape (True) or only the

specified shape (False) when assigning a

partition for the Blue Gene job. (bg_rotate)

Optional. The default is True.

Memory Megabytes A number (in megabytes) that represents

the minimum available virtual memory

that is needed to run the job. LoadLeveler

generates a Blue Gene requirement that

specifies memory that is greater than or

equal to the amount you specify.

Optional. If you leave this field blank, this

parameter is not used when searching for

machines to run your job.

Requirements Expression An expression that specifies the Blue Gene

requirements that a machine must meet in

order to run the job.

Memory is the supported keyword.

SELECT Close to return to the Build a Job dialog box.

Editing the job command file

There are several ways that you can edit the job command file that you just built:

1. Using the Jobs window:

SELECT File → Submit a Job

 � The Submit a Job dialog box appears.

SELECT The job file you want to edit from the file column.

SELECT Edit

 � Your job command file appears in a window. You can use any

editor to edit the job command file. The default editor is

specified in your .Xdefaults file.

 If you have an icon manager, an icon may appear. An icon

manager is a program that creates a graphic symbol, displayed

on a screen, that you can point to with a device such as a

mouse in order to select a particular function or application.

Select this icon to view your job command file.
2. Using the Tools Edit pull-down menus on the Build a Job window:

Using the Edit pull-down menu, you can modify the job command file. Your

choices appear in the Table 63 on page 230:

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 229

|||
|
|
|
|
|

|
|
|

|||
|
|

|

Table 63. Modifying the job command file with the Edit pull-down menu

To Select

Add a step to the job command file Add a Step or Add a First

Step

Delete a step from the job command file Delete a Step

Clear the fields in the Build a Job window Clear Fields

Select defaults to use in the fields Set Field Defaults

Note: Other options include Go to Next Step, Go to Previous Step, and Go to Last Step

that allow you to edit various steps in the job command file.

Using the Tools pull-down menu, you can modify the job command file. Your

choices appear in Table 64:

 Table 64. Modifying the job command file with the Tools pull-down menu

To Select

Name the job Set Job Name

Specify a cluster, cluster list, or any cluster, if a

multicluster environment is configured.

Set Cluster

Open a window where you can enter a script file Append Script

Fill in the fields using another file Restore from File

View the job command file in a window View Entire Job

Determine which step you are viewing What is step #

Start a new job command file Start a new job

You can save and submit the information you entered by selecting the choices

shown in Table 65:

 Table 65. Saving and submitting information

To Do This

Save the information you

entered into a file which you

can submit later

SELECT Save

 � A window appears prompting you to

enter a job filename.

ENTER a job filename in the text entry field.

SELECT OK

 � The window closes and the information

you entered is saved in the file you

specified.

Submit the program

immediately and discard the

information you entered

SELECT Submit

Submitting a job command file

After building a job command file, you can submit it to one or more machines for

processing.

To submit a job, from the Jobs window:

SELECT File → Submit a Job

Using the GUI

230 TWS LoadLeveler: Using and Administering

� The Submit a Job dialog box appears.

SELECT The job file that you want to submit from the file column.

 You can also use the filter field and the directories column to select

the file or you can type in the file name in the text entry field.

SELECT Submit

 � The job is submitted for processing.

 You can now submit another job or you can press Close to exit the

window.

Displaying and refreshing job status

When you submit a job, the status of the job is automatically displayed in the Jobs

window. You can update or refresh this status using the Jobs window and selecting

one of the following:

v Refresh → Refresh Jobs

v Refresh → Refresh All.

To change how often the amount of time should pass before the jobs window is

automatically refreshed, use the Jobs window.

SELECT Refresh → Set Auto Refresh

 � A window appears.

TYPE IN a value for the number of seconds to pass before the Jobs window

is updated.

 Automatic refresh can be expensive in terms of network usage and

CPU cycles. You should specify a refresh interval of 120 seconds or

more for normal use.

SELECT OK

 � The window closes and the value you specified takes effect.

To receive detailed information on a job:

SELECT Actions → Extended Status to receive additional information on the

job. Selecting this option is the same as typing llq -x command.

 You can also get information in the following way:

SELECT Actions → Extended Details

 Selecting this option is the same as typing llq -x -l command. You

can also double click on the job in the Jobs window to get details

on the job.

 Note: Obtaining extended status or details on multiple jobs can be

expensive in terms of network usage and CPU cycles.

SELECT Actions → Job Status

 You can also use the llq -s command to determine why a

submitted job remains in the Idle or Deferred state.

SELECT Actions → Resource Use

 Allows you to display resource use for running jobs. Selecting this

option is the same as entering the llq -w command.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 231

SELECT Actions → Blue Gene Job Status

 Allows you to display Blue Gene job information for jobs. Selecting

this option is the same as entering the llq -b command.

For more information on requests for job information, see “llq - Query job status”

on page 449.

Sorting the Jobs window

You can specify up to two sorting options for the Jobs window. The options you

specify determine the order in which the jobs appear in the Jobs window.

From the Jobs window:

Select Sort → Set Sort Parameters

 � A window appears

Select A primary and secondary sort

Table 66 lists the sorting options:

 Table 66. Sorting the jobs window

To: Select Sort

Sort jobs by the machine from which they were

submitted

Sort by Submitting Machine

Sort by owner Sort by Owner

Sort by the time the jobs were submitted Sort by Submission Time

Sort by the state of the job Sort by State

Sort jobs by their user priority (last job listed runs first) Sort by Priority

Sort by the class of the job Sort by Class

Sort by the group associated with the job Sort by Group

Sort by the machine running the job Sort by Running Machine

Sort by dispatch order Sort by Dispatch Order

Not specify a sort No Sort

You can select a sort type as either a Primary or Secondary sorting option. For

example, suppose you select Sort by Owner as the primary sorting option and Sort

by Class as the secondary sorting option. The Jobs window is sorted by owner

and, within each owner, by class.

Changing the priority of your jobs

If your job has not yet begun to run and is still in the queue, you can change the

priority of the job in relation to your other jobs in the queue that belong to the

same class. This only affects the user priority of the job. For more information on

this priority, refer to “Setting and changing the priority of a job” on page 212. Only

the owner of a job or the LoadLeveler administrator can change the priority of a

job.

From the Jobs window:

SELECT a job by clicking on it with the mouse

Using the GUI

232 TWS LoadLeveler: Using and Administering

SELECT Actions → Priority

 � A window appears.

TYPE IN a number between 0 and 100, inclusive, to indicate a new priority.

SELECT OK

 � The window closes and the priority of your job changes.

Placing a job on hold

Only the owner of a job or the LoadLeveler administrator can place a hold on a

job.

From the Jobs window:

SELECT The job you want to hold by clicking on it with the mouse

SELECT Actions → Hold

 � The job is put on hold and its status changes in the Jobs window.

Releasing the hold on a job

Only the owner of a job or the LoadLeveler administrator can release a hold on a

job.

From the Jobs window:

SELECT The job you want to release by clicking on it with the mouse

SELECT Actions → Release from Hold

 � The job is released from hold and its status is updated in the Jobs

window.

Canceling a job

Only the owner of a job or the LoadLeveler administrator can cancel a job.

From the Jobs window:

SELECT The job you want to cancel by clicking on it with the mouse

SELECT Actions → Cancel

 � LoadLeveler cancels the job and the job information disappears

from the Jobs window.

Modifying consumable resources and other job attributes

Modifies the consumable CPUs or memory requirements of a nonrunning job.

SELECT

Modify → Consumable CPUs

or

Modify → Consumable Memory

or

Modify → Class

or

Modify → Account number

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 233

or

Modify → Blue Gene → Connection

or

Modify → Blue Gene → Partition

or

Modify → Blue Gene → Rotate

or

Modify → Blue Gene → Shape

or

Modify → Blue Gene → Size

or

Modify → Blue Gene → Requirement

 � A dialog box appears prompting you to enter a new value for the

selected job attribute. Blue Gene attributes are available when Blue Gene is

enabled.

TYPE IN

The new value

SELECT

OK

 � The dialog box closes and the value you specified takes effect.

Taking a checkpoint

Checkpoints the selected job.

SELECT

One of the following actions to take when checkpoint has completed:

v Continue the step

v Terminate the step

v Hold the step

� A checkpoint monitor for this step appears.

Adding a job to a reservation

Binds selected job steps to a reservation so that they will only be scheduled to run

on the nodes reserved for the reservation.

SELECT

The job you want to bind by clicking on it with the mouse.

SELECT

Actions → Bind to Reservation

 � A window appears.

SELECT

A reservation from the list.

SELECT

OK

 � The window closes and the job is bound to that reservation.

Removing a job from a reservation

Unbinds selected job steps from reservations to which they currently belong.

Using the GUI

234 TWS LoadLeveler: Using and Administering

|

|

SELECT

The job you want to unbind by clicking on it with the mouse.

SELECT

Actions → Unbind from Reservation

 If the job is bound to a reservation, it is removed from the reservation.

Displaying and refreshing machine status

The status of the machines is automatically displayed in the Machines window.

You can update or refresh this status using the Machines window and selecting

one of the following:

v Refresh → Refresh Machines

v Refresh → Refresh All.

To specify an amount of time to pass before the Machines window is automatically

refreshed, from the Machines window:

SELECT Refresh → Set Auto Refresh

 � A window appears.

TYPE IN a value for the number of seconds to pass before the Machines

window is updated.

 Automatic refresh can be expensive in terms of network usage and

CPU cycles. You should specify a refresh interval of 120 seconds or

more for normal use.

SELECT OK

 � The window closes and the value you specified takes effect.

To receive detailed information on a machine:

SELECT

Actions → Details

 This displays status information about the selected machines. Selecting this

option has the same effect as typing the llstatus -l command

SELECT

Actions → Adapter Details

 This displays virtual and physical adapter information for each selected

machine. Selecting this option has the same effect as typing the llstatus -a

command

SELECT

Actions → Floating Resources

 This displays consumable resources for the LoadLeveler cluster. Selecting

this option has the same effect as typing the llstatus -R command

SELECT

Actions → Machine Resources

 This displays consumable resources defined for the selected machines or all

machines. Selecting this option has the same effect as typing the llstatus -R

command

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 235

SELECT

Actions → Cluster Status

 This displays status of machines in the defined cluster or clusters. It

appears only when a multicluster environment is configured and is

equivalent to the llstatus -X all command.

SELECT

Actions → Cluster Config

 This displays cluster information from the LoadL_admin file. Only fields

with data specified or which have defaults when not specified are

displayed. It appears only when a multicluster environment is configured

and is equivalent to the llstatus -C command.

SELECT

Actions → Blue Gene ...

 This displays information about the Blue Gene system. You can select the

option for Status for a short listing, Details for a long listing, Base

Partitions for Blue Gene base partition status, or Partitions for existing

Blue Gene partition status. It is available only when Blue Gene support is

enabled in LoadLeveler. This is equivalent to the llstatus command with

the options -b, -b -l, -B, or -P.

Sorting the Machines window

You can specify up to two sorting options for the Machines window. The options

you specify determine the order in which machines appear in the window.

From the Machines window:

Select Sort → Set Sort Parameters

 � A window appears

Select A primary and secondary sort

Table 67 lists sorting options for the Machines window:

 Table 67. Sorting the machines window

To: Select Sort →

Sort by machine name Sort by Name

Sort by Schedd state Sort by Schedd

Sort by total number of jobs scheduled Sort by InQ

Sort by number of running jobs scheduled by this machine Sort by Act

Sort by startd state Sort by Startd

Sort by the number of jobs running on this machine Sort by Run

Sort by load average Sort by LdAvg

Sort by keyboard idle time Sort by Idle

Sort by hardware architecture Sort by Arch

Sort by operating system type Sort by OpSys

Not specify a sort No Sort

Using the GUI

236 TWS LoadLeveler: Using and Administering

You can select a sort type as either a Primary or Secondary sorting option. For

example, suppose you select Sort by Arch as the primary sorting option and Sort

by Name as the secondary sorting option. The Machines window is sorted by

hardware architecture, and within each architecture type, by machine name.

Finding the location of the central manager

The LoadLeveler administrator designates one of the nodes in the LoadLeveler

cluster as the central manager. When jobs are submitted at any node, the central

manager is notified and decides where to schedule the jobs. In addition, it keeps

track of the status of machines in the cluster and the jobs in the system by

communicating with each node. LoadLeveler uses this information to make the

scheduling decisions and to respond to queries.

To find the location of the central manager, from the Machines window:

SELECT Actions → Find Central Manager

 � A message appears in the message window declaring on which

machine the central manager is located.

Finding the location of the public scheduling machines

Public scheduling machines are those machines that participate in the scheduling

of LoadLeveler jobs on behalf of the submit-only machines.

To get a list of these machines in your cluster, use the Machines window:

SELECT Actions → Find Public Scheduler

 � A message appears displaying the names of these machines.

Finding the type of scheduler in use

The LoadLeveler administrator defines the scheduler used by the cluster. To

determine which scheduler is currently in use:

SELECT

Actions → Find Scheduler Type

 � A message appears displaying the type:

v ll_default

v BACKFILL

v External (API)

Specifying which jobs appear in the Jobs window

Normally, only your jobs appear in the Jobs window. You can, however, specify

which jobs you want to appear by using the Select pull-down menu on the Jobs

window (see Table 68).

 Table 68. Specifying which jobs appear in the Jobs window

To Display Select Select →

All jobs in the queue All

All jobs belonging to a specific

user (or users)

By User

� A window appears prompting you to enter the user IDs

whose jobs you want to view.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 237

Table 68. Specifying which jobs appear in the Jobs window (continued)

To Display Select Select →

All jobs submitted to a specific

machine (or machines)

By Machine

� A window appears prompting you to enter the machine

names on which the jobs you want to view are running.

All jobs belonging to a specific

group (or groups)

By Group

� A window appears prompting you to enter the

LoadLeveler group names to which the jobs you want to

view belong.

All jobs having a particular ID By Job Id

A dialog box prompts you to enter the id of the job you

want to appear. This ID appears in the left column of the

Jobs window. Type in the ID and press OK.

Note: When you choose By User, By Machines, or By Group, you can use a UNIX regular

expression enclosed in parenthesis. For example, you can enter (^k10) to display all

machines beginning with the characters “k10”.

SELECT Select → Show Selection to show the selection parameters.

Specifying which machines appear in Machines window

You can specify which machines will appear in the Machines window (see

Table 69). The default is to view all of the machines in the LoadLeveler pool.

From the Machines window:

 Table 69. Specifying which machines appear in Machines window

To Select Select →

View all of the machines All

View machines by operating

system

by OpSys

� A window appears prompting you to enter the

operating system of those machines you want to view.

View machines by hardware

architecture

by Arch

� A window appears prompting you to enter the

hardware architecture of those machines you want to

view.

View machines by state by State

� A cascading pull-down menu appears prompting you

to select the state of the machines that you want to view.

SELECT Select → Show Selection to show the selection parameters.

Saving LoadLeveler messages in a file

Normally, all the messages that LoadLeveler generates appear in the Messages

window. If you would also like to have these messages written to a file, use the

Messages window.

SELECT Actions → Start logging to a file

Using the GUI

238 TWS LoadLeveler: Using and Administering

� A window appears prompting you to enter a filename in which

to log the messages.

TYPE IN The filename in the text entry field.

SELECT OK

 � The window closes.

Using the GUI

Chapter 11. Using LoadLeveler’s GUI to build, submit, and manage jobs 239

Using the GUI

240 TWS LoadLeveler: Using and Administering

Part 4. TWS LoadLeveler interfaces reference

The topics in Table 70 provide the details you need to know to correctly use the

IBM Tivoli Workload Scheduler (TWS) LoadLeveler interfaces.

 Table 70. Learning about LoadLeveler interfaces

To learn about: Read the following:

Correctly specifying keywords in

the TWS LoadLeveler control files

v Chapter 12, “Configuration file reference,” on page

243

v Chapter 13, “Administration file reference,” on page

301

v Chapter 14, “Job command file reference,” on page

333

Starting and customizing the TWS

LoadLeveler GUI

Chapter 15, “Graphical user interface (GUI) reference,”

on page 377

Correctly coding the TWS

LoadLeveler commands and APIs

v Chapter 16, “Commands,” on page 385

v Chapter 17, “Application programming interfaces

(APIs),” on page 503

 241

242 TWS LoadLeveler: Using and Administering

Chapter 12. Configuration file reference

The configuration file contains many parameters that you can set or modify to

control how LoadLeveler operates. You may control LoadLeveler’s operation either:

v Across the cluster, by modifying the global configuration file, LoadL_config, or

v Locally, by modifying the LoadL_config.local file on individual machines.

Table 71 shows the the configuration subtasks:

 Table 71. Configuration subtasks

Subtask Associated information (see . . .)

To find out what administrator tasks

you can accomplish by using the

configuration file

Part 2, “Configuring and managing the TWS

LoadLeveler environment,” on page 37

To learn how to correctly specify the

contents of a configuration file

v “Configuration file syntax”

v “Configuration file keyword descriptions” on page

244

v “User-defined keywords” on page 293

v “LoadLeveler variables” on page 294

Configuration file syntax

The information in both the LoadL_config and the LoadL_config.local files is in

the form of a statement. These statements are made up of keywords and values.

There are three types of configuration file keywords:

v Keywords, described in “Configuration file keyword descriptions” on page 244.

v User-defined variables, described in “User-defined keywords” on page 293.

v LoadLeveler variables, described in “LoadLeveler variables” on page 294.

Configuration file statements take one of the following formats:

keyword=value

keyword:value

Statements in the form keyword=value are used primarily to customize an

environment. Statements in the form keyword:value are used by LoadLeveler to

characterize the machine and are known as part of the machine description. Every

machine in LoadLeveler has its own machine description which is read by the

central manager when LoadLeveler is started.

Keywords are not case sensitive. This means you can enter them in lower case,

upper case, or mixed case.

Note: For the keyword=value form, if the keyword is of a boolean type and only

true and false are valid input, a value string starting with t or T is taken as

true; all other values are taken as false.

To continue configuration file statements, use the back-slash character (\).

In the configuration file, comments must be on a separate line from keyword

statements.

 243

|
|
|

You can use the following types of constants and operators in the configuration

file.

Numerical and alphabetical constants

Constants may be represented as:

v Boolean expressions

v Signed integers

v Floating point values

v Strings enclosed in double quotes (″ ″).

Mathematical operators

You can use the following C operators. The operators are listed in order of

precedence. All of these operators are evaluated from left to right:

v !

v * /

v - +

v < <= > >=

v == !=

v &&

v ||

64-bit support for configuration file keywords and expressions

Administrators can assign 64-bit integer values to selected keywords in the

configuration file.

floating_resources

Consumable resources associated with the floating_resources keyword may be

assigned 64-bit integer values. Fractional and unit specifications are not

allowed. The predefined ConsumableCpus, ConsumableMemory, and

ConsumableVirtualMemory may not be specified as floating resources.

 Example:

floating_resources = spice2g6(9876543210123) db2_license(1234567890)

MACHPRIO expression

The LoadLeveler variables Memory, VirtualMemory, FreeRealMemory, Disk,

ConsumableMemory, ConsumableVirtualMemory, ConsumableCpus,

PagesScanned, PagesFreed may be used in a MACHPRIO expression. They are

64-bit integers and 64-bit arithmetic is used to evaluate them.

 Example:

MACHPRIO: (Memory + FreeRealMemory) - (LoadAvg*1000 + PagesScanned)

Configuration file keyword descriptions

This topic provides an alphabetical list of the keywords you can use in a

LoadLeveler configuration file. It also provides examples of statements that use

these keywords.

ACCT Turns the accounting function on or off.

 Syntax:

ACCT = flag ...

The available flags are:

A_DETAIL Enables extended accounting. Using this flag causes

Configuration file reference

244 TWS LoadLeveler: Using and Administering

LoadLeveler to record detail resource consumption by

machine and by events for each job step. This flag also

enables the -x flag of the llq command, permitting users to

view resource consumption for active jobs.

A_RES Turns reservation data recording on.

A_OFF Turns accounting data recording off.

A_ON Turns accounting data recording on. If specified without

the A_DETAIL flag, the following is recorded:

v The total amount of CPU time consumed by the entire

job

v The maximum memory consumption of all tasks (or

nodes).

A_VALIDATE Turns account validation on.

 Default value: A_OFF

 Example: This example specifies that accounting should be turned on and

that extended accounting data should be collected and that the -x flag of

the llq command be enabled.

ACCT = A_ON A_DETAIL

ACCT_VALIDATION

Identifies the executable called to perform account validation.

 Syntax:

ACCT_VALIDATION = program

Where program is a validation program.

 Default value: $(BIN)/llacctval (the accounting validation program

shipped with LoadLeveler.

ACTION_ON_MAX_REJECT

Specifies the state in which jobs are placed when their rejection count has

reached the value of the MAX_JOB_REJECT keyword. HOLD specifies

that jobs are placed in User Hold status; SYSHOLD specifies that jobs are

placed in System Hold status; CANCEL specifies that jobs are canceled.

When a job is rejected, LoadLeveler sends a mail message stating why the

job was rejected.

 Syntax:

ACTION_ON_MAX_REJECT = HOLD | SYSHOLD | CANCEL

Default value: HOLD

ACTION_ON_SWITCH_TABLE_ERROR

Points to an administrator supplied program that will be run when

DRAIN_ON_SWITCH_TABLE_ERROR is set to true and a switch table

unload error occurs.

 Syntax:

ACTION_ON_SWITCH_TABLE_ERROR = program

Default value: The default is to not run a program.

Configuration file reference

Chapter 12. Configuration file reference 245

ADMIN_FILE

Points to the administration file containing user, class, group, machine, and

adapter stanzas.

 Syntax:

ADMIN_FILE = directory

Default value: $(tilde)/admin_file

AFS_GETNEWTOKEN

Specifies a filter that, for example, can be used to refresh an AFS token.

 Syntax:

AFS_GETNEWTOKEN = full_path_to_executable

Where full_path_to_executable is an administrator-supplied program that

receives the AFS authentication information on standard input and writes

the new information to standard output. The filter is run when the job is

scheduled to run and can be used to refresh a token which expired when

the job was queued.

 Default value: The default is to not run a program.

AGGREGATE_ADAPTERS

Allows an external scheduler to specify per-window adapter usages.

 Syntax:

AGGREGATE_ADAPTERS = YES | NO

When this keyword is set to YES, the resources from multiple switch

adapters on the same switch network are treated as one aggregate pool

available to each job. When this keyword is set to NO, the switch adapters

are treated individually and a job cannot use resources from multiple

adapters on the same network.

 Set this keyword to NO when you are using an external scheduler;

otherwise, set to YES (or accept the default).

 Default value: YES

ALLOC_EXCLUSIVE_CPU_PER_JOB

Specifies the way CPU affinity is enforced on Linux platforms. When this

keyword is not specified or when an unrecognized value is assigned to it,

LoadLeveler will not attempt to set CPU affinity for any application

processes spawned by it.

Note: This keyword is ignored by LoadLeveler on platforms on which the

LoadLeveler for Linux CPU affinity feature is not available.

The ALLOC_EXCLUSIVE_CPU_PER_JOB keyword can be specified in the

global or local configuration files. It can also be specified in both

configuration files, in which case the setting in the local configuration file

will override that of the global configuration file. The keyword cannot be

turned off in a local configuration file if it has been set to any value in the

global configuration file.

 Changes to ALLOC_EXCLUSIVE_CPU_PER_JOB will not take effect at

reconfiguration. The administrator must stop and restart or recycle

LoadLeveler when changing ALLOC_EXCLUSIVE_CPU_PER_JOB.

Configuration file reference

246 TWS LoadLeveler: Using and Administering

Syntax:

ALLOC_EXCLUSIVE_CPU_PER_JOB = LOGICAL|PHYSICAL

Default value: By default, when this keyword is not specified, CPU affinity

is not set.

 Example: When the value of this keyword is set to LOGICAL, only one

LoadLeveler job step will run on each of the processors available on the

machine:

ALLOC_EXCLUSIVE_CPU_PER_JOB = LOGICAL

Example: When the value of this keyword is set to PHYSICAL, all logical

processors (or physical cores) configured in one physical CPU package will

be allocated to one and only one LoadLeveler job step.

ALLOC_EXCLUSIVE_CPU_PER_JOB = PHYSICAL

For more information related to this keyword, see “Linux CPU affinity

support” on page 137.

ARCH

Indicates the standard architecture of the system. The architecture you

specify here must be specified in the same format in the requirements and

preferences statements in job command files. The administrator defines the

character string for each architecture.

 Syntax:

ARCH = string

Default value: Use the command llstatus -l to view the default.

 Example: To define a machine as an RS/6000®, the keyword would look

like:

 ARCH = R6000

BG_ALLOW_LL_JOBS_ONLY

Specifies if only jobs submitted through LoadLeveler will be accepted by

the Blue Gene job launcher program.

 Syntax:

BG_ALLOW_LL_JOBS_ONLY = true | false

Default value: false

BG_CACHE_PARTITIONS

Specifies whether allocated partitions are to be reused for Blue Gene jobs

whenever possible.

 Syntax:

BG_CACHE_PARTITIONS = true | false

Default value: true

BG_ENABLED

Specifies whether Blue Gene support is enabled.

 Syntax:

BG_ENABLED = true | false

Configuration file reference

Chapter 12. Configuration file reference 247

If the value of this keyword is true, the Central Manager will load the Blue

Gene control system libraries and query the state of the Blue Gene system

so that jobs of type bluegene can be scheduled.

 Default value: false

BG_MIN_PARTITION_SIZE

Specifies the smallest number of compute nodes in a partition.

 Syntax:

BG_MIN_PARTITION_SIZE = 32 | 128 | 512

The value for this keyword must not be smaller than the minimum

partition size supported by the physical Blue Gene hardware. If the

number of compute nodes requested in a job is less than the minimum

partition size, then LoadLeveler will increase the requested size to the

minimum partition size.

 Default value: 32

BIN Defines the directory where LoadLeveler binaries are kept.

 Syntax:

BIN = $(RELEASEDIR)/bin

Default value: $(tilde)/bin

CENTRAL_MANAGER_HEARTBEAT_INTERVAL

Specifies the amount of time, in seconds, that defines how frequently

primary and alternate central manager communicate with each other.

 Syntax:

CENTRAL_MANAGER_HEARTBEAT_INTERVAL = number

Default value: The default is 300 seconds or 5 minutes.

CENTRAL_MANAGER_TIMEOUT

Specifies the number of heartbeat intervals that an alternate central

manager will wait before declaring that the primary central manager is not

operating.

 Syntax:

CENTRAL_MANAGER_TIMEOUT = number

Default value: The default is 6.

CKPT_CLEANUP_INTERVAL

Specifies the interval, in seconds, at which the Schedd daemon will run the

program specified by the CKPT_CLEANUP_PROGRAM keyword.

 Syntax:

CKPT_CLEANUP_INTERVAL = number

number must be a positive integer.

 Default value: -1

CKPT_CLEANUP_PROGRAM

Identifies an administrator-provided program which is to be run at the

interval specified by the ckpt_cleanup_interval keyword. The intent of this

Configuration file reference

248 TWS LoadLeveler: Using and Administering

program is to delete old checkpoint files created by jobs running under

LoadLeveler during the checkpoint process.

 Syntax:

CKPT_CLEANUP_PROGRAM = program

Where program is the fully qualified name of the program to be run. The

program must be accessible and executable by LoadLeveler.

 A sample program to remove checkpoint files is provided in the

/usr/lpp/LoadL/full/samples/llckpt/rmckptfiles.c file.

 Default value: No default value is set.

CKPT_EXECUTE_DIR

Specifies the directory where the job step’s executable will be saved for

checkpointable jobs. You may specify this keyword in either the

configuration file or the job command file; different file permissions are

required depending on where this keyword is set. For additional

information, see “Planning considerations for checkpointing jobs” on page

130.

 Syntax:

CKPT_EXECUTE_DIR = directory

This directory cannot be the same as the current location of the executable

file, or LoadLeveler will not stage the executable. In this case, the user

must have execute permission for the current executable file.

 Default value: By default, the executable of a checkpointable job step is

not staged.

CLASS

Determines whether a machine will accept jobs of a certain job class. For

parallel jobs, you must define a class instance for each task you want to

run on a node using one of two formats:

v The format, CLASS = class_name (count), defines the CLASS names

using a statement that names the classes and sets the number of tasks

for each class in parenthesis.

With this format, the following rules apply:

– Each class can have only one entry

– If a class has more than one entry or there is a syntax error, the entire

CLASS statement will be ignored

– If the CLASS statement has a blank value or is not specified, it will

be defaulted to No_Class (1)

– The number of instances for a class specified inside the parenthesis ()

must be an unsigned integer. If the number specified is 0, it is correct

syntactically, but the class will not be defined in LoadLeveler

– If the number of instances for all classes in the CLASS statement are

0, the default No_Class(1) will be used
v The format, CLASS = { "class1" "class2" "class2" "class2"}, defines the

CLASS names using a statement that names each class and sets the

number of tasks for each class based on the number of times that the

class name is used inside the {} operands.

Note: With both formats, the class names list is blank delimited.

Configuration file reference

Chapter 12. Configuration file reference 249

For a LoadLeveler job to run on a machine, the machine must have a

vacancy for the class of that job. If the machine is configured for only one

No_Class job and a LoadLeveler job is already running there, then no

further LoadLeveler jobs are started on that machine until the current job

completes.

 You can have a maximum of 1024 characters in the class statement. You

cannot use allclasses as a class name, since this is a reserved LoadLeveler

keyword.

 You can assign multiple classes to the same machine by specifying the

classes in the LoadLeveler configuration file (called LoadL_config) or in

the local configuration file (called LoadL_config.local). The classes,

themselves, should be defined in the administration file. See “Setting up a

single machine to have multiple job classes” on page 669 and “Defining

classes” on page 83 for more information on classes.

 Syntax:

CLASS = { "class_name" ... } | {"No_Class"} | class_name (count) ...

Default value: {"No_Class"}

CLIENT_TIMEOUT

Specifies the maximum time, in seconds, that a daemon waits for a

response over TCP/IP from a process. If the waiting time exceeds the

specified amount, the daemon tries again to communicate with the process.

In general, you should use the default setting unless you are experiencing

delays due to an excessively loaded network. If so, you should try

increasing this value.

 Syntax:

CLIENT_TIMEOUT = number

Default value: The default is 30 seconds.

CLUSTER_METRIC

Indicates the installation exit to be run by the Schedd to determine where a

remote job is distributed. If a remote job is submitted with a list of clusters

or the reserved word any and the installation exit is not specified, the

remote job is not submitted.

 Syntax:

CLUSTER_METRIC = full_pathname_to_executable

The installation exit is run with the following parameters passed as input.

All parameters are character strings.

v The job ID of the job to be distributed

v The number of clusters in the list of clusters

v A blank-delimited list of clusters to be considered

If the user specifies the reserved word any as the cluster_list during job

submission, the job is sent to the first outbound Schedd defined for the

first configured remote cluster. The CLUSTER_METRIC is executed on

this machine to determine where the job will be distributed. If this machine

is not the outbound_hosts Schedd for the assigned cluster, the job will be

forwarded to the correct outbound_hosts Schedd. If the user specifies a list

of clusters as the cluster_list during job submission, the job is sent to the

first outbound Schedd defined for the first specified remote cluster. The

CLUSTER_METRIC is executed on this machine to determine where the

Configuration file reference

250 TWS LoadLeveler: Using and Administering

job will be distributed. If this machine is not the outbound_hosts Schedd

for the assigned cluster, the job will be forwarded to the correct

outbound_hosts Schedd.

Note: The list of clusters may contain a single entry of the reserved word

any, which indicates that the CLUSTER_METRIC installation exit

must determine its own list of clusters to select from. This can be all

of the clusters available using the data access API or a

predetermined list set by the administrator. If any is specified in

place of a cluster list, the metric will receive a count of 1 followed

by the keyword any.
The installation exit must write the remote cluster name to which the job is

submitted as standard output and exit with a value of 0. An exit value of

-1 indicates an error in determining the cluster for distribution and the job

is not submitted. Returned cluster names that are not valid also cause the

job to be not submitted. STDERR from the exit is written to the Schedd log.

 LoadLeveler provides a set of sample exits for use in distributing jobs by

the following metrics:

v The number of jobs in the idle queue

v The number of jobs in the specified class

v The number of free nodes in the cluster

The installation exit samples are available in the ${RELEASEDIR}/samples/
llcluster directory.

CLUSTER_REMOTE_JOB_FILTER

Indicates the installation exit to be run by the inbound Schedd for each

remote job request to filter the user's job command file statements during

submission or move job. If the keyword is not specified, no job filtering is

done.

 Syntax:

CLUSTER_REMOTE_JOB_FILTER = full_pathname_to_executable

The installation exit is run with the submitting user’s ID. All parameters

are character strings.

 This installation exit is executed on the inbound_hosts of the local cluster

when receiving a job submission or move job request.

 The executable specified is called with the submitting user’s unfiltered job

command file statements as the standard input. The standard output is

submitted to LoadLeveler. If the exit returns with a nonzero exit code, the

remote job submission or job move will fail. A submit filter can only make

changes to LoadLeveler job command file statements.

 The data access API can be used by the remote job filter to query the

Schedd for the job object received from the sending cluster.

 If the local submission filter on the submitting cluster has added or deleted

steps from the original user’s job command file, the remote job filter must

add or delete the same number of steps. The job command file statements

returned by the remote job filter must contain the same number of steps as

the job object received from the sending cluster.

Configuration file reference

Chapter 12. Configuration file reference 251

Changes to the following job command file keyword statements are

ignored:

v executable

v environment

v image_size

v cluster_input_file

v cluster_output_file

v cluster_list

The following job command file keyword will have different behavior:

v initialdir – If not set by the remote job filter or the submitting user’s

unfiltered job command file, the default value will remain the current

working directory at the time the job was submitted. Access to the

initialdir will be verified on the cluster selected to run the job. If access

to initialdir fails, the submission or move job will fail.

To maintain compatibility between the SUBMIT_FILTER and

CLUSTER_REMOTE_JOB_FILTER programs, the following environment

variables are set when either exit is invoked:

v LOADL_ACTIVE – the LoadLeveler version.

v LOADL_STEP_COMMAND – the location of the job command file

passed as input to the program. This job command file only contains

LoadLeveler keywords.

v LOADL_STEP_ID – The job identifier, generated by the submitting

LoadLeveler cluster.

Note: The environment variable name is LOADL_STEP_ID although

the value it contains is a ″job″ identifier. This name is used to be

compatible with the local job filter interface.

v LOADL_STEP_OWNER – The owner (UNIX user name) of the job.

CLUSTER_USER_MAPPER

Indicates the installation exit to be run by the inbound Schedd for each

remote job request to determine the user mapping of the cluster. This

keyword implies that user mapping is performed. If the keyword is not

specified, no user mapping is done.

 Syntax:

CLUSTER_USER_MAPPER = full_pathname_to_executable

The installation exit is run with the following parameters passed as input.

All parameters are character strings.

v The user name to be mapped

v The cluster name where the user originated from

This installation exit is executed on the inbound_hosts of the local cluster

when receiving a job submission, move job request or remote command.

 The installation exit must write the new user name as standard output and

exit with a value of 0. An exit value of -1 indicates an error and the job is

not submitted. STDERR from the exit is written to the Schedd log. An exit

value of 1 indicates that the user name returned for this job was not

mapped.

Configuration file reference

252 TWS LoadLeveler: Using and Administering

COLLECTOR_DGRAM_PORT

Specifies the port number used when connecting to a daemon.

 Syntax:

CM_COLLECTOR_PORT = port number

Default value: The default is 9612.

COMM

Specifies a local directory where LoadLeveler keeps special files used for

UNIX domain sockets for communicating among LoadLeveler daemons

running on the same machine. This keyword allows the administrator to

choose a different file system other than /tmp for these files. If you change

the COMM option you must stop and then restart LoadLeveler using the

llctl command.

 Syntax:

COMM = local directory

Default value: The default location for the files is /tmp.

CONTINUE

Determines whether suspended jobs should continue execution.

 Syntax:

CONTINUE: expression that evaluates to T or F (true or false)

When T, suspended LoadLeveler jobs resume execution on the machine.

 Default value: No default value is set.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 299.

CUSTOM_METRIC

Specifies a machine’s relative priority to run jobs.

 Syntax:

CUSTOM_METRIC = number

This is an arbitrary number which you can use in the MACHPRIO

expression. Negative values are not allowed.

 Default value: If you specify neither CUSTOM_METRIC nor

CUSTOM_METRIC_COMMAND, CUSTOM_METRIC = 1 is assumed.

For more information, see “Setting negotiator characteristics and policies”

on page 43.

 For more information related to using this keyword, see “Defining a

LoadLeveler cluster” on page 41.

CUSTOM_METRIC_COMMAND

Specifies an executable and any required arguments. The exit code of this

command is assigned to CUSTOM_METRIC. If this command does not

exit normally, CUSTOM_METRIC is assigned a value of 1. This command

is forked every (POLLING_FREQUENCY * POLLS_PER_UPDATE)

period.

 Syntax:

CUSTOM_METRIC_COMMAND = command

Configuration file reference

Chapter 12. Configuration file reference 253

Default value: No default is set; LoadLeveler does not run any command

to determine CUSTOM_METRIC.

DCE_AUTHENTICATION_PAIR

Specifies a pair of installation supplied programs that are used to

authenticate DCE security credentials.

 Restriction: DCE security is not supported by LoadLeveler for Linux.

 Syntax:

DCE_AUTHENTICATION_PAIR = program1, program2

Where program1 and program2 are LoadLeveler- or installation-supplied

programs that are used to authenticate DCE security credentials. program1

obtains a handle (an opaque credentials object), at the time the job is

submitted, which is used to authenticate to DCE. program2 uses the handle

obtained by program1 to authenticate to DCE before starting the job on the

executing machines.

 Default value: See “Handling DCE security credentials” on page 68 for

information about defaults.

DEFAULT_PREEMPT_METHOD

Specifies the default preemption method for LoadLeveler to use when a

preempt method is not specified in a PREEMPT_CLASS statement or in the

llpreempt command. LoadLeveler also uses this default preemption

method to preempt job steps that are running on reserved machines when

a reservation period begins.

 Restrictions:

v This keyword is valid only for the BACKFILL scheduler.

v LoadLeveler for Linux does not support the suspend method of

preemption, which is the default method. If you want to preempt jobs

running on LoadLeveler for Linux, you must use this keyword to specify

a method other than suspend.

Syntax:

DEFAULT_PREEMPT_METHOD = rm | sh | su | vc | uh

Valid values are:

rm LoadLeveler preempts the jobs and removes them from the job

queue. To rerun the job, the user must resubmit the job to

LoadLeveler.

sh LoadLeveler ends the jobs and puts them into System Hold state.

They remain in that state on the job queue until an administrator

releases them. After being released, the jobs go into Idle state and

will be rescheduled to run as soon as resources for the job are

available.

su LoadLeveler suspends the jobs and puts them in Preempted state.

They remain in that state on the job queue until the preempting job

has terminated, and resources are available to resume the

preempted job on the same set of nodes. To use this value, process

tracking must be enabled.

vc LoadLeveler ends the jobs and puts them in Vacate state. They

remain in that state on the job queue and will be rescheduled to

run as soon as resources for the job are available.

uh LoadLeveler ends the jobs and puts them into User Hold state.

They remain in that state on the job queue until an administrator

Configuration file reference

254 TWS LoadLeveler: Using and Administering

releases them. After being released, the jobs go into Idle state and

will be rescheduled to run as soon as resources for the job are

available.

 Default value: su (suspend method)

 For more information related to using this keyword, see “Steps for

configuring a scheduler to preempt jobs” on page 120.

DRAIN_ON_SWITCH_TABLE_ERROR

Specifies whether the startd should be drained when the switch table fails

to unload. This will flag the administrator that intervention may be

required to unload the switch table. When

DRAIN_ON_SWITCH_TABLE_ERROR is set to true, the startd will be

drained when the switch table fails to unload.

 Syntax:

DRAIN_ON_SWITCH_TABLE_ERROR = true | false

Default value: false

ENFORCE_RESOURCE_MEMORY

Specifies whether the AIX Workload Manager is configured to limit, as

precisely as possible, the real memory usage of a WLM class. For this

keyword to be valid, ConsumableMemory must be set through the

ENFORCE_RESOURCE_USAGE keyword.

 Syntax:

ENFORCE_RESOURCE_MEMORY = true | false

Default value: false

ENFORCE_RESOURCE_POLICY

Specifies what type of resource entitlements will be assigned to the AIX

Workload Manager classes. If the value specified is shares, it means a share

value is assigned to the class based on the job step’s requested resources

(one unit of resource equals one share). This is the default policy. If the

value specified is soft, it means a percentage value is assigned to the class

based on the job step’s requested resources and the total machine

resources. This percentage can be exceeded if there is no contention for the

resource. If the value specified is hard, it means a percentage value is

assigned to the class based on the job step’s requested resources and the

total machine resources. This percentage cannot be exceeded regardless of

the contention for the resource. If desired, this keyword can be used in the

LoadL_config.local file to set up a different policy for each machine. The

ENFORCE_RESOURCE_USAGE keyword must be set for this keyword to

be valid.

 Syntax:

ENFORCE_RESOURCE_POLICY = hard |soft | shares

Default value: shares

ENFORCE_RESOURCE_SUBMISSION = true | false

Indicates whether jobs submitted should be checked for the resources

keyword. If the value specified is true, LoadLeveler will check all jobs at

submission time for the resources keyword. The job command file

Configuration file reference

Chapter 12. Configuration file reference 255

resources keyword needs to have at least the resources specified as the

ENFORCE_RESOURCE_USAGE keyword for the job to be submitted

successfully.

 If the value specified is false, no checking will be done and jobs submitted

without the resources keyword will not have resources enforced. In this

instance, those jobs may interfere with other jobs whose resources are

enforced.

 Syntax:

ENFORCE_RESOURCE_SUBMISSION = true | false

Default value: false

ENFORCE_RESOURCE_USAGE

Specifies that the AIX Workload Manager should be used to enforce CPU

or real memory resources. This keyword accepts the predefined resources

ConsumableCpus and ConsumableMemory. Either memory or CPUs or

both can be enforced but the resources must also be specified on the

SCHEDULE_BY_RESOURCES keyword. If deactivate is specified,

LoadLeveler will deactivate AIX Workload Manager on all the nodes in the

LoadLeveler cluster.

 Restriction: WLM enforcement is ignored by LoadLeveler for Linux.

 Syntax:

ENFORCE_RESOURCE_USAGE = ConsumableCpus ConsumableMemory | deactivate

EXECUTE

Specifies the local directory to store the executables of jobs submitted by

other machines.

 Syntax:

EXECUTE = local directory/execute

Default value: $(tilde)/execute

FAIR_SHARE_INTERVAL

Specifies, in units of hours, the time interval it takes for resource usage in

fair share scheduling to decay to 5% of its initial value. Historic fair share

data collected before the most recent time interval of this length will have

little impact on fair share scheduling.

 Syntax:

FAIR_SHARE_INTERVAL = hours

Default value: The default value is 168 hours (one week). If a negative

value or 0 is specified, the default value is used.

FAIR_SHARE_TOTAL_SHARES

Specifies the total number of shares that the cluster CPU or Blue Gene

resources are divided into. If this value is less than or equal to 0, fair share

scheduling is turned off.

 Syntax:

FAIR_SHARE_TOTAL_SHARES = shares

Default value: The default value is 0.

FEATURE

Specifies an optional characteristic to use to match jobs with machines. You

Configuration file reference

256 TWS LoadLeveler: Using and Administering

|
|
|

|

|

|

can specify unique characteristics for any machine using this keyword.

When evaluating job submissions, LoadLeveler compares any required

features specified in the job command file to those specified using this

keyword. You can have a maximum of 1024 characters in the feature

statement.

 Syntax:

Feature = {"string" ...}

Default value: No default value is set.

 Example: If a machine has licenses for installed products ABC and XYZ, in

the local configuration file you can enter the following:

Feature = {"abc" "xyz"}

When submitting a job that requires both of these products, you should

enter the following in your job command file:

requirements = (Feature == "abc") && (Feature == "xyz")

Note: You must define a feature on all machines that will be able to run

dynamic simultaneous multithreading (SMT). SMT is only supported

on IBM System p5 machines.

Example: When submitting a job that requires the SMT function, first

specify smt = yes in job command file (or select a class which had smt =

yes defined). Next, specify node_usage = not_shared and last, enter the

following in the job command file:

requirements = (Feature == "smt")

FLOATING_RESOURCES

Specifies which consumable resources are available collectively on all of the

machines in the LoadLeveler cluster. The count for each resource must be

an integer greater than or equal to zero, and each resource can only be

specified once in the list. Any resource specified for this keyword that is

not already listed in the SCHEDULE_BY_RESOURCES keyword will not

affect job scheduling. If any resource is specified incorrectly with the

FLOATING_RESOURCES keyword, then all floating resources will be

ignored. ConsumableCpus, ConsumableMemory, and

ConsumableVirtualMemory may not be specified as floating resources.

 Syntax:

FLOATING_RESOURCES = name(count) name(count) ... name(count)

Default value: No default value is set.

FS_INTERVAL

Defines the number of minutes used as the interval for checking free file

system space or inodes. If your file system receives many log messages or

copies large executables to the LoadLeveler spool, the file system will fill

up quicker and you should perform file size checking more frequently by

setting the interval to a smaller value. LoadLeveler will not check the file

system if the value of FS_INTERVAL is:

v Set to zero

v Set to a negative integer

Syntax:

FS_INTERVAL = minutes

Configuration file reference

Chapter 12. Configuration file reference 257

|
|
|

|
|
|
|

|

|

Default value: If FS_INTERVAL is not specified but any of the other

file-system keywords (FS_NOTIFY, FS_SUSPEND, FS_TERMINATE,

INODE_NOTIFY, INODE_SUSPEND, INODE_TERMINATE) are specified,

the FS_INTERVAL value will default to 5 and the file system will be

checked. If no file-system or inode keywords are set, LoadLeveler does not

monitor file systems at all.

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

FS_NOTIFY

Defines the lower and upper amounts, in bytes, of free file-system space at

which LoadLeveler is to notify the administrator:

v If the amount of free space becomes less than the lower threshold value,

LoadLeveler sends a mail message to the administrator indicating that

logging problems may occur.

v When the amount of free space becomes greater than the upper

threshold value, LoadLeveler sends a mail message to the administrator

indicating that problem has been resolved.

Syntax:

FS_NOTIFY = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M or G

may precede the B. The valid range for both the lower and upper

thresholds are -1B and all positive integers. If the value is set to -1, the

transition across the threshold is not checked.

 Default value: In bytes: 1KB, -1B

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

FS_SUSPEND

Defines the lower and upper amounts, in bytes, of free file system space at

which LoadLeveler drains and resumes the Schedd and startd daemons

running on a node.

v If the amount of free space becomes less than the lower threshold value,

then LoadLeveler drains the Schedd and the startd daemons if they are

running on a node. When this happens, logging is turned off and mail

notification is sent to the administrator.

v When the amount of free space becomes greater than the upper

threshold value, LoadLeveler signals the Schedd and the startd daemons

to resume. When this happens, logging is turned on and mail

notification is sent to the administrator.

Syntax:

FS_SUSPEND = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M or G

may precede the B. The valid range for both the lower and upper

thresholds are -1B and all positive integers. If the value is set to -1, the

transition across the threshold is not checked.

 Default value: In bytes: -1B, -1B

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

Configuration file reference

258 TWS LoadLeveler: Using and Administering

FS_TERMINATE

Defines the lower and upper amounts, in bytes, of free file system space at

which LoadLeveler is terminated. This keyword sends the SIGTERM signal

to the Master daemon which then terminates all LoadLeveler daemons

running on the node.

v If the amount of free space becomes less than the lower threshold value,

all LoadLeveler daemons are terminated.

v An upper threshold value is required for this keyword. However, since

LoadLeveler has been terminated at the lower threshold, no action

occurs.

Syntax:

FS_TERMINATE = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M or G

may precede the B. The valid range for the lower threshold is -1B and all

positive integers. If the value is set to -1, the transition across the threshold

is not checked.

 Default value: In bytes: -1B, -1B

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

GLOBAL_HISTORY

Identifies the directory that will contain the global history files produced

by llacctmrg command when no directory is specified as a command

argument.

 Syntax:

GLOBAL_HISTORY = directory

Default value: The default value is $(SPOOL) (the local spool directory).

 For more information related to using this keyword, see “Collecting the

accounting information and storing it into files” on page 60.

GSMONITOR

Location of the gsmonitor executable (LoadL_GSmonitor).

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR = directory

Default value: $(BIN)/LoadL_GSmonitor

GSMONITOR_COREDUMP_DIR

Local directory for storing LoadL_GSmonitor core dump files.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

Configuration file reference

Chapter 12. Configuration file reference 259

GSMONITOR_DOMAIN

Specifies the peer domain, on which the GSMONITOR daemon will

execute.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR_DOMAIN = PEER

Default value: No default value is set.

 For more information related to using this keyword, see “The gsmonitor

daemon” on page 13.

GSMONITOR_RUNS_HERE

Specifies whether the gsmonitor daemon will run on the host.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR_RUNS_HERE = TRUE | FALSE

Default value: FALSE

 For more information related to using this keyword, see “The gsmonitor

daemon” on page 13.

HISTORY

Defines the path name where a file containing the history of local

LoadLeveler jobs is kept.

 Syntax:

HISTORY = directory

Default value: $(SPOOL)/history

 For more information related to using this keyword, see “Collecting the

accounting information and storing it into files” on page 60.

HISTORY_PERMISSION

Specifies the owner, group, and world permissions of the history file

associated with a LoadL_schedd daemon.

 Syntax:

HISTORY_PERMISSION = permissions | rw-rw----

permissions must be a string with a length of nine characters and consisting

of the characters, r, w, x, or -.

 Default value: The default settings are 660 (rw-rw----). LoadL_schedd will

use the default setting if the specified permission are less than rw-------.

 Example: A specification such as HISTORY_PERMISSION = rw-rw-r-- will

result in permission settings of 664.

INODE_NOTIFY

Defines the lower and upper amounts, in inodes, of free file-system inodes

at which LoadLeveler is to notify the administrator:

Configuration file reference

260 TWS LoadLeveler: Using and Administering

v If the number of free inodes becomes less than the lower threshold

value, LoadLeveler sends a mail message to the administrator indicating

that logging problems may occur.

v When the number of free inodes becomes greater than the upper

threshold value, LoadLeveler sends a mail message to the administrator

indicating that problem has been resolved.

Syntax:

INODE_NOTIFY = lower threshold, upper threshold

The valid range for both the lower and upper thresholds are -1 and all

positive integers. If the value is set to -1, the transition across the threshold

is not checked.

 Default value: In inodes: 1000, -1

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

INODE_SUSPEND

Defines the lower and upper amounts, in inodes, of free file system inodes

at which LoadLeveler drains and resumes the Schedd and startd daemons

running on a node.

v If the number of free inodes becomes less than the lower threshold

value, then LoadLeveler drains the Schedd and the startd daemons if

they are running on a node. When this happens, logging is turned off

and mail notification is sent to the administrator.

v When the number of free inodes becomes greater than the upper

threshold value, LoadLeveler signals the Schedd and the startd daemons

to resume. When this happens, logging is turned on and mail

notification is sent to the administrator.

Syntax:

INODE_SUSPEND = lower threshold, upper threshold

The valid range for both the lower and upper thresholds are -1 and all

positive integers. If the value is set to -1, the transition across the threshold

is not checked.

 Default value: In inodes: -1, -1

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

INODE_TERMINATE

Defines the lower and upper amounts, in inodes, of free file system inodes

at which LoadLeveler is terminated. This keyword sends the SIGTERM

signal to the Master daemon which then terminates all LoadLeveler

daemons running on the node.

v If the number of free inodes becomes less than the lower threshold

value, all LoadLeveler daemons are terminated.

v An upper threshold value is required for this keyword. However, since

LoadLeveler has been terminated at the lower threshold, no action

occurs.

Syntax:

INODE_TERMINATE = lower threshold, upper threshold

Configuration file reference

Chapter 12. Configuration file reference 261

The valid range for the lower threshold is -1 and all positive integers. If

the value is set to -1, the transition across the threshold is not checked.

 Default value: In inodes: -1, -1

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 50.

JOB_ACCT_Q_POLICY

Specifies the amount of time, in seconds, that determines how often the

startd daemon updates the Schedd daemon with accounting data of

running jobs. This controls the accuracy of the llq -x command.

 Syntax:

JOB_ACCT_Q_POLICY = number

Default value: 300 seconds

 For more information related to using this keyword, see “Gathering job

accounting data” on page 57.

JOB_EPILOG

Pathname of the epilog program.

 Syntax:

JOB_EPILOG = program name

Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

JOB_LIMIT_POLICY

Specifies the amount of time, in seconds, that LoadLeveler checks to see if

job_cpu_limit has been exceeded. The smaller of JOB_LIMIT_POLICY

and JOB_ACCT_Q_POLICY is used to control how often the startd

daemon collects resource consumption data on running jobs, and how

often the job_cpu_limit is checked.

 Syntax:

JOB_LIMIT_POLICY = number

Default value: The default for JOB_LIMIT_POLICY is

POLLING_FREQUENCY multiplied by POLLS_PER_UPDATE.

JOB_PROLOG

Pathname of the prolog program.

 Syntax:

JOB_PROLOG = program name

Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

JOB_USER_EPILOG

Pathname of the user epilog program.

 Syntax:

Configuration file reference

262 TWS LoadLeveler: Using and Administering

JOB_USER_EPILOG = program name

Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

JOB_USER_PROLOG

Pathname of the user prolog program.

 Syntax:

JOB_USER_PROLOG = program name

Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

KBDD

Location of kbdd executable (LoadL_kbdd).

 Syntax:

KBDD = directory

Default value: $(BIN)/LoadL_kbdd

KBDD_COREDUMP_DIR

Local directory for storing LoadL_kbdd daemon core dump files.

 Syntax:

KBDD_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

KILL Determines whether or not vacated jobs should be sent the SIGKILL signal

and replaced in the queue. It is used to remove a job that is taking too

long to vacate.

 Syntax:

KILL: expression that evaluates to T or F (true or false)

When T, vacated LoadLeveler jobs are removed from the machine with no

attempt to take checkpoints.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 299.

LIB Defines the directory where LoadLeveler libraries are kept.

 Syntax:

LIB = directory

Default value: $(RELEASEDIR)/lib

LL_RSH_COMMAND

Specifies an administrator provided executable to be used by llctl start

when starting LoadLeveler on remote machines in the administration file.

The LL_RSH_COMMAND keyword is any executable that can be used as

Configuration file reference

Chapter 12. Configuration file reference 263

a substitute for /usr/bin/rsh. The llctl start command passes arguments to

the executable specified by LL_RSH_COMMAND in the following format:

LL_RSH_COMMAND hostname -n llctl start options

Syntax:

LL_RSH_COMMAND = full_path_to_executable

Default value: /usr/bin/rsh. This keyword must specify the full path name

to the executable provided. If no value is specified, LoadLeveler will use

/usr/bin/rsh as the default when issuing a start. If an error occurred while

locating the executable specified, an error message will be displayed.

 Example: This example shows that using the secure shell (/usr/bin/ssh) is

the preferred method for the llctl start command to communicate with

remote nodes. Specify the following in the configuration file:

LL_RSH_COMMAND=/usr/bin/ssh

LOADL_ADMIN

Specifies a list of LoadLeveler administrators.

 Syntax:

LOADL_ADMIN = list of user names

Where list of user names is a blank-delimited list of those individuals who

will have administrative authority. These users are able to invoke the

administrator-only commands such as llctl, llfavorjob, and llfavoruser.

These administrators can also invoke the administrator-only GUI functions.

For more information, see Chapter 7, “Using LoadLeveler’s GUI to perform

administrator tasks,” on page 155.

 Default value: No default value is set, which means no one has

administrator authority until this keyword is defined with one or more

user names.

 Example: To grant administrative authority to users bob and mary, enter the

following in the configuration file:

LOADL_ADMIN = bob mary

For more information related to using this keyword, see “Defining

LoadLeveler administrators” on page 41.

LOCAL_CONFIG

Specifies the path name of the optional local configuration file containing

information specific to a node in the LoadLeveler network.

 Syntax:

LOCAL_CONFIG = directory

Default value: No default value is set.

 Examples:

v If you are using a distributed file system like NFS, some examples are:

LOCAL_CONFIG = $(tilde)/$(host).LoadL_config.local

LOCAL_CONFIG = $(tilde)/LoadL_config.$(host).$(domain)

LOCAL_CONFIG = $(tilde)/LoadL_config.local.$(hostname)

Configuration file reference

264 TWS LoadLeveler: Using and Administering

See “LoadLeveler variables” on page 294 for information about the tilde,

host, and domain variables.

v If you are using a local file system, an example is:

LOCAL_CONFIG = /var/LoadL/LoadL_config.local

LOG Defines the local directory to store log files. It is not necessary to keep all

the log files created by the various LoadLeveler daemons and programs in

one directory, but you will probably find it convenient to do so.

 Syntax:

LOG = local directory/log

Default value: $(tilde)/log

MACHINE_AUTHENTICATE

Specifies whether machine validation is performed. When set to true,

LoadLeveler only accepts connections from machines specified in the

administration file. When set to false, LoadLeveler accepts connections

from any machine.

 When set to true, every communication between LoadLeveler processes

will verify that the sending process is running on a machine which is

identified via a machine stanza in the administration file. The validation is

done by capturing the address of the sending machine when the accept

function call is issued to accept a connection. The gethostbyaddr function

is called to translate the address to a name, and the name is matched with

the list derived from the administration file.

 Syntax:

MACHINE_AUTHENTICATE = true | false

Default value: false

 For more information related to using this keyword, see “Defining a

LoadLeveler cluster” on page 41.

MACHINE_UPDATE_INTERVAL

Specifies the time, in seconds, during which machines must report to the

central manager.

 Syntax:

MACHINE_UPDATE_INTERVAL = number

Where number specifies the time period, in seconds, during which

machines must report to the central manager. Machines that do not report

in this number of seconds are considered down. number must be a

numerical value and cannot be an arithmetic expression.

 Default value: The default is 300 seconds.

 For more information related to using this keyword, see “Setting negotiator

characteristics and policies” on page 43.

MACHPRIO

Machine priority expression.

 Syntax:

MACHPRIO = expression

Configuration file reference

Chapter 12. Configuration file reference 265

You can use the following LoadLeveler variables in the MACHPRIO

expression:

v LoadAvg

v Connectivity

v Cpus

v Speed

v Memory

v VirtualMemory

v Disk

v CustomMetric

v MasterMachPriority

v ConsumableCpus

v ConsumableMemory

v ConsumableVirtualMemory

v PagesFreed

v PagesScanned

v FreeRealMemory

For detailed descriptions of these variables, see “LoadLeveler variables” on

page 294.

 Default value: (0 - LoadAvg)

 Examples:

v Example 1

This example orders machines by the Berkeley one-minute load average.

MACHPRIO : 0 - (LoadAvg)

Therefore, if LoadAvg equals .7, this example would read:

MACHPRIO : 0 - (.7)

The MACHPRIO would evaluate to -.7.

v Example 2

This example orders machines by the Berkeley one-minute load average

normalized for machine speed:

MACHPRIO : 0 - (1000 * (LoadAvg / (Cpus * Speed)))

Therefore, if LoadAvg equals .7, Cpus equals 1, and Speed equals 2, this

example would read:

MACHPRIO : 0 - (1000 * (.7 / (1 * 2)))

This example further evaluates to:

MACHPRIO : 0 - (350)

The MACHPRIO would evaluate to -350.

Notice that if the speed of the machine were increased to 3, the equation

would read:

MACHPRIO : 0 - (1000 * (.7 / (1 * 3)))

The MACHPRIO would evaluate to approximately -233. Therefore, as

the speed of the machine increases, the MACHPRIO also increases.

v Example 3

Configuration file reference

266 TWS LoadLeveler: Using and Administering

This example orders machines accounting for real memory and available

swap space (remembering that Memory is in Mbytes and VirtualMemory

is in Kbytes):

MACHPRIO : 0 - (10000 * (LoadAvg / (Cpus * Speed))) +

(10 * Memory) + (VirtualMemory / 1000)

v Example 4

This example sets a relative machine priority based on the value of the

CUSTOM_METRIC keyword.

MACHPRIO : CustomMetric

To do this, you must specify a value for the CUSTOM_METRIC

keyword or the CUSTOM_METRIC_COMMAND keyword in either the

LoadL_config.local file of a machine or in the global LoadL_config file.

To assign the same relative priority to all machines, specify the

CUSTOM_METRIC keyword in the global configuration file. For

example:

CUSTOM_METRIC = 5

You can override this value for an individual machine by specifying a

different value in that machine’s LoadL_config.local file.

v Example 5

This example gives master nodes the highest priority:

MACHPRIO : (MasterMachPriority * 10000)

v Example 6

This example gives nodes the with highest percentage of switch adapters

with connectivity the highest priority:

MACHPRIO : Connectivity

For more information related to using this keyword, see “Setting negotiator

characteristics and policies” on page 43.

MAIL Name of a local mail program used to override default mail notification.

 Syntax:

MAIL = program name

Default value: No default value is set.

 For more information related to using this keyword, see “Using your own

mail program” on page 75.

MASTER

Location of the master executable (LoadL_master).

 Syntax:

MASTER = directory

Default value: $(BIN)/LoadL_master

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

MASTER_COREDUMP_DIR

Local directory for storing LoadL_master core dump files.

 Syntax:

MASTER_COREDUMP_DIR = directory

Configuration file reference

Chapter 12. Configuration file reference 267

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

MASTER_DGRAM_PORT

The port number used when connecting to the daemon.

 Syntax:

MASTER_DGRAM_PORT = port number

Default value: The default is 9617.

 For more information related to using this keyword, see “Defining network

characteristics” on page 45.

MASTER_STREAM_PORT

Specifies the port number to be used when connecting to the daemon.

 Syntax:

MASTER_STREAM_PORT = port number

Default value: The default is 9616.

 For more information related to using this keyword, see “Defining network

characteristics” on page 45.

MAX_CKPT_INTERVAL

The maximum number of seconds between checkpoints for running jobs.

 Syntax:

MAX_CKPT_INTERVAL = number

Default value: 7200 (2 hours)

 For more information related to using this keyword, see “LoadLeveler

support for checkpointing jobs” on page 129.

MAX_JOB_REJECT

Determines the number of times a job is rejected before it is canceled or

put in User Hold or System Hold status.

 Syntax:

MAX_JOB_REJECT = number

number must be a numerical value and cannot be an arithmetic expression.

MAX_JOB_REJECT may be set to unlimited rejects by specifying a value

of –1.

 Default value: The default value is 0, which indicates a rejected job will

immediately be canceled or placed on hold.

 For related information, see the NEGOTIATOR_REJECT_DEFER keyword.

MAX_RESERVATIONS

Specifies the maximum number of reservations that this LoadLeveler

cluster can have. Only reservations in waiting and in use are counted

toward this limit; LoadLeveler does not count reservations that have

already ended or are in the process of being canceled.

Configuration file reference

268 TWS LoadLeveler: Using and Administering

Note: Having too many reservations in a LoadLeveler cluster can have

performance impacts. Administrators should select a suitable value

for this keyword.

Syntax:

MAX_RESERVATIONS = number

The value for this keyword can be 0 or a positive integer.

 Default value: The default is 10.

MAX_STARTERS

Specifies the maximum number of tasks that can run simultaneously on a

machine. In this case, a task can be a serial job step or a parallel task.

MAX_STARTERS defines the number of initiators on the machine (the

number of tasks that can be initiated from a startd).

 Syntax:

MAX_STARTERS = number

Default value: If this keyword is not specified, the default is the number

of elements in the Class statement.

 For more information related to using this keyword, see “Specifying how

many jobs a machine can run” on page 52.

MAX_TOP_DOGS

Specifies the maximum total number of top dogs that the central manager

daemon will allocate. When scheduling jobs, after MAX_TOP_DOGS total

top dogs have been allocated, no more will be considered.

 Syntax:

MAX_TOP_DOGS = k | 1

where: k is a non-negative integer specifying the global maximum top dogs

limit.

 Default value: The default value is 1.

 For more information related to using this keyword, see “Using the

BACKFILL scheduler” on page 101.

MIN_CKPT_INTERVAL

The minimum number of seconds between checkpoints for running jobs.

 Syntax:

MIN_CKPT_INTERVAL = number

Default value: 900 (15 minutes)

 For more information related to using this keyword, see “LoadLeveler

support for checkpointing jobs” on page 129.

NEGOTIATOR

Location of the negotiator executable (LoadL_negotiator).

 Syntax:

NEGOTIATOR = directory

Default value: $(BIN)/LoadL_negotiator

Configuration file reference

Chapter 12. Configuration file reference 269

|
|
|

|

|
|
|
|

|

|

|
|

|

|
|

For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

NEGOTIATOR_COREDUMP_DIR

Local directory for storing LoadL_negotiator core dump files.

 Syntax:

NEGOTIATOR_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

NEGOTIATOR_CYCLE_DELAY

Specifies the minimum time, in seconds, the negotiator delays between

periods when it attempts to schedule jobs. This time is used by the

negotiator daemon to respond to queries, reorder job queues, collect

information about changes in the states of jobs, and so on. Delaying the

scheduling of jobs might improve the overall performance of the negotiator

by preventing it from spending excessive time attempting to schedule jobs.

 Syntax:

NEGOTIATOR_CYCLE_DELAY = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 0 seconds

NEGOTIATOR_CYCLE_TIME_LIMIT

Specifies the maximum amount of time, in seconds, that LoadLeveler will

allow the negotiator to spend in one cycle trying to schedule jobs. The

negotiator cycle will end, after the specified number of seconds, even if

there are additional jobs waiting for dispatch. Jobs waiting for dispatch

will be considered at the next negotiator cycle. The

NEGOTIATOR_CYCLE_TIME_LIMIT keyword applies only to the

BACKFILL scheduler.

 Syntax:

NEGOTIATOR_CYCLE_TIME_LIMIT = number

Where number must be a positive integer or zero and cannot be an

arithmetic expression.

 Default value: If the keyword value is not specified or a value of zero is

used, the negotiator cycle will be unlimited.

NEGOTIATOR_INTERVAL

The time interval, in seconds, at which the negotiator daemon updates the

status of jobs in the LoadLeveler cluster and negotiates with machines that

are available to run jobs.

 Syntax:

NEGOTIATOR_INTERVAL = number

Where number specifies the interval, in seconds, at which the negotiator

daemon performs a “negotiation loop” during which it attempts to assign

available machines to waiting jobs. A negotiation loop also occurs

Configuration file reference

270 TWS LoadLeveler: Using and Administering

whenever job states or machine states change. number must be a numerical

value and cannot be an arithmetic expression.

 When this keyword is set to zero, the central manager’s automatic

scheduling activity is been disabled, and LoadLeveler will not attempt to

schedule any jobs unless instructed to do so through the llrunscheduler

command or ll_run_scheduler subroutine.

 Default value: The default is 30 seconds.

 For more information related to using this keyword, see “Controlling the

central manager scheduling cycle” on page 67.

NEGOTIATOR_LOADAVG_INCREMENT

Specifies the value the negotiator adds to the startd machine’s load average

whenever a job in the Pending state is queued on that machine. This value

is used to compensate for the increased load caused by starting another

job.

 Syntax:

NEGOTIATOR_LOADAVG_INCREMENT = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default value is .5

NEGOTIATOR_PARALLEL_DEFER

Specifies the amount of time, in seconds, that defines how long a job stays

out of the queue after it fails to get the correct number of processors. This

keyword applies only to the default LoadLeveler scheduler. This keyword

must be greater than the NEGOTIATOR_INTERVAL. value; if it is not, the

default is used.

 Syntax:

NEGOTIATOR_PARALLEL_DEFER = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_PARALLEL_HOLD

Specifies the amount of time, in seconds, that defines how long a job is

given to accumulate processors. This keyword applies only to the default

LoadLeveler scheduler. This keyword must be greater than the

NEGOTIATOR_INTERVAL value; if it is not, the default is used.

 Syntax:

NEGOTIATOR_PARALLEL_HOLD = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

Specifies the amount of time, in seconds, between calculation of the

SYSPRIO values for waiting jobs. Recalculating the priority can be

CPU-intensive; specifying low values for the

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword may

Configuration file reference

Chapter 12. Configuration file reference 271

lead to a heavy CPU load on the negotiator if a large number of jobs are

running or waiting for resources. A value of 0 means the SYSPRIO values

are not recalculated.

 You can use this keyword to base the order in which jobs are run on the

current number of running, queued, or total jobs for a user or a group.

 Syntax:

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 120 seconds.

NEGOTIATOR_REJECT_DEFER

Specifies the amount of time in seconds the negotiator waits before it

considers scheduling a job to a machine that recently rejected the job.

 Syntax:

NEGOTIATOR_REJECT_DEFER = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 120 seconds.

 For related information, see the MAX_JOB_REJECT keyword.

NEGOTIATOR_REMOVE_COMPLETED

Specifies the amount of time, in seconds, that you want the negotiator to

keep information regarding completed and removed jobs so that you can

query this information using the llq command.

 Syntax:

NEGOTIATOR_REMOVE_COMPLETED = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 0 seconds.

NEGOTIATOR_RESCAN_QUEUE

specifies the amount of time in seconds that defines how long the

negotiator waits to rescan the job queue for machines which have bypassed

jobs which could not run due to conditions which may change over time.

This keyword must be greater than the NEGOTIATOR_INTERVAL value;

if it is not, the default is used.

 Syntax:

NEGOTIATOR_RESCAN_QUEUE = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 900 seconds.

NEGOTIATOR_STREAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

NEGOTIATOR_STREAM_PORT = port number

Default value: The default is 9614.

Configuration file reference

272 TWS LoadLeveler: Using and Administering

For more information related to using this keyword, see “Defining network

characteristics” on page 45.

OBITUARY_LOG_LENGTH

Specifies the number of lines from the end of the file that are appended to

the mail message. The master daemon mails this log to the LoadLeveler

administrators when one of the daemons dies.

 Syntax:

OBITUARY_LOG_LENGTH = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 25.

POLLING_FREQUENCY

Specifies the interval, in seconds, with which the startd daemon evaluates

the load on the local machine and decides whether to suspend, resume, or

abort jobs. This time is also the minimum interval at which the kbdd

daemon reports keyboard or mouse activity to the startd daemon.

 Syntax:

POLLING_FREQUENCY = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 5.

POLLS_PER_UPDATE

Specifies how often, in POLLING_FREQUENCY intervals, startd daemon

updates the central manager. Due to the communication overhead, it is

impractical to do this with the frequency defined by the

POLLING_FREQUENCY keyword. Therefore, the startd daemon only

updates the central manager every nth (where n is the number specified

for POLLS_PER_UPDATE) local update. Change POLLS_PER_UPDATE

when changing the POLLING_FREQUENCY.

 Syntax:

POLLS_PER_UPDATE = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 24.

PRESTARTED_STARTERS

Specifies how many prestarted starter processes LoadLeveler will maintain

on an execution node to manage jobs when they arrive. The startd daemon

starts the number of starter processes specified by this keyword. You may

specify this keyword in either the global or local configuration file.

 Syntax:

PRESTARTED_STARTERS = number

number must be less than or equal to the value specified through the

MAX_STARTERS keyword. If the value of PRESTARTED_STARTERS

specified is greater then MAX_STARTERS, LoadLeveler records a warning

message in the startd log and assigns PRESTARTED_STARTERS the same

value as MAX_STARTERS.

Configuration file reference

Chapter 12. Configuration file reference 273

If the value PRESTARTED_STARTERS is zero, no starter processes will be

started before jobs arrive on the execution node.

 Default value: The default is 1.

PREEMPT_CLASS

Defines the preemption rule for a job class.

 Syntax: The following forms illustrate correct syntax.

PREEMPT_CLASS[incoming_class] = ALL[:preempt_method] {

outgoing_class1 [outgoing_class2 ...] }

Using this form, ALL indicates that job steps of incoming_class have

priority and will not share nodes with job steps of outgoing_class1,

outgoing_class2, or other outgoing classes. If a job step of the

incoming_class is to be started on a set of nodes, all job steps of

outgoing_class1, outgoing_class2, or other outgoing classes running

on those nodes will be preempted.

Note: The ALL preemption rule does not apply to Blue Gene jobs.

PREEMPT_CLASS[incoming_class] = ENOUGH[:preempt_method] {

outgoing_class1 [outgoing_class2 ...] }

Using this form, ENOUGH indicates that job steps of

incoming_class will share nodes with job steps of outgoing_class1,

outgoing_class2, or other outgoing classes if there are sufficient

resources. If a job step of the incoming_class is to be started on a set

of nodes, one or more job steps of outgoing_class1, outgoing_class2,

or other outgoing classes running on those nodes may be

preempted to get needed resources.

Combinations of these forms are also allowed.

Notes:

 1. The optional specification preempt_method indicates which method

LoadLeveler is to use to preempt the jobs; this specification is valid

only for the BACKFILL scheduler. Valid values for this specification in

keyword syntax are the highlighted abbreviations in parentheses:

v Remove (rm)

v System hold (sh)

v Suspend (su)

v Vacate (vc)

v User hold (uh)

LoadLeveler for Linux does not support the suspend method of

preemption. For more information about preemption methods, see

“Steps for configuring a scheduler to preempt jobs” on page 120.

 2. Using the ″ALL″ value in the PREEMPT_CLASS keyword places

implied restrictions on when a job can start. See “Planning to preempt

jobs” on page 117 for more information.

 3. The incoming class is designated inside [] brackets.

 4. Outgoing classes are designated inside { } curly braces.

 5. The job classes on the right hand (outgoing) side of the statement

must be different from incoming class, or it may be allclasses. If the

outgoing side is defined as allclasses then all job classes are

preemptable with the exception of the incoming class specified within

brackets.

Configuration file reference

274 TWS LoadLeveler: Using and Administering

|

6. A class name or allclasses should not be in both the ALL list and the

ENOUGH list. If you do so, the entire statement will be ignored. An

example of this is:

PREEMPT_CLASS[Class_A]=ALL{allclasses} ENOUGH {allclasses}

 7. If you use allclasses as an outgoing (preemptable) class, then no other

class names should be listed at the right hand side as the entire

statement will be ignored. An example of this is:

PREEMPT_CLASS[Class_A]=ALL{Class_B} ENOUGH {allclasses}

 8. More than one ALL statement and more than one ENOUGH statement

may appear at the right hand side. Multiple statements have a

cumulative effect.

 9. Each ALL or ENOUGH statement can have multiple class names

inside the curly braces. However, a blank space delimiter is required

between each class name.

10. Both the ALL and ENOUGH statements can include an optional

specification indicating the method LoadLeveler will use to preempt

the jobs. Valid values for this specification are listed in the description

of the DEFAULT_PREEMPT_METHOD keyword. If a value is

specified on the PREEMPT_CLASS ALL or ENOUGH statement, that

value overrides the value set on the DEFAULT_PREEMPT_METHOD

keyword, if any.

11. ALL and ENOUGH may be in mixed cases.

12. Spaces are allowed around the brackets and curly braces.

13. PREEMPT_CLASS [allclasses] will be ignored.

Default value: No default value is set.

 Examples:

PREEMPT_CLASS[Class_B]=ALL{Class_E Class_D} ENOUGH {Class_C}

This indicates that all Class_E jobs and all Class_D jobs and

enough Class_C jobs will be preempted to enable an incoming

Class_B job to run.

PREEMPT_CLASS[Class_D]=ENOUGH:VC {Class_E}

This indicates that zero, one, or more Class_E jobs will be

preempted using the vacate method to enable an incoming Class_D

job to run.

PREEMPTION_SUPPORT

For the BACKFILL or API schedulers only, specifies the level of

preemption support for a cluster.

 Syntax:

PREEMPTION_SUPPORT= full | no_adapter | none

v When set to full, preemption is fully supported.

v When set to no_adapter, preemption is supported but the adapter

resources are not released by preemption.

v When set to none, preemption is not supported, and preemption

requests will be rejected.

Notes:

1. If the value of this keyword is set to any value other than none for the

default scheduler, LoadLeveler will not start.

Configuration file reference

Chapter 12. Configuration file reference 275

2. For the BACKFILL or API scheduler, when this keyword is set to full

or no_adapter and preemption by the suspend method is required, the

configuration keyword PROCESS_TRACKING must be set to true.

Default value: The default value for all schedulers is none; if you want to

enable preemption under these schedulers, you must set a value for this

keyword.

PROCESS_TRACKING

Specifies whether or not LoadLeveler will cancel any processes (throughout

the entire cluster), left behind when a job terminates.

 Restriction: Process tracking is ignored by LoadLeveler for Linux.

 Syntax:

PROCESS_TRACKING = TRUE | FALSE

When TRUE ensures that when a job is terminated, no processes created

by the job will continue running.

Note: It is necessary to set this keyword to true to do preemption by the

suspend method with the BACKFILL or API scheduler.

 Default value: FALSE

PROCESS_TRACKING_EXTENSION

Specifies the directory containing the kernel extension binary LoadL_pt_ke.

 Restriction: Process tracking is ignored by LoadLeveler for Linux.

 Syntax:

PROCESS_TRACKING_EXTENSION = directory

Default value: The directory $HOME/bin

 For more information related to using this keyword, see “Tracking job

processes” on page 64.

PUBLISH_OBITUARIES

Specifies whether or not the master daemon sends mail to the

administrator when any daemon it manages ends abnormally. When set to

true, this keyword specifies that the master daemon sends mail to the

administrators identified by LOADL_ADMIN keyword.

 Syntax:

PUBLISH_OBITUARIES = true | false

Default value: true

REJECT_ON_RESTRICTED_LOGIN

Specifies whether the user’s account status will be checked on every node

where the job will be run by calling the AIX loginrestrictions function

with the S_DIST_CLNT flag.

 Restriction: Login restriction checking is ignored by LoadLeveler for Linux.

 Login restriction checking includes:

v Does the account still exist?

v Is the account locked?

v Has the account expired?

v Do failed login attempts exceed the limit for this account?

Configuration file reference

276 TWS LoadLeveler: Using and Administering

v Is login disabled via /etc/nologin?

If the AIX loginrestrictions function indicates a failure then the user’s job

will be rejected and will be processed according to the LoadLeveler

configuration parameters MAX_JOB_REJECT and

ACTION_ON_MAX_REJECT.

 Syntax:

REJECT_ON_RESTRICTED_LOGIN = true | false

Default value: false

RELEASEDIR

Defines the directory where all the LoadLeveler software resides.

 Syntax:

RELEASEDIR = release directory

Default value: $(RELEASEDIR)

RESERVATION_CAN_BE_EXCEEDED

Specifies whether LoadLeveler will schedule job steps that are bound to a

reservation when their end times (based on hard wall-clock limits) exceed

the reservation end time.

 Syntax:

RESERVATION_CAN_BE_EXCEEDED = true | false

When this keyword is set to false, LoadLeveler schedules only those job

steps that will complete before the reservation ends. When set to true,

LoadLeveler schedules job steps to run under a reservation even if their

end times are expected to exceed the reservation end time. When the

reservation ends, however, the reserved nodes no longer belong to the

reservation, and so these nodes might not be available for the jobs to

continue running. In this case, LoadLeveler might preempt the running

jobs.

 Note that this keyword setting does not change the actual end time of the

reservation. It only affects how LoadLeveler manages job steps whose end

times exceed the end time of the reservation.

 Default value: true

RESERVATION_HISTORY

Defines the name of a file that is to contain the local history of

reservations.

 Syntax:

RESERVATION_HISTORY = file name

LoadLeveler appends a single line to the reservation history file for each

reservation. For an example, see “Collecting accounting data for

reservations” on page 126.

 Default value: $(SPOOL)/reservation_history

RESERVATION_MIN_ADVANCE_TIME

Specifies the minimum time, in minutes, between the time at which a

reservation is created and the time at which the reservation is to start.

Configuration file reference

Chapter 12. Configuration file reference 277

Syntax:

RESERVATION_MIN_ADVANCE_TIME = number of minutes

By default, the earliest time at which a reservation may start is the current

time plus the value set for the RESERVATION_SETUP_TIME keyword.

 Default value: 0 (zero)

RESERVATION_PRIORITY

Specifies whether LoadLeveler administrators may reserve nodes on which

running jobs are expected to end after the reservation start time. This

keyword value applies only for LoadLeveler administrators; other

reservation owners do not have this capability.

 Syntax:

RESERVATION_PRIORITY = NONE | HIGH

When you set this keyword to HIGH, before activating the reservation,

LoadLeveler preempts the job steps running on the reserved nodes (Blue

Gene job steps are handled the same way). The only exceptions are

non-preemptable jobs; LoadLeveler will not preempt those jobs because of

any reservations.

 Default value: NONE

RESERVATION_SETUP_TIME

Specifies how much time, in seconds, that LoadLeveler may use to prepare

for a reservation before it is to start. The tasks that LoadLeveler performs

during this time include checking and reporting node conditions, and

preempting job steps still running on the reserved nodes.

 For a given reservation, LoadLeveler uses the

RESERVATION_SETUP_TIME keyword value that is set at the time that

the reservation is created, not whatever value might be set when the

reservation starts. If the start time of the reservation is modified, however,

LoadLeveler uses the RESERVATION_SETUP_TIME keyword value that

is set at the time of the modification.

 Syntax:

RESERVATION_SETUP_TIME = number of seconds

Default value: 60

RESTARTS_PER_HOUR

Specifies how many times the master daemon attempts to restart a daemon

that dies abnormally. Because one or more of the daemons may be unable

to run due to a permanent error, the master only attempts

$(RESTARTS_PER_HOUR) restarts within a 60 minute period. Failing

that, it sends mail to the administrators identified by the LOADL_ADMIN

keyword and exits.

 Syntax:

RESTARTS_PER_HOUR = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 12.

Configuration file reference

278 TWS LoadLeveler: Using and Administering

|
|
|
|
|

RESUME_ON_SWITCH_TABLE_ERROR_CLEAR

Specifies whether or not the startd that was drained when the switch table

failed to unload will automatically resume once the unload errors are

cleared. The unload error is considered cleared after LoadLeveler can

successfully unload the switch table. For this keyword to work, the

DRAIN_ON_SWITCH_TABLE_ERROR option in the configuration file

must be turned on and not disabled. Flushing, suspending, or draining of

a startd manually or automatically will disable this option until the startd

is manually resumed.

 Syntax:

RESUME_ON_SWITCH_TABLE_ERROR_CLEAR = true | false

Default value: false

RSET_SUPPORT

Indicates the level of RSet support present on a machine.

 Restriction: RSET support is not available on Linux platforms.

 Syntax:

RSET_SUPPORT = option

The available options are:

RSET_CONSUMABLE_CPUS

Indicates that the jobs scheduled to the machine will be

attached to RSets with the number of CPUs specified by

the consumableCPUs variable.

RSET_MCM_AFFINITY

Indicates the machine can run jobs requesting memory and

adapter affinity.

RSET_NONE Indicates LoadLeveler RSet support is not available on the

machine.

RSET_USER_DEFINED

Indicates the machine can be used for jobs with a

user-created RSet in their job command file.

 Default value: RSET_NONE

SAVELOGS

Specifies the directory in which log files are archived.

 Syntax:

SAVELOGS = directory

Where directory is the directory in which log files will be archived.

 Default value: No default value is set.

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

SCHEDD

Location of the Schedd executable (LoadL_schedd).

 Syntax:

SCHEDD = directory

Configuration file reference

Chapter 12. Configuration file reference 279

Default value: $(BIN)/LoadL_schedd

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

SCHEDD_COREDUMP_DIR

Specifies the local directory for storing LoadL_schedd core dump files.

 Syntax:

SCHEDD_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

SCHEDD_INTERVAL

Specifies the interval, in seconds, at which the Schedd daemon checks the

local job queue and updates the negotiator daemon.

 Syntax:

SCHEDD_INTERVAL = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 60 seconds.

SCHEDD_RUNS_HERE

Specifies whether the Schedd daemon runs on the host. If you do not want

to run the Schedd daemon, specify false.

 This keyword does not designate a machine as a public scheduling

machine. Unless configured as a public scheduling machine, a machine

configured to run the Schedd daemon will only accept job submissions

from the same machine running the Schedd daemon. A public scheduling

machine accepts job submissions from other machines in the LoadLeveler

cluster. To configure a machine as a public scheduling machine, see the

schedd_host keyword description in “Administration file keyword

descriptions” on page 306.

 Syntax:

SCHEDD_RUNS_HERE = true | false

Default value: true

SCHEDD_SUBMIT_AFFINITY

Specifies whether job submissions are directed to a locally running Schedd

daemon. When the keyword is set to true, job submissions are directed to a

Schedd daemon running on the same machine where the submission takes

place, provided there is a Schedd daemon running on that machine. In this

case the submission is said to have ″affinity″ for the local Schedd daemon.

If there is no Schedd daemon running on the machine where the

submission takes place, or if this keyword is set to false, the job

submission will only be directed to a Schedd daemon serving as a public

scheduling machine. In this case, if there are no public scheduling

machines configured the job cannot be submitted. A public scheduling

machine accepts job submissions from other machines in the LoadLeveler

Configuration file reference

280 TWS LoadLeveler: Using and Administering

cluster. To configure a machine as a public scheduling machine, see the

schedd_host keyword description in “Administration file keyword

descriptions” on page 306.

 Installations with a large number of nodes should consider setting this

keyword to false to more evenly distribute dispatching of jobs among the

Schedd daemons. For more information, see “Scaling considerations” on

page 666.

 Syntax:

SCHEDD_SUBMIT_AFFINITY = true | false

Default value: true

SCHEDD_STATUS_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

SCHEDD_STATUS_PORT = port number

Default value: The default is 9606.

 For more information related to using this keyword, see “Defining network

characteristics” on page 45.

SCHEDD_STREAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

SCHEDD_STREAM_PORT = port number

Default value: The default is 9605.

 For more information related to using this keyword, see “Defining network

characteristics” on page 45.

SCHEDULE_BY_RESOURCES

Specifies which consumable resources are considered by the LoadLeveler

schedulers. Each consumable resource name may be an

administrator-defined alphanumeric string, or may be one of the following

predefined resources:

v ConsumableCpus

v ConsumableMemory

v ConsumableVirtualMemory

v RDMA

Each string may only appear in the list once. These resources are either

floating resources, or machine resources. If any resource is specified

incorrectly with the SCHEDULE_BY_RESOURCES keyword, then all

scheduling resources will be ignored.

 Syntax:

SCHEDULE_BY_RESOURCES = name name ... name

Default value: No default value is set.

SCHEDULER_TYPE

Specifies the LoadLeveler scheduling algorithm:

Configuration file reference

Chapter 12. Configuration file reference 281

LL_DEFAULT

Specifies the default LoadLeveler scheduling algorithm. If

SCHEDULER_TYPE has not been defined, LoadLeveler will use

the default scheduler (LL_DEFAULT).

BACKFILL

Specifies the LoadLeveler BACKFILL scheduler. When you specify

this keyword, you should use only the default settings for the

START expression and the other job control expressions described

in “Managing job status through control expressions” on page 63.

API Specifies that you will use an external scheduler. External

schedulers communicate to LoadLeveler through the job control

API. For more information on setting an external scheduler, see

“Using an external scheduler” on page 105.

Syntax:

SCHEDULER_TYPE = LL_DEFAULT | BACKFILL | API

Default value: LL_DEFAULT

Notes:

1. If a scheduler type is not set, LoadLeveler will start, but it will use the

default scheduler.

2. If you have set SCHEDULER_TYPE with an option that is not valid,

LoadLeveler will not start.

3. If you change the scheduler option specified by SCHEDULER_TYPE,

you must stop and restart LoadLeveler using llctl or recycle using llctl.

For more information related to using this keyword, see “Defining a

LoadLeveler cluster” on page 41.

SEC_ADMIN_GROUP

When security services are enabled, this keyword points to the name of the

UNIX group that contains the local identities of the LoadLeveler

administrators.

 Restriction: CtSec security is not supported on LoadLeveler for Linux.

 Syntax:

SEC_ADMIN_GROUP = name of lladmin group

Default value: No default value is set.

 For more information related to using this keyword, see “Configuring

LoadLeveler to use cluster security services” on page 53.

SEC_ENABLEMENT

Specifies the security mechanism to be used.

 Restriction: Do not set this keyword to CtSec in the configuration file for a

Linux machine. CtSec security is not supported on LoadLeveler for Linux.

 Syntax:

SEC_ENABLEMENT = COMPAT | CTSEC

Default value: No default value is set.

Configuration file reference

282 TWS LoadLeveler: Using and Administering

SEC_SERVICES_GROUP

When security services are enabled, this keyword specifies the name of the

LoadLeveler services group.

 Restriction: CtSec security is not supported on LoadLeveler for Linux.

 Syntax:

SEC_SERVICES_GROUP=group name

Where group name defines the identities of the LoadLeveler daemons.

 Default value: No default value is set.

SEC_IMPOSED_MECHS

Specifies a blank-delimited list of LoadLeveler’s permitted security

mechanisms when Cluster Security (CtSec) services are enabled.

 Restriction: CtSec security is not supported on LoadLeveler for Linux.

 Syntax: Specify a blank delimited list containing combinations of the

following values:

none If this is the only value specified, then users will run

unauthenticated and, if authorization is necessary, the job will fail.

If this is not the only value specified, then users may run

unauthenticated and, if authorization is necessary, the job will fail.

unix If this is the only value specified, then UNIX host-based

authentication will be used; otherwise, other mechanisms may be

used.

 Default value: No default value is set.

 Example:

SEC_IMPOSED_MECHS = none unix

SPOOL

Defines the local directory where LoadLeveler keeps the local job queue

and checkpoint files

 Syntax:

SPOOL = local directory/spool

Default value: $(tilde)/spool

START

Determines whether a machine can run a LoadLeveler job.

 Syntax:

START: expression that evaluates to T or F (true or false)

When the expression evaluates to T, LoadLeveler considers dispatching a

job to the machine. When you use a START expression that is based on the

CPU load average, the negotiator may evaluate the expression as F even

though the load average indicates the machine is Idle. This is because the

negotiator adds a compensating factor to the startd machine’s load average

every time the negotiator assigns a job. For more information, see “the

NEGOTIATOR_INTERVAL keyword” on page 270.

 Default value: No default value is set, which means that no jobs will be

started.

Configuration file reference

Chapter 12. Configuration file reference 283

For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 299.

START_CLASS

Specifies the rule for starting a job of the incoming_class. The

START_CLASS rule is applied whenever the BACKFILL scheduler decides

whether a job step of the incoming_class should start or not.

 Syntax:

START_CLASS[incoming_class] = (start_class_expression) [&& (start_class_expression) ...]

Where start_class_expression takes the form:

run_class < number_of_tasks

Which indicates that a job step of the incoming_class is only

allowed to run on a node when the number of tasks of run_class

running on that node is less than number_of_tasks.

Notes:

1. START_CLASS [allclasses] will be ignored.

2. The job class specified by run_class may be the same as or different

from the class specified by incoming_class.

3. You can also define run_class as allclasses. If you do, the total number

of all job tasks running on that node cannot exceed the value specified

by number_of_tasks.

4. A class name or allclasses should not appear twice on the right-hand

side of the keyword statement. However, you can use other class names

with allclasses on the right hand side of the statement.

5. If there is more than one start_class_expression, you must use &&

between adjacent start_class_expressions.

6. Both the START keyword and the START_CLASS keyword have to be

true before a new job can start.

7. Parenthesis () are optional around start_class_expression.

For information related to using this keyword, see “Planning to preempt

jobs” on page 117.

 Default value: No default value is set.

 Examples:

START_CLASS[Class_A] = (Class_A < 1)

This statement indicates that a Class_A job can only start on nodes

that do not have any Class_A jobs running.

START_CLASS[Class_B] = allclasses < 5

This statement indicates that a Class_B job can only start on nodes

with maximum 4 tasks running.

START_DAEMONS

Specifies whether to start the LoadLeveler daemons on the node.

 Syntax:

START_DAEMONS = true | false

Default value: true

Configuration file reference

284 TWS LoadLeveler: Using and Administering

When true, the daemons are started. In most cases, you will probably want

to set this keyword to true. An example of why this keyword would be set

to false is if you want to run the daemons on most of the machines in the

cluster but some individual users with their own local configuration files

do not want their machines to run the daemons. The individual users

would modify their local configuration files and set this keyword to false.

Because the global configuration file has the keyword set to true, their

individual machines would still be able to participate in the LoadLeveler

cluster.

 Also, to define the machine as strictly a submit-only machine, set this

keyword to false.

STARTD

Location of the startd executable (LoadL_startd).

 Syntax:

STARTD = directory

Default value: $(BIN)/LoadL_startd

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

STARTD_COREDUMP_DIR

Local directory for storing LoadL_startd core dump files.

 Syntax:

STARTD_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

STARTD_DGRAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

STARTD_DGRAM_PORT = port number

Default value: The default is 9615.

 For more information related to using this keyword, see “Defining network

characteristics” on page 45.

STARTD_RUNS_HERE = true | false

Specifies whether the startd daemon runs on the host. If you do not want

to run the startd daemon, specify false.

 Syntax:

STARTD_RUNS_HERE = true | false

Default value: true

STARTD_STREAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

STARTD_STREAM_PORT = port number

Configuration file reference

Chapter 12. Configuration file reference 285

|

Default value: The default is 9611.

 For more information related to using this keyword, see “Defining network

characteristics” on page 45.

STARTER

Location of the starter executable (LoadL_starter).

 Syntax:

STARTER = directory

Default value: $(BIN)/LoadL_starter

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

STARTER_COREDUMP_DIR

Local directory for storing LoadL_starter coredump files.

 Syntax:

STARTER_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 45.

SUBMIT_FILTER

Specifies the program you want to run to filter a job script when the job is

submitted.

 Syntax:

SUBMIT_FILTER = full_path_to_executable

Where full_path_to_executable is called with the job command file as the

standard input. The standard output is submitted to LoadLeveler. If the

program returns with a nonzero exit code, the job submission is canceled.

A submit filter can only make changes to LoadLeveler job command file

keyword statements.

 Default value: No default value is set.

 Multicluster use: In a multicluster environment, if you specified a valid

cluster list with either the llsubmit -X option or the ll_cluster API, then

the SUBMIT_FILTER will instead be invoked with a modified job

command file that contains a cluster_list keyword generated from either

the llsubmit -X option or the ll_cluster API.

 The modified job command file will contain an inserted # @ cluster_list

= cluster statement just prior to the first # @ queue statement. This

cluster_list statement takes precedence and overrides all previous

specifications of any cluster_list statements from the original job command

file.

 Example: SUBMIT_FILTER in a multicluster environment

 The following job command file, job.cmd, requests to be run remotely on

cluster1:

Configuration file reference

286 TWS LoadLeveler: Using and Administering

#!/bin/sh

@ cluster_list = cluster1

@ error = job1.$(Host).$(Cluster).$(Process).err

@ output = job1.$(Host).$(Cluster).$(Process).out

@ queue

After issuing llsubmit -X cluster2 job.cmd, the modified job command

file statements will be run on cluster2:

#!/bin/sh

@ cluster_list = cluster1

@ error = job1.$(Host).$(Cluster).$(Process).err

@ output = job1.$(Host).$(Cluster).$(Process).out

@ cluster_list = cluster2

@ queue

For more information related to using this keyword, see “Filtering a job

script” on page 70.

SUSPEND

Determines whether running jobs should be suspended.

 Syntax:

SUSPEND: expression that evaluates to T or F (true or false)

When T, LoadLeveler temporarily suspends jobs currently running on the

machine. Suspended LoadLeveler jobs will either be continued or vacated.

This keyword is not supported for parallel jobs.

 Default value: No default value is set.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 299.

SYSPRIO

System priority expression.

 Syntax:

SYSPRIO : expression

You can use the following LoadLeveler variables to define the SYSPRIO

expression:

v ClassSysprio

v GroupQueuedJobs

v GroupRunningJobs

v GroupSysprio

v GroupTotalJobs

v GroupTotalShares

v GroupUsedBgShares

v GroupUsedShares

v JobIsBlueGene

v QDate

v UserPrio

v UserQueuedJobs

v UserRunningJobs

v UserSysprio

v UserTotalJobs

v UserTotalShares

v UserUsedBgShares

v UserUsedShares

Configuration file reference

Chapter 12. Configuration file reference 287

|

|

|

For detailed descriptions of these variables, see “LoadLeveler variables” on

page 294.

 Default value: 0 (zero)

Notes:

1. The SYSPRIO keyword is valid only on the machine where the central

manager is running. Using this keyword in a local configuration file

has no effect.

2. It is recommended that you do not use UserPrio in the SYSPRIO

expression, since user jobs are already ordered by UserPrio.

3. The string SYSPRIO can be used as both the name of an expression

(SYSPRIO: value) and the name of a variable (SYSPRIO = value).

To specify the expression to be used to calculate job priority you must

use the syntax for the SYSPRIO expression. If the variable is mistakenly

used for the SYSPRIO expression, which requires a colon (:) after the

name, the job priority value will always be 0 because the SYSPRIO

expression has not been defined.

4. When the UserRunningJobs, GroupRunningJobs, UserQueuedJobs,

GroupQueuedJobs, UserTotalJobs, GroupTotalJobs,

GroupTotalShares, GroupUsedShares, UserTotalShares,

UserUsedShares, GroupUsedBgShares, JobIsBlueGene, and

UserUsedBgShares variables are used to prioritize the queue based on

current usage, you should also set

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL so that the

priorities are adjusted according to current usage rather than usage

only at submission time.

Examples:

v Example 1

This example creates a FIFO job queue based on submission time:

SYSPRIO : 0 - (QDate)

v Example 2

This example accounts for Class, User, and Group system priorities:

SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

v Example 3

This example orders the queue based on the number of jobs a user is

currently running. The user who has the fewest jobs running is first in

the queue. You should set

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL in conjunction

with this SYSPRIO expression.

SYSPRIO : 0 - UserRunningJobs

v Example 4

This example shows one possible way to set up the SYSPRIO expression

for fair share scheduling. For those jobs whose owner has no unused

shares ($(UserHasShares)= 0), that job priority depends only on QDate,

making it a simple FIFO queue as in Example 1.

For those jobs whose owner has unused shares ($(UserHasShares)= 1),

job priority depends not only on QDate, but also on a uniform boost of

31 536 000 (the equivalent to the job being submitted one year earlier).

These jobs still have priority differences because of submit time

Configuration file reference

288 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|

differences. It is like forming two priority tiers: the higher priority tier

for jobs with unused shares and the lower priority tier for jobs without

unused shares.

SYSPRIO: 31536000 * $(UserHasShares) - QDate

v Example 5

This example divides the jobs into three priority tiers:

– Those jobs whose owner and group both have unused shares are at

the top tier

– Those jobs whose owner or group has unused shares are at the

middle tier

– Those jobs whose owner and group both have no shares remaining

are at the bottom tier

A user can submit two jobs to two different groups, the first job to a

group with shares remaining and the second job to a group without any

unused shares. If the user has unused shares, the first job will belong to

the top tier and the second job will belong to the middle tier. If the user

has no shares remaining, the first job will belong to the middle tier and

the second job will belong to the bottom tier. The jobs in the top tier will

be considered to run first, then the jobs in the middle tier, and lastly the

jobs in the bottom tier.

SYSPRIO: 31536000 * ($(UserHasShares)+$(GroupHasShares)) - (QDate)

For more information related to using this keyword, see “Setting negotiator

characteristics and policies” on page 43.

SYSPRIO_THRESHOLD_TO_IGNORE_STEP

Specifies a threshold value for system priority. When the system priority

assigned to a job step is less than the value set for this keyword, the

scheduler ignores the job, which will remain in Idle state.

 Syntax:

SYSPRIO_THRESHOLD_TO_IGNORE_STEP = integer

Any integer is a valid value.

 Default value: INT_MIN

 For more information related to using this keyword, see “Controlling the

central manager scheduling cycle” on page 67.

TRUNC_GSMONITOR_LOG_ON_OPEN

When true, specifies that the log file is restarted with every invocation of

the daemon.

 Syntax:

TRUNC_GSMONITOR_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

TRUNC_KBDD_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

Configuration file reference

Chapter 12. Configuration file reference 289

TRUNC_KBDD_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

TRUNC_MASTER_LOG_ON_OPEN

When true, specifies the log file is re started with every invocation of the

daemon.

 Syntax:

TRUNC_MASTER_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

TRUNC_NEGOTIATOR_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_NEGOTIATOR_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

TRUNC_SCHEDD_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_SCHEDD_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

TRUNC_STARTD_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_STARTD_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

TRUNC_STARTER_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

Configuration file reference

290 TWS LoadLeveler: Using and Administering

TRUNC_STARTER_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 46.

UPDATE_ON_POLL_INTERVAL_ONLY

Specifies whether or not the LoadLeveler startd daemons will send

machine update transactions to the Central Manager. Normally the

LoadLeveler startd daemons running on executing nodes will send

transactions to the Central Manager to provide updates of machine

information at various times. An update is sent every polling interval. The

polling interval is calculated by multiplying the values for the two

keywords, POLLING_FREQUENCY and POLLS_PER_UPDATE, specified

in the LoadLeveler configuration file.

 In addition, updates are sent at other times such as when new jobs are

started and when jobs terminate on the executing node. If you have a large

and highly active cluster (the workload consists of a large number of short

running jobs), the normal method for updating the central manager can

add excessive network traffic. UPDATE_ON_POLL_INTERVAL_ONLY can

help reduce this source of network traffic.

 When true is specified, the LoadLeveler startd daemon will only send

machine updates to the Central Manager at every polling interval and not

at other times.

 Syntax:

UPDATE_ON_POLL_INTERVAL_ONLY = false | true

Default value: false

VACATE

Determines whether suspended jobs should be vacated.

 Syntax:

VACATE: expression that evaluates to T or F (true or false)

When T, suspended LoadLeveler jobs are removed from the machine and

placed back into the queue (provided you specify restart=yes in the job

command file). If a checkpoint was taken, the job restarts from the

checkpoint. Otherwise, the job restarts from the beginning.

 Default value: No default value is set.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 299.

VM_IMAGE_ALGORITHM

Specifies the virtual memory algorithm, which is used for checking the

image_size requirement. This keyword is used together with the

large_page job command file keyword to specify which algorithm the

Central Manager uses to decide whether a machine has enough virtual

memory to run a job step.

 This keyword is critical for job steps that must use Large Page memory

(specified by the job command file keyword large_page=M). If the

VM_IMAGE_ALGORITHM keyword is set to FREE_PAGING_SPACE,

Configuration file reference

Chapter 12. Configuration file reference 291

the Large Page job step will never be scheduled to run. This keyword must

be set to FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY to run

Large Page jobs.

 When FREE_PAGING_SPACE is specified, LoadLeveler considers only

free paging space when determining if a machine has enough virtual

memory to run a job step.

 When FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY is specified

and the job step specifies:

v large_page=N (does not use Large Page memory), LoadLeveler

considers free paging space and free regular memory when determining

if a machine has enough virtual memory to run a job step.

v large_page=Y (uses Large Page memory, if available), LoadLeveler

considers free paging space, free regular memory, and free Large Page

memory when determining if a machine has enough virtual memory to

run a job step, although Large Page memory is only considered for

machines configured to exploit the Large Page feature.

v large_page=M (must use Large Page memory), LoadLeveler considers

only Large Page memory when determining if a machine has enough

virtual memory to run a job step. Only machines configured to exploit

the Large Page feature are considered.

IBM suggests that you set this keyword to the value

FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY since more types

of virtual memory are considered, increasing the chances of finding a

machine with enough virtual memory to run the job step.

 Syntax:

VM_IMAGE_ALGORITHM = FREE_PAGING_SPACE | FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY

Default value: FREE_PAGING_SPACE

WALLCLOCK_ENFORCE

Specifies whether the job command file keyword wall_clock_limit will be

enforced for this job. The WALLCLOCK_ENFORCE keyword is valid only

when an external scheduler is enabled.

 Syntax:

WALLCLOCK_ENFORCE = true | false

Default value: true

X_RUNS_HERE

Specifies whether the kbdd (keyboard) daemon runs on the host. If you do

not want to run the kbdd daemon, specify false.

 Syntax:

X_RUNS_HERE = true | false

Default value: true

Configuration file reference

292 TWS LoadLeveler: Using and Administering

User-defined keywords

This type of variable, which is generally created and defined by the user, can be

named using any combination of letters and numbers. A user-defined variable is

set equal to values, where the value defines conditions, names files, or sets numeric

values. For example, you can create a variable named MY_MACHINE and set it

equal to the name of your machine named iron as follows:

 MY_MACHINE = iron.ore.met.com

You can then identify the keyword using a dollar sign ($) and parenthesis. For

example, the literal $(MY_MACHINE) following the definition in the previous

example results in the automatic substitution of iron.ore.met.com in place of

$(MY_MACHINE).

User-defined definitions may contain references, enclosed in parenthesis, to

previously defined keywords. Therefore:

 A = xxx

 C = $(A)

is a valid expression and the resulting value of C is xxx. Note that C is actually

bound to A, not to its value, so that

 A = xxx

 C = $(A)

 A = yyy

is also legal and the resulting value of C is yyy.

The sample configuration file shipped with the product defines and uses the

following “user-defined” variables.

BackgroundLoad

Defines the variable BackgroundLoad and assigns to it a floating point

constant. This might be used as a noise factor indicating no activity.

CPU_Busy

Defines the variable CPU_Busy and reassigns to it at each evaluation the

Boolean value True or False, depending on whether the Berkeley one-minute

load average is equal to or greater than the saturation level of 1.5.

CPU_Idle

Defines the variable CPU_Idle and reassigns to it at each evaluation the

Boolean value True or False, depending on whether the Berkeley one-minute

load average is equal or less than 0.7.

HighLoad

Is a keyword that the user can define to use as a saturation level at which no

further jobs should be started.

HOUR

Defines the variable HOUR and assigns to it a constant integer value.

JobLoad

Defines the variable JobLoad which defines the load on the machine caused by

running the job.

KeyboardBusy

Defines the variable KeyboardBusy and reassigns to it at each evaluation the

Boolean value True or False, depending on whether the keyboard and mouse

have been idle for fifteen minutes.

Configuration file reference

Chapter 12. Configuration file reference 293

LowLoad

Defines the variable LowLoad and assigns to it the value of BackgroundLoad.

This might be used as a restart level at which jobs can be started again and

assumes only running 1 job on the machine.

mail

Specifies a local program you want to use in place of the LoadLeveler default

mail notification method.

MINUTE

Defines the variable MINUTE and assigns to it a constant integer value.

StateTimer

Defines the variable StateTimer and reassigns to it at each evaluation the

number of seconds since the current state was entered.

LoadLeveler variables

LoadLeveler provides the following variables that you can use in your

configuration file statements. LoadLeveler variables are evaluated by the

LoadLeveler daemons at various stages. They do not require you to use any special

characters (such as a parenthesis or a dollar sign) to identify them.

Arch

Indicates the system architecture. Note that Arch is a special case of a

LoadLeveler variable called a machine variable. You specify a machine variable

using the following format:

 variable : $(value)

ClassSysprio

The priority for the class of the job step, defined in the class stanza in the

administration file.

 Default: 0

 For additional information about using this variable, see the SYSPRIO

keyword description.

Connectivity

The ratio of the number of active switch adapters on a node to the total

number of switch adapters on the node. The value ranges from 0.0 (all switch

adapters are down) to 1.0 (all switch adapters are active). A node with no

switch adapters has a connectivity of 0.0. Connectivity can be used in a

MACHPRIO expression to favor nodes that do not have any down switch

adapters or in a job’s REQUIREMENTS to require only nodes with a certain

connectivity.

 For additional information about using this variable, see the MACHPRIO

keyword description.

ConsumableCpus

The number of ConsumableCpus currently available on the machine, if

ConsumableCpus is defined in the configuration file keyword,

SCHEDULE_BY_RESOURCES. If it is not defined in

SCHEDULE_BY_RESOURCES, then it is equivalent to Cpus.

 For additional information about using this variable, see the MACHPRIO

keyword description.

ConsumableMemory

The amount of ConsumableMemory, in megabytes, currently available on the

machine, if ConsumableMemory is defined in the configuration file keyword,

Configuration file reference

294 TWS LoadLeveler: Using and Administering

SCHEDULE_BY_RESOURCES. If it is not defined in

SCHEDULE_BY_RESOURCES, then it is equivalent to Memory.

 For additional information about using this variable, see the MACHPRIO

keyword description.

ConsumableVirtualMemory

The amount of ConsumableVirtualMemory, in megabytes, currently available

on the machine, if ConsumableVirtualMemory is defined in the configuration

file keyword, SCHEDULE_BY_RESOURCES. If it is not defined in

SCHEDULE_BY_RESOURCES, then it is equivalent to VirtualMemory.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Cpus

The number of processors of the machine, reported by the startd daemon.

 For additional information about using this variable, see the MACHPRIO

keyword description.

CurrentTime

The UNIX date; the current system time, in seconds, since January 1, 1970, as

returned by the time() function.

CustomMetric

Sets a relative priority number for one or more machines, based on the value

of the CUSTOM_METRIC keyword.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Disk

The free disk space in kilobytes on the file system where the executables for

the LoadLeveler jobs assigned to this machine are stored. This refers to the file

system that is defined by the execute keyword.

 For additional information about using this variable, see the MACHPRIO

keyword description.

domain or domainname

Dynamically indicates the official name of the domain of the current host

machine where the program is running. Whenever a machine name can be

specified or one is assumed, a domain name is assigned if none is present.

EnteredCurrentState

The value of CurrentTime when the current state (START, SUSPEND, etc) was

entered.

FreeRealMemory

The amount of free real memory, in megabytes, on the machine. This value

should track very closely with the ″fre″ value of the vmstat command and the

″free″ value of the svmon -G command (units are 4K blocks).

 For additional information about using this variable, see the MACHPRIO

keyword description.

GroupQueuedJobs

The number of job steps associated with a LoadLeveler group which are either

running or queued. (That is, job steps which are in one of these states:

Checkpointing, Preempted, Preempt Pending, Resume Pending, Running,

Starting, Pending, or Idle.)

Configuration file reference

Chapter 12. Configuration file reference 295

For additional information about using this variable, see the SYSPRIO

keyword description.

GroupRunningJobs

The number of job steps for the LoadLeveler group which are in one of these

states: Checkpointing, Preempted, Preempt Pending, Resume Pending,

Running, Starting, or Pending.

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupSysprio

The priority for the group of the job step, defined in the group stanza in the

administration file.

 Default: 0

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupTotalJobs

The total number of job steps associated with this LoadLeveler group. Total job

steps are all job steps reported by the llq command.

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupTotalShares

The total number of shares allocated to a group as specified by the fair_shares

keyword in the group stanza.

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupUsedBgShares

The number of Blue Gene shares already used by a group or jobs owned by

the group.

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupUsedShares

The number of shares already used by a group or jobs of the LoadLeveler

group.

 For additional information about using this variable, see the SYSPRIO

keyword description.

host or hostname

Dynamically indicates the standard host name as returned by gethostname()

for the machine where the program is running. host and hostname are

equivalent, and contain the name of the machine without the domain name

appended to it. If administrators need to specify the domain name in the

configuration file, they may use domain or domainname along with host or

hostname. For example:

$(host).$(domain)

JobIsBlueGene

Indicates whether the job whose priority is being calculated using the

SYSPRIO keyword is a Blue Gene job.

 For additional information about using this variable, see the SYSPRIO

keyword description.

Configuration file reference

296 TWS LoadLeveler: Using and Administering

|
|
|

|
|

|
|
|

|
|

KeyboardIdle

The number of seconds since the keyboard or mouse was last used. It also

includes any telnet or interactive activity from any remote machine.

LoadAvg

The Berkely one-minute load average, a measure of the CPU load on the

system. The load average is the average of the number of processes ready to

run or waiting for disk I/O to complete. The load average does not map to

CPU time.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Machine

Indicates the name of the current machine. Note that Machine is a special case

of a LoadLeveler variable called a machine variable. See the description of the

Arch variable for more information.

MasterMachPriority

A value that is equal to 1 for nodes which are master nodes (those with

master_node_exclusive = true); this value is equal to 0 for nodes which are not

master nodes. Assigning a high priority to master nodes may help job

scheduling performance for parallel jobs which require master node features.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Memory

The size of real memory, in megabytes, of the machine, reported by the startd

daemon.

 For additional information about using this variable, see the MACHPRIO

keyword description.

OpSys

Indicates the operating system on the host where the program is running. This

value is automatically determined and need not be defined in the configuration

file. Note that OpSys is a special case of a LoadLeveler variable called a

machine variable. See the description of the Arch variable for more

information.

PagesFreed

The number of pages freed per second by the page replacement algorithm of

the virtual memory manager.

 For additional information about using this variable, see the MACHPRIO

keyword description.

PagesScanned

The number of pages scanned per second by the page replacement algorithm

of the virtual memory manager.

 For additional information about using this variable, see the MACHPRIO

keyword description.

QDate

The difference in seconds between the UNIX date when the job step enters the

queue and the UNIX date when the negotiator daemon starts up.

 For additional information about using this variable, see the SYSPRIO

keyword description.

Configuration file reference

Chapter 12. Configuration file reference 297

Speed

The relative speed of the machine, defined in a machine stanza in the

administration file.

 Default: 1

 For additional information about using this variable, see the MACHPRIO

keyword description.

State

The state of the startd daemon.

tilde

The home directory for the LoadLeveler user ID.

UserPrio

The user defined priority of the job step, specified in the job command file

with the user_priority keyword. The priority ranges from 0 to 100, with higher

numbers corresponding to greater priority.

 Default: 50

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserQueuedJobs

The number of job steps either running or queued for the user. (That is, job

steps that are in one of these states: Checkpointing, Preempted, Preempt

Pending, Resume Pending, Running, Starting, Pending, or Idle.)

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserRunningJobs

The number of job step steps for the user which are in one of these states:

Checkpointing, Preempted, Preempt Pending, Resume Pending, Running,

Starting, or Pending.

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserSysprio

The priority of the user who submitted the job step, defined in the user stanza

in the administration file.

 Default: 0

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserTotalJobs

The total number of job steps associated with this user. Total job steps are all

job steps reported by the llq command.

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserTotalShares

The total number of shares allocated to a user as specified by the fair_shares

keyword in the user stanza.

 For additional information about using this variable, see the SYSPRIO

keyword description.

Configuration file reference

298 TWS LoadLeveler: Using and Administering

UserUsedBgShares

The number of Blue Gene shares already used by a user or jobs owned by the

user.

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserUsedShares

The number of shares already used by a user or jobs owned by the user.

 For additional information about using this variable, see the SYSPRIO

keyword description.

VirtualMemory

The size of available swap space (free paging space) on the machine, in

kilobytes, reported by the startd daemon.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Variables to use for setting dates

You can use the following date variables:

tm_mday

The number of the day of the month (1-31).

tm_mon

Number of months since January (0-11).

tm_wday

Number of days since Sunday (0-6).

tm_yday

Number of days since January 1 (0-365).

tm_year

The number of years since 1900 (0-9999). For example:

tm_year == 100

Denotes the year 2000.

tm4_year

The integer representation of the current year. For example:

tm4_year == 2010

Denotes the year 2010.

Variables to use for setting times

You can use the following time variables in the START, SUSPEND, CONTINUE,

VACATE, and KILL expressions. If you use these variables in the START

expression and you are operating across multiple time zones, unexpected results

may occur. This is because the negotiator daemon evaluates the START expressions

and this evaluation is done in the time zone in which the negotiator resides. Your

executing machine also evaluates the START expression and if your executing

machine is in a different time zone, the results you may receive may be

inconsistent. To prevent this inconsistency from occurring, ensure that both your

negotiator daemon and your executing machine are in the same time zone.

tm_hour

The number of hours since midnight (0-23).

Configuration file reference

Chapter 12. Configuration file reference 299

|
|
|

|
|

tm_isdst

Daylight Savings Time flag: positive when in effect, zero when not in effect,

negative when information is unavailable. For example, to start jobs between 5

PM and 8 AM during the month of October, factoring in an adjustment for

Daylight Savings Time, you can issue:

START: (tm_mon == 9) && (tm_hour < 8) && (tm_hour > 17) && (tm_isdst = 1)

tm_min

Number of minutes after the hour (0-59).

tm_sec

Number of seconds after the minute (0-59).

Configuration file reference

300 TWS LoadLeveler: Using and Administering

Chapter 13. Administration file reference

The administration file lists and defines the machines in the LoadLeveler cluster, as

well as and the characteristics of classes, users, groups, and clusters. LoadLeveler

does not prevent you from having multiple copies of administration files, but

having only one administration file prevents confusion and avoids potential

problems that might arise from having multiple files to update. To use only one

administration file that is available to all machines in a cluster, you must place the

file in a shared file system.

Table 72 lists the administration file subtasks:

 Table 72. Administration file subtasks

Subtask Associated information (see . . .)

To find out what administrator tasks

you can accomplish by using the

administration file

Part 2, “Configuring and managing the TWS

LoadLeveler environment,” on page 37

To learn how to correctly specify the

contents of an administration file

v “Administration file structure and syntax”

v “Administration file keyword descriptions” on

page 306

Administration file structure and syntax

The administration file is called LoadL_admin and it lists and defines the machine,

user, class, group, and adapter stanzas.

Machine stanza

Defines the roles that the machines in the LoadLeveler cluster play. See

“Defining machines” on page 78 for more information.

User stanza

Defines LoadLeveler users and their characteristics. See “Defining users”

on page 91 for more information.

Class stanza

Defines the characteristics of the job classes. To define characteristics that

apply to specific users, user substanzas can be added within a class stanza.

See “Defining classes” on page 83 and “Defining user substanzas in class

stanzas” on page 88 for more information.

Group stanza

Defines the characteristics of a collection of users that form a LoadLeveler

group. See “Defining groups” on page 92 for more information.

Adapter stanza

Defines the network adapters available on the machines in the LoadLeveler

cluster. See “Defining adapters” on page 80 for more information.

Cluster stanza

Defines the characteristics of a LoadLeveler cluster for use in a Multicluster

environment. See “Defining clusters” on page 93 for more information.

Stanzas have the following general format:

 301

Substanzas have the following general format:

 Keywords are not case sensitive. This means you can enter them in lower case,

upper case, or mixed case.

The following is a simple example of an administration file illustrating several

stanzas:

The following is a simple example of an administration file illustrating a class

stanza that contains user substanzas:

label: type = type_of_stanza

keyword1 = value1

keyword2 = value2

 ...

Figure 37. Format of administration file stanzas

label: {

 type = type_of_stanza

 keyword1 = value1

 keyword2 = value2

 ...

 substanza_label: {

 type = type_of_substanza

 keyword3 = value3

 }

}

Figure 38. Format of administration file substanzas

machine_a: type = machine

 central_manager = true # defines this machine as the central manager

 adapter_stanzas = adapter_a # identifies an adapter stanza

class_a: type = class

 priority = 50 # priority of this class

user_a: type = user

 priority = 50 # priority of this user

group_a: type = group

 priority = 50 # priority of this group

adapter_a: type = adapter

 adapter_name = en0 #defines an adapter

Figure 39. Sample administration file stanzas

Administration file reference

302 TWS LoadLeveler: Using and Administering

Stanza characteristics

The characteristics of a stanza are:

v Every stanza has a label associated with it. The label specifies the name you give

to the stanza.

v Every stanza has a type field that specifies it as a user, class, machine, group, or

adapter stanza.

v New line characters are ignored. This means that separate parts of a stanza can

be included on the same line. However, it is not recommended to have parts of a

stanza cross line boundaries.

v White space is ignored, other than to delimit keyword identifiers. This eliminates

confusion between tabs and spaces at the beginning of lines.

v A crosshatch sign (#) identifies a comment and can appear anywhere on the line.

All characters following this sign on that line are ignored.

v Multiple stanzas of the same label are allowed, but only the first label is used.

v Default stanzas specify the default values for any keywords which are not

otherwise specified. Each stanza type can have an associated default stanza. A

default stanza must appear in the administration file ahead of any specific

stanza entries of the same type. For example, a default class stanza must appear

ahead of any specific class stanzas you enter.

v Stanzas can be nested within other stanzas (these are known as substanzas). See

“Defining user substanzas in class stanzas” on page 88 for more information.

default:

 type = machine

 central_manager = false

 schedd_host = true

default:

 type = class

 wall_clocK-limit = 60:00, 30:00

parallel: {

 type = class

 # Allow at most 50 running jobs for class parallel

 maxjobs = 50

 # Allow at most 10 running jobs for any single

 # user of class parallel

 default: {

 type = user

 maxjobs = 10

 }

 # Allow user dept_head to run as many as 20 jobs

 # of class parallel

 dept_head: {

 type = user

 maxjobs = 20

 }

}

dept_head:

 type = user

 maxjobs = 30

Figure 40. Sample administration file stanza with user substanzas

Administration file reference

Chapter 13. Administration file reference 303

v The use of opening and closing braces ({ and }) to mark the beginning and end

of a stanza is optional for stanzas that do not contain substanzas. A stanza that

contains substanzas must be specified using braces as delimiting characters. Only

user substanzas within class stanzas are supported. No types of stanzas other

than class support substanzas and no types of stanzas other than user can be

provided as substanzas within a class.

v If a syntax error is encountered, the remainder of the stanza is ignored and

processing resumes with the next stanza.

Syntax for limit keywords

The syntax for setting a limit is:

limit_type = hardlimit,softlimit

For example:

core_limit = 120kb,100kb

To specify only a hard limit, you can enter, for example:

core_limit = 120kb

To specify only a soft limit, you can enter, for example:

core_limit = ,100kb

In a keyword statement, you cannot have any blanks between the numerical value

(100 in the above example) and the units (kb). Also, you cannot have any blanks to

the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit, core_limit,

file_limit, stack_limit, and rss_limit — the hard limit and the soft limit are

expressed as:

integer[.fraction][units]

The allowable units for these limits are:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

If no units are specified for data limits, then bytes are assumed.

For limit keywords that refer to a time limit — such as ckpt_time_limit, cpu_limit,

job_cpu_limit, and wall_clock_limit — the hard limit and the soft limit are

expressed as:

[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

Administration file reference

304 TWS LoadLeveler: Using and Administering

You can use the following character strings with all limit keywords except the copy

keyword for wall_clock_limit, job_cpu_limit, and ckpt_time_limit:

rlim_infinity Represents the largest positive number.

unlimited Has same effect as rlim_infinity.

copy Uses the limit currently active when the job is

submitted.

64-bit support for administration file keywords

Administrators can assign 64-bit integer values to selected keywords in the

administration file. System resource limits, with the exception of CPU limits, are

treated by LoadLeveler daemons and commands as 64-bit limits.

Table 73 describes 64-bit support for specific administration file keywords.

 Table 73. Notes on 64-bit support for administration file keywords

Keyword Stanza Notes

core_limit Class 64-bit integer values can be assigned to these limits. Fractional

specifications are allowed and will be converted to 64-bit integer

values. Unit specifications are accepted and can be one of the

following: b, w, kb, kw, mb, mw, gb, gw, tb, tw, pb, pw, eb, ew.

Example:

core_limit = 8gb,4.25gb

data_limit

default_resources Class Consumable resources associated with the default_resources keyword

can be assigned 64-bit integer values. Fractional specifications are not

allowed. Unit specifications are valid only when specifying the values

of the predefined ConsumableMemory and

ConsumableVirtualMemory resources.

Example:

default_resources = ConsumableVirtualMemory(12 gb) db2_license(112)

file_limit Class See the notes for core_limit and data_limit.

resources Machine Consumable resources associated with the resources keyword can be

assigned 64-bit integer values. Fractional specifications are not

allowed. Unit specifications are valid only when specifying the values

of the predefined ConsumableMemory and

ConsumableVirtualMemory resources.

Examples:

resources = spice2g6(9123456789012) ConsumableMemory(10 gw)

resources = ConsumableVirtualMemory(15 pb) db2_license(1234567890)

rss_limit Class See the notes for core_limit and data_limit.

Example:

rss_limit = 1.25eb,3.33pw

stack_limit

64-bit limits on Linux systems

Applications managed by LoadLeveler for AIX can be 64-bit applications if the

hardware architecture on which AIX is running is capable of supporting 64-bit

processes. Resource limits, such as data limits and stack limits, can be 64-bit limits.

When a value of unlimited is specified for a process limit (cpu_limit excepted) in

the LoadLeveler administration file or job command file, the AIX version of

LoadLeveler stores this value internally as INT64_MAX. Before starting the user job,

LoadL_starter sets the appropriate limit to this value. This behavior is correct

because, on AIX, RLIM64_INFINITY is the same as INT64_MAX (=

0x7FFFFFFFFFFFFFFFLL).

Administration file reference

Chapter 13. Administration file reference 305

On Linux systems, RLIM64_INFINITY is equal to UINT64_MAX (=

0xFFFFFFFFFFFFFFFFULL). To maintain compatibility with AIX, LoadLeveler for

Linux also stores unlimited internally as INT64_MAX. However, LoadL_starter on

Linux sets all process limits (cpu_limit excepted) that are in the range (INT64_MAX,

UINT64_MAX) to UINT64_MAX before starting the jobs managed by LoadLeveler.

For historical reasons, LoadLeveler for AIX treats the hard and soft time limits,

such as cpu_limit, job_cpu_limit, and wall_clock_limit, as 32-bit limits and

unlimited means INT32_MAX. For consistency reasons, LoadLeveler for Linux

assumes the same behavior.

Administration file keyword descriptions

account

Specifies a list of account numbers available to a user submitting jobs.

 Syntax:

account =list

Where list is a blank-delimited list of account numbers that identifies the

account numbers a user can use when submitting jobs.

 Default: A null list.

adapter_name

Specifies the name the operating system uses to refer to an interface card

installed on a node.

 Syntax:

adapter_name = string

Where string is the name of a particular interface card installed on the

node. Some examples are en0 and tk1. This keyword defines the adapters

a user can specify in a job command file using the network keyword.

adapter_stanzas

Specifies a list of adapter stanza names that define the adapters on a

machine that can be requested.

 Syntax:

adapter_stanzas = stanza_list

Where stanza_list is a blank-delimited list of one or more adapter stanza

names which specify adapters available on this machine. To take advantage

of dynamic adapter configuration you must exclude this keyword from the

machine stanza. LoadLeveler will then dynamically obtain the adapter

configuration for this machine from the RSCT.All adapter stanzas you

define must be specified on this keyword. If the keyword is specified

without defining any adapter stanza names no adapter will be configured

for the machine.

adapter_type

Specifies the type of switch adapter to be used. This keyword is used for

the High Performance Switch in a peer domain. The llextRPD command

will not generate an adapter_type statement if no AdapterType is found in

the cluster.

 Syntax:

adapter_type = type

Administration file reference

306 TWS LoadLeveler: Using and Administering

|
|

|

|

|
|
|

Where type is the designation for the type of switch adapter.

admin Specifies a list of administrators for a group or class.

 Syntax:

admin = list

Where list is a blank-delimited list of administrators for either this class or

this group, depending on whether this keyword appears in a class or

group stanza, respectively. These administrators can hold, release, and

cancel jobs in this class or this group.

alias Lists one or more alias names to associate with the machine name.

 Syntax:

alias = machine_name

Where machine_name is a blank-delimited list of one or more machine

names. Depending upon your network configurations, you can need to add

alias keywords for machines that have multiple interfaces.

 In general, if your cluster is configured with machine host names which

match the host names corresponding to the IP address configured for the

LAN adapters which LoadLeveler is expected to use, you will not have to

specify the alias keyword. For example, if all of the machines in your

cluster are configured like this sample machine, you should not have to

specify the alias keyword.

Machine porsche.kgn.ibm.com

v The hostname command returns porsche.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.20 resolves to hostname

porsche.kgn.ibm.com.

However, if any machine in your cluster is configured like either of the

following two sample machines, then you will have to specify the alias

keyword for those machines:

1. Machine yugo.kgn.ibm.com

v The hostname command returns yugo.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.21 resolves to hostname

chevy.kgn.ibm.com.

v No adapter address resolves to yugo.

You need to code the machine stanza as:

chevy: type = machine

alias = yugo

2. Machine rover.kgn.ibm.com

v The hostname command returns rover.kgn.ibm.com.

v The FDDI adapter address 129.40.9.22 resolves to hostname

rover.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.22 resolves to hostname

bmw.kgn.ibm.com.

v No route exists via the FDDI adapter to the clusters central manager

machine.

v A route exists from this machine to the central manager via the

Ethernet adapter.

You need to code the machine stanza as:

Administration file reference

Chapter 13. Administration file reference 307

bmw: type = machine

alias = rover

central_manager

Determines whether the machine is the LoadLeveler central manager.

 Syntax:

central_manager = true| false | alt

Where:

v true designates this machine as the LoadLeveler central manager host,

where the negotiator daemon runs. You must specify one and only one

machine stanza identifying the central manager. For example:

machine_a: type = machine

central_manager = true

v false specifies that this machine is not the central manager.

v alt specifies that this machine can serve as an alternate central manager

in the event that the primary central manager is not functioning. For

more information on recovering if the primary central manager is not

operating, refer to “What happens if the central manager isn’t

operating?” on page 658. Submit-only machines cannot have their

machine stanzas set to this value.

If you are going to select machines to serve as alternate central

managers, you should look at the following keywords in the

configuration file:

– CENTRAL_MANAGER_HEARTBEAT_INTERVAL

– CENTRAL_MANAGER_TIMEOUT

For information on setting these keywords, see “Specifying alternate

central managers” on page 44.

Default: false

ckpt_dir

Specifies the directory to be used for checkpoint files for jobs that did not

specify this directory in the job command file.

 Syntax:

ckpt_dir = directory

Where directory is the directory location to be used for checkpoint files that

did not have a directory name specified in the job command file. If the

value specified does not have a fully qualified directory path (including

the beginning forward slash), the initial working directory will be inserted

before the specified value.

 The value specified by the ckpt_dir keyword is only used when the

ckpt_file keyword in the job command file does not contain a full path

name and the ckpt_dir keyword in the job command file is not specified.

For more information on determining the checkpoint directory, see

“Naming checkpoint files and directories” on page 134.

 Default: Initial working directory

ckpt_time_limit

Specifies the hard limit, soft limit, or both limits for the elapsed time that

checkpointing a job can take.

 Syntax:

Administration file reference

308 TWS LoadLeveler: Using and Administering

ckpt_time_limit = hardlimit,softlimit

Where hardlimit,softlimit defines the maximum time that checkpointing a

job can take. When LoadLeveler detects that the softlimit has been

exceeded, it attempts to end the checkpoint and allow the job to continue.

If this is not possible, and the hard limit is exceeded, LoadLeveler will

terminate the job. The start time of the checkpoint is defined as the time

when the Startd daemon receives status from the starter that a checkpoint

has started.

 Default: Unlimited

 Examples:

ckpt_time_limit = 30:45 #hardlimit - 30 minutes 45 seconds

ckpt_time_limit = 30:45,25:00 #hardlimit - 30 minutes 44 seconds

 #soflimit - 25 minutes

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

class_comment

Text characterizing the class.

 Syntax:

class_comment = "string"

Where string is text characterizing the class. This information appears

when the user is building a job command file using the GUI and requests

Choice information on the classes to which he or she is authorized to

submit jobs. The comment string associated with this keyword cannot

contain an equal sign (=) or a colon (:) character. The length of the string

cannot exceed 1024 characters.

 Default: No default value is set.

core_limit

Specifies the hard limit, soft limit, or both limits for the size of a core file a

job can create.

 Syntax:

core_limit = hardlimit,softlimit

Examples:

core_limit = unlimited

core_limit = 30mb

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

cpu_limit

Specifies hard limit, soft limit, or both limits for the CPU time to be used

by each individual process of a job step.

 Syntax:

cpu_limit = hardlimit,softlimit

Administration file reference

Chapter 13. Administration file reference 309

For example, if you impose a cpu_limit of five hours and you have a job

step composed of five processes, each process can consume five CPU

hours; the entire job step can therefore consume 25 total hours of CPU.

 Examples:

cpu_limit = 12:56:21 # hardlimit = 12 hours 56 minutes 21 seconds

cpu_limit = 56:00,50:00 # hardlimit = 56 minutes 0 seconds

 # softlimit = 50 minutes 0 seconds

cpu_limit = 1:03 # hardlimit = 1 minute 3 seconds

cpu_limit = unlimited # hardlimit = 2,147,483,647 seconds

 # (X’7FFFFFFF’)

cpu_limit = rlim_infinity # hardlimit = 2,147,483,647 seconds

 # (X’7FFFFFFF’)

cpu_limit = copy # current CPU hardlimit value on the

 # submitting machine.

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

cpu_speed_scale

Determines whether CPU time is normalized according to machine speed.

 Syntax:

cpu_speed_scale = true | false

Where true specifies that CPU time (which is used, for example, in setting

limits, in accounting information, and reported by the llq -x command), is

in normalized units for each machine. false specifies that CPU time is in

native units for each machine. For an example of using this keyword to

normalize accounting information, see “Example: Setting up job accounting

files” on page 61.

 Default: false

data_limit

Specifies hard limit, soft limit, or both for the data segment to be used by

each process of the submitted job.

 Syntax:

data_limit = hardlimit,softlimit

Examples:

data_limit = 125621 # hardlimit = 125621 bytes

data_limit = 5621kb # hardlimit = 5621 kilobytes

data_limit = 2mb # hardlimit = 2 megabytes

data_limit = 2.5mw # hardlimit = 2.5 megawords

data_limit = unlimited # hardlimit = 9,223,372,036,854,775,807 bytes

 # (X’7FFFFFFFFFFFFFFF’)

data_limit = rlim_infinity # hardlimit = 9,223,372,036,854,775,807 bytes

 # (X’7FFFFFFFFFFFFFFF’)

data_limit = copy # copy data hardlimit value from

 # submitting machine.

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

default_class

Specifies a class name that is the default value assigned to jobs submitted

by users for which no class statement appears.

Administration file reference

310 TWS LoadLeveler: Using and Administering

Syntax:

default_class = list

Where list is a blank-delimited list of class names used for jobs which do

not include a class statement in the job command file. If you specify only

one default class name, this class is assigned to the job. If you specify a list

of default class names, LoadLeveler searches the list to find a class which

satisfies the resource limit requirements. If no class satisfies these

requirements, LoadLeveler rejects the job.

 Suppose a job requests a CPU limit of 10 minutes. Also, suppose the

default class list is default_class = short long, where short is a class for

jobs up to five minutes in length and long is a class for jobs up to one

hour in length. LoadLeveler will select the long class for this job because

the short class does not have sufficient resources.

 Default: If no default_class is specified in the user stanza, or if there is no

user stanza at all, then jobs submitted without a class statement are

assigned to the default_class that appears in the default user stanza. If you

do not define a default_class, jobs are assigned to the class called

No_Class.

default_group

Specifies the default group name to which the user belongs.

 Syntax:

default_group = group_name

Where group_name is the default group assigned to jobs submitted by the

user.

 If you specify default_group = Unix_Group, LoadLeveler sets the user’s

LoadLeveler group to the user's current UNIX group.

 Default: If a default_group statement does not appear in the user stanza,

or if there is no user stanza at all, then jobs submitted by the user without

a group statement are assigned to the default_group that appears in the

default user stanza. If you do not define a default_group, jobs are assigned

to the group called No_Group.

default_interactive_class

Specifies a class to which interactive jobs are assigned for jobs submitted

by users who do not specify a class using the

LOADL_INTERACTIVE_CLASS variable. You can specify only one default

interactive class name.

 Syntax:

default_interactive_class = class_name

Where class_name is the class to which an interactive job submitted by this

user is assigned if the user does not specify a class using the

LOADL_INTERACTIVE_CLASS environment variable.

 Default: If you do not set a default_interactive_class value in the user

stanza, or if there is no user stanza at all, then interactive jobs submitted

without a class statement are assigned to the default_interactive_class that

Administration file reference

Chapter 13. Administration file reference 311

appears in the default user stanza. If you do not define a

default_interactive_class, interactive jobs are assigned to the class called

No_Class.

 See “Examples: User stanzas” on page 91 for more information on how

LoadLeveler assigns a default interactive class to jobs.

default_resources

Specifies the default amount of resources consumed by a task of a job step,

provided that no resources keyword is coded for the step in the job

command file. If a resources keyword is coded for a job step, then it

overrides any default resources associated with the associated job class.

 Syntax:

default_resources = name(count) name(count)...name(count)

The administrator defines the name and count values for

default_resources. In addition, name(count) could be

ConsumableCpus(count), ConsumableMemory(count units), or

ConsumableVirtualMemory(count units).

 ConsumableMemory and ConsumableVirtualMemory are the only two

consumable resources that can be specified with both a count and units.

The count for each specified resource must be an integer greater than or

equal to zero. The allowable units are those normally used with

LoadLeveler data limits:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

The ConsumableMemory and ConsumableVirtualMemory values are

stored in MB (megabytes) and rounded up. Therefore, the smallest amount

of ConsumableMemory or ConsumableVirtualMemory which you can

request is one megabyte. If no units are specified, then megabytes are

assumed. Resources defined here that are not in the

SCHEDULE_BY_RESOURCES list in the global configuration file will not

effect the scheduling of the job.

default_wall_clock_limit

 Sets a default value for jobs not specifying a wall clock limit in the job

command file. The wall_clock_limit keyword serves only as the maximum

value allowed for the class. The default_wall_clock_limit value can be

overridden by a job using the wall_clock_limit job command file keyword,

but that limit cannot exceed the wall_clock_limit configured in the class

stanza.

Note: If default_wall_clock_limit is not specified, it will be assigned the

value of wall_clock_limit for the same class.

Administration file reference

312 TWS LoadLeveler: Using and Administering

Syntax:

default_wall_clock_limit = hardlimit,softlimit

An example is:

default_wall_clock_limit = 5:00,4:30

For more information about the values and units you can use with this

keyword, and how limits are enforced, see “Using limit keywords” on

page 83 and “Syntax for limit keywords” on page 304.

device_driver_name

Specifies the device driver interface needed for user space function.

 Syntax:

device_driver_name = name

Where name specifies the device driver interface. A device_driver_name

will be present for all adapter stanzas whose name begins with sn This

keyword is for peer domain switch adapters.

env_copy

 Specifies a default value for the job command file env_copy keyword for

the class, group or user stanza containing the keyword.

 Syntax:

env_copy = all | master

Table 74 states the value that LoadLeveler uses depending on the

combination of values set in the user, group, or class stanzas.

 Table 74. Summary of possible values set for the env_copy keyword in the administration file

env_copy keyword setting in applicable

stanzas in the administration file

Resulting LoadLeveler default behavior for

copying the job environment

All stanzas that set the env_copy keyword

specify env_copy = master

master becomes the default value for the job

command file env_copy keyword.

One or more stanzas explicitly set env_copy =

all

all becomes the default value for the job

command file env_copy keyword.

The env_copy keyword is not specified in

any stanza

 Default value: No default value is set.

 For more information, see:

v The job command file env_copy keyword description.

v “Steps for reducing job launch overhead for parallel jobs” on page 96.

exclude_classes

 exclude_classes can be specified within a cluster stanza.

 Specifies a blank-delimited list of one or more job classes that will not

accept remote jobs within the cluster.

 Syntax:

exclude_classes = class_name[(cluster_name)] ...

Administration file reference

Chapter 13. Administration file reference 313

Where class_name specifies a class to be excluded and cluster_name can be

used to specify that remote jobs from cluster_name submitted under

class_name will be excluded but any other jobs submitted under class_name

from other clusters will be allowed.

 Do not specify a list of exclude_classes and include_classes. Only one of

these keywords can be used within any cluster stanza. exclude_classes

takes precedence over include_classes if both are specified.

 Default: The default is that no classes are excluded.

exclude_groups

 exclude_groups can be specified within a class stanza and a cluster stanza.

 Class stanza:

 When used within a class stanza, exclude_groups specifies a list of group

names identifying those who cannot submit jobs of a particular class.

 Syntax:

exclude_groups = list

Where list is a blank-delimited list of groups who are not allowed to

submit jobs of class name.

 This list can contain individual user names. To allow a list of users to be

included with the list of group names, add a plus sign (+) to each user

name that you add to the list. LoadLeveler treats these names as implicit

groups.

 For example, to add user mike to a list of group names, specify:

exclude_groups = prod +mike

If the string +mike is also the actual name of a group stanza, LoadLeveler

treats this name as a group, not an implicit group. In this case,

LoadLeveler will not prevent user mike from submitting jobs to this class

unless the user is a member of the prod or +mike group.

 If this keyword is specified, this list limits groups and users of that class to

those on the list.

 Do not specify both a list of included groups and a list of excluded groups.

Only one of these may be used for any class stanza. exclude_groups takes

precedence over include_groups if both are specified.

 Default: The default is that no groups are excluded.

 Cluster stanza:

 When used within a cluster stanza, exclude_groups specifies a

blank-delimited list of one or more groups that will not accept remote jobs

within the cluster.

 Syntax:

exclude_groups = group_name[(cluster_name)] ...

Administration file reference

314 TWS LoadLeveler: Using and Administering

Where group_name specifies a group that is not allowed to submit remote

jobs and cluster_name can be used to specify that remote jobs from

cluster_name submitted under group_name will be excluded but any other

jobs submitted under group_name from other clusters will be allowed.

 Do not specify a list of exclude_groups and include_groups. Only one of

these may be used within any cluster stanza. exclude_groups takes

precedence over include_groups if both are specified.

 Default: The default is that no groups are excluded.

exclude_users

 exclude_users may be specified within a class, group, and cluster stanza.

 Class or group stanza:

 When used within a class or group stanza exclude_users specifies a list of

user names identifying those who cannot submit jobs of a particular class

or who are not members of the group.

 Syntax:

exclude_users = list

The definition of this keyword varies slightly, depending on the type of

administration file stanza in which the keyword appears:

v In a class stanza: list is a blank-delimited list of users who are not

permitted to submit jobs of class_name.

v In a group stanza: list is a blank-delimited list of users who do not

belong to the group.

Do not specify both a list of included users and a list of excluded users.

Only one of these may be used for any class or group. exclude_users takes

precedence over include_users if both are specified. In a class stanza,

exclude_users also takes precedence over any user substanzas.

 Default: The default is that no users are excluded.

 Cluster stanza:

 When used within a cluster stanza, exclude_users specifies a

blank-delimited list of one or more users who cannot submit jobs to the

cluster.

 Syntax:

exclude_users = user_name[(cluster_name)] ...

Where user_name specifies a user that is not allowed to submit remote jobs

and cluster_name can be used to specify that remote jobs from cluster_name

submitted under the user_name will be excluded but any other jobs

submitted under that user_name from other clusters will be allowed.

 Do not specify a list of exclude_users and include_users. Only one of

these may be used within any cluster stanza. exclude_users takes

precedence over include_users if both are specified.

 Default: The default is that no users are excluded.

Administration file reference

Chapter 13. Administration file reference 315

fair_shares

Specifies the number of shares allocated to jobs of this user or group for

fair share scheduling. If the user or group stanza does not specify

fair_shares, or if there is no user or group stanza at all, the value in the

default user or group stanza is used (which defaults to zero if not

explicitly specified). The user or group has this number of shares of the

cluster CPU resources as well as this number of shares of the Blue Gene

resources (if Blue Gene resources are also available in the cluster).

 Syntax:

fair_shares = number

For additional information about the fair share scheduling keyword, see

“Using fair share scheduling” on page 148.

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

file_limit

Specifies the hard limit, soft limit, or both limits for the size of a file that a

job can create.

 Syntax:

file_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

inbound_hosts

Specifies a blank-delimited list of hostnames that define the machines

configured for inbound connections from other clusters.

 Syntax:

inbound_hosts = hostname[(cluster_name)] ...

Where hostname specifies a machine configured for inbound connections

from other clusters and cluster_name can be used to specify a specific

cluster if the host is not connected to all clusters in the multicluster. These

hostnames must be fully qualified with domain names if the machines

exist in a different domain. This keyword is required in a multicluster

environment.

Note: The same machine can be defined as both an inbound_host and an

outbound_host.

inbound_schedd_port

Specifies the port number to use to connect to the Schedd for inbound

transactions to this cluster.

 Syntax:

inbound_schedd_port = port_number

Where port_number is a positive integer which specifies the port number

used to connect to the Schedd for inbound transactions to this cluster.

 Default: The default port is 9605.

include_classes

 include_classes can be specified within a cluster stanza.

Administration file reference

316 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|

|

|

|
|
|
|

Specifies a blank-delimited list of one or more job classes that will accept

remote jobs within the cluster.

 Syntax:

include_classes = class_name[(cluster_name)] ...

Where class_name specifies a class to be included and cluster_name can be

used to specify that remote jobs from cluster_name will be included but any

other jobs submitted under class_name from other clusters will not be

allowed.

 Do not specify a list of exclude_classes and include_classes. Only one of

these can be used within any cluster stanza. exclude_classes takes

precedence over include_classes if both are specified.

 Default: The default is that all classes are included.

include_groups

 include_groups can be specified within a class stanza and a cluster stanza.

 Class stanza:

 When used within a class stanza, include_groups specifies a list of group

names identifying those who can submit jobs of a particular class.

 Syntax:

include_groups = list

Where list is a blank-delimited list of groups who are allowed to submit

jobs of class name.

 This list can contain individual user names. To allow a list of users to be

included with the list of group names, add a plus sign (+) to each user

name that you add to the list. LoadLeveler treats these names as implicit

groups.

 For example, to add user mike to a list of group names, specify:

exclude_groups = prod +mike

If the string +mike is also the actual name of a group stanza, LoadLeveler

treats this name as a group, not an implicit group. In this case,

LoadLeveler will not allow user mike to submit jobs to this class unless

the user is a member of the prod or +mike group.

 If this keyword is specified, this list limits groups and users of that class to

those on the list.

 Do not specify both a list of included groups and a list of excluded groups.

Only one of these may be used for any class stanza. exclude_groups takes

precedence over include_groups if both are specified.

 Default: The default is that all groups are included.

 Cluster stanza:

Administration file reference

Chapter 13. Administration file reference 317

When used within a cluster stanza, include_groups specifies a

blank-delimited list of one or more groups that will accept remote jobs

within the cluster.

 Syntax:

include_groups = group_name[(cluster_name)] ...

Where group_name specifies a group that is allowed to submit remote jobs

and cluster_name can be used to specify that remote jobs from cluster_name

submitted under group_name will be included but any other jobs submitted

under group_name from other clusters will not be allowed.

 Do not specify a list of exclude_groups and include_groups. Only one of

these may be used within any cluster stanza. exclude_groups takes

precedence over include_groups if both are specified.

 Default: The default is that all groups are included.

include_users

 include_users may be specified within a class, group, and cluster stanza.

 Class or group stanza:

 When used within a class or group stanza include_users specifies a list of

user names identifying those who can submit jobs of a particular class or

who are members of the group.

 Syntax:

include_users = list

The definition of this keyword varies slightly, depending on the type of

administration file stanza in which the keyword appears:

v In a class stanza: list is a blank-delimited list of users who are permitted

to submit jobs of class_name.

v In a group stanza: list is a blank-delimited list of users who belong to

the group.

Do not specify both a list of included users and a list of excluded users.

Only one of these may be used for any class or group. exclude_users takes

precedence over include_users if both are specified. In a class stanza, users

in user substanzas are also permitted to submit jobs of class_name, even if

those users are not in the include_users list.

 Default: The default is that all users are included.

 Cluster stanza:

 When used within a cluster stanza, include_users specifies a

blank-delimited list of one or more users who can submit jobs to the

cluster.

 Syntax:

include_users = user_name[(cluster_name)] ...

Where user_name specifies a user that is allowed to submit remote jobs and

cluster_name can be used to specify that remote jobs from cluster_name

Administration file reference

318 TWS LoadLeveler: Using and Administering

submitted under the user_name will be included but any other jobs

submitted under that user_name from other clusters will not be allowed.

 Do not specify a list of exclude_users and include_users. Only one of

these may be used within any cluster stanza. exclude_users takes

precedence over include_users if both are specified.

 Default: The default is that all users are included.

interface_address

Specifies the IP address by which the adapter is known to other nodes in

the network.

 Syntax:

interface_address = string

Where string is the IP address by which the adapter is known to other

nodes in the network. For example: 7.14.21.28. This keyword is required.

interface_name

Specifies the name by which the adapter is known to other nodes in the

network.

 Syntax:

interface_name = string

Where string is the name by which the adapter is known by other nodes in

the network.

job_cpu_limit

Specifies the hard limit, soft limit, or both limits for the total amount of

CPU time that all tasks of an individual job step can use per machine.

 Syntax:

job_cpu_limit = hardlimit,softlimit

Example:

job_cpu_limit = 10000

For more information on this keyword, see:

v JOB_LIMIT_POLICY keyword

v For additional information about limit keywords, see the following

topics:

– Syntax for limit keywords

– Using limit keywords

local Specifies the scope of the cluster definition.

 Syntax:

local = true| false

This keyword is required in the local cluster’s administration file in a

multicluster environment.

 Default: false

logical_id

Specifies the logical ID that uniquely identifies the adapter on its network.

 Syntax:

Administration file reference

Chapter 13. Administration file reference 319

logical_id = id

This keyword is for peer domain switch adapters.

machine_mode

Specifies the type of jobs this machine can run.

 Syntax:

machine_mode = batch | interactive | general

Where:

batch Specifies this machine can run only batch jobs.

interactive Specifies this machine can run only interactive jobs. Only

POE is currently enabled to run interactively.

general Specifies this machine can run both batch jobs and

interactive jobs.

 Default: general

master_node_exclusive

Specifies whether or not this machine is used only as a master node.

 Syntax:

master_node_exclusive = true| false

Where true specifies that the machine accepts only jobs (serial or parallel)

submitted to classes that have master_node_requirement set to true. If the

job type is parallel, only the master task is run on a machine with

master_node_exclusive set to true.

 Default: false

master_node_requirement

Specifies whether or not parallel jobs in this class require the master node

feature.

 Syntax:

master_node_requirement = true|false

Where true specifies that parallel jobs do require the master node feature.

For these jobs, LoadLeveler allocates the first node (called the “master”) on

a machine having the master_node_exclusive = true setting in its machine

stanza. If most or all of your parallel jobs require this feature, you should

consider placing the statement master_node_requirement = true in your

default class stanza. Then, for classes that do not require this feature, you

can use the statement master_node_requirement = false in their class

stanzas to override the default setting. One machine per class should have

the true setting; if more than one machine has this setting, normal

scheduling selection is performed.

 Default: false

max_jobs_scheduled

Specifies the maximum number of job steps that this machine can run.

 Syntax:

max_jobs_scheduled = number

Administration file reference

320 TWS LoadLeveler: Using and Administering

Where number is the maximum number of jobs submitted from this

scheduling (schedd) machine that can run (or start running) in the

LoadLeveler cluster at one time. If number of jobs are already running, no

other jobs submitted from this machine will run, even if resources are

available in the LoadLeveler cluster. When one of the running jobs

completes, any waiting jobs then become eligible to be run.

 Default: The default is -1, which means there is no maximum.

max_node

Specifies the maximum number of nodes that can be requested for a

particular class or by a particular user or group for a parallel job.

 Syntax:

max_node = number

Where number specifies the maximum number of nodes for a parallel job in

a job command file using the node keyword. The max_node keyword will

not affect the use of the min_processors and max_processors keywords in

the job command file.

 Default: The default is -1, which means there is no limit.

max_processors

Specifies the maximum number of processors that can be requested for a

particular class or by a particular user or group for a parallel job.

 Syntax:

max_processors = number

Where number specifies the maximum number of processors for a parallel

job in a job command file using the min_processors and max_processors

keywords.

 Default: The default is -1 which means that there is no limit.

max_protocol_instances

Specifies the maximum number of instances on the network statement.

 Syntax:

max_protocol_instances = number

Where number specifies the maximum value allowed on the instances

keyword on the network statement for jobs submitted on this class.

 Default: The default is 2.

max_reservation_duration

Specifies the maximum time, in minutes, that advance reservations made

for this user or group can last.

 Syntax:

max_reservation_duration = number of minutes

When the duration is defined in both the user and group stanza for a

specific user, LoadLeveler uses the more restrictive of the two values to

determine the maximum duration.

Administration file reference

Chapter 13. Administration file reference 321

Default: The default is -1, which means that no limit is placed on the

duration of the reservation.

 For more information, see “Steps for configuring reservations in a

LoadLeveler cluster” on page 121.

max_reservations

Specifies the maximum number of advance reservations that this user or

group can make.

 Syntax:

max_reservations = number of reservations

This number includes all reservations except those in COMPLETE or

CANCEL state.

 Table 75 summarizes the resulting behavior for various sample

combinations of max_reservations settings in user and group stanzas.

 Table 75. Sample user and group settings for the max_reservations keyword

When the user

stanza value is:

And the group

stanza value is:

Then the user can create this number of

reservations in this group:

Not defined Not defined 0 (zero)

2 Not defined 2 (with any group as the owning group)

Not defined 1 1

3 1 1 (the user can create more reservations in

other groups)

1 2 1

0 2 0

1 0 0 (the user can create one reservation in

another group)

 Default: Undefined, which means that no reservations will be authorized

or disallowed. LoadLeveler considers this keyword undefined if negative

values are set for it.

max_top_dogs

Specifies the maximum total number of top dogs that the central manager

daemon will allocate per class.

 Syntax:

max_top_dogs = number

where number is any positive integer.

 Default: The default value for this keyword is 1 for each class, unless a

default is specified in the default class stanza

max_total_tasks

Specifies the maximum number of tasks that the BACKFILL scheduler

allows a user, group, or class to run at any given time.

 Syntax:

max_total_tasks = number

where number is -1, 0, or any positive integer.

Administration file reference

322 TWS LoadLeveler: Using and Administering

|
|
|

|

|

|

|
|

Note: This keyword can be specified in a user substanza within a class

when the BACKFILL scheduler is in use. This limits the number of

tasks that user can run in that class at any given time.

Default: The default value for this keyword is -1, which allows an

unlimited number of tasks.

maxidle

Specifies the maximum number of idle job steps this user or group can

have simultaneously.

 Syntax:

maxidle = number

Where number is the maximum number of idle jobs either this user or this

group can have in queue, depending on whether this keyword appears in

a user or group stanza. That is, number is the maximum number of jobs

which the negotiator will consider for dispatch for the user or group. Jobs

above this maximum are placed in the NotQueued state. This action

prevents one of the following situations:

v Individual users from dominating the number of jobs that are either

running or are being considered to run.

v Groups from flooding the job queue.

Notes:

1. This keyword can be specified in a user substanza within a class.

2. For the purposes of enforcing the number of idle job steps this user or

group can have in queue, a job step is considered idle even if llq

reports the state as Pending or Starting.

Default: If the user or group stanza does not specify maxidle or if there is

no user or group stanza at all, the maximum number of jobs that can be

simultaneously in queue for the user or group is defined in the default

stanza. If no value is found, or the limit found is -1, then no limit is placed

on the number of jobs that can be simultaneously idle for the useror group.

 For more information, see “Controlling the mix of idle and running jobs”

on page 668.

maxjobs

Specifies the maximum number of job steps this user, class, or group can

have running simultaneously.

 Syntax:

maxjobs = number

Note: This keyword can be specified in a user substanza within a class

when the BACKFILL scheduler is in use.

Default: If the stanza does not specify maxjobs, or if there is no class, user,

or group stanza at all, the maximum jobs is defined in the default stanza.

The default is -1.

 For more information, see “Controlling the mix of idle and running jobs”

on page 668.

maxqueued

Specifies the maximum number of job steps a single group or user can

have queued at the same time.

Administration file reference

Chapter 13. Administration file reference 323

Syntax:

maxqueued = number

Where number is the maximum number of jobs allowed in the queue for

this user or group, depending on whether this keyword appears in a user

or group stanza. This is the maximum number of jobs which can be either

running or being considered to be dispatched by the negotiator for that

user or group. Jobs above this maximum are placed in the NotQueued

state. This action prevents one of the following situations:

v Individual users from dominating the number of jobs that are either

running or are being considered to run.

v Groups from flooding the job queue.

Note: This keyword can be specified in a user substanza within a class.

Default: If the user or group stanza does not specify maxqueued or if

there is no user or group stanza at all, the maximum number of jobs that

can be simultaneously in queue for the user or group is defined in the

default stanza. If no value is found, or the limit found is -1, then no limit is

placed on the number of jobs that can be simultaneously idle for the user

or group. Regardless of this limit, there is no limit to the number of jobs a

user or group can submit.

 For more information, see “Controlling the mix of idle and running jobs”

on page 668.

multicluster_security

Specifies a security mechanism to use for authentication and authorization

of intercluster communications.

 Syntax:

multicluster_security = SSL

The only valid specification for this keyword is SSL. When SSL is

specified, LoadLeveler uses the OpenSSL library to provide secure

intercluster transactions. If this keyword is omitted or left blank and the

MACHINE_AUTHENTICATE in the configuration file is set to true, then

LoadLeveler will accept intercluster transactions only from machines listed

as inbound_hosts or outbound_hosts in the administration file. Otherwise,

intercluster transactions are accepted from any machine.

 For more information, see “Steps for securing communications within a

LoadLeveler multicluster” on page 143.

multilink_address

Specifies the multilink address used for IP striping on the associated

adapter.

 Syntax:

multilink_address = ip_address

Where ip_address indicates the IP address that includes the adapters that

can be striped across.

multilink_list

Specifies the IP addresses of the adapters that this multilink device stripes

across.

 Syntax:

Administration file reference

324 TWS LoadLeveler: Using and Administering

multilink_list = adapter_name <, adapter_name>*

Where adapter_name indicates multilinked devices which stripes IP

addresses across the adapters given in the list.

name_server

Specifies a list of name servers used for a machine.

 Syntax:

name_server = list

Where list is a blank-delimited list of character strings that is used to

specify which nameservers are used for the machine. Valid strings are

DNS, NIS, and LOCAL. LoadLeveler uses the list to determine when to

append a DNS domain name for machine names specified in LoadLeveler

commands issued from the machine described in this stanza.

 If DNS is specified alone, LoadLeveler will always append the DNS

domain name to machine names specified in LoadLeveler commands. If

NIS or LOCAL is specified, LoadLeveler will never append a DNS domain

name to machine names specified in LoadLeveler commands. If DNS is

specified with either NIS or LOCAL, LoadLeveler will always look up the

name in the administration file to determine whether to append a DNS

domain name. If the name is specified with a trailing period, it doesn’t

append the domain name.

network_id

Specifies a unique numerical network identifier. This value is set by the

llextRPD command and should not be changed.

 Syntax:

network_id = number

Default: No default value is set.

network_type

 Syntax:

network_type = string

Where string specifies the type of network that the adapter supports (for

example, Ethernet). This should be unique for each communication path.

This is an administrator defined name. This keyword defines the types of

networks a user can specify in a job command file using the network

keyword.

 Default: No default value is set.

nice Increments the nice value of a job.

 Syntax:

nice = value

Where value is the amount by which the current UNIX nice value is

incremented. The nice value is one factor in a job’s run priority. The lower

the number, the higher the run priority. If two jobs are running on a

machine, the nice value determines the percentage of the CPU allocated to

each job.

Administration file reference

Chapter 13. Administration file reference 325

|

|

|
|
|
|
|

|

This value ranges from -20 to 20. Values out of this range are placed at the

top (or bottom) of the range. For example, if your current nice value is 15,

and you specify nice = 10, the resulting value is 20 (the upper limit)

rather than 25. The default is 0.

 If the administrator has decided to enforce consumable resources, the nice

value will only adjust priorities of processes within the same WLM class.

Because LoadLeveler defines a single class for every job step, the nice value

as no effect.

 For more information, consult the appropriate UNIX documentation.

outbound_hosts

Blank-delimited list of hostnames that define the machines configured for

outbound connections to other clusters.

 Syntax:

outbound_hosts = hostname[(cluster_name)] ...

Where hostname specifies a machine configured for outbound connections

to other clusters and cluster_name can be used to specify a specific cluster if

the host is not connected to all clusters in the multicluster. These

hostnames must be fully qualified with domain names if the machines

exist in a different domain. This keyword is required in a multicluster

environment.

Note: The same machine can be defined as both an outbound_host and an

inbound_host.

pool_list

Specifies a list of pool numbers to which the machine belongs. Do not use

negative numbers in a machine pool_list.

 Syntax:

pool_list = pool_numbers

Where pool_numbers is a blank-delimited list of non-negative numbers

identifying pools to which the machine belongs. These numbers can be any

positive integers including zero.

port_number

Specifies the port number of the InfiniBand adapter port.

 Syntax:

port_number = number

Where port_number is the port number of the InfiniBand adapter port. The

adapter stanza for InfiniBand support only contains the adapter port

number; there is no InfiniBand adapter information in the adapter stanza.

priority

Identifies the priority of the appropriate user, class, or group.

 Syntax:

priority = number

Where number is a integer that specifies the priority for jobs either in this

class, or submitted by this user or group, depending on whether this

keyword appears in a class, user, or group stanza, respectively.

Administration file reference

326 TWS LoadLeveler: Using and Administering

|
|

|

|

|
|
|

The number specified for priority is referenced as either ClassSysprio,

UserSysprio, or GroupSysprio in the configuration file. You can use

ClassSysprio, UserSysprio, or GroupSysprio when assigning job priorities.

If the variable ClassSysprio, UserSysprio, or GroupSysprio does not

appear in the SYSPRIO expression in the configuration file, then the

priority specified in the administration file is ignored. See “LoadLeveler

variables” on page 294 for more information about the ClassSysprio,

UserSysprio, or GroupSysprio keywords.

 Default: The default is 0.

reservation_permitted

Specifies whether the machine can be reserved through new reservation

requests.

 Syntax:

reservation_permitted = true | false

If the value of this keyword is changed to false for this machine when it

already is reserved through existing reservations, LoadLeveler will reserve

this machine until those existing reservations complete or are canceled.

 Default: true, which means that this machine can be reserved through new

reservation requests.

resources

Specifies quantities of the consumable resources initially available on the

machine.

 Syntax:

resources = name(count) name(count) ... name(count)

Where name(count) is an administrator-defined name and count, or could

also be ConsumableCpus(count), ConsumableMemory(count units), or

ConsumableVirtualMemory(count units). ConsumableMemory and

ConsumableVirtualMemory are the only two consumable resources that

can be specified with both a count and units. The count for each specified

resource must be an integer greater than or equal to zero. The allowable

units are those normally used with LoadLeveler data limits:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

The ConsumableMemory and ConsumableVirtualMemory resource values

are stored in mb (megabytes) and rounded up. Therefore, the smallest

amount of ConsumableMemory or ConsumableVirtualMemory which

you can request is one megabyte. If no units are specified, then megabytes

Administration file reference

Chapter 13. Administration file reference 327

are assumed. Resources defined here that are not in the

SCHEDULE_BY_RESOURCES list in the global configuration file will not

effect the scheduling of the job.

 For the ConsumableCPUs resource, a value of all can be specified instead

of count. This indicates that the CPU resource value will be obtained from

the Startd daemons. However, these resources will not be available for

scheduling until the first Startd update.

 Also for the ConsumableCPUs, when the RSET_SUPPORT keyword is set

to one of the options enabling affinity, a list of CPU IDs can be specified. A

list within < > angle brackets indicates a list of CPU IDs. Only CPUs with

logical IDs specified in the list will be considered available for LoadLeveler

jobs. The following example specifies a list of CPUs:

resources = consumableCPUs< 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >

CPU IDs can also be specified using a list of ranges:

resources = consumableCPUs< 0-6 10-16 >

If Rset support is enabled with either the RSET_MCM_AFFINITY or

RSET_CONSUMABLE_CPUS option, this keyword must be used to

specify the exact CPU logical IDs of consumable CPUs in the

administration file. If the all reserved word is used, all CPUs will be

considered by LoadLeveler.

 The logical IDs of the CPUs available on a machine can be found issuing

the bindprocessor -q command.

 Default: No default value is set.

rss_limit

Specifies the hard limit, soft limit, or both limits for the resident set size for

a job.

 Syntax:

rss_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

schedd_fenced

Specifies whether or not the central manager is to ignore connections from

the schedd daemon running on this machine.

 Syntax:

schedd_fenced = true | false

Where true specifies that the central manager ignores connections from the

schedd daemon running on this machine. Use the true setting together

with the llctl -h host purgeschedd command when you want to attempt to

recover resources lost when a node running the schedd daemon fails. A

true setting prevents conflicts from arising when a schedd machine is

restarted while a purge is taking place. For more information, see “How do

I recover resources allocated by a Schedd machine?” on page 660.

 Default: false

Administration file reference

328 TWS LoadLeveler: Using and Administering

schedd_host

Specifies whether or not this machine is used to help submit-only

machines access LoadLeveler hosts that run LoadLeveler jobs.

 Syntax:

schedd_host = true | false

When true this keyword specifies that if a schedd is running on a machine

that it will serve as a public scheduling machine. A public scheduling

machine accepts job submissions from other machines in the LoadLeveler

cluster. Jobs are submitted to a public scheduling machine if:

v The submission occurs on a machine which does not run the schedd

daemon. These include submit-only machines and machines which are

configured to run other LoadLeveler daemons but not the schedd

daemon.

v The submission occurs on a machine which runs the schedd daemon but

is configured to submit jobs to a public scheduling machine by having

the SCHEDD_SUBMIT_AFFINITY keyword set to false in the global or

local configuration file.

This keyword does not configure LoadLeveler to run the schedd daemon

on a node. Use the configuration keyword SCHEDD_RUNS_HERE to run

the schedd daemon on a node. Refer to the SCHEDD_RUNS_HERE

keyword for more information.

 Default: false

secure_schedd_port

Specifies the port number to use to connect to the Schedd for secure

inbound transactions to this cluster.

 Syntax:

secure_schedd_port = port_number

Where port_number is a positive integer that specifies the port number used

to connect to the Schedd for secure inbound transactions to this cluster.

This port is only used if the multicluster_security keyword is set to SSL.

The secure schedd port should be different from the normal schedd port.

 Default: 9607

smt

 Specifies the parallel job steps that require dynamic simultaneous

multithreading (SMT) to be turned on or off before they are run.

 Syntax:

smt = yes | no

where yes indicates that LoadLeveler will invoke AIX service to turn on

SMT on the node. This will be true for all the nodes where the parallel job

will be running.

 Default value: no.

 Examples:

smt = yes

Administration file reference

Chapter 13. Administration file reference 329

|

|
|

|

|

|
|
|

|

|

|

spacct_excluse_enable

Specifies whether the SP accounting function is informed whenever this

machine is being used exclusively by a particular job.

 Syntax:

spacct_excluse_enable = true | false

Where true specifies that the accounting function on an SP system is

informed that a job step has exclusive use of this machine. Note that your

SP system must have exclusive user accounting enabled in order for this

keyword to have an effect. For more information on SP accounting, see

Parallel System Support Programs for AIX: Administration Guide, GC23-3899.

 Default: false

speed Specifies the weight associated with the machine for scheduling purposes.

 Syntax:

speed = number

Where number is a floating point number that is used for machine

scheduling purposes in the MACHPRIO expression. For more information

on machine scheduling and the MACHPRIO expression, see “Setting

negotiator characteristics and policies” on page 43. In addition, the speed

keyword is also used to define the weight associated with the machine.

This weight is used when gathering accounting data on a machine basis.

 To distinguish speed among different machines, you must include this

value in the local configuration file. For information on how the speed

keyword can be used to schedule machines, refer to “Setting negotiator

characteristics and policies” on page 43.

 Default: The default is 1.0.

ssl_cipher_list

Specifies a cipher list defining what encryption methods are available to

OpenSSL when securing multicluster connections.

 Syntax:

ssl_cipher_list = cipher_list

Where cipher_list is a valid cipher list as documented by the OpenSSL

ciphers command.

 Default: This keyword will default to the ″ALL:eNULL:!aNULL″ string.

stack_limit

Specifies the hard limit, soft limit, or both limits for the size of a stack.

 Syntax:

stack_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:

v Syntax for limit keywords

v Using limit keywords

submit_only

Specifies whether or not this machine is a submit-only machine.

 Syntax:

Administration file reference

330 TWS LoadLeveler: Using and Administering

|

submit_only = true| false

Where true designates this as a submit-only machine. If you set this

keyword to true, in the administration file set central_manager and

schedd_host to false.

 Default: false

total_tasks

Specifies the maximum number of tasks that can be requested for a

particular class or by a particular user or group for a parallel job.

 Syntax:

total_tasks = number

Where number specifies the maximum number of tasks for a parallel job in

a job command file using the total_tasks keyword.

 Default: The default is -1, which means there is no limit.

type Identifies the type of stanza in the administration file.

 Syntax:

type = stanza_type

Where stanza_type is one of the following:

v Adapter

v Class

v Group

v Machine

v User

Default: No default value is set.

wall_clock_limit

Specifies the hard limit, soft limit, or both limits for the amount of elapsed

time for which a job can run.

 Syntax:

wall_clock_limit = hardlimit,softlimit

Note that LoadLeveler uses the time the negotiator daemon dispatches the

job as the start time of the job. When a job is checkpointed, vacated, and

then restarted, the wall_clock_limit is not adjusted to account for the

amount of time that elapsed before the checkpoint occurred.

 If you are running the BACKFILL scheduler, you must set a wall clock

limit either in the job command file or in a class stanza (for the class

associated with the job you submit). LoadLeveler administrators should

consider setting a default wall clock limit in a default class stanza. For

more information on setting a wall clock limit when using the BACKFILL

scheduler, see “Choosing a scheduler” on page 42.

 For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 304

v “Using limit keywords” on page 83

Administration file reference

Chapter 13. Administration file reference 331

Administration file reference

332 TWS LoadLeveler: Using and Administering

Chapter 14. Job command file reference

A LoadLeveler job consists of one or more job steps, each of which is defined in a

single job command file. A job command file specifies the name of the job, as well

as the job steps that you want to submit, and can contain other LoadLeveler

statements.

Table 76 lists the job command file subtasks:

 Table 76. Job command file subtasks

Subtask Associated information (see . . .)

To find out how to work with a job

command file

Chapter 8, “Building and submitting jobs,” on page

165

To learn how to correctly specify the

contents of a job command file

v “Job command file syntax”

v “Job command file keyword descriptions” on page

336

Job command file syntax

The following general rules apply to job command files.

v Keyword statements begin with # @. There can be any number of blanks

between the # and the @.

v Comments begin with #. Any line whose first non-blank character is a pound

sign (#) and is not a LoadLeveler keyword statement is regarded as a comment.

v Statement components are separated by blanks. You can use blanks before or

after other delimiters to improve readability but they are not required if another

delimiter is used.

v The back-slash (\) is the line continuation character. Note that the continued line

must not begin with # @. If your job command file is the script to be executed,

you must start the continued line with a #. See Example 2 and Example 3 in

topic Examples: Job command files for examples that use the back-slash for line

continuation.

v Keywords are not case sensitive. This means you can enter them in lower case,

upper case, or mixed case.

Serial job command file

Figure 41 on page 334 is an example of a simple serial job command file which is

run from the current working directory. The job command file reads the input file,

longjob.in1, from the current working directory and writes standard output and

standard error files, longjob.out1 and longjob.err1, respectively, to the current

working directory.

 333

Parallel job command file

In addition to building job command files to submit serial jobs, you can also build

job command files to submit parallel jobs. Before constructing parallel job

command files, consult your LoadLeveler system administrator to see if your

installation is configured for parallel batch job submission.

For more information on submitting parallel jobs, see “Working with parallel jobs”

on page 178.

Syntax for limit keywords

The syntax for setting a limit is:

limit_type = hardlimit,softlimit

For example:

core_limit = 120kb,100kb

To specify only a hard limit, you can enter, for example:

core_limit = 120kb

To specify only a soft limit, you can enter, for example:

core_limit = ,100kb

In a keyword statement, you cannot have any blanks between the numerical value

(100 in the above example) and the units (kb). Also, you cannot have any blanks to

the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit, core_limit,

file_limit, stack_limit, and rss_limit — the hard limit and the soft limit are

expressed as:

integer[.fraction][units]

The allowable units for these limits are:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

The name of this job command file is file.cmd.

The input file is longjob.in1 and the error file is

longjob.err1. The queue statement marks the end of

the job step.

@ executable = longjob

@ input = longjob.in1

@ output = longjob.out1

@ error = longjob.err1

@ queue

Figure 41. Serial job command file

Job command file reference

334 TWS LoadLeveler: Using and Administering

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

If no units are specified for data limits, then bytes are assumed.

For limit keywords that refer to a time limit — such as ckpt_time_limit, cpu_limit,

job_cpu_limit, and wall_clock_limit — the hard limit and the soft limit are

expressed as:

[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

You can use the following character strings with all limit keywords except the copy

keyword for wall_clock_limit, job_cpu_limit, and ckpt_time_limit:

rlim_infinity Represents the largest positive number.

unlimited Has same effect as rlim_infinity.

copy Uses the limit currently active when the job is

submitted.

64-bit support for job command file keywords

Users can assign 64-bit integer values to selected keywords in the job command

file. System resource limits, with the exception of CPU limits, are treated by

LoadLeveler daemons and commands as 64-bit limits.

Table 77 describes 64-bit support for specific job command file keywords.

 Table 77. Notes on 64-bit support for job command file keywords

Keyword

name Notes

ckpt_time_

limit

Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

core_limit 64-bit integer values may be assigned to this limit. Fractional specifications

are allowed and will be converted to 64-bit integer values. Refer to the

allowable units for these limits listed under “Syntax for limit keywords” on

page 334.

cpu_limit Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

data_limit 64-bit integer values may be assigned to these limits. Fractional

specifications are allowed and will be converted to 64-bit integer values.

Refer to the allowable units for these limits listed under “Syntax for limit

keywords” on page 334.

file_limit

image_size 64-bit integer values may be assigned to this keyword. Fractional and unit

specifications are not allowed. The default unit of image_size is kb.

Example:

image_size = 12345678901

Job command file reference

Chapter 14. Job command file reference 335

Table 77. Notes on 64-bit support for job command file keywords (continued)

Keyword

name Notes

job_cpu_limit Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

preferences 64-bit integer values may be associated with the LoadLeveler variables

″Memory″ and ″Disk″ in the expressions assigned to these keywords.

Fractional and unit specifications are not allowed.

Examples:

requirements = (Arch == "R6000") && (Disk > 500000000) && (Memory > 6000000000)

preferences = (Disk > 6000000000) && (Memory > 9000000000)

requirements

resources Consumable resources associated with the resources keyword may be

assigned 64-bit integer values. Fractional specifications are not allowed. Unit

specifications are valid only when specifying the values of the predefined

ConsumableMemory and ConsumableVirtualMemory resources.

Examples:

resources = spice2g6(123456789012) ConsumableMemory(10 gb)

resources = ConsumableVirtualMemory(15 pb) db2_license(1)

rss_limit 64-bit integer values may be assigned to these limits. Fractional

specifications are allowed and will be converted to 64-bit integer values.

Refer to the allowable units for these limits listed under “Syntax for limit

keywords” on page 334.

stack_limit

wall_clock_

limit

Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

Job command file keyword descriptions

This topic provides an alphabetical list of the keywords you can use in a

LoadLeveler script. It also provides examples of statements that use these

keywords. For most keywords, if you specify the keyword in a job step of a

multistep job, its value is inherited by all proceeding job steps. Exceptions to this

are noted in the keyword description.

If a blank value is used after the equal sign, it is as if no keyword was specified.

account_no

 Supports centralized accounting. Allows you to specify an account

number to associate with a job. This account number is stored with

job resource information in local and global history files. It may

also be validated before LoadLeveler allows a job to be submitted.

For more information, see “Gathering job accounting data” on page

57.

 Syntax:

account_no = string

where string is a text string that can consist of a combination of

numbers and letters.

 Default value: No default value is set.

Job command file reference

336 TWS LoadLeveler: Using and Administering

Example: If the job accounting group charges for job time based

upon the department to which you belong, your account number

would be similar to:

account_no = dept34ca

arguments

 Specifies the list of arguments to pass to your program when your

job runs.

 Syntax:

arguments = arg1 arg2 ...

Default value: No default arguments are set.

 Example: If your job requires the numbers 5, 8, 9 as input, your

arguments keyword would be similar to:

arguments = 5 8 9

bg_connection

 Specifies the type of wiring requested for the Blue Gene partition

in which the job step will run.

 Syntax:

bg_connection = TORUS | MESH | PREFER_TORUS

where:

TORUS

Specifies that the admissible partitions must be wireable as

a torus.

MESH

Specifies that the admissible partitions must be wireable as

a mesh.

PREFER_TORUS

Specifies that the admissible partitions should be wireable

as a torus, but if there are no such partitions then the

selected partition must be wireable as a mesh.

 This keyword is only valid for job type bluegene. This keyword

cannot be used if the bg_partition keyword is specified. This

keyword is not inherited by other job steps.

 Default value: MESH is the default value.

bg_partition

 Specifies the ID of the Blue Gene partition that the job will run in.

 Syntax:

bg_partition = partition_id

where partition_id is a string identifying a partition in the Blue

Gene system.

Job command file reference

Chapter 14. Job command file reference 337

This keyword is only valid for job type bluegene. This keyword

cannot be used if the bg_connection, bg_requirements, bg_shape,

or the bg_size keyword is specified. This keyword is not inherited

by other job steps.

 Default value: No default is set.

bg_requirements

 Specifies the requirements which a Blue Gene base partition in the

LoadLeveler cluster must meet to run any job steps.

 Syntax:

bg_requirements = Boolean_expression

The only requirement supported at this time is memory, where

memory specifies the amount, in megabytes, of regular physical

memory required in the C-nodes of the Blue Gene base partition

where you want your job step to run.

 Example 1: To require Blue Gene base partitions with 512

megabytes of physical memory in their C-nodes, enter:

bg_requirements = (Memory == 512)

Example 2: To require Blue Gene base partitions with more than

512 megabytes of physical memory in their C-nodes, enter:

bg_requirements = (Memory > 512)

This keyword is only valid for job type bluegene. This keyword

cannot be used if the bg_partition keyword is specified. This

keyword is not inherited by other job steps.

 Default value: No default value is set.

bg_rotate

 Specifies whether the scheduler should consider all possible

rotations of the given shape of the job when searching for a

partition for the job.

 Syntax:

bg_rotate = true | false

where true implies that the shape can be rotated to fit some free

resource and false implies that the shape will not be rotated.

 Assigning a value of true to this keyword will increase the

likelihood of the scheduler finding a partition to run the job and

optimizes overall scheduling of Blue Gene resources. bg_rotate

must be set to false when using the mapfile argument of mpirun

to specify how the job’s tasks are to be assigned to the allocated

compute nodes.

 This keyword is only valid for job type bluegene. This keyword is

not inherited by other job steps.

Job command file reference

338 TWS LoadLeveler: Using and Administering

|
|
|
|

|

|
|

|

|

|
|
|
|

|
|

|

|
|

|

|
|
|

|

Note: This keyword can only be used in conjunction with the

bg_shape job command file keyword. If bg_shape is not

present, this keyword is ignored.

Default value: The default value is true.

bg_shape

 Specifies the requested shape of the Blue Gene job to be started in

the system.

 Syntax:

bg_shape = XxYxZ

where X, Y, and Z are positive integers indicating the number of

base partitions in the X-direction, Y-direction, and Z-direction,

respectively, of the requested job shape. The values of X, Y, and Z

or their rotations, if bg_rotate is true, must not be greater than the

corresponding X, Y, and Z sizes of the Blue Gene system, otherwise

the job will never be able to start.

 This keyword is only valid for job type bluegene. This keyword

can not be used if the bg_partition or bg_size keyword is

specified. This keyword is not inherited by other job steps.

Note: The X, Y, and Z dimensions of the allocated partition will be

exactly as defined by the bg_shape job command file

keyword unless the job command file keyword bg_rotate is

specified as true, in which case all possible rotations of the

dimensions are possible.

Default value: No default is set.

bg_size

 Specifies the requested size of the Blue Gene job to be started in

the system.

 Syntax:

bg_size = bg_size

where bg_size is an integer indicating the size of the job in units of

compute nodes. No guarantees are made as to the shape of the

allocated partition for a given size. The only guarantee is that the

size of the allocated shape will be no smaller than the requested

size and as close to the request size as possible.

 This keyword is only valid for job type bluegene. This keyword

can not be used if the bg_partition or bg_shape keyword is

specified. This keyword is not inherited by other job steps.

Note: Not all values given for bg_size are representable. For

example, consider an 8x4x4 Blue Gene system in units of

base partitions and a requested bg_size of 5632 (equivalent

to 11 base partitions). Since 11 is a prime number, it cannot

be decomposed. Futhermore, it is greater than any one

dimension of the system. In this case, a 3x4x1 partition is

allocated, since it is the smallest number of base partitions

larger than the requested size.

Job command file reference

Chapter 14. Job command file reference 339

Default value: If bg_size, bg_shape, or bg_partition are not

specified then bg_size defaults to the configured minimum

partition size. This is the value of the BG_MIN_PARTITION_SIZE

keyword in the configuration file.

blocking

 Blocking specifies that tasks be assigned to machines in multiples

of a certain integer. Unlimited blocking specifies that tasks be

assigned to each machine until it runs out of initiators, at which

time tasks will be assigned to the machine which is next in the

order of priority. If the total number of tasks are not evenly

divisible by the blocking factor, the remainder of tasks are allocated

to a single node.

 This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

blocking = integer | unlimited

where:

integer

Specifies the blocking factor to be used. The blocking factor

must be a positive integer. With a blocking factor of 4,

LoadLeveler will allocate 4 tasks at a time to each machine

with at least 4 initiators available. This keyword must be

specified with the total_tasks keyword. Example:

blocking = 4

total_tasks = 17

LoadLeveler will allocate tasks to machines in an order

based on the values of their MACHPRIO expressions

(beginning with the highest MACHPRIO value). In cases

where total_tasks is not a multiple of the blocking factor,

LoadLeveler assigns the remaining number of tasks as soon

as possible (even if that means assigning the remainder to

a machine at the same time as it assigns another block).

unlimited

Specifies that LoadLeveler allocate as many tasks as

possible to each machine, until all of the tasks have been

allocated. LoadLeveler will prioritize machines based on

the number of initiators each machine currently has

available. Unlimited blocking is the only means of

allocating tasks to nodes that does not prioritize machines

primarily by MACHPRIO expression.

 Default value: No default is set, which means that no blocking is

requested.

bulkxfer Indicates whether the communication subsystem will use bulk data

transfer for user space communication.

 Syntax:

bulkxfer = yes | no

Default: no

Job command file reference

340 TWS LoadLeveler: Using and Administering

For additional information about bulk data transfer, see “Using

bulk data transfer” on page 173.

checkpoint

 Indicates if a job is able to be checkpointed. Checkpointing a job is

a way of saving the state of the job so that if the job does not

complete it can be restarted from the saved state rather than

starting the job from the beginning.

 If you specify a value that is not valid for the checkpoint keyword,

an error message is generated and the job is not submitted.

 Syntax:

checkpoint = interval | yes | no

Where:

interval

Specifies that LoadLeveler will automatically checkpoint

your program at preset intervals. The time interval is

specified by the settings in the MIN_CKPT_INTERVAL

and MAX_CKPT_INTERVAL keywords in the

configuration file. Since a job with a setting of interval is

considered checkpointable, you can initiate a checkpoint

using any method in addition to the automatic checkpoint.

The difference between interval and yes is that interval

enables LoadLeveler to automatically take checkpoints on

the specified intervals while the value yes does not enable

that ability.

yes Enables a job step to be checkpointed. With this setting, a

checkpoint can be initiated either under the control of an

application or by a method external to the application.

With a setting of yes, LoadLeveler will not checkpoint on

the intervals specified by the MIN_CKPT_INTERVAL and

MAX_CKPT_INTERVAL keywords in the configuration

file. The difference between yes and interval is that

interval enables LoadLeveler to automatically take

checkpoints on the specified intervals while the value yes

does not enable that ability.

no The step cannot be checkpointed.

 Default value: no

 Restriction:On Linux machines only: If a job with checkpoint =

interval or checkpoint = yes is dispatched, it is rejected.

 Example: If a checkpoint is initiated from within the application

but checkpoints are not to be taken automatically by LoadLeveler

you can use:

checkpoint = yes

For detailed information on checkpointing, see “LoadLeveler

support for checkpointing jobs” on page 129.

ckpt_dir

 Specifies the directory which contains the checkpoint file.

Job command file reference

Chapter 14. Job command file reference 341

Checkpoint files can become quite large. When specifying ckpt_dir,

make sure that there is sufficient disk space to contain the files.

Guidelines can be found in “LoadLeveler support for

checkpointing jobs” on page 129.

 Syntax:

ckpt_dir = pathname

The values for ckpt_dir are case sensitive.

 Default value: The value of the ckpt_dir keyword in the class

stanza of the administration file

 Restriction: The keyword ckpt_dir is not allowed in the command

file for interactive POE sessions.

 Example: If checkpoint files were to be stored in the /tmp

directory the job command file would include:

ckpt_dir = /tmp

For more information on naming directories for checkpointing, see

“Naming checkpoint files and directories” on page 134.

ckpt_execute_dir

Specifies the directory where the job step’s executable will be saved

for checkpointable jobs. You may specify this keyword in either the

configuration file or the job command file; different file

permissions are required depending on where this keyword is set.

For additional information, see “Planning considerations for

checkpointing jobs” on page 130.

 Syntax:

ckpt_execute_dir = directory

This directory cannot be the same as the current location of the

executable file, or LoadLeveler will not stage the executable. In this

case, the user must have execute permission for the current

executable file.

 Default value: No default value is set.

ckpt_file

 Used to specify the base name of the checkpoint file. The

checkpoint file is created by the AIX checkpoint functions and is

derived from the filename specified in the ckpt_file keyword in

the job command file or the default file name.

 Syntax:

ckpt_file = filename

The value for the ckpt_file keyword is case sensitive.

 Default value: [jobname.]job_step_id.ckpt

 Restriction: The keyword ckpt_file is not allowed in the command

file for interactive POE sessions.

Job command file reference

342 TWS LoadLeveler: Using and Administering

Example: If you are storing checkpoint files in a file with the base

name ″myckptfiles″ which is placed in the directory named by the

ckpt_dir keyword, the job command file would contain:

ckpt_file = myckptfiles

Alternatively, if you are naming the checkpoint files ″myckptfiles″

and storing them in the directory /tmp, the keyword in the job

command file can contain:

ckpt_file = /tmp/myckptfiles

Or the combination of ckpt_dir and ckpt_file keywords can be

used, producing the same result.

ckpt_dir = /tmp

ckpt_file = myckptfiles

For more information on naming files for checkpointing, see

“Naming checkpoint files and directories” on page 134.

ckpt_time_limit

 Specifies the hard or soft limit, or both limits for the elapsed time

checkpointing a job can take. When the soft limit is exceeded,

LoadLeveler will attempt to stop the checkpoint and allow the job

to continue. If the checkpoint is not able to be stopped and the

hard limit is exceeded, LoadLeveler will terminate the job.

 Syntax:

ckpt_time_limit = hardlimit,softlimit

Default value: The value of the ckpt_time_limit keyword in the

class stanza of the administration file

 Examples:

ckpt_time_limit = 00:10:00,00:05:00

ckpt_time_limit = 12:30,7:10

ckpt_time_limit = rlim_infinity

ckpt_time_limit = unlimited

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

class

 Specifies the name of a job class defined locally in your cluster.

You can use the llclass command to find out information on job

classes.

 Syntax:

class = name

Default value: If you do not specify a value for this keyword, the

default job class, No_Class, is assigned.

 Example: If you are allowed to submit jobs belonging to a class

called “largejobs”, your class keyword would look like the

following:

class = largejobs

Job command file reference

Chapter 14. Job command file reference 343

cluster_input_file

 Specifies an individual file to be copied from the local pathname to

the remote pathname when the job is run.

 Syntax:

cluster_input_file = local_pathname, remote_pathname

where:

local_pathname

Specifies the full pathname of the file to be copied from the

local cluster. This file must be accessible by the submitting user

on the node where the local gateway Schedd runs.

local_pathname must be specified.

remote_pathname

Specifies the full pathname the file will be copied to on the

assigned cluster. This file must be accessible by the mapped

user on the Schedd node of the selected cluster.

remote_pathname must be specified. Normally the file specified

by remote_pathname will be deleted following the job

termination. It will not be deleted if the cluster selected to run

the job is the same cluster where the job was submitted and

remote_pathname resolves to the same pathname specified as

local_pathname.

If LoadLeveler fails to copy an input file to the selected cluster, the

assignment of the job to the selected cluster will fail. If the cluster

was assigned by the administrator using the llmovejob command,

an error message will be displayed in the command response

describing the reason for failure and the job will remain in the

cluster it was in and be placed in system hold. If the cluster was

assigned during job submission, the job submission fails and an

error message will be displayed in the command response

describing the reason for failure.

 Default value: No default value is set.

cluster_list

 Allows you to specify that a job is to run on a particular cluster or

that LoadLeveler is to decide which cluster is best from the list of

clusters specified. If this keyword is specified, it must be in the

first job step of a multistep job. Any definitions in other steps are

ignored.

 Syntax:

cluster_list = cluster_list

Where cluster_list is a blank-delimited list of cluster names or the

reserved word any. Depending on the specified value, cluster_list

can have one of three effects:

v Specifying a single cluster name indicates that a job is to be

submitted to that cluster.

v Specifying a list of multiple cluster names indicates that the job

is to be submitted to one of the clusters specified with the

installation exit CLUSTER_METRIC choosing from the list.

Job command file reference

344 TWS LoadLeveler: Using and Administering

v Specifying the reserved word any indicates the job is to be

submitted to any cluster defined by the installation exit

CLUSTER_METRIC.

Note: If a cluster list is specified using either the llsubmit -X

command or the ll_cluster API, then that cluster list takes

precedence over a cluster_list specified in the job command

file.

cluster_output_file

 Specifies an individual output file to be copied to the submitting

cluster from the cluster selected to run the job after the job

completes.

 Syntax:

cluster_output_file = local_pathname, remote_pathname

where:

local_pathname

Specifies the full pathname the file will be copied to on the

local cluster. This file must be accessible by the submitting user

on the node where the local gateway Schedd runs.

local_pathname must be specified.

remote_pathname

Specifies the full pathname of the file that will be copied from

the assigned cluster. This file must be accessible by the mapped

user on the Schedd node of the selected cluster.

remote_pathname must be specified. Normally the file specified

by remote_pathname will be deleted following the job

termination. It will not be deleted if the cluster selected to run

the job is the same cluster where the job was submitted and

remote_pathname resolves to the same pathname specified as

local_pathname.

If LoadLeveler fails to copy an output file from a selected cluster to

the local cluster during job termination, the job termination will

proceed and the remote file will not be deleted. Mail will be sent to

the user describing the reason for the failed copy.

 Default value: No default value is set.

comment

 Specifies text describing characteristics or distinguishing features of

the job.

core_limit

 Specifies the hard limit, soft limit, or both limits for the size of a

core file. This limit is a per process limit.

 Syntax:

core_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default value is set.

Job command file reference

Chapter 14. Job command file reference 345

Examples:

core_limit = 125621,10kb

core_limit = 5621kb,5000kb

core_limit = 2mb,1.5mb

core_limit = 2.5mw

core_limit = unlimited

core_limit = rlim_infinity

core_limit = copy

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

coschedule

 Specifies the steps within a job that are to be scheduled and

dispatched at the same time.

 This keyword is supported only by the BACKFILL scheduler.

 Syntax:

coschedule = true | false

where true implies that the step is to be coscheduled with all other

steps in the job that have the value of this keyword set to true.

This keyword is not inherited by other job steps.

 Default value: The default value is set to false.

 Examples:

coschedule = true

cpu_limit

 Specifies the hard limit, soft limit, or both limits for the amount of

CPU time that a submitted job step can use. This limit is a per

process limit.

 Syntax:

cpu_limit = hardlimit,softlimit

Default value: No default value is set.

 Examples:

cpu_limit = 12:56:21,12:50:00

cpu_limit = 56:21.5

cpu_limit = 1:03,21

cpu_limit = unlimited

cpu_limit = rlim_infinity

cpu_limit = copy

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

data_limit

 Specifies the hard limit, soft limit, or both limits for the size of the

data segment to be used by the job step. This limit is a per process

limit.

 Syntax:

Job command file reference

346 TWS LoadLeveler: Using and Administering

|

|
|

|

|

|

|
|
|

|

|

|

|

data_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default value is set.

 Examples:

data_limit = ,125621

data_limit = 5621kb

data_limit = 2mb

data_limit = 2.5mw,2mb

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

dependency

 Specifies the dependencies between job steps. A job dependency, if

used in a given job step, must be explicitly specified for that step.

 Syntax:

dependency = step_name operator value

where:

step_name

Is the name of a previously defined job step (as described in

the step_name keyword).

operator

Is one of the following:

== Equal to

!= Not equal to

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

&& And

|| Or

value

Is usually a number that specifies the job return code to which

the step_name is set. It can also be one of the following

LoadLeveler defined job step return codes:

CC_NOTRUN

The return code set by LoadLeveler for a job step

which is not run because the dependency is not met.

The value of CC_NOTRUN is 1002.

CC_REMOVED

The return code set by LoadLeveler for a job step

which is removed from the system (because, for

example, llcancel was issued against the job step). The

value of CC_REMOVED is 1001.

 Default value: No default value is set.

 Examples: The following are examples of dependency statements:

Job command file reference

Chapter 14. Job command file reference 347

v Example 1: In the following example, the step that contains this

dependency statement will run if the return code from step 1 is

zero:

dependency = (step1 == 0)

v Example 2: In the following example, step1 will run with the

executable called myprogram1. Step2 will run only if

LoadLeveler removes step1 from the system. If step2 does run,

the executable called myprogram2 gets run.

Beginning of step1

@ step_name = step1

@ executable = myprogram1

@ ...

@ queue

Beginning of step2

@ step_name = step2

@ dependency = step1 == CC_REMOVED

@ executable = myprogram2

@ ...

@ queue

v Example 3: In the following example, step1 will run with the

executable called myprogram1. Step2 will run if the return code

of step1 equals zero. If the return code of step1 does not equal

zero, step2 does not get executed. If step2 is not run, the

dependency statement in step3 gets evaluated and it is

determined that step2 did not run. Therefore, myprogram3 gets

executed.

Beginning of step1

@ step_name = step1

@ executable = myprogram1

@ ...

@ queue

Beginning of step2

@ step_name = step2

@ dependency = step1 == 0

@ executable = myprogram2

@ ...

@ queue

Beginning of step3

@ step_name = step3

@ dependency = step2 == CC_NOTRUN

@ executable = myprogram3

@ ...

@ queue

v Example 4: In the following example, the step that contains

step2 returns a non-negative value if successful. This step should

take into account the fact that LoadLeveler uses a value of 1001

for CC_REMOVED and 1002 for CC_NOTRUN. This is done

with the following dependency statement:

dependency = (step2 >= 0) && (step2 < CC_REMOVED)

env_copy

 Specifies whether environment variables for a batch or interactive

parallel job are copied to all executing nodes, or to only the master

node. When all is specified either explicitly or by default, any

environment variables (specified by the environment keyword in

the job command file) will be copied to all nodes where the job

step runs. When master is specified, the environment variables will

be copied only to the node selected to run the master task of the

parallel job.

Job command file reference

348 TWS LoadLeveler: Using and Administering

Although a LoadLeveler administrator may set this keyword in

one or more class, group, or user stanzas in the administration file,

an explicit setting in the job command file overrides any settings in

the administration file that are relevant for the parallel job.

 LoadLeveler ignores this keyword if it is set for a serial job.

 Syntax:

env_copy = all | master

Default value: LoadLeveler uses the default value all only when

both of the following conditions are true:

v The env_copy keyword is not specified in the job command file.

v The env_copy keyword is not specified in any class, group, or

user stanza that is relevant to the parallel job.

environment

 Specifies login initial environment variables set by LoadLeveler

when your job step starts. If the same environment variables are

set in the user’s initialization files (such as the .profile), those set

by the login initialization files will supersede those set by

LoadLeveler.

 You may use the env_copy keyword to instruct LoadLeveler to

copy these environment variables to all executing nodes, or to only

the master executing node.

 Syntax:

environment = env1 ; env2 ; ...

Separate environment specifications (env1, env2, and so on) with

semicolons. An environment specification may be one of the

following:

COPY_ALL

Specifies that all the environment variables from your shell

be copied.

$var Specifies that the environment variable var be copied into

the environment of your job when LoadLeveler starts it.

!var Specifies that the environment variable var not be copied

into the environment of your job when LoadLeveler starts

it. This specification is most useful together with

COPY_ALL.

var=value

Specifies that the environment variable var be set to the

value “value” and copied into the environment of your job

when LoadLeveler starts it.

 When processing the string you specify for var,

LoadLeveler first removes any leading or trailing blanks,

and copies the remaining string, as is, into the

environment.

 Default value: No default value is set.

 Additional considerations:

 If you specify the environment job command file keyword with

COPY_ALL, the $USER and $HOME environment variables from

Job command file reference

Chapter 14. Job command file reference 349

your shell are not copied and set when your job step starts. The

$USER and $HOME environment variables of the user ID on the

executing node will be set. If you explicitly specify $USER or

$HOME it will be copied and set when your job step starts.

 If more than one environment specification is defined for the same

environment keyword, the rightmost specification takes

precedence. For example if you specify:

environment = COPY_ALL; USER=jsmith

The $USER environment variable will be set to jsmith.

 However, if you specify:

environment = USER=jsmith; COPY_ALL

The $USER environment variable is not set to jsmith. Instead, the

$USER environment variable of the user ID on the executing node

is set.

 If the executable keyword is not specified, the job command file is

run as a shell script. In this case, LoadLeveler initializes the

environment as described previously and then starts the shell

command. Any environment variable set during shell startup

overrides values initialized by LoadLeveler.

 Examples:

v This example illustrates how to specify that LoadLeveler is to

copy all the environment variables from your shell except for

env2:

environment = COPY_ALL; !env2;

v This example illustrates how LoadLeveler processes the string

you specify with var: If you specify the following:

environment = env3 = "quoted string"; env4 = imbedded blanks;

LoadLeveler uses these values:

– For env3: "quoted string"

– For env4: imbedded blanks

error

 Specifies the name of the file to use as standard error (stderr) when

your job step runs.

 Syntax:

error = filename

Default value: If you do not specify a value for this keyword, the

file /dev/null is used.

 Example:

error = $(jobid).$(stepid).err

executable

Job command file reference

350 TWS LoadLeveler: Using and Administering

Identifies the name of the program to run, which can be a shell

script or a binary. For parallel jobs, executable must be the parallel

job launcher (POE or mpirun), or the name of a program that

invokes the parallel job launcher.

 Note that the executable statement automatically sets the

$(base_executable) variable, which is the file name of the

executable without the directory component. See Example 2 in

topic Examples: Job command files for an example of using the

$(base_executable) variable.

 Syntax:

executable = name

Default value: If you do not include this keyword, then it will

default to the job command file that is being submitted, and

LoadLeveler will assume that the file is a valid shell script.

 Examples:

v # @ executable = a.out

v # @ executable = /usr/bin/poe (for POE jobs)

file_limit

 Specifies the hard limit, soft limit, or both limits for the size of a

file. This limit is a per process limit.

 Syntax:

file_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default value is set.

 Example:

file_limit = 100pb,50tb

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

group

 Specifies the LoadLeveler group.

 Syntax:

group = group_name

Default value: If you do not specify a value for this keyword,

LoadLeveler uses the default group, No_Group.

 Example:

group = my_group_name

hold

 Specifies whether you want to place a hold on your job step when

you submit it. There are three types of holds:

user Specifies user hold

Job command file reference

Chapter 14. Job command file reference 351

system

Specifies system hold

usersys

Specifies user and system hold

To remove the hold on the job, you can use either the GUI or the

llhold -r command.

 Syntax:

hold = user | system | usersys

Default value: No default is set, which means that no hold is

requested.

 Example: To put a user hold on a job, the keyword statement

would be:

hold = user

image_size

 Specifies the maximum virtual image size to which your program

will grow during execution. LoadLeveler tries to execute your job

steps on a machine that has enough resources to support executing

and checkpointing your job step. If your job command file has

multiple job steps, the job steps will not necessarily run on the

same machine, unless you explicitly request that they do.

 If you underestimate the image size of your job step, your job step

may crash due to the inability to acquire more address space. If

you overestimate the image size, LoadLeveler may have difficulty

finding machines that have the required resources.

 Syntax:

image_size = number

where number must be a positive integer. This keyword accepts

both 32-bit and 64-bit integer values. If you do not specify the

units associated with this keyword, LoadLeveler uses the default

unit, which is kilobytes. For a list of allowable units, see the

resources keyword description.

 Default value: If you do not specify the image size of your job

command file, the image size is that of the executable.

 Example: To set an image size of 11 KB, the keyword statement

would be:

image_size = 11

initialdir

 Specifies the path name of the directory to use as the initial

working directory during execution of the job step. File names

mentioned in the command file which do not begin with a slash (/

) are relative to the initial directory. The initial directory must exist

on the submitting machine as well as on the machine where the job

runs.

 Syntax:

initialdir = pathname

Job command file reference

352 TWS LoadLeveler: Using and Administering

Note: When operating in a multicluster environment, access to

initialdir will be verified on the cluster selected to run the

job. If access to initialdir fails, the submission or move job

will fail.

 Default value: If you do not specify a value for this keyword, the

initial directory is the current working directory at the time you

submitted the job.

 Example:

initialdir = /var/home/mike/ll_work

input

 Specifies the name of the file to use as standard input (stdin) when

your job step runs.

 Syntax:

input = filename

Default value: If you do not specify an input file, LoadLeveler

uses the file /dev/null

 Example:

input = input.$(process)

job_cpu_limit

 Specifies the hard limit, soft limit, or both limits for the CPU time

used by all processes of a serial job step. For example, if a job step

runs as multiple processes, the total CPU time consumed by all

processes is added and controlled by this limit.

 For parallel job steps, LoadLeveler enforces these limits differently.

Parallel job steps usually have tasks running on several different

nodes and each task can have several processes associated with it.

In addition, the parallel tasks running on a node are descendants

of a LoadL_starter process. Therefore, if you specify a hard or soft

CPU time limit of S seconds and if a LoadL_starter has N tasks

running under it, then all tasks associated with that LoadL_starter

will be terminated if the total CPU time of the LoadL_starter

process and its children is greater than S*N seconds.

 If several LoadL_starter processes are involved in running a

parallel job step, then LoadLeveler enforces the limits associated

with the job_cpu_limit keyword independently for each

LoadL_starter. LoadLeveler determines how often to check the

job_cpu_limit by looking at the values for JOB_LIMIT_POLICY and

JOB_ACCT_Q_POLICY. The smaller value associated with these

two configuration keywords sets the interval for checking the

job_cpu_limit. For more information on JOB_LIMIT_POLICY and

JOB_ACCT_Q_POLICY see “Collecting job resource data on serial

and parallel jobs” on page 58.

 Syntax:

job_cpu_limit = hardlimit,softlimit

Default value: No default is set.

Job command file reference

Chapter 14. Job command file reference 353

Example:

job_cpu_limit = 12:56,12:50

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

job_name

 Specifies the name of the job. This keyword must be specified in

the first job step. If it is specified in other job steps in the job

command file, it is ignored.

 The job_name only appears in the long reports of the llq, llstatus,

and llsummary commands, and in mail related to the job.

 Syntax:

job_name = job_name

You can name the job using any combination of letters, numbers,

or both.

 Default value: No default value is set.

 Example:

job_name = my_first_job

job_type

 Specifies the type of job step to process.

 Syntax:

job_type = serial | parallel | bluegene | MPICH

Default value: serial

large_page

 Specifies whether or not a job step requires Large Page support

from AIX.

 Restriction: Large Page memory is not supported in LoadLeveler

for Linux. In this case, specifying M would cause the job to never

be sent.

 Syntax:

large_page = value

where value can be Y, M, or N. Y informs LoadLeveler to use Large

Page memory, if available, but to otherwise use regular memory. M

means use of Large Page memory is mandatory.

 Default value: N, which means to not use Large Page memory.

 Example: To ask LoadLeveler to use Large Page memory for the

job step, if available, specify:

large_page = Y

max_processors

Job command file reference

354 TWS LoadLeveler: Using and Administering

|

|

|

|

|

Specifies the maximum number of nodes requested for a parallel

job, regardless of the number of processors contained in the node.

This keyword is equivalent to the maximum value you specify on

the node keyword. In any new job command files you create for

parallel jobs, you should use the node keyword to request

nodes/processors. Note that if you specify in a job command file

both the max_processors keyword and the node keyword, the job

is not submitted.

 This keyword is supported by the LL_DEFAULT scheduler.

 Syntax:

max_processors = number

Default value: No default is set.

 Example:

max_processors = 6

mcm_affinity_options

 Specifies the affinity options for a job.

 Syntax:

mcm_affinity_options = affinity_option

Where affinity_option is a blank-delimited list of one, two, or three

keywords chosen from the three groupings of keywords in the list

that follows. Only one option from each group may be specified.

task affinity options

The following options are task affinity options. These

options are mutually exclusive.

mcm_accumulate

Specifying this option tells the Central Manager to

accumulate tasks on the same MCM whenever

possible.

mcm_distribute

Specifying this option tells the Central Manager to

distribute tasks across all available MCMs on a

machine.
memory affinity options

The following options are memory affinity options. These

options are mutually exclusive.

mcm_mem_none

Specifying this option indicates the job has no

memory affinity requirement.

mcm_mem_pref

Specifying this option indicates the job requests

memory affinity.

mcm_mem_req

Specifying this option indicates the job requires

memory affinity.
adapter affinity options

The following options are adapter affinity options. These

options are mutually exclusive.

mcm_sni_none

Specifying this option indicates the job has no

adapter affinity requirement.

Job command file reference

Chapter 14. Job command file reference 355

mcm_sni_pref

Specifying this option indicates the job request

adapter affinity.

mcm_sni_req

Specifying this option indicates the job requires

adapter affinity.

 Your job containing the keyword mcm_affinity_options will not be

submitted to LoadLeveler unless the rset keyword is set to

RSET_MCM_AFFINITY.

 Default value: mcm_accumulate mcm_mem_req mcm_sni_pre

 Example:

mcm_affinity_options = mcm_mem_req mcm_sni_pref mcm_distribute

This example shows how to have a job set memory affinity as a

requirement, adapter affinity as a preference, and MCM task

allocation method as distribute.

min_processors

 Specifies the minimum number of nodes requested for a parallel

job, regardless of the number of processors contained in the node.

This keyword is equivalent to the minimum value you specify on

the node keyword. In any new job command files you create for

parallel jobs, you should use the node keyword to request

nodes/processors. Note that if you specify in a job command file

both the min_processors keyword and the node keyword, the job

is not submitted.

 This keyword is supported by the LL_DEFAULT scheduler.

 Syntax:

min_processors = number

Default value: No default is set.

 Example:

min_processors = 4

network

 Specifies communication protocols, adapters, and their

characteristics. You need to specify this keyword when you want a

task of a parallel job step to request a specific adapter that is

defined in the LoadLeveler administration file. You do not need to

specify this keyword when you want a task to access a shared,

default adapter through TCP/IP. (A default adapter is an adapter

whose name matches a machine stanza name.)

 Note that you cannot specify both the network statement and the

Adapter requirement in a job command file. Also, the value of the

network keyword applies only to the job step in which you specify

the keyword. (That is, this keyword is not inherited by other job

steps.)

 This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

Job command file reference

356 TWS LoadLeveler: Using and Administering

network.protocol = type[, usage[, mode[,comm_level[, instances=<number|max> \

[, rcxtblocks=number]]]]]

where:

protocol

Specifies the communication protocols that are used with

an adapter, and can be the following:

MPI Specifies the message passing interface (MPI). You

can specify in a job step both network.MPI and

network.LAPI.

LAPI Specifies the low-level application programming

interface (LAPI). You can specify in a job step both

network.MPI and network.LAPI.

 LAPI is not supported on LoadLeveler for Linux.

MPI_LAPI

Specifies sharing adapter windows between MPI

and LAPI. When you specify network.MPI_LAPI

in a job step, you cannot specify any other network

statements in that job step.

 LAPI is not supported on LoadLeveler for Linux.

type This field is required and specifies one of the following:

adapter_name

The possible values are the names associated with

the interface cards installed on a node (for

example, en0 and tk1).

network_type

Specifies a network_type as specified in the

LoadLeveler administration file. The LoadLeveler

administrator must specify values used as

network_type in the adapter stanza of the

LoadLeveler administration file using the

network_type keyword. For example, an

installation can define a network type of ″switch″

to identify adapters on a common network. For

more information on specifying network_type, see

“Defining adapters” on page 80.

sn_single

When used for the HPS switch it specifies that

LoadLeveler use a common, single switch network.

sn_all Specifies that striped communication should be

used over all available switch networks. The

networks specified must be accessible by all

machines selected to run the job. For more

information on striping, see “Submitting jobs that

use striping” on page 182.

The following are optional and if omitted their position must be

specified with a comma:

usage Specifies whether the adapter can be shared with tasks of

other job steps. Possible values are shared, which is the

default, or not_shared. If not_shared is specified,

LoadLeveler can only guarantee that the adapter will not

be shared by other jobs running on the same OSI. If the

Job command file reference

Chapter 14. Job command file reference 357

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

adapter is shared by more than one OSI, LoadLeveler can

not guarantee that the adapter is not shared with jobs

running on a different OSI.

mode Specifies the communication subsystem mode used by the

communication protocol that you specify, and can be either

IP (Internet Protocol), which is the default, or US (User

Space). Note that each instance of the US mode requested

by a task running on the High Performance Switch (HPS)

requires an adapter window. For example, if a task

requests both the MPI and LAPI protocols such that both

protocol instances require US mode, two adapter windows

will be used.

comm_level

Note: This keyword is obsolete and will be ignored,

however it is being retained for compatibility and

because the parameters in the network statement are

positional.
The comm_level keyword should be used to suggest the

amount of inter-task communication that users expect to

occur in their parallel jobs. This suggestion is used to

allocate adapter device resources. Specifying a level that is

higher than what the job actually needs will not speed up

communication, but may make it harder to schedule a job

(because it requires more resources). The comm_level

keyword can only be specified with US mode. The three

communication levels are:

LOW Implies that minimal inter-task communication will

occur.

AVERAGE

This is the default value. Unless you know the

specific communication characteristics of your job,

the best way to determine the comm_level is

through trial-and-error.

HIGH Implies that a great deal of inter-task

communication will occur.
instances=<number|max>

If instances is specified as a number, it indicates the

number of parallel communication paths made available to

the protocol on each network. The number actually used

will depend on the implementation of the protocol

subsystem. If instances is specified by max, the actual

value used is determined by the

MAX_PROTOCOL_INSTANCES for the class to which the

job is submitted. The default value for instances is 1.

 For the best performance set

MAX_PROTOCOL_INSTANCES so that the

communication subsystem uses every available adapter

before it reuses any of the adapters.

rcxtblocks=number

Integer value specifying the number of user rCxt blocks

requested for each window used by the associated

protocol. The values of this keyword are not inherited

between steps in a multistep job.

Job command file reference

358 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|

|
|
|
|

Note: Use of this keyword will prevent adapters from the

SP Switch2 family from being used by the job.

 Default value: If you do not specify the network keyword,

LoadLeveler allows the task to access a shared, default adapter

through TCP/IP. The default adapter is the adapter associated with

the machine name.

 Examples:

v Example 1: To use the MPI protocol with an adapter in User

Space mode without sharing the adapter, enter the following:

network.MPI = sn_single,not_shared,US,HIGH

v Example 2: To use the MPI protocol with a shared adapter in IP

mode, enter the following:

network.MPI = sn_single,,IP

Because a shared adapter is the default, you do not need to

specify shared.

v Example 3: A communication level can only be specified if User

Space mode is also specified:

network.MPI = sn_single,,US,AVERAGE

Note that LoadLeveler can ensure that an adapter is dedicated

(not shared) if you request the adapter in US mode, since any

user who requests a user space adapter must do so using the

network statement. However, if you request a dedicated adapter

in IP mode, the adapter will only be dedicated if all other

LoadLeveler users who request this adapter do so using the

network statement.

node

 Specifies the minimum and maximum number of nodes requested

by a job step. You must specify at least one of these values. The

value of the node keyword applies only to the job step in which

you specify the keyword. (That is, this keyword is not inherited by

other job steps.)

 When you use the node keyword together with the total_tasks

keyword, the min and max values you specify on the node

keyword must be equal, or you must specify only one value. For

example:

node = 6

total_tasks = 12

This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

node = [min][,max]

where:

min Specifies the minimum number of nodes requested by the

job step.

max Specifies the maximum number of nodes requested by the

job step. The maximum number of nodes a job step can

request is limited by the max_node keyword in the

administration file (provided this keyword is specified).

Job command file reference

Chapter 14. Job command file reference 359

|

|

That is, the maximum must be less than or equal to any

max_node value specified in a user, group, or class stanza.

 Default value: The default value for min is 1; the default value for

max is the min value for this keyword.

 Example: To specify a range of six to twelve nodes, enter the

following:

node = 6,12

To specify a maximum of seventeen nodes, enter the following:

node = ,17

For information on specifying the number of tasks you want to run

on a node, see “Task-assignment considerations” on page 180,370,

and 371.

node_usage

 Specifies whether this job step shares nodes with other job steps.

 This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

node_usage = shared | not_shared

where:

shared

Specifies that nodes can be shared with other tasks of other

job steps.

not_shared

Specifies that nodes are not shared. No other job steps are

scheduled on this node.

 Default value: shared

notification

 Specifies when the user specified in the notify_user keyword is

sent mail.

 Syntax:

notification = always|error|start|never|complete

where:

always

Notify the user when the job begins, ends, or if it incurs

error conditions.

error Notify the user only if the job fails.

start Notify the user only when the job begins.

never Never notify the user.

complete

Notify the user only when the job ends.

 Default value: complete

 Examples:

v If you want to be notified with mail only when your job step

completes, your notification keyword would be:

Job command file reference

360 TWS LoadLeveler: Using and Administering

notification = complete

v When a LoadLeveler job ends, you may receive mail notification

indicating the job exit status. For example, you could get the

following mail message:

Your LoadLeveler job

myjob1

exited with status 4.

The return code 4 is from the user’s job. LoadLeveler retrieves

the return code and returns it in the mail message, but it is not a

LoadLeveler return code.

notify_user

 Specifies the user to whom mail is sent based on the notification

keyword.

 Syntax:

notify_user = userID

Default value: The default is the submitting user at the submitting

machine.

 Example: If you are the job step owner but you want a coworker

whose name and user ID is bob, to receive mail regarding the job

step, your notify keyword would be:

notify_user = bob@mailserv.pok.ibm.com

output

 Specifies the name of the file to use as standard output (stdout)

when your job step runs.

 Syntax:

output = filename

Default value: If you do not specify this keyword, LoadLeveler

uses the file /dev/null

 Example:

output = out.$(jobid)

preferences

 Specifies the characteristics that you prefer be available on the

machine that executes the job steps. LoadLeveler attempts to run

the job steps on machines that meet your preferences. If such a

machine is not available, LoadLeveler will then assign machines

that meet only your requirements.

 The values you can specify in a preferences statement are the same

values you can specify in a requirements statement, with the

exception of the Adapter requirement.

 Syntax:

preferences = Boolean_expression

Default value: No default preferences are set.

 Examples:

Job command file reference

Chapter 14. Job command file reference 361

preferences = (Memory <=16) && (Arch == "R6000")

preferences = Memory >= 64

queue

 Places one copy of the job step in the queue. This statement is

required. The queue statement essentially marks the end of the job

step. Note that you can specify statements between queue

statements.

 Syntax:

queue

requirements

 Specifies the requirements which a machine in the LoadLeveler

cluster must meet to execute any job steps. You can specify

multiple requirements on a single requirements statement.

 Syntax:

requirements = Boolean_expression

When strings are used as part of a Boolean expression that must be

enclosed in double quotes. Sample requirement statements are

included following the descriptions of the supported requirements,

which are:

Adapter

Specifies the predefined type of network you want to use to

run a parallel job step. In any new job command files you

create, you should use the network keyword to request

adapters and types of networks.

 It is also the way to specify when running with the default

LoadLeveler scheduler. When using the default scheduler, the

Adapter requirement is specified as the physical name of the

device, such as en0.

 This keyword is supported by the LL_DEFAULT and

BACKFILL schedulers.

 Note that you cannot specify both the Adapter requirement

and the network statement in a job command file.

 For the BACKFILL scheduler you can use the predefined

network types. The predefined network types are:

ethernet

Refers to Ethernet.

fddi Refers to Fiber Distributed Data Interface (FDDI).

tokenring

Refers to Token Ring.

fcs Refers to Fiber Channel Standards.

Note that LoadLeveler converts the network types to the

network statement.

Arch

Specifies the machine architecture on which you want your job

step to run. It describes the particular kind of platform for

which your executable has been compiled.

Job command file reference

362 TWS LoadLeveler: Using and Administering

|
|

|
|
||
|
|
||

|
|
|

Connectivity

Connectivity is the ratio of the number of active switch

adapters on a node to the total number of switch adapters on

the node. The value ranges from 0.0 (all switch adapters are

down) to 1.0 (all switch adapters are active). A node with no

switch adapters has a connectivity of 0.0 . Connectivity can be

used in a MACHPRIO expression to favor nodes that do not

have any down switch adapters or in a job REQUIREMENTS

statement to require only nodes with a certain connectivity.

Disk

Specifies the amount of disk space in kilobytes you believe is

required in the LoadLeveler execute directory to run the job

step.

Note: The Disk variable in an expression associated with the

requirements and preferences keywords are 64-bit

integers.

Feature

Specifies the name of a feature defined on a machine where

you want your job step to run. Be sure to specify a feature in

the same way in which the feature is specified in the

configuration file. To find out what features are available, use

the llstatus command.

LargePageMemory

Specifies the amount, in megabytes, of Large Page Memory

required to run the job.

Note: The Memory variable in an expression associated with

the requirements and preferences keywords are 64-bit

integers.

LL_Version

Specifies the LoadLeveler version, in dotted decimal format, on

which you want your job step to run. For example,

LoadLeveler Version 3 Release 4 (with no modification levels)

is written as 3.4.0.0.

Machine

Specifies the names of machines on which you want the job

step to run. Be sure to specify a machine in the same way in

which it is specified in the machine configuration file.

 If you have a mixed LoadLeveler cluster where the OpSys

values of the machines may be either AIX53 or AIX52, using

the requirements keyword to specify a Machine requirement

may result in an expression that always evaluates to false. If

the OpSys value of the submitting machine is AIX53, the

llsubmit command automatically adds (OpSys == ″AIX53″) to

the other job requirements unless an OpSys requirement has

already been explicitly specified. This behavior means that the

specification:

requirements = (Machine == "jupiter")

automatically becomes:

requirements = (Machine == "jupiter") && (OpSys == "AIX53")

Job command file reference

Chapter 14. Job command file reference 363

|
|
|
|

This requirement cannot be satisfied unless the OpSys value of

″jupiter″ is also AIX53. In this case, a better strategy would be

to use an expression such as:

requirements =

 (Machine == "jupiter") && ((OpSys == "AIX52") || (OpSys == "AIX53"))

Memory

Specifies the amount, in megabytes, of regular physical

memory required in the machine where you want your job

step to run.

Note: The Memory variable in an expression associated with

the requirements and preferences keywords are 64-bit

integers.

OpSys

Specifies the operating system on the machine where you want

your job step to run. It describes the particular kind of

platform for which your executable has been compiled.

Pool

Specifies the number of a pool where you want your job step

to run.

TotalMemory

Specifies the amount, in megabytes, of regular physical

memory and Large Page memory required in the machine

where you want your job step to run.

Note: The Memory variable in an expression associated with

the requirements and preferences keywords are 64-bit

integers.

 Default value: No default requirements are set.

 Examples:

v Example 1: To specify a memory requirement and a machine

architecture requirement, enter:

requirements = (Memory >=16) && (Arch == "R6000")

v Example 2: To specify that your job requires multiple machines

for a parallel job, enter:

requirements = (Machine == { "ll6" "ll5" "ll0" })

v Example 3: You can set a machine equal to a job step name. This

setting means that you want the job step to run on the same

machine on which the previous job step ran. For example:

requirements = (Machine == machine.step_name)

Where step_name is a step name previously defined in the job

command file. The use of Machine == machine.step_name is

limited to serial jobs.

Example:

@ step_name = step1

@ executable = c1

@ output = $(executable).$(jobid).$(step_name).out

@ queue

@ step_name = step2

@ dependency = (step1 == 0)

Job command file reference

364 TWS LoadLeveler: Using and Administering

|
|
|

@ requirements = (Machine == machine.step1)

@ executable = c2

@ output = $(executable).$(jobid).$(step_name).out

@ queue

v Example 4: To specify a requirement for a specific pool number,

enter:

requirements = (Pool == 7)

v Example 5: To specify a requirement that the job runs on

LoadLeveler Version 3 Release 4 or any follow-on release, enter:

requirements = (LL_Version >= "3.4")

Note that the statement requirements = (LL_Version == "3.4")

matches only the value 3.4.0.0.

v Example 6: To specify the job runs if all switch connections are

up, enter:

@ requirements = (Connectivity == 1.0)

To specify the job runs if at least half of the switch connections

are up, enter:

@ requirements = (Connectivity >= .5)

To specify the job runs if there is at least some connectivity,

enter:

@ requirements = (Connectivity > 0)

resources

 Specifies quantities of the consumable resources consumed by each

task of a job step. The resources may be machine resources or

floating resources.

 Syntax:

resources=name(count) name(count) ... name(count)

where name(count) is one of the following:

v An administrator defined name and count

v ConsumableCpus(count)

v ConsumableMemory(count units)

v ConsumableVirtualMemory(count units)

ConsumableMemory and ConsumableVirtualMemory are the

only two consumable resources that can be specified with both a

count and units.

 The count for each specified resource must be an integer greater

than or equal to zero, except for the following instances in which

the integer must be greater than zero:

v ConsumableMemory

v ConsumableVirtualMemory

v ConsumableCpus when the enforcement policy is hard or soft

ConsumableCpus can have a value of zero when the administrator

has not requested that consumable resources be enforced, or when

the enforcement policy is shares.

 When you set ConsumableCpus to zero, the meaning varies

depending on whether use is being enforced. With no enforcement,

Job command file reference

Chapter 14. Job command file reference 365

|
|

|

|
|

zero means the job is requesting a negligible amount of CPU. With

an enforcement policy of shares, it means the job is requesting a

tiny percentage of available shares.

 If the count is not valid then LoadLeveler will issue a message and

the job will not be submitted. The allowable units are those

normally used with LoadLeveler data limits:

b bytes

w words (4 bytes)

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

The resources keyword accepts both 32-bit and 64-bit integer

values. These values, however, are assigned to the consumable

resources defined in the resources keyword and not to the

keyword itself.

 ConsumableMemory and ConsumableVirtualMemory values are

stored in mb (megabytes) and rounded up. Therefore, the smallest

amount of ConsumableMemory or ConsumableVirtualMemory

which you can request is one megabyte. If no units are specified,

then megabytes are assumed. However, image_size units are in

kilobytes. Resources defined here that are not in the

SCHEDULE_BY_RESOURCES list in the global configuration file

will not affect the scheduling of the job.

 When resource usage and resource submission is enforced, the

resources keyword must specify requirements for the resources

defined in the ENFORCE_RESOURCE_USAGE keyword.

 Default value: If the resources keyword is not specified in the job

step, then the default_resources (if any) defined in the

administration file for the class will be used for each task of the job

step.

restart

 Specifies whether LoadLeveler considers a job to be “restartable.”

 Syntax:

restart = yes|no

If restart=yes, and the job is vacated from its executing machine

before completing, the central manager requeues the job. It can

start running again when a machine on which it can run becomes

available. If restart=no, a vacated job is canceled rather than

requeued.

Job command file reference

366 TWS LoadLeveler: Using and Administering

Note that jobs which are checkpointable (checkpoint = yes |

interval) are always considered ″restartable″.

 Default value: yes

restart_from_ckpt

 Indicates whether a job step is to be restarted from a checkpoint

file.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

restart_from_ckpt = yes | no

where:

yes Indicates LoadLeveler will restart the job step from the

checkpoint file specified by the job command file keyword

ckpt_file. The location of the ckpt_file will be determined

by the values of the job command file keyword ckpt_file

or ckpt_dir, the administrator defined location or the

default location. See “Naming checkpoint files and

directories” on page 134 for a description of how the

checkpoint directory location is determined. This value is

valid only when a job is being restarted from a previous

checkpoint.

no The job step will be started from the beginning, not from

the checkpoint file.

 Default value: no

 If you specify an invalid value for this keyword, the system

generates an error message and the job is not submitted.

restart_on_same_nodes

 Indicates that a job step is to be restarted on the same set of nodes

that it was run on previously. This keyword applies only to

restarting a job step after a vacate (this condition is when the job

step is terminated and then returned to the LoadLeveler job

queue).

 Syntax:

restart_on_same_nodes = yes | no

where:

yes Indicates that the job step is to be restarted on the same set

of nodes on which it had run.

no Indicates that it is not required to restart a vacated job on

the same nodes.

 Default value: no

rset

 This keyword indicates that the job tasks need to be attached to

RSets with CPUs selected by different LoadLeveler scheduling

algorithms or RSets created by users.

 Syntax:

Job command file reference

Chapter 14. Job command file reference 367

rset = value

Value can be one of the following keywords or a user defined RSet

name.

RSET_CONSUMABLE_CPUS

Specifying this option indicates that the job needs to be

scheduled to machines where RSET_SUPPORT is set to

RSET_CONSUMABLE_CPUS and the tasks need to be

attached to RSets with a number of CPUs equal to the

number of ConsumableCPUs requested by the job without

two tasks sharing a CPU.

RSET_MCM_AFFINITY

Specifying this value requests affinity scheduling with

memory affinity as a requirement, adapter affinity as a

preference, and the task MCM allocation method set to

accumulate. The affinity options may be changed from

these defaults by using the mcm_affinity_options

keyword.

When anything other than these values are specified, LoadLeveler

considers the value to be a user defined RSet name and schedules

the job to nodes with RSET_SUPPORT set to

RSET_USER_DEFINED.

 Default value: No default is set.

 Example:

rset=RSET_MCM_AFFINITY

This example shows how to request affinity scheduling for a job.

shell

 Specifies the name of the shell to use for the job step.

 Syntax:

shell = name

Default value: If you do not specify a value for this keyword,

LoadLeveler uses the shell used in the owner’s password file entry.

If none is specified, LoadLeveler uses /bin/sh

 Example: If you want to use the Korn shell, the shell keyword

would be:

shell = /bin/ksh

smt

 Specifies the parallel job steps that require dynamic simultaneous

multithreading (SMT) to be turned on or off before they are run.

 Syntax:

smt = yes | no

where yes indicates that LoadLeveler will invoke AIX service to

turn on SMT on the node. This will be true for all the nodes where

the parallel job will be running.

Job command file reference

368 TWS LoadLeveler: Using and Administering

|

|
|

|

|

|
|
|

Default value: no.

 Examples:

smt = yes

stack_limit

 Specifies the hard limit, soft limit, or both limits for the size of the

stack that is created.

 Syntax:

stack_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default is set.

 Example:

stack_limit = 120000,100000

Because no units have been specified in this example, LoadLeveler

assumes that the figure represents a number of bytes.

 For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

startdate

 Specifies when you want to run the job step.

 Syntax:

startdate = date time

date is expressed as MM/DD/YYYY, and time is expressed as

HH:mm(:ss).

 Default value: If you do not specify a start date, LoadLeveler uses

the current date and time.

 Example: If you want the job to run on August 28th, 2010 at 1:30

PM, issue:

startdate = 08/28/2010 13:30

If you specify a start date that is in the future, your job is kept in

the Deferred state until that start date.

step_name

 Specifies the name of the job step. You can name the job step using

any combination of letters, numbers, underscores (_) and periods

(.). You cannot, however, name it T or F, or use a number in the

first position of the step name. The step name you use must be

unique and can be used only once.

 Syntax:

step_name = step_name

Job command file reference

Chapter 14. Job command file reference 369

|

|

|

|

Default value: If you don’t specify a step name, by default the first

job step is named the character string ″0″, the second is named the

character string ″1″, and so on.

 Example:

step_name = step_3

task_geometry

 The task_geometry keyword allows you to group tasks of a

parallel job step to run together on the same node. Although

task_geometry allows for a great deal of flexibility in how tasks are

grouped, you cannot specify the particular nodes that these groups

run on; the scheduler will decide which nodes will run the

specified groupings.

 This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

task_geometry={(task id,task id,...)(task id,task id, ...) ... }

Default value: No default value is set.

 Example: A job with 6 tasks will run on 4 different nodes:

task_geometry={(0,1) (3) (5,4) (2)}

Each number in this example represents a task ID in a job, each set

of parenthesis contains the task IDs assigned to one node. The

entire range of tasks specified must begin with 0, and must be

complete; no number can be skipped (the largest task id number

should end up being the value that is one less than the total

number of tasks). The entire statement following the keyword must

be enclosed in braces, and each grouping of nodes must be

enclosed in parenthesis. Commas can only appear between task

IDs, and spaces can only appear between nodes and task IDs.

 The task_geometry keyword cannot be specified under any of the

following conditions:

v The step is serial.

v job_type is anything other than parallel

v Any of the following keywords are specified:

– tasks_per_node

– total_tasks

– node

– min_processors

– max_processors

– blocking

For more information, see “Task-assignment considerations” on

page 180.

tasks_per_node

 Specifies the number of tasks of a parallel job you want to run per

node. Use this keyword together with the node keyword. The

Job command file reference

370 TWS LoadLeveler: Using and Administering

value you specify on the node keyword can be a range or a single

value. If the node keyword is not specified, then the default value

is one node.

 The maximum number of tasks a job step can request is limited by

the total_tasks keyword in the administration file (provided this

keyword is specified). That is, the maximum must be less than any

total_tasks value specified in a user, group, or class stanza.

 The value of the tasks_per_node keyword applies only to the job

step in which you specify the keyword. (That is, this keyword is

not inherited by other job steps.)

 Also, you cannot specify both the tasks_per_node keyword and

the total_tasks keyword within a job step.

 This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

tasks_per_node = number

where number is the number of tasks you want to run per node.

 Default value: The default is one task per node.

 Example: To specify a range of seven to 14 nodes, with four tasks

running on each node, enter the following:

node = 7,14

tasks_per_node = 4

This job step runs 28 to 56 tasks, depending on the number of

nodes allocated to the job step.

total_tasks

 Specifies the total number of tasks of a parallel job you want to

run on all available nodes. Use this keyword together with the

node keyword. The value you specify on the node keyword must

be a single value rather than a range of values. If the node

keyword is not specified, then the default value is one node.

 The maximum number of tasks a job step can request is limited by

the total_tasks keyword in the administration file (provided this

keyword is specified). That is, the maximum must be less than any

total_tasks value specified in a user, group, or class stanza. The

value of the total_tasks keyword applies only to the job step in

which you specify the keyword. (That is, this keyword is not

inherited by other job steps.) Also, you cannot specify both the

total_tasks keyword and the tasks_per_node keyword within a job

step.

 If you specify an unequal distribution of tasks per node,

LoadLeveler allocates the tasks on the nodes in a round-robin

fashion. For example, if you have three nodes and five tasks, two

tasks run on the first two nodes and one task runs on the third

node.

 This keyword is supported by the BACKFILL and API schedulers.

 Syntax:

total_tasks = number

Job command file reference

Chapter 14. Job command file reference 371

Where number is the total number of tasks you want to run.

 Default value: No default is set.

 Example: To run two tasks on each of 12 available nodes for a total

of 24 tasks, enter the following:

node = 12

total_tasks = 24

user_priority

 Sets the initial priority of your job step. Priority only affects your

job steps. It orders job steps you submitted with respect to other

job steps submitted by you, not with respect to job steps submitted

by other users.

 Syntax:

user_priority = number

Where number is a number between 0 and 100, inclusive. A higher

number indicates the job step will be selected before a job step

with a lower number. Note that this keyword is not the UNIX nice

priority.

 This priority guarantees the order the jobs are considered for

dispatch. It does not guarantee the order in which they will run.

 Default value: The default priority is 50.

wall_clock_limit

 Sets the hard limit, soft limit, or both limits for the elapsed time for

which a job can run. In computing the elapsed time for a job,

LoadLeveler considers the start time to be the time the job is

dispatched.

 If you are running the BACKFILL scheduler, you must either set a

wall clock limit in the job command file or the administrator must

define a wall clock limit value for the class to which a job is

assigned. In most cases, this wall clock limit value should not be

unlimited. For more information, see “Choosing a scheduler” on

page 42.

 Syntax:

wall_clock_limit = hardlimit,softlimit

An example is:

wall_clock_limit = 5:00,4:30

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

Job command file variables

LoadLeveler has several variables you can use in a job command file. These

variables are useful for distinguishing between output and error files.

Job command file reference

372 TWS LoadLeveler: Using and Administering

You can refer to variables in mixed case, but you must specify them using the

following syntax:

$(variable_name)

The following variables are available to you:

$(domain)

The domain of the host from which the job was submitted.

$(home)

The home directory for the user on the cluster selected to run the job. Since the

user may differ from the submitting user when a remote cluster is selected to

run the job and user mapping is used, so may the home directory differ.

$(host)

The hostname of the machine from which the job was submitted. In a job

command file, the $(host) variable and the $(hostname) variable are

equivalent.

$(jobid)

The sequential number assigned to this job by the Schedd daemon. The

$(jobid) variable and the $(cluster) variable are equivalent.

$(schedd_host)

The hostname of the scheduling machine.

$(schedd_hostname)

The hostname and domain name of the scheduling machine.

$(stepid)

The sequential number assigned to this job step when multiple queue

statements are used with the job command file. The $(stepid) variable and the

$(process) variable are equivalent.

$(user)

The user name on the cluster selected to run the job. This might be a different

user name than the user name who submitted the job. It is possible for the

value of this variable to differ from the submitting user name when a remote

cluster is selected to run the job and user name mapping is being used.

In addition, the following keywords are also available as variables. However, you

must define them in the job command file. These keywords are described in detail

in “Job command file keyword descriptions” on page 336.

v $(executable)

v $(class)

v $(comment)

v $(job_name)

v $(step_name)

Note that for the $(comment) variable, the keyword definition must be a single

string with no blanks. Also, the executable statement automatically sets the

$(base_executable) variable, which is the file name of the executable without the

directory component. See Figure 22 on page 169 for an example of using the

$(base_executable) variable.

Job command file variables

Chapter 14. Job command file reference 373

Run-time environment variables

The following environment variables are set by LoadLeveler for all jobs. These

environment variables are also set before running prolog and epilog programs. For

more information on prolog and epilog programs, see “Writing prolog and epilog

programs” on page 70.

LOADLBATCH

Set to yes to indicate the job is running under LoadLeveler.

LOADLBATCH

Set to yes to indicate the job is running under LoadLeveler.

LOADL_ACTIVE

The LoadLeveler version.

LOADL_CKPT_FILE

Identifies the directory and file name for checkpointing files. LoadLeveler

will only set this environmental variable if checkpointing is enabled.

LOADL_HOSTFILE

Specifies the the full path name of the file that contains the host names

assigned to all the tasks of the step. This environment variable is available

only when the job_type is set to MPICH. This file is created in the execute

directory and is deleted once the step has completed. The host names are

stored in the file as one host name per line. The base name of this file is

step_hosts.step_id.

LOADL_JOB_NAME

The three part job identifier.

LOADL_PID

The process ID of the starter process.

LOADL_PROCESSOR_LIST

A blank-delimited list of hostnames allocated for the step. This

environment variable is limited to 128 hostnames. If the value is greater

than the 128 limit, the environment variable is not set.

LOADL_STARTD_PORT

The port number where the startd daemon runs.

LOADL_STEP_ACCT

The account number of the job step owner.

LOADL_STEP_ARGS

Any arguments passed by the job step.

LOADL_STEP_CLASS

The job class for serial jobs.

LOADL_STEP_COMMAND

The name of the executable (or the name of the job command file if the job

command file is the executable).

LOADL_STEP_ERR

The file used for standard error messages (stderr).

LOADL_STEP_GROUP

The UNIX group name of the job step owner.

LOADL_STEP_ID

The job step ID.

Job command file variables

374 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|

LOADL_STEP_IN

The file used for standard input (stdin).

LOADL_STEP_INITDIR

The initial working directory.

LOADL_STEP_NAME

The name of the job step.

LOADL_STEP_NICE

The UNIX nice value of the job step. This value is determined by the nice

keyword in the class stanza. For more information, see “Defining classes”

on page 83.

LOADL_STEP_OUT

The file used for standard output (stdout).

LOADL_STEP_OWNER

The job step owner.

LOADL_STEP_TYPE

The job type (SERIAL or PARALLEL)

LOADL_TOTAL_TASKS

Specifies the total number of tasks of the MPICH job step. This variable is

available only when the job_type is set to MPICH.

Job command file examples

The following job command file creates an output file called stance.78.out, where

stance is the host and 78 is the job ID.

@ executable = my_job

@ arguments = 5

@ output = $(host).$(jobid).out

@ queue

The following job command file creates an output file called

computel.step1.March05.

@ comment = March05

@ job_name = computel

@ step_name = step1

@ executable = my_job

@ output = $(job_name).$(step_name).$(comment)

@ queue

For additional information, see “Examples: Job command files” on page 167.

Job command file variables

Chapter 14. Job command file reference 375

|
|
|

Job command file variables

376 TWS LoadLeveler: Using and Administering

Chapter 15. Graphical user interface (GUI) reference

The LoadLeveler GUI provides an interface for users and administrators similar in

function to the LoadLeveler command line. For more information Chapter 7,

“Using LoadLeveler’s GUI to perform administrator tasks,” on page 155 or

Chapter 11, “Using LoadLeveler’s GUI to build, submit, and manage jobs,” on page

217.

If this is the first time you are using a Motif-based GUI, you should refer to the

appropriate Motif documentation for general GUI information.

In “Customizing the GUI” on page 380 you will also find information on

customizing the GUI by:

v Modifying windows and buttons

v Creating pull-down menus

v Customizing window fields

v Modifying help panels

v Setting up administrative tasks

Note: LoadLeveler provides two types of graphical user interfaces. One interface is

for users whose machines interact fully with LoadLeveler. The second

interface is available to users of submit-only machines that participate on a

limited basis with LoadLeveler.

Starting the GUI

To start the GUI, check your PATH variable to ensure that it is pointing to the

LoadLeveler binaries. Also, check to see that your DISPLAY variable is set to your

display. Then, type one of the following to start the GUI in the background:

v xloadl_so & (if you are running a submit-only machine)

v xloadl & (for all other users)

Note: When you invoke the GUI in a multicluster environment, an additional

window appears. This window allows you to start additional local instances

of xloadl or xloadl_so for each remote cluster present in your multicluster

environment. These instances of xloadl are distinguished through the

instance window titles:

v The xloadl instances for remote clusters have titles of the form

local_cluster_name→remote_cluster_name, for instance, MY_C2→MY_C3,

where MY_C2 and MY_C3 are cluster names (local and remote,

respectively).

v The xloadl instance for the local cluster has a title of the form

local_cluster_name, for instance, MY_C2, where MY_C2 is the name of

the local cluster.

Specifying GUI options

In general, you can specify GUI options in any of the following ways:

v Within the GUI using menu selections

v On the xloadl (or xloadl_so) command line. Enter xloadl -h or xloadl_so -h to

see a list of the available options.

v In the Xloadl file. See “Customizing the GUI” on page 380 for more information.

 377

The LoadLeveler main window

LoadLeveler’s main window has three sub-windows, titled Jobs, Machines, and

Messages, as shown in Figure 42. Each of these sub-windows has its own menu

bar.

The menu bar on the Jobs window relates to actions you can perform on jobs. The

menu bar on the Machines window relates to actions you can perform on

machines. Similarly, the menu bar on the Messages window displays actions you

can perform related to LoadLeveler generated messages.

When you select an item from a menu bar, a pull-down menu appears. You can

select an item from the pull-down menu to carry out an action or to bring up

another pull-down menu originating from the first one.

Figure 42. Main window of the LoadLeveler GUI

GUI basics

378 TWS LoadLeveler: Using and Administering

|

|
|
|

Getting help using the GUI

You can get help when using the GUI by pressing the Help key. This key is

function key 1 (F1) on most keyboards. To receive help on specific parts of the

LoadLeveler GUI, click the mouse on the area or field for which you want help

and press F1. A help screen appears describing that area. You can also get help by

using the Help pull-down menu and the Help push buttons available in pop-up

windows.

Before you invoke the GUI, make sure your PATH statement includes the directory

containing the LoadLeveler executables. Otherwise, some GUI functions may not

work correctly.

Differences between LoadLeveler’s GUI and other graphical

user interfaces

LoadLeveler’s GUI contains many items common to other GUIs. There are,

however, some differences that you should be aware of. These differences are:

v Accelerators or mnemonics do not appear on the menu bars.

v Submerged windows do not necessarily rise to the top when refreshed.

GUI typographic conventions

The following typographic conventions are used when describing the way tasks

are accomplished using the GUI.

Task step conventions

Each task step includes a user action and a system response. User actions

appear in UPPERCASE BOLDFACE type and the system response to an

action follows a � . For example:

SELECT

Refresh → Set Auto Refresh

 � A window appears.

An action is sometimes represented by itself, for example:

SELECT OK

Selection table and decision table conventions

Some actions require a selection or decision. Selection and decision actions

are presented in tables.

 Selection tables list all possible selections in the left column of the table.

Table 78 is an example of a selection table:

 Table 78. Example of a selection table

To Do This

Submit a job Refer to “Submitting a job command file” on page 230.

Cancel a job Refer to “Canceling a job” on page 233.

Decision tables present a question or series of questions before indicating

the action. Table 79 is an example of a decision table and Table 80 on page

380 shows the actions:

 Table 79. Decision table

Did the job you submitted complete processing?

GUI basics

Chapter 15. Graphical user interface (GUI) reference 379

Table 80. Decision table actions

Decision Action

Yes Submit another job.

No Check the status of the job.

Menu selection conventions

Selections from a menu bar are indicated with an →. For example, if a

menu bar included an option called Actions and Actions included an

option called Cancel, the instructions would read:

SELECT Actions → Cancel

64-bit support for the GUI

The LoadLeveler Graphical User Interface (xloadl or xloadl_so) accepts and

displays 64-bit information where appropriate.

Customizing the GUI

You can customize the GUI to suit your needs by overriding the default settings of

the LoadLeveler resource variables. For example, you can set the color, initial size,

and location of the main window.

This topic tells you how to customize the GUI by modifying either (or both) of the

following files:

Xloadl For fully participating machines

Xloadl_so For submit-only machines

If the LoadLeveler administrator has set up these resource files, the files are

located in the /usr/lib/X11/app-defaults directory. Otherwise, the files are located in

the lib directory of the LoadLeveler release directory:

v For AIX, in /usr/lpp/LoadL/full/lib and /usr/lpp/LoadL/so/lib, respectively.

v For Linux, in /opt/ibmll/LoadL/full/lib and /opt/ibmll/LoadL/so/lib, respectively.

These files contain the default values for the graphical user interface. This topic

discusses the syntax of these files, and gives you an overview of some of the

resources you can modify.

An administrator with root authority can make changes to the resources for the

entire installation by editing the Xloadl file. Any user can make local changes by

placing the resource names with their new values in the user’s .Xdefaults file.

Syntax of an Xloadl file

v Comments begin with !

v Resource variables may begin with *

v Colons follow resource variables

v Resource variable values follow colons.

Modifying windows and buttons

All of the windows and buttons that are part of the GUI have certain

characteristics in common. For example, they all have a foreground and

background color, as well as a size and a location. Each one of these characteristics

is represented by a resource variable. For example, the foreground characteristic is

GUI basics

380 TWS LoadLeveler: Using and Administering

represented by the resource variable foreground. In addition, every resource

variable has a value associated with it. The values of the resource variable

foreground are a range of colors.

Before customizing a window, you need to locate the resource variables associated

with the desired window. To do this, search for the window identifier in your

Xloadl file. Table 81 lists the windows and their respective identifiers:

 Table 81. Window identifiers in the Xloadl file

Window Identifier

Account Report Data reporter

Build a Job builder

Checkpoint Fields ckpt

Jobs job_status

Limits limits

Machines machine_status

Messages message_area

Network network

Nodes nodes

Preferences preferences

Requirements requirements

Script script

Submit a Job submit

Task Geometry tgeometry

Table 82 lists the resource variables for all the windows and the buttons along with

a description of each resource variable. Use the information in this table to modify

your graphical user interface by changing the values of desired resource variables.

The values of these resource variables depend upon Motif requirements.

 Table 82. Resource variables for all the windows and the buttons

Resource Variable Description

background The background color of the object

foreground The foreground color of the object

geometry The location of the object

height The height of the object

labelString The text associated with the object

width The width of the object

Creating your own pull-down menus

You can add a pull-down menu to both the Jobs window and the Machines

window.

To add a pull-down menu to the Jobs window, in the Xloadl file:

1. Set userJobPulldown to True

2. Set userJob.labelString to the name of your menu.

Customizing the GUI

Chapter 15. Graphical user interface (GUI) reference 381

3. Fill in the appropriate information for your first menu item, userJob_Option1

4. To define more menu items, fill in the appropriate information for

userJob_Option2, userJob_Option3, and so on. You can define up to ten menu

items.

For more information, refer to the comments in the Xloadl file.

To add a pull-down menu to the Machines window, in the Xloadl file:

1. Set userMachinePulldown to True

2. Set userMachine.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item,

userMachine_Option1

4. To define more menu items, fill in the appropriate information for

userMachine_Option2, userMachine_Option3, and so on. You can define up to

ten menu items.

Example – creating a new pull-down

Suppose you want to create a new menu bar item containing a selection which

executes the ping command against a machine you select on the Machines

window.

 The Xloadl definitions shown in the Figure 43 create a menu bar item called

“Commands”. The first item in the Commands pull-down menu is called “ping”.

When you select this item, the command ping -c1 is executed, with the machine

you selected on the Machines window passed to this command. Your output is

displayed in an informational window.

For more information, refer to the comments in the Xloadl file.

Customizing fields on the Jobs window and the Machines

window

You can control which fields are displayed and which fields are not displayed on

the Jobs window and the Machine window by changing the Xloadl file. Look in

the Xloadl file for “Resources for specifying lengths of fields displayed in the Jobs

and Machines windows”.

In most cases, you can remove a field from a window by setting its associated

resource value to 0. To remove the Arch field from the Machines window, enter the

following:

*mach_arch_len : 0

Note that the Job ID and Machine Name fields must always be displayed and

therefore cannot be set to 0.

*userMachinePulldown: True

*userMachine.labelString: Commands

*userMachine_Option1: True

*userMachine_Option1_command: ping -c1

*userMachine_Option1.labelString: ping

*userMachine_Option1_parameter: True

*userMachine_Option1_output: Window

Figure 43. Creating a new pull-down menu

Customizing the GUI

382 TWS LoadLeveler: Using and Administering

All fields have a minimum length value. If you specify a smaller value, the

minimum is used.

Modifying help panels

Help panels have the same characteristics as all of the windows plus a few unique

ones as shown in Table 83:

 Table 83. Modifying help panels

Resource Variable Values Description

help*work_area.width Any integer* The width of the help panel.

help*work_area.height Any integer* The height of the help panel.

help*scrollHorizontal [true|false]

The default is False.

Sets the scrolling option on or off.

help*wordWrap [true|false]

The default is True.

Sets word wrapping on or off.

Note: * The work area and height depend upon your screen limitations.

Customizing the GUI

Chapter 15. Graphical user interface (GUI) reference 383

Customizing the GUI

384 TWS LoadLeveler: Using and Administering

Chapter 16. Commands

LoadLeveler provides two types of commands: those that are available to all users

of LoadLeveler, and those that are reserved for LoadLeveler administrators. If

security services are not configured, then administrators are identified by the

LOADL_ADMIN keyword in the configuration file. If security services are

configured, the configuration file must identify the administrator’s group. Refer to

“Defining security mechanisms” on page 52 for more information.

The administrator commands can operate on the entire LoadLeveler job queue and

all machines configured. The user commands mainly affect those jobs submitted by

that user. Some commands, such as llhold, include options that can only be

performed by an administrator.

Table 84 lists:

v All of the LoadLeveler commands

v The intended users

v The supported operating systems

v Whether the command can be issued across clusters to all clusters, a single

cluster, or only within the local cluster

v A reference to the full description of each command

 Table 84. LoadLeveler command summary

Command name Intended users

Supported

operating

systems

Multicluster

support For more information, see...

llacctmrg Administrators only AIX and Linux No “llacctmrg - Collect machine history

files” on page 387

llbind Both administrators

and general users

AIX and Linux No “llbind - Bind job steps to a

reservation” on page 389

llcancel Both administrators

and general users

AIX and Linux Single cluster “llcancel - Cancel a submitted job”

on page 392

llchres Both administrators

and general users

AIX and Linux No “llchres - Change attributes of a

reservation” on page 395

llckpt Both administrators

and general users

AIX and Linux¹ Yes “llckpt - Checkpoint a running job

step” on page 400

llclass Both administrators

and general users

AIX and Linux Yes “llclass - Query class information” on

page 403

llclusterauth Administrators only AIX and Linux No “llclusterauth - Generates public and

private keys” on page 408

llctl Administrators only AIX and Linux No “llctl - Control LoadLeveler

daemons” on page 409

lldbconvert Administrators only AIX and Linux No “lldbconvert - Job migration utility”

on page 414

llextRPD Both administrators

and general users

AIX and Linux No “llextRPD - Extract data from an

RSCT peer domain” on page 415

llfavorjob Administrators only AIX and Linux No “llfavorjob - Reorder system queue

by job” on page 419

llfavoruser Administrators only AIX and Linux No “llfavoruser - Reorder system queue

by user” on page 421

 385

||
|
|||
|

Table 84. LoadLeveler command summary (continued)

Command name Intended users

Supported

operating

systems

Multicluster

support For more information, see...

llfs Administrators only AIX and Linux No “llfs - Fair share scheduling queries

and operations” on page 422

llhold Both administrators

and general users

AIX and Linux Single cluster “llhold - Hold or release a submitted

job” on page 426

llinit Administrators only AIX and Linux No “llinit - Initialize machines in the

LoadLeveler cluster” on page 429

llmkres Both administrators

and general users

AIX and Linux No “llmkres - Make a reservation” on

page 431

llmodify Both administrators

and general users

AIX and Linux Single cluster

(not supported

with -p, -s, -x,

or -W)

“llmodify - Change attributes of a

submitted job step” on page 435

llmovejob Administrators only AIX and Linux No “llmovejob - Move a single idle job

from the local cluster to another

cluster” on page 440

llmovespool Administrators only AIX and Linux No “llmovespool - Move job records” on

page 442

llpreempt Administrators only AIX and Linux² No “llpreempt - Preempt a submitted job

step” on page 444

llprio Both administrators

and general users

AIX and Linux Single cluster “llprio - Change the user priority of

submitted job steps” on page 447

llq Both administrators

and general users

AIX and Linux Yes (not

supported with

-d, -w or -x)

“llq - Query job status” on page 449

llqres Both administrators

and general users

AIX and Linux No “llqres - Query a reservation” on

page 468

llrmres Both administrators

and general users

AIX and Linux No “llrmres - Cancel a reservation” on

page 474

llrunscheduler Administrators only AIX and Linux No “llrunscheduler - Run the central

manager’s scheduling algorithm” on

page 476

llstatus Both administrators

and general users

AIX and Linux Yes “llstatus - Query machine status” on

page 477

llsubmit Both administrators

and general users

AIX and Linux Yes “llsubmit - Submit a job” on page

494

llsummary Both administrators

and general users

AIX and Linux No “llsummary - Return job resource

information for accounting” on page

496

¹ This command will run on LoadLeveler for Linux platforms, but it can only checkpoint jobs on AIX.

² On LoadLeveler for Linux platforms, the suspend preempt method is not supported.

LoadLeveler commands

386 TWS LoadLeveler: Using and Administering

|||||
|

|

llacctmrg - Collect machine history files

Purpose

llacctmrg – Collects individual machine history files together into a single file.

Syntax

llacctmrg [-?] [-H] [-v] [-R] [-h hostlist] [-d directory]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-R Merges individual machine reservation history files into a single history file.

-h hostlist

Specifies a blank-delimited list of machines from which to collect data. The

default is all machines in the LoadLeveler cluster.

-d directory

Specifies the directory to hold the new global history file. If not specified, the

directory specified in the GLOBAL_HISTORY keyword in the configuration

file is used.

Description

This command by default collects data from all the machines identified in the

administration file. To override the default, specify a machine or a list of machines

using the -h flag.

When the llacctmrg command ends, accounting information is stored in a file

called globalhist.YYYYMMDDHHmm.

where:

YYYY Indicates the year

MM Indicates the month

DD Indicates the day

HH Indicates the hour

mm Indicates the minute.

 Information such as the amount of resources consumed by the job and other

job-related data is stored in this file.

Note that when the collection of accounting information to the global history file is

complete, the accounting information is cleared in the history file.

For job data, you can use this file as input to the llsummary command. For

example, if you created the file globalhist.199808301050, you can issue llsummary

globalhist.199808301050 to process the accounting information stored in this file.

When the -R flag is used to merge reservation history files instead of job history

files, a file named reservation_globalhist.YYYYMMDDHHmm is created in the

specified directory. You can view reservation data with any text editor. For more

llacctmrg

Chapter 16. Commands 387

information on the format of the reservation history file, see the accounting

information in Chapter 4, “Configuring the LoadLeveler environment,” on page 39.

Data on processes which fork child processes will be included in the file only if the

parent process waits for the child process to end. Therefore, complete data may not

be collected for jobs which are not composed of simple parent/child processes. For

example, if a LoadLeveler job invokes an rsh command to execute some function

on another machine, the resources consumed on the other machine will not be

collected as part of the accounting data.

Examples

1. The following example collects data from machines named mars and pluto:

llacctmrg -h mars pluto

2. The following example collects data from the machine named mars and places

the data in an existing directory called merge:

llacctmrg -h mars -d merge

3. The following example collects reservation history data from all machines in

the LoadLeveler cluster:

llacctmrg -R

You should receive a response similar to the following:

llacctmrg: History transferred successfully from

 c94n04.ppd.pok.ibm.com (98 bytes).

A file named reservation_globlhist.200610160915 is generated in the global

history file location, assuming llacctmrg is issued at the time of 09:15

10/16/2006.

Results

The following shows a sample system response from the llacctmrg -h mars -d

merge command:

llacctmrg: History transferred successfully from mars (10080 bytes)

Security

LoadLeveler administrators can issue this command.

llacctmrg

388 TWS LoadLeveler: Using and Administering

llbind - Bind job steps to a reservation

Purpose

llbind – Binds job steps to a reservation in LoadLeveler, or unbinds job steps from

the reservations to which they currently belong. The bound job steps will only be

scheduled to run on the nodes reserved by the reservation.

Syntax

llbind { -? | -H | -v | [-q] { -r | -R reservation_ID } job_step_list }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

-r Specifies an unbind operation. LoadLeveler eliminates any

association between the job steps and a reservation.

-R reservation_ID

Specifies a reservation identifier to which the job steps will be

bound. The format of a full LoadLeveler reservation identifier is

[host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation

identifier.

v rid is the number assigned to the reservation when it was

created. An rid is required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form,

rid[.r], when the command is invoked on the same machine that

assigned the reservation identifier. In this case, LoadLeveler will

use the local machine’s hostname to construct the full reservation

identifier.

job_step_list Is a blank-delimited list of job steps to be bound to the reservation

or unbound from their respective reservations. The name of each

job step should be in the form [host].jobid[.stepid].

 where:

v host is the name of the machine that assigned the job and step

identifiers.

v jobid is the job number assigned to the job when it was

submitted.

v stepid is the job step number assigned to the job step when it

was submitted.

The job or step identifier may be specified in an abbreviated form,

jobid or jobid.stepid, when the command is invoked on the same

llbind

Chapter 16. Commands 389

machine that assigned the job and step identifiers. In this case,

LoadLeveler will use the local machine’s hostname to construct the

full job or step identifier.

Note: For coscheduled job steps, even if all coscheduled job steps

are not in the list of targeted job steps, the requested

command is run on all coscheduled job steps.

Description

The llbind command is for LoadLeveler administrators and owner or users of a

reservation. Regular users can only bind their own job steps to a reservation that

they are allowed to use, while a LoadLeveler administrator can bind any job steps

to any reservation.

Only job steps in an idle-like state can be bound to a reservation. A job step that is

in an idle-like state that is already bound to a reservation can be bound to a new

reservation using the llbind command. The command will first unbind the job step

from the reservation it is currently bound to and then bind it to the requested

reservation.

A Blue Gene job step can only be bound to a reservation with Blue Gene resources.

A non-Blue Gene job step can only be bound to a reservation with non-Blue Gene

resources.

The following conditions will cause the bind or unbind request for a job step to be

ignored:

v The job step does not exist.

v The user is not the owner of the job step or a LoadLeveler administrator.

v The job step is requested to be bound to the reservation it is currently bound to.

v The job step is not associated with any reservation for a unbind request.

v Binding a Blue Gene job step to a reservation without Blue Gene resources.

v Binding a non-Blue Gene job step to a reservation with Blue Gene resources.

Note: A bind or unbind request for a coscheduled job step applies to all of the

coscheduled job steps. If any of the coscheduled job steps meet one of these

conditions, the requested operation will fail. The llq -l command can be

used to check whether the request is successful (see “llq - Query job status”

on page 449 for more information).

Bound job steps will be scheduled to run only on the reserved resources. The only

exception is that the front end node (FEN) needed by a Blue Gene job step will be

satisfied from outside of the reservation. A reservation for Blue Gene resource does

not reserve resources for a FEN. The launch program mpirun needs to run on a

front end node.

Only existing job steps queued in LoadLeveler can be bound to a reservation

through this command. The LL_RES_ID environment variable can be used to bind

an interactive POE job to a reservation or cause llsubmit to both submit and bind

a batch job to a reservation. For additional information about setting the

LL_RES_ID environment variable to bind an interactive POE job to a reservation,

see Chapter 8, “Building and submitting jobs,” on page 165. The llqres command

can be used to view the list of job steps bound to the reservation.

This command is for the BACKFILL scheduler only.

llbind

390 TWS LoadLeveler: Using and Administering

|
|
|

|
|
|

|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

Examples

1. To request to bind the job step c188f2n01.6.0 to reservation c188f1n03.2.r, issue:

llbind -R c188f1n03.2.r c188f2n01.6.0

You should receive a response similar to the following:

Request to bind job steps to reservation c188f1n03.2.r has been sent to LoadLeveler

2. To request to unbind the job step c188f2n01.6.0 from the reservation to which it

is currently bound, issue:

llbind -r c188f2n01.6.0

You should receive a response similar to the following:

Request to unbind job steps from their respective reservations has been sent to

LoadLeveler.

Security

LoadLeveler administrators and users can issue this command.

llbind

Chapter 16. Commands 391

llcancel - Cancel a submitted job

Purpose

llcancel – Cancels one or more jobs from the LoadLeveler queue.

Syntax

llcancel { -? | -H | -v | -f hostlist | [-q] [-X cluster_name]

 [-u userlist] [-h hostlist] [joblist] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-f hostlist

Forces all jobs that are running on the machines in the hostlist to be vacated.

Those machines in the hostlist are then marked as "Down" in the LoadLeveler

cluster. The hostlist for the -f option should only specify machines that have

gone down and should only be used for those machines that still have jobs

displayed in the LoadLeveler queue.

 The -f option is intended to be used by administrators for cleanup and

recovery after a machine has permanently crashed or was inadvertently

removed from the cluster before all activity has quiesced. If you need to return

the machine to the cluster later, you must clear all files from the spool and

execute directory of the machines in the hostlist.

-q Specifies quiet mode: print no messages other than error messages.

-X cluster_name

Specifies the name of a single cluster where the command is to run.

-u userlist

Is a blank-delimited list of users. When used with the -h option, only the

user’s jobs monitored on the machines in the hostlist are canceled. When used

alone, only the user’s jobs monitored by the machine issuing the command are

canceled.

-h hostlist

Is a blank-delimited list of machine names. All jobs monitored on machines in

this list are canceled. When issued with the -u option, the userlist is used to

further select jobs for cancellation.

joblist

Is a blank-delimited list of job and step identifiers. When a job identifier is

specified, the command action is taken for all steps of the job. At least one job

or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

llcancel

392 TWS LoadLeveler: Using and Administering

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the command is invoked on the same machine that assigned

the job and step identifiers. In this case, LoadLeveler will use the local

machine’s hostname to construct the full job or step identifier.

Note: For coscheduled jobs, even if all coscheduled job steps are not in the list

of targeted job steps, the requested operation is performed on all

coscheduled job steps.

The -u or -h flags override the joblist parameter.

When the -h flag is specified by a non-administrator, all jobs submitted from the

machines in hostlist by the user issuing the command are canceled.

When the -h flag is specified by an administrator, all jobs submitted by the

administrator are canceled, unless the -u is also specified, in which case all jobs

both submitted by users in userlist and monitored on machines in hostlist are

canceled.

Group administrators and class administrators are considered normal users unless

they are also LoadLeveler administrators.

Description

When you issue llcancel, the command is sent to the negotiator. You should then

use the llq command to verify your job was canceled. A job state of CA (Canceled)

indicates the job was canceled. A job state of RP (Remove Pending) indicates the

job is in the process of being canceled.

When cancelling a job from a submit-only machine, you must specify the machine

name that scheduled the job. For example, if you submitted the job from machine

A, a submit-only machine, and machine B, a scheduling machine, scheduled the

job to run, you must specify machine B’s name in the cancel command. If machine

A and B are in different sub-domains, you must specify the fully qualified name of

the job in the cancel command. You can use the llq -l command to determine the

fully qualified name of the job.

Examples

1. This example cancels the job step 3 that is part of the job 18 that is scheduled

by the machine named bronze:

llcancel bronze.18.3

2. This example cancels all the job steps that are a part of job 8 that are scheduled

by the machine named gold:

llcancel gold.8

3. This example cancels the job steps that are a part of job 5 that is scheduled to

run in cluster1:

llcancel -X cluster1 silver.5

Results

1. The following shows a sample system response for the llcancel gold.8

command:

llcancel: Cancel command has been sent to the central manager.

llcancel

Chapter 16. Commands 393

|
|
|

2. The following shows a sample system response for the llcancel -X cluster1

silver.5 command. The remote command has been sent to the central manager

in cluster1:

llcancel: Cancel command has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llcancel

394 TWS LoadLeveler: Using and Administering

llchres - Change attributes of a reservation

Purpose

llchres – Changes one or more of the attributes of a LoadLeveler reservation.

Syntax

llchres { -? | -H | -v | [-q] [-t start_time | -t {+|−} minutes]

 [-d [+|−] duration] [-n [+|−] number_of_nodes | -h free |

 -h [+|−] host_list | -j job_step | -f job_command_file |

 -c number_of_bg_cnodes] [-U [+|−] user_list] [-G [+|−] group_list]

 [-s {yes|no}] [-i {yes|no}] [-u user] [-g group] -R reservation }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-q Specifies quiet mode: print no messages other than error messages.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-t start_time Modifies the start_time for a reservation using a 24-hour clock. The

format [mm/dd[/[cc]yy]] HH:MM must be used.

-t {+|−} minutes

Modifies the start time for a reservation using minutes. When

minutes is preceded by a plus (+) sign or minus (−) sign, the

current start time is postponed or moved closer, respectively, by

the number of minutes specified.

-d [+|−] duration

Specifies a new duration for the reservation in minutes. If duration

is preceded by a plus (+) sign or minus (−) sign, the current

duration of the reservation is increased or decreased, respectively,

by the value specified.

-n [+|−] number_of_nodes

Specifies a new request for the number of nodes to reserve. If

number_of_nodes is preceded by a plus (+) sign or minus (−) sign,

the current number of nodes in the reservation is increased or

decreased, respectively, by the value specified.

-h free

-h [+|−] host_list

Specifies a change to the list of machines to be reserved. When a

blank-delimited host list is specified, it indicates that a new list of

hosts are to be reserved. Specifying a plus (+) sign before host list

adds the listed machines to the reservation. Specifying a minus (−)

sign removes the listed machines from the reservation. Note that

when a host list is specified, the first character of any host name

cannot be a plus (+) or minus (−) sign. Specifying the reserved

word free reserves all machines available for this reservation,

which currently have an active LoadL_startd daemon. The

reservation change request will succeed if at least one node can be

included in the reservation.

llchres

Chapter 16. Commands 395

||
||
||
||
||

||

|
|
|
|
|
|
|
|
|
|
|

-j job_step Specifies a new request that a set of nodes or Blue Gene compute

nodes (C-nodes) that the job step can run on be reserved. The job

step must be in an idle-like state and takes the form

[host.]jobid.stepid.

 where:

v host is the name of the machine that assigned the step identifier.

v jobid is the job number assigned to the job when it was

submitted.

v stepid is the job step number assigned to the job step when it

was submitted.

The step identifier may be specified in an abbreviated form,

jobid.stepid, when the command is invoked on the same machine

that assigned the step identifier. In this case, LoadLeveler will use

the local machine’s hostname to construct the full step identifier.

 You must be an administrator or the owner of both the reservation

and job step to make this request. If the request to modify the

reservation is successful, the job step will be bound to the

reservation.

-f job_command_file

Specifies the full path to a new job_command_file that will be

submitted and the first job step used to determine what resources

to reserve. The job identifier of the newly created job will be

displayed. All job steps will be bound to the reservation, or if the

modification request fails, will be placed in the NotQueued state.

The job identifier of the newly created job will be displayed.

-c number_of_bg_cnodes

Specifies the number of C-nodes to reserve in the Blue Gene

system. The shape of the allocated resource for a given size cannot

be guaranteed, but the size of the allocated shape will be no

smaller than the requested size and will be as close to the

requested size as possible.

-U [+|−] user_list

Specifies a new blank-delimited list of users who can use the

reservation. If the list of users is preceded by a plus (+) sign or

minus (−) sign, add those users to or remove those users from the

existing list of users that can use the reservation, respectively.

-G [+|−] group_list

Specifies a new blank-delimited list of LoadLeveler groups that can

use the reservation. If the list of groups is preceded by a plus (+)

sign or minus (−) sign, those groups will be added to or removed

from the existing list of groups, respectively. The first character of

any group name cannot be plus (+) sign or minus (−) sign.

-s {yes|no} SHARED mode is enabled when the reserved word yes is

specified. When the reserved word no is specified, SHARED mode

is disabled.

-i {yes|no} REMOVE_ON_IDLE mode is enabled when the reserved word yes

is specified. When the reserved word no is specified,

REMOVE_ON_IDLE mode is disabled.

-u user Specifies a new user ID that will own the reservation.

-g group Specifies a new LoadLeveler group that will own the reservation.

llchres

396 TWS LoadLeveler: Using and Administering

|
|
|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

-R reservation Specifies the reservation identifier to be modified. The format of a

full LoadLeveler reservation identifier is [host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation

identifier.

v rid is the number assigned to the reservation when it was

created. An rid is required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form,

rid[.r], when the command is invoked on the same machine that

assigned the reservation identifier. In this case, LoadLeveler will

use the local machine’s host name to construct the full reservation

identifier.

Note: When a plus (+) sign or minus (−) sign is used to increase or decrease a

value, there cannot be spaces between the plus (+) sign or minus (−) sign

and the value.

Description

The llchres command is for LoadLeveler administrators and the owner of a

reservation. Either all requested changes will be made and a message indicating

the reservation request has been sent will be displayed, or none of the changes will

be made and a message describing the reason for the failure will be displayed

along with the message that the request was sent. If a connection error occurs and

the request cannot be sent, a message will be displayed.

Note that it is possible for a time out to occur while this command is waiting for a

response from the LoadLeveler central manager. Even if a time out occurs or the

command process is killed, the command may still succeed. To determine if the

request has been granted, issue the llqres command.

Modification requests are subject to resource availability checks and reservation

policies.

Notes on changing a reservation:

v Administrators can change the attributes of any reservation, including the user

ID that owns the reservation, while non-administrators can change attributes of

only the reservations they own and cannot change the reservation owner.

v A reservation owner who is not a LoadLeveler administrator cannot change the

start time, duration or reserved resources if the start time is not at least later

than the current time by the number of minutes specified by the

RESERVATION_MIN_ADVANCE_TIME keyword.

v The new reservation start time must be later than the current time by at least the

amount of time specified by the RESERVATION_SETUP_TIME keyword.

v A reservation in the CANCEL or COMPLETE state cannot be changed.

v When a reservation is not in the WAITING state, the start time cannot be

changed.

v When a reservation is not in the WAITING state, the only ways to change

reserved nodes are to add a number of nodes, or to add or delete a list of nodes.

Blue Gene resources cannot be changed for a reservation not in the WAITING

state.

llchres

Chapter 16. Commands 397

|
|
|
|

|
|
|
|

v A reserved node with a bound step running cannot be removed from the

reservation.

v When changing the reservation duration, the end time of the reservation must be

later than the current time.

v You cannot delete all reserved resources from a reservation; a reservation must

have at least one reserved node or Blue Gene C-node.

v You cannot add a node that is already reserved to a reservation when using

llchres -h +host_list.

v You cannot delete a node that is not reserved from a reservation when using

llchres -h -host_list.

v If you want to change the owner of a reservation, the new owner must be able

to own an additional reservation (max_reservations for the user is not specified

or if specified, the quota is not used up yet). If you want to change the group

that owns the reservation, the new group must be able to own an additional

reservation (max_reservations for the group is not specified or if specified, the

quota is not used up yet). If the change request is granted, the new owner and

group must have the permission to own a new reservation (they cannot both

have max_reservations unspecified).

v A coscheduled job step cannot be specified when using the -j or -f flags.

v You cannot change a reservation to reserve a number of nodes if the reservation

already has some Blue Gene C-nodes reserved.

v You cannot change a reservation to reserve a number of Blue Gene C-nodes if

the reservation already has some nodes reserved.

v The llchres -s no option will fail for a reservation in the Active_Shared (AS)

state.

v Shared mode must be yes for a reservation to change from Active (A) state to

the AS state. Once the reservation is in the AS state, the shared mode cannot be

changed again.

This command is for the BACKFILL scheduler only.

Examples

1. To have reservation c94n16.20.r start an hour later than currently scheduled

with four fewer nodes, issue:

llchres -t +60 -n -4 -R c94n16.20.r

You should receive a response similar to the following:

Request to change reservation c94n16.20.r has been sent to LoadLeveler

2. To change the duration from 20 to 50 minutes and enable only users chris, jay,

and dave to use the reservation c94n16.31.r, issue:

llchres -U chris jay dave -d 50 -R c94n16.31.r

You should receive a response similar to the following:

Request to change reservation c94n16.31.r has been sent to LoadLeveler

3. To change the number of Blue Gene C-nodes in reservation c94n03.2.r, issue:

llchres -c 512 -R c94n03.2.r

You should receive a response similar to the following:

Request to change reservation c94n03.2.r has been sent to LoadLeveler

llchres

398 TWS LoadLeveler: Using and Administering

|
|

|

|
|

|
|

|
|

|
|
|

|

|

|

|

Security

LoadLeveler administrators and users can issue this command.

llchres

Chapter 16. Commands 399

|

llckpt - Checkpoint a running job step

Purpose

llckpt – Checkpoints a single job step.

Syntax

llckpt { -? | -H | -v | [-k | -u] [-r] [-q] [-X cluster_name] jobstep }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-k Specifies that the job step is to be terminated after a successful checkpoint. The

default is for the job to continue. Note that you cannot use the -k and -u flags

together. If you need to restart the job on the same node, do not use the -k

flag.

-u Specifies that the job step is to be put on user hold after a successful

checkpoint. The default is for the job to continue. Note that you cannot use the

-k and -u flags together.

-r When this flag is issued, it specifies that the command is to return without

waiting for the checkpoint to complete. When using this flag you should be

aware that information relating to the success or failure of the checkpoint will

not be available to the command. The default is for the checkpoint to complete

before returning.

-q Specifies quiet mode: print no messages other than error messages.

-X cluster_name

Specifies the name of a multicluster where the command is to run.

jobstep

Is the name of a job step to be checkpointed.

 The format of a full LoadLeveler step identifier is host.jobid.stepid.

 where:

v host is the name of the machine that assigned the step identifier.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The step identifier may be specified in an abbreviated form, jobid.stepid, when

the command is invoked on the same machine that assigned the step identifier.

In this case, LoadLeveler will use the local machine’s hostname to construct the

full step identifier.

Description

The llckpt command should be used to save the state of the job in the event it

does not complete. Use the command only with jobs that are marked as

checkpointable. You can mark a job step for checkpoint by specifying

checkpoint=yes or checkpoint=interval in the job command file. Use

checkpoint=yes to set checkpointing for an interactive job. For more information,

see “LoadLeveler support for checkpointing jobs” on page 129.

llckpt

400 TWS LoadLeveler: Using and Administering

When a job is checkpointed it can later be restarted from the checkpoint file rather

than the beginning of the job. To restart a job from a checkpoint file, the original

job command file should be used with the value of the restart_from_ckpt keyword

set to yes. The name and location of the checkpoint file should be specified by the

ckpt_dir and ckpt_file keywords.

If you need to restart the job on the same nodes, do not use the -k flag. Instead,

use the -u flag to place the job in a hold state. You can later release the job from

the hold state by issuing the llhold -r command. Note that a coscheduled job step

cannot be specified with the -u flag.

Examples

1. This example checkpoints the job step 1 that is part of job 12 which was

scheduled by the machine named iron. Upon successful completion of

checkpoint, the job step will return to the RUNNING state.

llckpt iron.12.1

2. This example checkpoints the job step 3 that is part of job 14 which was

scheduled by the machine named bronze. Upon successful completion of

checkpoint the job step will be put on user hold:

llckpt -u bronze.14.3

Results

When the -r option is not used, the llckpt command will wait for the checkpoint to

complete. Immediately upon executing the command llckpt iron.12.1 the following

message is displayed:

llckpt: The llckpt command will wait for the results of the checkpoint on

job step iron.12.1 before returning

Once the checkpoint has successfully completed, the following message is

displayed:

llckpt: Checkpoint of job step iron.12.1 completed successfully

If there was a problem taking the checkpoint of an AIX job, the second message

would have this form:

llckpt: Checkpoint FAILED for job step iron.12.1 with the following

error:

primary error code = <numeric error number>,

secondary error code = <secondary numeric error/extended numeric error>,

error msg len = <length of message>,

error msg = <text describing the error>

where: primary error code is defined by /usr/include/sys/errno.h and secondary

error code is defined by /usr/include/sys/chkerror.h.

The -r option is used to return without waiting for the result of a checkpoint. The

following output is displayed for the command llckpt -r bronze.14.3:

llckpt: The llckpt command will not wait for the checkpoint of

job step bronze.14.3 to complete before returning.

Due to delays in communication between LoadLeveler daemons, status

information may not be returned at the same time that checkpoint termination is

received. This indicates that the checkpoint has completed but the success or

failure status is not known. When this happens, the following message is

displayed:

llckpt

Chapter 16. Commands 401

|
|

|
|

|
|
|
|
|
|
|

|
|

llckpt: Checkpoint of job step iron.12.1 completed. No status information is available.

Security

LoadLeveler administrators and users can issue this command.

llckpt

402 TWS LoadLeveler: Using and Administering

llclass - Query class information

Purpose

llclass – Returns information about classes.

Syntax

llclass [-?] [-H] [-v] [-W] [-l] [-X {cluster_list | all}] [-c classlist | classlist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service

level date, and lowest level of the operating system to run this release.

-W Specifies that the width of columns in tabular output will be increased to

fit the widest entry.

-l Specifies that a long listing be generated for each class for which status is

requested. If -l is not specified, then the standard listing is generated.

-X {cluster_list | all}

Indicates that you can specify the -X flag with either:

cluster_list Is a blank-delimited list of clusters where the command is

to run.

all Is the reserved word indicating that the command is to run

in all accessible clusters.

-c classlist | classlist

Is a blank-delimited list of classes for which you are requesting status. The

-c classlist flag is used to distinguish a classlist when specified in

combination with the -X flag. If a classlist is not specified, all classes are

queried.

 If you have more than a few classes configured for LoadLeveler, consider

redirecting the output to a file when you use the -l flag.

Description

The llclass command queries information about job classes. The output of this

command displays the number of defined classes and usage information.

Examples

1. To generate a standard listing for class Parallel, issue:

llclass Parallel

This example generates the standard listing where there are 24 initiators of

class Parallel configured in the cluster, with one job step of class Parallel

using 6 initiators currently running. You should receive output similar to the

following:

Name MaxJobCPU MaxProcCPU Free Max Description

 d+hh:mm:ss d+hh:mm:ss Slots Slots

llclass

Chapter 16. Commands 403

|

||
|

Parallel 2+02:45:00 05:30:00 18 24 Parallel job class

The standard listing includes the following fields:

Description

Lists the information provided in the class_comment keyword for the

specified class. The class_comment keyword is defined in the class

stanza of the LoadLeveler administration file.

Free Slots

The number of initiators (slots) available for the specified class in the

LoadLeveler cluster. A serial job step uses one initiator at run time. A

parallel job step with N tasks uses N initiators at run time.

MaxJobCPU

The hard job CPU limit of job steps for the specified class. For a

description of the job CPU limit for serial and parallel job steps, see the

job_cpu_limit keyword.

MaxProcCPU

The hard CPU limit for the processes of the job steps of the specified

class.

Max Slots

The number of configured initiators (slots) for the specified class in the

LoadLeveler cluster.

Name The name of the class.
2. To generate a long listing for classes named silver and gold, issue:

llclass -l silver gold

The long listing includes the following fields:

Admin

The list of administrators for the specified class.

Ckpt_limit

Hard and soft checkpoint limits of a job step of the specified class.

Class_ckpt_dir

The name of the directory containing the checkpointing files of job

steps of the specified class.

Class_comment

Lists the information provided in the class_comment keyword for the

specified class. The class_comment keyword is defined in the class

stanza of the LoadLeveler administration file.

Core_limit

The hard and soft core size limits of processes of job steps of the

specified class.

Cpu_limit

The hard and soft CPU limits of processes of job steps of the specified

class.

Data_limit

The hard and soft data area limits of processes of job steps of the

specified class.

llclass

404 TWS LoadLeveler: Using and Administering

Def_wall_clock_limit

The default wall clock limit to those jobs that have no wall clock limit

specified in their job command files.

Exclude_Groups

Groups who are not allowed to submit jobs of the specified class.

Exclude_Users

Users who are not permitted to submit jobs of the specified class.

Free_slots

The number of available initiators (slots) for the specified class in the

LoadLeveler cluster. A serial job step uses one initiator of the

appropriate class at run time. A parallel job step with N tasks uses N

initiators at run time.

File_limit

The hard and soft file size limits of processes of job steps of the

specified class.

Include_Groups

Groups having permission to submit jobs of the specified class.

Include_Users

Users who are permitted to submit jobs of the specified class.

Job_cpu_limit

The hard and soft job CPU limits of job steps of the specified class. For

a description of the job CPU limit for serial and parallel job steps, see

the job_cpu_limit keyword.

Maximum_slots

The total number of configured initiators (slots) for the specified class

in the LoadLeveler cluster.

Maxjobs

The maximum number of job steps of the specified class that can run at

any time in the LoadLeveler cluster.

Max_processors

The maximum number of processors than can be used for a parallel job

step of the specified class.

Max_total_tasks

Used for BACKFILL scheduling only. Max_total_tasks sets the

maximum number of tasks allowed to run at any given time for job

steps of the specified class in the LoadLeveler cluster.

Max_proto_instances

The maximum number of protocol instances allowed for a job step of

the specified class.

Name The name of the class

Nice The nice value of jobs of the specified class.

Preempt_class

Used for BACKFILL scheduling only, Preempt_class sets the

preemption rule for job steps of the specified class.

Priority

The system priority of the specified class relative to other classes.

llclass

Chapter 16. Commands 405

|
|
|

Resource_requirement

The default consumable resource requirements for job steps of the

specified class.

Rss_limit

The hard and soft rss size limits of processes of job steps of the

specified class.

Stack_limit

The hard and soft stack size limits of processes of job steps of the

specified class.

Start_class

Used for BACKFILL scheduling only, Start_class sets the starting rule

for job steps of the specified class.

Wall_clock_limit

The hard and soft wall clock (elapsed time) limits of job steps of the

specified class.
See Appendix B, “Sample command output,” on page 673 for sample output of

long listings.

3. This example generates the standard listing for all accessible clusters including

the local cluster in a multicluster environment:

llclass -X all

The output representing a cluster is delineated with a cluster header similar to

the following:

=================== Cluster c556_Cluster1 ============================

Name MaxJobCPU MaxProcCPU Free Max Description

 d+hh:mm:ss d+hh:mm:ss Slots Slots

-------- ---------- ---------- ----- ----- -----------

mpich 3+08:00:00 12:30:00 100 132 MPICH Jobs

parallel 23:59:00 01:00:00 32 256 POE Parallel Jobs

No_Class 01:00:00 00:30:00 120 512 Default Class

large 2+08:00:00 18:30:00 50 128 Large Serial Jobs

medium 12:00:00 02:30:00 60 128 Medium Serial Jobs

small 01:00:00 00:30:00 12 128 Small Serial Jobs

=================== Cluster c556_Cluster2 ============================

Name MaxJobCPU MaxProcCPU Free Max Description

 d+hh:mm:ss d+hh:mm:ss Slots Slots

-------- ---------- ---------- ----- ----- -----------

mpich 3+08:00:00 12:30:00 110 132 MPICH Jobs

parallel 23:59:00 01:00:00 48 256 POE Parallel Jobs

No_Class 01:00:00 00:30:00 128 512 Default Class

large 2+08:00:00 18:30:00 74 128 Large Serial Jobs

ESSL 23:00:00 12:30:00 55 128 ESSL Jobs

OSL 12:00:00 06:00:00 33 128 OSL Jobs

Related Information

Each machine periodically updates the central manager with a snapshot of its

environment. Since the information returned by llclass is a collection of these

snapshots, all taken at varying times, the total picture may not be completely

consistent.

llclass

406 TWS LoadLeveler: Using and Administering

Security

LoadLeveler administrators and users can issue this command.

llclass

Chapter 16. Commands 407

llclusterauth - Generates public and private keys

Purpose

llclusterauth – Generates public and private keys that are used to provide secure

intercluster communications.

Syntax

llclusterauth [-?] | [-H] | [-v] | [-k]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service

level date, and lowest level of the operating system to run this release.

-k Creates a public key, a private key, a security certificate, and a directory for

authorized keys. The keys and certificate are created in the /var/LoadL/ssl

directory for AIX and in the /var/opt/LoadL/ssl directory for Linux.

v The private key is stored in id_rsa

v The public key is stored in id_rsa.pub

v The security certificate is stored in id_rsa.cert

v The authorized keys are stored in authorized_keys

This command must run with root authority when using the -k flag to

create key files.

If any directory in the path for the security files does not exist, the command will

create the directory and set the owner to root and set the permissions to '0700'. The

key and certificate files will be owned by root with permissions of '0600'.

Description

The llclusterauth command generates public and private keys that are used to

provide secure intercluster communications. When multicluster security is

configured to use Secure Sockets Layer (SSL), a connection on a secure port will be

accepted only if the public key for the node requesting the connection is stored in

a file in the authorized keys directory on the node being connected to.

Standard Error

An error message is issued and the command exits for the following error cases:

v The command process does not have root authority

v A required directory for the security files cannot be created

v A security file cannot be created

Security

LoadLeveler administrators can issue this command.

llclusterauth

408 TWS LoadLeveler: Using and Administering

llctl - Control LoadLeveler daemons

Purpose

llctl – Controls LoadLeveler daemons on all members of the LoadLeveler cluster.

Syntax

llctl [-?] [-H] [-v] [-q] [-g | -h hostname] keyword

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-g Indicates that the command applies globally to all machines, except

submit-only machines, that are listed in the administration file.

-h host

Indicates that the command applies to only the host machine in the

LoadLeveler cluster. If neither -h nor -g is specified, the default is the machine

on which the llctl command is issued.

keyword

Must be specified after all flags and can be the following:

capture eventname

Captures accounting data for all jobs running on the designated machines.

eventname is the name you associate with the data, and must be a character

string containing no blanks. For more information, see “Collecting job

resource data based on events” on page 59.

drain [schedd|startd [classlist |allclasses]]

When you issue drain with no options, the following happens: (1) no more

LoadLeveler jobs can begin running on this machine, and (2) no more

LoadLeveler jobs can be submitted through this machine. When you issue

drain schedd, the following happens: (1) the Schedd machine accepts no

more LoadLeveler jobs for submission, (2) job steps in the Starting or

Running state in the Schedd queue are allowed to continue running, and

(3) job steps in the Idle state in the Schedd queue are drained, meaning

they will not get dispatched. When you issue drain startd, the following

happens: (1) the startd machine accepts no more LoadLeveler jobs to be

run, and (2) job steps already running on the startd machine are allowed to

complete. When you issue drain startd classlist, the classes you specify

which are available on the startd machine are drained (made unavailable).

When you issue drain startd allclasses, all available classes on the startd

machine are drained.

flush

Terminates running jobs on this machine and sends them back, in the Idle

state, to the negotiator to await redispatch (provided restart=yes in the job

command file). No new jobs are sent to this machine until resume is

issued. Forces a checkpoint if jobs are enabled for checkpointing. However,

the checkpoint gets canceled if it does not complete within the time period

specified in the ckpt_time_limit keyword in the job command file.

llctl

Chapter 16. Commands 409

purgeschedd

Requests that all jobs scheduled by the specified host machine be purged

(removed). To use this keyword, you must first specify

schedd_fenced=true in the machine stanza for this host. The -g option

cannot be specified with this keyword. For more information, see “How do

I recover resources allocated by a Schedd machine?” on page 660.

reconfig

Forces all daemons to reread the administration and configuration files.

recycle

Stops all LoadLeveler daemons and restarts them.

resume [schedd|startd [classlist |allclasses]]

When you issue resume with no options, job submission and job execution

on this machine is resumed. When you issue resume schedd, the Schedd

machine resumes the submission of jobs. When you issue resume startd,

the startd machine resumes the execution of jobs. When you issue resume

startd classlist, the startd machine resumes the execution of those job

classes you specify which are also configured (defined on the machine).

When you issue resume startd allclasses, the startd machine resumes the

execution of all configured classes.

start [drained]

When you issue start with no options it starts the LoadLeveler daemons on

the machine or machines designated, either explicitly or implicitly. When

you issue start without the -g or -h flag the LoadLeveler daemons are

started on the same machine that issued the command. When you issue

llctl start with either the -g or -h flag, the command specified by the

LL_RSH_COMMAND configuration file keyword is used to run the

command on all machines specified in the administration file. If

LL_RSH_COMMAND is not specified, remote shell (rsh) is used and you

must have rsh privileges in order to use llctl start with either the -g or -h

flag.

 When you issue start with the drained option the LoadLeveler daemons

are started, but the startd daemon is started in the drained state.

 LoadLeveler commands that run rshell include llctl version and llctl start.

stop

Stops the LoadLeveler daemons on the specified machine.

suspend

Suspends all jobs on this machine. This is not supported for parallel jobs.

version

Displays release number, service level, service level date, and operating

system information for every LoadLeveler executable.

 When you issue llctl version with either the -g or -h flag, the command

specified by the LL_RSH_COMMAND configuration file keyword is used

to run the command on all machines specified in the administration file. If

LL_RSH_COMMAND is not specified, remote shell (rsh) is used and you

must have rsh privileges in order to use llctl version with either the -g or

-h flag.

 LoadLeveler commands that run rshell include llctl version and llctl start.

llctl

410 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|

|
|
|
|
|
|

Description

This command sends a message to the master daemon on the target machine

requesting that action be taken on the members of the LoadLeveler cluster. Note

the following when using this command:

v To perform the control operations of the llctl command, you must be a

LoadLeveler administrator. The only exception to this rule is the ″start″

operation.

v LoadLeveler will fail to start if any value has been set for the MALLOCTYPE

environment variable.

v After you make changes to the administration and configuration files for a

running cluster, be sure to issue llctl reconfig. This command causes the

LoadLeveler daemons to reread these files, and prevents problems that can occur

when the LoadLeveler commands are using a new configuration while the

daemons are using an old configuration.

Note: Changes to SCHEDULER_TYPE will not take effect at reconfiguration.

The administrator must stop and restart or recycle LoadLeveler when

changing SCHEDULER_TYPE.

v The llctl drain startd classlist command drains classes on the startd machine, and

the startd daemon remains operational. If you reconfigure the daemon, the

draining of classes remains in effect. However, if the startd goes down and is

brought up again (either by the master daemon or by a LoadLeveler

administrator), the startd daemon is configured according to the global or local

configuration file in effect, and therefore the draining of classes is lost.

Draining all the classes on a startd machine is not equivalent to draining the

startd machine. When you drain all the classes, the startd enters the Idle state.

When you drain the startd, the startd enters the Drained state. Similarly,

resuming all the classes on a startd machine is not equivalent to resuming the

startd machine.

v If a job step is running on a machine that receives the llctl recycle command, or

the llctl stop and llctl start commands, the running job step is terminated. If the

restart option in the job command file was set to yes, then the job step will be

restarted when LoadLeveler is restarted. If the job step is checkpointable, it will

be restarted from the last valid checkpoint file when LoadLeveler is restarted.

v If you find that the llctl -g command (even if it is specified with additional

options) is taking a long time to complete, you should consider using the AIX

command dsh to send llctl commands (omitting the -g flag) to multiple nodes in

a parallel fashion.

v When a node running a Schedd daemon fails, resources that have been allocated

to any of the jobs scheduled by that Schedd are unavailable until the Schedd is

restarted. Administrators can, however, recover these resources by using the llctl

command’s purgeschedd keyword to purge (remove) all of the jobs scheduled

by the Schedd on the down node. The purgeschedd keyword can only work in

conjunction with the schedd_fenced keyword, in the administration file, which

causes the central manager to ignore (fence) the Schedd daemon running on the

target node. You must reconfigure the central manager so it can recognize this

fence. To use the purgeschedd keyword:

1. Recognize that a node running a Schedd daemon is down, and that the node

will be down long enough to necessitate that you recover the resources

allocated to jobs scheduled by that Schedd.

2. Add the statement ″schedd_fenced = true″ to the failed node’s administration

file machine stanza.

llctl

Chapter 16. Commands 411

3. Reconfigure the central manager node so that the central manager recognizes

the fenced Schedd daemon.

4. Invoke ″llctl -h host purgeschedd″ to purge all of the jobs scheduled by the

Schedd on the failed node.

5. Once the failed node is working again, remove all of the files in the

LoadLeveler spool directory. Remove the ″schedd_fenced = true″ statement

from the administration file, then reconfigure the central manager node

before starting Schedd on the machine.

Examples

1. This example stops LoadLeveler on the machine named iron:

llctl -h iron stop

2. This example starts the LoadLeveler daemons on all members of the

LoadLeveler cluster (with the exception of the submit-only machines), starting

with the central manager, as defined in the machine stanzas of the

administration file:

llctl -g start

3. This example causes the LoadLeveler daemons on machine iron to re-read the

administration and configuration files, which may contain new configuration

information for the iron machine:

llctl -h iron reconfig

4. This example drains the classes medium and large on the machine named iron.

llctl -h iron drain startd medium large

5. This example drains the classes medium and large on all machines.

llctl -g drain startd medium large

6. This example stops all the jobs on the system, then allows only jobs of a certain

class (medium) to run.

llctl -g drain startd allclasses

llctl -g flush

llctl -g resume

llctl -g resume startd medium

7. This example resumes the classes medium and large on the machine named iron.

llctl -h iron resume startd medium large

8. This example illustrates how to capture accounting information on a work shift

called day on the machine iron:

llctl -h iron capture day

You can capture accounting information on all the machines in the LoadLeveler

cluster by using the -g option, or you can collect accounting information on the

local machine by simply issuing the following:

llctl capture day

Capturing information on the local machine is the default. For more

information, see “Collecting job resource data based on events” on page 59.

llctl

412 TWS LoadLeveler: Using and Administering

Security

LoadLeveler administrators can issue this command.

llctl

Chapter 16. Commands 413

lldbconvert - Job migration utility

Purpose

lldbconvert – Administrators can use the lldbconvert utility to convert jobs from

LoadLeveler 3.3 format to LoadLeveler 3.4 format.

Syntax

lldbconvert [-d] [-D] [-H] [-?] [-v] [-o OpSys]

Flags

-d Displays contents of input spool (no conversion).

-D Converts LoadLeveler 3.3 spool to LoadLeveler 3.4 spool and

displays contents of output spool after conversion.

-H Provides extended help information.

-? Provides a short usage message.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-o OpSys Converts LoadLeveler 3.3 spool to LoadLeveler 3.4 spool, forcing

OpSys test to: ’OpSys == ″OpSys″’ if it occurs in Requirements or

Preferences.

Description

On machines where jobs need to be migrated, log in as loadl (or the primary

LoadLeveler user ID defined in /etc/LoadL.cfg) and run lldbconvert from the local

LoadLeveler spool directory.

The -o flag is needed when the operating system specified in the requirement

statement no longer matches the operating system after the migration, for example,

if it changes from AIX52 to AIX53. This flag converts requirements statements in

the form OpSys=="your_os". Statements in other formats (such as those with

your_os not enclosed in double quotes) are not converted.

When you create the LoadL_admin file for the version to which you are migrating,

you should preserve all of the job class definitions used in the version from which

you are migrating. For example, if a converted job needs to run as a large class

job, and class large is not defined in the LoadLeveler 3.4 LoadL_admin file, the

job will never be run.

lldbconvert only converts job steps that are in one of the following states: Idle,

Hold, Deferred, or NotQueued. If the conversion is successful, you will receive

further instructions from lldbconvert on what to do before starting LoadLeveler on

the given machine.

Once you run lldbconvert, do not move the converted job queues to another

Schedd machine.

Security

LoadLeveler administrators can issue this command.

lldbconvert

414 TWS LoadLeveler: Using and Administering

|
|

||
|

||
|
|

|

llextRPD - Extract data from an RSCT peer domain

Purpose

llextRPD – Extracts the necessary data from a Reliable Scalable Cluster Technology

(RSCT) peer domain (or local node if there is no active domain) to set up the

administration file.

Syntax

llextRPD [-? | -H | -v | [-m] [-a adapter_name] [-h hostlist]]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-m Specifies that only machine stanzas are to be generated. The adapter stanzas

(and the corresponding adapter_stanzas statement of the machine stanza) will

be suppressed in the final output. This option is for Dynamic Adapter

Configuration support for peer domains with AIX RSCT.

 LoadLeveler will dynamically detect and handle adapters and adapter changes

for any machine in these domains which do not specify an adapter stanza in

the administration file.

-a adapter_name

Specifies that the interface name of the given adapter_name on each node is

used as the label (machine stanza name) of the generated machine stanza.

 If you do not specify an adapter (or if an adapter is specified but does not

exist on a particular node) then the label used for that machine is the Name

field from the RSCT IBM.PeerNode class for the machine in the cluster.

Note: If an administrator wants to configure LoadLeveler to communicate

using the Switch Network Interface for High Performance Switch (HPS)

adapters in a peer domain they should use the -a flag with ml0 specified

as the adapter_name. ml0 is guaranteed to be present on every node that

contains an HPS adapter.

It is recommended that you do not specify sn as the adapter name. If

you do, the machine will be named with the IP name of the sn adapter.

If that IP name becomes unavailable because the adapter changes,

LoadLeveler will not be able to contact any daemons on that machine.

-h hostlist

Specifies one or more host match terms. If multiple host match terms are used,

they must be blank delimited and the list must be enclosed in quotes. Each

host match term is either a regular expression that specifies a set of machine

names, or the name of a file that contains one or more host match terms with

each term on a separate line.

 Each machine name that is returned by RSCT is compared to all of the regular

expressions that were found by processing the host match terms. If the

machine name matches at least one of the regular expressions, the machine

llextRPD

Chapter 16. Commands 415

|

|
|
|
|
|
|

|
|
|

information is included in the output of the llextRPD command. If the -h flag

is not used, all of the machines returned by RSCT are included in the llextRPD

command output.

Description

This command extracts data for LoadLeveler to set up the administration file. If

you plan to use the llextRPD command to construct machine and adapter stanzas

for the LoadLeveler administration file, RSCT is required.

The llextRPD command must be run on one of the nodes in an active RSCT peer

domain to obtain the RSCT peer nodes and network interface data from that

cluster. If you are not running the command in an active RSCT peer domain you

will just get information from the local machine. Adapter stanza names for HPS

adapters are not included in the machine stanza alias. If you run an application

which requires LoadLeveler to recognize a node by the interface name of a HPS

adapter, you must manually add the adapter stanza name for the HPS adapter as

an alias in the machine stanza.

Examples

1. The following example extracts the data from an RSCT peer domain:

llextRPD -a ml0

Results:

#llextRPD: Cluster = "llcluster" ID = "0Jt9zGF7nbDWwWjjTDrxjG" on

 Mon Oct 16 15:24:13 2006

c121san10.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c121s0n10.ppd.pok.ibm.com c121s1n10.ppd.pok.ibm.com

 c121san10.ppd.pok.ibm.com c121f2rp02.ppd.pok.ibm.com

 alias = c121f2rp02.ppd.pok.ibm.com

c121s0n10.ppd.pok.ibm.com: type = adapter

 adapter_name = sn0

 network_type = switch

 interface_address = 192.168.0.10

 interface_name = c121s0n10.ppd.pok.ibm.com

 multilink_address = 10.10.10.10

 logical_id = 2

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni0

 network_id = 1

c121s1n10.ppd.pok.ibm.com: type = adapter

 adapter_name = sn1

 network_type = switch

 interface_address = 192.168.1.10

 interface_name = c121s1n10.ppd.pok.ibm.com

 multilink_address = 10.10.10.10

 logical_id = 0

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni1

 network_id = 1

c121san10.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 10.10.10.10

 interface_name = c121san10.ppd.pok.ibm.com

 multilink_list = sn0,sn1

c121f2rp02.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

llextRPD

416 TWS LoadLeveler: Using and Administering

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

network_type = ethernet

 interface_address = 9.114.66.74

 interface_name = c121f2rp02.ppd.pok.ibm.com

 device_driver_name = ent0

c121san04.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c121s0n04.ppd.pok.ibm.com c121s1n04.ppd.pok.ibm.com

 c121san04.ppd.pok.ibm.com c121f1rp04.ppd.pok.ibm.com

 alias = c121f1rp04.ppd.pok.ibm.com

c121s0n04.ppd.pok.ibm.com: type = adapter

 adapter_name = sn0

 network_type = switch

 interface_address = 192.168.0.4

 interface_name = c121s0n04.ppd.pok.ibm.com

 multilink_address = 10.10.10.4

 logical_id = 11

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni0

 network_id = 1

c121s1n04.ppd.pok.ibm.com: type = adapter

 adapter_name = sn1

 network_type = switch

 interface_address = 192.168.1.4

 interface_name = c121s1n04.ppd.pok.ibm.com

 multilink_address = 10.10.10.4

 logical_id = 9

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni1

 network_id = 1

c121san04.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 10.10.10.4

 interface_name = c121san04.ppd.pok.ibm.com

 multilink_list = sn0,sn1

c121f1rp04.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.66.68

 interface_name = c121f1rp04.ppd.pok.ibm.com

 device_driver_name = ent0

2. The following example extracts the data from an RSCT peer domain for a

dynamic adapter configuration:

llextRPD -m -a ml0

Results:

#llextRPD: Cluster = "acc97" ID = "28jek7RdrHdGwr5C6zQwWm" on

 Mon Oct 16 14:37:33 2006

c97ml0n13.ppd.pok.ibm.com: type = machine

 alias = c97n13.ppd.pok.ibm.com

c97ml0n09.ppd.pok.ibm.com: type = machine

 alias = c97n09.ppd.pok.ibm.com

c97ml0n01.ppd.pok.ibm.com: type = machine

 alias = c97n01.ppd.pok.ibm.com

c97ml0n05.ppd.pok.ibm.com: type = machine

 alias = c97n05.ppd.pok.ibm.com

3. The following example shows an adapter stanza:

llextRPD

Chapter 16. Commands 417

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

.

.

.

c197blade2b11.ppd.pok.ibm.com: type = adapter

 adapter_name = eth0

 network_type = ethernet

 interface_address = 9.114.198.43

 interface_name = c197blade2b11.ppd.pok.ibm.com

.

.

.

4. The following example would only include information for all the nodes in the

RSCT peer domain with names that included work1, work02, work03, and

work05:

llextRPD -h "work1.* nodelist1.txt"

if nodelist1.txt is in the current directory and contains the two lines:

work02.*

/home/steve/nodelist2.txt

and /home/steve/nodelist2.txt contains the single line:

work0[35].*

To further explain this example:

v The pattern work1.* is on the command line, which is the string work1

followed by any character (the dot) zero or more times (the asterisk).

v The pattern work02.* is in nodelist1.txt, which is the string work02 followed

by any character (the dot) zero or more times (the asterisk).

v The pattern work0[35].* is in nodelist2.txt, which is the string work0

followed by a 3 or a 5 followed by any character (the dot) zero or more times

(the asterisk).

Therefore, any pattern that has work1, work02, work03, or work05 in it will be

displayed by the llextRPD command.

Security

LoadLeveler administrators and users can issue this command.

llextRPD

418 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

|

|

|

|
|

|
|

|
|
|

|
|

llfavorjob - Reorder system queue by job

Purpose

llfavorjob – Sets specified jobs to a higher system priority than all jobs that are not

favored. This command also unfavors previously favored jobs, restoring the original

priority, when you specify the -u flag.

Syntax

llfavorjob [-?] [-H] [-v] [-q] [-u] joblist

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-u Unfavors previously favored jobs, requeuing them according to their original

priority levels.

joblist

Is a blank-delimited list of job and step identifiers. When a job identifier is

specified, the command action is taken for all steps of the job. At least one job

or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the command is invoked on the same machine that assigned

the job and step identifiers. In this case, LoadLeveler will use the local

machine’s hostname to construct the full job or step identifier.

Description

If this command is issued against jobs that are already running, it has no effect. If

the job vacates, however, and returns to the queue, the job gets re-ordered with the

new priority.

If more than one job is affected by this command, then the jobs are ordered by the

sysprio expression and are scanned before the not favored jobs. However, favored

jobs which do not match the job requirements with available machines may run

after not favored jobs. This command remains in effect until reversed with the -u

option.

Examples

1. This example assigns job steps 12.4 on the machine iron and 8.2 on zinc the

highest priorities in the system, with the job steps ordered by the sysprio

expression:

llfavorjob

Chapter 16. Commands 419

llfavorjob iron.12.4 zinc.8.2

2. This example unfavors job steps 12.4 on the machine iron and 8.2 on the

machine zinc:

llfavorjob -u iron.12.4 zinc.8.2

Security

LoadLeveler administrators can issue this command.

llfavorjob

420 TWS LoadLeveler: Using and Administering

llfavoruser - Reorder system queue by user

Purpose

llfavoruser – Sets a user’s jobs to the highest priority in the system, regardless of

the current setting of the job priority. Jobs already running are not affected. This

command also unfavors the user’s jobs, restoring the original priority, when you

specify the -u flag.

Syntax

llfavoruser [-?] [-H] [-v] [-q] [-u] userlist

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-u Unfavors previously favored users, reordering their jobs according to their

original priority levels. If -u is not specified, the user’s jobs are favored.

userlist

Is a blank-delimited list of users whose jobs are given the highest priority. If -u

is specified, userlist jobs are unfavored.

Description

This command affects your current and future jobs until you remove the favor.

When the central manager daemon is restarted, any favor applied to users is

revoked.

The user’s jobs still remain ordered by user priority (which may cause jobs for the

user to swap sysprio). If more than one user is affected by this command, the jobs

of favored users are ordered by sysprio and are scanned before the jobs of not

favored users. However, jobs of favored users which do not match job

requirements with available machines may run after jobs of not favored users.

Examples

1. This example grants highest priority to all queued jobs submitted by users

ellen and fred according to the sysprio expression:

llfavoruser ellen fred

2. This example unfavors all queued jobs submitted by users ellen and fred:

llfavoruser -u ellen fred

Security

LoadLeveler administrators can issue this command.

llfavoruser

Chapter 16. Commands 421

llfs - Fair share scheduling queries and operations

Purpose

llfs – Returns information about fair share scheduling in LoadLeveler or operates

on fair share scheduling.

Syntax

llfs [-? | -H | -v | -s savedir | -r [saved_file] | [-u user_list] [-g group_list]]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-s savedir Saves a snapshot of the historic fair share data in the specified

directory. The central manager must be able to write to the savedir

directory. The directory does not need to be accessible on the node

where the command is issued.

-r [saved_file] Resets fair share scheduling by either clearing all historic fair share

data, or restoring fair share scheduling to a state corresponding to

a file previously saved by the llfs -s command. The saved_file file

must be readable by the central manager. A full path name should

be specified for the file. The file does not need to be accessible on

the node where the command is issued.

-u user_list Is a blank-delimited list of users. Fair share allocation and

utilization information for these users will be displayed.

-g group_list Is a blank-delimited list of LoadLeveler groups. Fair share

allocation and utilization information for these groups will be

displayed.

Description

The llfs command can be used either as a query command or as a control

command.

As a query command, llfs with no options displays current fair share scheduling

information for all users and groups who have jobs completed in the LoadLeveler

cluster. With the -u or -g options, information for the users or groups requested is

displayed.

The llfs command displays the following information as a query command:

v The time the information is obtained

v The total number of shares that both the cluster CPU and Blue Gene resources

are divided into (for example, if there are 100 shares, then there are 100 CPU

shares and 100 Blue Gene shares).

v The time interval in which most of the used shares are consumed

v The number of shares allocated and used for each user and group

llfs

422 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|
|
|
|
|

|
|
|

Note: Used shares are for the cluster CPU resources and the Blue Gene used

shares are for the Blue Gene resources. Blue Gene shares are only

displayed when Blue Gene is enabled.

The share usage affects the job scheduling priority according to the SYSPRIO

expression used in the global configuration file.

As a control command, you can use the llfs to reset fair share scheduling or save

historic fair share data to a file. The -s option saves a snapshot of all historic fair

share data in the LoadLeveler cluster. If the value of FAIR_SHARE_INTERVAL is

large (for example, an entire year) and if there are concerns about losing a lot of

historic data, this option can be used on a regular basis to save a snapshot of the

historic fair share data to a file. The saved file can be used by the llfs -r option to

restore fair share scheduling to the state corresponding to the saved file. Without a

saved file, the llfs -r option will discard all previous historic fair share data and

restarts fair share scheduling again.

This command is for LoadLeveler administrators and the BACKFILL scheduler

only.

Examples

When BG_ENABLED is set to false in the configuration file, the following

examples apply.

1. To display current fair share information without any options, issue:

llfs

You should receive output similar to the following:

Current Time: Fri Jan 20 13:45:55 EST 2006

FAIR_SHARE_TOTAL_SHARES = 100

FAIR_SHARE_INTERVAL = 180 hours

Name Type Allocated Shares Used Shares

------------------- ----- ---------------- -----------

uno user 50 20

zhong user 10 10

loadl user 0 4

systest group 0 30

loadl group 0 4

2. To sort fair share information according to used shares in descending order,

issue:

llfs > /tmp/out; head -6 /tmp/out; tail +7 /tmp/out |sort -rn +3

You should receive output similar to the following:

Current Time: Fri Jan 20 13:45:55 EST 2006

FAIR_SHARE_TOTAL_SHARES = 100

FAIR_SHARE_INTERVAL = 180 hours

Name Type Allocated Shares Used Shares

------------------- ----- ---------------- -----------

systest group 0 30

uno user 50 20

zhong user 10 10

loadl user 0 4

loadl group 0 4

3. To display current fair share information for user uno and group systest, issue:

llfs -u uno -g systest

You should receive output similar to the following:

llfs

Chapter 16. Commands 423

|
|
|

|
|

Name Type Allocated Shares Used Shares

------------------- ----- ---------------- -----------

uno user 50 20

systest group 0 30

4. To reset fair share scheduling by discarding all previous historic data, issue:

llfs -r

You should receive a response similar to the following:

llfs: request has been sent to LoadLeveler.

5. To save a snapshot of the historic data to the /shared/save directory, issue:

llfs -s /shared/save

You should receive a response similar to the following:

llfs: /shared/save/fair_share_data.200601201345 has been created.

6. To restart fair share scheduling from previously saved data, issue:

llfs -r /shared/save/fair_share_data.200601201345

You should receive a response similar to the following:

llfs: request has been sent to LoadLeveler.

When BG_ENABLED is set to true in the configuration file, the following

examples apply.

1. To display current fair share information without any options, issue:

llfs

You should receive output similar to the following:

Current Time: Tue 13 Jun 2006 06:35:24 PM CDT

FAIR_SHARE_TOTAL_SHARES = 100000

FAIR_SHARE_INTERVAL = 1 hours

Name Type Allocated Shares Used Shares BG Used Shares

-------------------- ----- ---------------- ----------- --------------

varella user 0 0 0

No_Group group 0 16 595

ezhong user 0 16 595

2. To sort fair share information according to the used shares of the cluster CPU

resources in descending order, issue:

llfs>/tmp/out; head -6 /tmp/out;tail +7 /tmp/out|sort -rn +4

You should receive output similar to the following:

Current Time: Tue 13 Jun 2006 06:38:03 PM CDT

FAIR_SHARE_TOTAL_SHARES = 100000

FAIR_SHARE_INTERVAL = 1 hours

Name Type Allocated Shares Used Shares BG Used Shares

-------------------- ----- ---------------- ----------- --------------

No_Group group 0 14 521

ezhong user 0 14 521

varella user 0 0 0

3. To display current fair share information for user ezhong and group group,

issue:

llfs -u ezhong -g group

You should receive output similar to the following:

Current Time: Tue 13 Jun 2006 06:39:34 PM CDT

FAIR_SHARE_TOTAL_SHARES = 100000

FAIR_SHARE_INTERVAL = 1 hours

Name Type Allocated Shares Used Shares BG Used Shares

-------------------- ----- ---------------- ----------- --------------

ezhong user 0 13 483

group group 0 0 0

llfs

424 TWS LoadLeveler: Using and Administering

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

Security

LoadLeveler administrators can issue this command.

llfs

Chapter 16. Commands 425

llhold - Hold or release a submitted job

Purpose

llhold – Places jobs in user hold or system hold and releases jobs from both types

of hold. Users can only move their own jobs into and out of user hold. Only

LoadLeveler administrators can move jobs into and release them from system hold.

Syntax

llhold [-?] [-H] [-v] [-q] [-s] [-r] [-X cluster_name]

 [-u userlist] [-h hostlist] [joblist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-s Puts jobs in system hold. Only a LoadLeveler administrator can use this

option.

 If neither -s nor -r is specified, LoadLeveler puts the jobs in user hold.

-r Releases a job from hold. A job step in user hold can be released by the owner

or a LoadLeveler administrator. A job step in system hold can only be released

by a LoadLeveler administrator. If a job step that is in both system hold and

user hold is released by a LoadLeveler administrator, the job step will be

released from system hold but remains in user hold. If the owner releases a job

step that is in both system hold and user hold, the job step is released from

user hold but remains in system hold.

 The -r flag can be used to restart jobs that were put on user hold by the llckpt

-u command.

 If neither -s nor -r is specified, LoadLeveler puts the jobs in user hold.

-X cluster_name

Specifies the name of a single cluster where the command is to run.

-u userlist

Is a blank-delimited list of users. When used with the -h option, only the

user’s jobs monitored on the machines in the hostlist are held or released.

When used alone, only the user’s jobs monitored on the Schedd machine are

held or released.

-h hostlist

Is a blank-delimited list of machine names. All jobs monitored on machines in

this list are held or released. When issued with the -u option, the userlist is

used to further select jobs for holding or releasing.

 When issued by a non-administrator, this option only acts upon jobs that user

has submitted to the machines in hostlist.

 When issued by an administrator, all jobs monitored on the machines are acted

upon unless the -u option is also used. In that case, the userlist is also part of

the selection process, and only jobs both submitted by users in userlist and

monitored on the machines in the hostlist are acted upon.

llhold

426 TWS LoadLeveler: Using and Administering

||
|
|
|
|
|
|

|
|

|

joblist

Is a blank-delimited list of job and step identifiers. When a job identifier is

specified, the command action is taken for all steps of the job. At least one job

or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the command is invoked on the same machine that assigned

the job and step identifiers. In this case, LoadLeveler will use the local

machine’s hostname to construct the full job or step identifier.

Note: For coscheduled jobs, even if all coscheduled job steps are not in the list

of targeted job steps, the requested operation is performed on all

coscheduled job steps.

Description

This command does not affect a job step that is running unless the job step

attempts to enter the Idle state. At this point, the job step is placed in the Hold

state.

To ensure a job is released from both system hold and user hold, the administrator

must issue the command with -r specified to release it from system hold. The

administrator or the submitting user can reissue the command to release the job

from user hold.

This command will fail if:

v A nonadministrator attempts to move a job into or out of system hold.

v A nonadministrator attempts to move a job submitted by someone else into or

out of user hold.

Examples

1. This example places job 23, job step 0 and job 19, job step 1 on hold:

llhold 23.0 19.1

2. This example releases job 23, job step 0, job 19, job step 1, and job 20, job step 3

from a hold state:

llhold -r 23.0 19.1 20.3

3. This example places all jobs from users abe, barbara, and carol2 in system hold:

llhold -s -u abe barbara carol2

4. This example releases from a hold state all jobs on machines bronze, iron, and

steel:

llhold -r -h bronze iron steel

5. This example releases from a hold state all jobs on machines bronze, iron, and

steel that smith submitted:

llhold -r -u smith -h bronze iron steel

llhold

Chapter 16. Commands 427

|
|
|

Results

The following shows a sample system response for the llhold -r -h bronze

command:

llhold: Hold command has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llhold

428 TWS LoadLeveler: Using and Administering

llinit - Initialize machines in the LoadLeveler cluster

Purpose

llinit – Initializes a new machine as a member of the LoadLeveler cluster

Syntax

llinit [-?] [-H] [-q] [-prompt] [-local pathname] [-release pathname]

 [-cm machine] [-debug]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-q Specifies quiet mode: print no messages other than error messages.

-prompt

Prompts or leads you through a set of questions that help you to complete the

llinit command.

-local pathname

pathname is the local directory in which the spool, execute, and log

subdirectories will be created. The default, if this flag is not used, is the home

directory.

 There must be a unique local directory for each LoadLeveler cluster member.

-release pathname

pathname is the release directory, where the LoadLeveler bin, lib, man, include,

and samples subdirectories are located. The default, if this flag is not used, is

the /usr/lpp/LoadL/full directory on AIX or the /opt/ibmll/LoadL/full directory

on Linux.

-cm machine

machine is the central manager machine, where the negotiator daemon runs.

-debug

Displays debug messages during the execution of llinit.

Description

This command runs once on each machine during the installation process. It must

be run by the user ID you have defined as the LoadLeveler user ID. The log, spool,

and execute directories are created with the correct modes and ownerships. The

LoadLeveler configuration and administration files, LoadL_config and

LoadL_admin, respectively, are copied from LoadLeveler’s release directory to

LoadLeveler’s home directory. The local configuration file, LoadL_config.local, is

copied from LoadLeveler’s release directory to LoadLeveler’s local directory.

llinit initializes a new machine as a member of the LoadLeveler cluster by doing

the following:

v Creates the following LoadLeveler subdirectories with the given permissions:

– spool subdirectory, with permissions set to 700.

– execute subdirectory, with permissions set to 1777.

– log subdirectory, with permissions set to 775.
v Copies the LoadL_config and LoadL_admin files from the release directory

samples subdirectory into the home directory of the LoadLeveler user ID.

llinit

Chapter 16. Commands 429

v Copies the LoadL_config.local file from the release directory samples

subdirectory into the local directory.

v Creates symbolic links from the loadl home directory to the spool, execute, and

log subdirectories and the LoadL_config.local file in the local directory (if home

and local directories are not identical).

v Creates symbolic links from the home directory to the bin, lib, man, samples,

and include subdirectories in the release directory.

v Updates the LoadL_config with the release directory name.

v Updates the LoadL_admin with the central manager machine name.

Before running llinit ensure that your HOME environment variable is set to

LoadLeveler’s home directory. To run llinit, you must have:

v Write privileges in the LoadLeveler home directory

v Write privileges in the LoadLeveler release directory

v Write privileges in the LoadLeveler local directory.

Examples

The following example initializes a machine, assigning /var/loadl as the local

directory, /usr/lpp/LoadL/full as the release directory, and the machine named

bronze as the central manager.

llinit -local /var/loadl -release /usr/lpp/LoadL/full -cm bronze

Ensure that the local directory exists before running the preceding command.

Results

The command:

llinit -local /home/ll_admin -release /usr/lpp/LoadL/full -cm mars

will yield the following output:

llinit: creating directory "/home/ll_admin/spool"

llinit: creating directory "/home/ll_admin/log"

llinit: creating directory "/home/ll_admin/execute"

llinit: set permission "700" on "/home/ll_admin/spool"

llinit: set permission "775" on "/home/ll_admin/log"

llinit: set permission "1777" on "/home/ll_admin/execute"

llinit: creating file "/home/ll_admin/LoadL_admin"

llinit: creating file "/home/ll_admin/LoadL_config"

llinit: creating file "/home/ll_admin/LoadL_config.local"

llinit: editing file /home/ll_admin/LoadL_config

llinit: editing file /home/ll_admin/LoadL_admin

llinit: creating symbolic link "/home/ll_admin/bin -> \

 /usr/lpp/LoadL/full/bin"

llinit: creating symbolic link "/home/ll_admin/lib -> \

 /usr/lpp/LoadL/full/lib"

llinit: creating symbolic link "/home/ll_admin/man -> \

 /usr/lpp/LoadL/full/man"

llinit: creating symbolic link "/home/ll_admin/samples -> \

 /usr/lpp/LoadL/full/samples"

llinit: creating symbolic link "/home/ll_admin/include -> \

 /usr/lpp/LoadL/full/include"

llinit: program complete.

Security

LoadLeveler administrators can issue this command.

llinit

430 TWS LoadLeveler: Using and Administering

llmkres - Make a reservation

Purpose

llmkres – Creates a LoadLeveler reservation. A set of nodes can be reserved in

advance for a period of time to run both interactive and batch jobs. For additional

information on running interactive jobs with reservations, see Chapter 8, “Building

and submitting jobs,” on page 165.

Syntax

llmkres { -? | -H | -v | [-q] -t start_time -d duration { -n number_of_nodes |

 -h host_list | -h free | -j job_step | -f job_command_file |

 -c number_of_bg_cnodes} [-U user_list] [-G group_list] [-s {yes|no}]

 [-i {yes|no}] [-g group] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

-t start_time Specifies the start time of the reservation using the format

[mm/dd[/[cc]yy]] HH:MM. Hours must be specified using a

24-hour clock.

-d duration Specifies the duration of the reservation in minutes.

-n number_of_nodes

Specifies the number of nodes to reserve. To reserve a number of

Blue Gene C-nodes, use the -c flag.

-h free

-h host_list Specifies a blank-delimited list of machines to reserve. To reserve

every node in the LoadLeveler cluster, use the -h host_list flag. If

any one of the nodes cannot be reserved, the request will fail.

Specifying the reserved word free reserves all machines available

for this reservation, which currently have an active LoadL_startd

daemon. The reservation change request will succeed if at least one

node can be included in the reservation.

-j job_step Specifies a job step whose requirements will be used to determine

what resources to reserve. The job step must be in an idle-like state

and takes the form [host.]jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step

identifiers.

v jobid is the job number assigned to the job when it was

submitted.

v stepid is the job step number assigned to the job step when it

was submitted.

llmkres

Chapter 16. Commands 431

|

|
|

||

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

The step identifier may be specified in an abbreviated form,

jobid.stepid, when the command is invoked on the same machine

that assigned the step identifier. In this case, LoadLeveler will use

the local machine’s host name to construct the full step identifier.

 You must be an administrator or the job step owner to make this

request. If the request to make the reservation is successful, the job

step will be bound to the reservation. If the request is not

successful, there is no change to the status of the job step.

Note: If the job step is of type blue_gene, then only Blue Gene

compute nodes (C-nodes) will be reserved to satisfy the Blue

Gene resource requirements of the job step.

-f job_command_file

Specifies the path to a job_command_file that will be submitted and

the first job step used to determine what resources to reserve. All

job steps will be bound to the reservation, or if the reservation

request fails, be placed in the NotQueued state. The job ID of the

newly created job will be displayed.

-c number_of_bg_cnodes

Specifies the number of C-nodes to reserve in the Blue Gene

system. The shape of the allocated resource for a given size cannot

be guaranteed, but the size of the allocated shape will be no

smaller than the requested size and will be as close to the

requested size as possible.

-U user_list Specifies a blank-delimited list of users who can use the

reservation.

-G group_list Specifies a blank-delimited list of LoadLeveler groups whose users

can use the reservation.

-s {yes|no} Specifies if the SHARED option is selected for the reservation. For

a SHARED reservation, after all bound job steps that can run on

the reserved nodes are scheduled to run, the remaining resources

can be used to run job steps not bound to the reservation. Only

bound job steps can be scheduled to run on a reservation that is

not shared. The default is not to share the reservation.

-i {yes|no} Specifies if the REMOVE_ON_IDLE option is selected for the

reservation. For a REMOVE_ON_IDLE reservation, if all bound job

steps are finished or if all bound job steps are Idle and none can

run on the reserved nodes, the reservation will be removed

(canceled) automatically by LoadLeveler. If this option is not set,

the reservation will remain, regardless of being used or not. The

default is not to remove the reservation automatically.

-g group Specifies a LoadLeveler group that will own the reservation. The

default is what is specified as the default_group in the user stanza

or No_Group. Ownership of a reservation by a group does not

imply that all of the members of the group can use the reservation,

but rather is used as a count toward the maximum number of

reservations that a group can own.

Description

The llmkres command is for users authorized by LoadLeveler administrators. The

user ID requesting the creation of a reservation becomes the owner of the

llmkres

432 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

reservation and can use the reservation. A unique reservation ID will be displayed

upon successful creation of the reservation, otherwise a message will be printed

out to indicate a failure.

Note that it is possible for a time out to occur while this command is waiting for a

response from the LoadLeveler central manager. Even if a time out occurs or the

command process is killed, the command may still succeed. To determine if the

request has been granted, issue the llqres command.

The owner of a reservation maintains certain privileges beyond those allowed for

users of the reservation. The owner of a reservation and LoadLeveler

administrators can always use the reservation. The owner of a reservation (and the

LoadLeveler administrator) can cancel or change a reservation. Users of a

reservation are allowed to bind their jobs to a reservation. When a reservation is

created, the -U and -G flag can be used to specify who can use the reservation.

This command is for the BACKFILL scheduler only.

A coscheduled job step cannot be specified when using the -j or -f flags.

A job step that requests a size that fits into the size of a Blue Gene reservation

might not always be able to run inside the reservation because of the internal

topology of the Blue Gene system. For example, if a Blue Gene reservation was

created using a Blue Gene job that requested 1048 compute nodes with a

connection type of MESH, then a job requesting 1048 compute nodes with a

connection type of TORUS may not be able to run inside that reservation.

Examples

1. To reserve 3 nodes for 2 hours starting at 2 p.m. of the current year allowing

members of the LoadLeveler group loadlusr to use the reservation, issue:

llmkres -t 01/16 14:00 -d 120 -n 3 -G loadlusr

Note that if you specify a date that has already passed in the current year, you

must include the year or an error will occur.

You should receive a response similar to the following:

The reservation c94n16.pok.ibm.com.20.r has been successfully made.

2. To reserve nodes based on the requirements of one user job, issue:

llmkres -t 10/16/2006 02:00 -d 420 -f weather.cmd -i yes

You should receive a response similar to the following:

The job “c94n16.pok.ibm.com.25” has been submitted.

The reservation c94n16.pok.ibm.com.31.r has been successfully made.

3. To reserve two nodes for use by the reservation owner and two additional

users issue:

llmkres -t 01/17 13:30 -d 240 -h c94n01 c94n16 -U jay chris

You should receive a response similar to the following:

The reservation c94n16.pok.ibm.com.55.r has been successfully made.

4. To reserve 1024 Blue Gene C-nodes, issue:

llmkres -t 18:00 -d 60 -c 1024

You should receive a response similar to the following:

llmkres

Chapter 16. Commands 433

|

|
|
|
|
|
|

|

|

|

The reservation c94n03.pok.ibm.com.2.r has been successfully made.

Security

LoadLeveler administrators and users can issue this command.

llmkres

434 TWS LoadLeveler: Using and Administering

|

|

llmodify - Change attributes of a submitted job step

Purpose

llmodify – Changes the attributes or characteristics of a submitted job.

Syntax

llmodify { -? | -H | -v | [-q] [-X cluster_name]

 | -c consumable_cpus | -m consumable_real_memory |

 -W wclimit_add_min | -C job_class | -a account_no |

 -s q_sysprio | -p {preempt|nopreempt} |

 -k keyword=value } jobstep }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-X cluster_name

Specifies the name of a single cluster where the command is to run. This flag

cannot be specified with the -p, -s, -W, or -x flags.

-c consumable_cpus

Specifies the consumable CPU value for an idle-like job step.

 Allows the ConsumableCpus resource requirement to be reset to the specified

value. This value can be any integer equal to or greater than zero (0) and

should follow the rules for the resources keyword in the job command file.

-m consumable_real_memory

Specifies the consumable real memory value for an idle-like job step.

 Allows the ConsumableMemory resource requirement to be reset to the

specified value. No units should be specified, as megabytes (MB) is assumed.

This value can be any integer greater than zero (0) and should follow the rules

for the resources keyword in the job command file.

-W wclimit_add_min

Specifies additional time in minutes to add to the wall clock limits of a

running-like job step. This option is for preventing a job step from being killed

due to the wall clock limits. This is a LoadLeveler administrator only option.

 Both the hard limit and soft limit are increased by the specified value. This

value can be any integer greater than 0.

 The increase will only be effective if a limit was originally set and not already

exceeded. If you attempt to modify the wall clock limit for a job step that is

approaching its current wall clock limit, it is possible for the current wall clock

limit to expire before it can be changed.

 Specifying llmodify -W will fail if the wall clock time of the job step is

extended beyond the start time of any reservation that reserves resources

currently used by the job step. The reservations in conflict must be canceled

before the request to increase the job step’s wall clock limit can be granted.

llmodify

Chapter 16. Commands 435

|
|
|
|

-C job_class

Specifies the job class name.

 Allows the job class name to be reset to the specified value for an idle-like job

step. This value can be any string without white spaces.

-a account_no

Specifies the account number.

 Allows the account number to be reset to the specified value for an idle-like

job step.

-s q_sysprio

Specifies the job step priority.

 This option allows the q_sysprio for a job step to be reset to the specified

integer value. The new job step priority will be fixed. Once the priority has

been modified, it will no longer be changed if the central manager recalculates

priorities. This is a LoadLeveler administrator only option.

-p {preempt|nopreempt}

Specifies whether a job is preemptable or nonpreemptable.

-k keyword=value

Modifies keyword to the new value provided.

 where keyword is one of the following:

account_no

Changes the account number to the specified value for an idle-like job

step.

bg_connection

Changes the connection option of an idle-like Blue Gene job. The

subsequent value argument must be a string that is either TORUS,

MESH, or PREFER_TORUS. bg_connection cannot be modified if

bg_partition is already specified.

bg_partition

Changes the requested partition ID of an idle-like Blue Gene job. If this

value is specified, bg_requirements, bg_connection, bg_shape,

bg_size, and bg_rotate will be reset to their default values.

bg_requirements

Changes the memory requirement that a Blue Gene base partition in

the LoadLeveler cluster must meet to run an idle-like Blue Gene job.

The subsequent value option must be an expression. Memory is the

only variable that is supported. bg_requirements cannot be modified if

bg_partition is already specified.

bg_rotate

Changes the rotate option of an idle-like Blue Gene job. The

subsequent value argument must be a string that is either True or

False. bg_rotate cannot be modified if bg_partition is already

specified.

bg_shape

Changes the shape of an idle-like Blue Gene job. The subsequent value

argument must be of the form ″XxYxZ″, where X, Y, and Z are integers

in units of the number of base partitions. If this value is specified, any

value previously specified for bg_size or bg_partition will be reset to

its default value.

llmodify

436 TWS LoadLeveler: Using and Administering

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

bg_size

Changes the size of an idle-like Blue Gene job. The subsequent value

argument must be an integer in units of compute nodes. If this value is

specified, any value previously specified for bg_shape or bg_partition

will be reset to its default value.

class Changes the job class name to the specified value for an idle-like job

step. The value can be any string without white spaces.

consumableCpus

Changes the ConsumableCpus resource requirement to the specified

value. The value can be any integer equal to or greater than zero (0).

consumableMemory

Changes the ConsumableMemory resource requirement to the specified

value. No units should be specified, as megabytes (MB) is assumed.

This value can be any integer greater than zero (0).

preemptable

Specifies whether a job is preemptable or nonpreemptable. The value

must be either yes or no.

sysprio

Changes the q_sysprio for a job step to the specified integer value. The

new job step priority will be fixed. This is a LoadLeveler administrator

only option.

wclimit_add

Increases the wall clock limit of a running-like job step by the number

of specified minutes. This is a LoadLeveler administrator only option.

jobstep

Is the name of a job step to be modified.

 The format of a full LoadLeveler step identifier is host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The step identifier may be specified in an abbreviated form, jobid.stepid, when

the command is invoked on the same machine that assigned the step identifier.

In this case, LoadLeveler will use the local machine’s hostname to construct the

full step identifier.

Description

All options are for the job step owner or a LoadLeveler administrator on an

idle-like job step with the following exceptions:

v -p, -s, and -W are LoadLeveler administrator only options

v -W is valid only for a job step in a running-like state

A request to mark a job step nonpreemptable will fail if the job step’s expected end

time extends into an existing reservation.

At the time a job step is modified, LoadLeveler does not check to make certain that

the job step with the modified values can be scheduled to run.

To determine if a modification request is successful, issue the llq -x -l command

and check the fields shown (see Table 85 on page 438) in the output.

llmodify

Chapter 16. Commands 437

|
|
|
|
|

|
|
|
|

Table 85. llmodify options and keywords

Options and keywords Field to check

-a or -k account_no Account

-C or -k class Class

-c or -k consumableCpus Resources

-m or -k consumableMemory Resources

-p or -k preemptable Preemptable

-k bg_connection Wiring Requested

-k bg_partition Partition Requested

-k bg_requirements BG Requirements

-k bg_rotate Rotate

-k bg_shape Shape Requested

-k bg_size Size Requested

-s or -k priority q_sysprio

-W or -k wclimit_add Wall Clk Hard Limit/Wall Clk Soft Limit

An idle-like state is one of the following job states:

v Idle

v Deferred

v User Hold

v System Hold

v User & System Hold

v Not Queued

v Vacated

v Rejected

A running-like state is one of the following job states:

v Checkpointing

v Pending

v Preempted

v Preempt Pending

v Resume Pending

v Running

v Starting

Examples

1. This example puts the job step c163n07.12.0 in a non-preemptable state:

llmodify -p nopreempt c163n07.12.0

2. To extend the wall clock limits of job step c163n07.12.0 by 30 minutes:

llmodify -W 30 c163n07.12.0

3. To change the shape of job step c193n04.11.0 to 4x5x4 base partitions:

llmodify -k bg_shape=4x5x4 c193n04.11.0

4. To change the connection type of job step c193n04.11.0 to MESH:

llmodify -k bg_connection=MESH c193n04.11.0

5. This example changes the ConsumableCpus resource requirement of job step

c188f2n08.15.0 in cluster1 to the value 3:

llmodify -X cluster1 -c 3 c188f2n08.15.0

llmodify

438 TWS LoadLeveler: Using and Administering

||

|
|
|
|
|
|
|
|

Results

The following shows a sample system response for llmodify -s 109 c163n07.12.0:

llmodify: request has been sent to LoadLeveler.

llmodify returns the following exit values:

0 The command ran successfully.

-1 An error occurred.

Security

LoadLeveler administrators and users can issue this command.

llmodify

Chapter 16. Commands 439

llmovejob - Move a single idle job from the local cluster to another

cluster

Purpose

llmovejob – Moves a single idle-like job from the local cluster to a remote cluster.

Syntax

llmovejob { -? | -H | -v | -C cluster_name -j job_ID }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-C cluster_name

Indicates the remote cluster the job specified by job_ID should be

transferred to. The -C flag must be specified in combination with

the -j flag.

-j job_ID Indicates the job_ID to be transferred to the cluster specified by

cluster_name. The -j flag must be specified in combination with the

-C flag.

Description

The llmovejob command moves a single idle-like job from one cluster to another.

Upon successful transfer, the job’s submitting owner is notified of the move by

mail. If any steps within the job are not idle, the transfer request is rejected and the

command exits with an error message. The remote job retains the original job_ID

from the local cluster. Upon transfer, the remote cluster performs any user

mapping and remote job filtering necessary for the job.

Any changes made to the idle job in the local cluster by the llmodify command

will not be carried forward to the remote cluster. Any jobs submitted when the

local cluster was not configured as a part of a multicluster cannot be moved once

the cluster converts to a multicluster environment.

Prior to moving the job, the administrator can examine the LoadLeveler statements

in the job command file using the llq -x -d command. This will show what values

the moved job will use during submission to the remote cluster.

Only administrators can issue the llmovejob command. In a mixed operating

system multicluster environment, administrators must ensure the binary

compatibility of the job being transferred.

Standard Error

An error message is issued and the command exits for the following error cases:

v The cluster name is unknown

v The requested cluster cannot be accessed

v The job is not in the Idle state

v The job is unknown

llmovejob

440 TWS LoadLeveler: Using and Administering

v The -C and -j flags were not specified together

Examples

This example moves the idle job silver.11 from the local cluster to the remote

cluster cluster1:

llmovejob -C cluster1 -j silver.11

You should receive output similar to the following:

Job silver.11 has been submitted to cluster cluster1

Security

LoadLeveler administrators can issue this command.

llmovejob

Chapter 16. Commands 441

llmovespool - Move job records

Purpose

llmovespool – Moves the job records from the spool of one managing Schedd to

another managing Schedd in the local cluster.

Syntax

llmovespool { -? | -H | -v | [-d directory] -h hostname }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-d directory Indicates the directory containing the job queue whose job records

are to be moved. If not specified, the job queue in the current

working directory will be moved. The specified directory must be

accessible from the machine upon which the command is issued.

-h hostname Indicates the hostname of the machine running the Schedd

daemon, which manages the job queue database that will receive

the job records being moved. This flag has no default and is

required.

Description

The llmovespool command is intended for recovery purposes only. The command

moves the job records from the spool of one managing Schedd to another

managing Schedd in the local cluster. The command must be run from a machine

that has read and write access to the specified spool directory containing the job

records being moved. This machine must also have network connectivity to the

machine running the Schedd daemon that will receive the job records. Jobs to be

moved can be in any state.

The Schedd that created the job records to be moved must not be running during

the move operation. Jobs within the job queue database will be unrecoverable if

the job queue is updated during the move by any process other than the

llmovespool command. The Schedd that created the job records to be moved must

have the schedd_fenced machine stanza keyword set to true prior to the

llmovespool command being issued.

All moved jobs retain their original job identifiers. The llmovespool command

reports the status of each job as it is processed. When the job records for a job are

successfully transferred, the schedd_host of the job is updated to represent the

new managing Schedd and the job records in the specified spool directory are

deleted. The successful status is reported to standard output. If the transfer for any

step within a job fails, the job records for that step remain in the specified spool

directory and the error status is reported to standard error. If for some reason a job

fails, the llmovespool command should be reissued against the specified spool

directory to reprocess the job.

llmovespool

442 TWS LoadLeveler: Using and Administering

|
|

|

|
|

|

|

|

||

||

||
|
|

||
|
|
|

||
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

The llmovespool command does not move the reservation queue or fair share

scheduling data found within the specified spool directory.

The command can be issued by administrators only.

Standard Error

An error message is issued and the command exits for the following error cases:

v The command was not issued with the required -h flag.

v The machine stanza for the machine running the Schedd daemon, which

manages the job queue database that is receiving the job records, has the

schedd_fenced keyword set to true.

v The machine stanza for the machine running the Schedd daemon, which

manages the job queue database being moved, does not have the schedd_fenced

keyword set to true.

v The specified hostname is not a valid machine.

v The command cannot make a connection to the specified hostname.

v The specified directory does not exist.

v The job records within the specified directory cannot be accessed.

v There are no job records within the specified spool directory.

v The Schedd on the specified hostname cannot accept the transferred job because

a job with the same job identifier already exists.

Examples

This example moves the job records found in /tmp/tmp_spool to the Schedd

running on the c188f2n08 machine:

llmovespool -d /tmp/tmp_spool -h c188f2n08

You should receive output similar to the following:

The job spool records in /tmp/tmp_spool are being moved to c188f2n08.

The records for job c188f2n02.ppd.pok.ibm.com.1 were successfully transferred.

The transfer is complete.

Security

LoadLeveler administrators can issue this command.

llmovespool

Chapter 16. Commands 443

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|
|
|
|
|

|

|

llpreempt - Preempt a submitted job step

Purpose

llpreempt – Preempts the job steps specified in the joblist argument using the

preempt method specified in the preempt_method argument or resumes the jobs

steps specified in the joblist argument. Only jobs that have been preempted with

the preempt method of suspend through the llpreempt command or the

ll_preempt subroutine can be resumed with this command. The llpreempt

command cannot resume a job step that was preempted through the

PREEMPT_CLASS rules or a job step that was preempted with a preempt method

other than suspend.

Syntax

llpreempt -? | -H | -v | [-q] [-r | -m method] { [-u userlist]

 [-h hostlist] | [joblist] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-r Resumes the specified jobs. This option is valid only for jobs that were

preempted by the suspend method.

-m preempt_method

su Indicates preempted jobs that are to be suspended. Suspended jobs will

stay in the preempted state until the action is undone with the -r flag.

This is the default.

 Preemption using the suspend method is not supported by the

LoadLeveler for Linux platforms. On these platforms, the llpreempt

command will have no effect if the suspend method is specified either

explicitly as a command line option (-m su), or implicitly through the

default_preempt_method = su configuration keyword. Note that su is

the default value of the default_preempt_method keyword.

vc Indicates that preempted jobs are to be vacated. The preempted jobs

will be terminated and remain in the job queue. The job will be

rescheduled to run as soon as resources for the job are available.

rm Indicates that preempted jobs are to be removed. The preempted jobs

will be terminated and removed from the job queue. In order to rerun

the job, you must resubmit the job to LoadLeveler.

sh Indicates that preempted jobs are to be put into system hold. The

preempted jobs will be terminated and remain in the job queue in

system hold state. The jobs will remain in system hold until released

by a LoadLeveler administrator using the llhold command. After being

released, the job will go into the idle state where it will be rescheduled

to run as soon as resources for the job are available.

uh Indicates that preempted jobs are to be put into user hold. The

preempted jobs will be terminated and remain in the job queue in user

llpreempt

444 TWS LoadLeveler: Using and Administering

hold state. The jobs will remain in the user hold until released by the

owner of the job step or by a LoadLeveler administrator using the

llhold command. After being released, the job will go into the idle

state where it will be rescheduled to run as soon as resources for the

job are available.

-u userlist

Specifies a blank-delimited list of user names. When used with the -h option,

only the user’s job steps monitored on the machines in the hostlist are

preempted. When used alone, only the user’s jobs monitored by the machine

issuing the command are preempted.

-h hostlist

Specifies a blank-delimited list of host names. All job steps monitored by these

hosts are preempted. When used with the -u option, only the specified user’s

job steps monitored by these hosts are preempted.

joblist

Is a blank-delimited list of job and step identifiers to be preempted. When a

job identifier is specified, the command action is taken for all steps of the job.

At least one job or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the command is invoked on the same machine that assigned

the job and step identifiers. In this case, LoadLeveler will use the local

machine’s hostname to construct the full job or step identifier.

 If the -u or -h option is specified, the joblist is ignored.

Note: For coscheduled jobs, even if all coscheduled job steps are not in the list

of targeted job steps, the requested operation is performed on all

coscheduled job steps.

Description

This is a LoadLeveler administrator command used for BACKFILL and external

schedulers only. Regular users do not have the authority to run this command.

This command can only be used when the preemption function is enabled

(BACKFILL or external schedulers with preemption enabled).

LoadLeveler for Linux platforms support all preempt methods except suspend (su).

Job steps with a job_type of bluegene cannot be made preemptable.

Examples

1. This example requests that job step c163n07.12.0 be preempted by the default

preempt method:

llpreempt c163n07.12.0

2. This example requests that job step c163n07.12.0 be resumed:

llpreempt -r c163n07.12.0

llpreempt

Chapter 16. Commands 445

|
|
|

3. This example requests that all job steps owned by user frank and monitored by

host c52n01 be preempted by the system hold method:

llpreempt -m sh -u frank -h c52n01

Results

The following shows a sample system response for the llpreempt command:

llpreempt: request has been sent to LoadLeveler.

Security

LoadLeveler administrators can issue this command.

llpreempt

446 TWS LoadLeveler: Using and Administering

llprio - Change the user priority of submitted job steps

Purpose

llprio – Changes the user priority of one or more job steps in the LoadLeveler

queues. You can adjust the priority by supplying a + (plus) or − (minus)

immediately followed by an integer value. llprio does not affect a job step that is

running, even if its priority is lower than other jobs steps, unless the job step goes

into the Idle state.

Syntax

llprio [-?] [-H] [-v] [-q] [-X cluster_name] [+integer | −integer | -p priority] joblist

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-X cluster_name

Specifies the name of a single cluster where the command is to run.

+ | − integer

Operates on the current priority of the job step, making it higher (closer to

execution) or lower (further from execution) by adding or subtracting the value

of integer.

-p priority

Is the new absolute value for priority. The valid range is 0–100 (inclusive)

where 0 is the lowest possible priority and 100 is highest.

joblist

Is a blank-delimited list of jobs. When a job identifier is specified, the

command action is taken for all steps of the job. At least one job or step

identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the command is invoked on the same machine that assigned

the job and step identifiers. In this case, LoadLeveler will use the local

machine’s hostname to construct the full job or step identifier.

Description

The user priority of a job step ranges from 0 to 100 inclusively, with higher

numbers corresponding to greater priority. The default priority is 50. Only the

owner of a job step or the LoadLeveler administrator can change the priority of

that job step. Note that the priority is not the UNIX nice priority.

llprio

Chapter 16. Commands 447

Priority changes resulting in a value less than 0 become 0.

Priority changes resulting in a value greater than 100 become 100.

Any change to a job step’s priority applied by a user is relative only to that user’s

other job steps in the same class. If you have three job steps enqueued, you can

reorder those three job steps with llprio but the result does not affect job steps

submitted by other users, regardless of their priority and position in the queue.

For more information, see “Setting and changing the priority of a job” on page 212.

Examples

1. This example raises the priority of job 4, job step 1 submitted to machine

bronze by a value of 25:

llprio +25 bronze.4.1

2. This example sets the priority of job 18, job step 4 submitted to machine silver

to 100, the highest possible value:

llprio -p 100 silver.18.4

You should receive a response similar to the following:

llprio: Priority command has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llprio

448 TWS LoadLeveler: Using and Administering

llq - Query job status

Purpose

llq – Queries information about jobs in the LoadLeveler queues.

Syntax

llq [-?] [-H] [-v] [-W] [-x [-d]] [-s] [-l] [-b] [-w] [-X {cluster_list | all}]

 [-j joblist | joblist] [-u userlist] [-h hostlist] [-c classlist]

 [-R reservation_list] [-f category_list] [-r category_list]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service

level date, and lowest level of the operating system to run this release.

-W Specifies that the width of columns in tabular output will be increased to

fit the widest entry.

-x Provides extended information about the selected job. If the -x flag is used

with the -r, -s, or -f flag, an error message is generated.

 CPU usage and other resource consumption information on active jobs can

only be reported using the -x flag if the LoadLeveler administrator has

enabled it by specifying A_ON and A_DETAIL for the ACCT keyword in

the LoadLeveler configuration file.

 Normally, llq connects with the central manager to obtain job information.

When you specify -x, llq connects to the Schedd machine that received the

specified job to get extended job information. However, some statistics,

including those corresponding to System Priority and q_sysprio, are

available only from the central manager. Do not use the -x option if you

need these statistics.

 When specified without -l, CPU usage for active jobs is reported in the

short format.

Note: Using both the -l and -x options without a joblist specification can

produce a very long report and excessive network traffic.

-d Displays the user-specified unfiltered job command file keyword

statements. Information is available only on jobs submitted in a

multicluster environment. You must specify the -d flag in combination with

the -x flag.

-s Provides information on why a selected list of jobs remain in the

NotQueued, Idle, or Deferred state. Along with this flag, users must

specify a list of jobs. The user can also optionally supply a list of machines

to be considered when determining why the jobs cannot run. If a list of

machines is not provided, the default is the list of machines in the

LoadLeveler cluster. For each job, llq determines why the job remains in

one of the given states instead of Running.

-l Specifies that a long listing be generated for each job for which status is

requested.

llq

Chapter 16. Commands 449

||

||
|

-b Shows Blue Gene jobs in short form. This is the Blue Gene equivalent of

the llq standard listing. Using this flag will display the following fields:

BG The state of the job on the Blue Gene system.

Id The LoadLeveler job step ID.

LL The LoadLeveler state of the job step.

Owner

The user ID of the job’s owner.

Partition

The name of the Blue Gene partition assigned to the job.

PT The state of the Blue Gene partition assigned to the job.

Size The number of Blue Gene compute nodes allocated for the job.

Submitted

The time the job step was submitted to LoadLeveler.

-w Provides AIX Workload Manager (WLM) CPU and real memory statistics

for jobs in the running state. This flag can be used with a joblist, steplist,

or a single stepid. All other flags except -h will result in an error message.

 When the -w flag is augmented with a single stepid, the -h flag can be

used in conjunction with -w to specify a single hostname.

 This flag can only be used when ENFORCE_RESOURCE_USAGE is

enabled in the configuration file. Otherwise, an error message is produced.

 The following statistics are displayed for every node the job is running on:

v Current CPU resource consumption as a percentage of the total resources

available

v Total CPU time consumed in milliseconds

v Current real memory consumption as a percentage of the total resources

available

v The highest number of resident memory pages used

-X {cluster_list | all}

Indicates that you can specify the -X flag with either:

cluster_list Is a blank-delimited list of clusters where the command is

to run.

all Is the reserved word indicating that the command is to run

in all accessible clusters.

-j joblist |joblist

Is a blank-delimited list of job and step identifiers. When a job identifier is

specified, the command action is taken for all steps of the job. At least one

job or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step

identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was

submitted.

llq

450 TWS LoadLeveler: Using and Administering

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the command is invoked on the same machine that

assigned the job and step identifiers. In this case, LoadLeveler will use the

local machine’s hostname to construct the full job or step identifier.

 The -j joblist flag is used to distinguish a joblist when specified in

combination with the any flag that supports a list.

 If the -X flag is specified in combination with a joblist, the -j flag must be

specified. For example:

llq -X my_cluster1 my_cluster2 -j c94n13.2.1 c94n13.25.0

-u userlist

Is a blank-delimited list of users. Only job steps belonging to users in this

list are queried.

-h hostlist

Is a blank-delimited list of machines. If the -s flag is not specified, only job

steps managed by the Schedd on machines in this list are queried. If the -s

flag is specified, the list of machines is considered when determining why

a job remains in the Idle state.

 When the -h flag is used with the -w flag, only a single machine name can

be specified to obtain the WLM statistics for that machine.

-c classlist

Is a blank-delimited list of classes. Only job steps belonging to classes in

this list are queried.

-f category_list

Is a blank-delimited list of categories you want to query. Each category you

specify must be preceded by a percent sign. The category_list cannot

contain duplicate entries. This flag allows you to create a customized

version of the standard llq listing. You cannot use this flag with the -l flag.

The output fields produced by this flag all have a fixed length. The output

is displayed in the order in which you specify the categories. category_list

can be one or more of the following:

%a Account number

%c Class

%cc Completion code

%dc Completion date

%dd Dispatch Date

%dh Hold date

%dq Queue date (″Submitted″ date of ″standard″ llq output)

%fj Favored Job

%gl LoadLeveler group

%gu UNIX group

%h Hostname (first hostname if more than one machine is allocated to

the job step)

%id Step ID

%is Virtual image size

%jn Job name

%jt Job type

%nh Number of hosts allocated to the job step

%o Job owner

%p User priority

%R Reservation ID

%sn Step name

%st Status

llq

Chapter 16. Commands 451

||

%X Cluster name where the job is to be scheduled

%Xf Cluster name from where the job was sent

%Xk Cluster name the user requested

%Xs Cluster name from where the job was submitted

%Xu User name of the original submission

-r category_list

Is a blank-delimited list of formats (categories) you want to query. Each

category you specify must be preceded by a percent sign. The category_list

cannot contain duplicate entries. This flag allows you to create a

customized version of the standard llq listing. You cannot use this flag

with the -l flag. The output produced by this flag is considered raw, in that

the fields can be variable in length. Output fields are separated by an

exclamation point (!). The output is displayed in the order in which you

specify the formats. category_list can be one or more of the formats listed

under the -f flag.

-R reservation_list

Is a blank-delimited list of reservation identifiers. Only job steps bound to

reservations in this list are queried. The format of a full LoadLeveler

reservation identifier is [host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation identifier.

v rid is the number assigned to the reservation when it was created. An rid

is required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form, rid[.r],

when the command is invoked on the same machine that assigned the

reservation identifier. In this case, LoadLeveler will use the local machine’s

host name to construct the full reservation identifier.

 If a job step is not specified and if -u, -h, -c, or -R is not specified, all jobs are

queried.

If a job step is specified, you cannot specify -u, -h, -c, or -R, except in the cases of

-w and -s, for which the -h flag has special meaning.

When -u, -h, -c, or -R are used in combination, the result is the intersection of the

job steps selected by each flag.

The -b flag can be used alone or with the -u flag and the joblist argument. If used

in conjunction with any other flag, an error will occur.

You cannot specify -d, -x, or -w in combination with the -X flag.

Description

The llq command queries information about jobs in the LoadLeveler queues.

Examples

 1. This example generates the standard listing where the machine mars has two

jobs running and one job waiting:

llq

452 TWS LoadLeveler: Using and Administering

Id Owner Submitted ST PRI Class Running On

---------------- ---------- ----------- -- --- -------- ----------

mars.498.0 brownap 5/20 11:31 R 100 silver mars

mars.499.0 brownap 5/20 11:31 R 50 No_Class mars

mars.501.0 brownap 5/20 11:31 I 50 silver

3 job step(s) in query, 1 waiting, 0 pending, 2 running, 0 held,

 0 preempted

The standard listing includes the following fields:

Class Job class.

Id The format of a full LoadLeveler step identifier is host.jobid.stepid. If

the llq command returns information about a job owned by a Schedd

in the same domain, then the domain of the hostname will not appear

in the output. However, when the llq command reports information

about a job owned by a Schedd in a different domain, the fully

qualified hostname is always included. Due to space limitations, the

domain of the host may be truncated to fit in the space allocated to

the Id field. If the domain is truncated, a dash (-) will appear at the

end to indicate that characters have been left out. To see the full job

ID, run llq with the -l flag.

Owner

User ID that the job will be run under.

PRI User priority of the job step, where the values are defined with the

user_priority keyword in the job command file or changed by the

llprio command, which is described in “llprio - Change the user

priority of submitted job steps” on page 447

Running On

If running, the name of the machine the job step is running on. This is

blank when the job is not running. For a parallel job step, only the

first machine is shown.

ST For more information, see “LoadLeveler job states” on page 18.

Submitted

Date and time of job submission.

 2. This example generates the long listing. The long listing is generated when

you specify the -x -l flags with the llq command:

llq -l -x c271f2rp01.ppd.pok.ibm.com.16.0

The long listing includes the following fields. See Appendix B, “Sample

command output,” on page 673 for sample output of long listings.

Account

The account number specified in the job command file.

Adapter Requirement

Reflects the settings of the network keyword in the job command file.

 For more information on the network keyword, see “Job command

file keyword descriptions” on page 336.

Allocated Hosts

The machines that have been allocated for this job step.

Args Arguments that were passed to the executable.

llq

Chapter 16. Commands 453

Blocking

Reflects the settings for the blocking keyword in the job command

file.

Blue Gene Job ID

The ID of the Blue Gene job in the Blue Gene DB2® database. This

field is displayed for Blue Gene jobs only.

Blue Gene Status

The state of the Blue Gene job in the Blue Gene DB2 database. This

field is displayed for Blue Gene jobs only.

BG Requirements

The job step requirements on Blue Gene resources as specified at job

submission. This field is displayed for Blue Gene jobs only.

Bulk Transfer

Indicates that the value will be Yes or No depending on whether the

application requested that the communication subsystem use bulk

transfer by specifying bulkxfer=yes in the job command file.

Checkpoint Directory

Value of the ckpt_dir keyword.

Checkpoint File

For AIX checkpointable job steps, the file name to be used for

checkpoint data.

Checkpointable

Indicates if LoadLeveler considers the job step checkpointable (yes, no,

or interval).

Ckpt Accum Time

Accumulated time, in seconds, the job step has spent checkpointing.

Ckpt Elapse Time

Amount of time taken to perform the last successful checkpoint.

Ckpt Execute Dir

The directory where the job step’s executable will be saved for

checkpointable jobs.

Ckpt Hard Limit

Checkpoint hard limit as specified at job step submission.

Ckpt Soft Limit

Checkpoint soft limit as specified at job step submission.

Ckpt Start Time

The start time of the current checkpoint in progress. Blank if no

checkpoint running.

Class The class of the job step as specified at job submission.

class_sysprio

The class priority of the job step, where the value is defined in the

administration file.

Cluster input file

The information format is local_pathname, remote_pathname.

 where:

llq

454 TWS LoadLeveler: Using and Administering

|
|
|

|
|

|
|
|

local_pathname

Is the full pathname of the file to be copied from the local

cluster.

remote_pathname

Is the full pathname of the file that will be copied into the

remote cluster.

Cluster output file

The information format is local_pathname, remote_pathname.

 where:

local_pathname

Is the full pathname of the file that will be copied into the

local cluster.

remote_pathname

Is the full pathname of the file to be copied from the remote

cluster.

Cmd The name of the executable associated with the executable keyword

(if specified) or the name of the job command file.

Comment

The comment specified by the comment keyword in the job command

file.

Completion Code

The status returned by the wait3 UNIX system call.

Completion Date

Date and time job completed or exited.

Core Hard Limit

Core hard limit as specified at job submission.

Core Soft Limit

Core soft limit as specified at job submission.

Coschedule

Indicates whether the job step is required to be coscheduled (yes or

no).

Cpu Hard Limit

CPU hard limit as specified at job submission.

Cpu Soft Limit

CPU soft limit as specified at job submission.

Data Hard Limit

Data hard limit as specified at job submission.

Data Soft Limit

Data soft limit as specified at job submission.

Dependency

Job step dependencies as specified at job submission.

Dispatch Time

The time that the job was dispatched.

Env Environment variables to be set before executable runs. Appears only

when the -x option is specified.

Err The file to be used for stderr.

llq

Chapter 16. Commands 455

|
|
|

Error Text

The error text in the Blue Gene job record from the Blue Gene DB2

database. This field is displayed for Blue Gene jobs only.

Fail Ckpt Time/Date

Time and date stamp of the last failed checkpoint.

File Hard Limit

File hard limits as specified at job submission.

File Soft Limit

File soft limit as specified at job submission.

Favored Job

Indicates whether the job has been specified to have a higher system

priority than all jobs that are not favored (yes or no).

Good Ckpt Time/Date

Time and date stamp of the last successful checkpoint.

group_sysprio

The group priority of the job step, where the value is defined in the

administration file.

high water

The highest number of resident memory pages used. Real Memory

resource only.

Hold Job Until

Job step is deferred until this date and time.

In The file to be used for stdin.

Initial Working Dir

The directory from which the job step is run. The relative directory

from which the stdio files are accessed, if appropriate.

Job Accounting Key

The Job Accounting Key is a unique identifier for a LoadLeveler job

step. The accounting key is stored in the AIX accounting record for

each process associated with a LoadLeveler job step. This field can be

used to correlate AIX accounting records with LoadLeveler accounting

records. The Job Accounting Key is stored in the history file and can

be displayed using the llsummary -l command.

 This keyword is not applicable on LoadLeveler for Linux platforms.

 For more information on the Job Accounting Key, see “Correlating AIX

and LoadLeveler accounting records” on page 61.

Job Name

The name of the job.

Job Step ID

The job step identifier.

Large Page

Indicates whether Large Page memory should be used to run this job

step. Can be Y (use Large Page memory if available), N (No), or M

(Mandatory).

LoadLeveler Group

The LoadLeveler group associated with the job step.

llq

456 TWS LoadLeveler: Using and Administering

Machine Speed

For a serial job step, the value associated with the speed keyword of

the machine that is running this job step. For a parallel job step, the

value associated with the speed keyword of the first machine that has

been allocated for this job step.

Max Processors

The maximum number of processors that can be used for this job step.

McmAffinityOptions

The MCM affinity options for the job.

Min Processors

The minimum number of processors needed for this job step.

Negotiator Messages

Informational messages for the job step if it is in the Idle or

NotQueued state.

(Node) Allocated Hosts

v The machines of this Node type that have been allocated for this job

step. The format is:

hostname:task status:adapter usage, ... ,adapter usage, \

 cpu usage, ... ,cpu usage + ... +,

hostname:task status:adapter usage, ... ,adapter usage, \

 cpu usage, ... ,cpu usage

v The adapter usage information has the format:

adapter name(adapter window ID, network protocol, mode, \

 adapter window memory)

For information on the units used to report window memory, see

the description of the “Adapter” field in “llstatus - Query machine

status” on page 477.

v The CPU usage information has one of the following formats:

CPU <cpulist>

MCMnumber:CPU <cpulist>

The cpulist is a blank-delimited list of individual CPU IDs or CPU

ranges, or a combination of both CPU IDs and CPU ranges. The

CPU range is specified as the starting CPU ID and the ending CPU

ID separated by a hyphen (-).

(Node) Name

Blank value. Reserved for future use.

(Node) Node actual

Actual number of machines of this Node type that are used in the

running of this job step.

(Node) Node maximum

Maximum number of machines of this Node type that can be used to

run this job step.

(Node) Node minimum

Minimum number of machines of this Node type required to run this

job step.

(Node) Preferences

Job step preferences as specified at job submission.

(Node) Requirements

Job step requirements as specified at job submission.

llq

Chapter 16. Commands 457

(Node/Master Task) Exec Args

The arguments passed to the master task executable.

(Node/Master Task) Executable

The executable associated with the master task.

(Node/Master Task) Num Task Inst

The number of task instances of the master task.

(Node/Master Task) Task Instance

v Task instance information has the format:

hostname:task ID:adapter usage, ... ,adapter usage

v Adapter usage information has the format:

adapter name(adapter window ID, network protocol, mode, \

adapter window memory)

For information on the units used to report window memory, see

the description of the “Adapter” field in “llstatus - Query machine

status” on page 477.

(Node/Task) Num Task Inst

The number of task instances.

(Node/Task) Task Instance

v Task instance information has the format:

hostname:task ID:adapter usage, ... ,adapter usage, cpu usage

v Adapter usage information has the format:

adapter name(adapter window ID, network protocol, mode, \

adapter window memory)

For information on the units used to report window memory, see

the description of the “Adapter” field in “llstatus - Query machine

status” on page 477.

v The CPU usage information has one of the following formats:

CPU <cpulist>

MCMnumber:CPU <cpulist>

The cpulist is a blank-delimited list of individual CPU IDs or CPU

ranges, or a combination of both CPU IDs and CPU ranges. The

CPU range is specified as the starting CPU ID and the ending CPU

ID separated by a hyphen (-).

Node Usage

A request that a node be shared or not shared or that a time-slice is

not shared. The user specifies this request while submitting the job.

Notifications

The notification status for the job step, where:

always

Indicates notification is sent through the mail for the complete,

error, never, and start notification categories.

complete

Indicates notification is sent through the mail only when the job

step completes.

error

Indicates notification is sent through the mail only when the job

step terminates abnormally.

llq

458 TWS LoadLeveler: Using and Administering

never

Indicates notification is never sent.

start

Indicates notification is sent through the mail only when starting

or restarting the job step.

Notify User

The user to be notified by mail of a job’s status.

Out The file to be used for stdout.

Outbound Schedds

The list of Schedds that have acted as the outbound Schedd for the

job. The last Schedd in the list is the current outbound Schedd. This

field only displays multicluster-specific information that was

submitted or moved to a remote cluster.

Owner

The user ID that the job will be run under.

Partition ID

The ID of the Blue Gene partition allocated for the job. This field is

displayed for Blue Gene jobs only.

Partition State

The state of the Blue Gene partition allocated for the job. This field is

displayed for Blue Gene jobs only.

Port Number

The port number for InfiniBand resources used by the running job.

Preempt Wait Count

Specifies the number of job steps that an idle job step must preempt

before it can be started.

Preemptable

Indicates whether a job step is preemptable (yes or no).

Preferences

Job step preferences as specified at job submission.

previous q_sysprio

The previous adjusted system priority of the job step. For more

information, see “Example: How does a job’s priority affect

dispatching order?” on page 213.

q_sysprio

The adjusted system priority of the job step. For more information, see

“Example: How does a job’s priority affect dispatching order?” on

page 213.

Queue Date

The date and time that LoadLeveler received the job.

Requested Cluster

The cluster the user specified at job submission.

Requested Res. ID

The reservation identifier that a job step is requested to be bound to,

but has not yet been bound to. This field will be set when a job

submitted with a request to bind has been successfully submitted, but

llq

Chapter 16. Commands 459

|
|

the bind has not yet occurred. The bind may never occur if either the

owner of the job step is not allowed to use the reservation, or if the

reservation does not exist.

 If a job command file is used to select nodes to reserve in a make or

change reservation request and the request fails, all steps of the job, if

submitted successfully, will have MAKERES as their Requested Res.

ID and the steps will be in the NQ state.

Requirements

Job step requirements as specified at job submission.

Reservation ID

The reservation identifier that a job step is bound to. If a job step is

not bound to any reservation, this field will be blank.

Resource

The resource being enforced by WLM. This is either CPU or Real

Memory.

Resources

Reflects the settings for the resources keyword in the job command

file.

Restart

Restart status (yes or no).

Restart From Ckpt

Indicates if a job has been restarted from an existing checkpoint (yes

or no).

Restart Same Nodes

Indicates if a job step should be restarted on the same nodes after

vacate (yes or no).

Rotate Indicates whether the scheduler is free to rotate the requested Blue

Gene partition shape in order to match an available partition (TRUE

or FALSE). This field is displayed for Blue Gene jobs only.

RSet The RSet requirement of the job.

Rss Hard Limit

RSS hard limit as specified at job step submission.

Rss Soft Limit

RSS soft limit as specified at job step submission.

Running Host

For a serial job step, the machine that is running this job step. For a

parallel job step, the first machine that has been allocated for this job

step.

Schedd History

The list of Schedds that have acted as the Schedd host for the job. The

last one in the list is the current Schedd host. This field only displays

multicluster-specific information.

Scheduling Cluster

The cluster name where the job is to be scheduled. This field only

displays multicluster-specific information.

Sending Cluster

The cluster name that the job was sent from when moved. This field

only displays multicluster-specific information.

llq

460 TWS LoadLeveler: Using and Administering

Shape Allocated

The allocated shape of the Blue Gene partition for the job. This field is

defined only for running-like jobs. This field is displayed for Blue

Gene jobs only.

Shape Requested

The requested shape of the Blue Gene partition for the job, if defined,

in units of base partitions. This field is displayed for Blue Gene jobs

only.

Shell The shell to be used when the job step runs.

Size Allocated

The size of the Blue Gene partition for the job in units of compute

nodes. The size allocated is not always identical to the requested size.

This field is displayed for Blue Gene jobs only.

Size Requested

The requested size of the Blue Gene partition for the job in units of

compute nodes. The size must be equivalent to the size of the shape,

if such is defined. This field is displayed for Blue Gene jobs only.

SMT requested

Indicates the required Simultaneous Multi-Threading (SMT) state,

which is defined in the job command file, if the job step requires SMT

to be turned on or off. Valid values are yes or no.

snapshot

Current CPU or Real Memory consumption as a percentage of the

total resources available.

Stack Hard Limit

Stack hard limit as specified at job submission.

Stack Soft Limit

Stack soft limit as specified at job submission.

Starter idrss/Step Starter idrss

An integral value of the amount of unshared memory in the data

segment of a process (expressed in units of kilobytes *

seconds-of-execution).

Starter inblock/Step inblock

Number of times file system performed input. Cumulative total.

Starter isrss/Step isrss

Depending on the Operating System, this field may contain the

integral value of unshared stack size.

Starter ixrss/Step ixrss

An integral value indicating the amount of memory used by the text

segment that was also shared among other processes (expressed in

units of kilobytes * seconds-of-execution).

Starter majflt/Step majflt

Number of page faults (I/O required). Cumulative total.

Starter maxrss/Step maxrss

Maximum resident set size utilized. Maximum value.

Starter minflt/Step minflt

Number of page faults (reclaimed). Cumulative total.

llq

Chapter 16. Commands 461

|
|
|
|

Starter msgrcv/Step msgrcv

Number of IPC messages received. Cumulative total.

Starter msgsnd/Step msgsnd

Number of IPC messages sent. Cumulative total.

Starter nivcsw/Step nivcsw

Number of involuntary context switches. Cumulative total.

Starter nsignals/Step nsignals

Number of signals delivered. Cumulative total.

Starter nswap/Step nswap

Number of times swapped out. Cumulative total.

Starter nvcsw/Step nvcsw

Number of context switches due to voluntarily giving up processor.

Cumulative total.

Starter oublock/Step oublock

Number of times file system performed output. Cumulative total.

Starter System Time/Step System Time

CPU system time of Starter/Step processes. Cumulative total.

Starter Total Time/Step Total Time

CPU total time of Starter/Step processes. Cumulative total.

Starter User Time/Step User Time

CPU user time of Starter/Step processes. Cumulative total.

Status The status (state) of the job. For more information, see “LoadLeveler

job states” on page 18.

Step Adapter Memory

The total adapter pinned memory for the job step.

Step Cpu Hard Limit

Job step CPU hard limit as specified at job submission.

Step Cpu Soft Limit

Job step CPU soft limit as specified at job submission.

Step Cpus

The total ConsumableCpus for the job step.

Step Name

The name of the job step.

Step rCxt Blocks

The number of rCxt blocks for High Performance Switch adapters.

Step Real Memory

The total ConsumableMemory for the job step.

Step Type

Type of job step:

v Serial

v General parallel

v Blue Gene

v MPICH parallel

Step Virtual Memory

The total ConsumableVirtualMemory for the job step.

llq

462 TWS LoadLeveler: Using and Administering

|

Structure Version

An internal version identifier.

Submitting Cluster

The cluster name where the job was submitted from. This field only

displays multicluster-specific information.

Submitting Host

The name of the machine to which the job is submitted.

Submitting User

The user name that the job was submitted under. This field only

displays multicluster-specific information.

System Priority

The overall system priority of the job step, where the value is defined

by the SYSPRIO expression in the configuration file.

Task_geometry

Reflects the settings for the task_geometry keyword in the job

command file.

total Total CPU time consumed in milliseconds. CPU resource only.

Unix Group

The effective UNIX group name.

User Priority

The priority of the job step, as specified by the user in the job

command, or changed by the llprio command.

User Space Windows

The number of switch adapter windows assigned to the job step.

user_sysprio

The user system priority of the job step, where the value is defined in

the administration file.

Virtual Image Size

The value of the image_size keyword (if specified) or the size of the

executable associated with the executable keyword (if specified) or the

size of the job command file.

Wall Clk Hard Limit

Wall clock hard limit as specified at job submission.

Wall Clk Soft Limit

Wall clock soft limit as specified at job submission.

Wiring Allocated

Allocated type of wiring for the Blue Gene partition. It is either TORUS

or MESH. This field is displayed for Blue Gene jobs only.

Wiring Requested

Requested type of wiring for the Blue Gene partition. It is TORUS, MESH,

or PREFER_TORUS. This field is displayed for Blue Gene jobs only.
 3. Using the abbreviated form of jobid, this example generates a standard listing

for all job steps with jobid 12 assigned by the local machine:

llq 12

 4. This example generates a standard listing for all job steps owned by either

rich or nathan and bound to reservation 6:

llq -u rich nathan -R 6

llq

Chapter 16. Commands 463

5. This example generates an extended listing for all job steps of class batch or

class highprio, managed by the Schedd daemon on either c94n07 or c94n09:

llq -x -c batch highprio -h c94n07 c94n09

 6. The following example generates a standard listing for all job steps bound to

reservation c94n04.2.r:

llq -R c94n04.2.r

You should receive a response similar to the following:

Id Owner Submitted ST PRI Class Running On

------------------- ---------- ----------- -- --- --------- -----------

c94n04.5.0 zhong 2/8 08:17 I 50 classA

1 job step(s) in query, 1 waiting, 0 pending, 0 running, 0 held,

 0 preempted

 7. The following example generates a customized listing for all job steps:

llq -f %id %o %R

You should receive a response similar to the following:

Step Id Owner Reservation ID

------------------------ ----------- ------------------------

c94n04.5.0 zhong c94n04.2.r

c94n04.4.0 zhong

2 job step(s) in queue, 1 waiting, 0 pending, 0 running, 1 held,

 0 preempted

 8. The following is sample output for llq -X cluster2. The output representing a

cluster is delineated with a cluster header, in this example it is cluster2.

=================== Cluster cluster2 =======================================

Id Owner Submitted ST PRI Class Running On

---------------------- ---------- ----------- -- --- ----------- -----------

c188f2n02.9.0 brownap 10/29 13:54 R 50 april c188f2n08

1 job step(s) in query, 0 waiting, 0 pending, 1 running, 0 held, 0 preempted

 9. The following is sample output for llq -X all command where there are two

clusters:

=================== Cluster cluster1 =======================================

Id Owner Submitted ST PRI Class Running On

----------------------- ---------- ----------- -- --- ----------- ----------

c193n13.283.0 rolf 8/4 10:58 R 50 No_Class c193n13

c193n13.283.0 rolf 8/4 10:58 R 50 No_Class c193n13

c193n13.289.0 rolf 8/4 10:58 R 50 No_Class c193n13

c193n13.291.0 rolf 8/4 10:59 R 50 No_Class c193n13

c193n13.293.0 rolf 8/4 10:59 R 50 No_Class c193n13

c193n13.295.0 rolf 8/4 10:59 R 50 No_Class c193n13

c193n13.297.0 rolf 8/4 11:01 R 50 No_Class c193n13

c193n13.299.0 brownap 8/4 11:02 R 50 No_Class c193n13

7 job step(s) in queue, 0 waiting, 0 pending, 7 running, 0 held, 0 preempted

llq

464 TWS LoadLeveler: Using and Administering

=================== Cluster cluster2 ======================================

Id Owner Submitted ST PRI Class Running On

------------------- ---------- ----------- -- --- ------------ -----------

c193n13.265.0 llbld 8/2 13:42 R 50 No_Class c197blade3b14

c193n13.267.0 llbld 8/2 13:43 R 50 No_Class c197blade3b14

c193n13.271.0 llbld 8/2 13:55 I 50 No_Class

c193n13.273.0 llbld 8/4 10:53 I 50 No_Class

c193n13.275.0 llbld 8/4 10:53 I 50 No_Class

c193n13.277.0 llbld 8/4 10:53 I 50 No_Class

c193n13.279.0 llbld 8/4 10:58 I 50 No_Class

7 job step(s) in queue, 5 waiting, 0 pending, 2 running, 0 held, 0 preempted

10. The following is sample output for llq -b for a standard Blue Gene listing:

Id Owner Submitted LL BG PT Partition Size

--------------------- ---------- ----------- --- --- --- ------------ -----

fen01.193.0 jdoe 2/21 22:52 R C part031 65536

fen02.1305.0 jfoe 2/20 02:36 R R B part031 1024

fen01.194.0 jane 2/21 14:12 I 512

11. This example generates a customized and formatted standard listing:

llq -f %id %c %dq %dd %gl %h

You should receive output similar to the following:

Step Id Class Queue Date Disp. Date LL Group Running On

-------------- ---------- ----------- ----------- ---------- ---------------

ll6.2.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll6.pok.ibm.com

ll6.1.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll6.pok.ibm.com

ll6.3.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll5.pok.ibm.com

3 job step(s) in queue, 0 waiting, 0 pending, 3 running, 0 held, 0 preempted

12. This example generates a customized, unformatted (raw) standard listing.

Output fields are separated by an exclamation point (!).

llq -r %id %c %dq %dd %gl %h

You should receive output similar to the following:

ll6.pok.ibm.com.2.0!No_Class!10/16/2006 09:19!10/16/2006 09:21! \

 No_Group!ll6.pok.ibm.com

ll6.pok.ibm.com.1.0!No_Class!10/16/2006 09:19!10/16/2006 09:21! \

 No_Group!ll6.pok.ibm.com

ll6.pok.ibm.com.3.0!No_Class!10/16/2006 09:19!10/16/2006 09:21! \

 No_Group!ll5.pok.ibm.com

13. This example generates a WLM CPU and real memory statistics listing where

c209f1n05.13.0 is a CPU intensive parallel job step currently running on the 2

nodes c209f1n05 and c209f1n01: If the LoadLeveler interface to AIX Workload

Manager (WLM) is enabled, the -w option can be used to obtain CPU and real

memory statistics of job steps in running state. Note that Large Page memory

information is not included in the statistics since WLM does not manage

Large Page memory.

llq -w c209f1n05.13.0

llq

Chapter 16. Commands 465

You should receive output similar to the following:

=============== Job Step c209f1n05.ppd.pok.ibm.com.13.0 ===============

 c209f1n05.ppd.pok.ibm.com:

 Resource: CPU

 snapshot: 99

 total: 80172

 Resource: Real Memory

 snapshot: 1

 high water: 2561

 c209f1n01.ppd.pok.ibm.com:

 Resource: CPU

 snapshot: 100

 total: 79303

 Resource: Real Memory

 snapshot: 1

 high water: 1919

14. The following is sample llq -l output for task instances and allocated hosts if

the job requested MCM affinity:

Allocated Hosts: e189f4rp04.ppd.pok.ibm.com:: \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 MCM0:CPU< 0-5 >,MCM0:CPU< 0-5 > \

 + e189f4rp03.ppd.pok.ibm.com:: \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 MCM1:CPU< 4-5 >,MCM1:CPU< 4-5 >

Num Task Inst: 4

 Task Instance: e189f4rp04:0:sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 MCM0:CPU< 0-5 >

 Task Instance: e189f4rp04:1:sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 MCM0:CPU< 0-5 >

 Task Instance: e189f4rp03:2:sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 MCM1:CPU< 4-5 >

 Task Instance: e189f4rp03:3:sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 MCM1:CPU< 4-5 >

Note that the < > notation will be used to list individual CPU IDs instead of

the CPU count () notation when the RSET_SUPPORT configuration file

keyword is set to RSET_CONSUMABLE_CPUS or RSET_MCM_AFFINITY.

15. The following example shows the Resource Set information in the llq -l listing

when the consumable CPUs Resource Set requirement is requested:

Allocated Hosts : e189f4rp01.ppd.pok.ibm.com:: \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 CPU< 0-5 >,CPU< 0-5>

 + e189f4rp02.ppd.pok.ibm.com:: \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 CPU< 0-5 >,CPU< 0-5 >

Num Task Inst: 4

 Task Instance: e189f4rp01:0:sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 CPU< 0-5 >

 Task Instance: e189f4rp01:1:sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 CPU< 0-5 >

llq

466 TWS LoadLeveler: Using and Administering

Task Instance: e189f4rp02:2:sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 CPU< 0-5 >

 Task Instance: e189f4rp02:3:sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 CPU< 0-5 >

16. The following example shows output for the llq -l command when rCxt

blocks are present:

.

.

.

Adapter Requirement: (sn_single,MPI,US,shared,AVERAGE,instances=1, \

 rcxtblks=5)

.

.

.

Num Task Inst: 4

 Task Instance: c60f1rp02:0:sn1(MPI,US,10,Shared,5 rCxt Blks),

 Task Instance: c60f1rp02:1:sn0(MPI,US,10,Shared,5 rCxt Blks),

 Task Instance: c60f1rp02:2:sn1(MPI,US,11,Shared,5 rCxt Blks),

 Task Instance: c60f1rp02:3:sn0(MPI,US,11,Shared,5 rCxt Blks),

17. The following example shows output for the llq -l command when SMT is

requested:

=============== Job Step blablahome.clusters.com.22.0 ===============

 Job Step Id: blablahome.clusters.com.22.0

 Job Name: blablahome.clusters.com.22

.

.

.

 Status: Running

.

.

.

 Large Page: N

 Coschedule: no

 SMT requested: yes

Checkpointable: no

.

.

.

18. The following example shows the port number for the InfiniBand resources

used by the running job:

.

.

.

 Task

 Num Task Inst: 2

 Task Instance: c171f6sq08:0:ib0(MPI,US,2,Shared,0 rCxt Blks,1), \

 ib1(MPI,US,66,Shared,0 rCxt Blks,2),

 Task Instance: c171f6sq08:1:ib0(MPI,US,3,Shared,0 rCxt Blks,1), \

 ib1(MPI,US,67,Shared,0 rCxt Blks,2),

 .

 .

 .

Security

LoadLeveler administrators and users can issue this command.

llq

Chapter 16. Commands 467

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

llqres - Query a reservation

Purpose

llqres – Returns information about reservations in LoadLeveler.

Syntax

llqres { -? | -H | -v | -W | [-l | -r] [-s] [[-u user_list] [-g group_list]

 [-h host_list | -h all] [-B base_partition_list | -B all] [-b begin_time]

 [-e end_time] | -R reservation_list] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service

level date, and lowest level of the operating system to run this release.

-W Specifies that the width of columns in tabular output will be increased to

fit the widest entry.

-l Specifies that a long listing be generated for each reservation to be queried.

-r Specifies raw mode for output. Each reservation will occupy one line with

the output fields separated by an exclamation point (!).

-s Specifies that short host names will be used in the output of machine

names.

-u user_list

Specifies a blank-delimited list of users. Reservations to be queried are

owned by one of these users.

-g group_list

Specifies a blank-delimited list of LoadLeveler groups. Reservations to be

queried are owned by one of these groups.

-h all

-h host_list

Specifies a blank-delimited list of machines or all machines. Reservations to

be queried use one or more of these machines.

-B all

-B base_partition_list

Specifies all or a blank-delimited list of base partitions in the Blue Gene

system. Reservations to be queried use one or more of these base

partitions.

-b begin_time

Reservations to be queried are active at or after the specified begin time.

The -b flag can be used together with the -e flag to query reservations

expected to be active between the begin and end times. The begin_time

must be specified using the format [mm/dd[/[cc]yy]] HH:MM. Hours

must be specified using a 24-hour clock.

-e end_time

Reservations to be queried are active at or before the specified end time.

The -e flag can be used together with the -b flag to query reservations

llqres

468 TWS LoadLeveler: Using and Administering

||

||
|

|
|
|
|

|
|
|
|
|

expected to be active between the begin and end times. The end_time must

be specified using the format [mm/dd[/[cc]yy]] HH:MM. Hours must be

specified using a 24-hour clock.

-R reservation_list

Is a blank-delimited list of reservation identifiers to be queried. The format

of a full LoadLeveler reservation identifier is [host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation identifier.

v rid is the number assigned to the reservation when it was created. An rid

is required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form, rid[.r],

when the command is invoked on the same machine that assigned the

reservation identifier. In this case, LoadLeveler will use the local machine’s

host name to construct the full reservation identifier.

 When -R is specified, -u, -g, and -h are ignored.

Description

All users can issue this command. Reservations satisfying all criteria specified by

-u, -g, -h or -B, -b, and -e will be queried if more than one of these options are

present. The -h and -B flags are mutually exclusive. No reservation information

will be returned if both are specified at the same time. By default, the llqres

command queries all existing reservations.

This command is for the BACKFILL scheduler only.

Examples

When the BG_ENABLED keyword is set to false in the configuration file, the

following examples apply.

1. When issuing the llqres command, you should receive output similar to the

following:

Id Owner ST Start Time Duration #Nodes

----------- ----- -- ----------- -------- ------

c94n16.30.r loadl A 10/16 14:00 120 3

c94n16.31.r dave W 10/17 02:00 420 4

c94n16.35.r carol W 10/17 13:30 240 2

When issuing the llqres -l command, you should receive output similar to the

following:

=============== Reservation c94n16.ppd.pok.ibm.com.30.r ===============

 ID: c94n16.ppd.pok.ibm.com.30.r

 Creation Time: Mon Oct 16 08:12:23 EDT 2006

 Owner: loadl

 Group: No_Group

 Start Time: Mon Oct 16 14:00:00 EDT 2006

 Duration: 120 minutes

Expected End Time: Mon Oct 16 16:00:00 EDT 2006

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: ACTIVE

 Modified By: loadl

Modification Time: Mon Oct 16 10:21:14 EDT 2006

 Users: 0

 Groups: 1

 loadlusr

llqres

Chapter 16. Commands 469

|
|
|
|
|

Nodes: 3

 c94n01.ppd.pok.ibm.com

 c94n11.ppd.pok.ibm.com

 c94n12.ppd.pok.ibm.com

 Job Steps: 0

=============== Reservation c94n16.ppd.pok.ibm.com.31.r ===============

 ID: c94n16.ppd.pok.ibm.com.31.r

 Creation Time: Mon Oct 16 10:55:18 EDT 2006

 Owner: dave

 Group: No_Group

 Start Time: Tue Oct 17 02:00:00 EDT 2006

 Duration: 420 minutes

Expected End Time: Tue Oct 17 09:00:00 EDT 2006

 SHARED: no

 REMOVE_ON_IDLE: yes

 Status: WAITING

 Modified By: dave

Modification Time: Tue Oct 17 10:55:18 EDT 2006

 Users: 0

 Groups: 0

 Nodes: 4

 c94n01.ppd.pok.ibm.com

 c94n02.ppd.pok.ibm.com

 c94n12.ppd.pok.ibm.com

 c94n16.ppd.pok.ibm.com

 Job Steps: 1

 c94n16.ppd.pok.ibm.com.25.0

=============== Reservation c94n16.ppd.pok.ibm.com.35.r ===============

 ID: c94n16.ppd.pok.ibm.com.35.r

 Creation Time: Mon Oct 16 10:58:19 EDT 2006

 Owner: carol

 Group: No_Group

 Start Time: Tue Oct 17 13:30:00 EDT 2006

 Duration: 240 minutes

Expected End Time: Tue Oct 17 17:30:00 EDT 2006

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: WAITING

 Modified By: carol

Modification Time: Mon Oct 16 10:58:19 EDT 2006

 Users: 2

 jay

 iris

 Groups: 0

 Nodes: 2

 c94n01.ppd.pok.ibm.com

 c94n02.ppd.pok.ibm.com

 Job Steps: 0

2. To determine if any reservations will be active on the machine c94n01 before

performing an hours worth of maintenance beginning at 8:00 on 10/16/2006,

issue the following command:

llqres -b 10/16/2006 8:00 -e 10/16/2006 9:00 -h c94n01

You should receive output similar to the following:

Id Owner ST Start Time Duration #Nodes

----------- ----- -- ----------- -------- ------

c94n16.31.r dave W 10/16 02:00 420 4

3. There are no job steps associated with a reservation in the following example.

The short form is used for host names:

llqres -r -s -R c94n16.30.r

You should receive output similar to the following:

llqres

470 TWS LoadLeveler: Using and Administering

c94n16.30.r!Mon Oct 16 08:12:23 EDT 2006!loadl!No_Group! \

 Mon Oct 16 14:00:00 EDT

2006!120!Mon Oct 16 16:00:00 EDT 2006!no!no!ACTIVE!loadl! \

 Mon Oct 16 10:21:14 EDT

2006!0!!1!loadlusr!3!c94n01,c94n11,c94n12!0!

4. There are job steps associated with a reservation in the following example. The

short form is used for host names:

llqres -r -s -R c94n16.31.r

You should receive output similar to the following:

c94n16.31.r!Oct Oct 16 10:35:18 EDT 2006!dave!No_Group! \

 Mon Oct 16 02:00:00 EDT

2006!420!Mon Oct 16 09:00:00 EDT 2006!no!yes!WAITING!dave! \

 Mon Oct 16 10:55:18

EDT 2006!0!!0!!4!c94n01,c94n02,c94n12,c94n16!1!c94n16.25.0

When the BG_ENABLED keyword is set to true in the configuration file, the

following examples apply.

1. When issuing the llqres command, you should receive output similar to the

following:

llqres

ID Owner ST Start Time Duration #Nodes #BG C-nodes

------------------ ---------- -- ----------- -------- ------ -----------

bgldd1.62.r ezhong W 6/13 18:40 5 1 0

bgldd1.61.r ezhong W 6/13 18:40 5 0 128

bgldd1.60.r ezhong W 6/13 18:30 5 0 512

2. The following example returns reservation information about all machines:

llqres -h all

You should receive output similar to the following:

ID Owner ST Start Time Duration #Nodes #BG C-nodes

------------------ ---------- -- ----------- -------- ------ -----------

bgldd1.62.r ezhong W 6/13 18:40 5 1 0

3. The following example generates a list of base partitions for R010:

llqres -B R010

You should receive output similar to the following:

ID Owner ST Start Time Duration #Nodes #BG C-nodes

------------------ ---------- -- ----------- -------- ------ -----------

bgldd1.60.r ezhong A 6/13 18:30 5 0 512

4. The following example generates a list of all base partitions in the Blue Gene

system in raw mode:

llqres -r -B all

You should receive output similar to the following:

bgldd1.rchland.ibm.com.61.r!Tue 13 Jun 2006 06:28:09 PM CDT! \

 ezhong!No_Group!Tue 13 Jun 2006 06:40:00 PM

CDT!5!Tue 13 Jun 2006 06:45:00 PM CDT!no!no!WAITING!ezhong! \

 Tue 13 Jun 2006 06:28:09 PM

CDT!0!!0!!0!!1!bgldd1.rchland.ibm.com.200.0!128!MESH!0x0x0!1!R011 \

 (J111;J113;J115;J117)

bgldd1.rchland.ibm.com.60.r!Tue 13 Jun 2006 06:26:36 PM CDT! \

 ezhong!No_Group!Tue 13 Jun 2006 06:30:00 PM

CDT!5!Tue 13 Jun 2006 06:35:00 PM CDT!no!no!ACTIVE!ezhong! \

 Tue 13 Jun 2006 06:26:36 PM

CDT!0!!0!!0!!1!bgldd1.rchland.ibm.com.199.0!512!MESH!1x1x1!1!R010

5. The following example shows a fragment of output for a system where Blue

Gene support is enabled:

llqres -l

You should receive output similar to the following:

llqres

Chapter 16. Commands 471

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

=============== Reservation bgldd1.rchland.ibm.com.62.r ===============

 ID: bgldd1.rchland.ibm.com.62.r

 Creation Time: Tue 13 Jun 2006 06:28:25 PM CDT

 Owner: ezhong

 Group: No_Group

 Start Time: Tue 13 Jun 2006 06:40:00 PM CDT

 Duration: 5 minutes

Expected End Time: Tue 13 Jun 2006 06:45:00 PM CDT

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: WAITING

 Modified By: ezhong

Modification Time: Tue 13 Jun 2006 06:28:25 PM CDT

 Users: 0

 Groups: 0

 Nodes: 1

 bgldd1.rchland.ibm.com

 Job Steps: 1

 bgldd1.rchland.ibm.com.201.0

 BG C-nodes: 0

 BG Connection:

 BG Shape:

 BG BPs: 0

=============== Reservation bgldd1.rchland.ibm.com.61.r ===============

 ID: bgldd1.rchland.ibm.com.61.r

 Creation Time: Tue 13 Jun 2006 06:28:09 PM CDT

 Owner: ezhong

 Group: No_Group

 Start Time: Tue 13 Jun 2006 06:40:00 PM CDT

 Duration: 5 minutes

Expected End Time: Tue 13 Jun 2006 06:45:00 PM CDT

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: WAITING

 Modified By: ezhong

Modification Time: Tue 13 Jun 2006 06:28:09 PM CDT

 Users: 0

 Groups: 0

 Nodes: 0

 Job Steps: 1

 bgldd1.rchland.ibm.com.200.0

 BG C-nodes: 128

 BG Connection: MESH

 BG Shape: 0x0x0

 BG BPs: 1

 R011(J111;J113;J115;J117)

=============== Reservation bgldd1.rchland.ibm.com.60.r ===============

 ID: bgldd1.rchland.ibm.com.60.r

 Creation Time: Tue 13 Jun 2006 06:26:36 PM CDT

 Owner: ezhong

 Group: No_Group

 Start Time: Tue 13 Jun 2006 06:30:00 PM CDT

 Duration: 5 minutes

Expected End Time: Tue 13 Jun 2006 06:35:00 PM CDT

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: ACTIVE

 Modified By: ezhong

Modification Time: Tue 13 Jun 2006 06:26:36 PM CDT

 Users: 0

 Groups: 0

 Nodes: 0

 Job Steps: 1

 bgldd1.rchland.ibm.com.199.0

 BG C-nodes: 512

llqres

472 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BG Connection: MESH

 BG Shape: 1x1x1

 BG BPs: 1

 R010

6. The following example shows reserving resources during the time period from

18:35 to 18:45:

llqres -b 18:35 -e 18:45

You should receive output similar to the following:

ID Owner ST Start Time Duration #Nodes #BG C-nodes

------------------ ---------- -- ----------- -------- ------ -----------

bgldd1.62.r ezhong W 6/13 18:40 5 1 0

bgldd1.61.r ezhong W 6/13 18:40 5 0 128

7. The following example shows that there are no job steps associated with the

reservation. The short form is used for hostnames:

llqres -r -s c94n16.30.r

You should receive output similar to the following:

c94n16.30.r!Fri July 21 08:12:23 EDT 2006!loadl!No_Group! \

 Fri July 21 14:00:00 EDT

2006!120!Fri July 21 16:00:00 EDT 2006!no!no!ACTIVE!loadl! \

 Fri July 21 10:21:14 EDT

2006!0!!1!loadlusr!3!c94n01,c94n11,c94n12!0!!0!0x0x0!

8. The following example shows that there are job steps associated with the

reservation. The short form is used for hostnames:

llqres -r -s c94n16.31.r

You should receive output similar to the following:

c94n16.31.r!Fri July 21 10:35:18 EDT 2006!dave!No_Group! \

 Thu Jul 22 02:00:00 EDT

2006!420!Thu Jul 22 09:00:00 EDT 2006!no!yes!WAITING!dave! \

 Fri July 21 10:55:18 EDT

2006!0!!0!!4!c94n01,c94n02,c94n12,c94n16!1!c94n16.25.0!0!0x0x0!

llqres

Chapter 16. Commands 473

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

llrmres - Cancel a reservation

Purpose

llrmres – Cancels a reservation in LoadLeveler.

Syntax

llrmres { -? | -H | -v | [-q] { [-u user_list] [-g group_list]

 [-h all | -h host_list] [-B all | -B base_partition_list] |

 [-R all | -R reservation_list] } }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

-u user_list Specifies a blank-delimited list of user IDs. Reservations to be

canceled are owned by one of these users.

-g group_list Specifies a blank-delimited list of LoadLeveler groups. Reservations

to be canceled are owned by one of these groups.

-h all

-h host_list Specifies a blank-delimited list of machines or all machines.

Reservations to be canceled use one or more of these machines.

-B all

-B base_partition_list

Specifies a blank-delimited list of Blue Gene base partitions or all

Blue Gene base partitions. Reservations to be canceled use one or

more of these Blue Gene base partitions.

-R all

-R reservation_list

Is a blank-delimited list of reservation identifiers to be canceled. A

LoadLeveler administrator can specify the reserved word all to

cancel all reservations in the system. Nonadministrators can specify

the reserved word all to cancel all of the reservations that they

own. The format of a full LoadLeveler reservation identifier is

[host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation

identifier.

v rid is the number assigned to the reservation when it was

created. An rid is required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form,

rid[.r], when the command is invoked on the same machine that

llrmres

474 TWS LoadLeveler: Using and Administering

||
||
||

||

||
|

||

|
|
|
|

||

|
|
|
|
|
|
|

|

|
|

|
|

|

|
|

assigned the reservation identifier. In this case, LoadLeveler will

use the local machine’s host name to construct the full reservation

identifier.

Description

The llrmres command is for LoadLeveler administrators and owners of a

reservation. Owners of reservations can cancel their own reservations. A

LoadLeveler administrator can cancel any reservation. The state of a job step will

not be changed directly by the cancellation of a reservation. Reservations satisfying

all criteria specified by the -u, -g, -h, or -B flags will be canceled if more than one

of these options are present. The -h and -B flags are mutually exclusive. The llqres

command can be used to see the status of the reservation.

This command is for the BACKFILL scheduler only.

Examples

1. To request to cancel all reservations owned by user ID iris that use machine

c188f2n01, issue the following command. Note that this request can be made

either by an administrator or the user iris.

llrmres -u iris -h c188f2n01

You should receive a response similar to the following:

The request to remove reservations has been sent to the central manager.

2. To request that the LoadLeveler administrator cancel all reservations, issue:

llrmres -R all

You should receive a response similar to the following:

The request to remove reservations has been sent to the central manager.

3. To request that the LoadLeveler administrator cancel all reservations of Blue

Gene resources, issue:

llrmres -B all

You should receive a response similar to the following:

The request to remove reservations has been sent to the central manager.

4. To request that the LoadLeveler administrator cancel all reservations on nodes

that are not Blue Gene compute nodes (C-nodes), issue:

llrmres -h all

You should receive a response similar to the following:

The request to remove reservations has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llrmres

Chapter 16. Commands 475

|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|
|

|

|

|

|

llrunscheduler - Run the central manager’s scheduling algorithm

Purpose

llrunscheduler – Runs the central manager’s scheduling algorithm when the

internal scheduling interval is disabled.

Syntax

llrunscheduler [-?] | [-H] | [-v] | [-q]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service

level date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

Description

The llrunscheduler command is used to run the central manager’s scheduling

algorithm when the internal scheduling interval has been disabled so that an

external program can control when the central manager attempts to schedule job

steps. The llrunscheduler command sends a request to the central manager to run

the scheduling algorithm. The central manager’s scheduling algorithm will run

only once each time the llrunscheduler command is invoked. Each time the

scheduling algorithm runs, the central manager will schedule as many job steps as

the current available resources allow.

The request to run the scheduling algorithm is ignored if the internal scheduling

interval has not been disabled by setting the NEGOTIATOR_INTERVAL

configuration keyword to 0. If NEGOTIATOR_INTERVAL is set to 0, the llstatus

command will report that the scheduler interval is disabled.

Security

LoadLeveler administrators can issue this command.

llrunscheduler

476 TWS LoadLeveler: Using and Administering

llstatus - Query machine status

Purpose

llstatus – Returns status information about machines in the LoadLeveler cluster.

Syntax

llstatus [-?] [-H] [-v] [-W] [-R] [-F] [-M] [-l] [-a] [-C] [-b]

 [-B {base_partition_list | all}] [-P {partition_list | all}]

 [-X {cluster_list | all}] [-f category_list] [-r category_list]

 [-h hostlist | hostlist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service

level date, and lowest level of the operating system to run this release.

-W Specifies that the width of columns in tabular output will be increased to

fit the widest entry.

-R Lists the machine consumable resources associated with each machine for

which status is requested. This option should not be used with any other

option.

-F Lists all of the floating consumable resources associated with the

LoadLeveler cluster. This option should not be used with any other option.

-M Lists the Multiple Chip Modules (MCMs) available on a machine, where:

Available CPUs

Are the CPU IDs of the CPUs available for LoadLeveler on this

MCM.

Used CPUs

Are the CPU IDs of the CPUs used by LoadLeveler jobs on this

MCM.

Adapters

Are the switch adapters connected to this MCM of the form:

[used windows/available windows, used rCxt blocks/available \

 rCxtBlocks]

where:

used windows

Is the number of windows used.

available windows

Is the total number of windows on the adapter.

used rCxt blocks

Is the number of rCxt blocks used.

available rCxt blocks

Is the total number of rCxt blocks on the adapter.
Total Tasks

Is the total number of tasks that are running using CPUs of this

MCM.

llstatus

Chapter 16. Commands 477

||

||
|

|
|

|
|
|
|
|
|
|
|

Note that the < > notation will be used to list individual CPU IDs instead

of the CPU count () notation when the RSET_SUPPORT configuration file

keyword is set to RSET_CONSUMABLE_CPUS or

RSET_MCM_AFFINITY.

-l Specifies that a long listing be generated for each machine for which status

is requested. If -l is not specified, the standard list is generated.

-a Displays information for each virtual adapter followed by information for

each physical adapter it manages. This flag also displays the port number

on each InfiniBand adapter port.

-C Displays cluster stanza information defined in the administration file. Only

fields that contain data are displayed. If -C is specified without the -X flag,

cluster stanza information will be reported from one outbound local

Schedd. If the -X and -C flags are specified, cluster stanza information will

be reported from an inbound Schedd in each available remote cluster

specified with the -X flag. If the -h flag is specified, cluster stanza

information will only be reported from the specified hosts.

-b Displays Blue Gene system information. It is valid only when specified as

a single option or in combination with the -l flag. When used as single

option, llstatus displays a short listing of information on the Blue Gene

system. When used the -l flag, llstatus displays a detailed listing of the

components of the Blue Gene system.

-P {partition_list | all}

Displays Blue Gene partition information. It is valid only when specified as

a single option. When this flag is specified, llstatus displays information

on all Blue Gene partitions in the partition_list.

partition_list Is a blank-delimited list of Blue Gene partitions.

all Is the reserved word indicating that the command is to

return information for all partitions.

-B {base_partition_list | all}

Displays Blue Gene base partition information. It is valid only when

specified as a single option. When this flag is specified, llstatus displays

information about all Blue Gene base partitions in the base_partition_list.

base_partition_list

Is a blank-delimited list of Blue Gene base partitions.

all Is the reserved word indicating that the command is to

return information for all base partitions.

-X {cluster_list | all}

Indicates that you can specify the -X flag with either:

cluster_list Specifies a blank-delimited list of clusters for which status

is requested.

all Is a reserved word which specifies that status is requested

for all accessible clusters.

-f category_list

Is a blank-delimited list of categories you want to query. Each category you

specify must be preceded by a percent sign. The category_list cannot

contain duplicate entries. This flag allows you to create a customized

version of the standard llstatus listing. The output fields produced by this

llstatus

478 TWS LoadLeveler: Using and Administering

|
|
|

|
|
|

|
|

||
|

flag all have a fixed length. The output is displayed in the order in which

you specify the categories. category_list can be one or more of the

following:

%a Hardware architecture

%act Number of job steps dispatched by the Schedd daemon on this

machine

%cm Custom Metric value

%cpu Number of CPUs on this machine

%d Available disk space in the LoadLeveler execute directory

%i Number of seconds since last keyboard or mouse activity

%inq Number of job steps in the job queue of this Schedd machine

%l Berkeley one-minute load average

%m Physical memory on this machine

%mt Maximum number of initiators that can be used simultaneously on

this machine

%n Machine name

%o Operating system on this machine

%r Number of initiators used by the startd daemon on this machine

%sca Availability of the Schedd daemon

%scs State of the Schedd daemon

%sta Availability of the startd daemon

%sts State of the startd daemon

%v Available swap space (free paging space) of this machine

%X Local cluster name

-r category_list

Is a blank-delimited list of categories you want to query. Each category you

specify must be preceded by a percent sign. The category_list cannot

contain duplicate entries. This flag allows you to create a customized

version of the standard llstatus listing. The output produced by this flag is

considered raw, in that the fields can be variable in length. The output is

displayed in the order in which you specify the formats. Output fields are

separated by an exclamation point (!). category_list can be one or more of

the categories listed under the -f flag.

-h hostlist

hostlist Is a blank-delimited list of machines for which status is requested.

 If the -X flag is specified in combination with a hostlist, the -h flag must be

specified. For example:

llstatus -X my_cluster1 my_cluster2 -h c94n13 c94n14

Description

If you have more than a few machines configured for LoadLeveler, consider

redirecting the output to a file when using the -l flag.

llstatus

Chapter 16. Commands 479

|
||

|
|

|
|

|

Each machine periodically updates the central manager with a snapshot of its

situation. Since the information returned by using llstatus is a collection of such

snapshots, all taken at varying times, the total picture may not be completely

consistent.

In most cases, if a hostlist is not specified, all machines are queried. However, if the

-X and -C flags are specified without a hostlist, the command will run on one

inbound Schedd in the remote cluster. In this case, the Schedd version information

from the inbound Schedd in the remote cluster will be displayed.

Certain resources such as remote direct-memory access (RDMA) have their

available value always calculated by startd. Available ConsumableCpus resources

are calculated by startd if the value is specified as all in the administration file.

When the value of a resource is calculated by startd, the llstatus command

appends a plus (+) sign to the resource name in the output reports. Resources that

are automatically created, such as RDMA, have a less than (<) sign appended to

them.

Examples

 1. This example generates the standard listing where there are two nodes in the

cluster. The standard listing is generated when you do not specify the -l

option with the llstatus command.

llstatus

You should receive output similar to the following:

Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys

k10n09.ppd.pok.ibm.com Avail 3 1 Run 1 2.72 0 R6000 AIX53

k10n12.ppd.pok.ibm.com Avail 0 0 Idle 0 0.00 365 R6000 AIX53

R6000/AIX53 2 machines 3 jobs 1 running

Total Machines 2 machines 3 jobs 1 running

The Central Manager is defined on k10n09.ppd.pok.ibm.com

The BACKFILL scheduler is in use

Cluster name is cluster2

All machines on the machine_list are present.

The standard listing includes the following fields:

Act Number of job steps dispatched by the Schedd daemon on this

machine.

Arch The hardware architecture of the machine as listed in the

configuration file.

Idle The number of seconds since keyboard or mouse activity in a login

session was detected. Highest number displayed is 9999.

InQ Number of job steps in the job queue of this Schedd machine.

LdAvg Berkeley one-minute load average on this machine.

Name Hostname of the machine.

OpSys

The operating system on this machine.

llstatus

480 TWS LoadLeveler: Using and Administering

|
|

Run The number of initiators used by the startd daemon to run

LoadLeveler jobs on this machine. One initiator is used for each serial

job step and one initiator is used for each task of a parallel job step.

Schedd

State of the Schedd daemon, which can be one of the following:

v Down

v Drned (Drained)

v Drning (Draining)

v Avail (Available)

For more information, see “The Schedd daemon” on page 9.

Startd State of the startd daemon, which can be:

v Busy

v Down

v Drned (Drained)

v Drning (Draining)

v Flush

v Idle

v None

v Run (Running)

v Suspnd (Suspend)

For more information, see “The startd daemon” on page 10.

Total Machines

The standard listing includes the following summary fields:

jobs The number of job steps in LoadLeveler job queues.

machines

The number of machines in the cluster that have made a

status report to the Central Manager.

running

The number of initiators used by all the startd daemons in the

LoadLeveler cluster. One initiator is used for each serial job

step. One initiator is used for each task of a parallel job step.
The standard listing also contains summary information for the cluster such as

the type of scheduler and the cluster name.

 2. This example generates the long listing. The long listing is generated when

you specify the -l flag with the llstatus command. See Appendix B, “Sample

command output,” on page 673 for sample output of long listings.

llstatus -l c271f2rp02

The long listing includes the following fields:

Adapter

Network adapter information associated with this machine.

v For a switch adapter, the information format is:

adapter_name(network_type, interface_name,

interface_address, multilink_address,

switch_node_number or

adapter_logical_id, available_adapter_windows/

total_adapter_windows, unused rCxt blocks/

total rCxt blocks, adapter_fabric_connectivity,

adapter_state)

For example:

llstatus

Chapter 16. Commands 481

|
|
|
|
|
|
|

Adapter = networks(striped,c60f1rp01ml0.ppd.pok.ibm.com, \

10.10.10.1,,-1,32/32,1596/1596 rCxt Blks,1,READY) \

en0(ethernet,c60f1rp01.ppd.pok.ibm.com,9.114.88.65,) \

network1(aggregate,,,10.10.10.1,-1,32/32,1596/1596 rCxt Blks,1, \

READY)ml0(multilink,c60f1rp01ml0.ppd.pok.ibm.com,10.10.10.1,)

Possible values for adapter_state are:

ErrAdapter

The adapter information is incorrect. More information

might be available in the network table API log.

ErrDown

The adapter has been reported as down.

ErrInternal

An error occurred while accessing the adapter. More

information might be available in the network table API log

and if the D_FULLDEBUG and D_ADAPTER flags are

specified for STARTD_DEBUG.

ErrNotConnected

The adapter is not connected to the network.

ErrNotInitialized

An error occurred initializing access to the adapter. More

information might be available if the D_FULLDEBUG and

D_ADAPTER flags are specified for STARTD_DEBUG.

ErrNTBL

An error occurred while accessing the network table API.

More information might be available if the D_FULLDEBUG

and D_ADAPTER flags are specified for STARTD_DEBUG.

ErrNTBLVersion

The version of the available network table API is not

compatible with the version required by LoadLeveler.

ErrPerm

The network table API reported that LoadLeveler does not

have permission to access the adapter. More information

might be available in the network table API log.

ErrPNSD

An error occurred in the network table API. More

information might be available in the network table API log.

ErrType

The network table API reported that the adapter is not a

switch adapter. Check the adapter configuration.

MachineDown

The machine to which the adapter is attached could not be

reached by LoadLeveler to query status.

NOT READY

An unspecified problem occurred when accessing the

adapter state. More information might be available if the

D_FULLDEBUG and D_ADAPTER flags are specified for

STARTD_DEBUG.

READY

The adapter can be used for communication.
v For non-switch adapters, the format is:

llstatus

482 TWS LoadLeveler: Using and Administering

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

adapter_name(network_type, interface_name, interface_address,

multilink_address)

Arch Hardware architecture of this machine.

AvailableClasses

List of available classes and the associated number of available

initiators on this machine.

Completed

The number of job steps in this state on this Schedd machine.

Config Time Stamp

Date and time of last configuration or reconfiguration.

ConfiguredClasses

List of configured classes and the associated number of configured

initiators on this machine.

ConsumableResources

List of consumable resources associated with this machine. Each

element of this list has the format: resource_name(available, total).

Note: The individual CPU ID < > notation will be used to list

individual CPU IDs instead of the CPU count () notation for

machines where the RSET_SUPPORT configuration file

keyword is set to RSET_MCM_AFFINITY or

RSET_CONSUMABLE_CPUS. The CPU count () notation will

be used when the RSET_SUPPORT configuration file keyword

is set to RSET_USER_DEFINED or RSET_NONE, or if this

keyword is not specified in the configuration file.

CONTINUE

The expression, defined following C conventions in the configuration

file, that evaluates to true or false (T or F). This determines whether

suspended jobs are continued on this machine.

Cpus Number of CPUs on this machine.

CustomMetric

This value can be the number assigned to the CUSTOM_METRIC

keyword or the exit code of the executable associated with the

CUSTOM_METRIC_COMMAND keyword or the default value of 1.

Disk Available space, in kilobytes (less 512KB) in LoadLeveler’s execute

directory on this machine.

DrainedClasses

List of classes which have been drained. If a job step is in a class

named on this list, that job step will not start on this machine.

DrainingClasses

List of classes which are currently being drained on this machine. If a

job step is in a class named on this list, that job step will not start on

this machine.

Entered Current State

Date and time when machine state was set.

FabricConnectivity

Represents the current state of connectivity between the machine and

the switch through the switch adapters. The format of the field is:

network_id: connectivity, network_id: connectivity... where

llstatus

Chapter 16. Commands 483

|
|

connectivity is either 1 or 0. A value of 1 indicates an active

connection from the machine to a given network_id through one of

the switch adapters.

 If a machine does not have switch adapters, the FabricConnectivity

field has no meaning and should be ignored by the user.

Feature

Set of all features on this machine.

FreeLargePageMemory

Free Large Page memory.

 In LoadLeveler for Linux, the FreeLargePageMemory field has no

meaning and should be ignored by the user.

FreeRealMemory

Free real memory, in megabytes, on this machine. This value should

track closely with the ″fre″ value of the vmstat command and the

″free″ value of the svmon -G command whose units are 4KB blocks.

Held The number of job steps in this state on this Schedd machine.

Idle The number of job steps in this state on this Schedd machine.

Keyboard Idle

Number of seconds since last keyboard or mouse activity.

KILL The expression, defined following C conventions in the configuration

file, that evaluates to true or false (T or F). This determines whether

jobs running on this machine should be sent the SIGKILL signal.

LargePageMemory

Configured Large Page physical memory.

 In LoadLeveler for Linux, the LargePageMemory field has no

meaning and should be ignored by the user.

LargePageSize

The size of a Large Page memory block.

 In LoadLeveler for Linux, the LargePageSize field has no meaning

and should be ignored by the user.

LoadAvg

Berkely one-minute load average on machine.

Machine

Fully qualified name of the machine.

Machine Mode

The type of job this machine can run. This can be: batch, interactive,

or general.

MACHPRIO

Actual expression that determines machine priority, defined in the

configuration file.

MasterMachPriority

The machine priority for the parallel master node.

Max_Starters

Maximum number of initiators that can be used simultaneously on

this machine.

Mcms The MCMs information associated with this machine has the format:

llstatus

484 TWS LoadLeveler: Using and Administering

mcm_info ... mcm_info

The format of mcm_info is:

MCMnumber Available Cpus: < cpulist > (Total Cpus)

Used Cpus: < cpulist > (Total Cpus)

Adapters: adapater_info adapter_info

Total Tasks: (Tasks)

where:

Available Cpus

Are the CPUs available for LoadLeveler on this MCM.

Used Cpus

Are the CPUs used by LoadLeveler jobs from this MCM.

Adapters

Are the switch adapters connected to this MCM.

Total tasks

Is the total number of tasks that are running using CPUs of

this MCM.

 where number is the MCM sequence number:

cpulist Is a blank-delimited list of individual CPU IDs or CPU

ranges, or a combination of both CPU IDs and CPU

ranges associated with the MCM.

adapter_info

Has the format:

 [used windows/available windows, used

memory/available memory]

 where:

used windows

Is the total number of windows used.

available windows

Is the total number of available windows.

used memory

Is the total memory used. It is the number of

rCxt blocks for the High Performance Switch

adapter.

available memory

Is the total available memory. It is the number

of rCxt blocks for the High Performance

Switch adapter.

Tasks Is the total number of tasks that are running using the

CPUs of this MCM.

Memory

Regular physical memory, in megabytes, on this machine.

Name Hostname of the machine.

OpSys

Operating system on this machine.

llstatus

Chapter 16. Commands 485

PagesFreed

Pages freed per second. This value corresponds to the ″fr″ value of the

vmstat command output.

 In LoadLeveler for Linux, the PagesFreed field has no meaning and

should be ignored by the user.

PagesPaged In

Pages paged in from paging space per second. This value corresponds

to the ″pi″ value of the vmstat command output.

 In LoadLeveler for Linux, the PagesPagedIn field has no meaning and

should be ignored by the user.

PagesPagedOut

Pages paged out to paging space per second. This value corresponds

to the ″po″ value of the vmstat command output.

 In LoadLeveler for Linux, the PagesPagedOut field has no meaning

and should be ignored by the user.

PagesScanned

Pages scanned by the page-replacement algorithm per second. This

value corresponds to the ″sr″ value of the vmstat command output.

 In LoadLeveler for Linux, the PagesScanned field has no meaning and

should be ignored by the user.

Pending

The number of job steps in this state on this Schedd machine.

Pool The identifier of the pool where this startd machine is located.

Prestarted_Starters

The maximum number of Prestarted Starters that can be started on

this machine at any time.

Remove Pending

The number of job steps in this state on this Schedd machine.

ReservationPermitted

Indicates whether or not the node can be reserved. It is displayed as T

or F (true or false).

Reservations

The IDs of reservations that will use the node now or in the future.

RSetSupportType

Indicates the type of RSet support set up on a machine. Possible

values are:

RSET_CONSUMABLE_CPUS

Creates and attaches RSets for tasks with the number of CPUs

derived from ConsumableCPUs.

RSET_MCM_AFFINITY

Creates and attaches RSets for tasks to satisfy memory and

affinity requests.

RSET_NONE

Indicates that LoadLeveler RSet support is not available.

RSET_USER_DEFINED

Attaches user-created RSets to Tasks.

Running

The number of initiators used by the startd daemon to run

llstatus

486 TWS LoadLeveler: Using and Administering

LoadLeveler jobs. One initiator is used for each serial job step. One

initiator is used for each task of a parallel job step.

Running steps

The list of job steps currently running on this machine.

ScheddAvail

Flag indicating if machine is running a Schedd daemon (0=no, 1=yes).

ScheddRunning

The number of job steps submitted to this machine that are running

somewhere in the LoadLeveler cluster.

ScheddState

The state of the Schedd daemon on this machine, which can be one of

the following:

v Down

v Drned (Drained)

v Drning (Draining)

v Avail (Available)

Speed Speed associated with the machine.

SMT Indicates whether the Simultaneous Multi-Threading (SMT) function is

turned on, off, or is not supported in the running machine. Valid

values are Enabled, Disabled, or Not Supported.

START

The expression, defined following C conventions in the configuration

file, that evaluates to true or false (T or F). This determines whether

jobs can be started on this machine.

StartdAvail

Flag indicating if machine is running a startd daemon (0=no, 1=yes).

Starting

The number of job steps in this state on this Schedd machine.

State State of the startd daemon, which can be:

v Busy

v Down

v Drained

v Draining

v Flush

v Idle

v None

v Running

v Suspend

For more information, see “The startd daemon” on page 10.

Subnet

The TCP/IP subnet that this machine resides on.

SUSPEND

The expression, defined following C conventions in the configuration

file, that evaluates to true or false (T or F). This determines whether

running jobs should be suspended on this machine.

SYSPRIO

Actual expression that determines overall system priority of a job step.

Defined in the configuration file.

llstatus

Chapter 16. Commands 487

||
|
|

TimeStamp

The date and time the central manager last received a status update

from this Schedd machine.

Tmp Available space, in kilobytes (less than 512 KB) in the /tmp directory

on this machine.

Total Jobs

The number of total job steps submitted to this Schedd machine.

TotalMemory

The sum of configured regular and Large Page memory.

Unexpanded

The number of job steps in this state on this Schedd machine.

VACATE

The expression, defined following C conventions in the configuration

file, that evaluates to true or false (T or F). This determines whether

suspended jobs are vacated on this machine.

Virtual Memory

Available swap space (free paging space) in kilobytes, on this

machine.
 3. This example generates a listing of cluster information defined in the

administration file and Schedd version for cluster2. Only fields with data are

displayed.

llstatus -X cluster2 -C

The output representing a cluster is delineated with a cluster header and

Schedd version information from a remote cluster similar to the following:

=================== Cluster cluster2 ===================================

llstatus: Sending request to Schedd "c188f2n08.ppd.pok.ibm.com" in

 cluster "cluster2"

cluster2: type = cluster

 Local = True

 inbound_schedd_port = 9605

 secure_schedd_port = 9607

 multicluster_security = NOT_SET

 ssl_cipher_list = ALL:eNULL:!aNULL

 inbound_hosts = c188f2n08.ppd.pok.ibm.com

 outbound_hosts = c188f2n08.ppd.pok.ibm.com

 exclude_classes = badtesters(cluster3) OKtesters(cluster1)

cluster1: type = cluster

 Local = False

 inbound_schedd_port = 9605

 secure_schedd_port = 9607

 multicluster_security = NOT_SET

 ssl_cipher_list = ALL:eNULL:!aNULL

 inbound_hosts = c188f2n02.ppd.pok.ibm.com

 outbound_hosts = c188f2n02.ppd.pok.ibm.com

 exclude_users = loadl(cluster2)

 exclude_groups = april(cluster3)

 include_classes = No_Class

cluster3: type = cluster

 Local = False

 inbound_schedd_port = 1966

 secure_schedd_port = 9607

 multicluster_security = NOT_SET

 ssl_cipher_list = ALL:eNULL:!aNULL

 inbound_hosts = c94n02.ppd.pok.ibm.com

llstatus

488 TWS LoadLeveler: Using and Administering

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

outbound_hosts = c94n02.ppd.pok.ibm.com(cluster1)

 c94n06.ppd.pok.ibm.com(cluster2)

 clusterB schedd gateway Version:

 c188f2n08.ppd.pok.ibm.com 3.3.2.5 rmer 2006/08/03 \

 RHEL 4.0 132

 4. This example generates a listing of all of the consumable resources associated

with all of the machines in the LoadLeveler cluster.

llstatus -R

You should receive output similar to the following:

Machine Consumable Resource(Available, Total)

------------------------- -------------------------------------

c209f1n01.ppd.pok.ibm.com ConsumableCpus(4,4)+ ConsumableMemory \

 (1.000 gb,1.000 gb) n01_res(123,500)

c209f1n02.ppd.pok.ibm.com ConsumableCpus< 0 1 2 3 4>< 0 1 2 3 4 > \

 n02_res(123,500) Frame5(10,10)

c209f1n05.ppd.pok.ibm.com ConsumableCpus(4,4)+ ConsumableMemory \

 (1.000 gb,1.000 gb) spice2g6(250,360)

Resources with "+" appended to their names have the Total value reported

from Startd.

Note: The individual CPU ID < > notation will be used to list individual CPU

IDs instead of the CPU count () notation for machines where the

RSET_SUPPORT configuration file keyword is set to

RSET_MCM_AFFINITY or RSET_CONSUMABLE_CPUS. The CPU

count () notation will be used when the RSET_SUPPORT

configuration file keyword is set to RSET_USER_DEFINED or

RSET_NONE, or if this keyword is not specified in the configuration

file.

 5. This example generates a listing of information related to MCMs of machines

in the LoadLeveler cluster.

llstatus -M

You should receive output similar to the following:

Machine MCM details

--------------------- ---

c61f2sq01.ppd.pok.ibm.com

 MCM0

 Available Cpus :< 0-15 >(16)

 Used Cpus :< >(0)

 Adapters :

 Total Tasks :(0)

 MCM1

 Available Cpus :< 16-29 >(14)

 Used Cpus :< 16-27 >(12)

 Adapters :sn1[16/16,798/798 rCxt Blks]

 sn0[12/16,790/798 rCxt Blks]

 Total Tasks :(4)

c61f2sq02.ppd.pok.ibm.com

 MCM0

 Available Cpus :< 0-1 >(2)

 Used Cpus :< >(0)

 Adapters :

 Total Tasks :(0)

 MCM1

llstatus

Chapter 16. Commands 489

|
|
|
|
|
|
|
|

Available Cpus :< 2-3 >(2)

 Used Cpus :< >(0)

 Adapters :

 Total Tasks :(0)

Note: The -M option will list the MCM information only when the

RSET_SUPPORT configuration file keyword is set to

RSET_MCM_AFFINITY.

 6. This example generates a listing of all of the floating consumable resources

associated with all of the machines in the LoadLeveler cluster. This option

should not be specified with any other option.

llstatus -F

You should receive output similar to the following:

Floating Resource Available Total

------------------------------ ------------- ---------------

EDA_licenses 20 29

Frame5 15 20

WorkBench6 5 7

XYZ_software 6 6

 7. This example generates a customized and formatted standard listing.

llstatus -f %n %scs %inq %m %v %sts %l %o

You should receive output similar to the following:

Name Schedd InQ Memory FreeVMemory Startd LdAvg OpSys

ll5.pok.ibm.com Avail 0 128 22708 Run 0.23 AIX53

ll6.pok.ibm.com Avail 3 224 16732 Run 0.51 AIX53

R6000/AIX53 2 machines 3 jobs 3 running

Total Machines 2 machines 3 jobs 3 running

The Central Manager is defined on ll5.pok.ibm.com

The BACKFILL scheduler is in use

All machines on the machine_list are present.

 8. This example generates a customized and unformatted (raw) standard listing.

Customized, Unformatted Standard Listing: A customized Output fields are

separated by an exclamation point (!).

llstatus -r %n %scs %inq %m %v %sts %l %o

You should receive output similar to the following:

ll5.pok.ibm.com!Avail!0!128!22688!Running!0.14!AIX53

ll6.pok.ibm.com!Avail!3!224!16668!Running!0.37!AIX53

 9. This example generates a listing containing information about the status of

adapters associated with all of the machines in the LoadLeveler cluster:

llstatus -a

You should receive output similar to the following:

llstatus

490 TWS LoadLeveler: Using and Administering

c271f2rp02.ppd.pok.ibm.com

ml0(multilink,c271f2san02.ppd.pok.ibm.com,10.10.10.6,)

networks(striped,c271f2san02.ppd.pok.ibm.com,10.10.10.6,,-1,500/512, \

 1474/1596 rCxt Blks,1,READY)

network1(aggregate,,,10.10.10.6,-1,500/512,500M/512M,1,READY)

 sn0(switch,c271f2s0n02.ppd.pok.ibm.com,192.168.0.6,10.10.10.6,2,250 \

 /256,737/798 rCxt Blks,1,READY,MCM0)

 sn1(switch,c271f2s1n02.ppd.pok.ibm.com,192.168.1.6,10.10.10.6,0,250 \

 /256,737/798 rCxt Blks,1,READY,MCM0)

en0(ethernet,c271f2rp02.ppd.pok.ibm.com,9.114.175.82,)

v For a switch adapter, the information format is:

adapter_name(network_type, interface_name, interface_address,

multilink_address, switch_node_number or

adapter_logical_id, available_adapter_windows/total_adapter_windows,

unused rCxt blocks/total rCxt blocks,

adapter_fabric_connectivity, adapter_state[,adapter mcm id])

v For non-switch adapters, the format is:

adapter_name(network_type, interface_name, interface_address,

multilink_address)

v For InfiniBand, this example displays the port number on each InfiniBand

adapter. The llstatus command does not show port information for adapters

that are not InfiniBand adapters:

llstatus -a

You should receive output similar to the following:

==

c171f6sq08.ppd.pok.ibm.com

ehca0(InfiniBand,,,,-1,0/0,0/0 rCxt Blks,101,READY)

eth0(ethernet,c171f6sq08.ppd.pok.ibm.com,9.114.136.59,)

network1833865768265265971s(striped,,,,-1,64/64,0/0 rCxt Blks,101, \

 READY)

network18338657682652659714(aggregate,,,,-1,64/64,0/0 rCxt Blks,1, \

 READY)

ib1(InfiniBand,192.168.9.59,192.168.9.59,,2,64/64,0/0 rCxt Blks,1, \

 READY,2)

network18338657682652659712(aggregate,,,,-1,64/64,0/0 rCxt Blks,1, \

 READY)

ib0(InfiniBand,192.168.8.59,192.168.8.59,,2,64/64,0/0 rCxt Blks,1, \

 READY,1)

==

c171f6sq07.ppd.pok.ibm.com

ehca0(InfiniBand,,,,-1,0/0,0/0 rCxt Blks,101,READY)

eth0(ethernet,c171f6sq07.ppd.pok.ibm.com,9.114.136.58,)

network1833865768265265971s(striped,,,,-1,64/64,0/0 rCxt Blks,101, \

 READY)

network18338657682652659714(aggregate,,,,-1,64/64,0/0 rCxt Blks,1, \

 READY)

ib1(InfiniBand,192.168.9.58,192.168.9.58,,1,64/64,0/0 rCxt Blks,1, \

 READY,2)

network18338657682652659712(aggregate,,,,-1,64/64,0/0 rCxt Blks,1, \

 READY)

ib0(InfiniBand,192.168.8.58,192.168.8.58,,1,64/64,0/0 rCxt Blks,1, \

 READY,1)

Note: The adapter MCM ID will be printed only for High Performance Switch

adapters and only when the RSET_SUPPORT configuration file

keyword is set to RSET_MCM_AFFINITY. A value of MCM-1 for this

field means that none of the CPUs from the physical MCM, where that

adapter is connected to, is part of the machine’s partition.

llstatus

Chapter 16. Commands 491

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

10. This example generates a listing containing information about the status of the

Blue Gene system in the LoadLeveler cluster.

llstatus -b

You should receive output similar to the following:

Name Base Partitions c-nodes InQ Run

BGL 1x2x4 8x16x32 4 1

11. This example generates information for base Blue Gene partition R001:

llstatus -B R001

You should receive output similar to the following:

Base Partition Id: R001

 Base Partition State: UP

 Location: (0,0,3)

 C-node Memory: 512 mb

 Sub Divided Busy: True

 Node Card List:

 NodeCardId=J102 NodeCardState=UP Quarter=Q1 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J104 NodeCardState=UP Quarter=Q1 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J106 NodeCardState=UP Quarter=Q1 PartitionState=READY \

 Partition=R001_J106_32

 NodeCardId=J108 NodeCardState=UP Quarter=Q1 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J111 NodeCardState=UP Quarter=Q2 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J113 NodeCardState=UP Quarter=Q2 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J115 NodeCardState=UP Quarter=Q2 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J117 NodeCardState=UP Quarter=Q2 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J203 NodeCardState=UP Quarter=Q3 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J205 NodeCardState=UP Quarter=Q3 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J207 NodeCardState=UP Quarter=Q3 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J209 NodeCardState=UP Quarter=Q3 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J210 NodeCardState=UP Quarter=Q4 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J212 NodeCardState=UP Quarter=Q4 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J214 NodeCardState=UP Quarter=Q4 PartitionState=NONE \

 Partition=NONE

 NodeCardId=J216 NodeCardState=UP Quarter=Q4 PartitionState=NONE \

 Partition=NONE

12. This example generates information for Blue Gene partition R001_J106_32:

llstatus -P R001_J106_32

You should receive output similar to the following:

Partition Id: R001_J106_32

 Partition State: READY

 Description: Generated via genSmallBlock

 Owner: blocksom

 Connection: MESH

 Size: 32

 Shape: 0x0x0

 Mode: COPROCESSOR

 MloaderImage: /bgl/BlueLight/dd1driver/bglsys/bin/mmcs-mloader.rts

 BlrtsImage: /bgl/BlueLight/dd1driver/bglsys/bin/rts_hw.rts

 LinuxImage: /bgl/BlueLight/dd1driver/bglsys/bin/zImage.elf

llstatus

492 TWS LoadLeveler: Using and Administering

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

RamDiskImage: /bgl/BlueLight/dd1driver/bglsys/bin/ramdisk.elf

 Small Partitions: True

 Base Partition List: R001

 Node Card List: J106

13. The following example shows output for the llstatus -l command that

displays the SMT state for the machine:

==

 Name = devf1n01.clusters.com

 Machine = devf1n01.clusters.com

 Arch = ppc64

 OpSys = Linux2

.

.

.

 Feature = SMT

.

.

.

 SMT = Enabled | Disabled | Not Supported

TimeStamp = Fri 16 Jun 2006 04:44:06 PM CST

.

.

.

Security

LoadLeveler administrators and users can issue this command.

llstatus

Chapter 16. Commands 493

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

llsubmit - Submit a job

Purpose

llsubmit – Submits a job to LoadLeveler to be dispatched based upon job

requirements in the job command file.

Syntax

llsubmit [-H] [-?] [-v] [-q] [-X {cluster_list | any}] [cmdfile | –]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-X {cluster_list | any}

Is a blank-delimited list of cluster names or the reserved word any where:

v A single cluster name indicates that the job is to be submitted to that cluster.

v A list of multiple cluster names indicates that the job is to be submitted to

one of the clusters as determined by the installation exit

CLUSTER_METRIC.

v The reserved word any indicates the job is to be submitted to any cluster

defined by the installation exit CLUSTER_METRIC.

If a cluster_list is specified with the -X option on the llsubmit command, the

specified cluster_list takes precedence over any cluster_list statements already

specified in the job command file.

cmdfile

Is the name of the job command file containing LoadLeveler commands.

– Specifies that LoadLeveler commands that would normally be in the job

command file are read from stdin. When entry is complete, press Ctrl-D to end

the input.

Description

v Users with uid or gid equal to 0 are not allowed to issue the llsubmit

command.

v When a LoadLeveler job ends, you may receive UNIX mail notification

indicating the job exit status. For example, you could get the following mail

message:

Your LoadLeveler job

myjob1

exited with status 139.

The return code 139 is from the user’s job, and is not a LoadLeveler return code.

v For more information on writing a program to filter job scripts, see “Filtering a

job script” on page 70.

v The llsubmit command will display an error and fail to submit the job if the

resources keyword in the job command file does not match the resources to be

enforced and LoadLeveler is set to check for the resources specification. For

more information, see “Defining usage policies for consumable resources” on

page 56.

llsubmit

494 TWS LoadLeveler: Using and Administering

v If the LL_RES_ID environment variable is set, the llsubmit command will set the

requested reservation ID of the submitted job steps using the value of the

LL_RES_ID environment variable. When the central manager receives the job

steps from the Schedd, it will bind the job steps to a reservation, if specified. If

the job steps cannot be bound to the reservation, they will be placed in the

NotQueued state and the requested reservation ID will keep the same value. If

the value of LL_RES_ID is set to blank, it will be treated as if it were unset.

v If you want to submit a job to run on a specific type of machine (for example,

one with Arch = i386 and OpSys= Linux2), you must specify a requirements

statement that includes the Arch and OpSys requirements.

v In a multicluster environment, job identifiers are assigned by the local cluster

and are retained by the job regardless of what cluster the job runs in.

If the job was submitted as a remote job in a multicluster environment, the host

represented in host.jobid.stepid, is the name of the local Schedd machine that

assigned the jobid. To determine the managing Schedd machine, issue the llq -l

command to obtain the Schedd Host field.

If the administrator has not defined a CLUSTER_METRIC for the local cluster,

the llsubmit command will display an error and fail to submit the job if the user

specifies the -X flag with a cluster_list or the reserved word any. The llsubmit

command will also display an error and fail to submit the job if the user

specifies the -X cluster_name in the following instances:

– The local cluster is not in the multicluster environment

– The specified cluster name is not configured

– The specified cluster name does not have inbound_hosts specified

Examples

1. This example shows a job command file named qtrlyrun.cmd is submitted:

llsubmit qtrlyrun.cmd

2. This example shows a job being submitted to a remote cluster:

llsubmit -X cluster1 jcf.cmd

Results

1. The following shows the results of the llsubmit qtrlyrun.cmd command issued

from the machine earth:

llsubmit: The job "earth.505" has been submitted.

Note that 505 is the job ID generated by LoadLeveler.

2. The following shows the results from a remote submit:

Job c188f2n08.ppd.pok.ibm.com.21 assigned to local outbound \

 Schedd c188f2n08.ppd.pok.ibm.com.

Job c188f2n08.ppd.pok.ibm.com.21 assigned to remote inbound \

 Schedd c188f2n02.ppd.pok.ibm.com.

Job c188f2n08.ppd.pok.ibm.com.21 has been submitted to cluster "cluster1"

llsubmit: The job "c188f2n08.ppd.pok.ibm.com.21" has been submitted.

Related Information

Subroutines: llsubmit

Security

LoadLeveler administrators and users can issue this command.

llsubmit

Chapter 16. Commands 495

|
|
|

llsummary - Return job resource information for accounting

Purpose

llsummary – Returns job resource information on completed jobs for accounting

purposes.

You must enable the recording of accounting data in order to generate any of the

four throughput reports. To do this, specify ACCT=A_ON in your LoadL_config

file. For detailed usage of the ACCT keyword, see “Gathering job accounting data”

on page 57.

Syntax

llsummary [-?] [-H] [-v] [-x] [-l] [-s MM/DD/YYYY to MM/DD/YYYY]

 [-e MM/DD/YYYY to MM/DD/YYYY] [-g group]

 [-G unixgroup] [-a allocated] [-r report] [-j jobname]

 [-d section] [-c class] [-u user] [filelist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-x Provides extended information. Using -x can produce a very long report. This

option is meaningful only when used with the -l option. You must enable the

recording of accounting data in order to collect information with the -x flag. To

do this, specify ACCT=A_ON A_DETAIL in your LoadL_config file.

-l Specifies that the long form of output is displayed.

-s Specifies a range for the start date (queue date) for accounting data to be

included in this report. The format for entering the date is either

MM/DD/YYYY (where MM is month, DD is day, and YYYY is year),

MM/DD/YY (where YY is a two-digit year value), or a string of digits

representing the number of seconds since 1970. If a two-digit year value is

used, then 69-99 maps to 1969-1999, and 00-68 maps to 2000-2068. The default

is to include all the data in the report.

-e Specifies a range for the end date (completion date) for accounting data to be

included in this report. The format for entering the date is either

MM/DD/YYYY (where MM is month, DD is day, and YYYY is year),

MM/DD/YY (where YY is a two-digit year value), or a string of digits

representing the number of seconds since 1970. The default is to include all the

data in the report.

-u user

Specifies the user ID for whom accounting data is reported.

-c class

Specifies the class for which accounting data is reported. For reports of all

formats (short, long and extended), llsummary will report information about

every job which contains at least one step of the specified class. For the short

format, llsummary also reports a job count and step count for each class; for

these counts, a job’s class is determined by the class of its first step.

llsummary

496 TWS LoadLeveler: Using and Administering

-g group

Specifies the LoadLeveler group for which accounting data is reported. For

reports of all formats (short, long and extended), llsummary reports

information about every job which contains at least one step of the specified

group. For the short format, llsummary also reports a job count and step count

for each group; for these counts, a job’s group is determined by the group of

its first step.

-G unixgroup

Specifies the UNIX group for which accounting data is reported.

-a allocated

Specifies the hostname that was allocated to run the job. You can specify the

allocated host in short or long form.

-r report

Specifies the report type. You must enable the recording of accounting data in

order to collect information with the -r flag. To do this, specify ACCT=A_ON

A_DETAIL in your LoadL_config file. You can choose one or more of the

following reports:

avgthroughput

Provides average queue time, run time, and CPU time for jobs that ran

for at least some period of time.

maxthroughput

Provides maximum queue time, run time, and CPU time for jobs that

ran for at least some period of time.

minthroughput

Provides minimum queue time, run time, and CPU time for jobs that

ran for at least some period of time.

numeric

Reports CPU times in seconds rather than hours, minutes, and seconds.

resource

Provides CPU usage for all submitted jobs, including those that did not

run. This is the default.

throughput

Selects all throughput reports.

-d section

Specifies the category (data section) for which you want to generate a report.

You can specify one or more of the following: user, group, unixgroup, class,

account, day, week, month, jobid, jobname, allocated.

-j host.jobid

Specifies the job for which accounting data is reported.

 The format of a full LoadLeveler job identifier is host.jobid.

 where:

v host is the name of the machine that assigned the job identifiers.

v jobid is the job number assigned to the job when it was submitted.

The entire host.jobid string is required.

filelist

Is a blank-delimited list of files containing the accounting data. If not specified,

the default is the local history file on the machine from which the command

llsummary

Chapter 16. Commands 497

was issued. You can use the llacctmrg command to combine history files on

different Schedd machines into a single history file.

Description

In order to create an accounting report with the llsummary command, you must

have read access to a history file. If a history file name is not specified as an

argument, llsummary uses the history file in the LoadLeveler spool directory of

the local machine as input. By default, the permissions of the spool directory are

set by the llinit command to 700 at install time. However, these permissions may

be changed by a system administrators with root privileges.

The file permissions of the history file created by a LoadL_schedd daemon are

controlled by the HISTORY_PERMISSION configuration keyword. A specification

such as HISTORY_PERMISSION = rw-rw-r-- will result in permission settings of

664. The default settings are 660.

Examples

1. The following example requests summary reports (standard listing) of all the

jobs submitted on your machine between the days of January 12, 2006 and

March 12, 2006:

llsummary -s 01/12/2006 to 03/12/2006

2. This example generates the standard listing when you do not specify -l, -r, or

-d with llsummary.

This sample report includes summaries of the following data:

v Number of jobs, Total CPU usage, per user.

v Number of jobs, Total CPU usage, per class.

v Number of jobs, Total CPU usage, per group.

v Number of jobs, Total CPU usage, per account number.

llsummary

You should receive output similar to the following:

 Name Jobs Steps Job Cpu Starter Cpu Leverage

 krystal 15 36 0+00:09:50 0+00:00:10 59.0

 lixin3 18 54 0+00:08:28 0+00:00:16 31.8

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

 Class Jobs Steps Job Cpu Starter Cpu Leverage

 small 9 21 0+00:01:03 0+00:00:06 10.5

 large 12 36 0+00:13:45 0+00:00:11 75.0

 osl2 3 9 0+00:00:27 0+00:00:02 13.5

 No_Class 9 24 0+00:03:01 0+00:00:06 30.2

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

 Group Jobs Steps Job Cpu Starter Cpu Leverage

 No_Group 12 30 0+00:09:32 0+00:00:09 63.6

 chemistry 7 18 0+00:04:50 0+00:00:05 58.0

engineering 14 42 0+00:03:56 0+00:00:12 19.7

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

 Account Jobs Steps Job Cpu Starter Cpu Leverage

 33333 16 39 0+00:05:54 0+00:00:11 32.2

llsummary

498 TWS LoadLeveler: Using and Administering

22222 15 45 0+00:12:05 0+00:00:13 55.8

 99999 2 6 0+00:00:18 0+00:00:01 18.0

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

The standard listing includes the following fields:

Account

Account number specified for the jobs.

Class Class specified or defaulted for the jobs.

Group User’s login group.

Job CPU

Total CPU time consumed by user’s jobs.

Jobs Count of the total number of jobs submitted by this user, class, group,

or account.

Leverage

Ratio of job CPU to starter CPU.

Name User ID submitting jobs.

Starter CPU

Total CPU time consumed by LoadLeveler starter processes on behalf of

the user jobs.

Steps Count of the total number of job steps submitted by this user, class,

group, or account.
3. To generate a throughput report, issue:

llsummary -r throughput

You should receive output similar to the following. Note that only the user

output is shown, the class, group, and account lines are not shown.

 Name Jobs Steps AvgQueueTime AvgRealTime AvgCPUTime

 loadl 1 4 0+00:00:03 0+00:05:27 0+00:05:17

 user1 2 6 0+00:03:05 0+00:03:45 0+00:03:04

 ALL 3 10 0+00:01:52 0+00:04:26 0+00:03:58

 Name Jobs Steps MinQueueTime MinRealTime MinCPUTime

 loadl 1 4 0+00:00:01 0+00:02:49 0+00:02:44

 user1 2 6 0+00:02:02 0+00:03:43 0+00:03:02

 ALL 3 10 0+00:00:01 0+00:02:49 0+00:02:44

 Name Jobs Steps MaxQueueTime MaxRealTime MaxCPUTime

 loadl 1 4 0+00:00:06 0+00:12:58 0+00:12:37

 user1 2 6 0+00:06:21 0+00:03:48 0+00:03:07

 ALL 3 10 0+00:06:21 0+00:12:58 0+00:12:37

The -r listing includes the following fields:

AvgCPUTime

Average amount of accumulated CPU time for jobs associated with this

user, class, group, or account.

AvgQueueTime

Average amount of time the job spent queued before running for this

user, class, group, or account.

llsummary

Chapter 16. Commands 499

AvgRealTime

Average amount of accumulated wall clock time for jobs associated

with this user, class, group, or account.

MaxCPUTime

Time of the job with the greatest amount of CPU time for this user,

class, group, or account.

MaxQueueTime

Time of the job that spent the greatest amount of time in queue before

running for this user, class, group, or account.

MaxRealTime

Time of the job with the greatest amount of wall clock time for this

user, class, group, or account.

MinCPUTime

Time of the job with the least amount of CPU time for this user, class,

group, or account.

MinQueueTime

Time of the job that spent the least amount of time in queue before

running for this user, class, group, or account.

MinRealTime

Time of the job with the least amount of wall clock time for this user,

class, group, or account.
The ALL line for the Average listing displays the average time for all users,

classes, groups, and accounts. The ALL line for the Minimum listing displays

the time of the job with the least amount of time for all users, classes, groups,

and accounts. The ALL line for the Maximum listing displays the time of the

job with the greatest amount of time for all users, classes, groups, and accounts.

4. The following example generates the long listing that contains Blue

Gene-specific information:

llsummary -l -j job_name

You should receive output similar to the following:

.

.

.

 Step Type: bluegene

 Min Processors: 1

 Max Processors: 1

 Size Requested: 2048

 Size Allocated: 2048

 Shape Requested:

 Shape Allocated: 32x8x8

 Wiring Requested: PREFER_TORUS

 Wiring Allocated: TORUS

 Rotate: TRUE

 Partition Requested:

 Partition Allocated: part130

 BG Requirements: (Memory == 1024)

 Error Text:

 Alloc. Host Count: 1

.

.

.

5. The following example generates the long listing that contains

multicluster-specific information submitted or moved to a remote cluster:

llsummary

500 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

llsummary -l

You should receive output similar to the following:

.

.

.

 Scheduling Cluster: cluster1

 Submitting Cluster: cluster2

 Sending Cluster: cluster2

 Submitting User: brownap

 Schedd History: c188f2n08.ppd.pok.ibm.com

 Outbound Schedds: c188f2n08.ppd.pok.ibm.com

 .

 .

 .

 Cluster input file: /u/brownap/copyfile_input, /tmp/copyfile_input1

 Cluster input file: /u/brownap/copyfile_input, /tmp/copyfile_input2

 Cluster input file: /u/brownap/copyfile_input, /tmp/copyfile_input3

Cluster output file: /tmp/copyfile_output, /u/brownap/copyfile_output

 .

 .

 .

For an explanation of the fields in the long listing, see “llq - Query job status”

on page 449. See Appendix B, “Sample command output,” on page 673 for

sample output of long listings.

6. For InfiniBand support, the following example includes the port number for the

allocated hosts and task instances:

llsummary -l -x

You should receive output similar to the following:

 .

 .

 .

 Task

 Num Task Inst: 4

 Task Instance: c171f6sq07:0:ib0(MPI,IP,-1,Shared,0 rCxt Blks,1), \

 ib1(MPI,IP,-1,Shared,0 rCxt Blks,2)

 Task Instance: c171f6sq07:1:ib0(MPI,IP,-1,Shared,0 rCxt Blks,1), \

 ib1(MPI,IP,-1,Shared,0 rCxt Blks,2)

 Task Instance: c171f6sq08:2:ib0(MPI,IP,-1,Shared,0 rCxt Blks,1), \

 ib1(MPI,IP,-1,Shared,0 rCxt Blks,2)

 Task Instance: c171f6sq08:3:ib0(MPI,IP,-1,Shared,0 rCxt Blks,1), \

 ib1(MPI,IP,-1,Shared,0 rCxt Blks,2)

 .

 .

 .

Security

LoadLeveler administrators and users can issue this command.

llsummary

Chapter 16. Commands 501

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

llsummary

502 TWS LoadLeveler: Using and Administering

Chapter 17. Application programming interfaces (APIs)

LoadLeveler provides several application programming interfaces (APIs). These

APIs allow application programs written by customers to interact with the

LoadLeveler environment using specific data and functions that are a part of

LoadLeveler. These interfaces can be subroutines within a library or installation

exits.

The header file llapi.h defines all of the API data structures and subroutines. This

file is located in the include subdirectory of the LoadLeveler release directory. You

must include this file when you call any API subroutine.

The library libllapi.a (AIX) or libllapi.so (Linux) is a shared library containing all

of the LoadLeveler API subroutines. This library is located in the lib subdirectory

of the LoadLeveler release directory.

Attention: These APIs are not thread safe; they should not be linked to by a

threaded application.

Table 86 lists all of the LoadLeveler APIs, along with the intended users and

supported operating systems for each, and a reference to the full descriptions of

each interface.

 Table 86. LoadLeveler API summary

Task / API category Interface name Intended users

Supported

operating

systems

Generate accounting

reports

“Accounting API” on

page 506

GetHistory subroutine Both administrators and general

users

AIX and

Linux

llacctval user exit Administrators only AIX and

Linux

Checkpoint

LoadLeveler jobs

“Checkpointing API”

on page 510

ckpt subroutine Provided for backward

compatibility only. Use

ll_init_ckpt and ll_ckpt instead.

AIX only

ll_ckpt subroutine Both administrators and general

users

AIX and

Linux¹

ll_init_ckpt subroutine Both administrators and general

users

AIX only

ll_set_ckpt_callbacks

subroutine

Both administrators and general

users

AIX only

ll_unset_ckpt_callbacks

subroutine

Both administrators and general

users

AIX only

Process configuration

files

“Configuration API” on

page 519

ll_config_changed

subroutine

Both administrators and general

users

AIX and

Linux

ll_read_config subroutine Both administrators and general

users

AIX and

Linux

 503

||
|
|
|

|
|

|
|

|
|
|
|
|
|

||
|
|
|

Table 86. LoadLeveler API summary (continued)

Task / API category Interface name Intended users

Supported

operating

systems

Access LoadLeveler

objects and retrieve

data from objects

“Data access API” on

page 522

ll_deallocate subroutine Both administrators and general

users

AIX and

Linux

ll_free_objs subroutine Both administrators and general

users

AIX and

Linux

ll_get_data subroutine Both administrators and general

users

AIX and

Linux

ll_get_objs subroutine Both administrators and general

users

AIX and

Linux

ll_next_obj subroutine Both administrators and general

users

AIX and

Linux

ll_query subroutine Both administrators and general

users

AIX and

Linux

ll_reset_request subroutine Both administrators and general

users

AIX and

Linux

ll_set_request subroutine Both administrators and general

users

AIX and

Linux

Convert an error object

into an error message

“Error handling API”

on page 590

ll_error subroutine Both administrators and general

users

AIX and

Linux

Fair share scheduling

API

“Fair share scheduling

API” on page 592

ll_fair_share subroutine Administrators only AIX and

Linux

Query APIs

“Query API” on page

595

ll_free_jobs subroutine Both administrators and general

users

AIX only

ll_free_nodes subroutine Both administrators and general

users

AIX only

ll_get_jobs subroutine Both administrators and general

users

AIX only

ll_get_nodes subroutine Both administrators and general

users

AIX only

Reservation APIs

“Reservation API” on

page 600

ll_bind subroutine Both administrators and general

users

AIX and

Linux

ll_change_reservation

subroutine

Both administrators and general

users

AIX and

Linux

ll_init_reservation_param

subroutine

Both administrators and general

users

AIX and

Linux

ll_make_reservation

subroutine

Both administrators and general

users

AIX and

Linux

ll_remove_reservation

subroutine

Both administrators and general

users

AIX and

Linux

Submit jobs to

LoadLeveler

“Submit API” on page

614

llfree_job_info subroutine Both administrators and general

users

AIX and

Linux

llsubmit subroutine Both administrators and general

users

AIX and

Linux

monitor_program user exit Both administrators and general

users

AIX and

Linux

Summary of LoadLeveler APIs

504 TWS LoadLeveler: Using and Administering

Table 86. LoadLeveler API summary (continued)

Task / API category Interface name Intended users

Supported

operating

systems

Perform LoadLeveler

control operations and

work with an external

scheduler

“Workload

management API” on

page 619

ll_cluster subroutine Both administrators and general

users

AIX and

Linux

ll_cluster_auth subroutine Administrators only AIX and

Linux

ll_control subroutine Both administrators and general

users may specify the following

control operations:

v LL_CONTROL_HOLD_USER

v LL_CONTROL_PRIO_ABS

v LL_CONTROL_PRIO_ADJ

v LL_CONTROL_START

v LL_CONTROL_START_DRAINED

All other control operations

defined in the llapi.h header

file are intended for use by

administrators only.

AIX and

Linux

ll_modify subroutine Both administrators and general

users

AIX and

Linux

ll_move_job subroutine Administrators only AIX and

Linux

ll_move_spool subroutine Administrators only AIX and

Linux

ll_preempt subroutine Administrators only AIX only

ll_preempt_jobs subroutine Administrators only AIX and

Linux

ll_run_scheduler subroutine Administrators only AIX and

Linux

ll_start_job subroutine Administrators only AIX and

Linux

ll_start_job_ext subroutine Administrators only AIX and

Linux

ll_terminate_job subroutine Administrators only AIX and

Linux

¹ This subroutine will run on LoadLeveler for Linux platforms, but it can only checkpoint jobs on AIX.

64-bit support for the LoadLeveler APIs

LoadLeveler for AIX APIs support both 32-bit and 64-bit applications. LoadLeveler

for Linux APIs support 32-bit applications on 32-bit platforms and 64-bit

applications on 64-bit platforms.

AIX APIs

In LoadLeveler 3.2 or later releases, the LoadLeveler API library (libllapi.a)

consists of two sets of objects: 32-bit and 64-bit. Both sets of objects and interfaces

are provided since the AIX linker cannot create an executable from a mixture of

32-bit and 64-bit objects. They must be all of the same type. Developers attempting

to exploit the 64-bit capabilities of the LoadLeveler API library should take into

consideration that all interfaces of the LoadLeveler API library are available in both

32-bit and 64-bit formats. Interfaces with the same names are functionally

equivalent.

Summary of LoadLeveler APIs

Chapter 17. Application programming interfaces (APIs) 505

|||
|

|

Linux APIs

On Linux, the LoadLeveler 3.4 API library (libllapi.so) is a 32-bit library on 32-bit

platforms and a 64-bit library on 64-bit platforms. The library libllapi.so is a 32-bit

library on the following platforms:

v RHEL 3 and RHEL 4 on IBM IA-32 xSeries servers

v SLES 9 and SLES 10 on IBM IA-32 xSeries servers

libllapi.so is a 64-bit library on the following platforms:

v RHEL 3 and RHEL 4 on IBM eServers with AMD Opteron or Intel EM64T

processors

v RHEL 4 on IBM POWER servers

v SLES 9 and SLES 10 on IBM eServers with AMD Opteron or Intel EM64T

processors

v SLES 9 and SLES 10 on IBM POWER servers

For users running Parallel Operating Environment, there are 32-bit LoadLeveler

library RPMs available for installing on the following 64-bit platforms:

v RHEL 4 on IBM eServers with AMD Opteron or Intel EM64T processors

v RHEL 4 on IBM POWER servers

v SLES 9 and SLES 10 on IBM eServers with AMD Opteron or Intel EM64T

processors

v SLES 9 and SLES 10 on IBM POWER servers

Note: RHEL 3 does not support a 32-bit library.

Accounting API

This API provides a subroutine for extracting accounting data and a user exit for

account validation. Job accounting information saved in a history file can also be

queried by using the data access API.

Summary of LoadLeveler APIs

506 TWS LoadLeveler: Using and Administering

|

|

|
|
|

|
|
|
|
|
|
|

|

GetHistory subroutine

Purpose

GetHistory – Processes local or global LoadLeveler history files.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int GetHistory(char *filename, int (*func) (LL_job *), int version);

Parameters

filename

Specifies the name of the history file.

(*func) (LL_job *)

Specifies the user-supplied function you want to call to process each history

record. The function must return an integer and must accept as input a pointer

to the LL_job structure. The LL_job structure is defined in the llapi.h file.

version

Specifies the version of the history record you want to create.

LL_JOB_VERSION in the llapi.h file creates an LL_job history record.

Description

GetHistory opens the history file you specify, reads one LL_job accounting record,

and calls a user-supplied routine, passing to the routine the address of an LL_job

structure. GetHistory processes all history records one at a time and then closes

the file. Any user can call this subroutine.

The user-supplied function must include the following files:

#include <sys/resource.h>

#include <sys/types.h>

#include <sys/time.h>

The ll_event_usage structure is part of the LL_job structure and contains the

following LoadLeveler defined data:

int event

Specifies the event identifier. This is an integer whose value is one of the

following:

1 Represents a LoadLeveler-generated event.

2 Represents an installation-generated event.

char *name

Specifies a character string identifying the event. This can be one of the

following:

v An installation generated string that uses the command llctl capture

eventname.

v LoadLeveler-generated strings, which can be the following:

– started

– checkpoint

– vacated

– completed

– rejected

– removed

GetHistory subroutine

Chapter 17. Application programming interfaces (APIs) 507

Return Values

GetHistory returns a zero when successful.

Error Values

GetHistory returns -1 to indicate that the version is not supported or that an error

occurred opening the history file.

Examples

Makefiles and examples which use this API are located in the samples/llphist

subdirectory of the release directory. The examples include the executable llpjob,

which invokes GetHistory to print every record in the history file. In order to

compile llpjob, the sample Makefile must update the RELEASE_DIR field to

represent the current LoadLeveler release directory. The syntax for llpjob is:

 llpjob history_file

Where history_file is a local or global history file.

GetHistory subroutine

508 TWS LoadLeveler: Using and Administering

llacctval user exit

Purpose

LoadLeveler provides the llacctval executable to perform account validation.

llacctval – Compares the account number a user specifies in a job command file

with the account numbers defined for that user in the LoadLeveler administration

file. If the account numbers match, llacctval returns a value of zero. Otherwise, it

returns a nonzero value.

Syntax

program user_name user_group user_acct# acct1 acct2 ...

Parameters

program

Is the name of the program that performs the account validation. The default is

llacctval. The name you specify here must match the value specified on the

ACCT_VALIDATION keyword in the configuration file.

user_name

Is the name of the user whose account number you want to validate.

user_group

Is the login group name of the user.

user_acct#

Is the account number specified by the user in the job command file.

acct1 acct2 ...

Are the account numbers obtained from the user stanza in the LoadLeveler

administration file.

Description

llacctval is invoked from within the llsubmit command. If the return code is

nonzero, llsubmit does not submit the job.

You can replace llacctval with your own accounting user exit.

To enable account validation, you must specify the following keyword in the

configuration file:

 ACCT = A_VALIDATE

To use your own accounting exit, specify the following keyword in the

configuration file:

 ACCT_VALIDATION = pathname

where pathname is the name of your accounting exit.

Return Values

If the validation succeeds, the exit status must be zero. If it does not succeed, the

exit status must be a nonzero number.

llacctval user exit

Chapter 17. Application programming interfaces (APIs) 509

Checkpointing API

This API is used to checkpoint jobs running under LoadLeveler and consists of the

following subroutines:

v ckpt subroutine

v ll_ckpt subroutine

v ll_init_ckpt subroutine

v ll_set_ckpt_callbacks subroutine

v ll_unset_ckpt_callbacks subroutine

The ll_ckpt subroutine will run on LoadLeveler for Linux platforms, but it can

only checkpoint jobs on AIX. All other checkpoint API functions are not supported

on Linux.

For more information, see “LoadLeveler support for checkpointing jobs” on page

129. For information on checkpointing parallel jobs, see IBM Parallel Environment

for AIX: Operation and Use, Volume 1.

Checkpointing API

510 TWS LoadLeveler: Using and Administering

|
|
|

ckpt subroutine

Purpose

Specify the ckpt subroutine in a FORTRAN, C, or C++ program to activate

checkpointing from within the application. Whenever this subroutine is invoked, a

checkpoint of the program is taken.

Note: This API is obsolete and is supported for backward compatibility only. It

calls ll_init_ckpt.

C++ syntax

extern "C"{void ckpt();}

C syntax

void ckpt();

FORTRAN syntax

call ckpt()

ckpt subroutine

Chapter 17. Application programming interfaces (APIs) 511

ll_ckpt subroutine

Purpose

ll_ckpt – Initiates a checkpoint on a specific job step.

Library

LoadLeveler API library libllapi.a or libllapi.so (Linux)

Syntax

#include ″llapi.h″

int ll_ckpt (LL_ckpt_info *ckpt_info);

Parameters

ckpt_info

A pointer to a LL_ckpt_info structure, which has the following fields:

int version

The version of the API that the program was compiled with (from llapi.h).

char* step_id

A job or step identifier. When a job identifier is specified, the action of the

API is taken for all steps of the job. At least one job or step identifier must

be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step

identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was

submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the API is invoked on the same machine that assigned

the job and step identifiers. In this case, LoadLeveler will use the local

machine’s host name to construct the full job or step identifier.

enum ckpt_type ckptType

The action to be taken after the checkpoint successfully completes. The

values for enum ckpt_type are:

CKPT_AND_CONTINUE

Allows the job to continue after the checkpoint.

CKPT_AND_TERMINATE

Terminates the job after the checkpoint.

CKPT_AND_HOLD

Puts the job on user hold after the checkpoint. A coschedule job

step can be specified with the CKPT_AND_HOLD option.

Note: If checkpoint is not successful, the job continues on return

regardless of these settings.

ll_ckpt subroutine

512 TWS LoadLeveler: Using and Administering

|

|
|

enum wait_option waitType

The flag used to identify blocking action during checkpoint. By default,

ll_ckpt() will block until the checkpoint completes. The values for the

enum wait_option are:

CKPT_NO_WAIT

Disables blocking while the job is being checkpointed.

CKPT_WAIT

The job is blocked while being checkpointed. This is the default.

int abort_sig

Identifies the signal to be used to interrupt a checkpoint initiated by the

API. Upon receipt of this signal the checkpoint will be aborted. Default is

SIGINT.

cr_error_t *cp_error_data

The structure containing error information from the checkpoint operation.

int ckpt_rc

The return code from checkpoint.

int soft_limit

The time, in seconds, indicating the maximum time allocated for a

checkpoint operation to complete before the checkpoint operation is

aborted. The job is allowed to continue. The value for soft_limit specified

here will override any soft limit value specified in the job command file. If

the value for soft limit specified by the administration file is less than the

value specified here, the administration file value takes precedence.

 Values are:

-1 Indicates there is no limit.

0 Indicates the existing soft limit for the job step should be enforced.

Positive integer

Indicates the number of seconds allocated for the limit.

int hard_limit

The time, in seconds, indicating the maximum time allocated for a

checkpoint operation to complete before the job is terminated. The value

for hard-limit specified here will override any hard limit value specified in

the job command file. If the value for hard limit specified by the

administration file is less than the value specified here, the administration

file value will take precedence.

 Values are:

-1 Indicates there is no limit.

0 Indicates the existing hard limit for the job step should be

enforced.

Positive integer

Indicates the number of seconds allocated for the limit.

Description

This function initiates a checkpoint for the specified job step. ll_ckpt() will, by

default, block until the checkpoint operation completes. To disable blocking, the

flag waitType must be set to NO_WAIT. This function is allowed to be executed by

the owner of the job step or a LoadLeveler administrator.

ll_ckpt subroutine

Chapter 17. Application programming interfaces (APIs) 513

|
|

Return Values

0 Checkpoint completed successfully.

1 Checkpoint event did not receive status and the success or failure of the

checkpoint is unclear.

Error Values

-1 Error occurred attempting to checkpoint.

-2 Format not valid for job step, not in the form host.jobid.stepid.

-3 Cannot allocate memory.

-4 API cannot create listen socket.

-6 Configuration file errors.

ll_ckpt subroutine

514 TWS LoadLeveler: Using and Administering

ll_init_ckpt subroutine

Purpose

ll_init_ckpt – Initiates a checkpoint from within a serial application.

Library

LoadLeveler API library libllapi.a.

Syntax

#include "llapi.h"

int ll_init_ckpt (LL_ckpt_info *ckpt_info);

Parameters

ckpt_info

A pointer to a LL_ckpt_info structure, which has the following fields:

int version

The version of the API that the program was compiled with (from llapi.h).

char* step_id

NULL, not used.

enum ckpt_type ckptType

NULL, not used.

enum wait_option waitType

NULL, not used.

int abort_sig

NULL, not used.

cr_error_t *cp_error_data

AIX structure containing error info from ll_init_ckpt. When the return

code indicates the checkpoint was attempted but failed (-7), detailed

information is returned in this structure.

int ckpt_rc

Return code from checkpoint.

int soft_limit

This field is ignored.

int hard_limit

This field is ignored.

Description

This subroutine is only available if you have enabled checkpointing. ll_init_ckpt

initiates a checkpoint from within a serial application. The checkpoint file name

will consist of a base name with a suffix of a numeric checkpoint tag to

differentiate from an earlier checkpoint file. LoadLeveler sets the

LOADL_CKPT_FILE environment variable which identifies the directory and file

name for checkpoint files.

Return Values

0 The checkpoint completed successfully.

1 Indicates ll_init_ckpt() returned as a result of a restart operation.

ll_init_ckpt subroutine

Chapter 17. Application programming interfaces (APIs) 515

Error Values

-1 Cannot retrieve the job step ID from the LOADL_STEP_ID environment

variable.

-2 Cannot retrieve the checkpoint file name from the LOADL_CKPT_FILE

environment variable, checkpoint has not been enabled for the job step

(checkpoint not set to yes or interval).

-3 Cannot allocate memory.

-4 Checkpoint/restart ID is not valid, checkpointing is not enabled for the job

step.

-5 Request to take checkpoint denied by starter.

-6 Request to take checkpoint failed, no response from starter, possible

communication problem.

-7 Checkpoint attempted but failed. Details of error can be found in the

LL_ckpt_info structure.

-8 Cannot install SIGINT signal handler.

ll_init_ckpt subroutine

516 TWS LoadLeveler: Using and Administering

ll_set_ckpt_callbacks subroutine

Purpose

ll_set_ckpt_callbacks – Registers callbacks, which will be invoked, when a job step

is checkpointed, resumed, and restarted.

Library

LoadLeveler API library libllapi.a

Syntax

#include ″llapi.h″

int ll_set_ckpt_callbacks (callbacks_t *cbs);

Parameters

cbs

A pointer to a callbacks_t structure, which is defined as:

typedef struct {

 void (*checkpoint_callback) (void) ;

 void (*restart_callback) (void) ;

 void (*resume_callback) (void) ;

} callbacks_t;

Where:

checkpoint_callback

Pointer to the function to be invoked at checkpoint time.

restart_callback

Pointer to the function to be invoked at restart time.

resume_callback

Pointer to the function to be called when an application is resumed after

taking a checkpoint.

Description

This function is called to register functions to be invoked when a job step is

checkpointed, resumed, and restarted.

Return Values

If successful, a nonnegative integer is returned which is a handle used to identify

the particular set of callback functions. The handle can be used as input to the

ll_unset_ckpt_callbacks function. If an error occurs, a negative number is

returned.

Error Values

-1 Process is not enabled for checkpointing.

-2 Unable to allocate storage to store callback structure.

-3 Cannot allocate memory.

ll_set_ckpt_callbacks subroutine

Chapter 17. Application programming interfaces (APIs) 517

ll_unset_ckpt_callbacks subroutine

Purpose

ll_unset_ckpt_callbacks – Unregisters previously registered checkpoint, resume,

and restart callbacks.

Library

LoadLeveler API library libllapi.a

Syntax

#include ″llapi.h″

int ll_unset_ckpt_callbacks(int handle);

Parameters

handle

An integer indicating the set of callback functions to be unregistered. This

integer is the value returned by the ll_set_ckpt_callbacks function which was

used to register the callbacks.

Description

This API is called to unregister checkpoint, resume, and restart application callback

functions which were previously registered with the ll_set_ckpt_callbacks

function.

Return Values

0 Success.

Error Values

-1 Unable to unregister callback. Argument not valid, specified handle does not

reference a valid callback structure.

ll_unset_ckpt_callbacks subroutine

518 TWS LoadLeveler: Using and Administering

Configuration API

This API allows operations on LoadLeveler configuration files and consists of the

following subroutines:

v ll_config_changed subroutine

v ll_read_config subroutine

Configuration API

Chapter 17. Application programming interfaces (APIs) 519

|

|
|
|
|

|

ll_config_changed subroutine

Purpose

ll_config_changed – Allows users to determine if the LoadLeveler configuration

files were changed since the last time they were read.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_config_changed(void);

Description

This subroutine is used in conjunction with the ll_read_config subroutine to reread

the configuration files.

Return Values

An integer value will be returned which indicates whether the configuration files

were changed since the last time that they were read.

0 The configuration files were not changed.

1 At least one of the configuration files was changed.

Related Information

Subroutine: ll_read_config

ll_config_changed subroutine

520 TWS LoadLeveler: Using and Administering

|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

||

||

|
|

ll_read_config subroutine

Purpose

ll_read_config – Allows users to read or reread the LoadLeveler configuration files.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_read_config(LL_element **errObj);

Parameters

errObj

This is the address of a pointer to a LoadLeveler error object. The pointer to

the LL_element should be set to NULL before calling this function. If this

function fails, the pointer will point to an error object. The error messages

stored in the error object can be displayed through the ll_error function. The

caller should free the error object storage before reusing the pointer.

Description

This subroutine is used in conjunction with the ll_config_changed subroutine to

determine whether the configuration files were changed since the last time they

were read.

Return Values

API_OK

The configuration files was successfully read.

API_CONFIG_ERR

Errors were encountered while reading the configuration files.

Related Information

Subroutines: ll_config_changed, ll_error

ll_read_config subroutine

Chapter 17. Application programming interfaces (APIs) 521

|

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

Data access API

This API gives you access to LoadLeveler data objects and allows you to retrieve

specific data from those objects. You can use this API to query LoadLeveler

daemons for information about:

v BLUE_GENE (Blue Gene system)

v CLASSES (job classes)

v CLUSTER (cluster information)

v FAIRSHARE (fair share scheduling information)

v JOBS (job information)

v MACHINES (machine information)

v MCLUSTERS (multicluster objects)

v RESERVATIONS (reservation information)

v WLMSTAT (AIX Workload Manager)

This API can also be used to query a LoadLeveler history file for accounting

information about JOBS.

The data access API consists of the following subroutines:

v ll_deallocate subroutine

v ll_free_objs subroutine

v ll_get_data subroutine

v ll_get_objs subroutine

v ll_next_obj subroutine

v ll_query subroutine

v ll_reset_request subroutine

v ll_set_request subroutine

Using the data access API

The data access API makes use of a query object to facilitate each request for

LoadLeveler data. The query object is used to specify the details of each query

request and to manage the list of LoadLeveler objects retrieved. It is initialized by

the ll_query subroutine to specify the kind of LoadLeveler objects requested and is

modified by the ll_set_request and ll_reset_request subroutines to specify filtering

of those objects. It is then passed to the ll_get_objs and ll_next_obj subroutines to

use in traversing the list of objects. To use this API, you need to call the

subroutines in the following order:

v Call ll_query to initialize the query object and define the type of objects you

want to query. See “ll_query subroutine” on page 578 for more information.

v Call ll_set_request to filter the objects you want to query. See “ll_set_request

subroutine” on page 580 for more information.

v Call ll_reset_request to reset the filter on the objects you want to query. See

“ll_reset_request subroutine” on page 579 for more information.

v Call ll_get_objs to retrieve a list of objects from a LoadLeveler daemon or

history file. See “ll_get_objs subroutine” on page 574 for more information.

v Call ll_get_data to retrieve specific data from an object. See “ll_get_data

subroutine” on page 532 for more information.

v Call ll_next_obj to retrieve the next object in the list. See “ll_next_obj

subroutine” on page 577 for more information.

v Call ll_free_objs to free the list of objects you received. See “ll_free_objs

subroutine” on page 531 for more information.

v Call ll_deallocate to end the query. See “ll_deallocate subroutine” on page 530

for more information.

Data access API

522 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

In a multicluster configuration, you need to use the “ll_cluster subroutine” on page

620 to access data from a remote cluster. The ll_cluster subroutine is used to define

the cluster prior to any data access API calls.

To see code that uses these subroutines, refer to “Examples of using the data access

API” on page 584. For more information on LoadLeveler objects, see

“Understanding the LoadLeveler data access object model.”

Understanding the LoadLeveler data access object model

The ll_get_data subroutine of the data access API allows you to access the

LoadLeveler object model. A LoadLeveler object model consists of a root object

with zero or more associated objects that have attributes and associations to other

objects. An attribute is a characteristic of the object and generally has a primitive

data type (such as integer, float, or character). Attributes and related objects are

retrieved from an object using the “ll_get_data subroutine” on page 532. One of the

arguments to the ll_get_data subroutine is the specification. Specifications are used

to identify which attribute or related object to retrieve. The job name, submission

time, and job priority are examples of attributes.

Objects are associated with one or more other objects through relationships. An

object can be associated with other objects through more than one relationship, or

through the same relationship. For example, A Job object is associated with a

Credential object and to Step objects through two different relationships. A Job

object can be associated with more than one Step object through the same

relationship of “having a Step.” When an object is associated through different

relationships, different specifications are used to retrieve the appropriate object.

When an object is associated with more than one object through the same

relationship, there are GetFirst and GetNext specifications associated with the

relationship. You must use the GetFirst specification to initialize access to the first

such associated object. You must use the GetNext specification to get the remaining

objects in succession. After the last object has been retrieved, GetNext will return

NULL.

The specification tables for the ll_get_data subroutine in the data access API in

TWS LoadLeveler: Using and Administering describe the specifications and elements

available when you use the ll_get_data subroutine. Each specification name

describes the object you need to specify and the attribute returned. For example,

the specification LL_JobGetFirstStep includes the object you need to specify (Job)

and the value returned (LL_element* Step). The tables are sorted alphabetically by

object.

You can use the ll_get_data subroutine to access both attributes and associated

objects. See the “ll_get_data subroutine” on page 532 for more information.

It is important to keep in mind how the list of objects returned by the ll_get_objs

subroutine have been defined by the previous data access API calls when getting

specific pieces of data using the ll_get_data subroutine.

Several factors can affect what and when data attributes are available or relevant:

v Data related to certain LoadLeveler features (such as Blue Gene or multicluster)

either will not be available, or the data will not be relevant unless the feature is

configured

v What source returned the data object

v What type of job is being queried

Data access API

Chapter 17. Application programming interfaces (APIs) 523

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|

|

|

v What is the state of the job being queried

Understanding the Blue Gene object model

To access the Blue Gene model, initialize the query object using ll_query with the

BLUE_GENE query_type. The root of the Blue Gene model is the BgMachine

object. The BgMachine is associated with one or more BgBP objects, one or more

BgSwitch objects, one or more BgWire objects, and one or more BgPartition objects.

These objects show how the Blue Gene system is configured.

Each BgBP object is associated with one or more BgNodeCard objects.

Each BgPartition object is associated with one or more BgSwitch objects.

Each BgSwitch object is associated with one or more BgPortConn objects.

BgMachine objects can only be obtained from the LL_CM query daemon.

 See Table 87 on page 533 for a listing of BLUE_GENE specifications.

Understanding the Class object model

To access the Class model, initialize the query object using ll_query with the

CLASSES query_type. The root of the class model is the Class object. The class is

associated with zero or more ResourceReq objects and one or more ClassUser

objects depending on the configuration of the class that the Class object represents.

Class objects can only be obtained from the LL_CM query daemon.

BgMachine BgBP
1..n1..n

BgWire

BgPartition

BgNodeCard

BgSwitch
1..n

BgPortConn

BgSwitch

1..n

1..n 1..n1..n

BgPortConn

1..n

Figure 44. TWS LoadLeveler Blue Gene object model

Data access API

524 TWS LoadLeveler: Using and Administering

|

|
|
|

|

|

|
|
|
|
|

|

|

|

|
|

|

|

|
|
|
|

|
|

See Table 88 on page 537 for a listing of CLASS specifications.

Understanding the Cluster object model

To access the Cluster model, initialize the query object using ll_query with the

CLUSTER query_type. The root of the cluster model is the Cluster object. The

Cluster is associated with one or more Resource objects.

Cluster objects can only be obtained from the LL_CM query daemon.

 See Table 89 on page 540 for a listing of CLUSTER specifications.

Understanding the Fairshare object model

To access the Fairshare model, initialize the query object using ll_query with the

FAIRSHARE query_type. The Fairshare object model consists of Fairshare objects

only. These objects represent fair share scheduling information.

Fairshare objects can only be obtained from the LL_CM query daemon.

 See Table 90 on page 541 for a listing of FAIRSHARE specifications.

Understanding the Job object model

To access the Job model, initialize the query object using ll_query with the JOBS

query_type. The root of the job model is the Job object. The Job is associated with a

single Credential object, one or more Step objects, and zero or more ClusterFile

objects.

The Step object represents one executable unit of the Job (all the tasks that are

executed together). The Step is associated with one or more Machine objects, one

Class ResourceReq

1..n

0..n

ClassUser

Figure 45. TWS LoadLeveler Class object model

Cluster
1..n

Resource

Figure 46. TWS LoadLeveler Cluster object model

Fairshare

Figure 47. TWS LoadLeveler Fairshare object model

Data access API

Chapter 17. Application programming interfaces (APIs) 525

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|

|
|

|

|

|
|
|

|
|

|

|

|
|
|
|

|
|

or more Node objects, one or more MachUsage objects, and one or more

AdapterReq objects. The only relevant data within the Machine object when linked

to a Step is the machine name. The list of Machines represents all of the hosts

assigned to a step that is in a running-like state. If two or more nodes are running

on the same host, the Machine object for the host occurs only once in the Step’s

Machine list.

The MachUsage object is associated with one or more DispUsage objects. The

DispUsage object is associated with one or more EventUsage objects. The

MachUsage, DispUsage, and EventUsage objects contain accounting information

available from the history file only.

Each Node object manages a set of executables that share common requirements

and preferences. The Node object is associated with one or more Task objects.

The Task object represents one or more copies of the same executable. The Task

object is associated with one or more ResourceReq objects and one or more

TaskInstance objects.

The TaskInstance object is associated with one or more AdapterUsage objects and

one or more Adapter objects. The only relevant data within the Adapter objects

associated with each TaskInstance is the adapter name. The list of Machines

represents all of the hosts where one or more nodes of the step are running.

Job objects can only be obtained from the LL_CM, LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE query daemon.

Data access API

526 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

See Table 91 on page 542 for a listing of JOB specifications.

Understanding the Machine object model

To access the Machine model, initialize the query object using ll_query with the

MACHINES query_type. The root of the machine model is the Machine object. The

machine is associated with one or more Resource objects, one or more Adapter

objects, and one or more MCM objects depending on the configuration of the

machine that the Machine object represents.

Machine objects can only be obtained from the LL_CM query daemon.

Job

Task

Step

AdapterReq

Adapter

1..n

1..n

1..n

1..n

1..n1..n

1..n

1..n

1..n

1..n

Credential

TaskInstance

ResourceReq

Node

AdapterUsage

Machine

1..n

DispUsage

1..n

MachUsage

EventUsage

1..n

ClusterFile

0..n

Figure 48. TWS LoadLeveler Job object model

Data access API

Chapter 17. Application programming interfaces (APIs) 527

|

|
|
|
|

|

|
|
|
|
|

|
|

See Table 92 on page 566 for a listing of MACHINE specifications.

Understanding the MCluster object model

To access the MCluster model, initialize the query object using ll_query with the

MCLUSTERS query_type. The MCluster object model consists of MCluster objects

only. These objects represent configuration information for multicluster clusters.

MCluster objects can only be obtained from the LL_SCHEDD query daemon.

 See Table 93 on page 571 for a listing of MCLUSTER specifications.

Understanding the Reservations object model

To access the Reservations model, initialize the query object using ll_query with

the RESERVATIONS query_type. The Reservations object model consists of

Reservations objects only. These objects represent reservation information.

Reservations objects can only be obtained from the LL_CM query daemon.

 See Table 94 on page 572 for a listing of RESERVATIONS specifications.

Machine MCM

1..n

1..n

Resource

Adapter

1..n

Figure 49. TWS LoadLeveler Machine object model

MCluster

Figure 50. TWS LoadLeveler MCluster object model

Reservations

Figure 51. TWS LoadLeveler Reservations object model

Data access API

528 TWS LoadLeveler: Using and Administering

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|

|
|

|

|

|
|
|

|
|

|

Understanding the Wlmstat object model

To access the Wlmstat model, initialize the query object using ll_query with the

WLMSTAT query_type. The Wlmstat object model consists of Wlmstat objects only.

These objects return WLM statistics about running steps. Wlmstat objects must be

queried for a specific step.

WlmStat objects can only be obtained from the LL_STARTD query daemon.

 See Table 95 on page 573 for a listing of WLMSTAT specifications.

Wlmstat

Figure 52. TWS LoadLeveler Wlmstat object model

Data access API

Chapter 17. Application programming interfaces (APIs) 529

|

|
|
|

|

|
|
|
|

|
|

|

ll_deallocate subroutine

Purpose

ll_deallocate – Deallocates the query_element allocated by the ll_query subroutine.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_deallocate (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

Return Values

This subroutine returns a zero to indicate success.

Error Values

-1 You specified a query_element that is not valid.

Related Information

Subroutines: ll_free_objs, ll_get_data, ll_get_objs, ll_next_obj, ll_query,

ll_reset_request, ll_set_request

ll_deallocate subroutine

530 TWS LoadLeveler: Using and Administering

ll_free_objs subroutine

Purpose

ll_free_objs – Frees all of the LL_element objects in the query_element list that were

obtained by the ll_get_objs subroutine. You must free the query_element by using

the ll_deallocate subroutine.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_free_objs (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

Return Values

This subroutine returns a zero to indicate success.

Error Values

-1 You specified a query_element that is not valid.

Related Information

Subroutines: ll_free_objs, ll_get_data, ll_get_objs, ll_query, ll_reset_request,

ll_set_request

ll_free_objs subroutine

Chapter 17. Application programming interfaces (APIs) 531

ll_get_data subroutine

Purpose

ll_get_data – Returns data from a valid LL_element.

Note: Before you use this subroutine, make sure you are familiar with the concepts

discussed in “Understanding the Job object model” on page 525.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_get_data (LL_element *element, enum LLAPI_Specification specification,

 void* resulting_data_type);

Parameters

element

Is a pointer to the LL_element returned by the ll_get_objs subroutine.

specification

Specifies the data field within the data object you want to read.

resulting_data_type

Is a pointer to the location where you want the data stored. If the call returns a

nonzero value, an error has occurred and the contents of the location are

undefined.

Description

object and specification are input fields, while resulting_data_type is an output field.

The ll_get_data subroutine of the data access API allows you to access LoadLeveler

objects. The parameters of ll_get_data are a LoadLeveler object (LL_element), a

specification that indicates what information about the object is being requested,

and a pointer to the area where the information being requested should be stored.

If the specification indicates an attribute of the element that is passed in, the result

pointer must be the address of a variable of the appropriate type, and must be

initialized to NULL. The type returned by each specification is found in the

specification tables. If the specification queries the connection to another object, the

returned value is of type LL_element. You can use a subsequent ll_get_data call to

query information about the new object.

The data type char* and any arrays of type int or char must be freed by the caller.

LL_element pointers cannot be freed by the caller.

For the specifications, LL_MachineOperatingSystem and

LL_MachineArchitecture, resulting_data_type returns the string ″???″ if a query is

made before the associated records are updated with their actual values by the

appropriate startd daemons.

Return Values

This subroutine returns a zero to indicate success.

ll_get_data subroutine

532 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|

Error Values

-1 You specified an object that is not valid.

-2 You specified an LLAPI_Specification that is not valid.

Related Information

Subroutines: ll_deallocate, ll_free_objs, ll_get_objs, ll_next_obj, ll_query,

ll_reset_request, ll_set_request

See “Understanding the Blue Gene object model” on page 524 for more

information on the Blue Gene object model.

 Table 87. BLUE_GENE specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

BgBP LL_BgBPCnodeMemory int* A pointer to an integer indicating the

compute node (C-node) memory of the

Blue Gene base partition

(BgBPComputenodeMemory_t;).

BgBP LL_BgBPCurrentPartition char** A pointer to a string containing the ID of

the partition to which the Blue Gene

base partition is part of.

BgBP LL_BgBPCurrentPartitionState int* A pointer to an integer indicating the

state of the current Blue Gene partition

(BgPartitionState_t).

BgBP LL_BgBPGetFirstNodeCard LL_element*

(BgNodeCard)

A pointer to the element associated with

the first node card in the Blue Gene base

partition.

BgBP LL_BgBPGetNextNodeCard LL_element*

(BgNodeCard)

A pointer to the element associated with

the next node card in the Blue Gene base

partition.

BgBP LL_BgBPId char** A pointer to a string containing the ID of

the base partition in the Blue Gene

system.

BgBP LL_BgBPLocation int** A pointer to an array indicating the

location of the base partition in the Blue

Gene system in each dimension.

BgBP LL_BgBPNodeCardCount int* A pointer to an integer indicating the

number of node cards in the Blue Gene

base partition.

BgBP LL_BgBPState int* A pointer to an integer indicating the

state of the Blue Gene base partition

(BgBPState_t).

BgBP LL_BgBPSubDividedBusy int* A pointer to an integer indicating that

small partitions are active in the Blue

Gene base partition.

BgMachine LL_BgMachineBPSize int** A pointer to an array indicating the size

of a Blue Gene base partition in compute

nodes in each dimension.

BgMachine LL_BgMachineGetFirstBP LL_element*

(BgBP)

A pointer to the element associated with

the first base partition in the Blue Gene

base partition list.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 533

|
|

||||
|
|

||||
|
|

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|

Table 87. BLUE_GENE specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

BgMachine LL_BgMachineGetFirstPartition LL_element*

(BgPartition)

A pointer to the element associated with

the first partition in the Blue Gene

partition list.

BgMachine LL_BgMachineGetFirstSwitch LL_element*

(BgSwitch)

A pointer to the element associated with

the first switch in the Blue Gene switch

list.

BgMachine LL_BgMachineGetFirstWire LL_element*

(BgWire)

A pointer to the element associated with

the first wire in the Blue Gene wire list.

BgMachine LL_BgMachineGetNextBP LL_element*

(BgBP)

A pointer to the element associated with

the next base partition in the Blue Gene

base partition list.

BgMachine LL_BgMachineGetNextPartition LL_element*

(BgPartition)

A pointer to the element associated with

the next partition in the Blue Gene

partition list.

BgMachine LL_BgMachineGetNextSwitch LL_element*

(BgSwitch)

A pointer to the element associated with

the next switch in the Blue Gene switch

list.

BgMachine LL_BgMachineGetNextWire LL_element*

(BgWire)

A pointer to the element associated with

the next wire in the Blue Gene wire list.

BgMachine LL_BgMachinePartitionCount int* A pointer to an integer indicating the

number of defined partitions in the Blue

Gene system.

BgMachine LL_BgMachineSize int** A pointer to an array indicating the size

of the Blue Gene system in number of

base partitions in each dimension.

BgMachine LL_BgMachineSwitchCount int* A pointer to an integer indicating the

number of switches in the Blue Gene

system.

BgMachine LL_BgMachineWireCount int* A pointer to an integer indicating the

number of wires in the Blue Gene

system.

BgNodeCard LL_BgNodeCardCurrentPartition char** A pointer to a string containing the ID of

the Blue Gene partition that the node

card is assigned to.

BgNodeCard LL_BgNodeCardCurrentPartitionState int* A pointer to an integer indicating the

state of the current Blue Gene partition

(BgPartitionState_t).

BgNodeCard LL_BgNodeCardId char** A pointer to a string containing the ID of

the Blue Gene node card.

BgNodeCard LL_BgNodeCardQuarter int* A pointer to an integer indicating the

quarter of the Blue Gene base partition

the node card is in (BgQuarter_t).

BgNodeCard LL_BgNodeCardState int* A pointer to an integer indicating the

state of the Blue Gene node card

(BgNodeCardState_t).

BgPartition LL_BgPartitionBLRTSImage char** A pointer to a string containing the file

name of the Blue Gene compute node’s

kernel image.

ll_get_data subroutine

534 TWS LoadLeveler: Using and Administering

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|

Table 87. BLUE_GENE specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

BgPartition LL_BgPartitionBPCount int* A pointer to an integer indicating the

number of Blue Gene base partitions in

the partition.

BgPartition LL_BgPartitionBPList char*** A pointer to an array containing the list

of Blue Gene base partition IDs assigned

to the partition.

BgPartition LL_BgPartitionConnection int* A pointer to an integer indicating the

connection type of the Blue Gene

partition (BgConnection_t).

BgPartition LL_BgPartitionDescription char** A pointer to a string containing the Blue

Gene partition description.

BgPartition LL_BgPartitionGetFirstSwitch LL_element*

(BgSwitch)

A pointer to the element associated with

the first switch in the Blue Gene

partition.

BgPartition LL_BgPartitionGetNextSwitch LL_element*

(BgSwitch)

A pointer to the element associated with

the next switch in the Blue Gene

partition.

BgPartition LL_BgPartitionId char** A pointer to a string containing the ID of

the Blue Gene partition.

BgPartition LL_BgPartitionLinuxImage char** A pointer to a string containing the file

name of the I/O nodes’ Linux image.

BgPartition LL_BgPartitionMLoaderImage char** A pointer to a string containing the file

name of the machine loader image.

BgPartition LL_BgPartitionMode int* A pointer to an integer indicating the

node mode of the Blue Gene partition

(BgNodeMode_t).

BgPartition LL_BgPartitionNodeCardList char*** A pointer to an array containing the list

of node card IDs assigned to the Blue

Gene partition.

BgPartition LL_BgPartitionOwner char** A pointer to a string containing the user

name of the owner of the Blue Gene

partition.

BgPartition LL_BgPartitionRamDiskImage char** A pointer to a string containing the file

name of the ram disk image.

BgPartition LL_BgPartitionShape int** A pointer to an array indicating the

shape of the Blue Gene partition.

BgPartition LL_BgPartitionSize int* A pointer to an integer indicating the

size (number of C-nodes) of the Blue

Gene partition.

BgPartition LL_BgPartitionSmall int* A pointer to an integer indicating if the

partition is smaller than a Blue Gene

base partition.

BgPartition LL_BgPartitionState int* A pointer to an integer indicating the

state of the Blue Gene partition

(BgPartitionState_t).

BgPartition LL_BgPartitionSwitchCount int* A pointer to an integer indicating the

number of switches in the Blue Gene

partition.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 535

|||
|
|
|
|

|||
|
|
|
|

||||
|

||||
|
|

Table 87. BLUE_GENE specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

BgPortConn LL_BgPortConnCurrentPartition char** A pointer to a string containing the ID of

the Blue Gene partition to which the

connection is assigned.

BgPortConn LL_BgPortConnCurrentPartitionState int* A pointer to an integer indicating the

state of the current Blue Gene partition

(BgPartitionState_t).

BgPortConn LL_BgPortConnFromSwitchPort int* A pointer to an integer indicating the

from switch port ID (BgPort_t).

BgPortConn LL_BgPortConnToSwitchPort int* A pointer to an integer indicating the to

switch port ID (BgPort_t).

BgSwitch LL_BgSwitchBasePartitionId char** A pointer to a string containing the ID of

the base Blue Gene partition connected

to the switch.

BgSwitch LL_BgSwitchConnCount int* A pointer to an integer indicating the

number of connections in the Blue Gene

switch.

BgSwitch LL_BgSwitchDimension int* A pointer to an integer indicating the

dimension the Blue Gene switch is

associated with (BgSwitchDimension_t).

BgSwitch LL_BgSwitchGetFirstConn LL_element*

(BgPortConn)

A pointer to the element associated with

the first connection in the Blue Gene

switch connection list.

BgSwitch LL_BgSwitchGetNextConn LL_element*

(BgPortConn)

A pointer to the element associated with

the next connection in the Blue Gene

switch connection list.

BgSwitch LL_BgSwitchId char** A pointer to a string containing the ID of

the Blue Gene switch.

BgSwitch LL_BgSwitchState int* A pointer to an integer indicating the

state of the Blue Gene switch

(BgSwitchState_t).

BgWire LL_BgWireCurrentPartition char** A pointer to a string containing the ID of

the Blue Gene partition which the wire

is assigned.

BgWire LL_BgWireCurrentPartitionState int* A pointer to an integer indicating the

state of the current Blue Gene partition

(BgPartitionState_t).

BgWire LL_BgWireFromPortCompId char** A pointer to a string containing the Blue

Gene base partition or the switch the

wire source port is part of.

BgWire LL_BgWireFromPortId int* A pointer to an integer indicating the ID

of the Blue Gene wire source port

(BgPort_t).

BgWire LL_BgWireId char** A pointer to a string containing the ID of

the Blue Gene wire.

BgWire LL_BgWireToPortCompId char** A pointer to a string containing the Blue

Gene base partition or the switch the

wire destination port is part of.

ll_get_data subroutine

536 TWS LoadLeveler: Using and Administering

|||
|
|
|
|

|||
|
|
|
|

Table 87. BLUE_GENE specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

BgWire LL_BgWireToPortID int* A pointer to an integer indicating the ID

of the Blue Gene wire destination port

(BgPort_t).

BgWire LL_BgWireState int* A pointer to an integer indicating the

state of the Blue Gene wire

(BgWireState_t).

See “Understanding the Class object model” on page 524 for more information on

the Class object model.

 Table 88. CLASSES specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

Class LL_ClassAdmin char*** A pointer to an array of strings

containing administrators for the class.

The array ends with a NULL string.

Class LL_ClassCkptDir char** A pointer to a string containing the

directory for checkpoint files.

Class LL_ClassCkptTimeHardLimit int64_t* A pointer to a 64-bit integer indicating

the checkpoint time hard limit.

Class LL_ClassCkptTimeSoftLimit int64_t* A pointer to a 64-bit integer indicating

the checkpoint time soft limit.

Class LL_ClassComment char** A pointer to a string containing the class

comment.

Class LL_ClassConstraints int* A pointer to an integer indicating

whether the values of Maximum and

Free Slots are constrained by

MAX_STARTERS and MAXJOBS.

Class LL_ClassCoreLimitHard int64_t* A pointer to a 64-bit integer indicating

the core file hard limit.

Class LL_ClassCoreLimitSoft int64_t* A pointer to a 64-bit integer indicating

the core file soft limit.

Class LL_ClassCpuLimitHard int64_t* A pointer to a 64-bit integer indicating

the CPU hard limit.

Class LL_ClassCpuLimitSoft int64_t* A pointer to a 64-bit integer indicating

the CPU soft limit.

Class LL_ClassCpuStepLimitHard int64_t* A pointer to a 64-bit integer indicating

the CPU hard limit.

Class LL_ClassCpuStepLimitSoft int64_t* A pointer to a 64-bit integer indicating

the CPU soft limit.

Class LL_ClassDataLimitHard int64_t* A pointer to a 64-bit integer indicating

the data hard limit.

Class LL_ClassDataLimitSoft int64_t* A pointer to a 64-bit integer indicating

the data soft limit.

Class LL_ClassDefWallClockLimitHard int64_t* A pointer to a 64-bit integer indicating

the default wall clock hard limit.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 537

|
|

||||
|

||||
|

||||
|
|
|

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

Table 88. CLASSES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Class LL_ClassDefWallClockLimitSoft int64_t* A pointer to a 64-bit integer indicating

the default wall clock soft limit.

Class LL_ClassExcludeGroups char*** A pointer to an array of strings

containing groups not permitted to use

the class. The array ends with a NULL

string.

Class LL_ClassExcludeUsers char*** A pointer to an array of strings

containing users not permitted to use the

class. The array ends with a NULL

string.

Class LL_ClassFileLimitHard int64_t* A pointer to a 64-bit integer indicating

the file size hard limit.

Class LL_ClassFileLimitSoft int64_t* A pointer to a 64-bit integer indicating

the file size soft limit.

Class LL_ClassFreeSlots int* A pointer to an integer indicating the

number of available initiators.

Class LL_ClassGetFirstResourceRequirement LL_element*

(ResourceReq)

A pointer to the element associated with

the first resource requirement.

Class LL_ClassGetFirstUser LL_element*

(ClassUser)

A pointer to the element associated with

the first user defined in the class.

Class LL_ClassGetNextResourceRequirement LL_element*

(ResourceReq)

A pointer to the element associated with

the next resource requirement.

Class LL_ClassGetNextUser LL_element*

(ClassUser)

A pointer to the element associated with

the next user defined in the class.

Class LL_ClassIncludeGroups char*** A pointer to an array of strings

containing groups permitted to use the

class. The array ends with a NULL

string.

Class LL_ClassIncludeUsers char*** A pointer to an array of strings

containing users permitted to use the

class. The array ends with a NULL

string.

Class LL_ClassMaximumSlots int* A pointer to an integer indicating the

total number of configured initiators.

Class LL_ClassMaxJobs int* A pointer to an integer indicating the

maximum number of job steps that can

run at any time.

Class LL_ClassMaxProcessors int* A pointer to an integer indicating the

maximum number of processors for a

parallel job step.

Class LL_ClassMaxProtocolInstances int* A pointer to an integer indicating the

maximum number of adapter windows

per protocol per task.

Class LL_ClassMaxTotalTasks int* A pointer to an integer indicating the

value for Max_total_tasks.

Class LL_ClassName char** A pointer to a string containing the

name of the class.

ll_get_data subroutine

538 TWS LoadLeveler: Using and Administering

||||
|

||||
|

||||
|

||||
|

|||
|
|
|

|||
|
|
|

||||
|

||||
|
|

||||
|
|

||||
|
|

||||
|

Table 88. CLASSES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Class LL_ClassNice int* A pointer to an integer indicating the

nice value.

Class LL_ClassPreemptClass char** A pointer to a string containing the

PREEMPT_CLASS rule.

Class LL_ClassPriority int* A pointer to an integer indicating the

class system priority.

Class LL_ClassRssLimitHard int64_t* A pointer to a 64-bit integer indicating

the resident set size hard limit.

Class LL_ClassRssLimitSoft int64_t* A pointer to a 64-bit integer indicating

the resident set size soft limit.

Class LL_ClassStackLimitHard int64_t* A pointer to a 64-bit integer indicating

the stack size hard limit.

Class LL_ClassStackLimitSoft int64_t* A pointer to a 64-bit integer indicating

the stack size soft limit.

Class LL_ClassStartClass char** A pointer to a string containing the

START_CLASS rule.

Class LL_ClassWallClockLimitHard int64_t* A pointer to a 64-bit integer indicating

the wall clock hard limit.

Class LL_ClassWallClockLimitSoft int64_t* A pointer to a 64-bit integer indicating

the wall clock soft limit.

ClassUser LL_ClassUserMaxIdle int* A pointer to an integer indicating the

maximum number of idle job steps.

ClassUser LL_ClassUserMaxJobs int* A pointer to an integer indicating the

maximum number of running job steps.

ClassUser LL_ClassUserMaxQueued int* A pointer to an integer indicating the

maximum number of total job steps in

the queue.

ClassUser LL_ClassUserMaxTotalTasks int* A pointer to an integer indicating the

maximum number of running tasks.

ClassUser LL_ClassUserName char** A pointer to a string containing the user

name.

ResourceReq LL_ResourceRequirementName char** A pointer to a string containing the

resource requirement name.

ResourceReq LL_ResourceRequirementValue int* A pointer to an integer indicating the

value of the resource requirement.

ResourceReq LL_ResourceRequirementValue64 int64_t* A pointer to a 64-bit integer indicating

the value of the resource requirement.

See “Understanding the Cluster object model” on page 525 for more information

on the Cluster object model.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 539

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|

|
|

Table 89. CLUSTER specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

Cluster LL_ClusterClusterMetric char** A pointer to a string containing the

CLUSTER_METRIC string.

Cluster LL_ClusterClusterRemoteJobFilter char** A pointer to a string containing the

CLUSTER_REMOTE_JOB_FILTER string.

Cluster LL_ClusterClusterUserMapper char** A pointer to a string containing the

CLUSTER_USER_MAPPER string.

Cluster LL_ClusterDefinedResourceCount int* A pointer to an integer indicating the

number of consumable resources defined

in the cluster.

Cluster LL_ClusterDefinedResources char*** A pointer to an array containing the

names of consumable resources defined

in the cluster. The array ends with a

NULL string.

Cluster LL_ClusterEnforcedResourceCount int* A pointer to an integer indicating the

number of enforced resources

Cluster LL_ClusterEnforcedResources char*** A pointer to an array of characters

indicating the number of enforced

resources

Cluster LL_ClusterEnforceMemory int* A pointer to a boolean integer indicating

absolute memory limit.

Cluster LL_ClusterEnforceSubmission int* A pointer to a boolean integer indicating

resources required at time of submission.

Cluster LL_ClusterGetFirstResource LL_element*

(Resource)

A pointer to the element associated with

the first resource.

Cluster LL_ClusterGetNextResource LL_element*

(Resource)

A pointer to the element associated with

the next resource.

Cluster LL_ClusterMusterEnvironment int* A pointer to an integer indicating that

the multicluster environment is enabled.

Cluster LL_ClusterSchedulerType char** A pointer to a string containing the

scheduler type.

Cluster LL_ClusterSchedulingResourceCount int* A pointer to an integer indicating the

number of consumable resources

considered by the scheduler for the

cluster.

Cluster LL_ClusterSchedulingResources char*** A pointer to an array containing the

names of consumable resources

considered by the scheduler for the

cluster. The array ends with a NULL

string.

Resource LL_ResourceAvailableValue int* A pointer to an integer indicating the

value of available resources.

Resource LL_ResourceAvailableValue64 int64_t* A pointer to a 64-bit integer indicating

the value of available resources.

Resource LL_ResourceInitialValue int* A pointer to an integer indicating the

initial resource value.

Resource LL_ResourceInitialValue64 int64_t* A pointer to a 64-bit integer indicating

the initial resource value.

ll_get_data subroutine

540 TWS LoadLeveler: Using and Administering

|||
|
|
|

|||
|
|
|

Table 89. CLUSTER specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Resource LL_ResourceName char** A pointer to a string containing the

resource name.

See “Understanding the Fairshare object model” on page 525 for more information

on the Fairshare object model.

 Table 90. FAIRSHARE specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

FairShare LL_FairShareAllocatedShares int** A pointer to an array indicating the

number of allocated shares for each user

or group.

LL_FairShareNumberOfEntries

indicates the size of this array.

FairShare LL_FairShareCurrentTime time_t* A pointer to a time_t structure indicating

the time that the information is obtained.

FairShare LL_FairShareEntryNames char*** A pointer to an array containing the

names of users or groups whose fair

share information has been returned.

LL_FairShareNumberOfEntries

indicates the size of this array.

FairShare LL_FairShareEntryTypes int** A pointer to an array indicating the

types of names: 0 for users, 1 for groups.

LL_FairShareNumberOfEntries

indicates the size of this array.

FairShare LL_FairShareInterval int* A pointer to an integer indicating the

time interval that is most important to

fair share scheduling.

FairShare LL_FairShareNumberOfEntries int* A pointer to an integer indicating the

number of users or groups for which the

fair share information has been returned.

FairShare LL_FairShareTotalShares int* A pointer to an integer indicating the

total number of shares in the cluster.

FairShare LL_FairShareUsedBgShares int** A pointer to an array indicating the

number of Blue Gene shares used by

each user or group.

FairShare LL_FairShareUsedShares int** A pointer to an array indicating the

number of shares used by each user or

group. LL_FairShareNumberOfEntries

indicates the size of this array.

See “Understanding the Job object model” on page 525 for more information on

the Job object model.

Note the following in Table 91 on page 542:

v Any specifications that are only available from a specific query_daemon will

have that described in the ″Description″ column.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 541

|
|

||||
|
|

|
|

|

|
|

v Any specification that does not have any detailed query_daemon in the

″Description″ column is available from the LL_CM, LL_SCHEDD, LL_STARTD,

and LL_HISTORY_FILE query_daemon.

 Table 91. JOBS specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

Adapter LL_AdapterName char** A pointer to a string containing the

adapter name. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterReq LL_AdapterReqCommLevel int* A pointer to the integer indicating the

adapter’s communication level. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

AdapterReq LL_AdapterReqInstances int* A pointer to an integer containing the

requested adapter instances. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

AdapterReq LL_AdapterReqMode char** A pointer to a string containing the

requested adapter mode (IP or US). Data

is available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

AdapterReq LL_AdapterReqProtocol char** A pointer to a string containing the

requested adapter protocol. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

AdapterReq LL_AdapterReqRcxtBlocks int* A pointer to the integer indicating the

number of rCxt blocks requested for the

adapter usage. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterReq LL_AdapterReqTypeName char** A pointer to a string containing the

requested adapter type. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterReq LL_AdapterReqUsage int* A pointer to the integer indicating the

requested adapter usage. This integer

will be one of the values defined in the

Usage enum. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageDeviceDriver char** A pointer to a string containing the

name of the adapter device being used.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageLmc int* A pointer to an integer indicating the

logical mask on an InfiniBand adapter

port. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageMode char** A pointer to a string containing the

adapter usage mode of IP or US. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ll_get_data subroutine

542 TWS LoadLeveler: Using and Administering

|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

AdapterUsage LL_AdapterUsageNetmask char** A pointer to a string containing the

netmask of the adapter in the

AdapterUsage object. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsagePortNumber int* A pointer to an integer indicating the

port number on an InfiniBand adapter

port. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageProtocol char** A pointer to a string containing the

task’s protocol. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageRcxtBlocks int* A pointer to the integer indicating the

number of rCxt blocks associated with

the adapter usage. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageTag char** A pointer to a character string that

indicates which switch table the adapter

usage is in. Adapter usages with the

same tag are in the same switch table.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageWindow int* Contains the adapter window assigned

to the task. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

AdapterUsage LL_AdapterUsageWindowMemory64 uint64_t* A pointer to an unsigned 64-bit integer

indicating the number of bytes used by

the adapter window. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

ClusterFile LL_ClusterFileLocalPath char** A pointer to a string containing the

expanded local file pathname. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ClusterFile LL_ClusterFileRemotePath char** A pointer to a string containing the

expanded remote file pathname. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Credential LL_CredentialGid int* A pointer to an integer containing the

UNIX gid of the user submitting the job.

Credential LL_CredentialGroupName char** A pointer to a string containing the

UNIX group name of the user

submitting the job.

Credential LL_CredentialUid int* A pointer to an integer containing the

UNIX uid of the person submitting the

job.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 543

||||
|
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Credential LL_CredentialUserName char** A pointer to a string containing the user

ID of the user submitting the job.

DispUsage LL_DispUsageEventUsageCount int* A pointer to an integer indicating the

count of event usages. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageGetFirstEventUsage LL_element*

(EventUsage)

A pointer to the element associated with

the first event usage. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageGetNextEventUsage LL_element*

(EventUsage)

A pointer to the element associated with

the next event usage. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterIdrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of unshared memory in the

data segment of a process. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStarterInblock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed input. Data is available from

the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterIsrss64 int64_t* A pointer to a 64-bit integer indicating

the unshared stack size. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterIxrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of memory used by the text

segment that was also shared among

other processes. Data is available from

the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterMajflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStarterMaxrss64 int64_t* A pointer to a 64-bit integer indicating

the maximum resident set size utilized.

Data is available from the

LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterMinflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStarterMsgrcv64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages received.

Data is available from the

LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterMsgsnd64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages sent. Data

is available from the LL_HISTORY_FILE

only.

ll_get_data subroutine

544 TWS LoadLeveler: Using and Administering

||||
|
|

|||
|
|
|
|

|||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

DispUsage LL_DispUsageStarterNivcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of involuntary context

switches. Data is available from the

LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterNsignals64 int64_t* A pointer to a 64-bit integer indicating

the number of signals delivered. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStarterNswap64 int64_t* A pointer to a 64-bit integer indicating

the number of times swapped out. Data

is available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStarterNvcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of context switches due to

voluntarily giving up processor. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStarterOublock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed output. Data is available from

the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterSystemTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU system time. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStarterUserTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU user time. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepIdrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of unshared memory in the

data segment of a process. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStepInblock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed input. Data is available from

the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepIsrss64 int64_t* A pointer to a 64-bit integer indicating

the unshared stack size. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepIxrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of memory used by the text

segment that was also shared among

other processes. Data is available from

the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepMajflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 545

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

DispUsage LL_DispUsageStepMaxrss64 int64_t* A pointer to a 64-bit integer indicating

the maximum resident set size utilized.

Data is available from the

LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepMinflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStepMsgrcv64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages received.

Data is available from the

LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepMsgsnd64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages sent. Data

is available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStepNivcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of involuntary context

switches. Data is available from the

LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepNsignals64 int64_t* A pointer to a 64-bit integer indicating

the number of signals delivered. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStepNswap64 int64_t* A pointer to a 64-bit integer indicating

the number of times swapped out. Data

is available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStepNvcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of context switches due to

voluntarily giving up processor. Data is

available from the LL_HISTORY_FILE

only.

DispUsage LL_DispUsageStepOublock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed output. Data is available from

the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepSystemTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU system time. Data is available

from the LL_HISTORY_FILE only.

DispUsage LL_DispUsageStepUserTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU user time. Data is available

from the LL_HISTORY_FILE only.

EventUsage LL_EventUsageEventID int* A pointer to an integer indicating the

event ID. Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageEventName char** A pointer to a string containing the

event name. Data is available from the

LL_HISTORY_FILE only.

ll_get_data subroutine

546 TWS LoadLeveler: Using and Administering

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|

||||
|
|

||||
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

EventUsage LL_EventUsageEventTimestamp int* A pointer to an integer indicating the

event timestamp. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterIdrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of unshared memory in the

data segment of a process. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStarterInblock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed input. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterIsrss64 int64_t* A pointer to a 64-bit integer indicating

the unshared stack size. Data is available

from the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterIxrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of memory used by the text

segment that was also shared among

other processes. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterMajflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStarterMaxrss64 int64_t* A pointer to a 64-bit integer indicating

the maximum resident set size utilized.

Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterMinflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStarterMsgrcv64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages received.

Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterMsgsnd64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages sent. Data

is available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStarterNivcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of involuntary context

switches. Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterNsignals64 int64_t* A pointer to a 64-bit integer indicating

the number of signals delivered. Data is

available from the LL_HISTORY_FILE

only.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 547

||||
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

EventUsage LL_EventUsageStarterNswap64 int64_t* A pointer to a 64-bit integer indicating

the number of times swapped out. Data

is available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStarterNvcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of context switches due to

voluntarily giving up processor. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStarterOublock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed output. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterSystemTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU system time. Data is available

from the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStarterUserTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU user time. Data is available

from the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepIdrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of unshared memory in the

data segment of a process. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStepInblock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed input. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepIsrss64 int64_t* A pointer to a 64-bit integer indicating

the unshared stack size. Data is available

from the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepIxrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of memory used by the text

segment that was also shared among

other processes. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepMajflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStepMaxrss64 int64_t* A pointer to a 64-bit integer indicating

the maximum resident set size utilized.

Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepMinflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_HISTORY_FILE

only.

ll_get_data subroutine

548 TWS LoadLeveler: Using and Administering

||||
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

EventUsage LL_EventUsageStepMsgrcv64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages received.

Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepMsgsnd64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages sent. Data

is available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStepNivcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of involuntary context

switches. Data is available from the

LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepNsignals64 int64_t* A pointer to a 64-bit integer indicating

the number of signals delivered. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStepNswap64 int64_t* A pointer to a 64-bit integer indicating

the number of times swapped out. Data

is available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStepNvcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of context switches due to

voluntarily giving up processor. Data is

available from the LL_HISTORY_FILE

only.

EventUsage LL_EventUsageStepOublock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed output. Data is available from

the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepSystemTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU system time. Data is available

from the LL_HISTORY_FILE only.

EventUsage LL_EventUsageStepUserTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU user time. Data is available

from the LL_HISTORY_FILE only.

Job LL_JobCredential LL_element*

(Credential)

A pointer to the element associated with

the job credential. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Job LL_JobGetFirstClusterInputFile LL_element*

(ClusterFile)

A pointer to the element associated with

the first input ClusterFile.

Job LL_JobGetFirstClusterOutputFile LL_element*

(ClusterFile)

A pointer to the element associated with

the first output ClusterFile.

Job LL_JobGetFirstStep LL_element*

(Step)

A pointer to the element associated with

the first step of the job, to be used in

subsequent ll_get_data calls. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Job LL_JobGetNextClusterInputFile LL_element*

(ClusterFile)

A pointer to the element associated with

the next input ClusterFile.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 549

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|

||||
|
|

|||
|
|
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Job LL_JobGetNextClusterOutputFile LL_element*

(ClusterFile)

A pointer to the element associated with

the next output ClusterFile.

Job LL_JobGetNextStep LL_element*

(Step)

A pointer to the element associated with

the next step. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Job LL_JobIsRemote int* A pointer to an integer. If the integer

contains the value 1, the job is remote.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Job LL_JobJobQueueKey int* A pointer to an integer indicating the

key used to write the job to the spool.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Job LL_JobLocalOutboundSchedds char*** A pointer to an array containing a list of

local outbound Schedds. The last Schedd

in the list is the current outbound

Schedd. Data is available when the

multicluster environment is configured.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Job LL_JobName char** A pointer to a character string containing

the job name.

Job LL_JobRequestedCluster char*** A pointer to an array containing the list

of user-requested clusters. Data is

available when the multicluster

environment is configured. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Job LL_JobSchedd char** A pointer to a string containing the

Schedd managing the job.

Job LL_JobScheddHistory char*** A pointer to an array containing a list of

managing Schedds. The last Schedd in

the list is the current managing Schedd.

Data is available when the multicluster

environment is configured. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Job LL_JobSchedulingCluster char** A pointer to a string containing the

name of the cluster where the job is

scheduled. Data is available when the

multicluster environment is configured.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Job LL_JobSendingCluster char** A pointer to a string containing the

name of the sending cluster. Data is

available when the multicluster

environment is configured. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ll_get_data subroutine

550 TWS LoadLeveler: Using and Administering

|||
|
|
|

|||
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Job LL_JobStepCount int* A pointer to an integer indicating the

number of steps connected to the job.

Job LL_JobStepType int* A pointer to an integer indicating the

type of job, which can be

INTERACTIVE_JOB or BATCH_JOB.

Job LL_JobSubmitHost char** A pointer to a character string containing

the name of the host machine from

which the job was submitted.

Job LL_JobSubmitTime time_t* A pointer to the time_t structure

indicating when the job was submitted.

Job LL_JobSubmittingCluster char** A pointer to a string containing the

name of the submitting cluster. Data is

available when the multicluster

environment is configured. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Job LL_JobSubmittingUser char** A pointer to a string containing the

name of the submitting user. Data is

available when the multicluster

environment is configured. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Job LL_JobUsersJCF char** A pointer to a single string containing all

of the user’s job command file keyword

statements. Data is available from the

LL_SCHEDD only. Data is available

when the multicluster environment is

configured.

Job LL_JobVersionNum int* A pointer to an integer indicating the

job’s version number.

Machine LL_MachineName char** A pointer to a string containing the

machine name.

MachUsage LL_MachUsageDispUsageCount int* A pointer to an integer indicating the

count of dispatch usages. Data is

available from the LL_HISTORY_FILE

only.

MachUsage LL_MachUsageGetFirstDispUsage LL_element*

(DispUsage)

A pointer to the element associated with

the first dispatch usage. Data is available

from the LL_HISTORY_FILE only.

MachUsage LL_MachUsageGetNextDispUsage LL_element*

(DispUsage)

A pointer to the element associated with

the next dispatch usage. Data is available

from the LL_HISTORY_FILE only.

MachUsage LL_MachUsageMachineName char** A pointer to a string containing the

machine name. Data is available from

the LL_HISTORY_FILE only.

MachUsage LL_MachUsageMachineSpeed double* A pointer to a double containing the

machine speed. Data is available from

the LL_HISTORY_FILE only.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 551

||||
|
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|

|||
|
|
|
|

|||
|
|
|
|

||||
|
|

||||
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Node LL_NodeGetFirstTask LL_element*

(Task)

A pointer to the element associated with

the first task for this node.

Node LL_NodeGetNextTask LL_element*

(Task)

A pointer to the element associated with

the next task for this node.

Node LL_NodeInitiatorCount int* A pointer to an integer indicating the

number of tasks running on the node.

Node LL_NodeMaxInstances int* A pointer to an integer indicating the

maximum number of machines

requested.

Node LL_NodeMinInstances int* A pointer to an integer indicating the

minimum number of machines

requested.

Node LL_NodeRequirements char** A pointer to a string containing the node

requirements.

Node LL_NodeTaskCount int* A pointer to an integer indicating the

different types of tasks running on the

node.

ResourceReq LL_ResourceRequirementName char** A pointer to a string containing the

resource requirement name. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ResourceReq LL_ResourceRequirementValue int* A pointer to an integer indicating the

value of the resource requirement. Data

is available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ResourceReq LL_ResourceRequirementValue64 int64_t* A pointer to a 64-bit integer indicating

the value of the resource requirement.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepAccountNumber char** A pointer to a string containing the

account number specified by the user

submitting the job.

Step LL_StepAcctKey int64_t* A pointer to a 64-bit integer that can be

used to identify all of the AIX

accounting records for the job step. Data

is available from the LL_HISTORY_FILE

only.

Step LL_StepBgErrorText char** A pointer to a string containing the error

text for the Blue Gene job record in the

Blue Gene database. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepBgJobId char** A pointer to a string containing the ID of

the Blue Gene job in the Blue Gene

database. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

ll_get_data subroutine

552 TWS LoadLeveler: Using and Administering

|||
|
|
|

|||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepBgJobState int* A pointer to an integer indicating the

state of the Blue Gene job in the Blue

Gene database (BgJobState_t). Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepBgPartitionAllocated char** A pointer to a string containing the ID of

the Blue Gene partition allocated for the

job. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepBgPartitionRequested char** A pointer to a string containing the ID of

the Blue Gene partition requested for the

job step. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepBgPartitionState int* A pointer to an integer indicating the

state of the Blue Gene partition allocated

for the job step (BgPartitionState_t).

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepBgShapeAllocated int** A pointer to an array indicating the

shape of the Blue Gene compute nodes

allocated for the job step. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepBgShapeRequested int** A pointer to an array indicating the

shape of Blue Gene compute nodes

requested for the job step. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepBgSizeAllocated int* A pointer to an integer indicating the

number of Blue Gene compute nodes

allocated for the job step. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepBgSizeRequested int* A pointer to an integer indicating the

number of Blue Gene compute nodes

requested for the job step. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepBgWiringAllocated int* A pointer to an integer indicating the

allocated type of wiring for the Blue

Gene job (BgConnection_t). Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepBgWiringRequested int* A pointer to an integer indicating the

requested type of wiring for the Blue

Gene job (BgConnection_t). Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 553

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepBlocking int* A pointer to an integer representing

blocking as specified by the user in the

job command file.

v Returns -1 if unlimited is specified

v Returns 0 if blocking is unspecified

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepBulkXfer int* A pointer to an integer that is set to 1 if

the step requested bulk transfer and 0 if

it did not. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepCheckpointable int* A pointer to an integer indicating if

checkpointing was enabled via the

checkpoint keyword (0=disabled,

1=enabled). Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepCheckpointing int* A pointer to an integer indicating that a

checkpoint is currently being taken for

the step. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepCkptAccumTime int* A pointer to an integer indicating the

amount of accumulated time, in seconds,

that the job step has spent

checkpointing. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepCkptExecuteDirectory char** A pointer to a string containing the

directory where the job step’s executable

will be saved. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepCkptFailStartTime time_t* A pointer to a time_t structure indicating

the start time of the last unsuccessful

checkpoint. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepCkptFile char** A pointer to a string containing the

directory and file name which contain

checkpoint information for the last

successful checkpoint.

Step LL_StepCkptGoodElapseTime int* A pointer to an integer indicating the

amount of time, in seconds, it took for

the last successful checkpoint to

complete. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

ll_get_data subroutine

554 TWS LoadLeveler: Using and Administering

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepCkptGoodStartTime time_t* A pointer to a time_t structure indicating

the start time of the last successful

checkpoint. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepCkptRestart int* A pointer to an integer indicating the

value specified by the user for the

restart_from_ckpt keyword (0= no, 1=

yes). Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepCkptRestartSameNodes int* A pointer to a string indicating the value

specified by the user for the

restart_on_same_nodes keyword (0= no,

1= yes). Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepCkptTimeHardLimit int* A pointer to an integer indicating the

hard limit set by the user in the

ckpt_time_limit keyword.

Step LL_StepCkptTimeHardLimit64 int64_t* A pointer to a 64-bit integer indicating

the hard limit set by the user in the

ckpt_time_limit keyword.

Step LL_StepCkptTimeSoftLimit int* A pointer to an integer indicating the

soft limit set by the user in

ckpt_time_limit keyword.

Step LL_StepCkptTimeSoftLimit64 int64_t* A pointer to a 64-bit integer indicating

the soft limit set by the user in

ckpt_time_limit keyword.

Step LL_StepClassSystemPriority int* A pointer to an integer indicating the

class priority of the job step. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepComment char** A pointer to a string indicating the

comment specified by the user

submitting the job.

Step LL_StepCompletionCode int* A pointer to an integer indicating the

completion code of the step.

Step LL_StepCompletionDate time_t* A pointer to a time_t structure indicating

the completion date of the step.

Step LL_StepCoreLimitHard int* A pointer to an integer indicating the

core hard limit set by the user in the

core_limit keyword.

Step LL_StepCoreLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the core hard limit set by the user in the

core_limit keyword.

Step LL_StepCoreLimitSoft int* A pointer to an integer indicating the

core soft limit set by the user in the

core_limit keyword.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 555

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepCoreLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the core soft limit set by the user in the

core_limit keyword.

Step LL_StepCoschedule int* A pointer to an integer indicating if a job

step is coscheduled set by the user in the

coschedule keyword.

Step LL_StepCpuLimitHard int* A pointer to an integer indicating the

CPU hard limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the CPU hard limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuLimitSoft int* A pointer to an integer indicating the

CPU soft limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the CPU soft limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuStepLimitHard int* A pointer to an integer indicating the

CPU step hard limit set by the user in

the job_cpu_limit keyword.

Step LL_StepCpuStepLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the CPU step hard limit set by the user

in the job_cpu_limit keyword.

Step LL_StepCpuStepLimitSoft int* A pointer to an integer indicating the

CPU step soft limit set by the user in the

job_cpu_limit keyword.

Step LL_StepCpuStepLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the CPU step soft limit set by the user in

the job_cpu_limit keyword.

Step LL_StepDataLimitHard int* A pointer to an integer indicating the

data hard limit set by the user in the

data_limit keyword.

Step LL_StepDataLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the data hard limit set by the user in the

data_limit keyword.

Step LL_StepDataLimitSoft int* A pointer to an integer indicating the

data soft limit set by the user in the

data_limit keyword.

Step LL_StepDataLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the data soft limit set by the user in the

data_limit keyword.

Step LL_StepDependency char** A pointer to a string containing the step

dependency value. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

ll_get_data subroutine

556 TWS LoadLeveler: Using and Administering

||||
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepDispatchTime time_t* A pointer to a time_t structure indicating

the time the negotiator dispatched the

job. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepEnvironment char** A pointer to a string containing the

environment variables set by the user in

the executable. Data is available from

LL_SCHEDD and LL_HISTORY_FILE.

Step LL_StepErrorFile char** A pointer to a string containing the

standard error file name used by the

executable.

Step LL_StepExecSize int* A pointer to an integer indicating the

executable size.

Step LL_StepFavoredJob int* A pointer to an integer that specifies

whether the step is favored using the

llfavorjob command. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepFileLimitHard int* A pointer to an integer indicating the file

hard limit set by the user in the

file_limit keyword.

Step LL_StepFileLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the file hard limit set by the user in the

file_limit keyword.

Step LL_StepFileLimitSoft int* A pointer to an integer indicating the file

soft limit set by the user in the file_limit

keyword.

Step LL_StepFileLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the file soft limit set by the user in the

file_limit keyword.

Step LL_StepGetFirstAdapterReq LL_element*

(AdapterReq)

A pointer to the element associated with

the first adapter requirement. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepGetFirstMachine LL_element*

(Machine)

A pointer to the element associated with

the first machine in the step. Data is

available from LL_CM, LL_SCHEDD,

and LL_STARTD.

Step LL_StepGetFirstMachUsage LL_element*

(MachUsage)

A pointer to the element associated with

the first machine usage in the list of

machine usages where a single machine

usage corresponds to any machine that

was ever assigned to the step. Data is

available from the LL_HISTORY_FILE

only.

Step LL_StepGetFirstNode LL_element*

(Node)

A pointer to the element associated with

the first node of the step.

Step LL_StepGetMasterTask LL_element*

(Task)

A pointer to the element associated with

the master task of the step.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 557

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepGetNextAdapterReq LL_element*

(AdapterReq)

A pointer to the element associated with

the next adapter requirement. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepGetNextMachine LL_element*

(Machine)

A pointer to the element associated with

the next machine of the step. Data is

available from LL_CM, LL_SCHEDD,

and LL_STARTD.

Step LL_StepGetNextMachUsage LL_element*

(MachUsage)

A pointer to the element associated with

the next machine usage in the list of

machine usages where a single machine

usage corresponds to any machine that

was ever assigned to the step. Data is

available from the LL_HISTORY_FILE

only.

Step LL_StepGetNextNode LL_element*

(Node)

A pointer to the element associated with

the next node of the step.

Step LL_StepGroupSystemPriority int* A pointer to an integer indicating the

group priority of a job step. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepHoldType int* A pointer to an integer indicating the

hold state of the step (user, system, and

so on). The value returned is in the

HoldType enum. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepHostList char*** A pointer to an array containing the list

of hosts in the host.list file associated

with the step. The array ends with a null

string. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepID char** A pointer to a string containing the ID of

the step.

Step LL_StepImageSize int* A pointer to an integer indicating the

image size of the executable. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepImageSize64 int64_t* A pointer to a 64-bit integer indicating

the image size of the executable. Data is

available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

Step LL_StepInputFile char** A pointer to a string containing the

standard input file name used by the

executable.

Step LL_StepIwd char** A pointer to a string containing the

initial working directory name used by

the executable.

Step LL_StepJobClass char** A pointer to a string containing the class

of the step.

ll_get_data subroutine

558 TWS LoadLeveler: Using and Administering

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|
|
|
|

|||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepLargePage char** A pointer to a string containing the

Large Page level of support associated

with the job step.

Step LL_StepLoadLevelerGroup char** A pointer to a string containing the

name of the LoadLeveler group specified

by the step.

Step LL_StepMachineCount int* A pointer to an integer indicating the

number of machines assigned to the step

when it is in a running-like state. Data is

available from LL_CM, LL_SCHEDD,

and LL_STARTD.

Step LL_StepMachUsageCount int* A pointer to an integer indicating the

number of machine usage objects

corresponding to the set of machines

that were ever assigned to the step. Data

is available from the LL_HISTORY_FILE

only.

Step LL_StepMessages char** A pointer to a string containing a list of

messages from LoadLeveler. This data is

available from the LL_CM only.

Step LL_StepName char** A pointer to a string containing the

name of the step.

Step LL_StepNodeCount int* A pointer to an integer indicating the

number of node objects associated with

the step.

Step LL_StepNodeUsage int* A pointer to an integer indicating the

node usage specified by the user

(SHARED or NOT_SHARED). The value

returned is in the enum Usage.

Step LL_StepOutputFile char** A pointer to a character string containing

the standard output file name used by

the executable.

Step LL_StepParallelMode int* A pointer to an integer indicating the

mode of the step.

Step LL_StepPreemptable int* A pointer to an integer indicating

whether the job step is preemptable. The

integer is set to 0 if the job step is not

preemptable and is set to 1 if the job

step is preemptable.

Step LL_StepPreemptWaitList char*** A pointer to an array containing the job

steps that an idle job must preempt. The

array ends with a NULL string. This

data is available from the LL_CM only.

Step LL_StepPriority int* A pointer to an integer indicating the

priority of the step.

Step LL_StepQueueSystemPriority int* A pointer to an integer indicating the

adjusted system priority of the job step.

This data is available from the LL_CM

only.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 559

||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepRequestedReservationID char** A pointer to a string containing the

step’s requested reservation ID.

Step LL_StepReservationID char** A pointer to a string containing the

step’s reservation ID.

Step LL_StepRestart int* A pointer to an integer representing

whether restart is specified as yes

(default value) or no by the user in the

job command file.

v 1 indicates yes

v 0 indicates no

Job LL_StepRsetName char** A pointer to a character string containing

the RSet name used by the step. If no

RSet name was used, the value is NULL.

Step LL_StepRssLimitHard int* A pointer to an integer indicating the

RSS hard limit set by the user in the

rss_limit keyword.

Step LL_StepRssLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the RSS hard limit set by the user in the

rss_limit keyword.

Step LL_StepRssLimitSoft int* A pointer to an integer indicating the

RSS soft limit set by the user in the

rss_limit keyword.

Step LL_StepRssLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the RSS soft limit set by the user in the

rss_limit keyword.

Step LL_StepShell char** A pointer to a character string containing

the shell name used by the executable.

Step LL_StepSMTRequired int* A pointer to an integer indicating the

required SMT state: 0 if SMT function is

required, 1 if SMT function is not

required.

Step LL_StepStackLimitHard int* A pointer to an integer indicating the

stack hard limit set by the user in the

stack_limit keyword.

Step LL_StepStackLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the stack hard limit set by the user in

the stack_limit keyword.

Step LL_StepStackLimitSoft int* A pointer to an integer indicating the

stack soft limit set by the user in the

stack_limit keyword.

Step LL_StepStackLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the stack soft limit set by the user in the

stack_limit keyword.

Step LL_StepStartCount int* A pointer to an integer indicating the

number of times the step has been

started. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

ll_get_data subroutine

560 TWS LoadLeveler: Using and Administering

||||
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepStartDate time_t* A pointer to a time_t structure indicating

the value the user specified in the

startdate keyword. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepStarterIdrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of unshared memory in the

data segment of a process. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterInblock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed input. Data is available from

the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStarterIsrss64 int64_t* A pointer to a 64-bit integer indicating

the unshared stack size. Data is available

from the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStarterIxrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of memory used by the text

segment that was also shared among

other processes. Data is available from

the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStarterMajflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterMaxrss64 int64_t* A pointer to a 64-bit integer indicating

the maximum resident set size utilized.

Data is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterMinflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterMsgrcv64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages received.

Data is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterMsgsnd64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages sent. Data

is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterNivcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of involuntary context

switches. Data is available from the

LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 561

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepStarterNsignals64 int64_t* A pointer to a 64-bit integer indicating

the number of signals delivered. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterNswap64 int64_t* A pointer to a 64-bit integer indicating

the number of times swapped out. Data

is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterNvcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of context switches due to

voluntarily giving up processor. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStarterOublock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed output. Data is available from

the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStarterSystemTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU system time. Data is available

from the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStarterUserTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU user time. Data is available

from the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStartTime time_t* A pointer to a time_t structure indicating

the time at which the starter process for

the job started. Data is available from

the LL_SCHEDD and

LL_HISTORY_FILE.

Step LL_StepState int* A pointer to an integer indicating the

state of the Step (Idle, Pending, Starting,

and so on). The value returned is in the

StepState enum. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepStepIdrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of unshared memory in the

data segment of a process. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepInblock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed input. Data is available from

the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStepIsrss64 int64_t* A pointer to a 64-bit integer indicating

the unshared stack size. Data is available

from the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

ll_get_data subroutine

562 TWS LoadLeveler: Using and Administering

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepStepIxrss64 int64_t* A pointer to a 64-bit integer indicating

the amount of memory used by the text

segment that was also shared among

other processes. Data is available from

the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStepMajflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepMaxrss64 int64_t* A pointer to a 64-bit integer indicating

the maximum resident set size utilized.

Data is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepMinflt64 int64_t* A pointer to a 64-bit integer indicating

the number of page faults. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepMsgrcv64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages received.

Data is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepMsgsnd64 int64_t* A pointer to a 64-bit integer indicating

the number of IPC messages sent. Data

is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepNivcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of involuntary context

switches. Data is available from the

LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStepNsignals64 int64_t* A pointer to a 64-bit integer indicating

the number of signals delivered. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepNswap64 int64_t* A pointer to a 64-bit integer indicating

the number of times swapped out. Data

is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepNvcsw64 int64_t* A pointer to a 64-bit integer indicating

the number of context switches due to

voluntarily giving up processor. Data is

available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepStepOublock64 int64_t* A pointer to a 64-bit integer indicating

the number of times the file system

performed output. Data is available from

the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 563

||||
|
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepStepSystemTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU system time. Data is available

from the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepStepUserTime64 int64_t* A pointer to a 64-bit integer indicating

the CPU user time. Data is available

from the LL_SCHEDD, LL_STARTD, and

LL_HISTORY_FILE.

Step LL_StepSystemPriority int* A pointer to an integer indicating the

overall system priority of the job step.

Data is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepTaskGeometry char** A pointer to a string containing the

values specified in the task_geometry

statement by the user in the job

command file. The syntax is the same as

specified in the statement , {(task id, task

id, ...) (task id, task id, ...) ...}. If

unspecified, a null string is returned.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepTaskInstanceCount int* A pointer to an integer indicating the

number of task instances in the step.

Data is available from the LL_SCHEDD,

LL_STARTD, and LL_HISTORY_FILE.

Step LL_StepTasksPerNodeRequested int* A pointer to an integer representing the

tasks per node specified by the user in

the job command file. If unspecified, the

integer will contain a 0. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepTotalNodesRequested char** A pointer to a string containing the

values specified by the user in the job

command file node statement. The

syntax is the same as specified in the

statement, [min],[max], where min

contains the minimum number of nodes

requested and max contains the

maximum nodes requested. If

unspecified, a null string is returned.

Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

Step LL_StepTotalTasksRequested int* A pointer to an integer representing the

total tasks specified by the user in the

job command file. If unspecified, the

integer will contain a 0. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

Step LL_StepUserSystemPriority int* A pointer to an integer indicating the

user system priority of the job step. Data

is available from LL_CM, LL_SCHEDD,

and LL_HISTORY_FILE.

ll_get_data subroutine

564 TWS LoadLeveler: Using and Administering

||||
|
|
|

||||
|
|
|

||||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Step LL_StepWallClockLimitHard int* A pointer to an integer indicating the

wall clock hard limit set by the user in

the wall_clock_limit keyword.

Step LL_StepWallClockLimitHard64 int64_t* A pointer to a 64-bit integer indicating

the wall clock hard limit set by the user

in the wall_clock_limit keyword.

Step LL_StepWallClockLimitSoft int* A pointer to an integer indicating the

wall clock soft limit set by the user in

the wall_clock_limit keyword.

Step LL_StepWallClockLimitSoft64 int64_t* A pointer to a 64-bit integer indicating

the wall clock soft limit set by the user

in the wall_clock_limit keyword.

Step LL_StepWallClockUsed int* A pointer to an integer that is the

number of seconds of elapsed time for

this step. This specification is valid only

when SCHEDULER_TYPE = API,

otherwise a value of zero is returned.

The value does not include any time that

a job step has spent in a preempted by

suspend state or doing a checkpoint.

Data is available from the LL_STARTD

only.

Task LL_TaskExecutable char** A pointer to a string containing the

name of the executable.

Task LL_TaskExecutableArguments char** A pointer to a string containing the

arguments passed by the user in the

executable.

Task LL_TaskGetFirstResourceRequirement LL_element

(ResourceReq)

A pointer to the element associated with

the first resource requirement.

Task LL_TaskGetFirstTaskInstance LL_element*

(TaskInstance)

A pointer to the element associated with

the first task instance.

Task LL_TaskGetNextResourceRequirement LL_element*

(ResourceReq)

A pointer to the element associated with

the next resource requirement.

Task LL_TaskGetNextTaskInstance LL_element*

(TaskInstance)

A pointer to the element associated with

the next task instance.

Task LL_TaskIsMaster int* A pointer to an integer, where 1

indicates master task.

Task LL_TaskTaskInstanceCount int* A pointer to an integer indicating the

number of task instances.

TaskInstance LL_TaskInstanceAdapterCount int* A pointer to the integer indicating the

number of adapters. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

TaskInstance LL_TaskInstanceCpuList int* A pointer to the integer indicating the

number of CPUs used by a given task

instance object. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 565

||||
|
|
|
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

Table 91. JOBS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

TaskInstance LL_TaskInstanceGetFirstAdapter LL_element*

(Adapter)

A pointer to the element associated with

the first adapter. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

TaskInstance LL_TaskInstanceGetFirstAdapterUsage LL_element*

(AdapterUsage)

A pointer to the element associated with

the first adapter usage. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

TaskInstance LL_TaskInstanceGetNextAdapter LL_element*

(Adapter)

A pointer to the element associated with

the next adapter. Data is available from

LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

TaskInstance LL_TaskInstanceGetNextAdapterUsage LL_element*

(AdapterUsage)

A pointer to the element associated with

the next adapter usage. Data is available

from LL_CM, LL_SCHEDD, and

LL_HISTORY_FILE.

TaskInstance LL_TaskInstanceMachineAddress char** A pointer to a string containing the IP

address of the machine assigned to a

task. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

TaskInstance LL_TaskInstanceMachineName char** A pointer to the string indicating the

machine assigned to a task.

TaskInstance LL_TaskInstanceTaskID int* A pointer to the integer indicating the

task ID. Data is available from LL_CM,

LL_SCHEDD, and LL_HISTORY_FILE.

See “Understanding the Machine object model” on page 527 for more information

on the Machine object model.

 Table 92. MACHINES specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

Adapter LL_AdapterAvailWindowCount int* A pointer to an integer indicating the

number of adapter windows not in use.

Adapter LL_AdapterCommInterface int* Contains the adapter’s communication

interface.

Adapter LL_AdapterInterfaceAddress char** A pointer to a string containing the

adapter’s interface IP address.

Adapter LL_AdapterInterfaceNetmask char** A pointer to a string containing the

netmask of an adapter.

Adapter LL_AdapterMaxWindowSize64 uint64_t* A pointer to an unsigned 64-bit integer

indicating the maximum allocatable

adapter window memory.

Adapter LL_AdapterMCMId int* A pointer to an integer indicating the

MCM ID for the adapter.

ll_get_data subroutine

566 TWS LoadLeveler: Using and Administering

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|

||||
|
|
|

|
|

||||
|

||||
|
|

||||
|

Table 92. MACHINES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Adapter LL_AdapterMemory64 uint64_t* A pointer to an unsigned 64-bit integer

indicating the amount of total adapter

memory.

Adapter LL_AdapterMinWindowSize64 int* A pointer to the integer indicating the

minimum allocatable adapter window

memory.

Adapter LL_AdapterName char** A pointer to a string containing the

adapter name.

Adapter LL_AdapterRcxtBlocks int* A pointer to the integer indicating the

number of rCxt blocks available on an

adapter.

Adapter LL_AdapterTotalWindowCount int* A pointer to the integer indicating the

number of windows on the adapter.

Adapter LL_AdapterWindowList int** A pointer to an array indicating window

numbers for the adapter.

LL_AdapterTotalWindowCount indicates

the size of this array. If the adapter has

no windows,

LL_AdapterTotalWindowCount is zero

and LL_AdapterWindowList is null.

Machine LL_MachineAdapterList char*** A pointer to an array containing a list of

the types of adapters associated with the

machine. The array ends with a NULL

string.

Machine LL_MachineArchitecture char** A pointer to a string containing the

machine architecture. The string may

result in ″???″ if a query is made before

the associated records are updated with

their actual values by the appropriate

startd daemons.

Machine LL_MachineAvailableClassList char*** A pointer to an array containing the

currently available job classes defined on

the machine. The array ends with a

NULL string.

Machine LL_MachineConfigTimeStamp int* A pointer to an integer containing the

date and time value of the last

configuration or reconfiguration.

Machine LL_MachineConfiguredClassList char*** A pointer to an array containing the

initiators on the machine. The array ends

with a NULL string.

Machine LL_MachineContinueExpr char** A pointer to a string containing the

machine’s continue control expression.

Machine LL_MachineCpuList int* A pointer to an integer containing the

list of CPUs on the machine.

Machine LL_MachineCPUs int* A pointer to an integer containing the

number of CPUs on the machine.

Machine LL_MachineDisk int* A pointer to an integer indicating the

disk space in KBs in the machine’s

execute directory.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 567

||||
|
|

||||
|
|

||||
|
|
|

||||
|
|
|
|
|

Table 92. MACHINES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Machine LL_MachineDisk64 int64_t* A pointer to a 64-bit integer indicating

the disk space in KBs in the machine’s

execute directory.

Machine LL_MachineDrainClassList char*** A pointer to an array containing the

drain class list on the machine. The

array ends with a NULL string.

Machine LL_MachineDrainingClassList char*** A pointer to an array containing the

draining class list on the machine. The

array ends with a NULL string.

Machine LL_MachineFeatureList char*** A pointer to an array containing the

features defined on the machine. The

array ends with a NULL string.

Machine LL_MachineFreeRealMemory int* A pointer to an integer indicating the

amount of free real memory in MBs on

the machine.

Machine LL_MachineFreeRealMemory64 int64_t* A pointer to a 64-bit integer indicating

the amount of free real memory in MBs

on the machine.

Machine LL_MachineGetFirstAdapter LL_element*

(Adapter)

A pointer to the element associated with

the machine’s first adapter.

Machine LL_MachineGetFirstMCM LL_element*

(MCM)

A pointer to the element associated with

the machine’s first MCM.

Machine LL_MachineGetFirstResource LL_element*

(Resource)

A pointer to the element associated with

the machine’s first resource.

Machine LL_MachineGetNextAdapter LL_element*

(Adapter)

A pointer to the element associated with

the machine’s next adapter.

Machine LL_MachineGetNextMCM LL_element*

(MCM)

A pointer to the element associated with

the machine’s next MCM.

Machine LL_MachineGetNextResource LL_element*

(Resource)

A pointer to the element associated with

the machine’s next resource.

Machine LL_MachineKbddIdle int* A pointer to an integer indicating the

number of seconds since the kbdd

daemon detected keyboard mouse

activity.

Machine LL_MachineKillExpr char** A pointer to a string containing the

machine’s kill control expression.

Machine LL_MachineLargePageCount64 int64_t* A pointer to a 64–bit integer indicating

the number of Large Pages defined on

the machine.

Machine LL_MachineLargePageFree64 int64_t* A pointer to a 64–bit integer indicating

the number of Large Pages free.

Machine LL_MachineLargePageSize64 int64_t* A pointer to a 64–bit integer indicating

the size of the machine’s Large Page.

Machine LL_MachineLoadAverage double* A pointer to a double containing the

load average on the machine.

Machine LL_MachineMachineMode char** A pointer to a string containing the

configured machine mode.

ll_get_data subroutine

568 TWS LoadLeveler: Using and Administering

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

Table 92. MACHINES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Machine LL_MachineMaxTasks int* A pointer to an integer indicating the

maximum number of tasks this machine

can run at one time.

Machine LL_MachineName char** A pointer to a string containing the

machine name.

Machine LL_MachineOperatingSystem char** A pointer to a string containing the

operating system on the machine. The

string may result in ″???″ if a query is

made before the associated records are

updated with their actual values by the

appropriate startd daemons.

Machine LL_MachinePagesFreed int* A pointer to an integer indicating the

number of pages freed per second by the

page replacement algorithm.

Machine LL_MachinePagesFreed64 int64_t* A pointer to a 64-bit integer indicating

the number of pages freed per second by

the page replacement algorithm.

Machine LL_MachinePagesPagedIn int* A pointer to an integer indicating the

number of pages paged in per second

from paging space.

Machine LL_MachinePagesPagedIn64 int64_t* A pointer to a 64-bit integer indicating

the number of pages paged in per

second from paging space.

Machine LL_MachinePagesPagedOut int* A pointer to an integer indicating the

number of pages paged out per second

to paging space.

Machine LL_MachinePagesPagedOut64 int64_t* A pointer to a 64-bit integer indicating

the number of pages paged out per

second to paging space.

Machine LL_MachinePagesScanned int* A pointer to an integer indicating the

number of pages scanned per second by

the page replacement algorithm.

Machine LL_MachinePagesScanned64 int64_t* A pointer to a 64-bit integer indicating

the number of pages scanned per second

by the page replacement algorithm.

Machine LL_MachinePoolList int** A pointer to an array indicating the pool

numbers to which this machine belongs.

The size of the array can be determined

by using LL_MachinePoolListSize.

Machine LL_MachinePoolListSize int* A pointer to an integer indicating the

number of pools configured for the

machine.

Machine LL_MachinePrestartedStarters int* A pointer to an integer indicating the

number of prestarted Starters on a

machine.

Machine LL_MachineRealMemory int* A pointer to an integer indicating the

physical memory in MBs on the

machine.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 569

||||
|
|
|
|
|

Table 92. MACHINES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Machine LL_MachineRealMemory64 int64_t* A pointer to a 64-bit integer indicating

the physical memory in MBs on the

machine.

Machine LL_MachineReservationList char*** A pointer to an array containing the list

of reservation IDs using this machine.

The array ends with a NULL string.

Machine LL_MachineReservationPermitted int* A pointer to an integer to determine if

this machine can be reserved.

Machine LL_MachineScheddRunningJobs int* A pointer to an integer indicating a list

of the running jobs assigned to Schedd.

Machine LL_MachineScheddState int* A pointer to an integer indicating the

machine’s Schedd state.

Machine LL_MachineScheddTotalJobs int* A pointer to an integer indicating the

total number of jobs assigned to the

Schedd.

Machine LL_MachineSpeed double* A pointer to a double containing the

configured speed of the machine.

Machine LL_MachineStartdRunningJobs int* A pointer to an integer containing the

number of running jobs known by the

startd daemon.

Machine LL_MachineStartdState char** A pointer to a string containing the state

of the startd daemon.

Machine LL_MachineStartExpr char** A pointer to a string containing the

machine’s start control expression.

Machine LL_MachineStepList char*** A pointer to an array containing the

steps running on the machine. The array

ends with a NULL string.

Machine LL_MachineSuspendExpr char** A pointer to a string containing the

machine’s suspend control expression.

Machine LL_MachineTimeStamp time_t* A pointer to a time_t structure indicating

the time the machine last reported to the

negotiator.

Machine LL_MachineUsedCpuList int* A pointer to an integer containing the

list of CPUs being used on the machine.

Machine LL_MachineVacateExpr char** A pointer to a string containing the

machine’s vacate control expression.

Machine LL_MachineVirtualMemory int* A pointer to an integer indicating the

free swap space in KBs on the machine.

Machine LL_MachineVirtualMemory64 int64_t* A pointer to a 64-bit integer indicating

the free swap space in KBs on the

machine.

MCM LL_MCMCPUList int** A pointer to an array indicating the list

of CPUs on the MCM.

MCM LL_MCMCPUs int* A pointer to an integer containing the

number of CPUs within the MCM.

MCM LL_MCMID int* A pointer to an integer containing the ID

of the MCM.

ll_get_data subroutine

570 TWS LoadLeveler: Using and Administering

Table 92. MACHINES specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Resource LL_ResourceAvailableValue int* A pointer to an integer indicating the

value of available resources.

Resource LL_ResourceAvailableValue64 int64_t* A pointer to a 64-bit integer indicating

the value of available resources.

Resource LL_ResourceInitialValue int* A pointer to an integer indicating the

initial resource value.

Resource LL_ResourceInitialValue64 int64_t* A pointer to a 64-bit integer indicating

the initial resource value.

Resource LL_ResourceName char** A pointer to a string containing the

resource name.

See “Understanding the MCluster object model” on page 528 for more information

on the MCluster object model.

 Table 93. MCLUSTERS specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

MCluster LL_MClusterExcludeClasses char*** A pointer to an array containing a list of

exclude classes.

MCluster LL_MClusterExcludeGroups char*** A pointer to an array containing a list of

exclude groups.

MCluster LL_MClusterExcludeUsers char*** A pointer to an array containing a list of

exclude users.

MCluster LL_MClusterInboundHosts char*** A pointer to an array containing a list of

inbound machines.

MCluster LL_MClusterInboundScheddPort int* A pointer to an integer containing the

cluster Schedd port number.

MCluster LL_MClusterIncludeClasses char*** A pointer to an array containing a list of

include classes.

MCluster LL_MClusterIncludeGroups char*** A pointer to an array containing a list of

include groups.

MCluster LL_MClusterIncludeUsers char*** A pointer to an array containing a list of

include users.

MCluster LL_MClusterLocal int* A pointer to an integer. If the integer

contains the value 1, the cluster is local.

If the integer contains the value 0, the

cluster is remote.

MCluster LL_MClusterMulticlusterSecurity char** A pointer to a string containing the

security method for the multicluster.

MCluster LL_MClusterName char* A pointer to a string containing the

cluster name.

MCluster LL_MClusterOutboundHosts char*** A pointer to an array containing a list of

outbound machines.

MCluster LL_MClusterSecureScheddPort int* A pointer to an integer containing the

secure Schedd port for the cluster.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 571

|
|

Table 93. MCLUSTERS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

MCluster LL_MClusterSslCipherList char** A pointer to a string containing the list

of cipher for SSL.

See “Understanding the Reservations object model” on page 528 for more

information on the Reservations object model.

 Table 94. RESERVATIONS specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

Reservation LL_ReservationBgBPs char*** A pointer to an array containing the Blue

Gene base partitions reserved by the

reservation. For a partially reserved base

partition, the node cards reserved will be

listed in parenthesis after the BP name.

Reservation LL_ReservationBgCNodes int* A pointer to an integer indicating the

number of Blue Gene C-nodes that are

reserved.

Reservation LL_ReservationBgConnection char** A pointer to a string containing the Blue

Gene connection.

Reservation LL_ReservationBgShape int** A pointer to an array indicating the Blue

Gene shape.

Reservation LL_ReservationCreateTime time_t* A pointer to the time_t structure

indicating the creation time of the

reservation.

Reservation LL_ReservationDuration int* A pointer to an integer containing the

reservation duration in the unit of

minutes.

Reservation LL_ReservationGroup char** A pointer to a string containing the

LoadLeveler group that owns the

reservation.

Reservation LL_ReservationGroups char*** A pointer to an array containing the

LoadLeveler groups whose users may

run jobs in the reservation. The array

ends with a NULL string.

Reservation LL_ReservationID char** A pointer to a string containing the ID of

the reservation.

Reservation LL_ReservationJobs char*** A pointer to an array containing the job

steps bound to the reservation. The array

ends with a NULL string.

Reservation LL_ReservationMachines char*** A pointer to an array containing the

machines reserved by the reservation.

The array ends with a NULL string.

Reservation LL_ReservationModeRemoveOnIdle int* A pointer to an integer indicating that

RESERVATION_REMOVE_ON_IDLE

mode is on if 1; off if 0.

ll_get_data subroutine

572 TWS LoadLeveler: Using and Administering

|
|

||||
|
|
|
|

||||
|
|

||||
|

||||
|

Table 94. RESERVATIONS specifications for ll_get_data subroutine (continued)

Object Specification

type of

resulting data

parameter

Description

Reservation LL_ReservationModeShared int* A pointer to an integer indicating that

RESERVATION_SHARED mode is on if

1; off if 0.

Reservation LL_ReservationModifiedBy char** A pointer to a string containing the user

ID who last modified the reservation.

Reservation LL_ReservationModifyTime time_t* A pointer to the time_t structure

indicating the last modification time.

Reservation LL_ReservationOwner char** A pointer to a string containing the

owner of the reservation.

Reservation LL_ReservationStartTime time_t* A pointer to the time_t structure

indicating the beginning time of the

reservation.

Reservation LL_ReservationStatus int* A pointer to an integer containing the

state of the reservation that takes one of

the Reservation_State_t values in llapi.h.

Reservation LL_ReservationUsers char*** A pointer to an array containing the

users who may run jobs in the

reservation. The array ends with a

NULL string.

See “Understanding the Wlmstat object model” on page 529 for more information

on the Wlmstat object model.

 Table 95. WLMSTAT specifications for ll_get_data subroutine

Object Specification

type of

resulting data

parameter

Description

WlmStat LL_WlmStatCpuSnapshotUsage int* A pointer to CPU usage obtained from

the AIX Workload Manager.

WlmStat LL_WlmStatCpuTotalUsage int64_t* A pointer to total CPU usage obtained

from the AIX Workload Manager.

WlmStat LL_WlmStatMemoryHighWater int64_t* A pointer to real memory high water

mark obtained from the AIX Workload

Manager.

WlmStat LL_WlmStatMemorySnapshotUsage int* A pointer to real memory usage obtained

from the Workload Manager.

ll_get_data subroutine

Chapter 17. Application programming interfaces (APIs) 573

|
|

ll_get_objs subroutine

Purpose

ll_get_objs – Sends a query request to the daemon you specify along with the

request data you specified in the ll_set_request subroutine. ll_get_objs receives a

list of objects matching the request.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

LL_element * ll_get_objs (LL_element *query_element ,LL_Daemon query_daemon,

 char *hostname,int * number_of_objs,

 int * error_code);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

query_daemon

Specifies the LoadLeveler daemon you want to query or whether you want to

query job information stored in a history file. The enum LL_Daemon is

defined in llapi.h as:

enum LL_Daemon {LL_STARTD, LL_SCHEDD, LL_CM, LL_MASTER, LL_STARTER,

 LL_HISTORY_FILE};

Table 96 indicates which daemons respond to which query flags:

 Table 96. query_daemon summary

When query_type (in

ll_query) is:

query_flags (in ll_set_request)

can be: Responded to by these daemons:

BLUE_GENE QUERY_ALL negotiator (LL_CM)

QUERY_BG_BASE_PARTITION negotiator (LL_CM)

QUERY_BG_PARTITION negotiator (LL_CM)

CLASSES QUERY_ALL negotiator (LL_CM)

QUERY_CLASS negotiator (LL_CM)

CLUSTER QUERY_ALL negotiator (LL_CM)

FAIRSHARE QUERY_ALL negotiator (LL_CM)

QUERY_GROUP negotiator (LL_CM)

QUERY_USER negotiator (LL_CM)

ll_get_objs subroutine

574 TWS LoadLeveler: Using and Administering

|
|
|
|

|
|
|

|

||

|
|
|
||

|||

||

||

|||

||

|||

|||

||

||

Table 96. query_daemon summary (continued)

When query_type (in

ll_query) is:

query_flags (in ll_set_request)

can be: Responded to by these daemons:

JOBS QUERY_ALL negotiator (LL_CM), Schedd

(LL_SCHEDD), or history file

(LL_HISTORY_FILE)

QUERY_BG_JOB negotiator (LL_CM)

QUERY_CLASS negotiator (LL_CM) or Schedd

(LL_SCHEDD)

QUERY_ENDDATE history file (LL_HISTORY_FILE)

QUERY_GROUP negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

QUERY_JOBID negotiator (LL_CM) or Schedd

(LL_SCHEDD)

QUERY_PROCID startd (LL_STARTD)

QUERY_RESERVATION_ID negotiator (LL_CM) or Schedd

(LL_SCHEDD)

QUERY_STARTDATE history file (LL_HISTORY_FILE)

QUERY_STEPID negotiator (LL_CM), Schedd

(LL_SCHEDD), or startd

(LL_STARTD)

QUERY_USER negotiator (LL_CM) or Schedd

(LL_SCHEDD)

MACHINES QUERY_ALL negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

MCLUSTERS QUERY_ALL Schedd (LL_SCHEDD)

RESERVATIONS QUERY_ALL negotiator (LL_CM)

QUERY_BG_BASE_PARTITION negotiator (LL_CM)

QUERY_GROUP negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

QUERY_RESERVATION_ID negotiator (LL_CM)

QUERY_USER negotiator (LL_CM)

WLMSTAT QUERY_STEPID startd (LL_STARTD)

hostname

Specifies the hostname of the daemon or the history file name to be queried.

 When query_type is JOBS, if query_daemon is:

LL_SCHEDD or LL_STARTD

The local machine is queried if the hostname is NULL.

LL_CM

The hostname is ignored.

LL_HISTORY_FILE

The hostname represents the history file to obtain data from. If the

hostname is NULL, an error is returned.

 When query_type is MCLUSTER, the query_daemon must be LL_SCHEDD. If

you specify NULL for the hostname:

v The cluster specified by the ll_cluster API is the local cluster, a configured

outbound Schedd daemon for the local cluster is queried.

ll_get_objs subroutine

Chapter 17. Application programming interfaces (APIs) 575

|

|
|
|
||

|||
|
|

||

||
|

||

||

||

||
|

||

||
|

||

||
|
|

||
|

|||

||

|||

|||

||

||

||

||

||

|||
|

|

v The cluster specified by the ll_cluster API is a remote cluster, a configured

inbound Schedd daemon for the remote cluster is queried.

number_of_objs

Is a pointer to an integer representing the number of objects received from the

daemon.

error_code

Is a pointer to an integer representing the error code issued when the function

returns a NULL value. For more information, see ″Error values.″

Description

query_element, query_daemon, and hostname are the input fields for this subroutine.

number_of_objs and error_code are output fields.

Each LoadLeveler daemon returns only the objects that it knows about.

Return Values

This subroutine returns a pointer to the first object in the list. You must use the

ll_next_obj subroutine to access the next object in the list.

Error Values

This subroutine returns a NULL to indicate failure. The error_code parameter is set

to one of the following:

-1 query_element not valid.

-2 query_daemon not valid.

-3 Cannot resolve hostname.

-4 Request type for specified daemon not valid.

-5 System error.

-6 No valid objects meet the request.

-7 Configuration error.

-9 Connection to daemon failed.

-10 Error processing history file (LL_HISTORY_FILE query only).

-11 History file must be specified in the hostname argument

(LL_HISTORY_FILE query only).

-12 Unable to access the history file (LL_HISTORY_FILE query only).

Related Information

Subroutines: ll_cluster, ll_deallocate, ll_free_objs, ll_get_data, ll_next_obj,

ll_query, ll_set_request

ll_get_objs subroutine

576 TWS LoadLeveler: Using and Administering

ll_next_obj subroutine

Purpose

ll_next_obj – Returns the next object in the query_element list you specify.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

LL_element * ll_next_obj (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

Use this subroutine in conjunction with the ll_get_objs subroutine to “loop”

through the list of objects queried.

Return Values

This subroutine returns a pointer to the next object in the list.

Error Values

NULL Indicates an error or the end of the list of objects.

Related Information

Subroutines: ll_cluster, ll_deallocate, ll_free_objs, ll_get_data, ll_get_objs,

ll_query, ll_set_request

ll_next_obj subroutine

Chapter 17. Application programming interfaces (APIs) 577

ll_query subroutine

Purpose

ll_query – Initializes the query object and defines the type of query you want to

perform. The LL_element created and the corresponding data returned by this

function is determined by the query_type you select.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

LL_element * ll_query (enum QueryType query_type);

Parameters

query_type

Can be:

v BLUE_GENE (to query information about the Blue Gene system)

v CLASSES (to query information about job classes)

v CLUSTER (to query cluster information)

v FAIRSHARE (to query fair share scheduling information)

v JOBS (to query job information)

v MACHINES (to query machine information)

v MCLUSTERS (to query multicluster objects)

Multicluster objects only exist when LoadLeveler has a multicluster

configuration.

v RESERVATIONS (to query reservation information)

v WLMSTAT (to query AIX Workload Manager)

Description

query_type is the input field for this subroutine.

This subroutine is used in conjunction with other data access subroutines to query

information about job and machine objects. You must call ll_query prior to using

the other data access subroutines.

Return Values

This subroutine returns a pointer to an LL_element object. The pointer is used by

subsequent data access subroutine calls.

Error Values

NULL The subroutine was unable to create the appropriate pointer.

Related Information

Subroutines: ll_cluster, ll_deallocate, ll_free_objs, ll_get_data, ll_get_objs,

ll_next_obj, ll_reset_request, ll_set_request

ll_query subroutine

578 TWS LoadLeveler: Using and Administering

ll_reset_request subroutine

Purpose

ll_reset_request – Resets the request data to NULL for the query_element you

specify.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_reset_request (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

This subroutine is used in conjunction with ll_set_request to change the data

requested with the ll_get_objs subroutine.

Return Values

This subroutine returns a zero to indicate success.

Error Values

-1 The subroutine was unable to reset the appropriate data.

Related Information

Subroutines: ll_deallocate, ll_free_objs, ll_get_data, ll_get_objs, ll_next_obj,

ll_query, ll_set_request

ll_reset_request subroutine

Chapter 17. Application programming interfaces (APIs) 579

ll_set_request subroutine

Purpose

ll_set_request – Determines the data requested during a subsequent ll_get_objs

call to query specific objects. You can filter your queries based on the query_type,

object_filter, and data_filter you select.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_set_request (LL_element *query_element, QueryFlags query_flags,

 char **object_filter, DataFilter data_filter);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query subroutine.

query_flags

Table 97 provides information on query_type (in ll_query) and related

query_flags:

 Table 97. query_flags summary

When query_type (in

ll_query) is: query_flags can be: Flag description:

BLUE_GENE QUERY_ALL Query Blue Gene base partitions,

switches, and wires.

QUERY_BG_BASE_PARTITION Query Blue Gene base partitions,

including any small partitions

allocated on the base partition.

QUERY_BG_PARTITION Query partitions defined on the Blue

Gene system.

CLASSES QUERY_ALL Query all classes.

QUERY_CLASS Query by LoadLeveler class.

CLUSTER QUERY_ALL Query cluster information from

central manager.

FAIRSHARE QUERY_ALL Query returns all available

information.

QUERY_GROUP Query by LoadLeveler group.

QUERY_USER Query by user ID.

ll_set_request subroutine

580 TWS LoadLeveler: Using and Administering

|
|
|

||

|
|||

|||
|

||
|
|

||
|

|||

||

|||
|

|||
|

||

||

Table 97. query_flags summary (continued)

When query_type (in

ll_query) is: query_flags can be: Flag description:

JOBS QUERY_ALL Query all jobs.

QUERY_BG_JOB Query by bluegene type jobs only.

QUERY_CLASS Query by LoadLeveler class.

QUERY_ENDDATE Query by job end dates. History file

query only.

QUERY_GROUP Query by LoadLeveler group.

QUERY_HOST Query by machine name.

QUERY_JOBID Query by job ID.

QUERY_PROCID Query by process ID of a task of a job

step.

QUERY_RESERVATION_ID Query job steps bound to a particular

reservation.

QUERY_STARTDATE Query by job start dates. History file

query only.

QUERY_STEPID Query by step ID.

QUERY_USER Query by user ID.

MACHINES QUERY_ALL Query all machines.

QUERY_HOST Query by machine names.

MCLUSTERS QUERY_ALL Query all multiclusters.

RESERVATIONS QUERY_ALL Query all reservations.

QUERY_BG_BASE_PARTITION Query by Blue Gene base partitions or

all for all base partitions.

QUERY_GROUP Query by LoadLeveler group that

owns the reservations.

QUERY_HOST Query by machine name.

QUERY_RESERVATION_ID Query by reservation ID.

QUERY_USER Query by user ID that owns the

reservations.

WLMSTAT QUERY_STEPID Query by step ID.

object_filter

Specifies search criteria. The value you specify for object_filter is related to the

value you specify for query_flags as shown in Table 98:

 Table 98. object_filter value related to the query flags value

If you specify: Note:

QUERY_ALL You do not need an object_filter.

QUERY_BG_BASE_PARTITION The object_filter must contain a list of base

partition IDs. For all base partitions, the first

entry in the list must contain the string ″all″.

QUERY_BG_PARTITION The object_filter must contain a list of partition

IDs. For all partitions, the first entry in the list

must contain the string ″all″.

QUERY_CLASS The object_filter must contain a list of

LoadLeveler class names.

QUERY_GROUP The object_filter must contain a list of

LoadLeveler group names.

ll_set_request subroutine

Chapter 17. Application programming interfaces (APIs) 581

|

|
|||

|||

||

||

||
|

||

||

||

||
|

||
|

||
|

||

||

|||

||

|||

|||

||
|

||
|

||

||

||
|

|||
|

|

Table 98. object_filter value related to the query flags value (continued)

If you specify: Note:

QUERY_HOST The object_filter must contain a list of

LoadLeveler machine names. When the query

type is JOBS, the machine names must be the

names of machines to which the jobs are

submitted.

QUERY_JOBID The object_filter must contain a list of job IDs

(in the form host.jobid).

QUERY_PROCID The object_filter must contain a list with a

single process ID of a task of a job step.

QUERY_RESERVATION_ID The object_filter must contain a list of

reservation IDs.

QUERY_STARTDATE or

QUERY_ENDDATE

The object_filter must contain a list of two start

dates or two end dates having the format

MM/DD/YYYY.

QUERY_STEPID The object_filter must contain a list of step IDs

(in the form host.jobid.stepid).

QUERY_USER The object_filter must contain a list of user IDs.

The last entry in the object_filter array must be NULL.

data_filter

Filters the data returned from the object you query. The value you specify for

data_filter is related to the value you specify for query_type. The data_filter must

be ALL_DATA (the default) when:

v You query a history file for job information

v You specify JOBS and query_flags QUERY_PROCID

v You specify BLUE_GENE, CLASSES, CLUSTER, MACHINES,

MCLUSTERS, RESERVATIONS, or WLMSTAT

Description

query_element, query_flags, object_filter, and data_filter are the input fields for this

subroutine.

The QUERY_PROCID flag should not be used in combination with any other

query_flags.

Do not use the QUERY_BG_BASE_PARTITION flag in combination with the

QUERY_HOST flag.

You can request certain combinations of object filters by calling ll_set_request

more than once. When you do this, the query flags you specify are or-ed together.

The following are valid combinations of object filters:

v QUERY_JOBID and QUERY_STEPID: the result is the union of both queries

and any other query flags (such as, QUERY_HOST) will be ignored

v QUERY_STARTDATE and QUERY_ENDDATE: the result is the intersection of

both queries

v QUERY_HOST, QUERY_USER, QUERY_GROUP, QUERY_CLASS, and

QUERY_RESERVATION_ID: the result is the intersections of all of the queries

v When the query_type is RESERVATIONS, QUERY_RESERVATION_ID takes

precedence and any other query flags are ignored (with the exception of

ll_set_request subroutine

582 TWS LoadLeveler: Using and Administering

|
|

|
|

QUERY_ALL, which always replaces any other query flags). QUERY_HOST and

QUERY_BG_BASE_PARTITION are mutually exclusive and setting one will

clear the other.

To query jobs owned by certain users and on specific machines, issue

ll_set_request first with QUERY_USER and the appropriate user IDs, and then

issue it again with QUERY_HOST and the appropriate host names.

For example, suppose you issue ll_set_request with a user ID list of anton and

meg, and then issue it again with a host list of k10n10 and k10n11. The objects

returned are all of the jobs on k10n10 and k10n11 which belong to anton or meg.

Note that if you use two consecutive calls with the same flag, the second call will

replace the previous call.

Also, you should not use the QUERY_ALL flag in combination with any other

flag, since QUERY_ALL will replace any existing requests.

For history file queries, query_flags is restricted to the following: QUERY_ALL,

QUERY_STARTDATE, QUERY_ENDDATE.

Return Values

This subroutine returns a zero to indicate success.

Error Values

-1 You specified a query_element that is not valid.

-2 You specified a query_flag that is not valid.

-3 You specified an object_filter that is not valid.

-4 You specified a data_filter that is not valid.

-5 A system error occurred.

Related Information

Subroutines: ll_cluster, ll_deallocate, ll_free_objs, ll_get_data, ll_get_objs,

ll_next_obj, ll_query, ll_reset_request

ll_set_request subroutine

Chapter 17. Application programming interfaces (APIs) 583

|
|
|

|
|
|

Examples of using the data access API

These examples are provided in the samples/lldata_access subdirectory of the

release directory (usually /usr/lpp/LoadL/full).

Example 1: The following example shows how LoadLeveler’s data access API can

be used to obtain machine, job, and cluster information. The program consists of

three steps:

1. Getting information about selected hosts in the LoadLeveler cluster

2. Getting information about jobs of selected classes

3. Getting floating consumable resource information in the LoadLeveler cluster

#include <stdio.h>

#include "llapi.h"

main(int argc, char *argv[])

{

 LL_element *queryObject, *machine, *resource, *cluster;

 LL_element *job, *step, *node, *task, *credential, *resource_req;

 int rc, obj_count, err_code, value;

 double load_avg;

 enum StepState step_state;

 char **host_list, **class_list;

 char *name, *res_name, *step_id, *job_class, *node_req;

 char *task_exec, *ex_args, *startd_state;

 /* Step 1: Display information of selected machines in the LL cluster */

 /* Initialize the query: Machine query */

 queryObject = ll_query(MACHINES);

 if (!queryObject) {

 printf("Query MACHINES: ll_query() returns NULL.\n"); exit(1);

 }

 /* Set query parameters: query specific machines by name */

 host_list = (char **)malloc(3*sizeof(char *));

 host_list[0] = "c163n12.ppd.pok.ibm.com";

 host_list[1] = "c163n11.ppd.pok.ibm.com";

 host_list[2] = NULL;

 rc = ll_set_request(queryObject, QUERY_HOST, host_list, ALL_DATA);

 if (rc) {

 printf("Query MACHINES: ll_set_request() return code is non-zero.\n"); exit(1);

 }

 /* Get the machine objects from the LoadL_negotiator (central manager) daemon */

 machine = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);

 if (machine == NULL) {

 printf("Query MACHINES: ll_get_objs() returns NULL. Error code = %d\n", err_code);

 }

 printf("Number of machines objects returned = %d\n", obj_count);

 /* Process the machine objects */

 while(machine) {

 rc = ll_get_data(machine, LL_MachineName, &name);

 if (!rc) {

 printf("Machine name: %s ------------------\n", name); free(name);

 }

 rc = ll_get_data(machine, LL_MachineStartdState, &stard_state);

 if (rc) {

 printf("Query MACHINES: ll_get_data() return code is non-zero.\n"); exit(1);

 }

Figure 53. Obtaining machine, job, and cluster information with the data access API (Part 1 of 4)

Examples of using the data access API

584 TWS LoadLeveler: Using and Administering

printf("Startd State: %s\n", startd_state);

 if (strcmp(startd_state, "Down") != 0) {

 rc = ll_get_data(machine, LL_MachineRealMemory, &value);

 if (!rc) printf("Total Real Memory: %d\n", value);

 rc = ll_get_data(machine, LL_MachineVirtualMemory, &value);

 if (!rc) printf("Free Swap Space: %d\n", value);

 rc = ll_get_data(machine, LL_MachineLoadAverage, &load_avg);

 if (!rc) printf("Load Average: %f\n", load_avg);

 }

 free(startd_state);

 /* Consumable Resources associated with this machine */

 resource = NULL;

 ll_get_data(machine, LL_MachineGetFirstResource, &resource);

 while(resource) {

 rc = ll_get_data(resource, LL_ResourceName, &res_name);

 if (!rc) {printf("Resource Name = %s\n", res_name); free (res_name);}

 rc = ll_get_data(resource, LL_ResourceInitialValue, &value);

 if (!rc) printf(" Total: %d\n", value);

 rc = ll_get_data(resource, LL_ResourceAvailableValue, &value);

 if (!rc) printf(" Available: %d\n", value);

 resource = NULL;

 ll_get_data(machine, LL_MachineGetNextResource, &resource);

 }

 machine = ll_next_obj(queryObject);

 }

 /* Free objects obtained from Negotiator */

 ll_free_objs(queryObject);

 /* Free query element */

 ll_deallocate(queryObject);

 /* Step 2: Display information of selected jobs */

 /* Initialize the query: Job query */

 queryObject = ll_query(JOBS);

 if (!queryObject) {

 printf("Query JOBS: ll_query() returns NULL.\n");

 exit(1);

 }

 /* Query all class "Parallel" and "No_Class" jobs submitted to c163n11, c163n12 */

 class_list = (char **)malloc(3*sizeof(char *));

 class_list[0] = "Parallel";

 class_list[1] = "No_Class";

 class_list[2] = NULL;

 rc = ll_set_request(queryObject, QUERY_HOST, host_list, ALL_DATA);

 if (rc) {printf("Query JOBS: ll_set_request() return code is non-zero.\n"); exit(1);}

 rc = ll_set_request(queryObject, QUERY_CLASS, class_list, ALL_DATA);

 if (rc) {printf("Query JOBS: ll_set_request() return code is non-zero.\n"); exit(1);}

 /* Get the requested job objects from the Central Manager */

 job = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);

 if (job == NULL) {

 printf("Query JOBS: ll_get_objs() returns NULL. Error code = %d\n", err_code);

 }

 printf("Number of job objects returned = %d\n", obj_count);

 /* Process the job objects and display selected information of each job step.

Figure 53. Obtaining machine, job, and cluster information with the data access API (Part 2 of 4)

Examples of using the data access API

Chapter 17. Application programming interfaces (APIs) 585

*

 * Notes:

 * 1. Since LL_element is defined as "void" in llapi.h, when using

 * ll_get_data it is important that a valid "specification"

 * parameter be used for a given "element" argument.

 * 2. Checking of return code is not always made in the following

 * loop to minimize the length of the listing.

 */

 while(job) {

 rc = ll_get_data(job, LL_JobName, &name);

 if (!rc) {printf("Job name: %s\n", name); free(name);}

 rc = ll_get_data(job, LL_JobCredential, &credential);

 if (!rc) {

 rc = ll_get_data(credential, LL_CredentialUserName, &name);

 if (!rc) {printf("Job owner: %s\n", name); free(name);}

 rc = ll_get_data(credential, LL_CredentialGroupName, &name);

 if (!rc) {printf("Unix Group: %s\n", name); free(name);}

 }

 step = NULL;

 ll_get_data(job, LL_JobGetFirstStep, &step);

 while(step) {

 rc = ll_get_data(step, LL_StepID, &step_id);

 if (!rc) {printf(" Step ID: %s\n", step_id); free(step_id);}

 rc = ll_get_data(step, LL_StepJobClass, &job_class);

 if (!rc) {printf(" Step Job Class: %s\n", job_class); free(job_class);}

 rc = ll_get_data(step, LL_StepState, &step_state);

 if (!rc) {

 if (step_state == STATE_RUNNING) {

 printf(" Step Status: Running\n");

 printf(" Allocated Hosts:\n");

 machine = NULL;

 ll_get_data(step, LL_StepGetFirstMachine, &machine);

 while(machine) {

 rc = ll_get_data(machine, LL_MachineName, &name);

 if (!rc) { printf(" %s\n", name); free(name); }

 machine = NULL;

 ll_get_data(step, LL_StepGetNextMachine, &machine);

 }

 }else {

 printf(" Step Status: Not Running\n");

 }

 }

 node = NULL;

 ll_get_data(step, LL_StepGetFirstNode, &node);

 while(node) {

 rc = ll_get_data(node, LL_NodeRequirements, &node_req);

 if (!rc) {printf(" Node Requirements: %s\n", node_req); free(node_req);}

 task = NULL;

 ll_get_data(node, LL_NodeGetFirstTask, &task);

 while(task) {

Figure 53. Obtaining machine, job, and cluster information with the data access API (Part 3 of 4)

Examples of using the data access API

586 TWS LoadLeveler: Using and Administering

Example 2: The following example shows how LoadLeveler’s data access API can

be used to extract job accounting information saved in a history file.

 rc = ll_get_data(task, LL_TaskExecutable, &task_exec);

 if (!rc) {printf(" Task Executable: %s\n", task_exec); free(task_exec);}

 rc = ll_get_data(task, LL_TaskExecutableArguments, &ex_args);

 if (!rc) {printf(" Task Executable Arguments: %s\n",ex_args);

 free(ex_args);}

 resource_req = NULL;

 ll_get_data(task, LL_TaskGetFirstResourceRequirement, &resource_req);

 while(resource_req) {

 rc = ll_get_data(resource_req, LL_ResourceRequirementName, &name);

 if (!rc) {printf(" Resource Req Name: %s\n", name); free(name);}

 rc = ll_get_data(resource_req, LL_ResourceRequirementValue, &value);

 if (!rc) {printf(" Resource Req Value: %d\n", value);}

 resource_req = NULL;

 ll_get_data(task, LL_TaskGetNextResourceRequirement, &resource_req);

 }

 task = NULL;

 ll_get_data(node, LL_NodeGetNextTask, &task);

 }

 node = NULL;

 ll_get_data(step, LL_StepGetNextNode, &node);

 }

 step = NULL;

 ll_get_data(job, LL_JobGetNextStep, &step);

 }

 job = ll_next_obj(queryObject);

 }

 ll_free_objs(queryObject);

 ll_deallocate(queryObject);

 /* Step 3: Display Floating Consumable Resources information of LL cluster. */

 /* Initialize the query: Cluster query */

 queryObject = ll_query(CLUSTERS);

 if (!queryObject) {

 printf("Query CLUSTERS: ll_query() returns NULL.\n");

 exit(1);

 }

 ll_set_request(queryObject, QUERY_ALL, NULL, ALL_DATA);

 cluster = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);

 if (!cluster) {

 printf("Query CLUSTERS: ll_get_objs() returns NULL. Error code = %d\n", err_code);

 }

 printf("Number of Cluster objects = %d\n", obj_count);

 while(cluster) {

 resource = NULL;

 ll_get_data(cluster, LL_ClusterGetFirstResource, &resource);

 while(resource) {

 rc = ll_get_data(resource, LL_ResourceName, &res_name);

 if (!rc) {printf("Resource Name = %s\n", res_name); free(res_name);}

 rc = ll_get_data(resource, LL_ResourceInitialValue, &value);

 if (!rc) {printf("Resource Initial Value = %d\n", value);}

 rc = ll_get_data(resource, LL_ResourceAvailableValue, &value);

 if (!rc) {printf("Resource Available Value = %d\n", value);}

 resource = NULL;

 ll_get_data(cluster, LL_ClusterGetNextResource, &resource);

 }

 cluster = ll_next_obj(queryObject);

 }

 ll_free_objs(queryObject);

 ll_deallocate(queryObject);

}

Figure 53. Obtaining machine, job, and cluster information with the data access API (Part 4 of 4)

Examples of using the data access API

Chapter 17. Application programming interfaces (APIs) 587

#include <stdio.h>

#include "llapi.h"

#define STR_NULL(ptr) (ptr ? ptr : "")

main(int argc, char *argv[])

{

 LL_element *queryObject, *job = NULL, *step = NULL;

 LL_element *mach_usage = NULL, *disp_usage = NULL, *event_usage = NULL;

 int64_t int64_data;

 int rc, obj_count, err_code, job_count, step_count, int_data;

 char *str_data;

 char *start_dates[] = { "01/23/2006", "01/25/2006", NULL };

 char *end_dates[] = { "01/23/2006", "02/01/2006", NULL };

 int mach_usage_count, disp_usage_count, event_usage_count;

 /* Initialize the query: Job query */

 queryObject = ll_query(JOBS);

 if (!queryObject) { printf("Query JOBS: ll_query() returns NULL.\n"); exit(1); }

 /* Request information of job steps started/ended between certain dates. */

 rc = ll_set_request(queryObject, QUERY_STARTDATE, start_dates, ALL_DATA);

 if (rc) { printf("ll_set_request() - QUERY_STARTDATE - RC = %d\n", rc); exit(1); }

 rc = ll_set_request(queryObject, QUERY_ENDDATE, end_dates, ALL_DATA);

 if (rc) { printf("ll_set_request() - QUERY_ENDDATE - RC = %d\n", rc); exit(1); }

 /* Get the requested job objects from the specified history file. */

 job = ll_get_objs(queryObject, LL_HISTORY_FILE,

 "/tmp/spool/c209f1n05/history", &obj_count, &err_code);

 if (!job) { printf("ll_get_objs() returns NULL. Error code = %d\n", err_code); exit(1); }

 printf("***\n");

 printf("Number of job objects returned = %d\n", obj_count);

 printf("***\n");

 /* Loop through the job objects. */

 job_count = 0;

 while (job) {

 job_count++;

 printf("===\n");

 printf("Job number = %d\n", job_count);

 /* Loop through the job step objects. */

Figure 54. Extracting job accounting information from a history file (Part 1 of 3)

Examples of using the data access API

588 TWS LoadLeveler: Using and Administering

ll_get_data(job, LL_JobGetFirstStep, &step);

 step_count = 0;

 while (step) {

 step_count++;

 printf(" ==\n");

 printf(" Step number = %d\n", step_count);

 ll_get_data(step, LL_StepID, &str_data);

 printf(" LL_StepID = %s\n", STR_NULL(str_data));

 ll_get_data(step, LL_StepImageSize, &int_data);

 printf(" LL_StepImageSize = %d\n", int_data);

 ll_get_data(step, LL_StepImageSize64, &int64_data);

 printf(" LL_StepImageSize64 = %lld\n", int64_data);

 /* Process CPU limit */

 ll_get_data(step, LL_StepCpuLimitHard, &int_data);

 printf(" LL_StepCpuLimitHard = %d\n", int_data);

 ll_get_data(step, LL_StepCpuLimitHard64, &int64_data);

 printf(" LL_StepCpuLimitHard64 = %lld\n", int64_data);

 ll_get_data(step, LL_StepCpuLimitSoft, &int_data);

 printf(" LL_StepCpuLimitSoft = %d\n", int_data);

 ll_get_data(step, LL_StepCpuLimitSoft64, &int64_data);

 printf(" LL_StepCpuLimitSoft64 = %lld\n", int64_data);

 /* Job Step CPU limit */

 ll_get_data(step, LL_StepCpuStepLimitHard64, &int64_data);

 printf(" LL_StepCpuStepLimitHard64 = %lld\n", int64_data);

 ll_get_data(step, LL_StepCpuStepLimitSoft64, &int64_data);

 printf(" LL_StepCpuStepLimitSoft64 = %lld\n", int64_data);

 /* Process Data Limit */

 ll_get_data(step, LL_StepDataLimitHard64, &int64_data);

 printf(" LL_StepDataLimitHard64 = %lld\n", int64_data);

 ll_get_data(step, LL_StepDataLimitSoft64, &int64_data);

 printf(" LL_StepDataLimitSoft64 = %lld\n", int64_data);

 /* CPU time used by the job step. */

 ll_get_data(step, LL_StepStepUserTime64, &int64_data);

 printf(" LL_StepStepUserTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(step, LL_StepStepSystemTime64, &int64_data);

 printf(" LL_StepStepSystemTime64 = %lld (microsecs)\n", int64_data);

 /* Loop through the machine usage objects. */

 /* A parallel job step run on 3 machines typically has 3 machine usage objects. */

 mach_usage_count = 0;

 rc = ll_get_data(step, LL_StepGetFirstMachUsage, &mach_usage);

 while (mach_usage) {

 mach_usage_count++;

Figure 54. Extracting job accounting information from a history file (Part 2 of 3)

Examples of using the data access API

Chapter 17. Application programming interfaces (APIs) 589

Error handling API

This API allows you to gather the information contained in the LoadLeveler error

object and output that information as an error message.

 printf(" --\n");

 printf(" Machine Usage number = %d\n", mach_usage_count);

 ll_get_data(mach_usage, LL_MachUsageMachineName, &str_data);

 printf(" Machine name = %s\n", STR_NULL(str_data));

 /* Loop through the dispatch usage objects. */

 disp_usage_count = 0;

 ll_get_data(mach_usage, LL_MachUsageGetFirstDispUsage, &disp_usage);

 while (disp_usage) {

 disp_usage_count++;

 printf(" ---\n");

 printf(" Dispatch Usage number = %d\n", disp_usage_count);

 ll_get_data(disp_usage, LL_DispUsageStepUserTime64, &int64_data);

 printf(" LL_DispUsageStepUserTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(disp_usage, LL_DispUsageStepSystemTime64, &int64_data);

 printf(" LL_DispUsageStepSystemTime64 = %lld (microsecs)\n", int64_data);

 /* Loop through the event usage objects. */

 /* Each dispatch typically has 2 events: "started" and "completed". */

 /* There may be other events if the LL administrator executes the command */

 /* "llctl -g capture <user event name>" while the job is running. */

 event_usage_count = 0;

 ll_get_data(disp_usage, LL_DispUsageGetFirstEventUsage, &event_usage);

 while (event_usage) {

 event_usage_count++;

 printf(" --\n");

 printf(" Event Usage number = %d\n", event_usage_count);

 ll_get_data(event_usage, LL_EventUsageEventName, &str_data);

 printf(" LL_EventUsageEventName = %s\n", STR_NULL(str_data));

 ll_get_data(event_usage, LL_EventUsageStepUserTime64, &int64_data);

 printf(" LL_EventUsageStepUserTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(event_usage, LL_EventUsageStepSystemTime64, &int64_data);

 printf(" LL_EventUsageStepSystemTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(disp_usage, LL_DispUsageGetNextEventUsage, &event_usage);

 }

 ll_get_data(mach_usage, LL_MachUsageGetNextDispUsage, &disp_usage);

 }

 rc = ll_get_data(step, LL_StepGetNextMachUsage, &mach_usage);

 }

 ll_get_data(job, LL_JobGetNextStep, &step);

 }

 job = ll_next_obj(queryObject);

 }

 exit(0);

}

Figure 54. Extracting job accounting information from a history file (Part 3 of 3)

Examples of using the data access API

590 TWS LoadLeveler: Using and Administering

ll_error subroutine

Purpose

ll_error – Converts a LoadLeveler error object to an error message string. As an

option, you can print the error message string to stdout or stderr.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

char *ll_error (LL_element **errObj, int print_to);

Parameters

errObj

This is the address of a pointer to a LoadLeveler error object. A NULL errObj

pointer indicates that any internal error objects will be printed.

print_to

 1 - print error message to stdout

 2 - print error message to stderr

 Any other value - no error message printed

Description

This subroutine also prints any error messages generated by APIs that do not

support an error object as a parameter. When called with a NULL errObj, any error

messages previously stored by such APIs, will be printed as directed by the

print_to parameter and then deleted.

It is the caller’s responsibility to free the storage associated with the error message

string.

The LoadLeveler error object pointed to by *errObj is deleted upon exit and NULL

is assigned to *errObj.

Return Values

The ll_error API returns a NULL return code if there is no error object to print.

ll_error subroutine

Chapter 17. Application programming interfaces (APIs) 591

Fair share scheduling API

This API allows operations on fair share scheduling.

Fair share scheduling API

592 TWS LoadLeveler: Using and Administering

ll_fair_share subroutine

Purpose

ll_fair_share – Allows LoadLeveler administrators to perform certain fair share

scheduling operations.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_fair_share (int version, LL_element **errOBJ,

 LL_fair_share_param *param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be LL_API_VERSION).

errObj

Is the address of a pointer to an LL_element. The pointer to LL_element must

be set to NULL before calling this function. If this function fails, the pointer

will point to an error object. The error messages stored in the error object can

be displayed through the ll_error function. The caller must free the error object

storage before reusing the pointer.

param

Is an input parameter of the address of a LL_fair_share_param structure

defined in llapi.h.

 In the LL_fair_share_param structure, the fields are defined as follows:

int operation

Specifies an intended operation on fair share scheduling with one of

the following values:

FAIR_SHARE_RESET

Indicates that fair share scheduling will be reset either to start

from scratch again by erasing all previous historic fair share

data, or to start from a previously saved point by reading from

a saved data file.

FAIR_SHARE_SAVE

Indicates that a snapshop of the historic fair share data for fair

share scheduling will be saved to a file in a specified directory.

char *savedir

Specifies the directory for saving a snapshot of the historic fair share

data for fair share scheduling. The directory should be initialized to

NULL if not used. A valid directory writable by the central manager

must be specified for the FAIR_SHARE_SAVE operation.

char *saved_file

Indicates that the previously saved file will be used in the

FAIR_SHARE_RESET operation, if specified, to reset fair share

scheduling to a known point. The file should be initialized to NULL if

not used.

ll_fair_share subroutine

Chapter 17. Application programming interfaces (APIs) 593

|
|
|
|

|
|
|
|

Description

The ll_fair_share() subroutine is the API for the llfs command used to perform

certain fair share scheduling operations.

The ll_fair_share subroutine can be used to reset fair share scheduling or to save a

snapshot of the historic fair share data to a file.

This function is for LoadLeveler administrators and the BACKFILL scheduler only.

Return Values

API_OK

Request successfully sent to LoadLeveler.

API_CANT_CONNECT

Failed to connect to a LoadLeveler daemon.

API_SCHEDD_DOWN

One or more of the LoadLeveler Schedd daemons are down.

API_INPUT_NOT_VALID

Input data is not valid.

API_NOT_SUPPORTED

Fair share scheduling is not supported by the scheduler.

API_NO_PERMISSION

The user does not have permission to perform this operation.

API_CANT_READ_FILE

The specified file cannot be read.

API_CANT_WRITE_FILE

Failed to write data to a file.

API_NOT_ENABLED

Fair share scheduling is not enabled.

API_CANT_TRANSMIT

A data transmission failure occurred.

API_CONFIG_ERR

Errors were encountered while processing configuration files.

Related Information

Commands: llfs

Subroutines: ll_error

ll_fair_share subroutine

594 TWS LoadLeveler: Using and Administering

|
|

Query API

This API provides information about the jobs and machines in the LoadLeveler

cluster. You can use this together with the workload management API, since the

workload management API requires you to know which machines are available

and which jobs need to be scheduled. See “Workload management API” on page

619 for more information. These APIs exist for backward compatibility. It is

recommended that you use the data access API when possible.

LoadLeveler for Linux does not support the query API.

The query API consists of the following subroutines:

v ll_free_jobs subroutine

v ll_free_nodes subroutine

v ll_get_jobs subroutine

v ll_get_nodes subroutine

Query API

Chapter 17. Application programming interfaces (APIs) 595

ll_free_jobs subroutine

Purpose

ll_free_jobs – Frees storage that was allocated by ll_get_jobs.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_free_jobs (LL_get_jobs_info *ptr);

Parameters

ptr Specifies the address of the LL_get_jobs_info structure to be freed.

Description

This subroutine, available to any user, frees the storage pointed to by the

LL_get_jobs_info pointer.

Return Values

This subroutines returns a value of zero when successful. Otherwise, it returns an

integer value defined in the llapi.h file.

Error Values

-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related Information

Subroutines: ll_free_nodes, ll_get_jobs, ll_get_nodes

ll_free_jobs subroutine

596 TWS LoadLeveler: Using and Administering

ll_free_nodes subroutine

Purpose

ll_free_nodes – Frees storage that was allocated by ll_get_nodes.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_free_nodes (LL_get_nodes_info *ptr);

Parameters

ptr Specifies the address of the LL_get_nodes_info structure to be freed.

Description

This subroutine, available to any user, frees the storage pointed to by the

LL_get_nodes_info pointer.

Return Values

This subroutines returns a value of zero when successful.

Error Values

-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related Information

Subroutines: ll_free_nodes, ll_get_jobs, ll_get_nodes

ll_free_nodes subroutine

Chapter 17. Application programming interfaces (APIs) 597

|
|
|
|

ll_get_jobs subroutine

Purpose

ll_get_jobs – Returns information about all jobs in the LoadLeveler job queue.

Note: This is an obsolete API and is supported for backward compatibility only.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_get_jobs (LL_get_jobs_info *);

Parameters

ptr Specifies the pointer to the LL_get_jobs_info structure that was allocated by

the caller. The LL_get_jobs_info members are:

int version_num

Represents the version number of the LL_start_job_info structure. This

should be set to LL_PROC_VERSION.

int numJobs

Represents the number of entries in the array.

LL_job **JobList

Represents the pointer to an array of LL_job structures. The LL_job

structure is defined in llapi.h.

Description

This subroutine, available to any user, contains an array of LL_job structures

indicating each job in the LoadLeveler system.

Some job information, such as the start time of the job, is not available to this API.

(It is recommended that you use the dispatch time, which is available, in place of

the start time.) Also, some accounting information is not available to this API.

Return Values

This subroutines returns a value of zero when successful. Otherwise, it returns an

integer value defined in the llapi.h file.

Error Values

-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related Information

Subroutines: ll_free_jobs, ll_free_nodes, ll_get_nodes.

ll_get_jobs subroutine

598 TWS LoadLeveler: Using and Administering

ll_get_nodes subroutine

Purpose

ll_get_nodes – Returns information about all of nodes known by the negotiator

daemon.

Note: This is an obsolete API and is supported for backward compatibility only.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_get_nodes(LL_get_nodes_info *ptr);

Parameters

ptr Specifies the pointer to the LL_get_nodes_info structure that was allocated by

the caller. The LL_get_nodes_info members are:

int version_num

Represents the version number of the LL_start_job_info structure.

int numNodes

Represents the number of entries in the NodeList array.

LL_node **NodeList

Represents the pointer to an array of LL_node structures. The LL_node

structure is defined in llapi.h.

Description

This subroutine, available to any user, contains an array of LL_job structures

indicating each node in the LoadLeveler system.

Return Values

This subroutine returns a value of zero when successful.

Error Values

-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related Information

Subroutines: ll_free_jobs, ll_free_nodes, ll_get_jobs

ll_get_nodes subroutine

Chapter 17. Application programming interfaces (APIs) 599

Reservation API

This API allows you to make, change, and remove reservations. In addition, it

provides the ability to bind job steps to a reservation and unbind job steps from a

reservation. General users should refer to “Working with reservations” on page 197

for additional information. Additional information for LoadLeveler administrators

is in “Configuring LoadLeveler to support reservations” on page 121.

This API consists of the following subroutines:

v ll_bind subroutine

v ll_change_reservation subroutine

v ll_init_reservation_param subroutine

v ll_make_reservation subroutine

v ll_remove_reservation subroutine

Reservation API

600 TWS LoadLeveler: Using and Administering

ll_bind subroutine

Purpose

ll_bind – Enables you to bind job steps to a reservation. The ll_bind subroutine

can also be used to unbind a list of job steps from the reservations to which they

are currently bound to, or whichever reservation they have requested to bind to in

the event that the bind has not yet occurred.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_bind (int version, LL_element **errOBJ, LL_bind_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

param

Provides the address of a pointer to a LL_bind_param structure as defined in

llapi.h.

 In the LL_bind_param structure, the fields are defined as follows:

char **jobsteplist

A NULL-terminated array of job or step identifiers. When a job

identifier is specified, the action of the API is taken for all steps of the

job. At least one job or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step

identifier is host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step

identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was

submitted.

The job or step identifier may be specified in an abbreviated form, jobid

or jobid.stepid, when the API is invoked on the same machine that

assigned the job and step identifiers. In this case, LoadLeveler will use

the local machine’s hostname to construct the full job or step identifier.

ll_bind subroutine

Chapter 17. Application programming interfaces (APIs) 601

Note: For coscheduled jobs, even if all coscheduled job steps are not in

the list of targeted job steps, the requested operation is

performed on all coscheduled job steps.

char *ID

The reservation identifier. The format of a full LoadLeveler reservation

identifier is [host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation

identifier.

v rid is the number assigned to the reservation when it was created.

An rid is required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form,

rid[.r], when the API is invoked on the same machine that assigned the

reservation identifier. In this case, LoadLeveler will use the local

machine’s host name to construct the full reservation identifier.

int unbind

Indicates that a value of 1 means that the job steps in jobsteplist are to

be unbound from the reservations to which they are currently bound.

A value of 0 indicates that the job steps in the job step list are to be

bound to the reservation specified by the ID.

Description

The ll_bind() subroutine is the API for the llbind command.

This function is for the BACKFILL scheduler only and only jobs in an idle-like

state can be bound to a reservation.

LoadLeveler administrators can bind any job step to a reservation. If a job step is

already bound to a reservation, it will first be unbound from the current

reservation before being bound to the requested reservation. Nonadministrators

must be the owner of the job steps to be bound or unbound, and either be the

owner of the reservation or one of the users specified by the owner as having

permission to use the reservation.

Return Values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the Schedd or central manager.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

RESERVATION_NOT_EXIST

The reservation does not exist.

RESERVATION_NO_PERMISSION

Permission cannot be granted.

ll_bind subroutine

602 TWS LoadLeveler: Using and Administering

|
|
|

RESERVATION_WRONG_STATE

The reservation is not in the correct state.

Related Information

Commands: llbind

Subroutines: ll_error, ll_make_reservation

ll_bind subroutine

Chapter 17. Application programming interfaces (APIs) 603

ll_change_reservation subroutine

Purpose

ll_change_reservation – Enables you to change the attributes of a reservation.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_change_reservation (int version, LL_element **errOBJ, char **ID,

 LL_reservation_change_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

 When using a job command file to change a reservation once the job is

successfully submitted, an informational message will be returned in errObj

that contains the name of the job.

ID Provides the reservation identifier. The format of a full LoadLeveler reservation

identifier is [host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation identifier.

v rid is the number assigned to the reservation when it was created. An rid is

required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form, rid[.r],

when the API is invoked on the same machine that assigned the reservation

identifier. In this case, LoadLeveler will use the local machine’s host name to

construct the full reservation identifier.

param

Provides the address of a pointer to a NULL-terminated array of

LL_reservation_change_param structures as defined in llapi.h. The caller must

allocate and free storage for the LL_reservation_change structures.

 In the LL_reservation_change_param structure, the fields are defined as

follows:

enum LL_reservation_data type

Contains the type of the data to modify as shown in Table 99 on page

605.

ll_change_reservation subroutine

604 TWS LoadLeveler: Using and Administering

Table 99. enum LL_reservation_data type

To modify Specify Type of new data

start_time RESERVATION_START_TIME char *

start_time RESERVATION_ADD_START_TIME int *

duration RESERVATION_DURATION int *

duration RESERVATION_ADD_DURATION int *

number_of_nodes RESERVATION_BY_NODE int *

number_of_nodes RESERVATION_ADD_NUM_NODE int *

hostlist RESERVATION_BY_HOSTLIST char **,

NULL terminated

hostlist RESERVATION_ADD_HOSTS char **,

NULL terminated

hostlist RESERVATION_DEL_HOSTS char **,

NULL terminated

jobstep RESERVATION_BY_JOBSTEP char *

job_command_file RESERVATION_BY_JCF char *

userlist RESERVATION_USERLIST char **,

NULL terminated

userlist RESERVATION_ADD_USERS char **,

NULL terminated

userlist RESERVATION_DEL_USERS char **,

NULL terminated

grouplist RESERVATION_GROUPLIST char **,

NULL terminated

grouplist RESERVATION_ADD_GROUPS char **,

NULL terminated

grouplist RESERVATION_DEL_GROUPS char **,

NULL terminated

shared mode RESERVATION_MODE_SHARED int *;

*data = 0: Not Shared

*data = 1: Share

remove on idle mode RESERVATION_MODE_REMOVE_ON_IDLE int *;

*data = 0: Do not

remove on Idle

*data = 1: Remove on

Idle

owner RESERVATION_OWNER char *

group RESERVATION_GROUP char *

number_of_bg_cnodes RESERVATION_BY_BG_CNODE int *

If several options are available to modify the same type of data, only

one is allowed. For example, RESERVATION_DURATION and

RESERVATION_ADD_DURATION are mutually exclusive.

number_of_nodes, hostlist, jobstep, job_command_file, and number_bg_cnodes

are all used to modify the reserved nodes and, therefore, the associated

enums are all mutually exclusive.

 The duration of a reservation can be decreased (corresponding to the

-d -nn option on llchres) by specifying the data type

RESERVATION_ADD_DURATION and providing a negative value.

ll_change_reservation subroutine

Chapter 17. Application programming interfaces (APIs) 605

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||
|

|||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

|||
|
|
|
|

|||

|||

|||
|

|
|
|
|
|
|

The same is true for RESERVATION_ADD_NUM_NODE and

RESERVATION_ADD_START_TIME.

void *data

Specifies the new data for the modification corresponding to type.

Description

The ll_change_reservation() subroutine is the API for the llchres command. The

″Notes on changing a reservation″ listed in the llchres command also apply to the

ll_change_reservation subroutine.

More than one attribute of a reservation can be changed with a single call. Either

all of the changes can and will be made, or none of the changes will be made. If

the changes cannot be made, errObj will contain a message indicating a reason for

the failure. The message may not contain all of the reasons the request cannot be

satisfied.

A coscheduled job step cannot be used for changing a reservation.

This function is for the BACKFILL scheduler only.

Only LoadLeveler administrators and the owner of the reservation can use this

function.

Return Values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_TOO_CLOSE

Reservation is being made within the minimum advance time.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_USER_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the user.

RESERVATION_GROUP_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the group.

RESERVATION_NO_PERMISSION

Permission cannot be granted.

RESERVATION_WRONG_STATE

The reservation is not in the correct state.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the Schedd or central manager.

RESERVATION_JOB_SUBMIT_FAILED

Submit of the job command file failed.

RESERVATION_NO_MACHINE

One or more machines in the host list are not in the LoadLeveler cluster.

RESERVATION_WRONG_MACHINE

Reservations are not permitted on one or more machines in the host list.

RESERVATION_NO_RESOURCE

Insufficient resources in the LoadLeveler cluster.

RESERVATION_NO_JOBSTEP

The job step used for node selection does not exist.

RESERVATION_WRONG_JOBSTEP

The job step used for node selection is not in the right state.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

ll_change_reservation subroutine

606 TWS LoadLeveler: Using and Administering

|

RESERVATION_NOT_EXIST

The reservation does not exist.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_TOO_LONG

The duration exceeds the maximum reservation duration.

Related Information

Commands: llchres

Subroutines: ll_error, ll_make_reservation

ll_change_reservation subroutine

Chapter 17. Application programming interfaces (APIs) 607

ll_init_reservation_param subroutine

Purpose

ll_init_reservation_param – Initializes the optional fields in the

LL_reservation_param structure to default values prior to passing that structure to

the ll_make_reservation subroutine.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_init_reservation_param (int version, LL_element **errOBJ,

 LL_reservation_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

param

Provides the address of a pointer to a LL_reservation_param structure. The

LL_reservation_param structure will be initialized.

Description

The ll_init_reservation_param() subroutine is used in conjunction with the

ll_make_reservation subroutine. A program using this function would only have

to set the required fields and any optional fields where the default value is not

applicable.

Return Values

This subroutine returns a zero to indicate success.

Related Information

Subroutines: ll_make_reservation

ll_init_reservation_param subroutine

608 TWS LoadLeveler: Using and Administering

ll_make_reservation subroutine

Purpose

ll_make_reservation – Enables you to create a LoadLeveler reservation.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_make_reservation (int version, LL_element **errOBJ,

 LL_reservation_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be LL_API_VERSION).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

 If a job command file is used to create a reservation and the job is successfully

submitted, an informational message will be returned.

param

Provides the address of a pointer to a LL_reservation_param structure defined

in llapi.h. The caller must allocate and free storage for this structure. It is

suggested that the caller use the ll_init_reservation_param call to initialize the

structure.

 In the LL_reservation_param structure, the fields are defined as follows:

char **ID

Contains the address where the reservation ID is to be returned.

char *start_time

Contains a string specifying the start time of a reservation in the

format of ″[mm/dd[/[cc]yy]]HH:MM″.

int duration

Specifies how long the reservation lasts in the unit of minutes.

enum LL_reservation_data data_type

Indicates how the nodes should be reserved. The valid values are:

RESERVATION_BY_NODE by number of nodes

RESERVATION_BY_HOSTLIST by specifying a hostlist

RESERVATION_BY_JOBSTEP by specifying a jobstep

RESERVATION_BY_JCF by job command file

RESERVATION_BY_BG_CNODE by number of Blue Gene c-nodes

void *data

Contains the pointer to the actual data specifying what nodes to

reserve:

ll_make_reservation subroutine

Chapter 17. Application programming interfaces (APIs) 609

|
|
|
|
|

data_type data is a pointer of the type

RESERVATION_BY_NODE int *

RESERVATION_BY_HOSTLIST char **, a NULL terminated array of

 machine names

RESERVATION_BY_JOBSTEP char *, a jobstep name in the format

 of host.jobid.stepid

RESERVATION_BY_JCF char *, the full pathname

 to a LoadLeveler Job Command File

RESERVATION_BY_BG_CNODE int * for number of Blue Gene c-nodes

int options

Specifies options that control characteristics of the reservation. The

follow values can be OR’ed together to set this parameter:

RESERVATION_SHARED

Selects the SHARED option for the reservation. For a SHARED

reservation, after all bound job steps which can run on the

reserved nodes are scheduled to run, the remaining resources

can be used to run job steps not bound to the reservation. Only

bound job steps can be scheduled to run on a reservation that

is not shared.

RESERVATION_REMOVE_ON_IDLE

Selects the REMOVE_ON_IDLE option for the reservation. For

a REMOVE_ON_IDLE reservation, if all bound job steps are

finished or if all bound job steps are Idle and none can run on

the reserved nodes, the reservation will be removed (canceled)

automatically by LoadLeveler. If this option is not set, the

reservation will remain, regardless of being used or not.

char **users

Contains the list of users who can use the reservation. This pointer

should be set to NULL so only the reservation owner and the

LoadLeveler administrator can use the reservation.

char **groups

Contains the list of LoadLeveler groups whose users can use the

reservation. This pointer should be set to NULL so only the list of

LoadLeveler groups and the LoadLeveler administrator can use the

reservation.

char *group

Contains a string of a LoadLeveler group that will own the reservation.

Description

The ll_make_reservation() subroutine is the API for the llmkres command used to

create a new reservation.

The ll_init_reservation_param subroutine can be used to initialize the

LL_reservation_param structure.

A coscheduled job step cannot be used for making a reservation.

This function is for the BACKFILL scheduler only.

The “ll_init_reservation_param subroutine” on page 608 is a convenience function

that can be used to initialize the LL_reservation_param structure. You must set the

ID, start_time, duration, data_type, and data fields of the LL_reservation_param

structure. If any of these fields are NULL or 0 (as appropriate), the call will fail.

ll_make_reservation subroutine

610 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|

|

|
|
|
|

Only users authorized by LoadLeveler administrators to make reservations can use

this function.

Return Values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_LIMIT_EXCEEDED

Exceeds the maximum number of reservations allowed for the cluster.

RESERVATION_TOO_CLOSE

Reservation is being made within the minimum advance time.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_USER_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the user.

RESERVATION_GROUP_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the group.

RESERVATION_NO_PERMISSION

Permission cannot be granted.

RESERVATION_SCHEDD_CANT_CONNECT

The Schedd cannot connect to the central manager.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the Schedd or central manager.

RESERVATION_JOB_SUBMIT_FAILED

Submit of the job command file failed.

RESERVATION_NO_MACHINE

One or more machines in the host list are not in the LoadLeveler cluster.

RESERVATION_WRONG_MACHINE

Reservations are not permitted on one or more machines in the host list.

RESERVATION_NO_RESOURCE

Insufficient resources in the LoadLeveler cluster.

RESERVATION_NO_JOBSTEP

The job step used for node selection does not exist.

RESERVATION_WRONG_JOBSTEP

The job step used for node selection is not in the right state.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_TOO_LONG

The duration exceeds the maximum reservation duration.

Related Information

Commands: llmkres

Subroutines: ll_error

A sample program called res.c is provided in the samples/llres subdirectory of the

release directory.

ll_make_reservation subroutine

Chapter 17. Application programming interfaces (APIs) 611

ll_remove_reservation subroutine

Purpose

ll_remove_reservation – Enables you to cancel one or more reservations.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_remove_reservation (int version, LL_element **errOBJ, char **IDs,

 char **user_list, char **host_list, char **group_list,

 char **base_partition_list = NULL);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

IDs

Specifies a NULL-terminated array of reservation identifiers. The format of a

full LoadLeveler reservation identifier is [host.]rid[.r].

 where:

v host is the name of the machine that assigned the reservation identifier.

v rid is the number assigned to the reservation when it was created. An rid is

required.

v r indicates that this is a reservation ID (r is optional).

The reservation identifier may be specified in an abbreviated form, rid[.r],

when the API is invoked on the same machine that assigned the reservation

identifier. In this case, LoadLeveler will use the local machine’s host name to

construct the full reservation identifier.

user_list

Specifies a NULL-terminated array of user IDs that own reservations.

host_list

Specifies a NULL-terminated array of machine names. One member of all

indicates all Blue Gene base partitions.

group_list

Specifies a NULL-terminated array of LoadLeveler groups.

base_partition_list

Specifies a NULL-terminated array of Blue Gene base partitions. One member

of all indicates all Blue Gene base partitions.

ll_remove_reservation subroutine

612 TWS LoadLeveler: Using and Administering

|
|
|
|
|

|
|

|
|
|

Description

The ll_remove_reservation() subroutine is the API for the llrmres command.

A list of reservation IDs cannot be specified when user_list, host_list,

base_partition_list, or group_list is specified. If reservation IDs is non-NULL when

user_list, host_list, base_partition_list, or group_list is also non-NULL, the return

value will be RESERVATION_REQUEST_DATA_NOT_VALID. Input for the

user_list, host_list, group_list, or base_partition_list parameters can be provided in any

combination. The host_list and base_partition_list parameters are mutually exclusive.

This function is for the BACKFILL scheduler only.

Only LoadLeveler administrators and the owner of the reservation can use this

function.

Return Values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the Schedd or central manager.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

Related Information

Commands: llrmres

Subroutines: ll_error, ll_make_reservation

ll_remove_reservation subroutine

Chapter 17. Application programming interfaces (APIs) 613

|
|
|
|
|
|

Submit API

This API allows you to submit jobs to LoadLeveler. The submit API consists of the

following subroutines and a user exit for monitoring programs:

v llfree_job_info subroutine

v llsubmit subroutine

v monitor_program user exit

In LoadLeveler for Linux only, llsubmit returns an error value of –1 and writes the

error messages to stderr when SEC_ENABLEMENT is CTSEC.

Submit API

614 TWS LoadLeveler: Using and Administering

llfree_job_info subroutine

Purpose

llfree_job_info – Frees space for the array and the job step information used by

llsubmit.

Syntax

 void llfree_job_info (LL_job *job_info, int job_version);

Parameters

job_info

Is a pointer to a LL_job structure. Upon return, the space pointed to by the

step_list variable and the space associated with the LL_job step structures

pointed to by the step_list array are freed. All fields in the LL_job structure

are set to zero.

job_version

Is an integer indicating the version of llfree_job_info being used. This

argument should be set to LL_JOB_VERSION which is defined in the llapi.h

header file.

llfree_job_info subroutine

Chapter 17. Application programming interfaces (APIs) 615

llsubmit subroutine

Purpose

llsubmit – Submits jobs to LoadLeveler for scheduling. It is both the name of a

LoadLeveler command used to submit jobs as well as the subroutine described

here.

Syntax

int llsubmit (char *job_cmd_file, char *monitor_program, char *monitor_arg,

 LL_job *job_info, int job_version);

Parameters

job_cmd_file

Is a pointer to a string containing the name of the job command file.

monitor_program

Is a pointer to a string containing the name of the monitor program to be

invoked when the state of the job is changed. Set to NULL if a monitoring

program is not provided.

monitor_arg

Is a pointer to a string which is stored in the job object and is passed to the

monitor program. The maximum length of the string is 1023 bytes. If the

length exceeds this value, it is truncated to 1023 bytes. Set to NULL if an

argument is not provided.

job_info

Is a pointer to a structure defined in the llapi.h header file. No fields are

required to be filled in. Upon return, the structure will contain the number of

job steps in the job command file and a pointer to an array of pointers to

information about each job step. Space for the array and the job step

information is allocated by llsubmit. The caller should free this space using the

llfree_job_info subroutine.

job_version

Is an integer indicating the version of llsubmit being used. This argument

should be set to LL_JOB_VERSION which is defined in the llapi.h include

file.

Description

LoadLeveler must be installed and configured correctly on the machine on which

the submit application is run.

The uid and gid in effect when llsubmit is invoked are the uid and gid used when

the job is run.

To submit a job to a remote cluster, call the ll_cluster API to define the cluster

prior to calling the llsubmit API. If the job being submitted has the cluster_list

keyword defined in the job command file, the cluster specified by the ll_cluster

API takes precedence over the cluster_list keyword.

Return Values

0 The job was submitted successfully.

Error Values

-1 Error, error messages written to stderr.

llsubmit subroutine

616 TWS LoadLeveler: Using and Administering

Related Information

Subroutines: ll_cluster

llsubmit subroutine

Chapter 17. Application programming interfaces (APIs) 617

monitor_program user exit

Purpose

Using the monitor_program user exit, you can create a program that monitors jobs

submitted using the llsubmit subroutine. The Schedd daemon invokes this monitor

program if the monitor_program argument to llsubmit is not null. The monitor

program is invoked each time a job step changes state. This means that the

monitor program will be informed when the job step is started, completed,

vacated, removed, or rejected. If you suspect the monitor program encountered

problems or did not run, you should check the listing in the Schedd log. In the

event of a monitor program failure, the job is still run.

Syntax

monitor_program job_id user_arg state exit_status

Parameters

monitor_program

Is the name of the program supplied in the monitor_program argument passed

to the llsubmit function.

job_id

Is the full ID for the job step.

user_arg

The string supplied to the monitor_arg argument that is passed to the llsubmit

function.

state

Is the current state of the job step. Possible values for the state are:

JOB_STARTED

The job step has started.

JOB_COMPLETED

The job step has completed.

JOB_VACATED

The job step has been vacated. The job step will be rescheduled if the job

step is restartable or if it is checkpointable.

JOB_REJECTED

A startd daemon has rejected the job. The job will be rescheduled to

another machine if possible.

JOB_REMOVED

The job step was canceled or could not be started.

JOB_NOTRUN

The job step cannot be run because a dependency cannot be met.

exit_status

Is the exit status from the job step. The argument is meaningful only if the

state is JOB_COMPLETED.

monitor_program user exit

618 TWS LoadLeveler: Using and Administering

Workload management API

The workload management API consists of the following subroutines:

v ll_cluster subroutine

v ll_cluster_auth subroutine

v ll_control subroutine

v ll_modify subroutine

v ll_move_job subroutine

v ll_move_spool subroutine

v ll_preempt subroutine

v ll_preempt_jobs subroutine

v ll_run_scheduler subroutine

v ll_start_job subroutine

v ll_start_job_ext subroutine

v ll_terminate_job subroutine

The ll_control subroutine can be used to perform most of the LoadLeveler control

operations and is designed for general use.

The ll_cluster, ll_cluster_auth, and ll_move_job subroutines are for use in the

multicluster environment.

The ll_preempt subroutine is not available in LoadLeveler for Linux. For

LoadLeveler 3.3, the ll_preempt subroutine was replaced with the ll_preempt_jobs

subroutine.

The ll_start_job_ext and ll_terminate_job subroutines are intended to be used

together with an external scheduler.

Note that the ll_start_job_ext and ll_terminate_job subroutines automatically

connect to an alternate central manager if they cannot contact the primary central

manager. You should use ll_start_job_ext and ll_terminate_job in conjunction with

the query API. The query API collects information regarding which machines are

available and which jobs need to be scheduled. See “Query API” on page 595 for

more information.

Note: The AIX Workload Manager (WLM) and the LoadLeveler workload

management API are two distinct and unrelated components.

Workload management API

Chapter 17. Application programming interfaces (APIs) 619

|

|
|

|
|

|

|

ll_cluster subroutine

Purpose

ll_cluster – Enables other APIs to operate on a remote cluster.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_cluster (int version, LL_element **errObj, LL_cluster_param *param);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to LL_element that points to an error object

if this function fails.

param

Provides a pointer to an LL_cluster_param structure.

typedef enum LL_cluster_op {

 CLUSTER_SET,

 CLUSTER_UNSET

} ClusterOp_t;

typedef struct {

 ClusterOp_t action;

 char **cluster_list;

}

LL_cluster_param;

 In the enum LL_Cluster_op structure, valid values are:

CLUSTER_SET

Sets the multicluster environment to cluster_list.

CLUSTER_UNSET

Unsets the multicluster environment.

 In the LL_cluster_param structure, the fields are defined as follows:

action

Determines whether the cluster environment should be set or unset. The

set action must have a corresponding cluster_list The unset action ignores

the cluster_list data.

cluster_list

Is a NULL-terminated array of cluster stanza names. Only one cluster

name is allowed. The reserved words any and all are not allowed.

Description

This API is called to enable other APIs to run on remote clusters in a multicluster

environment and can be invoked by all users. To issue an API multiple times for

different clusters, the ll_cluster and corresponding APIs must be issued for each

cluster.

ll_cluster subroutine

620 TWS LoadLeveler: Using and Administering

Return Values

CLUSTER_SUCCESS

Cluster name successfully set.

CLUSTER_SYSTEM_ERROR

LoadLeveler internal system error.

CLUSTER_INVALID_CLUSTER_PARAM

An input parameter that is not valid was specified. Possible causes are that the

cluster_list parameter is NULL or that the reserved words any or all were

specified.

CLUSTER_INVALID_ACTION_PARAM

An action parameter that is not valid was specified. Valid values are

CLUSTER_UNSET and CLUSTER_SET.

Related Information

Subroutines: ll_ckpt, ll_deallocate, ll_free_objs, ll_get_data, ll_get_objs,

ll_modify, ll_next_obj, ll_query, ll_reset_request, ll_set_request, llsubmit

ll_cluster subroutine

Chapter 17. Application programming interfaces (APIs) 621

ll_cluster_auth subroutine

Purpose

ll_cluster_auth – Creates a public key, a private key, and a security certificate.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_cluster_auth (int version, LL_cluster_auth_param **param);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

param

Provides the address of a pointer to an array of pointers to

LL_cluster_auth_param structures. The last element of the array must be

NULL.

typedef enum LL_cluster_auth_op {

 CLUSTER_AUTH_GENKEY

} ClusterAuthOp_t;

typedef struct {

 ClusterAuthOp_t type;

}

LL_cluster_auth_param;

 In the enum LL_cluster_auth_op structure, valid values are:

CLUSTER_AUTH_GENKEY

Generates required keys.

 In the enum LL_cluster_auth_op structure, the fields are defined as follows:

type

Indicates the requested operation.

Description

The ll_cluster_auth() subroutine is the API for the llclusterauth command. Refer

to the llclusterauth command for information about other available command

options.

This function must be run from a process with root authority.

The ll_cluster_auth() subroutine creates a public key, a private key, a security

certificate, and a directory for authorized keys. The keys and certificate are created

in the /var/LoadL/ssl directory for AIX and in the /var/opt/LoadL/ssl directory for

Linux.

v The private key is stored in id_rsa

v The public key is stored in id_rsa.pub

v The security certificate is stored in id_rsa.cert

v The authorized keys are stored in authorized_keys

ll_cluster_auth subroutine

622 TWS LoadLeveler: Using and Administering

In order for a connection to be accepted, the public key for the node requesting the

connection must be stored in the authorized keys file on the node being connected

to. Only a process with root authority can run this subroutine.

Return Values

The following return values are defined in llapi.h:

API_OK

Request successfully sent to LoadLeveler.

API_INVALID_INPUT

An input parameter that is not valid was specified.

API_CONFIG_ERR

Errors encountered while processing configuration files.

API_CANT_AUTH

Caller not authorized.

API_CANT_LISTEN

API cannot create listen socket.

API_CANT_CONNECT

Failed to connect to LoadLeveler.

API_TIMEOUT

Timed out waiting for a response.

API_SSL_ERR

Timed out waiting for a response.

API_STEP_NOT_IDLE

Request failed, the job step is not in the IDLE state.

Related Information

Commands: llclusterauth

ll_cluster_auth subroutine

Chapter 17. Application programming interfaces (APIs) 623

ll_control subroutine

Purpose

ll_control – Allows an application program to perform most of the functions that

are currently available through the standalone commands: llctl, llfavorjob,

llfavoruser, llhold, and llprio.

In LoadLeveler for Linux only, ll_control returns an error condition when

SEC_ENABLEMENT is CTSEC.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_control (int control_version, enum LL_control_op control_op,

 char **host_list, char ** user_list, char **job_list,

 char **class_list, int priority);

Parameters

int control_version

An integer indicating the version of ll_control being used. This argument

should be set to LL_CONTROL_VERSION.

enum LL_control_op

The control operation to be performed. The enum LL_control_op is defined in

llapi.h as:

enum LL_control_op {

LL_CONTROL_RECYCLE, LL_CONTROL_RECONFIG, LL_CONTROL_START,LL_CONTROL_STOP,

LL_CONTROL_DRAIN, LL_CONTROL_DRAIN_STARTD, LL_CONTROL_DRAIN_SCHEDD,

LL_CONTROL_PURGE_SCHEDD, LL_CONTROL_FLUSH, LL_CONTROL_SUSPEND,

LL_CONTROL_RESUME, LL_CONTROL_RESUME_STARTD, LL_CONTROL_RESUME_SCHEDD,

LL_CONTROL_FAVOR_JOB, LL_CONTROL_UNFAVOR_JOB, LL_CONTROL_FAVOR_USER,

LL_CONTROL_UNFAVOR_USER, LL_CONTROL_HOLD_USER, LL_CONTROL_HOLD_SYSTEM,

LL_CONTROL_HOLD_RELEASE, LL_CONTROL_PRIO_ABS, LL_CONTROL_PRIO_ADJ,

LL_CONTROL_START_DRAINED,};

char **host_list

A NULL-terminated array of host names.

char **user_list

A NULL-terminated array of user names.

char **job_list

A NULL-terminated array of job or step identifiers. When a job identifier is

specified, the action of the API is taken for all steps of the job. At least one job

or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the API is invoked on the same machine that assigned the job

ll_control subroutine

624 TWS LoadLeveler: Using and Administering

and step identifiers. In this case, LoadLeveler will use the local machine’s host

name to construct the full job or step identifier.

Note: For coscheduled jobs, even if all coscheduled job steps are not in the list

of targeted job steps, the requested operation is performed on all

coscheduled job steps only when holding or releasing jobs.

char **class_list

A NULL-terminated array of class names.

int priority

An integer representing the new absolute value of user priority or adjustment

to the current user priority of job steps.

Description

The ll_control subroutine performs operations that are essentially equivalent to

those performed by the standalone commands: llctl, llfavorjob, llfavoruser, llhold,

and llprio. Because of this similarity, descriptions of the ll_control operations are

grouped according to the standalone command they resemble.

llctl type of operations: These are the ll_control operations which mirror

operations performed by the llctl command. This summary includes a brief

description of each of the allowed llctl types of operations. For more information

about the llctl command, see “llctl - Control LoadLeveler daemons” on page 409.

LL_CONTROL_START:

Starts the LoadLeveler daemons on the specified machines. The calling

program must have rsh privileges to start LoadLeveler daemons on remote

machines.

Note: LoadLeveler will fail to start if any value has been set for the

MALLOCTYPE environment variable.

LL_CONTROL_START_DRAINED:

Starts the LoadLeveler in the drained state.

LL_CONTROL_STOP:

Stops the LoadLeveler daemons on the specified machines.

LL_CONTROL_RECYCLE:

Stops, and then restarts, all of the LoadLeveler daemons on the specified

machines.

LL_CONTROL_RECONFIG:

Forces all of the LoadLeveler daemons on the specified machines to reread the

configuration files.

LL_CONTROL_DRAIN:

When this operation is selected, the following happens: (1) No LoadLeveler

jobs can start running on the specified machines, and (2) No LoadLeveler jobs

can be submitted to the specified machines.

LL_CONTROL_DRAIN_SCHEDD:

No LoadLeveler jobs can be submitted to the specified machines.

LL_CONTROL_DRAIN_STARTD:

Keeps LoadLeveler jobs from starting on the specified machines. If a class_list

is specified, then the classes specified will be drained (made unavailable). The

literal string ″allclasses″ can be used as an abbreviation for all of the classes.

ll_control subroutine

Chapter 17. Application programming interfaces (APIs) 625

|
|
|

LL_CONTROL_FLUSH:

Terminates running jobs on the specified machines and send them back to the

negotiator to await redispatch (if restart=yes).

LL_CONTROL_PURGE_SCHEDD:

Purges the specified Schedd host’s job queue; a host_list consisting of one host

name must be specified.

LL_CONTROL_SUSPEND:

Suspends all jobs on the specified machines. This operation is not supported

for parallel jobs.

LL_CONTROL_RESUME:

Resumes job submission to, and job execution on, the specified machines.

LL_CONTROL_RESUME_STARTD:

Resumes job execution on the specified machines; if a class_list is specified,

then execution of jobs associated with these classes is resumed.

LL_CONTROL_RESUME_SCHEDD:

Resumes job submission to the specified machines.

 For these llctl type of operations, the user_list, job_list, and priority arguments are

not used and should be set to NULL or zero. The class_list argument is meaningful

only if the operation is LL_CONTROL_DRAIN_STARTD, or

LL_CONTROL_RESUME_STARTD. If class_list is not being used, then it should be

set to NULL. If host_list is NULL, then the scope of the operation is all machines in

the LoadLeveler cluster. Unlike the standalone llctl command, where the scope of

the operation is either global or one host, ll_control operations allow the user to

specify a list of hosts (through the host_list argument). To perform these operations,

the calling program must have LoadLeveler administrator authority. The only

exception to this rule is the LL_CONTROL_START operation.

llfavorjob type of operations: The llfavorjob type of control operations are:

LL_CONTROL_FAVOR_JOB, and LL_CONTROL_UNFAVOR_JOB. For these

operations, the user_list, host_list, class_list, and priority arguments are not used and

should be set to NULL or zero. LL_CONTROL_FAVOR_JOB is used to set specified

job steps to a higher system priority than all job steps that are not favored.

LL_CONTROL_UNFAVOR_JOB is used to unfavor previously favored job steps,

restoring the original priorities. The calling program must have LoadLeveler

administrator authority to perform these operations.

llfavoruser type of operations: The llfavoruser type of control operations are:

LL_CONTROL_FAVOR_USER, and LL_CONTROL_UNFAVOR_USER. For these

operations, the host_list, job_list, class_list, and priority arguments are not used and

should be set to NULL or zero. LL_CONTROL_FAVOR_USER sets jobs of one or

more users to the highest priority in the system, regardless of the current setting.

Jobs already running are not affected. LL_CONTROL_UNFAVOR_USER is used to

unfavor previously favored user’s jobs, restoring the original priorities. The calling

program must have LoadLeveler administrator authority to perform these

operations.

llhold type of operations: The llhold type of control operations are:

LL_CONTROL_HOLD_USER, LL_CONTROL_HOLD_SYSTEM, and

LL_CONTROL_HOLD_RELEASE. For these operations, the class_list and priority

arguments are not used, and should be set to NULL or zero.

LL_CONTROL_HOLD_USER and LL_CONTROL_HOLD_SYSTEM place jobs in

user hold and system hold, respectively. LL_CONTROL_HOLD_RELEASE is used

ll_control subroutine

626 TWS LoadLeveler: Using and Administering

to release jobs from both types of hold. The calling program must have

LoadLeveler administrator authority to put jobs into system hold, and to release

jobs from system hold. If a job is in both user and system holds then the

LL_CONTROL_HOLD_RELEASE operation must be performed twice to release the

job from both types of hold. If the user is not a LoadLeveler administrator then the

llhold types of operations have no effect on jobs that do not belong to that user.

llprio type of operations: The llprio type of control operations are:

LL_CONTROL_PRIO_ABS, and LL_CONTROL_PRIO_ADJ. For these operations,

the user_list, host_list, and class_list arguments are not used, and should be set to

NULL. llprio type of operations change the user priority of one or more job steps

in the LoadLeveler queue. LL_CONTROL_PRIO_ABS specifies a new absolute

value of the user priority, and LL_CONTROL_PRIO_ADJ specifies an adjustment

to the current user priority. The valid range of LoadLeveler user priorities is 0–100

(inclusive); 0 is the lowest possible priority, and 100 is the highest. The llprio type

of operations have no effect on a running job step unless this job step returns to

Idle state. If the user is not a LoadLeveler administrator, then an llprio type of

operation has no effect on jobs that do not belong to that user.

Return Values

0 The specified command has been sent to the appropriate LoadLeveler

daemon.

-2 The specified command cannot be sent to the central manager.

-3 The specified command cannot be sent to one of the LoadL_master

daemons.

-4 ll_control encountered an error while processing the administration or

configuration file.

-6 A data transmission failure has occurred.

-7 The calling program does not have LoadLeveler administrator authority.

-19 An incorrect ll_control version has been specified.

-20 A system error has occurred.

-21 The system cannot allocate memory.

-22 A control_op operation that is not valid has been specified.

-23 The job_list argument contains one or more errors.

-24 The host_list argument contains one or more errors.

-25 The user_list argument contains one or more errors.

-26 Incompatible arguments have been specified for HOLD operation.

-27 Incompatible arguments have been specified for PRIORITY operation.

-28 Incompatible arguments have been specified for FAVORJOB operation.

-29 Incompatible arguments have been specified for FAVORUSER operation.

-30 An error occurred while ll_control tried to start a child process.

-31 An error occurred while ll_control tried to start the LoadL_master daemon.

-32 An error occurred while ll_control tried to execute the llpurgeschedd

command.

-33 The class_list argument contains incompatible information.

-34 ll_control cannot create a file in the /tmp directory.

-35 LoadLeveler has encountered miscellaneous incompatible input

specifications.

-41 This release of LoadLeveler for Linux does not support CTSEC.

Related Information

Commands: llctl, llfavorjob, llfavoruser, llhold, llprio

ll_control subroutine

Chapter 17. Application programming interfaces (APIs) 627

ll_modify subroutine

Purpose

ll_modify – Modifies the attributes of a submitted job step.

In LoadLeveler for Linux only, ll_modify returns an error condition when

SEC_ENABLEMENT is CTSEC.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_modify (int version, void *errObj, LL_modify_param **param,

 char **steplist);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to LL_element that points to an error object if

this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to do so, the pointer should be initialized to NULL to

avoid a segmentation fault when the pointer is passed to the ll_error

subroutine.

param

Provides the address of an array of 2 pointers to the LL_modify_param

structure defined in llapi.h. The first pointer should point to an

LL_modify_param structure already filled out by the caller. The second pointer

should be assigned NULL.

 In the LL_modify_param structure:

type Describes the attribute to be modified.

data Is a pointer to the new attribute value.

All job step attributes types that can be modified through ll_modify() are

listed in enum LL_modify_op in llapi.h.

 The LL_modify_op structure stores user inputs to the function, where:

type Is the type of the command option.

data Is a pointer to the data value associated with the command option.

name Is a NULL terminated array of job step names. Only a single job step is

allowed in the current implementation.

steplist

A NULL terminated array of job or step identifiers. When a job identifier is

specified, the action of the API is taken for all steps of the job. At least one job

or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step identifier is

host.jobid.stepid.

ll_modify subroutine

628 TWS LoadLeveler: Using and Administering

where:

v host is the name of the machine that assigned the job and step identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was submitted.

The job or step identifier may be specified in an abbreviated form, jobid or

jobid.stepid, when the API is invoked on the same machine that assigned the job

and step identifiers. In this case, LoadLeveler will use the local machine’s host

name to construct the full job or step identifier.

Description

ll_modify() is the API for the llmodify command. Refer to the llmodify command

for information about other available command options.

In enum LL_modify_op:

v The system priority option will be ignored for any job step not in an idle state.

The data field for the SYSPRIO option is an integer. The system priority for a job

step set with the SYSPRIO option will not be changed when LoadLeveler

recalculates system priorities.

v The keyword value is to be used to specify a string in the form, keyword=value,

where keyword is the attribute of the job step to modify and value is the new

value for the attribute. For a list of supported keywords and their descriptions,

see “llmodify - Change attributes of a submitted job step” on page 435.

v The attributes that can be modified by the enums are described in “llmodify -

Change attributes of a submitted job step” on page 435.

Return Values

The following return values are defined in llapi.h:

MODIFY_BAD_BG_CONNECTION

The Blue Gene connection request was not recognized.

MODIFY_BAD_BG_SHAPE

The Blue Gene partition shape is bad.

MODIFY_BAD_BG_SIZE

The Blue Gene partition size request was not positive.

MODIFY__CANT_MODIFY

The Blue Gene partition exists, but you cannot modify this value.

MODIFY__EMPTY_BG_PARTITION

The Blue Gene requested partition name was blank.

MODIFY_SUCCESS

Request successfully sent to LoadLeveler.

MODIFY_INVALID_PARAM

An input parameter that is not valid was specified.

MODIFY_CONFIG_ERROR

Errors encountered while processing config files.

MODIFY_NOT_IDLE

Request failed, job step not in IDLE state.

MODIFY_WRONG_JOB_TYPE

The modify operation is not valid for the job type.

MODIFY_WRONG_STATE

Request failed, job step in wrong state.

ll_modify subroutine

Chapter 17. Application programming interfaces (APIs) 629

|
|

|
|

|
|

|
|

|
|

|
|

MODIFY_NOT_AUTH

Caller not authorized.

MODIFY_SYSTEM_ERROR

LoadLeveler internal system error.

MODIFY_CANT_TRANSMIT

Communication error while sending request.

MODIFY_CANT_CONNECT

Failed to connect to LoadLeveler.

MODIFY_INVALID_PARAM

The specified keyword is not supported.

MODIFY_NO_CTSEC_SUPPORT_ERR

SEC_ENABLEMENT was set to CTSEC. LoadLeveler for Linux does not

support CTSEC.

MODIFY_NO_PVM_SUPPORT_ERR

pvm_root was specified. LoadLeveler for Linux does not support PVM.

MODIFY_OVERLAP_RESERVATION

Request failed. The requested change would cause the job step to overlap

with a reservation.

Related Information

Commands: llmodify

Subroutines: ll_cluster, ll_error

Examples

/* mymodify.c - make a job step non-preemptable */

#include <stdio.h>

#include <string.h>

#include "llapi.h"

int main(int argc, char *argv[])

{

 int rc, preempt = 0;

 LL_modify_param mycmd, *cmdp[2];

 char *step_list[2];

 LL_element *errObj = NULL;

 char *errmsg;

if (argc < 2) {

 printf("Usage: %s job_step_name \n", argv[0]); exit(1);

}

step_list[0] = argv[1];

step_list[1] = NULL;

printf("\n*** Make Job Step %s non-preemptable ***\n\n",

 step_list[0]);

/* Initialize the LL_modify_param structure */

mycmd.type = STEP_PREEMPTABLE;

mycmd.data = &preempt;

cmdp[0] = &mycmd

cmdp[1] = NULL;

/* Modify job step to be non preemptable */

printf("Modify job step to be non-preemptable\n");;

rc = ll_modify(LL_API_VERSION, &errObj, cmdp, step_list);

if (rc) {

ll_modify subroutine

630 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

errmsg = ll_error(&errObj, 0);

printf("ll_modify() return code: %d\n%s\n", rc, errmsg);

free(errmsg);

 exit(1);

 }

 return 0;

}

ll_modify subroutine

Chapter 17. Application programming interfaces (APIs) 631

|
|
|
|
|
|
|

ll_move_job subroutine

Purpose

ll_move_job – Moves an idle job from one cluster to another.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_move_job (int version, LL_element **errObj, LL_move_job_param **param);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to LL_element that points to an error object

if this function fails.

param

Provides the address of a pointer to an LL_move_job_param structure.

typedef struct {

 char *cluster_name;

 char *job_id;

}

LL_move_job_param;

 In the LL_move_job_param structure, the fields are defined as follows:

cluster_name

The name of the cluster to which the job will be moved.

job_id

The job ID of the job to be moved.

Description

The ll_move_job() subroutine is the API for the llmovejob command. Refer to the

llmovejob command for information about other available command options.

The ll_move_job API moves a single idle job from one cluster to another. If any

steps within the job are not idle, the transfer request is rejected and the API returns

API_STEP_NOT_IDLE. The remote job retains the original job_ID from the local

cluster. Upon transfer, the remote cluster performs any user mapping and remote

job filtering necessary for the job.

Any changes made to the idle job in the local cluster by the llmodify command

will not be carried forward to the remote cluster. Any jobs submitted when the

local cluster was not configured as a part of a multicluster cannot be moved if the

cluster’s configuration is changed to a multicluster environment.

Only administrators can issue the ll_move_job() subroutine. In a mixed operating

multicluster environment, administrators must ensure the binary compatibility of

the job being transferred.

ll_move_job subroutine

632 TWS LoadLeveler: Using and Administering

|
|
|

Return Values

The following return values are defined in llapi.h:

API_OK

Request successfully sent to LoadLeveler.

API_INVALID_INPUT

An input parameter that is not valid was specified.

API_CONFIG_ERR

Errors encountered while processing configuration files.

API_CANT_AUTH

Caller not authorized.

API_CANT_LISTEN

API cannot create listen socket.

API_CANT_CONNECT

Failed to connect to LoadLeveler.

API_TIMEOUT

Timed out waiting for a response.

API_STEP_NOT_IDLE

Request failed, the job step is not in the IDLE state.

Related Information

Commands: llmovejob

ll_move_job subroutine

Chapter 17. Application programming interfaces (APIs) 633

ll_move_spool subroutine

Purpose

ll_move_spool – Moves the job records from the spool directory of one managing

Schedd to another managing Schedd in the local cluster.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_move_spool (int version, LL_move_spool_param ** param,

 int (*func) (char *jobid,

 int rc, LL_element **messageObj),

 LL_element **errObj);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

param

Provides the address of a pointer to an LL_move_spool_param structure.

typedef struct {

 char **schedd_host;

 char *spool_directory;

 SpoolData_t data;

 } LL_move_spool_param;

 typedef enum move_spool_data {

 LL_MOVE_SPOOL_JOBS

 } SpoolData_t;

(*func)(char *jobid, int rc, LL_element **messageObj)

Specifies the user-supplied function to be called after every job is processed.

The function must return an integer and must accept as input:

v A char pointer representing the job ID processed

v An integer representing the return code of the job processing

v The address to a pointer of an LL_element data type representing any

messages generated

The LL_element data type is defined in the llapi.h file. If a callback is not

desired, the function pointer should be set to NULL.

errObj

Provides the address of a pointer to LL_element that points to an error object

if this subroutine returns an unsuccessful return code.

Description

The ll_move_spool() subroutine is the API for the llmovespool command.

The ll_move_spool subroutine is intended for recovery purposes only. This

subroutine moves the job records from the spool_directory of one managing

schedd_host to another managing schedd_host in the local cluster. The ll_move_spool

subroutine must be run from a machine that has read and write access to the

specified spool_directory containing the job records being moved. This machine

must also have network connectivity to the machine running the Schedd daemon

that will receive the job records. Jobs to be moved can be in any state.

ll_move_spool subroutine

634 TWS LoadLeveler: Using and Administering

|

|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

The schedd_host that created the job records to be moved must not be running

during the move operation. Jobs within the job queue database will be

unrecoverable if the job queue is updated during the move by any process other

than the ll_move_spool subroutine. The schedd_host that created the job records to

be moved must have the schedd_fenced machine stanza keyword set to true prior

to the ll_move_spool subroutine being issued.

All moved jobs retain their original job identifiers. The ll_move_spool subroutine

invokes the function specified by the (*func) parameter after each job is processed.

When the job records for a job are successfully transferred, the schedd_host of the

job is updated to represent the new managing schedd_host and the job records in

the specified spool_directory are deleted. If the transfer for any step within a job

fails, the job records for that step remain in the specified spool_directory. If for some

reason a job fails, the ll_move_spool subroutine should be reissued against the

specified spool_directory to reprocess the job.

The user-supplied function enables messages to be displayed as each job is

processed without having to wait for all of the jobs to be completed. If a callback is

not desired, the function pointer should be set to NULL. The callback function

must call the ll_error API passing in the messageObj in order to free the memory

allocated to it.

The ll_move_spool subroutine does not move the reservation queue or fair share

scheduling data found within the specified spool_directory.

Only administrators can issue the ll_move_spool subroutine.

A sample is available in:

{$RELEASEDIR}/samples/llmovespool

Return Values

The following return values are defined in llapi.h and can be returned by the

ll_move_spool API:

API_OK

Request successfully sent to LoadLeveler.

API_INPUT_NOT_VALID

An input parameter that is not valid was specified.

API_CONFIG_ERR

Errors encountered while processing configuration files.

API_CANT_AUTH

Caller not authorized.

API_CANT_LISTEN

API cannot create listen socket.

API_CANT_CONNECT

Failed to connect to LoadLeveler.

API_TIMEOUT

Timed out waiting for a response.

API_JOBQ_ERR

Error occurred reading source job queue or writing to destination job

queue.

ll_move_spool subroutine

Chapter 17. Application programming interfaces (APIs) 635

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

API_SCHEDD_DOWN

The schedd_host is not accepting jobs.

API_SCHEDD_NOT_FENCED

The original Schedd machine stanza does not have the schedd_fenced

keyword set to true.

 The following return values are defined in llapi.h and can be passed to the

user-specified function:

API_CANT_TRANSMIT

schedd_host encountered an error while processing the executable or job

command file job records.

API_OK

Request successfully sent to LoadLeveler.

API_CANT_CONNECT

Failed to connect to LoadLeveler.

API_TIMEOUT

Timed out waiting for a response.

API_JOBQ_ERR

Error occurred reading source job queue or writing to destination job

queue.

API_JOB_NOT_FOUND

schedd_host encountered an error while processing the received job.

Related Information

Commands: llmovespool

ll_move_spool subroutine

636 TWS LoadLeveler: Using and Administering

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

ll_preempt subroutine

Purpose

ll_preempt – Enables you to preempt a running job step or to resume a job step

that has already been preempted through the llpreempt command or the

ll_preempt subroutine (user-initiated). The ll_preempt subroutine cannot resume a

job step preempted through PREEMPT_CLASS rules (system-initiated).

The ll_preempt subroutine is not available in LoadLeveler for Linux.

For LoadLeveler 3.3, the ll_preempt subroutine was replaced with the

ll_preempt_jobs subroutine.

Library

LoadLeveler API library, libllapi.a

Syntax

#include "llapi.h"

int ll_preempt (int version, LL_element **errObj, char *job_step,

 enum LL_preempt_op type);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to LL_element that points to an error object if

this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to do so, the pointer should be initialized to NULL to

avoid a segmentation fault when the pointer is passed to the ll_error

subroutine.

jobstep

A string used to specify the name of a job step.

type

v Preempts job step if type equals PREEMPT_STEP

v Resumes job step if type equals RESUME_STEP

Description

ll_preempt() is the API for the llpreempt command.

v This function is for external schedulers

v Only LoadLeveler administrators have authority to use this function

Return Values

API_OK

Request successfully sent to LoadLeveler.

API_INVALID_INPUT

An input parameter that is not valid was specified.

API_CONFIG_ERR

Errors encountered while processing config files.

ll_preempt subroutine

Chapter 17. Application programming interfaces (APIs) 637

API_CANT_AUTH

Caller not authorized.

API_CANT_CONNECT

Failed to connect to LoadLeveler.

ll_preempt subroutine

638 TWS LoadLeveler: Using and Administering

ll_preempt_jobs subroutine

Purpose

ll_preempt_jobs – Preempts a set of running job steps using the specified preempt

method or resumes job steps that have already been preempted with the preempt

method of suspend through the llpreempt command or the ll_preempt_jobs

subroutine. The ll_preempt_jobs subroutine cannot resume a job step that was

preempted through the PREEMPT_CLASS rules or a job step that was preempted

with a preempt method other than suspend.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_preempt_jobs (int version, void *errObj, LL_preempt_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

param

Is a pointer to an array of structures. The structure specifies the parameters for

a preempt operation.

typedef struct LL_preempt_param {

 enum LL_preempt_op type;

 enum LL_preempt_method method;

 char ** user_list;

 char ** host_list;

 char ** jobstep_list;

} LL_preempt_param;

enum LL_preempt_op {PREEMPT_STEP, RESUME_STEP};

enum LL_preempt_method {LL_PREEMPT_SUSPEND, LL_PREEMPT_VACATE,

 LL_PREEMPT_REMOVE, LL_PREEMPT_SYS_HOLD, LL_PREEMPT_USER_HOLD}

In the LL_preempt_param structure, the fields are defined as follows:

type Is the type of operation on the job steps, preempt or resume.

method Is the method to be used to preempt the specified job steps.

This argument is ignored if the type argument is not set to

PREEMPT_STEP. Valid values for this argument are:

v LL_PREEMPT_SUSPEND

v LL_PREEMPT_VACATE

v LL_PREEMPT_REMOVE

v LL_PREEMPT_SYS_HOLD

v LL_PREEMPT_USER_HOLD

LoadLeveler for Linux does not support preemption by the

suspend method. Job steps running on Linux nodes will not be

suspended when method in the LL_preempt_param structure

ll_preempt_jobs subroutine

Chapter 17. Application programming interfaces (APIs) 639

has the value LL_PREEMPT_SUSPEND. The call to the

ll_preempt_jobs subroutine is equivalent to a no-op in this

case.

In the enum LL_preempt_op structure, valid values are:

v PREEMPT_STEP

v RESUME_STEP

 In the enum LL_preempt_method structure, valid values are:

v LL_PREEMPT_SUSPEND

v LL_PREEMPT_VACATE

v LL_PREEMPT_REMOVE

v LL_PREEMPT_SYS_HOLD

v LL_PREEMPT_USER_HOLD

user_list

Is a pointer to a NULL-terminated array of pointers to strings

containing user names. All running job steps belonging to all users in

the list and monitored by the machine the subroutine is running on

will be preempted or resumed. If a host_list is also specified, only the

user’s job steps monitored on the specified hosts will be preempted or

resumed.

host_list

Is a pointer to a NULL-terminated array of pointers to strings

containing host names. All job steps monitored by the hosts will be

preempted or resumed. If a user_list is also provided, only the running

job steps monitored by the hosts and owned by the specified users will

be preempted or resumed.

jobstep_list

Is a pointer to a NULL-terminated array of job or step identifiers.

When a job identifier is specified, the action of the API is taken for all

steps of the job. At least one job or step identifier must be specified.

 The format of a job identifier is host.jobid. The format of a step

identifier is host.jobid.stepid.

 where:

v host is the name of the machine that assigned the job and step

identifiers.

v jobid is the job number assigned to the job when it was submitted.

v stepid is the job step number assigned to the job step when it was

submitted.

The job or step identifier may be specified in an abbreviated form, jobid

or jobid.stepid, when the API is invoked on the same machine that

assigned the job and step identifiers. In this case, LoadLeveler will use

the local machine’s host name to construct the full job or step

identifier.

Note: For coscheduled jobs, even if all coscheduled job steps are not in

the list of targeted job steps, the requested operation is

performed on all coscheduled job steps.

Description

The ll_preempt_jobs() subroutine is the API for the llpreempt command. See the

llpreempt command for information about the available command options. In

order to provide source code compatibility for applications using the current

ll_preempt_jobs subroutine

640 TWS LoadLeveler: Using and Administering

|
|
|

version of the preempt function, the ll_preempt() subroutine will not be modified

to support the new preemption options. The ll_preempt() subroutine will continue

to be supported as is.

Return Values

0 Request successfully sent to the central manager.

-1 An LL_preempt_op that is not valid was specified.

-2 Cannot send request to central manager.

-3 An incorrect version was specified.

-4 Errors encountered while processing the LoadLeveler administration or

configuration files.

-5 A system error occurred.

-6 A data transmission failure occurred.

-7 The calling program does not have LoadLeveler administrator authority.

ll_preempt_jobs subroutine

Chapter 17. Application programming interfaces (APIs) 641

ll_run_scheduler subroutine

Purpose

ll_run_scheduler – Sends a request to the central manager to run the scheduling

algorithm. It is used when the internal scheduling interval has been disabled so

that an external program can control when the central manager attempts to

schedule job steps.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_run_scheduler (int version);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

Description

The ll_run_scheduler() subroutine sends a request to the central manager to run

the LoadLeveler scheduling algorithm. The central manager’s scheduling algorithm

will run only once each time the llrunscheduler command is invoked. Each time

the scheduling algorithm runs, the central manager will schedule as many job

steps as the current available resources allow. The LoadLeveler scheduling interval

must be disabled, that is the configuration keyword NEGOTIATOR_INTERVAL

must be set to zero in order to use this algorithm. Only LoadLeveler administrators

have authority to use this algorithm.

Return Values

RUN_SCHED_SUCCESS

Request successfully sent to the central manager.

RUN_SCHED_CONFIG_ERROR

Errors were encountered while processing configuration files.

RUN_SCHED_NOT_AUTH

Calling program does not have LoadLeveler administrator authority.

RUN_SCHED_NOT_AUTH

An internal system error occurred.

RUN_SCHED_CANT_TRANSMIT

A data transmission failure occurred.

RUN_SCHED_CANT_CONNECT

The Schedd cannot connect to the central manager.

ll_run_scheduler subroutine

642 TWS LoadLeveler: Using and Administering

ll_start_job subroutine

Purpose

ll_start_job – Tells the LoadLeveler negotiator to start a job on the specified nodes.

In LoadLeveler for Linux only, ll_start_job returns an error condition when

SEC_ENABLEMENT is CTSEC.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_start_job (LL_start_job_info *ptr);

Parameters

ptr Specifies the pointer to the LL_start_job_info structure that was allocated by

the caller. The LL_start_job_info members are:

int version_num

Represents the version number of the LL_start_job_info structure. Should

be set to LL_PROC_VERSION.

LL_STEP_ID StepId

Represents the step ID of the job step to be started.

char **nodeList

Is a pointer to an array of node names where the job will be started. The

first member of the array is the parallel master node. The array must be

ended with a NULL.

Description

This subroutine does not allow you to specify adapter usage information. Use the

ll_start_job_ext subroutine instead.

You must set SCHEDULER_TYPE = API in the global configuration file to use this

subroutine.

Only jobs steps currently in the Idle state are started.

Only processes having the LoadLeveler administrator user ID can invoke this

subroutine.

An external scheduler uses this subroutine to start jobs that are in idle state. The

list of jobs that are currently in the system is retrieved with the ll_get_objs API

function, passing in a query element with type JOBS. The list of machines

available to run jobs on is obtained with the ll_get_objs and a query element with

type MACHINES. Additional data about both jobs and machines is obtained with

the ll_get_data function call.

When this function is used to start a step, adapter resources are assigned to the

step according to job command file network statements, if they are present.

Adapter resources are assigned in the same manner as the BACKFILL scheduler

assigns adapter resources, except that the Communication Level on the network

statement is ignored and a value of AVERAGE is used. It is the responsibility of

ll_start_job subroutine

Chapter 17. Application programming interfaces (APIs) 643

the external scheduler to ensure the machines to which the step is dispatched have

sufficient adapter resources to run the step. Otherwise the step will not be started.

Return Values

This subroutine returns a value of zero to indicate the start job request was

accepted by the negotiator. However, a return code of zero does not necessarily

imply the job started. You can use the llq command to verify the job started.

Otherwise, this subroutine returns an integer value defined in the llapi.h file.

Error Values

-1 There is an error in the input parameter.

-2 The subroutine cannot connect to the central manager.

-4 An error occurred reading parameters from the administration or the

configuration file.

-5 The negotiator cannot find the specified StepId in the negotiator job queue.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a

LoadLeveler administrator.

-8 The job object version number is incorrect.

-9 The StepId is not in the Idle state.

-10 One of the nodes specified is not available to run the job.

-11 One of the nodes specified does not have an available initiator for the class

of the job.

-12 For one of the nodes specified, the requirements statement does not satisfy

the job requirements.

-13 The number of nodes specified was less than the minimum or more than

the maximum requested by the job.

-14 The LoadLeveler default scheduler is enabled.

-15 The same node was specified twice in ll_start_job nodelist.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory. The examples include the executable sch_api,

which invokes the query API and the job control API to start the second job in the

list received from ll_get_jobs on two nodes. You should submit at least two jobs

prior to running the sample. To compile sch_api, copy the sample to a writeable

directory and update the RELEASE_DIR field to represent the current LoadLeveler

release directory.

Related Information

Subroutines: ll_get_jobs, ll_get_nodes, ll_start_job_ext, ll_terminate_job

ll_start_job subroutine

644 TWS LoadLeveler: Using and Administering

ll_start_job_ext subroutine

Purpose

ll_start_job_ext – Tells the LoadLeveler negotiator to start a job on the specified

nodes, indicating which adapter and adapter resources to use.

In LoadLeveler for Linux only, ll_start_job_ext returns an error condition when

SEC_ENABLEMENT is CTSEC.

An external scheduler uses this subroutine to start jobs that are in idle state. The

list of jobs that are currently in the system is retrieved with the ll_get_objs API

function, passing in a query element with type JOBS. The list of machines

available to run jobs on is obtained with the ll_get_objs and a query element with

type MACHINES. Additional data about both jobs and machines is obtained with

the ll_get_data function call.

When this function is used to start a step, the external scheduler specifies the

adapter resources that are assigned to the step and network statements in the job

command file, if they are present, are ignored. It is the responsibility of the

external scheduler to manage the availability of adapter resources and LoadLeveler

does not prevent or detect the over commitment of adapter resources.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_start_job_ext (LL_start_job_info_ext *ptr);

Parameters

ptr Specifies the pointer to the LL_start_job_info_ext structure that was allocated

and populated by the caller. The LL_start_job_info_ext members are:

int version_num

Represents the version number of the LL_start_job_info_ext structure.

Should be set to LL_PROC_VERSION.

LL_STEP_ID StepId

Represents the step ID of the job step to be started.

char ** nodelist

A pointer to an array of node names where the job will be started. The first

member of the array is the parallel master node. The array must be ended

with a NULL.

int adapterUsageCount

This is the size of the adapterUsage list. To determine what this number

should be, add all the adapter usages for all protocols needed by one task

and multiply the result by the number of tasks in the job.

LL_ADAPTER_USAGE * adapterUsage

This is a list of adapter information. The size of this list is given by

adapterUsageCount. The members of this structure are:

char * dev_name

The device name of the adapter to be used.

ll_start_job_ext subroutine

Chapter 17. Application programming interfaces (APIs) 645

char * protocol

A character string representing the communication protocol this usage

supports. Valid values are MPI, LAPI, and MPI_LAPI.

char * subsystem

The communication subsystem this usage supports. Valid values are IP

or US.

int wid

For US subsystem usages, this indicates which adapter window ID to

use. For IP subsystem usages, this field is ignored.

uint64_t mem

For US subsystem usages, this is the amount of adapter memory to

dedicate to the adapter usage. For IP subsystem usages, this field is

ignored.

uint64_t api_rcxtblocks

For US subsystem usages, this is the number of user rCxt blocks to

allocate for each adapter window. For IP subsystem usages, this field is

ignored.

Notes:

1. This field should only be used on systems which contain

Switch_Network_Interface_For_HPS adapters. When using this

field, the mem field should not be used.

2. Previously existing applications which use ll_start_job_ext can be

used unchanged to start jobs on systems with

Switch_Network_Interface_For_HPS adapters, the value previously

specified for the memory request will be ignored.

 Each element in the adapterUsage list represents one communication channel for a

task. If the subsystem is US (User Space), a communication channel will require a

switch adapter window. Adapter windows, and User Space usages, must be

specified on actual switch adapters that are only accessible if

AGGREGATE_ADAPTERS=False is specified in the configuration file.

Description

You must set SCHEDULER_TYPE = API in the global configuration file to use this

subroutine. In order to have access to the physical switch adapters in the

LoadLeveler cluster (as opposed to virtual adapters representing all of the adapters

on a network or adapters striping across multiple networks) you must specify

AGGREGATE_ADAPTERS = False in the global configuration file.

Only jobs steps currently in the Idle state are started.

Only processes having the LoadLeveler administrator user ID can invoke this

subroutine.

An external scheduler uses this subroutine in conjunction with the ll_query and

ll_get_data subroutines of the query API. The query API returns information about

which machines are available for scheduling and which jobs are currently in the

job queue waiting to be scheduled.

The node list that is passed to the external scheduler API specifies the node on

which each task of the job being started is to run. The distribution of tasks to

nodes in the node list must be consistent with the node allocation specified by the

job command file of the job being started. If it is not, the results are undefined and

ll_start_job_ext subroutine

646 TWS LoadLeveler: Using and Administering

the job may fail to start or may start with incorrect node assignments. Except when

BLOCKING is specified, the entries for tasks that are running on the same node

must all be specified sequentially in the node list. Table 100 describes how nodes

should be arranged in the node list for the possible combinations of node and task

specification in the job command file. In the table, ’/’ denotes integer division and

(N mod M) is the remainder of the integer division of N by M.

 Table 100. How nodes should be arranged in the node list

Job command file specification Required nodelist structure

node=N

tasks_per_node=T

There must be N different machine names

specified, each specified T times.

node=N,M

tasks_per_node=T

There must be between N and M different machine

names specified, each specified T times.

node=N

total_tasks=TT

TT evenly divisible by N

There must be N different machine names

specified, each specified TT/N times.

node=N

total_tasks=TT

TT not evenly divisible by N

There must be N different machine names

specified. The first (TT mod N) unique machine

names must each be specified (TT/N +1) times and

the remaining machine names are each specified

TT/N times.

total_tasks=TT

BLOCKING=B

TT evenly divisible by B

There must be TT/B sets of machine names

specified, each set specifies a machine name B

times. It is permissible for a machine name to be

specified in more than one set.

total_tasks=TT

BLOCKING=B

TT not evenly divisible by B

There must be TT/B+1 sets of machine names

specified. The first TT/B sets specify a machine

name B times. The last set specifies a machine

name (TT mod B) times. It is permissible for a

machine name to be specified in more than one set.

total_tasks=TT

BLOCKING=UNLIMITED

There must be TT entries in the node list. It is

permissible for a machine name to be specified in

the list more than once and it is not required that

the specifications be contiguous.

task_geometry There is a 1:1 correspondence between entries in

the nodelist and task ids specified in the task

geometry statement. Entries in the node list that

correspond to task IDs in the same set must specify

the same machine. Entries in the node list that

correspond to task IDs in different sets must

specify different machines.

Return Values

This routine returns a nonzero value to indicate the start request was not delivered

to the negotiator. These values are defined in the llapi.h file and explained in

″Error values.″ A return code of zero indicates the request was successfully

delivered to the negotiator, but constraints on the negotiator may stop the job from

starting. You can use the llq command to verify the job started.

Error Values

-1 There is an error in the input parameter.

-2 The subroutine cannot connect to the central manager.

-4 An error occurred reading parameters from the administration or the

configuration file.

-5 The negotiator cannot find the specified StepId in the negotiator job queue.

ll_start_job_ext subroutine

Chapter 17. Application programming interfaces (APIs) 647

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a

LoadLeveler administrator.

-8 The job object version number is incorrect.

-9 The StepId is not in the Idle state.

-10 One of the nodes specified is not available to run the job.

-11 One of the nodes specified does not have an available initiator for the class

of the job.

-12 For one of the nodes specified, the requirements statement does not satisfy

the job requirements.

-13 The number of nodes specified was less than the minimum or more than

the maximum requested by the job.

-14 The LoadLeveler default scheduler is enabled.

-15 The same node was specified twice in the ll_start_job nodelist.

-20 Adapter usage information does not match job structure.

-21 Adapter usage requested an adapter not on the machine.

-22 Wrong number of entries on adapter usage list.

-23 The adapter usage information did not specify the same protocol usage on

each task.

-24 An invalid protocol string was specified on an adapter usage.

-25 The adapter usages specified incompatible protocols

-26 An adapter usage specified a communication subsystem that was not IP or

US

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory. The examples include the executable

sch_api_ext, which invokes the query API and the job control API to start the first

job in the list received from ll_query on one node and to cancel the second job in

the list. To compile sch_api_ext, copy the sample to a writeable directory and

update the RELEASE_DIR field to represent the current LoadLeveler release

directory.

Related Information

Subroutines: ll_get_data, ll_query, ll_start_job, ll_terminate_job

ll_start_job_ext subroutine

648 TWS LoadLeveler: Using and Administering

ll_terminate_job subroutine

Purpose

ll_terminate_job – Tells the negotiator to cancel the specified job step.

In LoadLeveler for Linux only, ll_terminate_job returns an error condition when

SEC_ENABLEMENT is CTSEC.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_terminate_job (LL_terminate_job_info *ptr);

Parameters

ptr Specifies the pointer to the LL_terminate_info structure that was allocated by

the caller. The LL_terminate_job_info members are:

int version_num

Represents the version number of the LL_terminate_job_info structure.

Should be set to LL_PROC_VERSION.

LL_STEP_ID StepId

Represents the step ID of the job step to be terminated.

Note: For coscheduled jobs, even if all coscheduled job steps are not in the

list of targeted job steps, the requested operation is performed on all

coscheduled job steps.

char *msg

A pointer to a null terminated array of characters. If this pointer is null or

points to a null string, a default message is used. This message will be

available through ll_get_data to tell the process why a program was

terminated.

Description

Only processes having the LoadLeveler administrator user ID can invoke this

subroutine.

An external scheduler uses this subroutine in conjunction with the ll_query and

ll_get_data subroutines of the query API. The external scheduler must use this

subroutine to terminate interactive parallel jobs that cannot be run.

Return Values

This subroutine returns a value of zero when successful, to indicate the terminate

job request was accepted by the negotiator. However, a return code of zero does

not necessarily imply the negotiator canceled the job. Use the llq command to

verify the job was canceled. Otherwise, this subroutine returns an integer value

defined in the llapi.h file.

Error Values

-1 There is an error in the input parameter.

-4 An error occurred reading parameters from the administration or the

configuration file.

-6 A data transmission failure occurred.

ll_terminate_job subroutine

Chapter 17. Application programming interfaces (APIs) 649

|
|
|

|
|
|

-7 The subroutine cannot authorize the action because you are not a

LoadLeveler administrator or you are not the user who submitted the job.

-8 The job object version number is incorrect.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory. The examples include the executable sch_api,

which invokes the query API and the job control API to terminate the first job

reported by the ll_get_jobs subroutine. You should submit at least two jobs prior

to running the sample. To compile sch_api, copy the sample to a writeable

directory and update the RELEASE_DIR field to represent the current LoadLeveler

release directory.

Related Information

Subroutines: ll_get_jobs, ll_get_nodes, ll_start_job

ll_terminate_job subroutine

650 TWS LoadLeveler: Using and Administering

Appendix A. Troubleshooting LoadLeveler

This topic is divided into the following subtopics:

v “Frequently asked questions,” which contains answers to questions frequently

asked by LoadLeveler customers. This topic focuses on answers that may help

you get out of problem situations. The questions and answers are organized into

the following categories:

– LoadLeveler won't start. See “Why won’t LoadLeveler start?” for more

information.

– Jobs submitted to LoadLeveler do not run. See “Why won’t my job run?” on

page 652 for more information.

– One or more of your machines goes down. See “What happens to running

jobs when a machine goes down?” on page 657 for more information.

– The central manager is not operating. See “What happens if the central

manager isn’t operating?” on page 658 for more information.

– Resources need to be recovered from the Schedd machine. See “How do I

recover resources allocated by a Schedd machine?” on page 660 for more

information.

– A core file needs to be found on Linux. See “Why can’t I find a core file on

Linux?” on page 660 for more information.

– Inconsistencies are found in llfs output. See “Why am I seeing

inconsistencies in my llfs output?” on page 661 for more information.

– Configuration or administration file errors. See “What happens if errors are

found in my configuration or administration file?” on page 661 for more

information.

– Miscellaneous questions. See “Other questions” on page 661 for more

information.
v “Troubleshooting in a multicluster environment” on page 663, which contains

common questions and answers pertaining to operations within a multicluster

environment.

v “Helpful hints” on page 666, which contains tips on running LoadLeveler,

including some productivity aids.

v “Getting help from IBM” on page 670, which tells you how to contact IBM for

assistance.

It is helpful to create error logs when you are diagnosing a problem. See to

“Configuring recording activity and log files” on page 46 for information on

setting up error logs.

Frequently asked questions

This topic contains answers to questions frequently asked by LoadLeveler

customers.

Why won’t LoadLeveler start?

If the master daemon will not run, go to the node where LoadL_master will not

start and enter from the command line:

LoadL_master -t

 651

|
|

|

|
|

|

This generates messages that might help to diagnose the problem. In addition,

ensure the following are true:

1. The Release and bin directories are properly specified in the configuration

files.

2. The administration file exists and is properly defined in the configuration file.

3. The central manager is correctly defined in the administration file.

4. The log directories are correctly defined in the configuration file.

5. The spool, execute, and log directories exist and permissions are set as follows:

v The spool subdirectory is set to 700

v The execute subdirectory is set to 1777

v The log subdirectory is set to 775
6. The LoadL_master binary, in /usr/lpp/LoadL/full/bin for AIX or

/opt/ibmll/LoadL/full/bin for Linux, is owned by root and has the setuid bit

set.

7. The daemons are not already running. If they are already running, use the ps

command to identify the processes, and then use the kill command to kill the

daemons.

8. When cluster security services is enabled, all machines in the LoadLeveler

cluster must list each other in their trusted hosts list for authentication.

9. When cluster security services is enabled, the loadl ID must be a member of

the UNIX group identified by the SEC_SERVICES_GROUP configuration file

keyword.

Note: LoadLeveler for Linux does not support cluster security services.

Why won’t my job run?

If you submitted your job but it has not run, issue llq -s first to help diagnose the

problem. If you need more help diagnosing the problem, refer to Table 101:

 Table 101. Why your job might not be running

Why your job might not be

running: Possible solution

Job requires specific machine,

operating system, or other

resource.

Does the resource exist in the LoadLeveler cluster? If

yes, wait until it becomes available.

Check the GUI to compare the job requirements to the

machine details, especially Arch, OpSys, and Class.

Ensure that the spelling and capitalization matches.

Job requires specific job class v Is the class defined in the administration file? Use

llclass to determine this. If yes,

v Is there a machine in the cluster that supports that

class? If yes, you need to wait until the machine

becomes available to run your job.

The maximum number of jobs are

already running on all the eligible

machines

Wait until one of the machines finishes a job before

scheduling your job.

The start expression evaluates to

false.

Examine the configuration files (both LoadL_config and

LoadL_config.local) to determine the START control

function expression used by LoadLeveler to start a job.

As a problem determination measure, set the START

and SUSPEND values, as shown in this example:

START: T

SUSPEND: F

Troubleshooting

652 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 101. Why your job might not be running (continued)

Why your job might not be

running: Possible solution

A job step is running on the node

that your job requires, and that

job step’s preemption rules list

your job’s class as one that cannot

share the node

The running job step is in a job class for which an

administrator has defined preemption rules through the

PREEMPT_CLASS keyword. When your job step’s class

is listed in the ALL clause of that keyword, your job

step must wait until the running job step finishes.

The priority of your job is lower

than the priority of other jobs.

You cannot affect the system priority given to this job

by the negotiator daemon but you can try to change

your user priority to move this job ahead of other jobs

you previously submitted using the llprio command or

the GUI.

The information the central

manager has about machines and

jobs may not be current.

Wait a few minutes for the central manager to be

updated and then the job may be dispatched. This time

limit (a few minutes) depends upon the polling

frequency and polls per update set in the LoadL_config

file. The default polling frequency is five seconds.

You do not have the same user ID

on all the machines in the cluster.

To run jobs on any machine in the cluster, you have to

have the same user ID and the same uid number on

every machine in the pool. If you do not have a userid

on one machine, your jobs will not be scheduled to that

machine.

CtSec is enabled and the .rhosts

file was not updated.

The .rhosts file should contain entries which specify all

the host and user combinations allowed to submit jobs

which will run as the local user. See “Steps for enabling

CtSec services” on page 54 for more details.

Your job is not bound to a

reservation under which nodes

that your job requires to run are

reserved

When an unbound job requires nodes that are reserved

under a reservation, LoadLeveler will not start the job

unless one of the following conditions is true:

v The reservation was created with SHARED mode

specified. If the reservation is using SHARED mode,

your job will remain idle until the reservation state

becomes Active_Shared.

v The job’s expected end time (current time plus the

hard wall clock limit) indicates that the job will

complete before the reservation starts.

If neither condition is true, but you have the authority

to use the reservation, you may use the llbind

command to bind your job to the reservation.

Otherwise, your unbound job will remain idle until the

reservation completes or is canceled.

To check the reservation’s status and attributes, use the

llqres command. To find out which reservations you

may use, check with your LoadLeveler administrator, or

enter the command llqres -l and check the names in the

Users or Groups fields (under the Modification time

field) in the output listing. If your user name or a group

name to which you belong appears in these output

fields, you are authorized to use the reservation.

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 653

Table 101. Why your job might not be running (continued)

Why your job might not be

running: Possible solution

Your job is bound to a reservation

but the reservation is not active

yet

LoadLeveler schedules bound job steps to run only

when a reservation becomes active. Use the command

llq -l to find the ID of the reservation to which the job

is bound. Use the command llqres -l to find the start

time of the reservation, and wait until that time to check

the job status again.

Your job is bound to a reservation

that does not reserve all of the

resources that your job requires to

run

If a bound job requires specific resources that are not

available during the reservation period, LoadLeveler

will not dispatch the job to run under the reservation.

This situation can occur if the job requires one or more

of the following:

v Specific nodes that were not selected for the

reservation.

v More than the total number of reserved nodes.

v Floating consumable resources, which cannot be

reserved under a reservation.

If the LoadLeveler cluster has the resources that the job

requires, use the command llbind -r, which unbinds the

job from the reservation.

Your job is bound to a reservation

but the maximum number of jobs

you may run has been reached

already

If LoadLeveler detects that you currently are running

the maximum number of jobs that you are allowed to

run, it will not start your bound job even if the

reservation is active.

Your job is bound to a reservation

but the job’s expected end time

exceeds the reservation’s end time

LoadLeveler will dispatch your job only if its expected

end time (current time plus the hard wall clock limit)

does not exceed the end time of the reservation, or if

both of the following conditions are true:

v This reservation is configured to allow jobs to

continue running even when their expected end time

exceeds the end of the reservation, and

v The resources required to run your job are available.

Otherwise, this bound job will remain idle until either:

v The reservation completes or is canceled, or

v You use the command llbind -r, which unbinds the

job from the reservation.

Your job is bound to a reservation

that does not exist

LoadLeveler puts your job in NotQueued state until the

reservation is created. In that case, LoadLeveler will

bind your job to the reservation. Otherwise, use the

command llbind -r to unbind the job from the

reservation.

You can use the llq command to query the status of your job or the llstatus

command to query the status of machines in the cluster. Refer to Chapter 16,

“Commands,” on page 385 for information on these commands.

Why won’t my parallel job run?

If you submitted your parallel job but it has not run, issue llq -s first to help

diagnose the problem. If issuing this command does not help, refer to Table 101 on

page 652 and to Table 102 on page 655 for more information:

Troubleshooting

654 TWS LoadLeveler: Using and Administering

Table 102. Why your job might not be running

Why your job might not be running: Possible solution

The minimum number of processors

requested by your job is not available.

Sufficient resources must be available. Specifying a

smaller number of processors may help if your job

can run with fewer resources.

The pool in your requirements

statement specifies a pool which is

invalid or not available.

The specified pool must be valid and available.

The adapter specified in the

requirements statement or the network

statement identifies an adapter which is

invalid or not available.

The specified adapter must be valid and available.

Use llstatus -a to check the status of the adapters

in the system. Switch adapters that show a state of

’NOT READY’ or ’-1’ should be reported to the

LoadLeveler administrator. Switch adapters with a

state of ’-1’ indicate that the machine those

adapters are on could not be queried for status.

If the network statement specifies rcxtblocks, only

Switch Network Interface for HPS adapters can be

used for the step.

Common set-up problems with parallel jobs

This topic presents a list of common problems found in setting up parallel jobs:

v If jobs appear to remain in a Pending or Starting state: check that the

nameserver is consistent. Compare results of host machine_name and host

IP_address

v For POE:

– Specify the POE partition manager as the executable. Do not specify the

parallel job as the executable.

– Pass the parallel job as an argument to POE.

– The parallel job must exist and must be specified as a full path name.

– If the job runs in user space, specify the flag -euilib us.

– Specify the correct adapter (when needed).

– Specify a POE job only once in the job command file.

– Compile only with the supported level of POE.

– Specify only parallel as the job_type.

Why won’t my checkpointed job restart?

If the job you submitted has the keyword restart_from_ckpt = yes and if the

checkpoint file specified does not exist, the job will move to the Starting state and

will then be removed from the queue. A mail message will be generated indicating

the checkpoint file does not exist and a message will also appear in the StarterLog.

Verify the values of the ckpt_file keyword in the Job Command File and the value

of the ckpt_dir keyword in the Job Command or Administration File to ensure

they resolve to the directory and file name of the desired checkpoint file.

Note: When a job is enabled for checkpoint, it is important to ensure the name of

the checkpoint file is unique.

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 655

Why won’t my submit-only job run?

If a job you submitted from a submit-only machine does not run, verify that you

have defined the following statements in the machine stanza of the administration

file of the submit-only machine:

submit_only = true

schedd_host = false

central_manager = false

Verify that another machine has set schedd_host = true and schedd_runs_here =

true.

Why won’t my job run on a cluster with both AIX and Linux

machines?

The default shell on Linux (in both Red Hat Enterprise Linux and SUSE Linux

Enterprise Server) is bash and bash may not be available on AIX. If a job step

contains a bash script it will be rejected if it is run on an AIX node. The ksh is

available on both AIX and Linux. You can specify which shell to use in the

keyword shell in your job command file:

@shell = /bin/ksh

Also, AIX and Linux are not binary compatible so jobs written in compiled

languages such as C or Fortran must be compiled for the environment they will

run on.

Does my Linux machine support CPU affinity?

If you are using the CPU affinity function that is available with LoadLeveler for

Linux, you could have a problem with jobs that were submitted to a machine (or

machines) being rejected. If this happens, you might receive an e-mail with a

message that indicates that there are no available CPUs on the machine to run the

job. This problem can occur if the ALLOC_EXCLUSIVE_CPU_PER_JOB keyword

was set to LOGICAL or PHYSICAL in the local or global configuration files.

To resolve this problem, limit the number of initiators available on a node to the

maximum available CPUs so that the number of jobs scheduled to a node never

exceeds the available CPUs. This can be done by setting the MAX_STARTERS

configuration keyword as follows:

MAX_STARTERS = number_of_available_CPUs

Administrators must be careful in setting up the maximum number of starters that

can run on a compute node, if they turn on Linux CPU affinity support. Typically,

MAX_STARTERS should be the same as the number of processors available on a

compute node. To check to see if your kernel supports Linux CPU affinity, issue

the following command:

root@c197blade4b07# uname -r

2.6.9-11.EL.mcr25smp

root@c197blade4b07#

The 2.6 kernel or higher is required. To get Linux kernel information about how

many processors your node has, issue the following command to get a listing of

available LOGICAL processors:

root@c197blade4b07# cat /proc/cpuinfo

Use the parameters provided by this listing, such as physical ID and siblings, to

find the number of PHYSICAL processors available.

Troubleshooting

656 TWS LoadLeveler: Using and Administering

Why does a job stay in the Pending (or Starting) state?

If a job appears to stay in the Pending or Starting state, it is possible the job is

continually being dispatched and rejected. Check the setting of the

MAX_JOB_REJECT keyword. If it is set to -1 the job will be rejected an unlimited

number of times. Try resetting this keyword to a small number, such as 10. Also,

check the setting of the ACTION_ON_MAX_REJECT keyword. These keywords

are described in Chapter 12, “Configuration file reference,” on page 243.

What happens to running jobs when a machine goes down?

Both the startd daemon and the Schedd daemon maintain persistent states of all

jobs. Both daemons use a specific protocol to ensure that the state of all jobs is

consistent across LoadLeveler. In the event of a failure, the state can be recovered.

Neither the Schedd nor the startd daemon discard the job state information until it

is passed onto and accepted by another daemon in the process. Refer to Table 103

for more information.

 Table 103. Troubleshooting running jobs when a machine goes down

If Then

The network goes down

but the machines are

still running

If the network goes down but the machines are still running,

when LoadLeveler is restarted, it looks for all jobs that were

marked running when it went down. On the machine where the

job is running, the startd daemon searches for the job and if it can

verify that the job is still running, it continues to manage the job

through completion. On the machine where Schedd is running,

Schedd queues a transaction to the startd to reestablish the state

of the job. This transaction stays queued until the state is

established. Until that time, LoadLeveler assumes the state is the

same as when the system went down.

The network partitions

or goes down.

All transactions are left queued until the recipient has

acknowledged them. Critical transactions such as those between

the Schedd and startd are recorded on disk. This ensures complete

delivery of messages and prevents incorrect decisions based on

incomplete state information.

The machine with startd

goes down.

Because job state is maintained on disk in startd, when

LoadLeveler is restarted it can forward correct status to the rest of

LoadLeveler. In the case of total machine failure, this is usually

″JOB VACATED″, which causes the job to be restarted elsewhere.

In the case that only LoadLeveler failed, it is often possible to

″find″ the job if it is still running and resume management of it.

In this case LoadLeveler sends JOB RUNNING to the Schedd and

central manager, thereby permitting the job to run to completion.

The central manager

machine goes down.

All machines in the cluster send current status to the central

manager on a regular basis. When the central manager restarts, it

queries each machine that checks in, requesting the entire queue

from each machine. Over the period of a few minutes the central

manager restores itself to the state it was in before the failure.

Each Schedd is responsible for maintaining the correct state of

each job as it progressed while the central manager is down.

Therefore, it is guaranteed that the central manager will correctly

rebuild itself.

All jobs started when the central manager was down will

continue to run and complete normally with no loss of

information. Users may continue to submit jobs. These new jobs

will be forwarded correctly when the central manager is restarted.

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 657

Table 103. Troubleshooting running jobs when a machine goes down (continued)

If Then

The Schedd machine

goes down

When Schedd starts up again, it reads the queue of jobs and for

every job which was in some sort of active state (i.e. PENDING,

STARTING, RUNNING), it queries the machine where it is

marked active.

The running machine is required to return current status of the

job. If the job completed while Schedd was down, JOB

COMPLETE is returned with exit status and accounting

information. If the job is running, JOB RUNNING is returned. If

the job was vacated, JOB VACATED is returned. Because these

messages are left queued until delivery is confirmed, no job will

be lost or incorrectly dispatched due to Schedd failure.

During the time the Schedd is down, the central manager will not

be able to start new jobs that were submitted to that Schedd.

To recover the resources allocated to jobs scheduled by a Schedd

machine, see “How do I recover resources allocated by a Schedd

machine?” on page 660.

The llsubmit machine

goes down

Schedd gets its own copy of the executable so it does not matter if

the llsubmit machine goes down.

Why does llstatus indicate that a machine is down when llq

indicates a job is running on the machine?

If a machine fails while a job is running on the machine, the central manager does

not change the status of any job on the machine. When the machine comes back up

the central manager will be updated.

What happens if the central manager isn’t operating?

In one of your machine stanzas specified in the administration file, you specified a

machine to serve as the central manager. It is possible for some problem to cause

this central manager to become unusable such as network communication or

software or hardware failures. In such cases, the other machines in the LoadLeveler

cluster believe that the central manager machine is no longer operating. If you

assigned one or more alternate central managers in the machine stanza, a new

central manager will take control. The alternate central manager is chosen based

upon the order in which its respective machine stanza appears in the

administration file.

Once an alternate central manager takes control, it starts up its negotiator daemon

and notifies all of the other machines in the LoadLeveler cluster that a new central

manager has been selected. Figure 55 on page 659 illustrates how a machine can

become the alternate central manager.

Troubleshooting

658 TWS LoadLeveler: Using and Administering

The diagram illustrates that Machine Z is the primary central manager but

Machine A took control of the LoadLeveler cluster by becoming the alternate

central manager. Machine A remains in control as the alternate central manager

until either:

v The primary central manager, Machine Z, resumes operation. In this case,

Machine Z notifies Machine A that it is operating again and, therefore, Machine

A terminates its negotiator daemon.

v Machine A also loses contact with the remaining machines in the pool. In this

case, another machine authorized to serve as an alternate central manager takes

control. Note that Machine A may remain as its own central manager.

Figure 56 illustrates how multiple central managers can function within the same

LoadLeveler pool.

In this diagram, the primary central manager is serving Machines A and B. Due to

some network failure, Machines C, D, and E have lost contact with the primary

central manager machine and, therefore, Machine C which is authorized to serve as

an alternate central manager, assumes that role. Machine C remains as the alternate

central manager until either:

v The primary central manager is able to contact Machines C, D, and E. In this

case, the primary central manager notifies the alternate central managers that it

is operating again and, therefore, Machine C terminates its negotiator daemon.

The negotiator daemon running on the primary central manager machine is

refreshed to discard any old job status information and to pick up the new job

status information from the newly rejoined machines.

Machine Z

negotiator

Machine A

Machine Z

negotiator

Figure 55. When the primary central manager is unavailable

Machine Z

negotiator

Machine C

Machine D

Machine E

Machine A

negotiator

Machine B

Figure 56. Multiple central managers

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 659

v Machine C loses contact with Machines D and E. In this case, if machine D or E

is authorized to act as an alternate central manager, it assumes that role.

Otherwise, there will be no central manager serving these machines. Note that

Machine C remains as its own central manager.

While LoadLeveler can handle this situation of two concurrent central managers

without any loss of integrity, some installations may find administering it

somewhat confusing. To avoid any confusion, you should specify all primary and

alternate central managers on the same LAN segment.

For information on selecting alternate central managers, refer to “Defining

machines” on page 78.

How do I recover resources allocated by a Schedd machine?

If a node running the Schedd daemon fails, resources allocated to jobs scheduled

by this Schedd cannot be freed up until you restart the Schedd. Administrators

must do the following to enable the recovery of Schedd resources:

1. Recognize that a node running the Schedd daemon is down and will be down

long enough such that it is necessary for you to recover the Schedd resources.

2. Add the statement schedd_fenced=true to the machine stanza of the failed

node. This statement specifies that the central manager ignores connections

from the Schedd daemon running on this machine, and prevents conflicts from

arising when a Schedd machine is restarted while a purge is taking place.

3. Reconfigure the central manager node so that it recognizes the “fenced” Schedd

daemon. From the central manager machine issue llctl reconfig.

4. Issue the llmovespool -d spool_directory -h target_schedd_hostname command to

move a job queue database to another Schedd within a local cluster.

5. Remove all files in the LoadLeveler spool directory of the failed node. Once the

failed node is working again, you can remove the schedd_fenced=true

statement.

For more information, see “ll_move_spool subroutine” on page 634 and “Procedure

for recovering a job spool” on page 154.

Why can’t I find a core file on Linux?

On Linux, when a LoadLeveler daemon terminates abnormally a core file is not

generated. Why? Although a LoadLeveler daemon begins its existence as a root

process, it uses the system functions seteuid() and setegid() to switch to effective

user ID of loadl and effective group ID of loadl immediately after startup if the

file /etc/LoadL.cfg is not defined. If this file is defined, the user ID associated with

the LoadLUserid keyword and the group ID associated with the LoadLGroupid

keyword are used instead of the default loadl user and group IDs.

On Linux systems, unless the default kernel runtime behavior is modified, the

standard kernel action for a process that has successfully invoked seteuid() and

setegid() to have a different effective user ID and effective group ID is not to

dump a core file. So, if you want Linux to create a core file when a LoadLeveler

daemon terminates abnormally you must use the file /etc/LoadL.cfg to set both

LoadLUserid and LoadLGroupid to root.

On Red Hat Enterprise Linux 3.3 systems, the command sysctl -w

kernel.core_setuid_ok=1 can be used to change the default kernel core file creation

behavior of setuid programs. If the core_setuid_ok option is enabled, the values of

Troubleshooting

660 TWS LoadLeveler: Using and Administering

|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

LoadLUserid and LoadLGroupid in the /etc/LoadL.cfg file do not have to be root

for the successful creation of LoadLeveler core files.

Why am I seeing inconsistencies in my llfs output?

Generally, the sum of the used shares by all users and the sum of the used shares

by all LoadLeveler groups should have similar values. If there is a large (much

larger than the number of entries in the llfs output) and increasing difference

between the two sums, the cluster should be checked to make sure that all nodes

have the same clock time. Large time differences among nodes in a cluster could

lead to errors in the llfs output.

What happens if errors are found in my configuration or

administration file?

When errors are found during administration file processing, processing continues

in nearly all cases. Because processing continues, it is possible that even though the

administration file has been read, it might not resemble the intended configuration.

This is especially true in cases where opening and closing braces are mismatched.

It is possible for the parser to interpret stanzas as substanzas of another substanza,

and when this happens, those stanzas are effectively ignored. Consider these cases:

v A machine stanza is interpreted to be a substanza within a class stanza. Because

class stanzas only support substanzas of the user type, the machine substanza is

completely ignored.

v A user stanza is incorrectly interpreted to be a substanza within a class.

Although this is valid, that user stanza will not exist on its own, but will instead

be part of the class stanza, which was not the administrator’s intent.

It is difficult to determine whether an error in the administration file will

completely change the meaning of the file or if the error will effect only a single

keyword value. Because it is not necessarily desirable to shutdown LoadLeveler

daemons and commands for every possible error, and because the behavior should

be consistent, processing will continue. It is important for the administrator to be

aware of this behavior and to investigate and repair any configuration errors

reported by the llctl start command (see “llctl - Control LoadLeveler daemons” on

page 409 for more information).

Other questions

This topic contains answers to some miscellaneous questions asked by LoadLeveler

customers.

Why do I have to setuid = 0?

The master daemon starts the startd daemon and the startd daemon starts the

starter process. The starter process runs the job. The job needs to be run by the

userid of the submitter. You either have to have a separate master daemon running

for every ID on the system or the master daemon has to be able to su to every

userid and the only user ID that can su any other userid is root.

Why doesn’t LoadLeveler execute my .profile or .login script?

When you submit a batch job to LoadLeveler, the operating system will execute

your .profile script before executing the batch job if your login shell is the Korn

shell. On the other hand, if your login shell is the Bourne shell, on most operating

systems (including AIX), the .profile script is not executed. Similarly, if your login

shell is the C shell then AIX will execute your .login script before executing your

LoadLeveler batch job but some other variants of UNIX may not invoke this script.

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 661

The reason for this discrepancy is due to the interactions of the shells and the

operating system. To understand the nature of the problem, examine the following

C program that attempts to open a login Korn shell and execute the ″ls″ command:

#include <stdio.h>

main()

{

execl("/bin/ksh","-","-c","ls",NULL);

}

UNIX documentations in general (SunOS, HP-UX, AIX, IRIX) give the impression

that if the second argument is ″-″ then you get a login shell regardless of whether

the first argument is /bin/ksh or /bin/csh or /bin/sh. In practice, this is not the

case. Whether you get a login shell or not is implementation dependent and varies

depending upon the UNIX version you are using. On AIX you get a login shell for

/bin/ksh and /bin/csh but not the Bourne shell.

If your login shell is the Bourne shell and you would like the operating system to

execute your .profile script before starting your batch job, add the following

statement to your job command file:

@ shell = /bin/ksh

LoadLeveler will open a login Korn shell to start your batch job which may be a

shell script of any type (Bourne shell, C shell, or Korn shell) or just a simple

executable.

What happens when a mksysb is created when LoadLeveler is

running jobs?

When you create a mksysb (an image of the currently installed operating system)

at a time when LoadLeveler is running jobs, the state of the jobs is saved as part of

the mksysb. When the mksysb is restored on a node, those jobs will appear to be

on the node, in the same state as when they were saved, even though the jobs are

not actually there. To delete these phantom jobs, you must remove all files from

the LoadLeveler spool and execute directories and then restart LoadLeveler.

What can I do when a reserved node is down?

If the reservation has not started yet, the node might become available before the

reservation start time. If the node is still not available when the reservation starts,

a LoadLeveler administrator may use the llchres command to remove the node

and replace it with another.

How do I add or remove a node from the LoadLeveler

administration file?

To add or remove a node from the LoadLeveler administration file, you must stop

and restart LoadLeveler. Because stopping LoadLeveler will cause all running jobs

to be vacated, you might want to drain the cluster before stopping LoadLeveler.

To add or remove nodes from the LoadL_admin file, do the following:

1. (Optional) Drain all nodes to allow all running jobs to complete by issuing the

following command:

llctl -g drain startd allclasses

2. Stop LoadLeveler by issuing the following command:

llctl -g stop

3. Add and/or remove nodes from the LoadL_admin file.

4. Start LoadLeveler by issuing the following command:

llctl -g start

Troubleshooting

662 TWS LoadLeveler: Using and Administering

|
|
|
|
|

|

|
|

|

|

|

|

|

|

Troubleshooting in a multicluster environment

The following subtopics will help you troubleshoot your multicluster environment.

How do I determine if I am in a multicluster environment?

v Issue the llstatus command.

– Output of command will display ″Cluster name is cluster_name″.

How do I determine how my multicluster environment is

defined and what are the inbound and outbound hosts defined

for each cluster?

v Issue llstatus -C command.

– Output of command will display the local cluster’s administration file cluster

stanza information.
v Issue llstatus -X all -C command.

– Output of command will display the administration file cluster stanza

information for all clusters defined in the local cluster’s configuration.

Why is my multicluster environment not enabled?

v Issue llstatus -X all -C.

– The cluster stanzas defined for each cluster participating in the multicluster

environment must have the same outbound_hosts and inbound_hosts

defined.

– Determine if any of the clusters are being started with

SCHEDD_STREAM_PORT defined. The inbound_schedd_port keyword

must be set for that cluster.
v Set the D_MUSTER debug flag for the SCHEDD_DEBUG configuration

keyword on the machines defined as inbound_hosts andoutbound_hosts,

reconfigure LoadLeveler and examine the SchedLog on those machines for

information about configuration errors.

v If the clusters are trying to enable OpenSSL, examine the SchedLog on the

inbound_hosts and outbound_hosts for messages about SSL initialization errors

and that multicluster is being disabled.

How do I find log messages from my multicluster defined

installation exits?

v Determine which machine is executing the installation exit.

– For CLUSTER_METRIC:

- If the user specifies the reserved word any as the cluster_list during job

submission, the job is sent to the first outbound Schedd defined for the first

configured remote cluster. The CLUSTER_METRIC is executed on this

Schedd to determine where the job will be distributed. If this Schedd is not

the outbound_hosts schedd for the assigned cluster, the job will be

forwarded to the correct outbound_hosts schedd. If the user specifies a list

of clusters as the cluster_list during job submission, the job is sent to the

first outbound Schedd defined for the first specified remote cluster. The

CLUSTER_METRIC is executed on this Schedd to determine where the job

will be distributed. If this Schedd is not the outbound_hosts schedd for the

assigned cluster, the job will be forwarded to the correct outbound_hosts

schedd.

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 663

|

– For CLUSTER_USER_MAPPER:

- This installation exit is executed on the inbound_hosts of the local cluster

when receiving a job submission, move job request or remote command.
– For CLUSTER_REMOTE_JOB_FILTER:

- This installation exit is executed on the inbound_hosts of the local cluster

when receiving a job submission or move job request.
v Set the D_MUSTER debug flag for the SCHEDD_DEBUG configuration

keyword on the machines defined as inbound_hosts and outbound_hosts,

reconfigure LoadLeveler and examine the SchedLog on those machines for

information about configuration errors.

Why won’t my remote job be submitted or moved?

v Determine if the remote job filter has changed the number of steps within the

job.

– If the local submission filter on the submitting cluster has added or deleted

steps from the original user’s job command file, the remote job filter must add

or delete the same number of steps. The job command file statements

returned by the remote job filter must contain the same number of steps as

the job object received from the sending cluster.
v Determine if the job failed the assigned cluster’s include and exclude rules for

the cluster and/or class stanzas.

– If the assigned cluster has CLUSTER_USER_MAPPING enabled, the mapped

user ID is applied to the rules.
v Issue llq to determine if the job being moved has all of its steps in an idle-like

state.

– The llmovejob command should fail and report this situation.
v Issue llq -x -d job_id to determine if the job being moved has a job command file

associated with it.

– A job cannot be moved that was not submitted while in the multicluster

environment.
v See “How do I find log messages from my multicluster defined installation

exits?” on page 663 to determine if an installation exit has returned an error.

v Determine that the file system in the assigned cluster has the desired availability

and permissions.

– User may be mapped to another user ID thus another $HOME.

– User needs to have initialdir available.

– cluster_input_file and cluster_output_file need requested file locations to be

available.

– If clusters share a common file system, users requesting cluster_input_file

and cluster_output_file may have their remote location files removed if a

local job is moved to another cluster. During a llmovejob operation, the files

are copied from the remote location to the remote location instead of from the

local location to the remote location. LoadLeveler only knows that the job

being moved has access to the remote location because they were copied

during the local submission. After the llmovejob is complete, LoadLeveler

removes the files from the local cluster in the remote location, thus removing

the files just copied.
v Determine if the job is an interactive jobs.

– Interactive jobs may not be submitted to remote clusters.

Troubleshooting

664 TWS LoadLeveler: Using and Administering

v If the llsubmit or llmovejob command times out while waiting for a response

from the remote cluster, LoadLeveler is not able to determine if the command

was successful and it is recommended that the user issue llq to the remote

cluster to determine if the job was submitted or moved.

Why did the CLUSTER_REMOTE_JOB_FILTER not update the

job with all of the statements I defined?

v See the CLUSTER_REMOTE_JOB_FILTER configuration file keyword description

for a list of keywords that are not changed by the filter.

How do I find my remote job?

v Capture the stdout of the llsubmit and llmovejob commands to see the

outbound_hosts machine assigned to the job, the inbound_hosts machine

assigned to the job, the cluster assigned to the job, and the job identifier

assigned to the job.

– The Schedd host represented in the job identifier for remote jobs does not

represent the managing Schedd of the job. It represents the Schedd that

assigned the job number.
v Issue the llq -X all command and search for the desired job identifier.

v Check for pertinent mail messages.

– If a job has been moved by an administrator, the submitting user will receive

mail notification.

– The job may have completed already. If the user has notify_user and

notification set, mail will indicate job status.

Why won’t my remote job run?

If the remote job has been received by the central manager of the remote cluster:

v Follow the troubleshooting tips for local jobs in “Why won’t my job run?” on

page 652 or “Why won’t my parallel job run?” on page 654.

v Use the information from the llsubmit and llq commands to determine the

machines that have processed the job. Examine the Schedd logs on those

machines for information relating to the specific job.

v Capture the stdout of the llsubmit and llmovejob commands to see the

outbound_hosts machine assigned to the job, the inbound_hosts machine

assigned to the job, the cluster assigned to the job, and the job identifier

assigned to the job.

Note: The Schedd host represented in the job identifier for remote jobs does not

represent the managing Schedd of the job. It represents the Schedd that

assigned the job number.

v Issue llq -X remote_cluster -l job_ID.

v Check for the multicluster environment related keywords (see the llq command

for detailed data descriptions):

– Scheduling Cluster - what cluster is the job running in.

– Submitting Cluster - what cluster was the job submitted from

– Sending Cluster - during move job what cluster did the job come from

– Requested Cluster - cluster_list specified by user.

– Schedd History - history of managing Schedds

– Outbound Schedds - history of outbound Schedds

– Submitting User - user name that the job was submitted under

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 665

v Check for pertinent mail messages.

Why does llq -X all show no jobs running when there are jobs

running?

v When not using CLUSTER_USER_MAPPER, check that the user’s uid are the

same between the local cluster and remote cluster.

Helpful hints

This topic contains tips on running LoadLeveler, including some productivity aids.

Scaling considerations

If you are running LoadLeveler on a large number of nodes (128 or more), network

traffic between LoadLeveler daemons can become excessive to the point of

overwhelming a receiving daemon. To reduce network traffic, consider the

following daemon, keyword, and command recommendations for large

installations.

v Set the POLLS_PER_UPDATE*POLLING_FREQUENCY interval to five minutes

or more. This limits the volume of machine updates the startd daemons send to

the negotiator. For example, set POLLS_PER_UPDATE to 10 and set

POLLING_FREQUENCY to 30 seconds.

v If your installation’s mix of jobs includes a high percentage of parallel jobs

requiring many nodes, specify schedd_host=yes in the machine stanza of each

Schedd machine. The Schedd daemons must communicate with hundreds of

startd daemons every time a job runs. You can distribute this communication by

activating many Schedd daemons. Typically, the number of Schedd machines in

a LoadLeveler cluster ranges from 2 to 10, depending on the mix of workload

and number of jobs in the system.

v If your installation allows jobs to be submitted from machines running the

Schedd daemon, you should consider avoiding “Schedd affinity” by specifying

SCHEDD_SUBMIT_AFFINITY=FALSE in the LoadLeveler configuration file.

By default, the llsubmit command submits a job to the machine where the

command was invoked provided the Schedd daemon is running on the machine.

(This is called Schedd affinity.)

v You can decrease the amount of time the negotiator daemon spends running

negotiation loops by increasing the NEGOTIATOR_INTERVAL and the

NEGOTIATOR_CYCLE_DELAY. For example, set NEGOTIATOR_INTERVAL

to 600, and set NEGOTIATOR_CYCLE_DELAY to 30.

v Make sure the machine update interval is not too short by setting the

MACHINE_UPDATE_INTERVAL to a value larger than three times the polling

interval (POLLS_PER_UPDATE*POLLING_FREQUENCY). This prevents the

negotiator from prematurely marking a machine as “down” or prematurely

cancelling jobs.

v In a large LoadLeveler cluster, issuing the llctl command with the -g can take

minutes to complete. To speed this up, set up a working collective containing

the machines in the cluster and use the dsh command; for example, dsh llctl

reconfig. This command also allows you to limit your operation to a subset of

machines by defining other working collectives.

Hints for running jobs

The following subtopics provide some helpful hints that are useful for running

jobs.

Troubleshooting

666 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|

Determining when your job started and stopped

By reading the notification mail you receive after submitting a job, you can

determine the time the job was submitted, started, and stopped. Suppose you

submit a job and receive the following mail when the job finishes:

Submitted at: Mon Oct 16 11:40:41 2006

Started at: Mon Oct 16 11:45:00 2006

Exited at: Mon Oct 16 12:49:10 2006

Real Time: 0 01:08:29

Job Step User Time: 0 00:30:15

Job Step System Time: 0 00:12:55

Total Job Step Time: 0 00:43:10

Starter User Time: 0 00:00:00

Starter System Time: 0 00:00:00

Total Starter Time: 0 00:00:00

This mail tells you the following:

Submitted at The time you issued the llsubmit command or the time you

submitted the job with the graphical user interface.

Started at The time the starter process executed the job.

Exited at The actual time your job completed.

Real Time The wall clock time from submit to completion.

Job Step User Time

The CPU time the job consumed executing in user space.

Job Step System Time

The CPU time the system (AIX) consumed on behalf of the job.

Total Job Step Time

The sum of the Job Step User Time and Job Step System Time

fields.

Starter User Time

The CPU time consumed by the LoadLeveler starter process for

this job, executing in user space. Time consumed by the starter

process is the only LoadLeveler overhead which can be directly

attributed to a user’s job.

Starter System Time

The CPU time the system (AIX) consumed on behalf of the

LoadLeveler starter process running for this job.

Total Starter Time

The sum of the Starter User Time and Starter System Time fields.

You can also get the starting time by issuing llsummary -l -x and then issuing awk

/Date|Event/ against the resulting file. For this to work, you must have ACCT =

A_ON A_DETAIL set in the LoadL_config file.

Running jobs at a specific time of day

Using a machine’s local configuration file, you can set up the machine to run jobs

at a certain time of day (sometimes called an execution window). The following

coding in the local configuration file runs jobs between 5:00 PM and 8:00 AM daily,

and suspends jobs the rest of the day:

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 667

START: (tm_hour >= 1700) || (tm_hour <= 0800)

SUSPEND: (tm_hour > 0800) && (tm_hour < 1700)

CONTINUE: (tm_hour >= 1700) || (tm_hour <= 0800)

Controlling the mix of idle and running jobs

The following keywords determine the mix of idle and running jobs for a user or

group. These keywords, which are described in detail in “Defining users” on page

91, are:

maxqueued

Controls the number of jobs in any of these states: Idle, Pending, Starting,

Running, Preempt Pending, Preempted, Resume Pending, and Checkpointing.

maxjobs

Controls the number of jobs in any of these states: Running, Pending, or

Starting; thus it controls a subset of what maxqueued controls. The maxjobs

keyword effectively controls the number of jobs in the Running state, since

Pending and Starting are usually temporary states.

Note: The maxjobs keyword can also be configured in the class stanza to limit

the total number of running job steps of a particular class.

maxidle

Controls the number of jobs in any of these states: Idle, Pending, or Starting;

thus it controls a subset of what maxqueued controls. The maxidle keyword

effectively controls the number of jobs in the Idle state, since Pending and

Starting are usually temporary states.

Administrators can restrict the number of queued, idle, and running job steps on a

per-class, per-user basis. The LoadLeveler administrator specifies the per-class,

per-user constraints in the LoadL_admin file using user substanzas within each

class stanza. For more information about substanzas, see “Defining user substanzas

in class stanzas” on page 88.

What happens when you submit a job

For a user’s job to be allowed into the job queue and then dispatched:

v The total of other jobs (in the Idle, Pending, Starting, and Running states) for

that user must be less than the maxqueued value for that user.

v The total idle jobs (those in the Idle, Pending, and Starting states) must be less

than the maxidle value for the user.

v Constraints on the group’s jobs and the user’s jobs belonging to a particular

class are considered.

Also, if the number of jobs exceeds the value specified by any of these max

keywords, the job being considered is placed in the Not Queued state until one of

the other jobs changes state. If the user is at the maxqueued limit, a job must

complete, be canceled, or be held before the new job can enter the queue. If the

user is at the maxidle limit, a job must start running, be canceled, or be held

before the new job can enter the queue.

Once a job is in the queue, the job is not taken out of queue unless the user places

a hold on the job, the job completes, or the job is canceled. This even applies to a

job which is rejected or vacated and returned to the queue in the Idle state. (An

exception to this, when you are running the default LoadLeveler scheduler, is

parallel jobs which do not accumulate sufficient machines in a given time period.

These jobs are moved to the Deferred state, meaning they must vie for the queue

when their Deferred period expires.)

Troubleshooting

668 TWS LoadLeveler: Using and Administering

Once a job is in the queue, the job will run unless the maxjobs limit for the user is

at a maximum.

Note the following restrictions for using these keywords:

v If maxqueued is greater than (maxjobs + maxidle), the maxqueued value will

never be reached.

v If either maxjobs or maxidle is greater than maxqueued, then maxqueued will

be the only restriction in effect, since maxjobs and maxidle will never be

reached.

Sending output from several job steps to one output file

You can use dependencies in your job command file to send the output from many

job steps to the same output file. For example:

@ step_name = step1

@ executable = ssba.job

@ output = ssba.tmp

@ ...

@ queue

@ step_name = append1

@ dependency = (step1 != CC_REMOVED)

@ executable = append.ksh

@ output = /dev/null

@ queue

@

@ step_name = step2

@ dependency = (append1 == 0)

@ executable = ssba.job

@ output = ssba.tmp

@ ...

@ queue

@

@ step_name = append2

@ dependency = (step2 != CC_REMOVED)

@ executable = append.ksh

@ output = /dev/null

@ queue

...

Then, the file append.ksh could contain the line cat ssba.tmp >> ssba.log. All your

output will reside in ssba.log. (Your dependencies can look for different return

values, depending on what you need to accomplish.)

You can achieve the same result from within ssba.job by appending your output to

an output file rather than writing it to stdout. Then your output statement for each

step would be /dev/null and you wouldn’t need the append steps.

Hints for using machines

The following subtopics provide some helpful hints for using machines.

Setting up a single machine to have multiple job classes

You can define a machine to have multiple job classes which are active at different

times. For example, suppose you want a machine to run jobs of Class A any time,

and you want the same machine to run Class B jobs between 6 p.m. and 8 a.m.

You can combine the Class keyword with a user-defined macro (called Off_shift in

this example).

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 669

For example:

Off_Shift = ((tm_hour >= 18) || (tm_hour < 8))

Then define your START statement:

START : (Class == "A") || ((Class == "B") && $(Off_Shift))

Make sure you have the parenthesis around the Off_Shift macro, since the logical

OR has a lower precedence than the logical AND in the START statement.

Also, to take weekends into account, code the following statements. Remember

that Saturday is day 6 and Sunday is day 0.

Off_Shift = ((tm_wday == 6) || (tm_wday == 0) || (tm_hour >=18) \

|| (tm_hour < 8))

Prime_Shift = ((tm_wday != 6) && (tm_wday != 0) && (tm_hour >= 8) \

&& (tm_hour < 18))

Reporting the load average on machines

You can use the /usr/bin/rup command to report the load average on a machine.

The rup machine_name command gives you a report that looks similar to the

following:

localhost up 23 days, 10:25, load average: 1.72, 1.05, 1.17

You can use this command to report the load average of your local machine or of

remote machines. Another command, /usr/bin/uptime, returns the load average

information for only your local host.

History files and Schedd

The Schedd daemon writes to the spool/history file only when a job is completed

or removed. Therefore, you can delete the history file and restart Schedd even

when some jobs are scheduled to run on other hosts.

However, you should clean up the spool/job_queue.dir and spool/job_queue.pag

files only when no jobs are being scheduled on the machine.

You should not delete these files if there are any jobs in the job queue that are

being scheduled from this machine (for example, jobs with names such as

thismachine.clusterno.jobno).

For fair share scheduling, Schedd daemons store historic CPU data for users and

groups when their jobs terminate. Usually, a LoadLeveler cluster has more than

one Schedd daemon. Each Schedd daemon only saves its own portion of the

historic CPU data. The following database files in the directory specified by the

SPOOL keyword on each Schedd machine contain the historic CPU data:

v fair_share_queue.dir

v fair_share_queue.pag

Getting help from IBM

Should you require help from IBM in resolving a LoadLeveler problem, you can

get assistance by calling IBM Support. Before you call, be sure you have the

following information:

1. Your access code (customer number).

2. The LoadLeveler product number.

3. The name and version of the operating system you are using.

Troubleshooting

670 TWS LoadLeveler: Using and Administering

4. A telephone number where you can be reached.

In addition, issue the following command:

 llctl version

This command will provide you with code level information. Provide this

information to the IBM representative.

The number for IBM support in the United States is 1-800-IBM-4YOU (426-4968).

The Facsimile number is 800-2IBM-FAX (2426-329).

Troubleshooting

Appendix A. Troubleshooting LoadLeveler 671

672 TWS LoadLeveler: Using and Administering

Appendix B. Sample command output

The listings included in this topic are for the following commands:

v “llclass - Query class information” on page 403

v “llq - Query job status” on page 449

v “llstatus - Query machine status” on page 477

v “llsummary - Return job resource information for accounting” on page 496

llclass -l command output listing

The following listing shows llclass -l in a cluster with class stanzas configured in

the LoadL_admin file for classes named high, medium, and low:

=============== Class low ===============

 Name: low

 Priority: 30

 Exclude_Users:

 Include_Users:

 Exclude_Groups:

 Include_Groups:

 Admin:

 Max_processors: -1

 Maxjobs: -1

Resource_requirement: ConsumableVirtualMemory(5.000 mb)

 Class_comment:

 Class_ckpt_dir: /LL/ckptfiles

 Ckpt_limit: undefined, undefined

 Wall_clock_limit: 00:10:00, 00:15:00 (600 seconds, 900 seconds)

Def_wall_clock_limit: 00:10:00, 00:15:00 (600 seconds, 900 seconds)

 Job_cpu_limit: undefined, undefined

 Cpu_limit: undefined, undefined

 Data_limit: undefined, undefined

 Core_limit: undefined, undefined

 File_limit: undefined, undefined

 Stack_limit: undefined, undefined

 Rss_limit: undefined, undefined

 Nice: 0

 Free_slots: 16

 Maximum_slots: 16

 Max_total_tasks: -1

 Max_proto_instances: 2

 Preempt_class:

 Start_class:

 User default: maxidle(-1) maxqueued(-1) maxjobs(-1) max_total_tasks(-1)

 User llbld: maxidle(-1) maxqueued(30) maxjobs(10) max_total_tasks(15)

=============== Class high ===============

 Name: high

 Priority: 70

 Exclude_Users: loadl

 Include_Users:

 Exclude_Groups: No_Group

 Include_Groups:

 Admin: loadlst

 Max_processors: -1

 Maxjobs: -1

Resource_requirement:

 Class_comment:

 Class_ckpt_dir:

 Ckpt_limit: undefined, undefined

 Wall_clock_limit: 00:24:00, 00:20:00 (1440 seconds, 1200 seconds)

Def_wall_clock_limit: 00:24:00, 00:20:00 (1440 seconds, 1200 seconds)

 Job_cpu_limit: undefined, undefined

 Cpu_limit: 00:15:00, undefined (900 seconds, undefined)

 Data_limit: 10.000 mb, 8.000 mb (10485760 bytes, 8388608 bytes)

 Core_limit: unlimited, undefined

 File_limit: 5.000 gb, 4.000 gb (5368709120 bytes, 4294967296 bytes)

 Stack_limit: unlimited, unlimited

 Rss_limit: unlimited, unlimited

 Nice: 0

 Free_slots: 16

 Maximum_slots: 16

 Max_total_tasks: -1

 673

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Max_proto_instances: 2

 Preempt_class: ALL:VC{medium}

 Start_class:

 User default: maxidle(-1) maxqueued(-1) maxjobs(-1) max_total_tasks(-1)

=============== Class medium ===============

 Name: medium

 Priority: 50

 Exclude_Users:

 Include_Users: llbld

 Exclude_Groups:

 Include_Groups:

 Admin:

 Max_processors: -1

 Maxjobs: -1

Resource_requirement: donuts(10) widgets(5)

 Class_comment:

 Class_ckpt_dir:

 Ckpt_limit: undefined, undefined

 Wall_clock_limit: 12:00:00, 12:00:00 (43200 seconds, 43200 seconds)

Def_wall_clock_limit: 12:00:00, 12:00:00 (43200 seconds, 43200 seconds)

 Job_cpu_limit: undefined, undefined

 Cpu_limit: 02:00:00, undefined (7200 seconds, undefined)

 Data_limit: undefined, undefined

 Core_limit: undefined, undefined

 File_limit: undefined, undefined

 Stack_limit: undefined, undefined

 Rss_limit: undefined, undefined

 Nice: 0

 Free_slots: 16

 Maximum_slots: 16

 Max_total_tasks: -1

 Max_proto_instances: 2

 Preempt_class: ENOUGH:SU{low}

 Start_class:

 User default: maxidle(-1) maxqueued(40) maxjobs(-1) max_total_tasks(20)

--

llq -l command output listing

The following listing shows the llq -l output for a POE Parallel non-checkpointing

job step:

=============== Job Step e189f2rp01.ppd.pok.ibm.com.66.0 ===============

 Job Step Id: e189f2rp01.ppd.pok.ibm.com.66.0

 Job Name: multi_lapi_mpi

 Step Name: 0

 Structure Version: 10

 Owner: llbld

 Queue Date: Tue Aug 29 14:40:47 EDT 2006

 Status: Running

 Reservation ID: e189f2rp02.ppd.pok.ibm.com.12.r

 Requested Res. ID:

 Scheduling Cluster: CL2

 Submitting Cluster: CL1

 Sending Cluster: CL1

 Requested Cluster: CL2

 Schedd History: e189f2rp01.ppd.pok.ibm.com

 Outbound Schedds: e189f5rp04.ppd.pok.ibm.com

 Submitting User: llbld

 Dispatch Time: Tue Aug 29 14:40:47 EDT 2006

 Completion Date:

 Completion Code:

 Favored Job: No

 User Priority: 50

 user_sysprio: 0

 class_sysprio: 0

 group_sysprio: 0

 System Priority: -3115628

 q_sysprio: -3115628

 Previous q_sysprio: 0

 Notifications: Complete

 Virtual Image Size: 518 kb

 Large Page: N

 Coschedule: no

 SMT required: no

 Checkpointable: no

 Ckpt Start Time:

Good Ckpt Time/Date:

 Ckpt Elapse Time: 0 seconds

Fail Ckpt Time/Date:

 Ckpt Accum Time: 0 seconds

Sample command output

674 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Checkpoint File:

 Ckpt Execute Dir:

 Restart From Ckpt: no

 Restart Same Nodes: no

 Restart: yes

 Preemptable: yes

 Preempt Wait Count: 0

 Hold Job Until:

 RSet: RSET_NONE

Mcm Affinity Options:

 Env:

 In: /dev/null

 Out: multi.out

 Err: multi.err

Initial Working Dir: /u/llbld/Checkpoint/cmd

 Dependency:

 Resources:

 Step Type: General Parallel

 Node Usage: shared

 Submitting Host: e189f2rp01.ppd.pok.ibm.com

 Schedd Host: e189f2rp01.ppd.pok.ibm.com

 Job Queue Key:

 Notify User: llbld@e189f2rp01.ppd.pok.ibm.com

 Shell: /bin/ksh

 LoadLeveler Group: No_Group

 Class: medium

 Ckpt Hard Limit: undefined

 Ckpt Soft Limit: undefined

 Cpu Hard Limit: undefined

 Cpu Soft Limit: undefined

 Data Hard Limit: undefined

 Data Soft Limit: undefined

 Core Hard Limit: undefined

 Core Soft Limit: undefined

 File Hard Limit: undefined

 File Soft Limit: undefined

 Stack Hard Limit: undefined

 Stack Soft Limit: undefined

 Rss Hard Limit: undefined

 Rss Soft Limit: undefined

Step Cpu Hard Limit: undefined

Step Cpu Soft Limit: undefined

Wall Clk Hard Limit: 00:30:00 (1800 seconds)

Wall Clk Soft Limit: 00:30:00 (1800 seconds)

 Comment: "Parallel MPI and LAPI test"

 Account:

 Unix Group: usr

 gotiator Messages:

 Bulk Transfer: No

 Step rCxt Blocks: 0

Adapter Requirement: (sn_single,LAPI,US,shared,AVERAGE,instances=1,),\

 (sn_all,MPI,IP,shared,LOW,instances=1,)

 Step Cpus: 0

Step Virtual Memory: 0.000 mb

 Step Real Memory: 0.000 mb

--

Node

 Name :

 Preferences :

 Node minimum : 3

 Node maximum : 3

 Node actual : 3

 Allocated Hosts : e189f2rp02.ppd.pok.ibm.com::sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,14,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(LAPI,US,15,Shared,0 rCxt Blks)

 + e189f2rp01.ppd.pok.ibm.com::sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,34,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(LAPI,US,35,Shared,0 rCxt Blks)

 + e189f2rp03.ppd.pok.ibm.com::sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn1(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,10,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(LAPI,US,11,Shared,0 rCxt Blks)

 Master Task

 Executable : /usr/bin/poe

 Exec Args : /u/llbld/bin/multi_lapi_mpi64 1 -ilevel 6 -labelio yes -pmdlog yes

 Num Task Inst: 1

Sample command output

Appendix B. Sample command output 675

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Task Instance: e189f2rp02:-1,

 Task

 Num Task Inst: 6

 Task Instance: e189f2rp02:0:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks),\

 sn0(LAPI,US,14,Shared,0 rCxt Blks),

 Task Instance: e189f2rp02:1:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks),\

 sn0(LAPI,US,15,Shared,0 rCxt Blks),

 Task Instance: e189f2rp01:2:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks),\

 sn0(LAPI,US,34,Shared,0 rCxt Blks),

 Task Instance: e189f2rp01:3:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks),\

 sn0(LAPI,US,35,Shared,0 rCxt Blks),

 Task Instance: e189f2rp03:4:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks),\

 sn0(LAPI,US,10,Shared,0 rCxt Blks),

 Task Instance: e189f2rp03:5:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn1(MPI,IP,-1,Shared,0 rCxt Blks),\

 sn0(LAPI,US,11,Shared,0 rCxt Blks),

1 job step(s) in query, 0 waiting, 0 pending, 1 running, 0 held, 0 preempted

llq -l command output listing for a Blue Gene enabled system

The following listing is a fragment of the llq -l output for a system where Blue

Gene support is enabled and Blue Gene is present:

=============== Job Step bgldd1.rchland.ibm.com.37.0 ===============

 Job Step Id: bgldd1.rchland.ibm.com.37.0

 Job Name: bgldd1.rchland.ibm.com.37

 Step Name: 0

 Cmd: /usr/bin/mpirun

 Args: -exe /test/com -cwd /test -args "-o 100 -b 64 -e 8388608 -n -i -r" -verbose 2

 Env:

 In: /dev/null

 Out: /bglscratch/varella/out.bgldd1/bgldd1.R010_J111_128.37.0.out

 Err: /bglscratch/varella/out.bgldd1/bgldd1.mpirun.R010_J111_128.37.0.out

Initial Working Dir: /test/jcf

 Dependency:

 Resources:

 Preferences:

 Step Type: Blue Gene

 Size Requested:

 Size Allocated:

 Shape Requested:

 Shape Allocated:

 Wiring Requested: MESH

 Wiring Allocated:

 Rotate: True

 Blue Gene Status:

 Blue Gene Job Id:

 BG Requirements: (Memory == 1024)

Partition Requested: R010_J111_128

Partition Allocated:

 Error Text:

llq -l -x command output listing

The following listing shows the llq -l -x output for a POE Parallel

non-checkpointing job step when the LoadLeveler cluster runs with Job Accounting

enabled:

=============== Job Step e189f5rp01.ppd.pok.ibm.com.3.0 ===============

 Job Step Id: e189f5rp01.ppd.pok.ibm.com.3.0

 Job Name: btat_MPI/IP/sn_single

 Step Name: Step_1

 Structure Version: 10

 Owner: llbld

 Queue Date: Tue Aug 29 12:58:45 EDT 2006

 Status: Running

 Reservation ID:

 Requested Res. ID:

 Scheduling Cluster: CL2

 Submitting Cluster: CL1

 Sending Cluster: CL1

 Requested Cluster: CL2

 Schedd History: e189f5rp04.ppd.pok.ibm.com

Sample command output

676 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Outbound Schedds: e189f5rp01.ppd.pok.ibm.com

 Submitting User: llbld

 Dispatch Time: Tue Aug 29 12:58:47 EDT 2006

 Completion Date:

 Completion Code:

 Favored Job: No

 User Priority: 50

 user_sysprio: 0

 class_sysprio: 30

 group_sysprio: 65

 System Priority:

 q_sysprio:

 Previous q_sysprio:

 Notifications: Always

 Virtual Image Size: 518 kb

 Large Page: N

 Coschedule: no

 SMT required: no

 Checkpointable: yes

 Ckpt Start Time:

Good Ckpt Time/Date:

 Ckpt Elapse Time: 0 seconds

Fail Ckpt Time/Date:

 Ckpt Accum Time: 0 seconds

 Checkpoint File: /ckptfiles/llbld/btat_MPI/IP/sn_single.e189f5rp01.ppd.pok.ibm.com.3.0.ckpt

 Ckpt Execute Dir:

 Restart From Ckpt: no

 Restart Same Nodes: no

 Restart: yes

 Preemptable: yes

 Preempt Wait Count: 0

 Hold Job Until:

 RSet: RSET_NONE

Mcm Affinity Options:

 Env: LANG=en_US LOGIN=llbld PATH=.:/bin:/usr/bin:/etc:/usr/ucb...

 In: /dev/null

 Out: btat.e189f5rp04.3.0.out

 Err: btat.e189f5rp04.3.0.err

Initial Working Dir: /u/llbld/Checkpoint/cmd

 Dependency:

 Resources: ConsumbableCpus(4)

 Step Type: General Parallel

 Node Usage: shared

 Submitting Host: e189f5rp01.ppd.pok.ibm.com

 Schedd Host: e189f5rp04.ppd.pok.ibm.com

 Job Queue Key: 000003

 Notify User: llbld

 Shell: /bin/ksh

 LoadLeveler Group: No_Group

 Class: medium

 Ckpt Hard Limit: undefined

 Ckpt Soft Limit: undefined

 Cpu Hard Limit: 00:30:00 (1800 seconds)

 Cpu Soft Limit: 00:25:00 (1500 seconds)

 Data Hard Limit: 8.200 gb (8804682956 bytes)

 Data Soft Limit: 7.100 gb (7623566950 bytes)

 Core Hard Limit: 11.200 gb (12025908428 bytes)

 Core Soft Limit: 11.100 gb (11918534246 bytes)

 File Hard Limit: unlimited

 File Soft Limit: unlimited

 Stack Hard Limit: 400.000 mb (419430400 bytes)

 Stack Soft Limit: 300.000 mb (314572800 bytes)

 Rss Hard Limit: 15.200 gb (16320875724 bytes)

 Rss Soft Limit: 15.100 gb (16213501542 bytes)

Step Cpu Hard Limit: undefined

Step Cpu Soft Limit: undefined

Wall Clk Hard Limit: 00:20:00 (1200 seconds)

Wall Clk Soft Limit: 00:20:00 (1200 seconds)

 Comment: "BTAT test running MPI/IP over switch"

 Account:

 Unix Group: usr

 User Space Windows: 0

Negotiator Messages:

 Bulk Transfer: No

 Step rCxt Blocks: 0

Adapter Requirement: (sn_single,MPI,IP,shared,LOW,instances=1,),(sn_single,LAPI,US,shared,LOW,\

 instances=1,)

 Step Cpus: 4

Step Virtual Memory: 0.000 mb

 Step Real Memory: 0.000 mb

--------------- Detail for e189f5rp01.ppd.pok.ibm.com.3.0 ---------------

 Running Host: e189f5rp04.ppd.pok.ibm.com

 Machine Speed: 1.000000

 Starter User Time: 00:00:00.164480

Starter System Time: 00:00:00.066182

 Starter Total Time: 00:00:00.230662

Sample command output

Appendix B. Sample command output 677

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Starter maxrss: 1888

 Starter ixrss: 7272

 Starter idrss: 13868

 Starter isrss: 0

 Starter minflt: 0

 Starter majflt: 0

 Starter nswap: 0

 Starter inblock: 0

 Starter oublock: 0

 Starter msgsnd: 0

 Starter msgrcv: 0

 Starter nsignals: 3

 Starter nvcsw: 295

 Starter nivcsw: 0

 Step User Time: 00:03:02.246821

 Step System Time: 00:00:59.628595

 Step Total Time: 00:04:01.875416

 Step maxrss: 6308

 Step ixrss: 709692

 Step idrss: 105216304

 Step isrss: 0

 Step minflt: 1858

 Step majflt: 0

 Step nswap: 0

 Step inblock: 0

 Step oublock: 0

 Step msgsnd: 0

 Step msgrcv: 0

 Step nsignals: 0

 Step nvcsw: 5200734

 Step nivcsw: 3311517

--

Node

 Name :

 Preferences :

 Node minimum : 1

 Node maximum : 1

 Node actual : 1

 Allocated Hosts : e189f5rp04.ppd.pok.ibm.com:RUNNING:sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn0(MPI,IP,-1,Shared,0 rCxt Blks), \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks)

 Master Task

 Executable : /bin/poe

 Exec Args : /u/llbld/bin/btat -d 240 -v -ilevel 6 -labelio yes -pmdlog yes

 Num Task Inst: 1

 Task Instance: e189f5rp04:-1,

 Task

 Num Task Inst: 4

 Task Instance: e189f5rp04:0:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,-1,shared,0 rCxt Blks),

 Task Instance: e189f5rp04:1:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,-1,shared,0 rCxt Blks),

 Task Instance: e189f5rp04:2:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,-1,shared,0 rCxt Blks),

 Task Instance: e189f5rp04:3:sn0(MPI,IP,-1,Shared,0 rCxt Blks),sn0(LAPI,US,-1,shared,0 rCxt Blks),

1 job step(s) in queue, 0 waiting, 0 pending, 1 running, 0 held, 0 preempted

llstatus -l command output listing

The following listing shows the output from llstatus -l on a machine connected to

a switch network:

===

Name = e189f5rp01.ppd.pok.ibm.com

Machine = e189f5rp01.ppd.pok.ibm.com

Arch = R6000

OpSys = AIX53

SYSPRIO = 0

MACHPRIO = (0 - LoadAvg)

VirtualMemory = 388700 kb

Disk = 2416272 kb

KeyboardIdle = 1

Tmp = 1452264 kb

LoadAvg = 0.016190

ConfiguredClasses = large(64) No_Class(120) preempt(16) preemptable(16) high(32) medium(32) low(32) super(16)

AvailableClasses = large(64) No_Class(116) preempt(16) preemptable(16) high(32) medium(32) low(32) super(16)

DrainingClasses =

DrainedClasses = super

Pool = 1 3

Sample command output

678 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FabricConnectivity = 2:1,1:1

Adapter = networks(striped,,,,-1,16/16,798/798 rCxt Blks,11,READY) network2 \

 (aggregate,,,,-1,16/16,798/798 rCxt Blks,1,READY) \

 network1(aggregate,,,,-1,16/16,798/798 rCxt Blks,1,READY) \

 en0(ethernet,e189f5rp01.ppd.pok.ibm.com,9.114.170.97,) \

 ml0(multilink,e189f5rp01ml0.ppd.pok.ibm.com,10.10.10.15,)

Feature =

Max_Starters = 480

Prestarted_Starters = 1

Total Memory = 30720 mb

Memory = 26624 mb

FreeRealMemory = 19854 mb

LargePageSize = 16.000 mb

LargePageMemory = 4.000 gb

FreeLargePageMemory = 3.109 gb

PagesFreed = 0

PagesScanned = 0

PagesPagedIn = 0

PagesPagedOut = 0

ConsumableResources = ConsumableCpus(2,6) ConsumableMemory(25.219 gb,26.000 gb) RDMA*(4,4)+<

ConfigTimeStamp = Tue Aug 29 09:47:50 EDT 2006

Cpus = 6

RSetSupportType = RSET_NONE

Speed = 1.000000

Subnet = 9.114.170

MasterMachPriority = 0.000000

CustomMetric = 1

StartdAvail = 1

State = Running

EnteredCurrentState = Tue Aug 29 09:58:26 EDT 2006

START = T

SUSPEND = F

CONTINUE = T

VACATE = F

KILL = F

Machine Mode = general

Running = 4

ScheddAvail = 1

ScheddState = Avail

ScheddRunning = 1

Pending = 0

Starting = 0

Idle = 0

Unexpanded = 0

Held = 0

Removed = 0

RemovedPending = 0

Completed = 1

TotalJobs = 2

Running Steps = e189f5rp01.ppd.pok.ibm.com.186.0

ReservationPermitted= T

Reservations = e189f5rp01.ppd.pok.ibm.com.185.r

SMT = Not Supported

TimeStamp = Tue Aug 29 09:58:30 EDT 2006

llstatus -l -b command output listing

The following listing shows the output from llstatus -l -b command:

 Total Blue Gene Base Partitions 8

 Total Blue Gene Compute Nodes 4096

 Machine Size in Base Partitons X=1 Y=2 Z=4

 Machine Size in Compute Nodes X=8 Y=16 Z=32

 -- list of base partitions --

Z = 3

=====

 +------------+

 | R021|

 1 | <none>|

 | <none>|

 |------------|

 | R001|

 0 | <none>|

 | <none>|

 +------------+

Z = 2

=====

Sample command output

Appendix B. Sample command output 679

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

+------------+

 | R031|

 1 | <sdb>|

 | * |

 |------------|

 | R011|

 0 | <none>|

 | <none>|

 +------------+

Z = 1

=====

 +------------+

 | R030|

 1 | <none>|

 | <none>|

 |------------|

 | R010|

 0 | <sdb>|

 | * |

 +------------+

Z = 0

=====

 +------------+

 | R020|

 1 | <none>|

 | <none>|

 |------------|

 | R000|

 0 | <none>|

 | <none>|

 +------------+

 -- list of switches --

Switch ID: X_R000

 Switch State: UP

 Base Partition: R000

 Switch Dimension: X

 Switch Connections:

 FromPort=PORT_S0 ToPort=PORT_S1 PartitionState=FREE Partition=DD1FULL

Switch ID: X_R001

 Switch State: UP

 Base Partition: R001

 Switch Dimension: X

 Switch Connections:

 FromPort=PORT_S0 ToPort=PORT_S1 PartitionState=FREE Partition=DD1FULL

Switch ID: X_R010

 Switch State: UP

 Base Partition: R010

 Switch Dimension: X

 Switch Connections:

 FromPort=PORT_S0 ToPort=PORT_S1 PartitionState=FREE Partition=DD1FULL

.....

 -- list of wires --

Wire Id: R000X_R000

 Wire State: UP

 FromComponent=R000 FromPort=MINUS_X

Sample command output

680 TWS LoadLeveler: Using and Administering

ToComponent=X_R000 ToPort=PORT_S0

 PartitionState=FREE Partition=DD1FULL

Wire Id: R000Y_R000

 Wire State: UP

 FromComponent=R000 FromPort=MINUS_Y

 ToComponent=Y_R000 ToPort=PORT_S0

 PartitionState=FREE Partition=DD1FULL

Wire Id: R000Z_R000

 Wire State: UP

 FromComponent=R000 FromPort=MINUS_Z

 ToComponent=Z_R000 ToPort=PORT_S0

 PartitionState=FREE Partition=DD1FULL

Wire Id: R001X_R001

 Wire State: UP

 FromComponent=R001 FromPort=MINUS_X

 ToComponent=X_R001 ToPort=PORT_S0

 PartitionState=FREE Partition=DD1FULL

Wire Id: R001Y_R001

 Wire State: UP

 FromComponent=R001 FromPort=MINUS_Y

 ToComponent=Y_R001 ToPort=PORT_S0

 PartitionState=FREE Partition=DD1FULL

Wire Id: R001Z_R001

 Wire State: UP

 FromComponent=R001 FromPort=MINUS_Z

 ToComponent=Z_R001 ToPort=PORT_S0

 PartitionState=FREE Partition=DD1FULL

llsummary -l -x command output listing

The following listing is a fragment of the llsummary -l -x output for a POE Parallel

job step submitted from LoadLeveler CLUSTER2 to LoadLeveler CLUSTER1:

================== Job e189f5rp01.ppd.pok.ibm.com.1 ==================

 Job Id: e189f5rp01.ppd.pok.ibm.com.1

 Job Name: btat_MPI/IP/sn_single

 Structure Version: 210

 Owner: llbld

 Unix Group: usr

 Submitting Host: e189f5rp01.ppd.pok.ibm.com

 Submitting Userid: 602009

 Submitting Groupid: 100

 Scheduling Cluster: CLUSTER2

 Submitting Cluster: CLUSTER1

 Sending Cluster: CLUSTER1

 Submitting User: llbld

 Schedd History: e189f5rp04.ppd.pok.ibm.com

 Outbound Schedds: e189f5rp01.ppd.pok.ibm.com

 Number of Steps: 1

------------------ Step e189f5rp01.ppd.pok.ibm.com.1.0 ------------------

 Job Step Id: e189f5rp01.ppd.pok.ibm.com.1.0

 Step Name: Step_1

 Queue Date: Tue Aug 29 12:42:41 EDT 2006

 Job Accounting Key: 4968717789226364547

 Dependency:

 Status: Completed

 Dispatch Time: Tue Aug 29 12:42:43 EDT 2006

 Start Time: Tue Aug 29 12:42:43 EDT 2006

 Completion Date: Tue Aug 29 12:43:20 EDT 2006

 Completion Code: 0

 Start Count: 1

 User Priority: 50

 user_sysprio: 0

 class_sysprio: 40

 group_sysprio: 40

 Notifications: Always

 Virtual Image Size: 518 kb

 Checkpointable: yes

Sample command output

Appendix B. Sample command output 681

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Good Ckpt Time/Date:

 Ckpt Accum Time: 0 seconds

 Checkpoint File: /ckptfiles/llbld/btat_MPI/IP/sn_single.e189f5rp01.ppd.pok.ibm.com.1.0.ckpt

 Restart From Ckpt: no

 Restart Same Nodes: no

 Restart: yes

 Hold Job Until:

 RSet: RSET_NONE

Mcm Affinity Options:

 Cmd: /bin/poe

 Args: /u/llbld/bin/btat -d 30 -v -ilevel 6 -labelio yes -pmdlog yes

 Env: LANG=en_US; LOGIN=llbld; PATH=.:/bin:/usr/bin:...

 In: /dev/null

 Out: btat.e189f5rp04.1.0.out

 Err: btat.e189f5rp04.1.0.err

Initial Working Dir: /u/llbld/Checkpoint/cmd

 Requirements: (Arch == "R6000") && (OpSys == "AIX53")

 Preferences:

 Step Type: General Parallel

 Min Processors: 1

 Max Processors: 1

 Allocated Host: e189f5rp04.ppd.pok.ibm.com

 Node Usage: shared

 Reservation ID:

 Notify User: llbld

 Shell: /bin/ksh

 LoadLeveler Group: No_Group

 Class: No_Class

 Ckpt Hard Limit: undefined

 Ckpt Soft Limit: undefined

 Cpu Hard Limit: 00:30:00 (1800 seconds)

 Cpu Soft Limit: 00:25:00 (1500 seconds)

 Data Hard Limit: 8.200 gb (8804682956 bytes)

 Data Soft Limit: 7.100 gb (7623566950 bytes)

 Core Hard Limit: 11.200 gb (12025908428 bytes)

 Core Soft Limit: 11.100 gb (11918534246 bytes)

 File Hard Limit: unlimited

 File Soft Limit: unlimited

 Stack Hard Limit: 400.000 mb (419430400 bytes)

 Stack Soft Limit: 300.000 mb (314572800 bytes)

 Rss Hard Limit: 15.200 gb (16320875724 bytes)

 Rss Soft Limit: 15.100 gb (16213501542 bytes)

Step Cpu Hard Limit: undefined

Step Cpu Soft Limit: undefined

Wall Clk Hard Limit: 00:20:00 (1200 seconds)

Wall Clk Soft Limit: 00:20:00 (1200 seconds)

 Comment: "BTAT test running MPI/IP over switch"

 Account:

 Job Tracking Exit:

 Job Tracking Args:

 Task_geometry:

 Resources:

 Blocking: UNSPECIFIED

Adapter Requirement:

 Step Cpus: 1

Step Virtual Memory: 0.000 mb

 Step Real Memory: 0.000 mb

 Large Page: N

 Bulk Transfer: No

 Step rCxt Blocks: 0

--------------- Detail for e189f5rp01.ppd.pok.ibm.com.1.0 ---------------

 Running Host: e189f5rp04.ppd.pok.ibm.com

 Machine Speed: 1.000000

 Event: System

 Event Name: started

 Time of Event: Tue Aug 29 12:42:43 EDT 2006

 Starter User Time: 00:00:00.000000

Starter System Time: 00:00:00.000000

 Starter Total Time: 00:00:00.000000

 Starter maxrss: 0

 Starter ixrss: 0

 Starter idrss: 0

 Starter isrss: 0

 Starter minflt: 0

 Starter majflt: 0

 Starter nswap: 0

Sample command output

682 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Starter inblock: 0

 Starter oublock: 0

 Starter msgsnd: 0

 Starter msgrcv: 0

 Starter nsignals: 0

 Starter nvcsw: 0

 Starter nivcsw: 0

 Step User Time: 00:00:00.000000

 Step System Time: 00:00:00.000000

 Step Total Time: 00:00:00.000000

 Step maxrss: 0

 Step ixrss: 0

 Step idrss: 0

 Step isrss: 0

 Step minflt: 0

 Step majflt: 0

 Step nswap: 0

 Step inblock: 0

 Step oublock: 0

 Step msgsnd: 0

 Step msgrcv: 0

 Step nsignals: 0

 Step nvcsw: 0

 Step nivcsw: 0

 Event: System

 Event Name: completed

 Time of Event: Tue Aug 29 12:43:20 EDT 2006

 Starter User Time: 00:00:00.159357

Starter System Time: 00:00:00.043124

 Starter Total Time: 00:00:00.202481

 Starter maxrss: 2300

 Starter ixrss: 8976

 Starter idrss: 15224

 Starter isrss: 0

 Starter minflt: 0

 Starter majflt: 0

 Starter nswap: 0

 Starter inblock: 0

 Starter oublock: 0

 Starter msgsnd: 0

 Starter msgrcv: 0

 Starter nsignals: 4

 Starter nvcsw: 69

 Starter nivcsw: 3

 Step User Time: 00:02:04.062897

 Step System Time: 00:00:40.600541

 Step Total Time: 00:02:44.663438

 Step maxrss: 6328

 Step ixrss: 478068

 Step idrss: 70409520

 Step isrss: 0

 Step minflt: 20259

 Step majflt: 83

 Step nswap: 0

 Step inblock: 0

 Step oublock: 0

 Step msgsnd: 0

 Step msgrcv: 0

 Step nsignals: 4

 Step nvcsw: 3570827

 Step nivcsw: 2228899

--

Node

 Name :

 Requirements : (Arch == "R6000") && (OpSys == "AIX53")

 Preferences :

 Node minimum : 1

 Node maximum : 1

 Node actual : 1

 Allocated Hosts : e189f5rp04.ppd.pok.ibm.com:PENDING:sn0(MPI,IP,-1,Shared,0 rCxt Blks,) \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks,) \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks,) \

 sn0(MPI,IP,-1,Shared,0 rCxt Blks,)

Sample command output

Appendix B. Sample command output 683

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Master Task

 Executable : /bin/poe

 Exec Args : /u/llbld/bin/btat -d 30 -v -ilevel 6 -labelio yes -pmdlog yes

 Num Task Inst: 1

 Task Instance: e189f5rp04:-1

 Task

 Num Task Inst: 4

 Task Instance: e189f5rp04:0:sn0(MPI,IP,-1,Shared,0 rCxt Blks,)

 Task Instance: e189f5rp04:1:sn0(MPI,IP,-1,Shared,0 rCxt Blks,)

 Task Instance: e189f5rp04:2:sn0(MPI,IP,-1,Shared,0 rCxt Blks,)

 Task Instance: e189f5rp04:3:sn0(MPI,IP,-1,Shared,0 rCxt Blks,)

Sample command output

684 TWS LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Appendix C. LoadLeveler port usage

A port number is an integer that specifies the port to use to connect to the

specified daemon. You can define these port numbers in the configuration file or

the /etc/services file or you can accept the defaults. LoadLeveler first looks in the

configuration file for these port numbers. If LoadLeveler does not find the value in

the configuration file, it looks in the /etc/services file. If the value is not found in

this file, the default is used.

Note: See Table 104 for the configuration file keywords associated with the port

numbers.

The first column on each line in Table 104 represents the name of a service. In most

cases, these services are also the names of daemons with the following exceptions:

v LoadL_negotiator_collector is the service name for a second stream port that is

used by the LoadL_negotiator daemon.

v LoadL_schedd_status is the service name for a second stream port used by the

LoadL_schedd daemon.

For each LoadLeveler service definition shown in Table 104, the following

information is shown:

Service name

Specifies the service name. The service names shown are examples of how the

names might appear in the /etc/services file.

Port number

Specifies the port number used for the service.

Protocol name

Specifies the transport protocol used for the service.

Source port range

A range of port numbers used on either the client side or daemon (server) side

of the service.

Required or optional

Whether or not the service is required.

Description/associated keywords

A short description of the service along with its associated configuration file

keyword or keywords.

 Table 104. LoadLeveler default port usage

Service name

Port

number

Protocol

name

Source port

range*

Required or

optional Description/associated keywords

LoadL_master 9616

9617

tcp

udp

LB

LB

Required

Required

Master port number for stream port

Master port number for dgram port

Keywords:

v MASTER_STREAM_PORT (tcp)

v MASTER_DGRAM_PORT (udp)

 685

|

|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

||

|
|
|
|
|
|
|
|
||

||

|

|

|

|

|

|

|

|

|

|
|
|

Table 104. LoadLeveler default port usage (continued)

Service name

Port

number

Protocol

name

Source port

range*

Required or

optional Description/associated keywords

LoadL_negotiator 9614 tcp LB Required Negotiator port number for stream

port

Keyword:

NEGOTIATOR_STREAM_PORT

LoadL_negotiator_collector 9612

9613

tcp

udp

LB

LB

Required

Required

Second negotiator stream port

Negotiator port number for dgram

port

Keywords:

v CM_COLLECTOR_PORT (tcp)

v COLLECTOR_DGRAM_PORT

(udp)

LoadL_schedd 9605 tcp LB Required Schedd port number for stream port

Keyword:

SCHEDD_STREAM_PORT

LoadL_schedd_status 9606 tcp LB Required Schedd stream port for job status

data

Keyword: SCHEDD_STATUS_PORT

LoadL_startd 9611 tcp LB Required Startd port number for stream port

Keyword: STARTD_STREAM_PORT

Note: * A value of LB indicates that the source port range value should be left blank. In other words, no source port

range value should be specified.

For more information about configuration file keyword syntax and configuring the

LoadLeveler environment, see the following:

v Chapter 4, “Configuring the LoadLeveler environment,” on page 39

v Chapter 12, “Configuration file reference,” on page 243

686 TWS LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|
|
||

||||||
|

|
|

||

|

|

|

|

|

|

|

|

|
|

|
|
|
|

||||||

|
|

||||||
|

|

||||||

|

|
|
|

|
|

|

|

Accessibility features for TWS LoadLeveler

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM TWS

LoadLeveler. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v Keys that are tactilely discernible and do not activate just by touching them.

v Industry-standard devices for ports and connectors.

v The attachment of alternative input and output devices.

Note: The IBM Cluster Information Center and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all

features using the keyboard instead of the mouse.

Keyboard navigation

This product uses standard Microsoft® Windows® navigation keys.

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

 687

http://www.ibm.com/able

688 TWS LoadLeveler: Using and Administering

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

 689

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Intellectual Property Law

2455 South Road, P386

Poughkeepsie, New York 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

690 TWS LoadLeveler: Using and Administering

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States, other countries, or both:

 AFS

AIX

AIX 5L

BladeCenter

Blue Gene

DB2

DFS

eServer

IBM

IBMLink

LoadLeveler

POWER

PowerPC

pSeries

Redbooks

RS/6000

SP

System p

System p4

System p5

System x

Tivoli

xSeries

1350

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Intel, Intel logo, Intel Inside®, Intel Inside logo, Intel Centrino™, Intel Centrino logo,

Celeron®, Intel Xeon™, Intel SpeedStep®, Itanium®, and Pentium® are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Red Hat, the Red Hat ″Shadow Man″ logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

LoadLeveler incorporates Condor, which was developed at the University of

Wisconsin-Madison, and uses it with the permission of its authors.

InfiniBand is a registered trademark and service mark of the InfiniBand Trade

Association.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 691

692 TWS LoadLeveler: Using and Administering

Glossary

This glossary includes terms and definitions for

IBM Tivoli Workload Scheduler (TWS)

LoadLeveler. The following cross-references are

used in this glossary:

See Refers the reader to (a) a term

that is the expanded form of an

abbreviation or acronym or (b) a

synonym or more preferred term.

See also Refers the reader to a related

term.

Contrast with Refers the reader to a term that

has an opposed or substantively

different meaning.

To view glossaries for other IBM products, go to

http://www-306.ibm.com/software/
globalization/terminology/index.html.

A

AFS. A distributed file system for large networks that

is known for its ease of administration and

expandability.

AIX. A UNIX operating system developed by IBM

that is designed and optimized to run on POWER

microprocessor-based hardware such as servers,

workstations, and blades.

authentication. The process of validating the identity

of a user or server.

authorization. The process of obtaining permission to

perform specific actions.

B

Berkeley Load Average. The average number of

processes on the operating system’s ready-to-run

queue.

C

C language. A language used to develop application

programs in compact, efficient code that can be run on

different types of computers with minimal change.

client. A system or process that is dependent on

another system or process (usually called the server) to

provide it with access to data, services, programs, or

resources.

cluster. A collection of complete systems that work

together to provide a single, unified computing

capability.

D

daemon. A program that runs unattended to perform

continuous or periodic functions, such as network

control.

DCE. See Distributed Computing Environment.

default. Pertaining to an attribute, value, or option

that is assumed when none is explicitly specified.

DFS. See Distributed File System.

Distributed Computing Environment (DCE). In

network computing, a set of services and tools that

supports the creation, use, and maintenance of

distributed applications across heterogeneous operating

systems and networks.

Distributed File Service (DFS). A component of a

Distributed Computing Environment (DCE) that

enables a single, integrated file system to be shared

among all DCE users and host computers in a DCE

cell. DFS prevents DCE users from simultaneously

modifying the same information.

H

host. A computer that is connected to a network and

provides an access point to that network. The host can

be a client, a server, or both a client and server

simultaneously.

L

LAPI. See low-level application programming interface.

low-level application programming interface (LAPI).

An IBM message-passing interface that implements a

one-sided communication model.

M

MCM. See multiple chip module.

memory affinity. A feature available in AIX to allocate

memory attached to the same multiple chip module

(MCM) on which the process runs. Memory affinity

improves the performance of applications on IBM

System p servers.

 693

http://www-306.ibm.com/software/globalization/terminology/index.html
http://www-306.ibm.com/software/globalization/terminology/index.html

menu. A displayed list of items from which a user can

make a selection.

Message Passing Interface (MPI). A library

specification for message passing. MPI is a standard

application programming interface (API) that can be

used with parallel applications and that uses the best

features of a number of existing message-passing

systems.

Motif. User interface software, from Open Systems

Foundation, for use with the X Window System.

MPI. See Message Passing Interface.

MPICH. A portable implementation of the Message

Passing Interface (MPI).

MPICH-GM. A low-level message-passing system for

Myrinet networks.

multiple chip module (MCM). The fundamental,

processor, building block of IBM System p servers.

N

network. In data communication, a configuration in

which two or more locations are physically connected

for the purpose of exchanging data.

Network File System (NFS). A protocol, developed by

Sun Microsystems, Incorporated, that enables a

computer to access files over a network as if they were

on its local disks.

NFS. See Network File System.

node. A computer location defined in a network.

P

parameter. A value or reference passed to a function,

command, or program that serves as input or controls

actions. The value is supplied by a user or by another

program or process.

peer domain . A set of nodes configured for high

availability by the configuration resource manager.

Such a domain has no distinguished or master node.

All nodes are aware of all other nodes, and

administrative commands can be issued from any node

in the domain. All nodes also have a consistent view of

the domain membership.

process. A separately executable unit of work.

R

rCxt block. See remote context blocks.

RDMA. See Remote Direct Memory Access.

Reliable Scalable Cluster Technology (RSCT). A set

of software components that together provide a

comprehensive clustering environment for AIX and

Linux. RSCT is the infrastructure used by a variety of

IBM products to provide clusters with improved

system availability, scalability, and ease of use.

remote context block (rCxt block). An interprocess

communication buffer used by the low-level application

programming interface (LAPI) for Remote Direct

Memory Access (RDMA).

Remote Direct Memory Access (RDMA). A

communication technique in which data is transmitted

from the memory of one computer to that of another

without passing through a processor. RDMA

accommodates increased network speeds.

resource set (RSet). A data structure in AIX 5L used to

represent physical resources such as processors and

memory. AIX uses resource sets to restrict a set of

processes to a subset of the system’s physical resources.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

RSet. See resource set.

S

server. In a network, hardware or software that

provides facilities to clients. Examples of a server are a

file server, a printer server, or a mail server.

shell. A software interface between users and an

operating system. Shells generally fall into one of two

categories: a command line shell, which provides a

command line interface to the operating system; and a

graphical shell, which provides a graphical user

interface (GUI).

SMT. See symmetric multithreading.

symmetric multithreading (SMT). Pertaining to a

processor design that combines hardware

multithreading with superscalar processor technology.

Using SMT, a single physical processor emulates

multiple processors by enabling multiple threads to

issue instructions simultaneously during each cycle.

system administrator. The person who controls and

manages a computer system.

T

TCP. See Transmission Control Protocol.

Transmission Control Protocol (TCP). A

communication protocol used in the Internet and in

any network that follows the Internet Engineering Task

Force (IETF) standards for internetwork protocol. TCP

694 TWS LoadLeveler: Using and Administering

provides a reliable host-to-host protocol in

packet-switched communication networks and in

interconnected systems of such networks.

U

UDP. See User Datagram Protocol.

User Datagram Protocol (UDP). An Internet protocol

that provides unreliable, connectionless datagram

service. It enables an application program on one

machine or process to send a datagram to an

application program on another machine or process.

W

working directory. The active directory. When a file

name is specified without a directory, the current

directory is searched.

workstation. A configuration of input/output

equipment at which an operator works. A workstation

is a terminal or microcomputer at which a user can run

applications and that is usually connected to a

mainframe or a network.

Glossary 695

696 TWS LoadLeveler: Using and Administering

Index

Special characters
!var 349

!var specification
on environment keyword 349

/etc/LoadL.cfg file 40, 65

.llrc script 8

$var specification
on environment keyword 349

Numerics
64-bit

keywords supported
administration file 305

configuration file 244

job command file 335

support for accounting functions 61

support for GUI 380

support for LoadLeveler APIs 505

A
accessibility 687

keyboard 687

shortcut keys 687

account keyword
detailed description 306

account_no keyword
detailed description 336

accounting
API 506

collecting data 57

based on events 59

based on machines 58, 126

based on user accounts 59

for serial or parallel jobs 58

correlating AIX and LoadLeveler records 61

in job command file 336

keywords
ACCT 57

ACCT_VALIDATION 57

GLOBAL_HISTORY 57

HISTORY_PERMISSION 57

JOB_ACCT_Q_POLICY 57

JOB_LIMIT_POLICY 57

llacctmrg command 387

llacctval program 57

producing reports 60

storing data 60

using llsummary command 496

accounting functions
64-bit support 61

accounting, job setup 61

ACCT keyword
detailed description 244

ACCT_VALIDATION keyword
detailed description 245

ACTION_ON_MAX_REJECT keyword
detailed description 245

ACTION_ON_SWITCH_TABLE_ERROR keyword
detailed description 245

adapter
dedicated 359

shared 359

specifying in job command file 356, 362

adapter stanza keywords
adapter_name 306

adapter_type 306

device_driver_name 313

interface_address 319

interface_name 319

logical_id 319

multilink_address 324

multilink_list 324

network_id 325

network_type 325

type 331

adapter stanzas
examples 82

format 80

adapter_name keyword
detailed description 306

adapter_stanzas keyword
detailed description 306

adapter_type keyword
detailed description 306

add job to reservation 234

admin keyword
detailed description 307

ADMIN_FILE 45

administering LoadLeveler
customizing the administration file 77

LoadL_admin file 301

stanzas 77

administration file
account keyword 306

adapter_name keyword 306

adapter_stanzas keyword 306

adapter_type keyword 306

admin keyword 307

alias keyword 307

central_manager keyword 308

ckpt_dir keyword 308

ckpt_time_limit keyword 308

class_comment keyword 309

core_limit keyword 309

cpu_limit keyword 309

cpu_speed_scale keyword 310

customizing 77

data_limit keyword 310

default_class keyword 310

default_group keyword 311

default_interactive_class keyword 311

default_resources keyword 312

device_driver_name keyword 313

env_copy keyword 313

exclude_classes keyword 313

exclude_groups keyword 314

exclude_users keyword 315

fair_shares keyword 316

 697

administration file (continued)
file_limit keyword 316

inbound_hosts keyword 316

inbound_schedd_port keyword 316

include_classes keyword 316

include_groups keyword 317

include_users keyword 318

interface_address keyword 319

interface_name keyword 319

job_cpu_limit keyword 319

keyword descriptions 306

local keyword 319

logical_id keyword 319

machine_mode keyword 320

master_node_exclusive keyword 320

master_node_requirement keyword 320

max_jobs_scheduled keyword 320

max_node keyword 321

max_processors keyword 321

max_protocol_instances keyword 321

max_reservation_duration keyword 321

max_reservations keyword 322

max_top_dogs keyword 322

max_total_tasks keyword 322

maxidle keyword 323

maxjobs keyword 323

maxqueued keyword 323

multicluster_security keyword 324

multilink_address keyword 324

multilink_list keyword 324

multiple statements 119

name_server keyword 325

network_id keyword 325

network_type keyword 325

nice keyword 325

outbound_hosts keyword 326

pool_list keyword 326

port_number keyword 326

priority keyword 326

reservation_permitted keyword 327

resources keyword 327

rss_limit keyword 328

schedd_fenced keyword 328

schedd_host keyword 329

secure_schedd_port keyword 329

smt keyword 329

spacct_excluse_enable keyword 330

speed keyword 330

ssl_cipher_list keyword 330

stack_limit keyword 330

structure and syntax 301

submit_only keyword 330

total_tasks keyword 331

type keyword 331

wall_clock_limit keyword 331

administrative actions
GUI 158

advance reservation, Blue Gene support 147

AFS authentication 246

AFS authentication installation exit 69

AFS_GETNEWTOKEN keyword
detailed description 246

AGGREGATE_ADAPTERS keyword 43

detailed description 246

AIX accounting
correlating AIX and LoadLeveler records 61

AIX checkpoint
limitations 131

AIX limitations
checkpoint and restart 131

AIX restart
limitations 131

AIX restrictions
checkpoint and restart 131

alias keyword
detailed description 307

ALLOC_EXCLUSIVE_CPU_PER_JOB keyword
detailed description 246

API scheduler 43

application programming interface (API)
summary 503

application programming interfaces
accessing LoadLeveler objects 522

accounting 506

checkpointing serial jobs 510

job control 619

ll_error 590

ll_fair_share 592

ll_reservation 600

process configuration files 519

querying jobs and machines 595

scheduling 619

submitting jobs 614

workload management 619

Arch
requirement in job command file 362

ARCH keyword
detailed description 247

Arch variable
detailed description 294

arguments keyword
detailed description 337

attributes
of job steps

changing 435

authentication process, DCE 68

authentication programs 68

B
BACKFILL scheduler

advantages of using 42

BACKFILL scheduling
avoiding circular preemption 117

implied START_CLASS values 118

releasing resources of preemptable jobs 119

selecting a preemption method 118

BackgroundLoad keyword 293

basics, LoadLeveler 3

batch parallel jobs
naming files for checkpointing 135

BG_ALLOW_LL_JOBS_ONLY keyword
detailed description 247

BG_CACHE_PARTITIONS keyword
detailed description 247

bg_connection keyword
detailed description 337

BG_ENABLED keyword
detailed description 247

BG_MIN_PARTITION_SIZE keyword
detailed description 248

bg_partition keyword
detailed description 337

698 TWS LoadLeveler: Using and Administering

bg_requirements keyword
detailed description 338

bg_rotate keyword
detailed description 338

bg_shape keyword
detailed description 339

bg_size keyword
detailed description 339

BIN 45

BIN keyword
detailed description 248

blocking 180

blocking factor 180

blocking keyword
detailed description 340

Blue Gene advance reservation support 147

Blue Gene fair share scheduling support 147

Blue Gene heterogeneous memory support 147

Blue Gene object
understanding 524

building a job
using the GUI 217

building jobs
using a job command file 165

bulk data transfer
configuring 57

specifying for jobs 173

bulkxfer keyword
detailed description 340

C
Canceled job state

abbreviations 18

detailed description 18

cancelling jobs
using llcancel 216

using the GUI 233

capture data
GUI 160

central manager 6, 237, 658

controlling scheduling cycle
example 67

local 139

querying fair share scheduling information 153

remote 139

specifying an alternate 44

central_manager keyword
detailed description 308

CENTRAL_MANAGER_HEARTBEAT_ INTERVAL keyword
detailed description 248

CENTRAL_MANAGER_TIMEOUT keyword
detailed description 248

changing attributes of job steps
using llmodify command 435

changing job priority
example 215

using llprio command 447

using the GUI 232

changing scheduler types
example 115

reconfiguring 115

checklist
parallel jobs 655

checkpoint
file naming 131

removing old files 135

checkpoint (continued)
restarting a job 655

checkpoint and restart limitations, AIX 131

checkpoint files, removing 135

checkpoint keyword
detailed description 341

checkpoint keywords
summary 129

checkpoint, take 234

checkpointing
API 510

how to checkpoint a job 214

naming files for interactive parallel jobs 135

naming serial and batch files 135

planning considerations 130

system-initiated 129, 341

user-initiated 129, 341

checkpointing a job step
using llckpt command 400

Checkpointing job state
abbreviations 18

detailed description 18

choice button 221

circular preemption
avoiding 117

ckpt subroutine 511

CKPT_CLEANUP_PROGRAM keyword
detailed description 248

ckpt_dir keyword
detailed description 308, 341

ckpt_execute_dir keyword
detailed description 342

CKPT_EXECUTE_DIR keyword
detailed description 249

ckpt_file keyword
detailed description 342

ckpt_time_limit keyword
detailed description 308, 343

class
multiple job classes 669

querying class information
using llclass command 403

Class
defining for a machine 250

keyword 250

class keyword
detailed description 343

CLASS keyword
detailed description 249

Class object
understanding 524

class stanza keywords
admin 307

ckpt_dir 308

class_comment 309

core_limit 309

cpu_limit 309

data_limit 310

default_resources 312

env_copy_name 313

exclude_groups 314

exclude_users 315

file_limit 316

include_groups 317

include_users 318

job_cpu_limit 319

master_node_requirement 320

Index 699

class stanza keywords (continued)
max_node 321

max_processors 321

max_protocol_instances 321

max_top_dogs 322

max_total_tasks 322

maxjobs 323

nice 325

priority 326

rss_limit 328

stack_limit 330

total_tasks 331

type 331

wall_clock_limit 331

class stanzas
defining substanzas 88

examples 86

format 92

class_comment keyword
detailed description 309

ClassSysprio variable
detailed description 294

use on SYSPRIO keyword 287

CLIENT_TIMEOUT keyword
detailed description 250

cluster
definition 3

local 139

querying multiple clusters 65

remote 139

submitting jobs to multiple clusters 65

various levels of POE 179

Cluster object
understanding 525

cluster stanza keywords
exclude_classes 313

exclude_groups 314

exclude_users 315

inbound_hosts 316

inbound_schedd_port 316

include_classes 316

include_groups 317

include_users 318

local 319

multicluster_security 324

outbound_hosts 326

secure_schedd_port 329

ssl_cipher_list 330

cluster stanzas
examples 94

cluster with both AIX and Linux machines
troubleshooting 656

cluster_input_file keyword
detailed description 344

cluster_list keyword
detailed description 344

CLUSTER_METRIC keyword
detailed description 250

cluster_output_file keyword
detailed description 345

CLUSTER_REMOTE_JOB_FILTER keyword
detailed description 251

CLUSTER_USER_MAPPER keyword
detailed description 252

CM_COLLECTOR_PORT keyword
detailed description 253

coexistence
POE software levels 179

collect account data
GUI 160

collect reservation data
GUI 160

COMM keyword
detailed description 253

command line interface
overview 385

commands
llacctmrg 127, 387

llbind 203, 389

llcancel 392

llchres 204, 395

llckpt 400

llclass 403

llclusterauth 408

llctl 409

lldbconvert 414

llextRPD 415

llfavorjob 419

llfavoruser 421

llfs 422

llhold 426

llinit 429

llmkres 200, 431

llmodify 435

llmovejob 440

llmovespool 442

llpreempt 444

llprio 447

llq 203, 204, 205, 449

llqres 202, 204, 205, 468

llrmres 205, 474

llrunscheduler 476

llstatus 477

llsubmit 203, 494

llsummary 496

sample output 673

summary 385

commands and APIs, coscheduled job steps 172

comment keyword
detailed description 345

common name space 79

communication level 356

Complete Pending job state
abbreviations 18

detailed description 18

Completed job state
abbreviations 18

detailed description 18

configuration
API 519

configuration file
ACCT keyword 244

ACCT_VALIDATION keyword 245

ACTION_ON_MAX_REJECT keyword 245

ACTION_ON_SWITCH_TABLE_ERROR keyword 245

AFS_GETNEWTOKEN keyword 246

AGGREGATE_ADAPTERS keyword 246

ALLOC_EXCLUSIVE_CPU_PER_JOB keyword 246

ARCH keyword 247

BG_ALLOW_LL_JOBS_ONLY keyword 247

BG_CACHE_PARTITIONS keyword 247

BG_ENABLED keyword 247

BG_MIN_PARTITION_SIZE keyword 248

700 TWS LoadLeveler: Using and Administering

configuration file (continued)
BIN keyword 248

CENTRAL_MANAGER_HEARTBEAT_ INTERVAL

keyword 248

CENTRAL_MANAGER_TIMEOUT keyword 248

CKPT_CLEANUP_PROGRAM keyword 248

ckpt_execute_dir keyword 342

CKPT_EXECUTE_DIR keyword 249

CLASS keyword 249

CLIENT_TIMEOUT keyword 250

CLUSTER_METRIC keyword 250

CLUSTER_REMOTE_JOB_FILTER keyword 251

CLUSTER_USER_MAPPER keyword 252

CM_COLLECTOR_PORT keyword 253

COMM keyword 253

CONTINUE expression 253

CUSTOM_METRIC keyword 253

CUSTOM_METRIC_COMMAND keyword 253

customizing 39

DCE_AUTHENTICATION_PAIR keyword 254

DEFAULT_PREEMPT_METHOD keyword 254

defaults 39

DRAIN_ON_SWITCH_TABLE_ERROR keyword 255

ENFORCE_RESOURCE_MEMORY keyword 255

ENFORCE_RESOURCE_POLICY keyword 255

ENFORCE_RESOURCE_USAGE keyword 256

EXECUTE keyword 256

FAIR_SHARE_INTERVAL keyword 256

FAIR_SHARE_TOTAL_SHARES keyword 256

FEATURE keyword 256

FLOATING_RESOURCES keyword 257

FS_INTERVAL keyword 257

FS_NOTIFY keyword 258

FS_SUSPEND keyword 258

FS_TERMINATE keyword 259

GLOBAL_HISTORY keyword 259

GSMONITOR keyword 259

GSMONITOR_COREDUMP_DIR keyword 259

GSMONITOR_DOMAIN keyword 260

GSMONITOR_RUNS_HERE keyword 260

HISTORY keyword 260

HISTORY_PERMISSION keyword 260

INODE_NOTIFY keyword 260

INODE_SUSPEND keyword 261

INODE_TERMINATE keyword 261

JOB_ACCT_Q_POLICY keyword 262

JOB_EPILOG keyword 262

JOB_LIMIT_POLICY keyword 262

JOB_PROLOG keyword 262

JOB_USER_EPILOG keyword 262

JOB_USER_PROLOG keyword 263

KBDD keyword 263

KBDD_COREDUMP_DIR keyword 263

keyword descriptions 244

KILL expression 263

LIB keyword 263

LL_RSH_COMMAND 263

LOADL_ADMIN keyword 264

LOCAL_CONFIG keyword 264

LOG keyword 265

MACHINE_AUTHENTICATE keyword 265

MACHINE_UPDATE_INTERVAL keyword 265

MACHPRIO keyword 265

MAIL keyword 267

MASTER keyword 267

MASTER_COREDUMP_DIR keyword 267

MASTER_DGRAM_PORT keyword 268

configuration file (continued)
MASTER_STREAM_PORT keyword 268

MAX_CKPT_INTERVAL keyword 268

MAX_JOB_REJECT keyword 268

MAX_RESERVATIONS keyword 268

MAX_STARTERS keyword 269

MAX_TOP_DOGS keyword 269

MIN_CKPT_INTERVAL keyword 269

multiple statements 119

NEGOTIATOR keyword 269

NEGOTIATOR_COREDUMP_DIR keyword 270

NEGOTIATOR_CYCLE_DELAY keyword 270

NEGOTIATOR_CYCLE_TIME_LIMIT keyword 270

NEGOTIATOR_INTERVAL keyword 270

NEGOTIATOR_LOADAVG_INCREMENT keyword 271

NEGOTIATOR_PARALLEL_DEFER keyword 271

NEGOTIATOR_PARALLEL_HOLD keyword 271

NEGOTIATOR_RECALCULATE_SYSPRIO_ INTERVAL

keyword 271

NEGOTIATOR_REJECT_DEFER keyword 272

NEGOTIATOR_REMOVE_COMPLETED keyword 272

NEGOTIATOR_RESCAN_QUEUE keyword 272

NEGOTIATOR_STREAM_PORT keyword 272

OBITUARY_LOG_LENGTH keyword 273

POLLING_FREQUENCY keyword 273

POLLS_PER_UPDATE keyword 273

PREEMPT_CLASS keyword 274

PREEMPTION_SUPPORT keyword 275

PRESTARTED_STARTERS keyword 273

PROCESS_TRACKING keyword 276

PROCESS_TRACKING_EXTENSION keyword 276

PUBLISH_OBITUARIES keyword 276

REJECT_ON_RESTRICTED_LOGIN keyword 276

RELEASEDIR keyword 277

RESERVATION_CAN_BE_EXCEEDED keyword 277

RESERVATION_HISTORY keyword 277

RESERVATION_MIN_ADVANCE_TIME keyword 277

RESERVATION_PRIORITY keyword 278

RESERVATION_SETUP_TIME keyword 278

RESTARTS_PER_HOUR keyword 278

RESUME_ON_SWITCH_TABLE_ ERROR_CLEAR

keyword 279

RSET_SUPPORT keyword 279

SAVELOGS keyword 279

SCHEDD keyword 279

SCHEDD_COREDUMP_DIR keyword 280

SCHEDD_INTERVAL keyword 280

SCHEDD_RUNS_HERE keyword 280

SCHEDD_STATUS_PORT keyword 281

SCHEDD_STREAM_PORT keyword 281

SCHEDD_SUBMIT_AFFINITY keyword 280

SCHEDULE_BY_RESOURCES keyword 281

SCHEDULER_TYPE keyword 281

SEC_ADMIN_GROUP keyword 282

SEC_ENABLEMENT keyword 282

SEC_IMPOSED_MECHS keyword 283

SEC_SERVICES_GROUP keyword 283

SPOOL keyword 283

START expression 283

START_CLASS keyword 284

START_DAEMONS keyword 284

STARTD keyword 285

STARTD_COREDUMP_DIR keyword 285

STARTD_DGRAM_PORT keyword 285

STARTD_RUNS_HERE keyword 285

STARTD_STREAM_PORT keyword 285

STARTER keyword 286

Index 701

configuration file (continued)
STARTER_COREDUMP_DIR keyword 286

structure and syntax 243

SUBMIT_FILTER keyword 286

SUSPEND expression 287

syntax 243

SYSPRIO keyword 287

SYSPRIO_THRESHOLD_TO_ IGNORE_STEP

keyword 289

TRUNC_GSMONITOR_LOG_ON_OPEN keyword 289

TRUNC_KBDD_LOG_ON_OPEN keyword 289

TRUNC_MASTER_LOG_ON_OPEN keyword 290

TRUNC_NEGOTIATOR_LOG_ ON_OPEN keyword 290

TRUNC_SCHEDD_LOG_ON_OPEN keyword 290

TRUNC_STARTD_LOG_ON_OPEN keyword 290

TRUNC_STARTER_LOG_ON_OPEN keyword 290

UPDATE_ON_POLL_INTERVAL_ONLY keyword 291

user-defined keywords 293

VACATE expression 291

VM_IMAGE_ALGORITHM keyword 291

WALLCLOCK_ENFORCE keyword 292

X_RUNS_HERE keyword 292

configuration file keyword
LOADL_ADMIN 41

configuration file keywords associated with port

numbers 685

configuration files
global and local 39

configuration tasks
GUI 159

configuration wizard
lltg 159

configuring
cluster security services 53

MPICH jobs under LoadLeveler control 99

MPICH-GM jobs 100

MVAPICH jobs 100

security service 52

Connectivity
requirement in job command file 363

Connectivity variable
detailed description 294

use on MACHPRIO keyword 266

considerations
checkpointing 130

parallel jobs 96

POE 97

POE software levels 179

consumable resources 56

introduction 21

job scheduling 21

modifying using the GUI 233

Workload Manager 22

ConsumableCpus variable
detailed description 294

use on MACHPRIO keyword 266

ConsumableMemory variable
detailed description 294

use on MACHPRIO keyword 266

ConsumableVirtualMemory variable
detailed description 295

use on MACHPRIO keyword 266

CONTINUE expression
detailed description 253

control functions 63

copy 305, 335

COPY_ALL specification
on environment keyword 349

core file on Linux
troubleshooting 660

core_limit keyword
detailed description 309, 345

coschedule keyword
detailed description 346

coscheduling job steps 171

commands and APIs 172

determining priority 171

preemption 172

submitting 171

termination 173

CPU affinity support
overview 137

CPU_Busy keyword 293

CPU_Idle keyword 293

cpu_limit keyword
detailed description 309, 346

cpu_speed_scale keyword
detailed description 310

Cpus variable
detailed description 295

use on MACHPRIO keyword 266

create account report
GUI 160

CtSec services 53

CurrentTime variable
detailed description 295

CUSTOM_METRIC keyword
detailed description 253

CUSTOM_METRIC_COMMAND keyword
detailed description 253

customizing
administration file 77

configuration file 39, 243

CustomMetric variable
detailed description 295

use on MACHPRIO keyword 266

D
daemon

master 8

overview 7

daemons
control using llctl command 409

gsmonitor 13

kbdd 13

negotiator 12

Schedd 9

startd 10

data access
API 522

Blue Gene objects
understanding 524

Class objects
understanding 524

Cluster objects
understanding 525

Fairshare objects
understanding 525

Job objects
understanding 525

Machine objects
understanding 527

702 TWS LoadLeveler: Using and Administering

data access (continued)
MCluster objects

understanding 528

objects
understanding 523

Reservations objects
understanding 528

Wlmstat objects
understanding 529

data_limit keyword
detailed description 310, 346

DCE
authentication process 68

authentication programs 68

handling security credentials 68

DCE authentication 254

DCE_AUTHENTICATION_PAIR keyword
detailed description 254

debugging
controlling output 47

dedicated adapters 356

default scheduler
advantages of using 42

default_class keyword
detailed description 310

default_group keyword
detailed description 311

default_interactive_class keyword
detailed description 311

DEFAULT_PREEMPT_METHOD keyword
detailed description 254

default_resources keyword
detailed description 312

default_wall_clock_limit keyword
detailed description 312

Deferred job state
abbreviations 18

detailed description 18

defining classes 83

dependency 669

dependency keyword
detailed description 347

details
API scheduler 43

determining priority for coscheduled job steps 171

device_driver_name keyword
detailed description 313

diagnosing problems 651

directories
LoadLeveler location after installation 30

naming for checkpointing 134

submit-only LoadLeveler location after installation 31

disability 687

Disk
requirement in job command file 363

Disk variable
detailed description 295

use on MACHPRIO keyword 266

displaying job status
using the command llq 215

using the GUI 231

displaying machine status
adapter details 235

Blue Gene 236

cluster config 236

cluster status 235

details 235

displaying machine status (continued)
floating resources 235

machine resources 235

public submit machines 237

scheduler in use 237

using llstatus 216

using the GUI 235

domain variable
detailed description 295

drain
GUI 159

DRAIN_ON_SWITCH_TABLE_ERROR keyword
detailed description 255

dsh command 666

E
editing jobs 171, 229

ENFORCE_RESOURCE_MEMORY keyword
detailed description 255

ENFORCE_RESOURCE_POLICY keyword
detailed description 255

ENFORCE_RESOURCE_USAGE keyword
detailed description 256

EnteredCurrentState variable
detailed description 295

env_copy keyword
detailed description 313, 348

environment keyword
detailed description 349

specifications
!var 349

$var 349

COPY_ALL 349

var=value 349

environment variable
MALLOCTYPE 29, 411, 625

environment variables
LOADL_JOB_CPU_LIMIT 69

LOADL_PROCESSOR_LIST 197

LOADL_STEP_CLASS 69

LOADL_STEP_COMMAND 69

LOADL_STEP_ID 69

LOADL_STEP_OWNER 69

LOADL_WALL_LIMIT 69

epilog programs 70

error keyword
detailed description 350

examples, fair share scheduling 151

exclude_classes keyword
detailed description 313

exclude_groups keyword
detailed description 314

exclude_users keyword
detailed description 315

executable 166

job command file 169

specified in a job command file 165

executable keyword
detailed description 351

EXECUTE 45

EXECUTE keyword
detailed description 256

executing machine 6

execution window for jobs 667

exit status 361, 494

prolog program 73

Index 703

expressions
CONTINUE 63

KILL 63

START 63

SUSPEND 63

VACATE 63

external scheduler 619

F
fair share scheduling

central manager 153

configuring 148

GUI 161

keywords 148

overview 25

reconfiguring 150

when the Schedd daemons are down 151

when the Schedd daemons are up 151

resetting historic data 153

restoring historic data 153

saving historic data 153

fair share scheduling, Blue Gene support 147

FAIR_SHARE_INTERVAL keyword 148

detailed description 256

FAIR_SHARE_TOTAL_SHARES keyword 148

detailed description 256

fair_shares keyword 148

detailed description 316

Fairshare object
understanding 525

favor jobs 156

llfavorjob command 419

favor users 155

llfavoruser command 421

feature
requirement in job command file 363

FEATURE keyword
detailed description 256

file
customizing administration file 77

customizing configuration file 39

file structure and syntax
administration file 301

file system monitoring 50

file_limit keyword
detailed description 316, 351

files 134

naming checkpoint files 131

naming checkpointing files for interactive parallel

jobs 135

naming checkpointing files for serial and batch jobs 135

filtering a job script 70

FLOATING_RESOURCES keyword
detailed description 257

flush
GUI 159

FreeRealMemory variable
detailed description 295

use on MACHPRIO keyword 266

FS_INTERVAL keyword
detailed description 257

FS_NOTIFY keyword
detailed description 258

FS_SUSPEND keyword
detailed description 258

FS_TERMINATE keyword
detailed description 259

G
GetHistory subroutine 507

getting a quick start using the default configuration 27

global configuration file
configuring 39

GLOBAL_HISTORY keyword
detailed description 259

graphical user interface
See GUI 217

group
default 311

UNIX 311

group keyword
detailed description 351

group stanza keywords
env_copy_name 313

exclude_users 315

fair_shares 316

include_users 318

max_node 321

max_processors 321

max_reservation_duration 321

max_reservations 322

max_total_tasks 322

maxidle 323

priority 326

total_tasks 331

type 331

group stanzas
examples 92

format 87

GroupBgSharesExceeded user-defined variable
use on SYSPRIO keyword 149

GroupHasBgShares user-defined variable
use on SYSPRIO keyword 149

GroupHasShares user-defined variable
use on SYSPRIO keyword 149

GroupIsBlueGene variable
use on SYSPRIO keyword 287

GroupQueuedJobs variable
detailed description 295

use on SYSPRIO keyword 287

GroupRemainingBgShares user-defined variable
use on SYSPRIO keyword 149

GroupRemainingShares user-defined variable
use on SYSPRIO keyword 149

GroupRunningJobs variable
detailed description 296

use on SYSPRIO keyword 287

GroupSharesExceeded user-defined variable
use on SYSPRIO keyword 149

GroupSysprio variable
detailed description 296

use on SYSPRIO keyword 287

GroupTotalJobs variable
detailed description 296

use on SYSPRIO keyword 287

GroupTotalShares variable
detailed description 296

GroupUsedBgShares variable
detailed description 296

use on SYSPRIO keyword 287

704 TWS LoadLeveler: Using and Administering

GroupUsedShares variable
detailed description 296

gsmonitor daemon 13

GSMONITOR keyword
detailed description 259

GSMONITOR_COREDUMP_DIR keyword
detailed description 259

GSMONITOR_DOMAIN keyword
detailed description 260

GSMONITOR_RUNS_HERE keyword
detailed description 260

GUI
64-bit support 380

configuration tasks 159

machine administration 158

capture data 160

collect account data 160

collect reservation data 160

configuration tasks 159

create account report 160

drain 159

fair share scheduling 161

flush 159

move spool 161

purge Schedd 160

reconfig 158

recycle 158

resume 159

start all 158

start Drained 158

start LoadLeveler 158

stop all 158

stop LoadLeveler 158

version 161

modifying consumable resources and other job

attributes 233

GUI (graphical user interface)
customizing 377

customizing for the GUI 380

help 379

menu bar 378

overview 377

pull-down menus 378

starting 377

tasks
summary 217

typographic conventions 379

Xloadl file 380

Xloadl_so file 380

GUI (see graphical user interface) 155

H
help

calling IBM 670

in the GUI 379

heterogeneous memory support, Blue Gene 147

HighLoad keyword 293

hints for running LoadLeveler 666

hints for using machines 669

HISTORY 45

history file
troubleshooting 670

HISTORY keyword
detailed description 260

HISTORY_PERMISSION keyword
detailed description 260

hold keyword
detailed description 351

holding jobs
using llhold 213, 216

using the GUI 233

host variable
detailed description 296

hostname variable
detailed description 296

HOUR keyword 293

how to checkpoint a job 214

I
Idle job state

abbreviations 18

detailed description 18

idle-like job states 438

image_size keyword
detailed description 352

implied START_CLASS values 118

inbound_hosts keyword
detailed description 316

inbound_schedd_port keyword
detailed description 316

include_classes keyword
detailed description 316

include_groups keyword
detailed description 317

include_users keyword
detailed description 318

InfiniBand adapters
support for 81

initialdir keyword
detailed description 352

initiators 269

INODE_NOTIFY keyword
detailed description 260

INODE_SUSPEND keyword
detailed description 261

INODE_TERMINATE keyword
detailed description 261

input keyword
detailed description 353

instances 183

integer blocking 180

integrating LoadLeveler with WLM 127

interactive jobs
planning considerations 97

interactive parallel jobs
naming files for checkpointing 135

interface
application programming (API)

summary 503

command line
overview 385

interface_address keyword
detailed description 319

interface_name keyword
detailed description 319

J
job

accounting 57

based on events 59

Index 705

job (continued)
accounting (continued)

based on machines 58, 126

based on user accounts 59

for serial or parallel jobs 58

storing data 60

batch 5

building a job command file 165

building using the GUI 217

canceling 214

using llcancel command 392

cancelling 233

change priority
using llprio command 447

change step attributes
using llmodify command 435

class name 343

cluster_input_file name 344

cluster_list name 344

cluster_output_file name 345

definition 4

diagnosing problems with 652, 654, 656

editing 171, 229

environment variables 177

exit status 361, 494

filter 70

hold or release
using llhold command 426

holding 213, 233

interactive 97

parallel 178, 654

preempt a step
using llpreempt command 444

priority 212, 232, 326

query status
using llq command 449

releasing a hold 233

return resource information
using llsummary command 496

running 666

samples 215

serial 165, 211

status 211, 231, 453

submit
using llsubmit command 494

submit-only 656

submitting 165, 177, 211, 230

system priority 43

job accounting setup procedure 61

job command file
account_no keyword 336

arguments keyword 337

bg_connection keyword 337

bg_partition keyword 337

bg_requirements keyword 338

bg_rotate keyword 338

bg_shape keyword 339

bg_size keyword 339

blocking keyword 340

building 165

bulkxfer keyword 340

checkpoint keyword 341

ckpt_dir keyword 341

ckpt_file keyword 342

ckpt_time_limit keyword 343

class keyword 343

cluster_input_file keyword 344

job command file (continued)
cluster_list keyword 344

cluster_output_file keyword 345

comment keyword 345

core_limit keyword 345

coschedule 346

cpu_limit keyword 346

data_limit keyword 346

default_wall_clock_limit keyword 312

dependency keyword 347

env_copy keyword 348

environment keyword 349

error keyword 350

example 166, 167, 168, 333

executable example 169

executable keyword 351

file_limit keyword 351

group keyword 351

hold keyword 351

image_size keyword 352

initialdir keyword 352

input keyword 353

job_cpu_limit keyword 353

job_name keyword 354

job_type keyword 354

keyword descriptions 336

large_page keyword 354

LoadLeveler variables 372

max_processors keyword 355

mcm_affinity_options keyword 355

min_processors keyword 356

network keyword 356

node keyword 359

node_usage keyword 360

notification keyword 360

notify_user keyword 361

output keyword 361

parallel 334

preferences keyword 361

queue keyword 362

requirements keyword 362

resources keyword 365

restart keyword 366

restart_from_ckpt keyword 367

restart_on_same_nodes keyword 367

rset keyword 367

run-time environment variables 374

serial 333

shell keyword 368

smt 368

stack_limit keyword 369

startdate keyword 369

step_name keyword 369

submitting 177

syntax 333

task_geometry keyword 370

tasks_per_node keyword 370

total_tasks keyword 371

user_priority keyword 372

wall_clock_limit keyword 372

job files
naming for checkpointing 135

naming for checkpointing interactive parallel jobs 135

job object 9

Job object
understanding 525

706 TWS LoadLeveler: Using and Administering

job queue
definition 7

job scheduling
consumable resources 21

job spool recovery
procedure 154

job state
abbreviations 18

descriptions 18

job step
checkpointing

using llckpt command 400

job steps, coscheduled 171

JOB_ACCT_Q_POLICY keyword
detailed description 262

job_cpu_limit keyword
detailed description 319, 353

JOB_EPILOG keyword
detailed description 262

JOB_LIMIT_POLICY keyword
detailed description 262

job_name keyword
detailed description 354

JOB_PROLOG keyword
detailed description 262

job_type keyword
detailed description 354

JOB_USER_EPILOG keyword
detailed description 262

JOB_USER_PROLOG keyword
detailed description 263

JobIsBlueGene variable
detailed description 296

JobIsNotBlueGene user-defined variable
use on SYSPRIO keyword 149

JobLoad keyword 293

K
kbdd daemon 13

KBDD keyword
detailed description 263

KBDD_COREDUMP_DIR keyword
detailed description 263

KeyboardBusy keyword 293

KeyboardIdle variable
detailed description 297

keywords
administration file 78, 306

64-bit support 305

checkpoint 129

configuration file 44, 243, 244

64-bit support 244

LoadLeveler variables 294

user-defined 293

fair share scheduling 148

job command file 336

64-bit support 335

user-defined 293, 294

KILL expression
detailed description 263

L
LAPI 356

large_page keyword
detailed description 354

LargePageMemory
requirement in job command file 363

LIB 45

LIB keyword
detailed description 263

libllapi.a library 503

libllapi.so library 503

limit keywords 83

Linux CPU affinity support
assigning to application processes 138

overview 137

troubleshooting 656

ll_bind subroutine 601

ll_change_reservation (subroutine)
using 204

ll_change_reservation subroutine 604

ll_ckpt subroutine 512

ll_cluster subroutine 620

ll_cluster_auth subroutine 622

ll_config_changed subroutine 520

ll_control subroutine 624

ll_deallocate subroutine 530

ll_error 590

ll_error subroutine 591

ll_fair_share 592

ll_fair_share subroutine 593

ll_free_jobs subroutine 596

ll_free_nodes subroutine 597

ll_free_objs subroutine 531

ll_get_data subroutine 532

ll_get_jobs subroutine 598

ll_get_nodes subroutine 599

ll_get_objs subroutine 574

ll_init_ckpt subroutine 515

ll_init_reservation_param subroutine 608

ll_make_reservation (subroutine)
using 201

ll_make_reservation subroutine 609

ll_modify subroutine 628

using 67

ll_move_job subroutine 632

ll_move_spool subroutine 634

ll_next_obj subroutine 577

ll_preempt subroutine 637

ll_preempt_jobs subroutine 639

ll_query subroutine 578

ll_read_config subroutine 521

ll_remove_reservation (subroutine)
using 205

ll_remove_reservation subroutine 612

ll_reservation 600

ll_reset_request subroutine 579

LL_RSH_COMMAND keyword
detailed description 263

ll_run_scheduler subroutine 642

using 67

ll_set_ckpt_callbacks subroutine 517

ll_set_request subroutine 580

ll_start_job subroutine 643

ll_start_job_ext subroutine 645

ll_terminate_job subroutine 649

ll_unset_ckpt_callbacks subroutine 518

LL_Version
requirement in job command file 363

llacctmrg command 387

Index 707

llacctmrg command (continued)
using for reservations 127

llacctval user exit 509

llapi.h header file 503

llbind command 389

using to remove a bound job 203

using to submit a job 203

llcancel command 392

llchres command 395

using 204

llckpt command 400

llclass -l command sample output listing 673

llclass command 403

llclusterauth command 408

llctl command 409

lldbconvert command 414

llextRPD command 415

llfavorjob command 419

llfavoruser command 421

llfree_job_info subroutine 615

llfs command 422

llhold command 426

llinit command 429

llmkres command 431

using 200

llmodify command 435

using 67

llmovejob command 440

llmovespool command 442

llpreempt command 444

llprio command 447

llq -l -x command sample output listing 676

llq -l command sample output listing 674

llq -l command sample output listing for a Blue Gene enabled

system 676

llq command 449

using for reservations 203, 204, 205

llqres command 468

using 202, 204, 205

llrmres command 474

using 205

llrunscheduler command 476

using 67

llstatus -l -b command sample output listing 679

llstatus -l -x command sample output listing 681

llstatus -l command sample output listing 678

llstatus command 477

llsubmit command 494

using for reservations 203

llsubmit subroutine 616

llsummary command 496

lltg, configuration wizard 159

load average 670

LoadAvg variable
detailed description 297

use on MACHPRIO keyword 266

loadl user ID 27, 39

LoadL_admin file 301

LOADL_ADMIN keyword 41

detailed description 264

LOADL_CONFIG 65

LoadL_config file 39

LoadL_config.local file 39

LOADL_INTERACTIVE_CLASS variable 311

LOADL_JOB_CPU_LIMIT
environment variable 69

LOADL_PROCESSOR_LIST
environment variable 197

LOADL_STEP_CLASS
environment variable 69

LOADL_STEP_COMMAND
environment variable 69

LOADL_STEP_ID
environment variable 69

LOADL_STEP_OWNER
environment variable 69

LOADL_WALL_LIMIT
environment variable 69

LoadLeveler
directory location after installation 30

job states 18

port usage information 685

starting 29

steps for integrating with WLM 127

LoadLeveler APIs
64-bit support 505

LoadLeveler basics 3

LoadLeveler cluster
initialize machines

using llinit command 429

LoadLeveler commands
llacctmrg 387

sample output 673

LoadLeveler daemon
overview 7

LoadLeveler daemons
control using llctl command 409

LoadLeveler for Linux quick installation and

configuration 28

LoadLeveler interfaces
application programming (API)

summary 503

command line
overview 385

LoadLeveler multicluster support
local central manager 139

local cluster 139

local gateway Schedd 139

overview 139

remote central manager 139

remote cluster 139

remote gateway Schedd 139

LoadLeveler support for checkpointing jobs 129

LoadLeveler user ID 27

LoadLeveler variables 294

Arch 294

ClassSysprio 294

Connectivity 294

ConsumableCpus 294

ConsumableMemory 294

ConsumableVirtualMemory 295

Cpus 295

CurrentTime 295

CustomMetric 295

Disk 295

domain 295

EnteredCurrentState 295

for setting dates
tm_mday 299

tm_mon 299

tm_wday 299

tm_yday 299

tm_year 299

708 TWS LoadLeveler: Using and Administering

LoadLeveler variables (continued)
for setting dates (continued)

tm4_year 299

usage 299

for setting time
tm_isdst 300

tm_min 300

tm_sec 300

tm4_year 299

usage 299

FreeRealMemory 295

GroupQueuedJobs 295

GroupRunningJobs 296

GroupSysprio 296

GroupTotalJobs 296

GroupTotalShares 296

GroupUsedBgShares 296

GroupUsedShares 296

host 296

hostname 296

in a job command file 372

JobIsBlueGene 296

KeyboardIdle 297

LoadAvg 297

Machine 297

MasterMachPriority 297

Memory 297

OpSys 297

PagesFreed 297

PagesScanned 297

QDate 297

Speed 298

state 298

tilde 298

UserPrio 298

UserQueuedJobs 298

UserRunningJobs 298

UserSysprio 298

UserTotalJobs 298

UserTotalShares 298

UserUsedBgShares 299

UserUsedShares 299

VirtualMemory 299

local central manager 139

local cluster 139

local configuration file
configuring 39

local gateway Schedd 139

local keyword
detailed description 319

LOCAL_CONFIG 45

LOCAL_CONFIG keyword
detailed description 264

LOG 45

log files 45

LOG keyword
detailed description 265

logical_id keyword
detailed description 319

LookAt message retrieval tool xv

LowLoad keyword 294

M
machine

administrative actions 158

machine (continued)
collect history files

using llacctmrg command 387

GUI 158

initialize in LoadLeveler cluster
using llinit command 429

public scheduling 329

query status
using llstatus command 477

scheduling 6

Machine
requirement in job command file 363

Machine object
understanding 527

machine stanza keywords
adapter_stanzas 306

alias 307

central_manager 308

cpu_speed_scale 310

machine_mode 320

master_node_exclusive 320

max_jobs_scheduled 320

name_server 325

pool_list 326

port_number 326

reservation_permitted 327

resources 327

schedd_fenced 328

schedd_host 329

spacct_excluse_enable 330

speed 330

submit_only 330

type 331

machine stanzas
examples 80

format 78

Machine variable
detailed description 297

MACHINE_AUTHENTICATE keyword
detailed description 265

machine_mode keyword
detailed description 320

MACHINE_UPDATE_INTERVAL 666

MACHINE_UPDATE_INTERVAL keyword
detailed description 265

MACHPRIO 43

MACHPRIO keyword
detailed description 265

mail keyword 294

MAIL keyword
detailed description 267

mail program 75

MALLOCTYPE 29, 411, 625

master daemon 8

MASTER keyword
detailed description 267

master node 99

MASTER_COREDUMP_DIR keyword
detailed description 267

MASTER_DGRAM_PORT keyword
detailed description 268

master_node_exclusive keyword
detailed description 320

master_node_requirement keyword
detailed description 320

MASTER_STREAM_PORT keyword
detailed description 268

Index 709

MasterMachPriority variable
detailed description 297

use on MACHPRIO keyword 266

MAX_CKPT_INTERVAL 174

MAX_CKPT_INTERVAL keyword
detailed description 268

MAX_JOB_REJECT keyword
detailed description 268

max_jobs_scheduled keyword
detailed description 320

max_node keyword
detailed description 321

max_processors keyword
detailed description 321, 355

max_protocol_instances 187

max_protocol_instances keyword
detailed description 321

max_reservation_duration keyword
detailed description 321

max_reservations keyword
detailed description 322

MAX_RESERVATIONS keyword
detailed description 268

MAX_STARTERS
limits set by 52

MAX_STARTERS keyword
detailed description 269

max_top_dogs keyword
detailed description 322

MAX_TOP_DOGS keyword
detailed description 269

max_total_tasks keyword
detailed description 322

maxidle 668

maxidle keyword
detailed description 323

maxjobs 668

maxjobs keyword
detailed description 323

maxqueued 668

maxqueued keyword
detailed description 323

MCluster object
understanding 528

mcm_affinity_options keyword
detailed description 355

Memory
requirement in job command file 364

Memory variable
detailed description 297

use on MACHPRIO keyword 266

message retrieval tool, LookAt xv

messages 238

MIN_CKPT_INTERVAL 174

MIN_CKPT_INTERVAL keyword
detailed description 269

min_processors keyword
detailed description 356

MINUTE keyword 294

modifying consumable resources and
using the GUI 233

monitor_program 618

monitoring programs 618

monitoring, file system 50

move spool
GUI 161

MPI 356

MPICH
job command file 192

running jobs 188

MPICH jobs, configuring 99

MPICH-GM
job command file 194

running jobs 188

MPICH-GM jobs, configuring 100

multicluster
troubleshootingt 663

multicluster support
overview 139

multicluster_security keyword
detailed description 324

multilink_address keyword
detailed description 324

multilink_list keyword
detailed description 324

multiple statements
in administration file 119

in configuration file 119

MVAPICH
running jobs 188

MVAPICH jobs, configuring 100

N
name_server keyword

detailed description 325

naming
checkpoint files 131

checkpointing files and directories 134

checkpointing files for interactive parallel jobs 135

checkpointing files serial and batch 135

naming for checkpointing 134

negotiator daemon 12

job states 18

NEGOTIATOR keyword
detailed description 269

NEGOTIATOR_COREDUMP_DIR keyword
detailed description 270

NEGOTIATOR_CYCLE_DELAY keyword
detailed description 270

NEGOTIATOR_CYCLE_TIME_LIMIT keyword
detailed description 270

NEGOTIATOR_INTERVAL 666

NEGOTIATOR_INTERVAL keyword
detailed description 270

using 67

NEGOTIATOR_LOADAVG_INCREMENT keyword
detailed description 271

NEGOTIATOR_PARALLEL_DEFER keyword
detailed description 271

NEGOTIATOR_PARALLEL_HOLD keyword
detailed description 271

NEGOTIATOR_RECALCULATE_SYSPRIO_ INTERVAL

keyword
detailed description 271

NEGOTIATOR_REJECT_DEFER keyword
detailed description 272

NEGOTIATOR_REMOVE_COMPLETED keyword
detailed description 272

NEGOTIATOR_RESCAN_QUEUE keyword
detailed description 272

NEGOTIATOR_STREAM_PORT keyword
detailed description 272

710 TWS LoadLeveler: Using and Administering

network keyword
detailed description 356

network_id keyword
detailed description 325

network_type keyword
detailed description 325

nice keyword
detailed description 325

node availability 79

node keyword 180

detailed description 359

node_usage keyword
detailed description 360

Not Run job state
abbreviations 18

detailed description 18

notification keyword
detailed description 360

notify_user keyword
detailed description 361

NotQueued job state
abbreviations 18

detailed description 18

O
OBITUARY_LOG_LENGTH keyword

detailed description 273

objects
Blue Gene

understanding 524

Class
understanding 524

Cluster
understanding 525

data access
understanding 523

Fairshare
understanding 525

Job
understanding 525

Machine
understanding 527

MCluster
understanding 528

Reservations
understanding 528

Wlmstat
understanding 529

obtaining status, parallel jobs 196

openSSL
multicluster, securing 143

OpenSSL
administration keyword

multicluster_security 324

ssl_cipher_list 330

operators 244

OpSys
requirement in job command file 364

OpSys variable
detailed description 297

outbound_hosts keyword
detailed description 326

output 669

debugging 47

from commands 673

output keyword
detailed description 361

overview
fair share scheduling 25

P
PagesFreed variable

detailed description 297

use on MACHPRIO keyword 266

PagesScanned variable
detailed description 297

use on MACHPRIO keyword 266

parallel job command files 334

parallel jobs
administration 96

checklist 655

Class keyword 98

class stanza 98

interactive, naming files for checkpointing 135

job command file examples 191

master node 99

obtaining status 196

scheduling considerations 96

supported keywords 96

parallel jobs, batch
naming files for checkpointing 135

pending job state 657

Pending job state
abbreviations 18

detailed description 18

planning
checkpointing 130

POE 97

POE
environment variables 188

job command file 191

planning considerations 97

software levels 179

POLLING_FREQUENCY keyword
detailed description 273

POLLS_PER_UPDATE keyword
detailed description 273

Pool
requirement in job command file 364

pool_list keyword
detailed description 326

port number definition 685

port numbers, configuration file keywords 685

port usage information 685

port_number keyword
detailed description 326

post-installation considerations
LoadLeveler directory location 30

starting LoadLeveler 29

submit-only LoadLevelerr directory location 31

preempt
job step

using llpreempt command 444

Preempt Pending job state
abbreviations 18

detailed description 18

PREEMPT_CLASS keyword
detailed description 274

Preempted job state
abbreviations 18

detailed description 18

Index 711

preemption
avoiding 117

releasing job resources 119

selecting a method 118

two types 116

preemption and coscheduled job steps 172

preemption method
selecting 118

PREEMPTION_SUPPORT keyword
detailed description 275

preferences keyword
detailed description 361

PRESTARTED_STARTERS keyword
detailed description 273

priority
of jobs

user priority 447

priority (of jobs)
setting or changing 212

system priority 212

setting or changing 43, 67

user priority 212

priority keyword
detailed description 326

procedure
job accounting setup 61

job spool recovery 154

process
starter 12

PROCESS_TRACKING 64

PROCESS_TRACKING keyword
detailed description 276

PROCESS_TRACKING_EXTENSION 64

PROCESS_TRACKING_EXTENSION keyword
detailed description 276

productivity aids 666

prolog programs 70

public scheduling machine 329

public scheduling machines 6, 212

PUBLISH_OBITUARIES keyword
detailed description 276

pull-down menus
creating 381

purge Schedd
GUI 160

Q
QDate variable

detailed description 297

use on SYSPRIO keyword 287

query a job
using llq command 449

using the GUI 231

query API 595

querying class information
using llclass command 403

querying multiple clusters 65

questions and answers 651

queue keyword
detailed description 362

queue, see job queue 7

quick start procedure
before you begin 27

LoadLeveler for Linux 28

using the default configuration files 27

R
RDMA

configuring 57

specifying for jobs 173

reconfig
GUI 158

reconfiguration
changing scheduler types 115

reconfiguring
fair share scheduling 150

recycle
GUI 158

Reject Pending job state
abbreviations 18

detailed description 18

REJECT_ON_RESTRICTED_LOGIN keyword
detailed description 276

Rejected job state
abbreviations 18

detailed description 18

release from hold 156

RELEASEDIR 45

RELEASEDIR keyword
detailed description 277

remote central manager 139

remote cluster 139

remote direct-memory access (RDMA)
configuring 57

specifying for jobs 173

remote gateway Schedd 139

remove job from reservation 234

Remove Pending job state
abbreviations 18

detailed description 18

Removed job state
abbreviations 18

detailed description 18

requirements keyword
detailed description 362

RESERVATION_CAN_BE_EXCEEDED keyword
detailed description 277

RESERVATION_HISTORY keyword
detailed description 277

RESERVATION_MIN_ADVANCE_TIME keyword
detailed description 277

reservation_permitted keyword
detailed description 327

RESERVATION_PRIORITY keyword
detailed description 278

RESERVATION_SETUP_TIME keyword
detailed description 278

reservation, add job to 234

reservation, remove job from 234

reservations
canceling 205

modifying attributes 204

owner tasks 200, 204, 205

querying 204

removing bound jobs 203

steps for configuring 121

submitting jobs 202

troubleshooting 652

Reservations object
understanding 528

resetting historic data
fair share scheduling 153

712 TWS LoadLeveler: Using and Administering

resources
held by preemptable jobs 119

resources keyword
detailed description 327, 365

RESOURCES keyword
detailed description 278

resources, consumable
job scheduling 21

Workload Manager 22

restart
restarting a checkpointed job 655

restart keyword
detailed description 366

restart_from_ckpt keyword
detailed description 367

restart_on_same_nodes keyword
detailed description 367

restoring historic data
fair share scheduling 153

restrictions
checkpointing 130

resume
GUI 159

Resume Pending job state
abbreviations 18

detailed description 18

RESUME_ON_SWITCH_TABLE_ ERROR_CLEAR keyword
detailed description 279

rlim_infinity 305, 335

RSCT peer domain
extracting data from

using llextRPD command 415

rset keyword
detailed description 367

RSET_SUPPORT keyword
detailed description 279

rss_limit keyword
detailed description 328

run-time environment variables
in a job command file 374

Running job state
abbreviations 18

detailed description 18

running jobs at a specific time of day 667

running-like job states 438

S
SAVELOGS keyword 49

detailed description 279

saving historic data
fair share scheduling 153

scaling considerations 666

Schedd
local gateway 139

remote gateway 139

troubleshooting 670

Schedd daemon 9, 657

recovery 660

SCHEDD keyword
detailed description 279

SCHEDD_COREDUMP_DIR keyword
detailed description 280

schedd_fenced keyword
detailed description 328

schedd_host 666

schedd_host keyword
detailed description 329

SCHEDD_INTERVAL keyword
detailed description 280

SCHEDD_RUNS_HERE keyword
detailed description 280

SCHEDD_STATUS_PORT keyword
detailed description 281

SCHEDD_STREAM_PORT keyword
detailed description 281

SCHEDD_SUBMIT_AFFINITY 666

SCHEDD_SUBMIT_AFFINITY keyword
detailed description 280

SCHEDULE_BY_RESOURCES keyword
detailed description 281

SCHEDULER_TYPE keyword
detailed description 281

schedulers
API 42, 619

BACKFILL 42

choosing 42

Default 42

external 42, 619

supported keywords 178

scheduling
avoiding circular preemption 117

BACKFILL
implied START_CLASS values 118

releasing resources of preemptable jobs 119

selecting a preemption method 118

parallel jobs 96

reconfiguration 115

scheduling affinity
configuring LoadLeveler to use 136

submitting jobs 205

scheduling cycle
controlling

example 67

scheduling machine 6

public 329

scheduling, job
consumable resources 21

script not executing
troubleshooting 661

SEC_ADMIN_GROUP keyword
detailed description 282

SEC_ENABLEMENT keyword
detailed description 282

SEC_IMPOSED_MECHS keyword
detailed description 283

SEC_SERVICES_GROUP keyword
detailed description 283

secure_schedd_port keyword
detailed description 329

security
configuring cluster security services 53

security credentials
DCE 68

security service
configuring 52

serial job command files 333

serial jobs
naming files for checkpointing 135

service_class 356

shell 221

shell keyword
detailed description 368

Index 713

shortcut keys
keyboard 687

smt keyword
detailed description 329, 368

spacct_excluse_enable keyword
detailed description 330

speed keyword
detailed description 330

Speed variable
detailed description 298

use on MACHPRIO keyword 266

SPOOL
log 45

SPOOL keyword
detailed description 283

ssl_cipher_list keyword
detailed description 330

stack_limit keyword
detailed description 330, 369

stanzas
adapter 80

characteristics 303

class 92

default 303

label 303

machine 78

type 303

user 77

start all
GUI 158

start Drained
GUI 158

START expression
detailed description 283

start failure
MALLOCTYPE 29, 411, 625

start LoadLeveler
GUI 158

START_CLASS keyword
detailed description 284

implied values 118

START_DAEMONS keyword
detailed description 284

startd daemon 10, 657, 666

STARTD keyword
detailed description 285

STARTD_COREDUMP_DIR keyword
detailed description 285

STARTD_DGRAM_PORT keyword
detailed description 285

STARTD_RUNS_HERE keyword
detailed description 285

STARTD_STREAM_PORT keyword
detailed description 285

startdate keyword
detailed description 369

STARTER keyword
detailed description 286

starter process 12

STARTER_COREDUMP_DIR keyword
detailed description 286

Starting job state
abbreviations 18

detailed description 18

starting LoadLeveler
post-installation considerations 29

State variable
detailed description 298

StateTimer keyword 294

status 494

query for machines
using llstatus command 477

status, obtaining
parallel jobs 196

step_name keyword
detailed description 369

stop all
GUI 158

stop LoadLeveler
GUI 158

striping
definition of 182

examples of requesting striping in network statement 187

over multiple networks 184

submitting jobs 182

understanding over a single network 186

structure
administration file 301

SUBMIT_FILTER 70

SUBMIT_FILTER keyword
detailed description 286

submit_only keyword
detailed description 330

submit-only LoadLeveler
directory location after installation 31

submit-only machine
canceling jobs 214

definition 3

keywords 330

master daemon interaction 8

querying jobs from 211

querying multiple clusters 65

Schedd daemon interaction 9

submitting jobs from 178

troubleshooting 656

types 6

submitting coscheduled job steps 171

submitting jobs
across multiple clusters 65

using a job command file 177

using an API 614

using llsubmit 215

using llsubmit command 494

using the GUI 230

subroutines
ckpt 511

GetHistory 507

ll_bind 601

ll_change_reservation 204, 604

ll_ckpt 512

ll_cluster 620

ll_cluster_auth 622

ll_config_changed 520

ll_control 624

ll_deallocate 530

ll_error 591

ll_fair_share 593

ll_free_jobs 596

ll_free_nodes 597

ll_free_objs 531

ll_get_data 532

ll_get_jobs 598

ll_get_nodes 599

714 TWS LoadLeveler: Using and Administering

subroutines (continued)
ll_get_objs 574

ll_init_ckpt 515

ll_init_reservation_param 608

ll_make_reservation 201, 609

ll_modify 628

ll_move_job 632

ll_move_spool 634

ll_next_obj 577

ll_preempt 637

ll_preempt_jobs 639

ll_query 578

ll_read_config 521

ll_remove_reservation 205, 612

ll_reset_request 579

ll_run_scheduler 642

ll_set_ckpt_callbacks 517

ll_set_request 580

ll_start_job 643

ll_start_job_ext 645

ll_terminate_job 649

ll_unset_ckpt_callbacks 518

llacctval user exit 509

llfree_job_info 615

llsubmit 616

substanzas
defining in class stanzas 88

summary
of LoadLeveler commands 385

support on TWS LoadLeveler for InfiniBand adapters 81

support services 670

support, 64-bit keywords 244, 305, 335

SUSPEND expression
detailed description 287

syntax
administration file 301

sys/wait.h 73

syshold 156

SYSPRIO keyword 43, 212

detailed description 287

SYSPRIO_THRESHOLD_TO_ IGNORE_STEP keyword
detailed description 289

System Hold job state
abbreviations 18

detailed description 18

system priority
definition 212

setting or changing 43, 67, 212

system queue
reorder by job

using llfavorjob command 419

reorder by user
using llfavoruser command 421

system-initiated checkpointing 129, 341

T
take checkpoint 234

task assignment 180

task_geometry 180

task_geometry keyword
detailed description 370

tasks
administration file, modifying

steps 77

Blue Gene
overview 143

tasks (continued)
Blue Gene jobs, submitting

steps 208

Blue Gene support, configuring
roadmap 145

steps 145

configuration file, modifying
steps 40

Configuring and managing the LoadLeveler environment
roadmap 37

fair share scheduling
examples 151, 152

jobs, building
roadmap 165, 211

jobs, preempting
roadmap 116

jobs, submitting
roadmap 165, 211

jobs, submitting in multicluster
steps 206

LoadLeveler interfaces, using
roadmap 241

multicluster
overview 139

multicluster, configuring
roadmap 140, 205

steps 141

multicluster, securing
steps 143

parallel jobs, launching
steps for reducing overhead 96

Providing additional job-processing controls
roadmap 66

reservations
removing bound jobs 203

submitting jobs 202

reservations, configuring
roadmap 121

steps 121

reservations, creating
administrators only 200

owners only 200

reservations, managing
owners only 204, 205

querying 204

resources, reserving
roadmap 121

scheduler, configure for preemption
steps 120

tasks_per_node keyword 180

detailed description 370

Terminated job state
abbreviations 18

detailed description 18

termination of coscheduled job steps 173

tilde variable
detailed description 298

tm_isdst variable 300

tm_mday variable 299

tm_min variable 300

tm_mon variable 299

tm_sec variable 300

tm_wday variable 299

tm_yday variable 299

tm_year variable 299

tm4_year variable 299

total_tasks keyword 180

Index 715

total_tasks keyword (continued)
detailed description 331, 371

TotalMemory
requirement in job command file 364

trademarks 691

troubleshooting 651

.login script not executing 661

.profile script not executing 661

central manager isn’t operating 658

checkpointed job won’t restart 655

configuration or administration file 661

core file on Linux 660

history file and Schedd 670

inconsistencies in llfs output 661

job stays in pending or starting state 657

job won’t run 652

job won’t run on cluster with both AIX and Linux

machines 656

Linux CPU affinity support 656

llstatus does not agree with llq 658

mksysb created when running jobs 662

multicluster environment 663

parallel job won’t run 654

recovering resources 660

reservations 652

reserved node is down 662

running jobs when a machine goes down 657

set up problems with parallel jobs 655

setuid = 0 661

starting LoadLeveler 651

submit-only job won’t run 656

TRUNC_GSMONITOR_LOG_ ON_OPEN keyword
detailed description 289

usage 47

TRUNC_KBDD_LOG_ON_OPEN keyword
detailed description 289

usage 47

TRUNC_MASTER_LOG_ON_OPEN keyword
detailed description 290

usage 47

TRUNC_NEGOTIATOR_LOG_ ON_OPEN keyword
detailed description 290

usage 47

TRUNC_SCHEDD_LOG_ON_OPEN keyword
detailed description 290

usage 47

TRUNC_STARTD_LOG_ON_OPEN keyword
detailed description 290

usage 47

TRUNC_STARTER_LOG_ON_OPEN keyword
detailed description 290

usage 47

type keyword
detailed description 331

U
understanding striping over a single network 186

understanding striping over multiple networks 184

unfavor jobs 156

unfavor users 155

UNIX group 311

unlimited blocking 180, 340

UPDATE_ON_POLL_INTERVAL_ONLY keyword
detailed description 291

User and System Hold job state
abbreviations 18

User and System Hold job state (continued)
detailed description 18

user exits
llacctval 509

monitoring programs 618

User Hold job state
abbreviations 18

detailed description 18

user name 79

user priority
definition 212

setting or changing 212

user space jobs
configuring bulk data transfer 57

using bulk data transfer 173

user stanza keywords
account 306

default_class 310

default_group 311

default_interactive_class 311

env_copy_name 313

fair_shares 316

max_node 321

max_processors 321

max_reservation_duration 321

max_reservations 322

max_total_tasks 322

maxidle 323

maxjobs 323

maxqueued 323

total_tasks 331

type 331

user stanzas
examples 91

format 77

user substanzas
examples 88, 89

user substanzas in class stanzas
defining 88

user_priority keyword
detailed description 372

user-defined keywords 293

BackgroundLoad 293

CPU_Busy 293

CPU_Idle 293

HighLoad 293

HOUR 293

JobLoad 293

KeyboardBusy 293

LowLoad 294

mail 294

MINUTE 294

StateTimer 294

user-initiated checkpointing 129, 341

UserBgSharesExceeded user-defined variable
use on SYSPRIO keyword 149

UserHasBgShares user-defined variable
use on SYSPRIO keyword 149

UserHasShares user-defined variable
use on SYSPRIO keyword 149

UserPrio variable
detailed description 298

use on SYSPRIO keyword 287

UserQueuedJobs variable
detailed description 298

use on SYSPRIO keyword 287

716 TWS LoadLeveler: Using and Administering

UserRemainingBgShares user-defined variable
use on SYSPRIO keyword 149

UserRemainingShares user-defined variable
use on SYSPRIO keyword 149

UserRunningJobs variable
detailed description 298

use on SYSPRIO keyword 287

UserSharesExceeded user-defined variable
use on SYSPRIO keyword 149

UserSysprio variable
detailed description 298

use on SYSPRIO keyword 287

UserTotalJobs variable
detailed description 298

use on SYSPRIO keyword 287

UserTotalShares variable
detailed description 298

use on SYSPRIO keyword 287

UserUsedBgShares variable
detailed description 299

use on SYSPRIO keyword 287

UserUsedShares variable
detailed description 299

use on SYSPRIO keyword 287

using the default configuration files
quick start procedure 27

V
VACATE expression

detailed description 291

Vacate Pending job state
abbreviations 18

detailed description 18

Vacated job state
abbreviations 18

detailed description 18

var=value specification
on environment keyword 349

variables
LoadLeveler 372

run-time environment 374

version
GUI 161

VirtualMemory variable
detailed description 299

use on MACHPRIO keyword 266

VM_IMAGE_ALGORITHM keyword
detailed description 291

W
wall_clock_limit keyword

detailed description 331, 372

WALLCLOCK_ENFORCE keyword
detailed description 292

WLM
consumable resources 22

steps for integrating with LoadLeveler 127

Wlmstat object
understanding 529

workload manager
consumable resources 22

Workload Manager
steps for integrating with LoadLeveler 127

X
X_RUNS_HERE keyword

detailed description 292

xloadl 377

Xloadl 380

Xloadl_so 380

Index 717

718 TWS LoadLeveler: Using and Administering

Readers’ comments – We’d like to hear from you

Tivoli Workload Scheduler LoadLeveler

Using and Administering

Version 3 Release 4

 Publication No. SA22-7881-06

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7881-06

SA22-7881-06

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-E69 and 5724-I23

Printed in USA

SA22-7881-06

	Contents
	Figures
	Tables
	About this book
	Who should use this book
	Conventions and terminology used in this book
	Prerequisite and related information
	IBM System Blue Gene Solution documentation

	Using LookAt to look up message explanations
	How to send your comments

	Summary of changes
	Part 1. Overview of TWS LoadLeveler concepts and operation
	Chapter 1. What is LoadLeveler?
	LoadLeveler basics
	LoadLeveler: A network job management and scheduling system
	Job definition
	Machine definition
	Roles of machines
	Machine availability

	How LoadLeveler schedules jobs
	How LoadLeveler daemons process jobs
	The master daemon
	The Schedd daemon
	The startd daemon
	The starter process

	The negotiator daemon
	The kbdd daemon
	The gsmonitor daemon

	The LoadLeveler job cycle
	LoadLeveler job states

	Consumable resources
	Consumable resources and AIX Workload Manager

	Overview of reservations
	Fair share scheduling overview

	Chapter 2. Getting a quick start using the default configuration
	What you need to know before you begin
	Using the default configuration files
	LoadLeveler for Linux quick start
	Quick installation
	Quick configuration
	Quick verification

	Post-installation considerations
	Starting LoadLeveler
	Location of directories following installation

	Chapter 3. What operating systems are supported by LoadLeveler?
	AIX and Linux compatibility
	Restrictions for LoadLeveler for Linux
	Features not supported in Linux
	Restrictions for LoadLeveler AIX and Linux mixed clusters

	Part 2. Configuring and managing the TWS LoadLeveler environment
	Chapter 4. Configuring the LoadLeveler environment
	Modifying a configuration file
	Defining LoadLeveler administrators
	Defining a LoadLeveler cluster
	Choosing a scheduler
	Setting negotiator characteristics and policies
	Specifying alternate central managers
	Defining network characteristics
	Specifying file and directory locations
	Configuring recording activity and log files
	Controlling debugging output
	Saving log files

	Setting up file system monitoring

	Defining LoadLeveler machine characteristics
	Defining job classes that a LoadLeveler machine will accept
	Specifying how many jobs a machine can run

	Defining security mechanisms
	Configuring LoadLeveler to use cluster security services
	Steps for enabling CtSec services
	Limiting which security mechanisms LoadLeveler can use

	Defining usage policies for consumable resources
	Enabling support for bulk data transfer and rCxt blocks
	Gathering job accounting data
	Collecting job resource data on serial and parallel jobs
	Collecting job resource data based on machines
	Collecting job resource data based on events
	Collecting job resource information based on user accounts
	Collecting the accounting information and storing it into files
	Producing accounting reports
	Correlating AIX and LoadLeveler accounting records
	64-bit support for accounting functions
	Example: Setting up job accounting files

	Managing job status through control expressions
	How control expressions affect jobs

	Tracking job processes
	Querying multiple LoadLeveler clusters
	Handling switch-table errors
	Providing additional job-processing controls through installation exits
	Controlling the central manager scheduling cycle
	Handling DCE security credentials
	Using the alternative program pair: llgetdce and llsetdce
	Forwarding DCE credentials

	Handling an AFS token
	Filtering a job script
	Writing prolog and epilog programs
	Coding conventions for prolog programs
	Coding conventions for epilog programs

	Using your own mail program

	Chapter 5. Defining LoadLeveler resources to administer
	Steps for modifying an administration file
	Defining machines
	Planning considerations for defining machines
	Machine stanza format and keyword summary
	Examples: Machine stanzas

	Defining adapters
	Configuring dynamic adapters
	Configuring InfiniBand adapters
	Adapter stanza format and keyword summary
	Examples: Adapter stanzas

	Defining classes
	Using limit keywords
	Enforcing limits

	Allowing users to use a class
	Class stanza format and keyword summary
	Examples: class stanzas

	Defining user substanzas in class stanzas
	Examples: substanzas

	Defining users
	User stanza format and keyword summary
	Examples: User stanzas

	Defining groups
	Group stanza format and keyword summary
	Examples: Group stanzas

	Defining clusters
	Cluster stanza format and keyword summary
	Examples: Cluster stanzas

	Chapter 6. Performing additional administrator tasks
	Setting up the environment for parallel jobs
	Scheduling considerations for parallel jobs
	Steps for reducing job launch overhead for parallel jobs
	Steps for allowing users to submit interactive POE jobs
	Setting up a class for parallel jobs
	Setting up a parallel master node
	Configuring LoadLeveler to support MPICH jobs
	Configuring LoadLeveler to support MVAPICH jobs
	Configuring LoadLeveler to support MPICH-GM jobs

	Using the BACKFILL scheduler
	Tips for using the BACKFILL scheduler
	Example: BACKFILL scheduling

	Using an external scheduler
	Replacing the default LoadLeveler scheduling algorithm with an external scheduler
	Customizing the configuration file to define an external scheduler
	Steps for getting information about the LoadLeveler cluster, its machines, and jobs
	Example: Retrieving specific information about machines
	Example: Retrieving information about jobs

	Assigning resources and dispatching jobs

	Example: Changing scheduler types
	Preempting and resuming jobs
	Overview of preemption
	Planning to preempt jobs
	Steps for configuring a scheduler to preempt jobs

	Configuring LoadLeveler to support reservations
	Steps for configuring reservations in a LoadLeveler cluster
	Examples: Reservation keyword combinations in the administration file

	Collecting accounting data for reservations

	Steps for integrating LoadLeveler with AIX Workload Manager
	LoadLeveler support for checkpointing jobs
	Checkpoint keyword summary
	Planning considerations for checkpointing jobs
	AIX checkpoint and restart limitations
	Naming checkpoint files and directories
	Naming checkpoint files for serial and batch parallel jobs
	Naming checkpointing files for interactive parallel jobs

	Removing old checkpoint files

	LoadLeveler scheduling affinity support
	Configuring LoadLeveler to use scheduling affinity

	Linux CPU affinity support
	Assigning Linux CPU affinity to application processes

	LoadLeveler multicluster support
	Configuring a LoadLeveler multicluster
	Steps for configuring a LoadLeveler multicluster
	Steps for securing communications within a LoadLeveler multicluster

	LoadLeveler Blue Gene support
	Configuring LoadLeveler Blue Gene support
	Steps for configuring LoadLeveler Blue Gene support

	Blue Gene advance reservation support
	Blue Gene fair share scheduling support
	Blue Gene heterogeneous memory support

	Using fair share scheduling
	Fair share scheduling keywords
	Reconfiguring fair share scheduling keywords
	Reconfiguring when the Schedd daemons are up
	Reconfiguring when the Schedd daemons are down

	Example: three groups share a LoadLeveler cluster
	Example: two thousand students share a LoadLeveler cluster
	Querying Information about fair share scheduling
	Resetting fair share scheduling
	Saving historic data
	Restoring saved historic data

	Procedure for recovering a job spool

	Chapter 7. Using LoadLeveler's GUI to perform administrator tasks
	Job-related administrative actions
	Machine-related administrative actions

	Part 3. Submitting and managing TWS LoadLeveler jobs
	Chapter 8. Building and submitting jobs
	Building a job command file
	Using multiple steps in a job command file
	Examples: Job command files

	Editing job command files
	Defining resources for a job step
	Working with coscheduled job steps
	Submitting coscheduled job steps
	Determining priority for coscheduled job steps
	Supporting preemption of coscheduled job steps
	Coscheduled job steps and commands and APIs
	Termination of coscheduled steps

	Using bulk data transfer
	Preparing a job for checkpoint/restart
	Preparing a job for preemption
	Submitting a job command file
	Submitting a job using a submit-only machine

	Working with parallel jobs
	Scheduler support for parallel jobs
	Step for controlling whether LoadLeveler copies environment variables to all executing nodes
	Ensuring that parallel jobs in a cluster run on the correct levels of PE and LoadLeveler software
	Task-assignment considerations
	node and total_tasks
	node and tasks_per_node
	blocking
	unlimited blocking
	task_geometry

	Submitting jobs that use striping
	Understanding striping over multiple networks
	Understanding striping over a single network
	Examples: Requesting striping in network statements

	Running interactive POE jobs
	Running MPICH, MVAPICH, and MPICH-GM jobs
	Examples: Building parallel job command files
	POE sample job command file
	MPICH sample job command file
	MPICH-GM sample job command file
	MVAPICH

	Obtaining status of parallel jobs
	Obtaining allocated host names

	Working with reservations
	Understanding the reservation life cycle
	Creating new reservations
	Submitting jobs to run under a reservation
	Removing bound jobs from the reservation
	Querying existing reservations
	Modifying existing reservations
	Canceling existing reservations

	Submitting jobs requesting scheduling affinity
	Submitting and monitoring jobs in a LoadLeveler multicluster
	Steps for submitting jobs in a LoadLeveler multicluster environment

	Submitting and monitoring Blue Gene jobs

	Chapter 9. Managing submitted jobs
	Querying the status of a job
	Working with machines
	Displaying currently available resources
	Setting and changing the priority of a job
	Example: How does a job's priority affect dispatching order?

	Placing and releasing a hold on a job
	Canceling a job
	Checkpointing a job

	Chapter 10. Example: Using commands to build, submit, and manage jobs
	Chapter 11. Using LoadLeveler's GUI to build, submit, and manage jobs
	Building jobs
	Editing the job command file
	Submitting a job command file
	Displaying and refreshing job status
	Sorting the Jobs window
	Changing the priority of your jobs
	Placing a job on hold
	Releasing the hold on a job
	Canceling a job
	Modifying consumable resources and other job attributes
	Taking a checkpoint
	Adding a job to a reservation
	Removing a job from a reservation
	Displaying and refreshing machine status
	Sorting the Machines window
	Finding the location of the central manager
	Finding the location of the public scheduling machines
	Finding the type of scheduler in use
	Specifying which jobs appear in the Jobs window
	Specifying which machines appear in Machines window
	Saving LoadLeveler messages in a file

	Part 4. TWS LoadLeveler interfaces reference
	Chapter 12. Configuration file reference
	Configuration file syntax
	Numerical and alphabetical constants
	Mathematical operators
	64-bit support for configuration file keywords and expressions

	Configuration file keyword descriptions
	User-defined keywords
	LoadLeveler variables
	Variables to use for setting dates
	Variables to use for setting times

	Chapter 13. Administration file reference
	Administration file structure and syntax
	Stanza characteristics
	Syntax for limit keywords
	64-bit support for administration file keywords
	64-bit limits on Linux systems

	Administration file keyword descriptions

	Chapter 14. Job command file reference
	Job command file syntax
	Serial job command file
	Parallel job command file
	Syntax for limit keywords
	64-bit support for job command file keywords

	Job command file keyword descriptions
	Job command file variables
	Run-time environment variables
	Job command file examples

	Chapter 15. Graphical user interface (GUI) reference
	Starting the GUI
	Specifying GUI options
	The LoadLeveler main window
	Getting help using the GUI
	Differences between LoadLeveler's GUI and other graphical user interfaces
	GUI typographic conventions
	64-bit support for the GUI

	Customizing the GUI
	Syntax of an Xloadl file
	Modifying windows and buttons
	Creating your own pull-down menus
	Example – creating a new pull-down

	Customizing fields on the Jobs window and the Machines window
	Modifying help panels

	Chapter 16. Commands
	llacctmrg - Collect machine history files
	llbind - Bind job steps to a reservation
	llcancel - Cancel a submitted job
	llchres - Change attributes of a reservation
	llckpt - Checkpoint a running job step
	llclass - Query class information
	llclusterauth - Generates public and private keys
	llctl - Control LoadLeveler daemons
	lldbconvert - Job migration utility
	llextRPD - Extract data from an RSCT peer domain
	llfavorjob - Reorder system queue by job
	llfavoruser - Reorder system queue by user
	llfs - Fair share scheduling queries and operations
	llhold - Hold or release a submitted job
	llinit - Initialize machines in the LoadLeveler cluster
	llmkres - Make a reservation
	llmodify - Change attributes of a submitted job step
	llmovejob - Move a single idle job from the local cluster to another cluster
	llmovespool - Move job records
	llpreempt - Preempt a submitted job step
	llprio - Change the user priority of submitted job steps
	llq - Query job status
	llqres - Query a reservation
	llrmres - Cancel a reservation
	llrunscheduler - Run the central manager's scheduling algorithm
	llstatus - Query machine status
	llsubmit - Submit a job
	llsummary - Return job resource information for accounting

	Chapter 17. Application programming interfaces (APIs)
	64-bit support for the LoadLeveler APIs
	AIX APIs
	Linux APIs

	Accounting API
	GetHistory subroutine
	llacctval user exit

	Checkpointing API
	ckpt subroutine
	ll_ckpt subroutine
	ll_init_ckpt subroutine
	ll_set_ckpt_callbacks subroutine
	ll_unset_ckpt_callbacks subroutine

	Configuration API
	ll_config_changed subroutine
	ll_read_config subroutine

	Data access API
	Using the data access API
	Understanding the LoadLeveler data access object model
	Understanding the Blue Gene object model
	Understanding the Class object model
	Understanding the Cluster object model
	Understanding the Fairshare object model
	Understanding the Job object model
	Understanding the Machine object model
	Understanding the MCluster object model
	Understanding the Reservations object model
	Understanding the Wlmstat object model
	ll_deallocate subroutine
	ll_free_objs subroutine
	ll_get_data subroutine
	ll_get_objs subroutine
	ll_next_obj subroutine
	ll_query subroutine
	ll_reset_request subroutine
	ll_set_request subroutine
	Examples of using the data access API

	Error handling API
	ll_error subroutine

	Fair share scheduling API
	ll_fair_share subroutine

	Query API
	ll_free_jobs subroutine
	ll_free_nodes subroutine
	ll_get_jobs subroutine
	ll_get_nodes subroutine

	Reservation API
	ll_bind subroutine
	ll_change_reservation subroutine
	ll_init_reservation_param subroutine
	ll_make_reservation subroutine
	ll_remove_reservation subroutine

	Submit API
	llfree_job_info subroutine
	llsubmit subroutine
	monitor_program user exit

	Workload management API
	ll_cluster subroutine
	ll_cluster_auth subroutine
	ll_control subroutine
	ll_modify subroutine
	ll_move_job subroutine
	ll_move_spool subroutine
	ll_preempt subroutine
	ll_preempt_jobs subroutine
	ll_run_scheduler subroutine
	ll_start_job subroutine
	ll_start_job_ext subroutine
	ll_terminate_job subroutine

	Appendix A. Troubleshooting LoadLeveler
	Frequently asked questions
	Why won't LoadLeveler start?
	Why won't my job run?
	Why won't my parallel job run?
	Common set-up problems with parallel jobs

	Why won't my checkpointed job restart?
	Why won't my submit-only job run?
	Why won't my job run on a cluster with both AIX and Linux machines?
	Does my Linux machine support CPU affinity?
	Why does a job stay in the Pending (or Starting) state?
	What happens to running jobs when a machine goes down?
	Why does llstatus indicate that a machine is down when llq indicates a job is running on the machine?

	What happens if the central manager isn't operating?
	How do I recover resources allocated by a Schedd machine?
	Why can't I find a core file on Linux?
	Why am I seeing inconsistencies in my llfs output?
	What happens if errors are found in my configuration or administration file?
	Other questions
	Why do I have to setuid = 0?
	Why doesn't LoadLeveler execute my .profile or .login script?
	What happens when a mksysb is created when LoadLeveler is running jobs?
	What can I do when a reserved node is down?
	How do I add or remove a node from the LoadLeveler administration file?

	Troubleshooting in a multicluster environment
	How do I determine if I am in a multicluster environment?
	How do I determine how my multicluster environment is defined and what are the inbound and outbound hosts defined for each cluster?
	Why is my multicluster environment not enabled?
	How do I find log messages from my multicluster defined installation exits?
	Why won't my remote job be submitted or moved?
	Why did the CLUSTER_REMOTE_JOB_FILTER not update the job with all of the statements I defined?
	How do I find my remote job?
	Why won't my remote job run?
	Why does llq -X all show no jobs running when there are jobs running?

	Helpful hints
	Scaling considerations
	Hints for running jobs
	Determining when your job started and stopped
	Running jobs at a specific time of day
	Controlling the mix of idle and running jobs
	What happens when you submit a job
	Sending output from several job steps to one output file

	Hints for using machines
	Setting up a single machine to have multiple job classes
	Reporting the load average on machines

	History files and Schedd

	Getting help from IBM

	Appendix B. Sample command output
	llclass -l command output listing
	llq -l command output listing
	llq -l command output listing for a Blue Gene enabled system
	llq -l -x command output listing
	llstatus -l command output listing
	llstatus -l -b command output listing
	llsummary -l -x command output listing

	Appendix C. LoadLeveler port usage
	Accessibility features for TWS LoadLeveler
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Readers' comments – We'd like to hear from you

