
Engineering and Scientific
Subroutine Library for AIX
Version 3 Release 3

Guide and Reference

SA22-7272-04

IBM

Engineering and Scientific
Subroutine Library for AIX
Version 3 Release 3

Guide and Reference

SA22-7272-04

IBM

Fifth Edition (December 2001)

This edition applies to Version 3 Release 3 of the IBM® Engineering and Scientific Subroutine Library (ESSL) for
Advanced Interactive Executive (AIX®) licensed program, program number 5765-C42 and to all subsequent releases
and modifications until otherwise indicated by new editions. Significant changes or additions to the text and
illustrations are indicated by a vertical line (|) to the left of the change.

In this document, ESSL refers to the above version of ESSL for AIX. Changes are periodically made to the
information herein.

Order IBM publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie,NY 12601-5400
United States of America

FAX (United States & Canada): 1+ 845+ 432-9405
FAX (Other Countries): Your International Access Code + 1+ 845+ 432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/pseries

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
Title and order number of this book
Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Notes!

v Before using this information and the product it supports, be sure to read the
general information under “Notices” on page 963.

v For a summary of changes for ESSL Version 3 Release 3, see page xxi.|

|

|
|

|

Contents

About This Book xi
How to Use This Book xi
How to Find a Subroutine Description xii
Where to Find Related Publications xii
How to Look Up a Bibliography Reference . . . xiii
Special Terms xiii

Short and Long Precision xiii
Subroutines and Subprograms xiii

How to Interpret the Subroutine Names with a
Prefix Underscore xiii
Abbreviated Names xiv
Fonts xiv
Special Notations and Conventions xiv

Scalar Data xiv
Vectors xv
Matrices xv
Sequences xv
Arrays xvi

Special Characters, Symbols, Expressions, and
Abbreviations xvii
How to Interpret the Subroutine Descriptions. . . xix

Description xix
Syntax xix
On Entry xx
On Return xx
Notes xx
Function xx
Special Usage. xx
Error Conditions xx
Examples xx

What’s New for ESSL for AIX xxi
What’s New for ESSL Version 3 Release 3 xxi
Changes for ESSL Version 3 Release 2 xxi
Changes for ESSL Version 3 Release 1.2 xxii
Changes for ESSL Version 3 Release 1.1 xxii
Changes for ESSL Version 3 xxii
Future Migration xxiii

In Brief—What’s Provided in ESSL for
AIX xxv

Part 1. Guide Information 1

Chapter 1. Introduction and
Requirements 3
Overview of ESSL 3

Performance and Functional Capability 3
Usability. 3
The Variety of Mathematical Functions 4
ESSL—Processing Capabilities 5
Accuracy of the Computations 6
High Performance of ESSL. 6
The Fortran Language Interface to the Subroutines 7

Software and Hardware Products That Can Be Used
with ESSL 7

For ESSL—Hardware 7
ESSL—Operating Systems 7
ESSL—Software Products 8
Installation and Customization Products 8
Software Products for Displaying ESSL Online
Information. 8

ESSL Internet Resources 8
Obtaining Documentation 8
Accessing ESSL’s Product Home Pages 9

Getting on the ESSL Mailing List 9
List of ESSL Subroutines 9

Linear Algebra Subprograms 9
Matrix Operations 13
Linear Algebraic Equations 14
Eigensystem Analysis 17
Fourier Transforms, Convolutions and
Correlations, and Related Computations 17
Sorting and Searching 19
Interpolation 19
Numerical Quadrature. 19
Random Number Generation 20
Utilities. 20

Chapter 2. Planning Your Program . . . 23
Selecting an ESSL Subroutine 23

Which ESSL Library Do You Want to Use? . . . 23
What Type of Data Are You Processing in Your
Program? 25
How Is Your Data Structured? And What Storage
Technique Are You Using? 26
What about Performance and Accuracy?. . . . 26

Avoiding Conflicts with Internal ESSL Routine
Names That are Exported. 26
Setting Up Your Data 26

How Do You Set Up Your Scalar Data? 26
How Do You Set Up Your Arrays?. 26
How Should Your Array Data Be Aligned? . . . 27
What Storage Mode Should You Use for Your
Data? 27
How Do You Convert from One Storage Mode to
Another? 27

Setting Up Your ESSL Calling Sequences 28
What Is an Input-Output Argument? 28
What Are the General Rules to Follow when
Specifying Data for the Arguments? 28
What Happens When a Value of 0 Is Specified
for N? 29
How Do You Specify the Beginning of the Data
Structure in the ESSL Calling Sequence? 29

Using Auxiliary Storage in ESSL 29
Dynamic Allocation of Auxiliary Storage . . . 30
Setting Up Auxiliary Storage When Dynamic
Allocation Is Not Used 30

© Copyright IBM Corp. 1997, 2001 iii

||

Who Do You Want to Calculate the Size? You or
ESSL? 30
How Do You Calculate the Size Using the
Formulas? 31
How Do You Get ESSL to Calculate the Size
Using ESSL Error Handling?. 31

Providing a Correct Transform Length to ESSL . . 36
What ESSL Subroutines Require Transform
Lengths? 36
Who Do You Want to Calculate the Length? You
or ESSL? 36
How Do You Calculate the Length Using the
Table or Formula? 37
How Do You Get ESSL to Calculate the Length
Using ESSL Error Handling?. 37

Getting the Best Accuracy 41
What Precisions Do ESSL Subroutines Operate
On? 41
How does the Nature of the ESSL Computation
Affect Accuracy?. 42
What Data Type Standards Are Used by ESSL,
and What Exceptions Should You Know About? . 42
How is Underflow Handled? 42
Where Can You Find More Information on
Accuracy? 43

Getting the Best Performance 43
What General Coding Techniques Can You Use
to Improve Performance? 43
Where Can You Find More Information on
Performance? 44

Dealing with Errors when Using ESSL 44
What Can You Do about Program Exceptions?. . 44
What Can You Do about ESSL Input-Argument
Errors? 44
What Can You Do about ESSL Computational
Errors? 45
What Can You Do about ESSL Resource Errors? 47
What Can You Do about ESSL Attention
Messages? 48
How Do You Control Error Handling by Setting
Values in the ESSL Error Option Table? 48
How does Error Handling Work in a Threaded
Environment? 50
Where Can You Find More Information on
Errors? 50

Chapter 3. Setting Up Your Data
Structures 53
Concepts 53
Vectors 53

Transpose of a Vector 54
Conjugate Transpose of a Vector 54
In Storage 55
How Stride Is Used for Vectors 56
Sparse Vector 58

Matrices 59
Transpose of a Matrix 60
Conjugate Transpose of a Matrix 60
In Storage 60
How Leading Dimension Is Used for Matrices. . 61
Symmetric Matrix 62

Positive Definite or Negative Definite Symmetric
Matrix 67
Symmetric Indefinite Matrix 67
Complex Hermitian Matrix 67
Positive Definite or Negative Definite Complex
Hermitian Matrix 68
Positive Definite or Negative Definite Symmetric
Toeplitz Matrix 68
Positive Definite or Negative Definite Complex
Hermitian Toeplitz Matrix 69
Triangular Matrix 70
General Band Matrix 73
Symmetric Band Matrix 79
Positive Definite Symmetric Band Matrix . . . 81
Complex Hermitian Band Matrix 81
Triangular Band Matrix 82
General Tridiagonal Matrix 86
Symmetric Tridiagonal Matrix 87
Positive Definite Symmetric Tridiagonal Matrix 87
Sparse Matrix. 88

Sequences 99
Real and Complex Elements in Storage 99
One-Dimensional Sequences 99
Two-Dimensional Sequences 99
Three-Dimensional Sequences 100
How Stride Is Used for Three-Dimensional
Sequences 102

Chapter 4. Coding Your Program . . . 105
Fortran Programs 105

Calling ESSL Subroutines and Functions in
Fortran 105
Setting Up a User-Supplied Subroutine for ESSL
in Fortran 105
Setting Up Scalar Data in Fortran. 106
Setting Up Arrays in Fortran 106
Creating Multiple Threads and Calling ESSL
from Your Fortran Program 111
Handling Errors in Your Fortran Program . . . 113
Example of Handling Errors in a Multithreaded
Application Program 121

C Programs 123
Calling ESSL Subroutines and Functions in C 123
Passing Arguments in C 124
Setting Up a User-Supplied Subroutine for ESSL
in C 125
Setting Up Scalar Data in C 125
Setting Up Complex Data Types in C 126
Using Logical Data in C 127
Setting Up Arrays in C 127
Creating Multiple Threads and Calling ESSL
from Your C Program 128
Handling Errors in Your C Program 130

C++ Programs 139
Calling ESSL Subroutines and Functions in C++ 139
Passing Arguments in C++ 139
Setting Up a User-Supplied Subroutine for ESSL
in C++ 141
Setting Up Scalar Data in C++. 141
Selecting the <complex> or <complex.h>
Header File 142

iv ESSL Version 3 Release 3 Guide and Reference

||

|
||

Setting Up Short-Precision Complex Data Types
If You Are Using the IBM Open Class Complex
Mathematics Library in C++ 142
Using Logical Data in C++ 144
Setting Up Arrays in C++ 144
Creating Multiple Threads and Calling ESSL
from Your C++ Program. 144
Handling Errors in Your C++ Program 146

Chapter 5. Processing Your Program 157
Dynamic Linking Versus Static Linking. 157
Fortran Program Procedures 157
C Program Procedures 158
C++ Program Procedures 159

Chapter 6. Migrating Your Programs 161
Migrating ESSL Version 3 Programs to Version 3
Release 3 161

ESSL Subroutines 162
Migrating ESSL Version 3 Programs to Version 3
Release 2 162

ESSL Subroutines 162
Migrating ESSL Version 3 Programs to Version 3
Release 1.2 162

ESSL Subroutines 162
Migrating ESSL Version 3 Programs to Version 3
Release 1.1 162

ESSL Subroutines 163
Migrating ESSL Version 2 Programs to Version 3 163

ESSL Subroutines 163
ESSL Messages 163

Planning for Future Migration 164
Migrating between IBM Eserver pSeries and
RS/6000 Processors 164

Auxiliary Storage 164
Bitwise-Identical Results. 164

Migrating from Other Libraries to ESSL 164
Migrating from ESSL/370 164
Migrating from Another IBM Subroutine Library 165
Migrating from LAPACK 165
Migrating from a Non-IBM Subroutine Library 165

Chapter 7. Handling Problems 167
Where to Find More Information About Errors . . 167
Getting Help from IBM Support 167
National Language Support 168
Dealing with Errors 168

Program Exceptions 168
ESSL Input-Argument Error Messages 169
ESSL Computational Error Messages 169
ESSL Resource Error Messages 170
ESSL Informational and Attention Messages . . 170
Miscellaneous Error Messages 171

Messages 171
Message Conventions 172
Input-Argument Error Messages(2001-2099) . . 172
Computational Error Messages(2100-2199) . . . 179
Input-Argument Error Messages(2200-2299) . . 182
Resource Error Messages(2400-2499) 182

Informational and Attention Error
Messages(2600-2699) 182
Miscellaneous Error Messages(2700-2799) . . . 183

Part 2. Reference Information . . . 185

Chapter 8. Linear Algebra
Subprograms 187
Overview of the Linear Algebra Subprograms . . 187

Vector-Scalar Linear Algebra Subprograms . . 187
Sparse Vector-Scalar Linear Algebra
Subprograms 188
Matrix-Vector Linear Algebra Subprograms . . 189
Sparse Matrix-Vector Linear Algebra
Subprograms 190

Use Considerations 190
Performance and Accuracy Considerations . . . 190
Vector-Scalar Subprograms 192
ISAMAX, IDAMAX, ICAMAX, and
IZAMAX—Position of the First or Last Occurrence
of the Vector Element Having the Largest
Magnitude 193
ISAMIN and IDAMIN—Position of the First or
Last Occurrence of the Vector Element Having
Minimum Absolute Value 196
ISMAX and IDMAX—Position of the First or Last
Occurrence of the Vector Element Having the
Maximum Value 199
ISMIN and IDMIN—Position of the First or Last
Occurrence of the Vector Element Having
Minimum Value 202
SASUM, DASUM, SCASUM, and DZASUM—Sum
of the Magnitudes of the Elements in a Vector . . 205
SAXPY, DAXPY, CAXPY, and ZAXPY—Multiply a
Vector X by a Scalar, Add to a Vector Y, and Store
in the Vector Y 208
SCOPY, DCOPY, CCOPY, and ZCOPY—Copy a
Vector 211
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and
ZDOTC—Dot Product of Two Vectors 214
SNAXPY and DNAXPY—Compute SAXPY or
DAXPY N Times 218
SNDOT and DNDOT—Compute Special Dot
Products N Times 223
SNRM2, DNRM2, SCNRM2, and
DZNRM2—Euclidean Length of a Vector with
Scaling of Input to Avoid Destructive Underflow
and Overflow 228
SNORM2, DNORM2, CNORM2, and
ZNORM2—Euclidean Length of a Vector with No
Scaling of Input 231
SROTG, DROTG, CROTG, and ZROTG—Construct
a Givens Plane Rotation 234
SROT, DROT, CROT, ZROT, CSROT, and
ZDROT—Apply a Plane Rotation. 240
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and
ZDSCAL—Multiply a Vector X by a Scalar and
Store in the Vector X 244
SSWAP, DSWAP, CSWAP, and
ZSWAP—Interchange the Elements of Two Vectors . 247

Contents v

||
||
||
||
||

|
||
||

|
||

SVEA, DVEA, CVEA, and ZVEA—Add a Vector X
to a Vector Y and Store in a Vector Z 250
SVES, DVES, CVES, and ZVES—Subtract a Vector
Y from a Vector X and Store in a Vector Z 254
SVEM, DVEM, CVEM, and ZVEM—Multiply a
Vector X by a Vector Y and Store in a Vector Z . . 258
SYAX, DYAX, CYAX, ZYAX, CSYAX, and
ZDYAX—Multiply a Vector X by a Scalar and Store
in a Vector Y 262
SZAXPY, DZAXPY, CZAXPY, and
ZZAXPY—Multiply a Vector X by a Scalar, Add to
a Vector Y, and Store in a Vector Z 265
Sparse Vector-Scalar Subprograms 268
SSCTR, DSCTR, CSCTR, ZSCTR—Scatter the
Elements of a Sparse Vector X in
Compressed-Vector Storage Mode into Specified
Elements of a Sparse Vector Y in Full-Vector
Storage Mode 269
SGTHR, DGTHR, CGTHR, and ZGTHR—Gather
Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode 272
SGTHRZ, DGTHRZ, CGTHRZ, and
ZGTHRZ—Gather Specified Elements of a Sparse
Vector Y in Full-Vector Mode into a Sparse Vector
X in Compressed-Vector Mode, and Zero the Same
Specified Elements of Y 275
SAXPYI, DAXPYI, CAXPYI, and
ZAXPYI—Multiply a Sparse Vector X in
Compressed-Vector Storage Mode by a Scalar, Add
to a Sparse Vector Y in Full-Vector Storage Mode,
and Store in the Vector Y 278
SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and
ZDOTCI—Dot Product of a Sparse Vector X in
Compressed-Vector Storage Mode and a Sparse
Vector Y in Full-Vector Storage Mode 281
Matrix-Vector Subprograms 284
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX,
DGEMX, SGEMTX, and DGEMTX—Matrix-Vector
Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose 285
SGER, DGER, CGERU, ZGERU, CGERC, and
ZGERC—Rank-One Update of a General Matrix. . 295
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV,
DSYMV, CHEMV, ZHEMV, SSLMX, and
DSLMX—Matrix-Vector Product for a Real
Symmetric or Complex Hermitian Matrix 302
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER,
ZHER, SSLR1, and DSLR1 —Rank-One Update of
a Real Symmetric or Complex Hermitian Matrix. . 309
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2,
CHER2, ZHER2, SSLR2, and DSLR2—Rank-Two
Update of a Real Symmetric or Complex Hermitian
Matrix 316
SGBMV, DGBMV, CGBMV, and
ZGBMV—Matrix-Vector Product for a General
Band Matrix, Its Transpose, or Its Conjugate
Transpose 324
SSBMV, DSBMV, CHBMV, and
ZHBMV—Matrix-Vector Product for a Real
Symmetric or Complex Hermitian Band Matrix . . 330

STRMV, DTRMV, CTRMV, ZTRMV, STPMV,
DTPMV, CTPMV, and ZTPMV—Matrix-Vector
Product for a Triangular Matrix, Its Transpose, or
Its Conjugate Transpose 335
STBMV, DTBMV, CTBMV, and
ZTBMV—Matrix-Vector Product for a Triangular
Band Matrix, Its Transpose, or Its Conjugate
Transpose 341
Sparse Matrix-Vector Subprograms 346
DSMMX—Matrix-Vector Product for a Sparse
Matrix in Compressed-Matrix Storage Mode . . . 347
DSMTM—Transpose a Sparse Matrix in
Compressed-Matrix Storage Mode 350
DSDMX—Matrix-Vector Product for a Sparse
Matrix or Its Transpose in Compressed-Diagonal
Storage Mode 354

Chapter 9. Matrix Operations 359
Overview of the Matrix Operation Subroutines . . 359
Use Considerations 360

Specifying Normal, Transposed, or Conjugate
Transposed Input Matrices 360
Transposing or Conjugate Transposing: 360

Performance and Accuracy Considerations . . . 361
In General 361
For Large Matrices 361
For Combined Operations 361

Matrix Operation Subroutines 362
SGEADD, DGEADD, CGEADD, and
ZGEADD—Matrix Addition for General Matrices
or Their Transposes 363
SGESUB, DGESUB, CGESUB, and
ZGESUB—Matrix Subtraction for General Matrices
or Their Transposes 369
SGEMUL, DGEMUL, CGEMUL, and
ZGEMUL—Matrix Multiplication for General
Matrices, Their Transposes, or Conjugate
Transposes 375
SGEMMS, DGEMMS, CGEMMS, and
ZGEMMS—Matrix Multiplication for General
Matrices, Their Transposes, or Conjugate
Transposes Using Winograd’s Variation of
Strassen’s Algorithm 384
SGEMM, DGEMM, CGEMM, and
ZGEMM—Combined Matrix Multiplication and
Addition for General Matrices, Their Transposes, or
Conjugate Transposes 389
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM,
and ZHEMM—Matrix-Matrix Product Where One
Matrix is Real or Complex Symmetric or Complex
Hermitian 397
STRMM, DTRMM, CTRMM, and
ZTRMM—Triangular Matrix-Matrix Product . . . 404
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and
ZHERK—Rank-K Update of a Real or Complex
Symmetric or a Complex Hermitian Matrix . . . 410
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K,
and ZHER2K—Rank-2K Update of a Real or
Complex Symmetric or a Complex Hermitian
Matrix 416

vi ESSL Version 3 Release 3 Guide and Reference

SGETMI, DGETMI, CGETMI, and
ZGETMI—General Matrix Transpose (In-Place) . . 423
SGETMO, DGETMO, CGETMO, and
ZGETMO—General Matrix Transpose
(Out-of-Place) 426

Chapter 10. Linear Algebraic
Equations 429
Overview of the Linear Algebraic Equation
Subroutines 429

Dense Linear Algebraic Equation Subroutines 429
Banded Linear Algebraic Equation Subroutines 430
Sparse Linear Algebraic Equation Subroutines 431
Linear Least Squares Subroutines 432

Dense and Banded Linear Algebraic Equation
Considerations 432

Use Considerations 432
Performance and Accuracy Considerations . . 432

Sparse Matrix Direct Solver Considerations . . . 433
Use Considerations 433
Performance and Accuracy Considerations . . 433

Sparse Matrix Skyline Solver Considerations . . . 434
Use Considerations 434
Performance and Accuracy Considerations . . 434

Sparse Matrix Iterative Solver Considerations . . 435
Use Considerations 435
Performance and Accuracy Considerations . . 435

Linear Least Squares Considerations. 436
Use Considerations 436
Performance and Accuracy Considerations . . 436

Dense Linear Algebraic Equation Subroutines 437
SGEF, DGEF, CGEF, and ZGEF—General Matrix
Factorization 438
SGES, DGES, CGES, and ZGES—General Matrix,
Its Transpose, or Its Conjugate Transpose Solve . . 441
SGESM, DGESM, CGESM, and ZGESM—General
Matrix, Its Transpose, or Its Conjugate Transpose
Multiple Right-Hand Side Solve 444
SGETRF, DGETRF, CGETRF and
ZGETRF—General Matrix Factorization 449
SGETRS, DGETRS, CGETRS, and
ZGETRS—General Matrix Multiple Right-Hand
Side Solve 453
SGEFCD and DGEFCD—General Matrix
Factorization, Condition Number Reciprocal, and
Determinant 457
SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF,
DPOTRF, CPOTRF, and ZPOTRF—Positive Definite
Real Symmetric or Complex Hermitian Matrix
Factorization 461
SPPS and DPPS—Positive Definite Real Symmetric
Matrix Solve. 470
SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS,
DPOTRS, CPOTRS, and ZPOTRS—Positive
Definite Real Symmetric or Complex Hermitian
Matrix Multiple Right-Hand Side Solve. 473
SPPFCD, DPPFCD, SPOFCD, and
DPOFCD—Positive Definite Real Symmetric Matrix
Factorization, Condition Number Reciprocal, and
Determinant 478

DBSSV—Symmetric Indefinite Matrix Factorization
and Multiple Right-Hand Side Solve 484
DBSTRF—Symmetric Indefinite Matrix
Factorization 490
DBSTRS—Symmetric Indefinite Matrix Multiple
Right-Hand Side Solve 495
SGEICD, DGEICD, SGETRI and DGETRI—General
Matrix Inverse 499
SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI and
DPOTRI—Positive Definite Real Symmetric Matrix
Inverse 505
STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV,
CTPSV, and ZTPSV—Solution of a Triangular
System of Equations with a Single Right-Hand Side 513
STRSM, DTRSM, CTRSM, and ZTRSM—Solution
of Triangular Systems of Equations with Multiple
Right-Hand Sides 519
STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI,
and DTPTRI—Triangular Matrix Inverse 526
Banded Linear Algebraic Equation Subroutines 532
SGBF and DGBF—General Band Matrix
Factorization 533
SGBS and DGBS—General Band Matrix Solve . . 537
SPBF, DPBF, SPBCHF, and DPBCHF—Positive
Definite Symmetric Band Matrix Factorization . . 540
SPBS, DPBS, SPBCHS, and DPBCHS—Positive
Definite Symmetric Band Matrix Solve 543
SGTF and DGTF—General Tridiagonal Matrix
Factorization 546
SGTS and DGTS—General Tridiagonal Matrix
Solve 549
SGTNP, DGTNP, CGTNP, and ZGTNP—General
Tridiagonal Matrix Combined Factorization and
Solve with No Pivoting 551
SGTNPF, DGTNPF, CGTNPF, and
ZGTNPF—General Tridiagonal Matrix
Factorization with No Pivoting 554
SGTNPS, DGTNPS, CGTNPS, and
ZGTNPS—General Tridiagonal Matrix Solve with
No Pivoting 557
SPTF and DPTF—Positive Definite Symmetric
Tridiagonal Matrix Factorization 560
SPTS and DPTS—Positive Definite Symmetric
Tridiagonal Matrix Solve 562
STBSV, DTBSV, CTBSV, and ZTBSV—Triangular
Band Equation Solve 564
Sparse Linear Algebraic Equation Subroutines 569
DGSF—General Sparse Matrix Factorization Using
Storage by Indices, Rows, or Columns 570
DGSS—General Sparse Matrix or Its Transpose
Solve Using Storage by Indices, Rows, or Columns . 576
DGKFS—General Sparse Matrix or Its Transpose
Factorization, Determinant, and Solve Using
Skyline Storage Mode 580
DSKFS—Symmetric Sparse Matrix Factorization,
Determinant, and Solve Using Skyline Storage
Mode 597
DSRIS—Iterative Linear System Solver for a
General or Symmetric Sparse Matrix Stored by
Rows 614

Contents vii

DSMCG—Sparse Positive Definite or Negative
Definite Symmetric Matrix Iterative Solve Using
Compressed-Matrix Storage Mode 624
DSDCG—Sparse Positive Definite or Negative
Definite Symmetric Matrix Iterative Solve Using
Compressed-Diagonal Storage Mode 631
DSMGCG—General Sparse Matrix Iterative Solve
Using Compressed-Matrix Storage Mode 638
DSDGCG—General Sparse Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode . . . 645
Linear Least Squares Subroutines 651
SGESVF and DGESVF—Singular Value
Decomposition for a General Matrix 652
SGESVS and DGESVS—Linear Least Squares
Solution for a General Matrix Using the Singular
Value Decomposition 659
DGEQRF—General Matrix QR Factorization . . . 663
DGELS—Linear Least Squares Solution for a
General Matrix 667
SGELLS and DGELLS—Linear Least Squares
Solution for a General Matrix with Column
Pivoting 674

Chapter 11. Eigensystem Analysis 679
Overview of the Eigensystem Analysis Subroutines 679
Performance and Accuracy Considerations . . . 679
Eigensystem Analysis Subroutines 680
SGEEV, DGEEV, CGEEV, and ZGEEV—Eigenvalues
and, Optionally, All or Selected Eigenvectors of a
General Matrix 681
SSPEV, DSPEV, CHPEV, and ZHPEV—Eigenvalues
and, Optionally, the Eigenvectors of a Real
Symmetric Matrix or a Complex Hermitian Matrix . 691
SSPSV, DSPSV, CHPSV, and ZHPSV—Extreme
Eigenvalues and, Optionally, the Eigenvectors of a
Real Symmetric Matrix or a Complex Hermitian
Matrix 699
SGEGV and DGEGV—Eigenvalues and, Optionally,
the Eigenvectors of a Generalized Real
Eigensystem, Az=wBz, where A and B Are Real
General Matrices 706
SSYGV and DSYGV—Eigenvalues and, Optionally,
the Eigenvectors of a Generalized Real Symmetric
Eigensystem, Az=wBz, where A Is Real Symmetric
and B Is Real Symmetric Positive Definite 711

Chapter 12. Fourier Transforms,
Convolutions and Correlations, and
Related Computations 717
Overview of the Signal Processing Subroutines . . 717

Fourier Transforms Subroutines 717
Convolution and Correlation Subroutines . . . 717
Related-Computation Subroutines 718

Fourier Transforms, Convolutions, and Correlations
Considerations 718

Use Considerations 718
Initializing Auxiliary Working Storage 721
Determining the Amount of Auxiliary Working
Storage That You Need 721

Performance and Accuracy Considerations . . . 721

When Running on the Workstation Processors 722
Defining Arrays 722
Fourier Transform Considerations 722
How the Fourier Transform Subroutines Achieve
High Performance 723
Convolution and Correlation Considerations 723

Related Computation Considerations 725
Accuracy Considerations 725

Fourier Transform Subroutines 726
SCFT and DCFT—Complex Fourier Transform . . 727
SRCFT and DRCFT—Real-to-Complex Fourier
Transform 735
SCRFT and DCRFT—Complex-to-Real Fourier
Transform 742
SCOSF and DCOSF—Cosine Transform. 749
SSINF and DSINF—Sine Transform 756
SCFT2 and DCFT2—Complex Fourier Transform in
Two Dimensions 763
SRCFT2 and DRCFT2—Real-to-Complex Fourier
Transform in Two Dimensions 769
SCRFT2 and DCRFT2—Complex-to-Real Fourier
Transform in Two Dimensions 776
SCFT3 and DCFT3—Complex Fourier Transform in
Three Dimensions 783
SRCFT3 and DRCFT3—Real-to-Complex Fourier
Transform in Three Dimensions 788
SCRFT3 and DCRFT3—Complex-to-Real Fourier
Transform in Three Dimensions 793
Convolution and Correlation Subroutines . . . 798
SCON and SCOR—Convolution or Correlation of
One Sequence with One or More Sequences . . . 799
SCOND and SCORD—Convolution or Correlation
of One Sequence with Another Sequence Using a
Direct Method 805
SCONF and SCORF—Convolution or Correlation
of One Sequence with One or More Sequences
Using the Mixed-Radix Fourier Method 810
SDCON, DDCON, SDCOR, and
DDCOR—Convolution or Correlation with
Decimated Output Using a Direct Method. . . . 818
SACOR—Autocorrelation of One or More
Sequences 822
SACORF—Autocorrelation of One or More
Sequences Using the Mixed-Radix Fourier Method . 826
Related-Computation Subroutines 831
SPOLY and DPOLY—Polynomial Evaluation . . . 832
SIZC and DIZC—I-th Zero Crossing. 835
STREC and DTREC—Time-Varying Recursive Filter 838
SQINT and DQINT—Quadratic Interpolation. . . 841
SWLEV, DWLEV, CWLEV, and
ZWLEV—Wiener-Levinson Filter Coefficients. . . 844

Chapter 13. Sorting and Searching 849
Overview of the Sorting and Searching Subroutines 849
Use Considerations 849
Performance and Accuracy Considerations . . . 849
Sorting and Searching Subroutines 850
ISORT, SSORT, and DSORT—Sort the Elements of a
Sequence 851

viii ESSL Version 3 Release 3 Guide and Reference

|
||

ISORTX, SSORTX, and DSORTX—Sort the
Elements of a Sequence and Note the Original
Element Positions 853
ISORTS, SSORTS, and DSORTS—Sort the Elements
of a Sequence Using a Stable Sort and Note the
Original Element Positions 856
IBSRCH, SBSRCH, and DBSRCH—Binary Search
for Elements of a Sequence X in a Sorted Sequence
Y 859
ISSRCH, SSSRCH, and DSSRCH—Sequential
Search for Elements of a Sequence X in the
Sequence Y 863

Chapter 14. Interpolation 867
Overview of the Interpolation Subroutines . . . 867
Use Considerations 867
Performance and Accuracy Considerations . . . 867
Interpolation Subroutines 868
SPINT and DPINT—Polynomial Interpolation . . 869
STPINT and DTPINT—Local Polynomial
Interpolation 873
SCSINT and DCSINT—Cubic Spline Interpolation 876
SCSIN2 and DCSIN2—Two-Dimensional Cubic
Spline Interpolation 881

Chapter 15. Numerical Quadrature 885
Overview of the Numerical Quadrature
Subroutines 885
Use Considerations 885

Choosing the Method 885
Performance and Accuracy Considerations . . . 885
Programming Considerations for the SUBF
Subroutine 886

Designing SUBF 886
Coding and Setting Up SUBF in Your Program 886

Numerical Quadrature Subroutines. 888
SPTNQ and DPTNQ—Numerical Quadrature
Performed on a Set of Points 889
SGLNQ and DGLNQ—Numerical Quadrature
Performed on a Function Using Gauss-Legendre
Quadrature 892
SGLNQ2 and DGLNQ2—Numerical Quadrature
Performed on a Function Over a Rectangle Using
Two-Dimensional Gauss-Legendre Quadrature . . 894
SGLGQ and DGLGQ—Numerical Quadrature
Performed on a Function Using Gauss-Laguerre
Quadrature 900
SGRAQ and DGRAQ—Numerical Quadrature
Performed on a Function Using Gauss-Rational
Quadrature 903
SGHMQ and DGHMQ—Numerical Quadrature
Performed on a Function Using Gauss-Hermite
Quadrature 907

Chapter 16. Random Number
Generation 911
Overview of the Random Number Generation
Subroutines 911
Use Considerations 911
Random Number Generation Subroutines . . . 912

SURAND and DURAND—Generate a Vector of
Uniformly Distributed Random Numbers 913
SNRAND and DNRAND—Generate a Vector of
Normally Distributed Random Numbers 916
SURXOR and DURXOR—Generate a Vector of
Long Period Uniformly Distributed Random
Numbers 919

Chapter 17. Utilities 923
Overview of the Utility Subroutines 923
Use Considerations 923

Determining the Level of ESSL Installed . . . 923
Finding the Optimal Stride(s) for Your Fourier
Transforms 923
Converting Sparse Matrix Storage 924

Utility Subroutines 925
EINFO—ESSL Error Information-Handler
Subroutine 926
ERRSAV—ESSL ERRSAV Subroutine for ESSL . . 929
ERRSET—ESSL ERRSET Subroutine for ESSL. . . 930
ERRSTR—ESSL ERRSTR Subroutine for ESSL . . 932
IESSL—Determine the Level of ESSL Installed . . 933
STRIDE—Determine the Stride Value for Optimal
Performance in Specified Fourier Transform
Subroutines 935
DSRSM—Convert a Sparse Matrix from
Storage-by-Rows to Compressed-Matrix Storage
Mode 944
DGKTRN—For a General Sparse Matrix, Convert
Between Diagonal-Out and Profile-In Skyline
Storage Mode 948
DSKTRN—For a Symmetric Sparse Matrix, Convert
Between Diagonal-Out and Profile-In Skyline
Storage Mode 953

Part 3. Appendixes 957

Appendix A. Basic Linear Algebra
Subprograms (BLAS) 959
Level 1 BLAS 959
Level 2 BLAS 959
Level 3 BLAS 960

Appendix B. LAPACK 961
LAPACK 961

Notices 963
Trademarks 964
Software Update Protocol 965
Programming Interfaces 965

Glossary 967

Bibliography 971
References 971
ESSL Publications 975

Evaluation and Planning 975
Installation 975
Application Programming 975

Contents ix

Related Publications 976
AIX 976
XL Fortran 976
PL/I 976

IBM 3838 Array Processor 976

Index 977

x ESSL Version 3 Release 3 Guide and Reference

About This Book

The Engineering and Scientific Subroutine Library (ESSL) for AIX is a set of
high-performance mathematical subroutines. ESSL is provided as two run-time
libraries, running on IBM Eserver

™ pSeries™ and RS/6000® POWER, PowerPC®,
POWER2, POWER3, POWER3–II, and POWER4 processors. ESSL can be used with
Fortran, C, C++, and Programming Language/I (PL/I) programs operating under
the AIX operating system.

This book is a guide and reference manual for using ESSL in doing application
programming. It includes:
v An overview of ESSL and guidance information for designing, coding, and

processing your program, as well as migrating existing programs, and
diagnosing problems

v Reference information for coding each ESSL calling sequence

This book is written for a wide class of ESSL users: scientists, mathematicians,
engineers, statisticians, computer scientists, and system programmers. It assumes a
basic knowledge of mathematics in the areas of ESSL computation. It also assumes
that users are familiar with Fortran, C, and C++ programming.

How to Use This Book
Front Matter consists of the Table of Contents and the Preface. Use these to find or
interpret information in the book.

Part 1. “Guide Information” provides guidance information for using ESSL. It
covers the user-oriented tasks of learning, designing, coding, migrating, processing,
and diagnosing. Use the following chapters when performing any of these tasks:
v Chapter 1, “Learning about ESSL” gives an introduction to ESSL, providing

highlights and general information. Read this chapter first to determine the
aspects of ESSL you want to use.

v Chapter 2, “Designing Your Program” provides ESSL-specific information that
helps you design your program. Read this chapter before designing your
program.

v Chapter 3, “Setting Up Your Data Structures” describes all types of data
structures, such as vectors, matrices, and sequences. Use this information when
designing and coding your program.

v Chapter 4, “Coding Your Program” tells you how to code your scalar and array
data, how to code calls to ESSL in Fortran, C, and C++ programs, and how to do
the coding necessary to handle errors. Use this information when coding your
program.

v Chapter 5, “Processing Your Program” describes how to process your program
under your particular operating system on your hardware. Use this information
after you have coded your program and are ready to run it.

v Chapter 6, “Migrating Your Programs” explains all aspects of migration to
ESSL, to this version of ESSL, to different processors, and to future releases and
future processors. Read this chapter before starting to design your program.

© Copyright IBM Corp. 1997, 2001 xi

|

|

|

v Chapter 7, “Handling Problems” provides diagnostic procedures for analyzing
all ESSL problems. When you encounter a problem, use the symptom indexes at
the beginning of this chapter to guide you to the appropriate diagnostic
procedure.

Part 2. “Reference Information” provides reference information you need to code
the ESSL calling sequences. It covers each of the mathematical areas of ESSL, and
the utility subroutines. Each chapter begins with an introduction, followed by the
subroutine descriptions. Each introduction applies to all the subroutines in that
chapter and is especially important in planning your use of the subroutines and
avoiding problems. To understand the information in the subroutine descriptions,
see “How to Interpret the Subroutine Descriptions” on page xix. Use the
appropriate chapter when coding your program:
v Chapter 8, “Linear Algebra Subprograms”

v Chapter 9, “Matrix Operations”

v Chapter 10, “Linear Algebraic Equations”

v Chapter 11, “Eigensystem Analysis”

v Chapter 12, “Fourier Transforms, Convolutions and Correlations, and Related
Computations”

v Chapter 13, “Sorting and Searching”

v Chapter 14, “Interpolation”

v Chapter 15, “Numerical Quadrature”

v Chapter 16, “Random Number Generation”

v Chapter 17, “Utilities”

Appendix A. Basic Linear Algebra Subprograms provides a list of the Level 1, 2,
and 3 Basic Linear Algebra Subprograms (BLAS) included in ESSL.

Appendix B. LAPACK provides a list of the LAPACK subroutines included in
ESSL.

Glossary contains definitions of terms used in this book.

Bibliography provides information about publications related to ESSL. Use it when
you need more information than this book provides.

How to Find a Subroutine Description
If you want to locate a subroutine description and you know the subroutine name,
you can find it listed individually or under the entry “subroutines, ESSL” in the
Index.

Where to Find Related Publications
If you have a question about the SP™, PSSP, or a related product, the following
online information resources make it easy to find the information you are looking
for:
v If you have installed the RS/6000 SP Resource Center available with Parallel

System Support Programs (PSSP) Version 3 Release 1 or later, you can access the
SP Resource Center by issuing the command:
/usr/lpp/ssp/bin/resource_center

If you have the SP Resource Center on CD ROM, see the readme.txt file for
information on how to run it.

xii ESSL Version 3 Release 3 Guide and Reference

v Access the following IBM Web site:
http://www.ibm.com/servers/eserver/pseries

A list of all ESSL publications, as well as related programming and hardware
publications, are listed in the bibliography. Also included is a list of math
background publications you may find helpful, along with the necessary
information for ordering them from independent sources. See “Bibliography” on
page 971.

How to Look Up a Bibliography Reference
Special references are made throughout this book to mathematical background
publications and software libraries, available through IBM, publishers, or other
companies. All of these are described in detail in the bibliography. A reference to
one of these is made by using a bracketed number. The number refers to the item
listed under that number in the bibliography. For example, reference [1] cites the
first item listed in the bibliography.

Special Terms
Standard data processing and mathematical terms are used in this book.
Terminology is generally consistent with that used for Fortran. See the Glossary for
definitions of terms used in this book.

Short and Long Precision
Because ESSL can be used with more than one programming language, the terms
short precision and long precision are used in place of the Fortran terms single
precision and double precision.

Subroutines and Subprograms
An ESSL subroutine is a named sequence of instructions within the ESSL product
library whose execution is invoked by a call. A subroutine can be called in one or
more user programs and at one or more times within each program. The ESSL
subroutines are referred to as subprograms in the area of linear algebra
subprograms. The term subprograms is used because it is consistent with the
BLAS. Many of the linear algebra subprograms correspond to the BLAS; these are
listed in “Appendix A. Basic Linear Algebra Subprograms (BLAS)” on page 959.

How to Interpret the Subroutine Names with a Prefix Underscore
A name specified in this book with an underscore (_) prefix, such as _GEMUL,
refers to all the versions of the subroutine with that name. To get the entire list of
subroutines that name refers to, substitute the first letter for each version of the
subroutine. For example, _GEMUL, refers to all versions of the matrix
multiplication subroutine: SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do
not use the underscore in coding the names of the ESSL subroutines in your
program. You code a complete name, such as SGEMUL. For details about these
names, see “The Variety of Mathematical Functions” on page 4.

About This Book xiii

|

Abbreviated Names
The abbreviated names used in this book are defined below.

Short Name Full Name

AIX Advanced Interactive Executive

BLAS Basic Linear Algebra Subprograms

ESSL IBM Engineering and Scientific Subroutine Library

HTML Hypertext Markup Language

LAPACK Linear Algebra Package

PL/I Programming Language/I

POWER, POWER2, POWER3,
POWER3–II, POWER4, and
PowerPC processors

IBM Eserver pSeries and RS/6000 processors

SL MATH Subroutine Library—Mathematics

SMP Symmetric Multi-Processing

SSP Scientific Subroutine Package

Fonts
This book uses a variety of special fonts to distinguish between many
mathematical and programming items. These are defined below.

Special Font Example Description

Italic with no subscripts m, inc1x, aux, iopt Calling sequence argument or
mathematical variable

Italic with subscripts x1, amn, xj1,j2 Element of a vector, matrix, or
sequence

Bold italic lowercase x, y, z Vector or sequence

Bold italic uppercase A, B, C Matrix

Gothic uppercase A, B, C, AGB

IM=ISMAX(4,X,2)

Array

Fortran statement

Special Notations and Conventions
This section explains the special notations and conventions used in this book to
describe various types of data.

Scalar Data
Following are the special notations used in the examples in this book for scalar
data items. These notations are used to simplify the examples, and they do not
imply usage of any precision. For a definition of scalar data in Fortran, C, C++,
and PL/I, see “Chapter 4. Coding Your Program” on page 105.

Data Item Example Description

Character item 'T' Character(s) in single quotation marks

Hexadecimal string X'97FA00C1' String of 4-bit hexadecimal characters

xiv ESSL Version 3 Release 3 Guide and Reference

|

Data Item Example Description

Logical item .TRUE. .FALSE. True or false logical value, as indicated

Integer data 1 Number with no decimal point

Real data 1.6 Number with a decimal point

Complex data (1.0,−2.9) Real part followed by the imaginary part

Continuation
_

1.6666 Continue the last digit
(1.6666666... and so forth)

Vectors
A vector is represented as a single row or column of subscripted elements enclosed
in square brackets. The subscripts refer to the element positions within the vector:

For a definition of vector, see “Vectors” on page 53.

Matrices
A matrix is represented as a block of elements enclosed in square brackets.
Subscripts refer to the row and column positions, respectively:

For a definition of matrix, see “Matrices” on page 59.

Sequences
Sequences are used in the areas of sorting, searching, Fourier transforms,
convolutions, and correlations. For a definition of sequences, see “Sequences” on
page 99.

One-Dimensional Sequences
A one-dimensional sequence is represented as a series of elements enclosed in
parentheses. Subscripts refer to the element position within the sequence:

(x1, x2, x3, ..., xn)

About This Book xv

Two-Dimensional Sequences
A two-dimensional sequence is represented as a series of columns of elements.
(They are represented in the same way as a matrix without the square brackets.)
Subscripts refer to the element positions within the first and second dimensions,
respectively:

Three-Dimensional Sequences
A three-dimensional sequence is represented as a series of blocks of elements.
Subscripts refer to the elements positions within the first, second, and third
dimensions, respectively:

Arrays
Arrays contain vectors, matrices, or sequences. For a definition of array, see “How
Do You Set Up Your Arrays?” on page 26.

One-Dimensional Arrays
A one-dimensional array is represented as a single row of numeric elements
enclosed in parentheses:

(1.0, 2.0, 3.0, 4.0, 5.0)

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. In the following array, five elements
are significant to the computation, and two elements not used in the computation
exist between each of the elements shown:

(1.0, . , . ,2.0, . , . ,3.0, . , . ,4.0, . , . ,5.0)

This notation is used to show vector elements inside an array.

Two-Dimensional Arrays
A two-dimensional array is represented as a block of numeric elements enclosed in
square brackets:

┌ ┐
| 1.0 11.0 5.0 25.0 |
| 2.0 12.0 6.0 26.0 |

xvi ESSL Version 3 Release 3 Guide and Reference

| 3.0 13.0 7.0 27.0 |
| 4.0 14.0 8.0 28.0 |
└ ┘

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. The following array contains three
rows and two columns not used in the computation:

┌ ┐
| |
| |
| . 1.0 2.0 5.0 4.0 . |
| . 2.0 3.0 6.0 3.0 . |
| . 3.0 4.0 7.0 2.0 . |
| . 4.0 5.0 8.0 1.0 . |
| |
└ ┘

This notation is used to show matrix elements inside an array.

Three-Dimensional Arrays
A three-dimensional array is represented as a series of blocks of elements separated
by ellipses. Each block appears like a two-dimensional array:

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown, just as for two-dimensional arrays.

Special Characters, Symbols, Expressions, and Abbreviations
The mathematical and programming notations used in this book are consistent
with traditional mathematical and programming usage. These conventions are
explained below, along with special abbreviations that are associated with specific
values.

Item Description

Greek letters: α, σ, ω, ó Symbolic scalar values

|a| The absolute value of a

avb The dot product of a and b

xi The i-th element of vector x

cij The element in matrix C at row i and column j

x1 ... xn Elements from x1 to xn

i = 1, n i is assigned the values 1 to n

y ← x Vector y is replaced by vector x

xy Vector x times vector y

AXïB AX is congruent to B

ak a raised to the k power

ex Exponential function of x

AT; xT The transpose of matrix A; the transpose of vector x

┌ ┐ ┌ ┐ ┌ ┐
1.0 11.0 5.0 25.0		10.0 111.0 15.0 125.0		100.0 11.0 15.0 25.0
2.0 12.0 6.0 26.0		20.0 112.0 16.0 126.0	...	200.0 12.0 16.0 26.0
3.0 13.0 7.0 27.0		30.0 113.0 17.0 127.0		300.0 13.0 17.0 27.0
4.0 14.0 8.0 28.0		40.0 114.0 18.0 128.0		400.0 14.0 18.0 28.0
└ ┘ └ ┘ └ ┘

About This Book xvii

Item Description

The complex conjugate of vector x; the complex conjugate of
matrix A

The complex conjugate of the complex vector element xi, where:

The complex conjugate of the complex matrix element cjk

xH; AH The complex conjugate transpose of vector x; the complex
conjugate transpose of matrix A

The sum of elements x1 to xn

The square root of a+b

The integral from a to b of f(x) dx

\x\2 The Euclidean norm of vector x, defined as:

\A\1 The one norm of matrix A, defined as:

\A\2 The spectral norm of matrix A, defined as:
max{\Ax\2 : \x\2 = 1}

\A\F The Frobenius norm of matrix A, defined as:

A−1 The inverse of matrix A

A−T The transpose of A inverse

|A| The determinant of matrix A

m by n matrix A Matrix A has m rows and n columns

sin a The sine of a

cos b The cosine of b

SIGN (a) The sign of a; the result is either + or −

address {a} The storage address of a

max(x) The maximum element in vector x

min(x) The minimum element in vector x

xviii ESSL Version 3 Release 3 Guide and Reference

Item Description

ceiling(x) The smallest integer that is greater than or equal to x

floor(x) The largest integer that is not greater than x

int(x) The largest integer that is less than or equal to x

x mod(m) x modulo m; the remainder when x is divided by m

∞ Infinity

π Pi, 3.14159265...

How to Interpret the Subroutine Descriptions
This section explains how to interpret the information in the subroutine
descriptions in Part 2 of this book.

Description
Each subroutine description begins with a brief explanation of what the subroutine
does. When we combine the description of multiple versions of a subroutine, we
give enough information to enable you to easily tell the differences among the
subroutines. Differences usually occur in either the function performed or the data
types required for each subroutine.

Syntax
This shows the syntax for the Fortran, C, C++, and PL/I calling statements:

Fortran CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ...)

C and C++ name-1 | name-2 | ... | name-n (arg-1, ... ,arg-m);

PL/I CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ...);

The syntax indicates:
v The programming language (Fortran, C, C++, or PL/I)
v Each possible subroutine name that you can code in the calling sequence. Each

name is separated by the | (or) symbol. You specify only one of these names in
your calling sequence. (You do not code the | in the calling sequence.)

v The arguments, listed in the order in which you code them in the calling
sequence. You must code them all in your calling sequence.
You can distinguish between input arguments and output arguments by looking
at the “On Entry” and “On Return” sections, respectively. An argument used for
both input and output is described in both the “On Entry” and “On Return”
sections. In this case, the input value for the argument is overlaid with the
output value.
The names of the arguments give an indication of the type of data that you
should specify for the argument; for example:
– Names beginning with the letters i through n, such as m, incx, iopt, and isign,

indicate that you specify integer data.
– Names beginning with the letters a through h and o through z, such as b, t,

alpha, sigma, and omega, indicate that you specify real or complex data.

About This Book xix

On Entry
This lists the input arguments, which are the arguments you pass to the ESSL
subroutine. Each argument description first gives the meaning of the argument,
and then gives the form of data required for the argument. (To help you avoid
errors, output arguments are also listed, along with a reference to the On Return
section.)

On Return
This lists the output arguments, which are the arguments passed back to your
program from the ESSL subroutine. Each argument description first gives the
meaning of the argument, and then gives the form of data passed back to your
program for the argument.

Notes
The notes describe any programming considerations and restrictions that apply to
the arguments or the data for the arguments. There may be references to other
parts of the book for further information.

Function
This is a functional, or mathematical, description of the function performed by this
subroutine. It explains what computation is performed, not the implementation.
It explains the variations in the computation depending on the input arguments.
References are made, where appropriate, to mathematical background books listed
in the bibliography. References appear as a number enclosed in square brackets,
where the number refers to the item listed under that number in the bibliography.
For example, reference [1] cites the first item listed.

Special Usage
These are unique ways you can use the subroutine in your application. In most
cases, this book does not address applications of the ESSL subroutines; however, in
special situations where the functional capability of the subroutine can be extended
by following certain rules for its use, these rules are described in this section.

Error Conditions
These are all the ESSL run-time errors that can occur in the subroutine. They are
organized under three headings; Computational Errors, Input-Argument Errors,
and Resource Errors. The return code values resulting from these errors are also
explained.

Examples
The examples show how you would call the subroutine from a Fortran program.
They show a variety of uses of the subroutine. Except where it is important to
show differences in use between the various versions of the subroutine, the
simplest version of the subroutine is used in the examples. In most cases, this is
the short-precision real version of the subroutine. Each example provides a
description of the important features of the example, followed by the Fortran
calling sequence, the input data, and the resulting output data.

xx ESSL Version 3 Release 3 Guide and Reference

What’s New for ESSL for AIX

This section summarizes all the changes made to ESSL for AIX.

What’s New for ESSL Version 3 Release 3
v The ESSL Libraries are tuned for the POWER4.
v ESSL now supports the AIX 5L™ for POWER Version 5.1, with service, 32-bit

and 64-bit kernels.
v The ESSL header file now supports the C++ Standard Numerics Library facilities

for complex arithmetic and uses const qualifiers in the function prototypes.
v The Dense Linear Algebraic Equations Subroutines now include these new

LAPACK subroutines:
– General Matrix Inverse
– Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization
– Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple

Right-Hand Side Solve
– Positive Definite Real Symmetric Matrix Inverse
– Triangular Matrix Inverse

v The Linear Least Squares Subroutines now include this new LAPACK
subroutine:
– Linear Least Squares Solution for a General Matrix

v Additional functionality has been added to the Packed Dense Linear Algebraic
Equation subroutines, _PPF. (See “SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF,
SPOTRF, DPOTRF, CPOTRF, and ZPOTRF—Positive Definite Real Symmetric or
Complex Hermitian Matrix Factorization” on page 461.)

Changes for ESSL Version 3 Release 2
v The ESSL Libraries are tuned for the POWER3-II.
v The Dense Linear Algebraic Equations Subroutines now include these new

subroutines:
– Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side

Solve.
– Symmetric Indefinite Matrix Factorization.
– Symmetric Indefinite Matrix Multiple Right-Hand Side Solve.

v The Linear Least Squares Subroutines now include this new subroutine:
– General Matrix QR Factorization.

v The ESSL POWER and Thread-Safe libraries have been replaced by a
thread-safe library referred to as the ESSL Serial Library.

v The ESSL POWER2 and Thread-Safe POWER2 libraries are no longer
provided; the ESSL Serial or the ESSL SMP Library should be used instead. See
“Migrating ESSL Version 3 Programs to Version 3 Release 2” on page 162

v The ESSL Version 3 Guide and Reference manual is provided in PDF format
with the product package; the postscript file is no longer provided.

v The ESSL Product Package is now distributed on a CD.

© Copyright IBM Corp. 1997, 2001 xxi

|

|

|
|

|
|

|
|

|

|

|
|

|

|

|
|

|

|
|
|
|

|
|

|

Changes for ESSL Version 3 Release 1.2
v The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL

Symmetric Multi-Processing (SMP) Library are tuned for the POWER3 SMP
thin, wide, and high nodes.

v The serial and SMP performance of the packed Dense Linear Algebraic Equation
subroutines, _PPF, _PPFCD, and _PPICD have been improved in many cases by
utilizing new algorithms based on recursive packed storage format (see
references [52], [66], and [67]).

v The SMP performance of the Dense Linear Algebraic Equation subroutine,
DPOF, has been improved for a positive definite symmetric matrix stored in
upper storage mode.

v Additional multithreaded ESSL SMP subroutines are provided (see Table 21 on
page 24).

Changes for ESSL Version 3 Release 1.1
v The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP

Library are tuned for the RS/6000 POWER3.
v The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP

Library now support both 32-bit environment and 64-bit environment
applications. For details on creating 64-bit environment applications see
“Chapter 4. Coding Your Program” on page 105 and “Chapter 5. Processing Your
Program” on page 157. If you are migrating to a 64-bit environment, you may
need to make changes to your calls to ERRSET. For details see “ERRSET—ESSL
ERRSET Subroutine for ESSL” on page 930.

v ESSL for AIX provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:
– The AIX 4.2.1 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2

Library, and the ESSL SMP Library were built using the pthreads draft 7
library supplied on AIX 4.2.1. This is the same as ESSL Version 3.1.

– The AIX 4.3.2 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2
Library, and the ESSL SMP Library were built using the pthreads library that
conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Changes for ESSL Version 3
v ESSL for AIX provides two new run-time libraries:

– The ESSL SMP Library provides thread-safe versions of the ESSL subroutines
for use on RS/6000 SMP (for example 604e) processors. In addition, a subset
of these subroutines are also multithreaded versions; that is, they support the
shared memory parallel processing programming model. You do not have to
change your existing application programs that call ESSL to take advantage of
the increased performance of using the SMP processors. You can simply
re-link your existing programs. For a list of the multithreaded subroutines in
the ESSL SMP Library, see Table 21 on page 24.

– The ESSL Thread-Safe Library provides thread-safe versions of the ESSL
subroutines for use on all RS/6000 processors. You may use this library to
develop your own multithreaded applications.
If your existing application program calls ESSL, you only need to re-link your
program to take advantage of the increased performance of the ESSL SMP
Library or to use the ESSL Thread-Safe Library.

v ESSL provides new subroutines (_GETRF and _GETRS), bringing the total
number of subroutines to 458.

xxii ESSL Version 3 Release 3 Guide and Reference

|

v For those ESSL subroutines that require extra working storage to perform
computations, ESSL now provides a way to dynamically allocate storage when it
does not need to persist after the subroutine call. See “Using Auxiliary Storage
in ESSL” on page 29.

v The files for the Hypertext Markup Language (HTML) version of the ESSL
Version 3 Guide and Reference are packaged with the ESSL product.

v All the ESSL messages are provided in an ESSL message catalog.

Future Migration
If you are concerned with migration to possible future releases of ESSL or possible
future hardware, you should read “Planning for Future Migration” on page 164.
That section explains what you can do now to prevent future migration
problems.

What’s New for ESSL for AIX xxiii

|
|

xxiv ESSL Version 3 Release 3 Guide and Reference

In Brief—What’s Provided in ESSL for AIX
v ESSL provides two run-time libraries:

– The ESSL SMP Library provides thread-safe versions of the ESSL subroutines
for use on all SMP (for example, 604e or 630) processors. In addition, a subset
of these subroutines are also multithreaded versions; that is, they support the
shared memory parallel processing programming model. You do not have to
change your existing application programs that call ESSL to take advantage of
the increased performance of using the SMP processors. You can simply
re-link your existing application programs. For a list of the multithreaded
subroutines in the ESSL SMP Library, see Table 21 on page 24.

– The ESSL Serial Library provides thread-safe versions of the ESSL
subroutines for use on all processors. You may use this library to develop
your own multithreaded applications.

All libraries are designed to provide high levels of performance for numerically
intensive computing jobs on these respective processors. All versions provide
mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications.

v Callable from Fortran, C, and C++ programs.
v For a list of subroutines, refer to “List of ESSL Subroutines” on page 9.

© Copyright IBM Corp. 1997, 2001 xxv

|

xxvi ESSL Version 3 Release 3 Guide and Reference

Part 1. Guide Information

This part of the book is organized into seven chapters, providing guidance
information on how to use ESSL. It is organized as follows:
v Learning about ESSL
v Designing your program
v Setting up your data structures
v Coding your program
v Processing your program
v Migrating your programs
v Handling problems

© Copyright IBM Corp. 1997, 2001 1

2 ESSL Version 3 Release 3 Guide and Reference

Chapter 1. Introduction and Requirements

This chapter introduces you to the Engineering and Scientific Subroutine Library
(ESSL) for Advanced Interactive Executive (AIX).

Overview of ESSL
This section gives an overview of the ESSL capabilities and requirements.

ESSL is a state-of-the-art collection of subroutines providing a wide range of
mathematical functions for many different scientific and engineering applications.
Its primary characteristics are performance, functional capability, and usability.

Performance and Functional Capability
The mathematical subroutines, in nine computational areas, are tuned for
performance on the RS/6000. The computational areas are:
v Linear Algebra Subprograms
v Matrix Operations
v Linear Algebraic Equations
v Eigensystem Analysis
v Fourier Transforms, Convolutions and Correlations, and Related Computations
v Sorting and Searching
v Interpolation
v Numerical Quadrature
v Random Number Generation

ESSL provides two run-time libraries:
v The ESSL Symmetric Multi-Processing (SMP) Library provides thread-safe

versions of the ESSL subroutines for use on all SMP (for example, 604e or 630)
processors. In addition, a subset of these subroutines are also multithreaded
versions; that is, they support the shared memory parallel processing
programming model. For a list of the multithreaded subroutines in the ESSL
SMP Library, see Table 21 on page 24.

v The ESSL Serial Library provides thread-safe versions of the ESSL subroutines
for use on all processors. You may use this library to develop your own
multithreaded applications.

All libraries are designed to provide high levels of performance for numerically
intensive computing jobs on these respective processors. All versions provide
mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications.

The ESSL subroutines can be called from application programs written in Fortran,
C, and C++. ESSL runs under the AIX operating system.

Usability
ESSL is designed for usability:
v It has an easy-to-use call interface.

© Copyright IBM Corp. 1997, 2001 3

|

v If your existing application programs use the ESSL Serial library, you only need
to re-link your program to take advantage of the increased performance of the
ESSL SMP Library.

v It supports a 64-bit environment.
64-bit applications can be created on any system, but can only run on 64-bit
hardware.
The data model used for the 64-bit environment is referred to as LP64. This data
model supports 32-bit integers and 64-bit pointers. In accordance with the LP64
data model, all ESSL integer arguments remain 32-bit except for the iusadr
argument for ERRSET. See “ERRSET—ESSL ERRSET Subroutine for ESSL” on
page 930.

v It has informative error-handling capabilities, enabling you to calculate auxiliary
storage sizes and transform lengths.

v An online book that can be displayed using an Hypertext Markup Language
(HTML) document browser, is available for use with ESSL.

The Variety of Mathematical Functions
This section describes the mathematical functions included in ESSL.

Areas of Application
ESSL provides a variety of mathematical functions for many different types of
scientific and engineering applications. Some of the industries using these
applications are: Aerospace, Automotive, Electronics, Petroleum, Finance, Utilities,
and Research. Examples of applications in these industries are:

Structural Analysis Time Series Analysis

Computational Chemistry Computational Techniques

Fluid Dynamics Analysis Mathematical Analysis

Seismic Analysis Dynamic Systems Simulation

Reservoir Modeling Nuclear Engineering

Quantitative Analysis Electronic Circuit Design

What ESSL Provides
The subroutines provided in ESSL, summarized in Table 1, fall into the following
groups:
v Nine major areas of mathematical computation, providing the computations

commonly used by the industry applications listed above
v Utilities, performing general-purpose functions

To help you select the ESSL subroutines that fulfill your needs for performance,
accuracy, storage, and so forth, see “Selecting an ESSL Subroutine” on page 23.

4 ESSL Version 3 Release 3 Guide and Reference

|

|

Table 1. Summary of ESSL Subroutines

ESSL Area of Computation
Integer
Subroutines

Short-Precision
Subroutines

Long-Precision
Subroutines

Linear Algebra Subprograms:

Vector-scalar 0 41 41

Sparse vector-scalar 0 11 11

Matrix-vector 1 32 32

Sparse matrix-vector 0 0 3

Matrix Operations:

Addition, subtraction, multiplications, rank-k updates,
rank-2k updates, and matrix transposes 0 25 26

Linear Algebraic Equations:

Dense linear algebraic equations 3 38 43

Banded linear algebraic equations 0 18 18

Sparse linear algebraic equations 0 0 11

Linear least squares 0 3 5

Eigensystem Analysis:

Solutions to the algebraic eigensystem analysis
problem and the generalized eigensystem analysis
problem 0 8 8

Signal Processing Computations:

Fourier transforms 0 15 11

Convolutions and correlations 0 10 2

Related computations 0 6 6

Sorting and Searching:

Sorting, sorting with index, and binary and sequential
searching 5 5 5

Interpolation:

Polynomial and cubic spline interpolation 0 4 4

Numerical Quadrature:

Numerical quadrature on a set of points or on a
function 0 6 6

Random Number Generation:

Generating vectors of uniformly distributed and
normally distributed random numbers 0 3 3

Utilities:

General service operations 8 0 3

Total ESSL Subroutines 13 225 238

ESSL—Processing Capabilities
ESSL provides two run-time libraries, the ESSL SMP Library and the ESSL Serial
Library. These libraries are designed to provide high levels of performance for
numerically intensive computing jobs on the IBM Eserver pSeries and RS/6000
processors. To order the IBM Engineering and Scientific Subroutine Library for

Chapter 1. Introduction and Requirements 5

||

|

|

|||

|

AIX, specify program number 5765-C42. Most of the subroutine calls are
compatible with those in the ESSL/370 product.

Accuracy of the Computations
ESSL provides accuracy comparable to libraries using equivalent algorithms with
identical precision formats. Both short- and long-precision real versions of the
subroutines are provided in most areas of ESSL. In some areas, short- and
long-precision complex versions are also provided, and, occasionally, an integer
version is provided. The data types operated on by the short-precision,
long-precision, and integer versions of the subroutines are ANSI/IEEE 32-bit and
64-bit binary floating-point format, and 32-bit integer. See the ANSI/IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985, for more detail.
(There are ESSL-specific rules that apply to the results of computations on
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You Know
About?” on page 42.)

For more information on accuracy, see “Getting the Best Accuracy” on page 41.

High Performance of ESSL
Algorithms: The ESSL subroutines have been designed to provide high
performance. (See references [30], [41], and [42].) To achieve this performance, the
subroutines use state-of-the-art algorithms tailored to specific operational
characteristics of the hardware, such as cache size, Translation Lookaside Buffer
(TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:
v Managing the cache and TLB efficiently so the hit ratios are maximized; that is,

data is blocked so it stays in the cache or TLB for its computation.
v Accessing data stored contiguously—that is, using stride-1 computations.
v Exploiting the large number of available floating-point registers.
v Using algorithms that minimize paging.
v On the SMP processors:

– The ESSL SMP Library is designed to exploit the processing power and
shared memory of the SMP processor. In addition, a subset of the ESSL SMP
subroutines have been coded to take advantage of increased performance
from multithreaded (parallel) programming techniques. For a list of the
multithreaded subroutines in the ESSL SMP Library, see Table 21 on page 24.

– Choosing the number of threads depends on the problem size, the specific
subroutine being called, and the number of physical processors you are
running on. To achieve optimal performance, experimentation is necessary;
however, picking the number of threads equal to the number of online
processors generally provides good performance in most cases. In some cases,
performance may increase if you choose the number of threads to be less than
the number of online processors.
You should use either the XL Fortran XLSMPOPTS or the
OMP_NUM_THREADS environment variable to specify the number of
threads you want to create.

v On the POWER4 processor:
– Structuring the ESSL subroutines so, where applicable, the compiled code

fully utilizes the dual floating-point execution units. Because two

6 ESSL Version 3 Release 3 Guide and Reference

|
|

|
|
|

|

|
|

Multiply-Add instructions can be executed each cycle, neglecting overhead,
this allows four floating-point operations per cycle to be performed.

– Structuring the ESSL subroutines so, where applicable, the compiled code
takes full advantage of the hardware data prefetching.

v On the POWER3 and POWER3–II processors:
– Structuring the ESSL subroutines so, where applicable, the compiled code

fully utilizes the dual floating-point execution units. Because two
Multiply-Add instructions can be executed each cycle, neglecting overhead,
this allows four floating-point operations per cycle to be performed.

– Structuring the ESSL subroutines so, where applicable, the compiled code
takes full advantage of the hardware data prefetching.

v On the POWER processor:
– Using algorithms that balance floating-point operations with loads in the

innermost loop.
– Using algorithms that minimize stores in the innermost loops.
– Structuring the ESSL subroutines so, where applicable, the compiled code

uses the Multiply-Add instructions. Neglecting overhead, these instructions
perform two floating-point operations per cycle.

Mathematical Techniques: All areas of ESSL use state-of-the-art mathematical
techniques to achieve high performance. For example, the matrix-vector linear
algebra subprograms operate on a higher-level data structure, matrix-vector rather
than vector-scalar. As a result, they optimize performance directly for your
program and indirectly through those ESSL subroutines using them.

The Fortran Language Interface to the Subroutines
The ESSL subroutines follow standard Fortran calling conventions and must run in
the Fortran run-time environment. When ESSL subroutines are called from a
program in a language other than Fortran, such as C, C++, or PL/I, the Fortran
conventions must be used. This applies to all aspects of the interface, such as the
linkage conventions and the data conventions. For example, array ordering must
be consistent with Fortran array ordering techniques. Data and linkage conventions
for each language are given in “Chapter 4. Coding Your Program” on page 105.

Software and Hardware Products That Can Be Used with ESSL
This section describes the hardware and software products you can use with ESSL,
as well as those products for installing ESSL and displaying the online
documentation.

For ESSL—Hardware
ESSL runs on the IBM Eserver pSeries and RS/6000 processors supported by the
AIX operating systems.

64-bit applications require 64-bit hardware.

ESSL—Operating Systems
ESSL is supported in the following operating system environments:
v AIX 5L for POWER Version 5.1, with service (product number 5765-E61)

Chapter 1. Introduction and Requirements 7

|
|

|
|

|
|

|

ESSL—Software Products
ESSL requires the software products shown in Table 2 for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is
described in “C Programs” on page 123 and “C++ Programs” on page 139.

Table 2. Software Products Required for Use with ESSL

For Compiling For Linking, Loading, or Running

XL Fortran for AIX, Version 7.1.1 (program number
5765-E02) –or–

IBM Visual Age C++ Professional for AIX Version 5.0.2
(program number 5765–E26)–or–

C for AIX, Version 5.0.2 (program number 5765–E32)

XL Fortran Run-Time Environment for AIX, Version 7.1.1
(program number 5765-E03) –and–

C libraries1

1 The AIX product includes the C and math libraries in the Application Development Toolkit.

Installation and Customization Products
The ESSL licensed program is distributed on a CD. The ESSL Version 3 Installation
Memo provides the detailed information you need to install ESSL.

The ESSL product is packaged according to the AIX guidelines, as described in the
AIX General Programming Concepts: Writing and Debugging Programs manual. The
product can be installed using the smit command, as described in the AIX System
Management Guide: Operating System and Devices manual.

Software Products for Displaying ESSL Online Information
The ESSL Guide and Reference is available in PDF and HTML format on the product
media.

To view the online publications shipped on the product media, you need the
following:
v Access to a common HTML document browser (such as Netscape Navigator).
v The location of the HTML index file provided with the file sets. Contact your

system administrator or installer for this location.

ESSL Internet Resources
This section describes how you can use the ESSL resources available over the
Internet.

Obtaining Documentation
To access the ESSL Guide and Reference in either PDF or HTML format, go to the
following IBM Web site:

http://www.ibm.com/servers/eserver/pseries/library

and click on “RS/6000 SP Hardware and Software Books.”

To view the ESSL PDF publications, you need access to the Adobe Acrobat Reader.
The Acrobat Reader is shipped with the AIX Bonus Pack and is also freely
available for downloading from the Adobe web site at:

8 ESSL Version 3 Release 3 Guide and Reference

|

|

|

|

|

|
|

|
|
|
|

|
|

|
|

|

|
|
|

http://www.adobe.com

Accessing ESSL’s Product Home Pages
The following home page contains information on ESSL and Parallel ESSL:

http://www.ibm.com/servers/eserver/pseries/software/sp/essl.html

Getting on the ESSL Mailing List
Late breaking information about ESSL can be obtained by being placed on the
ESSL mailing list. In addition, users on the mailing list will receive information
about new ESSL function and may receive customer satisfaction surveys and
requirements surveys, to provide feedback to ESSL Development on the product
and user requirements.

You can be placed on the mailing list by sending a request to either of the
following, asking to be placed on the ESSL mailing list:

International Business Machines Corporation
ESSL Development
Department 85BA⁄Mail Station P963
2455 South Rd.
Poughkeepsie, N.Y. 12601-5400

e-mail: essl@us.ibm.com

Note: You should send us e-mail if you would like to be withdrawn from the ESSL
mailing list.

When requesting to be placed on the mailing list or asking any questions, please
provide the following information:
v Your name
v The name of your company
v Your mailing address
v Your Internet address
v Your phone number

List of ESSL Subroutines
This section provides an overview of the subroutines in each of the areas of ESSL.

“Appendix A. Basic Linear Algebra Subprograms (BLAS)” on page 959 contains a
list of Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in
ESSL.

“Appendix B. LAPACK” on page 961 contains a list of Linear Algebra Package
(LAPACK) subroutines included in ESSL.

Linear Algebra Subprograms
The linear algebra subprograms consist of:
v Vector-scalar linear algebra subprograms (Table 3)
v Sparse vector-scalar linear algebra subprograms (Table 4)
v Matrix-vector linear algebra subprograms (Table 5)
v Sparse matrix-vector linear algebra subprograms (Table 6)

Chapter 1. Introduction and Requirements 9

|

|

|

Notes:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the
BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Vector-Scalar Linear Algebra Subprograms
The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference [79]. The remainder of the
vector-scalar linear algebra subprograms are commonly used computations
provided for your applications. Both real and complex versions of the subprograms
are provided.

Table 3. List of Vector-Scalar Linear Algebra Subprograms

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Position of the First or Last Occurrence of the Vector Element
Having the Largest Magnitude

ISAMAX†u

ICAMAX†u
IDAMAX†u

IZAMAX†u
193

Position of the First or Last Occurrence of the Vector Element
Having Minimum Absolute Value

ISAMIN† IDAMIN† 196

Position of the First or Last Occurrence of the Vector Element
Having Maximum Value

ISMAX† IDMAX† 199

Position of the First or Last Occurrence of the Vector Element
Having Minimum Value

ISMIN† IDMIN† 202

Sum of the Magnitudes of the Elements in a Vector SASUM†u

SCASUM†u
DASUM†u

DZASUM†u
205

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the
Vector Y

SAXPYu

CAXPYu
DAXPYu

ZAXPYu
208

Copy a Vector SCOPYu

CCOPYu
DCOPYu

ZCOPYu
211

Dot Product of Two Vectors SDOT†u

CDOTU†u

CDOTC†u

DDOT†u

ZDOTU†u

ZDOTC†u

214

Compute SAXPY or DAXPY N Times SNAXPY DNAXPY 218

Compute Special Dot Products N Times SNDOT DNDOT 223

Euclidean Length of a Vector with Scaling of Input to Avoid
Destructive Underflow and Overflow

SNRM2†u

SCNRM2†u
DNRM2†u

DZNRM2†u
228

Euclidean Length of a Vector with No Scaling of Input SNORM2†

CNORM2†
DNORM2†

ZNORM2†
231

Construct a Givens Plane Rotation SROTGu

CROTGu
DROTGu

ZROTGu
234

Apply a Plane Rotation SROTu

CROTu

CSROTu

DROTu

ZROTu

ZDROTu

240

Multiply a Vector X by a Scalar and Store in the Vector X SSCALu

CSCALu

CSSCALu

DSCALu

ZSCALu

ZDSCALu

244

10 ESSL Version 3 Release 3 Guide and Reference

Table 3. List of Vector-Scalar Linear Algebra Subprograms (continued)

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Interchange the Elements of Two Vectors SSWAPu

CSWAPu
DSWAPu

ZSWAPu
247

Add a Vector X to a Vector Y and Store in a Vector Z SVEA
CVEA

DVEA
ZVEA

250

Subtract a Vector Y from a Vector X and Store in a Vector Z SVES
CVES

DVES
ZVES

254

Multiply a Vector X by a Vector Y and Store in a Vector Z SVEM
CVEM

DVEM
ZVEM

258

Multiply a Vector X by a Scalar and Store in a Vector Y SYAX
CYAX
CSYAX

DYAX
ZYAX
ZDYAX

262

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a
Vector Z

SZAXPY
CZAXPY

DZAXPY
ZZAXPY

265

† This subprogram is invoked as a function in a Fortran program.

u Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms
The sparse vector-scalar linear algebra subprograms operate on sparse vectors; that
is, only the nonzero elements of the vector are stored. These subprograms provide
similar functions to the vector-scalar subprograms. These subprograms represent a
subset of the sparse extensions to the Level 1 BLAS described in reference [29].
Both real and complex versions of the subprograms are provided.

Table 4. List of Sparse Vector-Scalar Linear Algebra Subprograms

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Scatter the Elements of a Sparse Vector X in Compressed-Vector
Storage Mode into Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode

SSCTR
CSCTR

DSCTR
ZSCTR

269

Gather Specified Elements of a Sparse Vector Y in Full-Vector
Storage Mode into a Sparse Vector X in Compressed-Vector Storage
Mode

SGTHR
CGTHR

DGTHR
ZGTHR

272

Gather Specified Elements of a Sparse Vector Y in Full-Vector
Mode into a Sparse Vector X in Compressed-Vector Mode, and
Zero the Same Specified Elements of Y

SGTHRZ
CGTHRZ

DGTHRZ
ZGTHRZ

275

Multiply a Sparse Vector X in Compressed-Vector Storage Mode by
a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode,
and Store in the Vector Y

SAXPYI
CAXPYI

DAXPYI
ZAXPYI

278

Dot Product of a Sparse Vector X in Compressed-Vector Storage
Mode and a Sparse Vector Y in Full-Vector Storage Mode

SDOTI†

CDOTCI†

CDOTUI†

DDOTI†

ZDOTCI†

ZDOTUI†

281

† This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms
The matrix-vector linear algebra subprograms operate on a higher-level data
structure—matrix-vector rather than vector-scalar—using optimized algorithms to
improve performance. These subprograms include a subset of the standard set of

Chapter 1. Introduction and Requirements 11

Level 2 BLAS. For details on the Level 2 BLAS, see [34] and [35]. Both real and
complex versions of the subprograms are provided.

Table 5. List of Matrix-Vector Linear Algebra Subprograms

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose

SGEMVÍ

CGEMVÍ

SGEMX§

SGEMTX§

DGEMVÍ

ZGEMVÍ

DGEMX§

DGEMTX§

285

Rank-One Update of a General Matrix SGERÍ

CGERUÍ

CGERCÍ

DGERÍ

ZGERUÍ

ZGERCÍ

295

Matrix-Vector Product for a Real Symmetric or Complex Hermitian
Matrix

SSPMVÍ

CHPMVÍ

SSYMVÍ

CHEMVÍ

SSLMX§

DSPMVÍ

ZHPMVÍ

DSYMVÍ

ZHEMVÍ

DSLMX§

302

Rank-One Update of a Real Symmetric or Complex Hermitian
Matrix

SSPRÍ

CHPRÍ

SSYRÍ

CHERÍ

SSLR1§

DSPRÍ

ZHPRÍ

DSYRÍ

ZHERÍ

DSLR1§

309

Rank-Two Update of a Real Symmetric or Complex Hermitian
Matrix

SSPR2Í

CHPR2Í

SSYR2Í

CHER2Í

SSLR2§

DSPR2Í

ZHPR2Í

DSYR2Í

ZHER2Í

DSLR2§

316

Matrix-Vector Product for a General Band Matrix, Its Transpose, or
Its Conjugate Transpose

SGBMVÍ

CGBMVÍ
DGBMVÍ

ZGBMVÍ
324

Matrix-Vector Product for a Real Symmetric or Complex Hermitian
Band Matrix

SSBMVÍ

CHBMVÍ
DSBMVÍ

ZHBMVÍ
330

Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose

STRMVÍ

CTRMVÍ

STPMVÍ

CTPMVÍ

DTRMVÍ

ZTRMVÍ

DTPMVÍ

ZTPMVÍ

335

Matrix-Vector Product for a Triangular Band Matrix, Its Transpose,
or Its Conjugate Transpose

STBMVÍ

CTBMVÍ
DTBMVÍ

ZTBMVÍ
341

Í Level 2 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

Sparse Matrix-Vector Linear Algebra Subprograms
The sparse matrix-vector linear algebra subprograms operate on sparse matrices;
that is, only the nonzero elements of the matrix are stored. These subprograms
provide similar functions to the matrix-vector subprograms.

Table 6. List of Sparse Matrix-Vector Linear Algebra Subprograms

Descriptive Name Long- Precision
Subprogram

Page

Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode DSMMX 347

Transpose a Sparse Matrix in Compressed-Matrix Storage Mode DSMTM 350

12 ESSL Version 3 Release 3 Guide and Reference

Table 6. List of Sparse Matrix-Vector Linear Algebra Subprograms (continued)

Descriptive Name Long- Precision
Subprogram

Page

Matrix-Vector Product for a Sparse Matrix or Its Transpose in
Compressed-Diagonal Storage Mode

DSDMX 354

Matrix Operations
Some of the matrix operation subroutines were designed in accordance with the
Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the calling
application program. For details on the Level 3 BLAS, see reference [32]. The
matrix operation subroutines also include the commonly used matrix operations:
addition, subtraction, multiplication, and transposition.

Table 7. List of Matrix Operation Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Matrix Addition for General Matrices or Their Transposes SGEADD
CGEADD

DGEADD
ZGEADD

363

Matrix Subtraction for General Matrices or Their Transposes SGESUB
CGESUB

DGESUB
ZGESUB

369

Matrix Multiplication for General Matrices, Their Transposes, or
Conjugate Transposes

SGEMUL
CGEMUL

DGEMUL
ZGEMUL
DGEMLP§

375

Matrix Multiplication for General Matrices, Their Transposes, or
Conjugate Transposes Using Winograd’s Variation of Strassen’s
Algorithm

SGEMMS
CGEMMS

DGEMMS
ZGEMMS

384

Combined Matrix Multiplication and Addition for General
Matrices, Their Transposes, or Conjugate Transposes

SGEMM♦

CGEMM♦
DGEMM♦

ZGEMM♦
389

Matrix-Matrix Product Where One Matrix is Real or Complex
Symmetric or Complex Hermitian

SSYMM♦

CSYMM♦

CHEMM♦

DSYMM♦

ZSYMM♦

ZHEMM♦

397

Triangular Matrix-Matrix Product STRMM♦

CTRMM♦
DTRMM♦

ZTRMM♦
404

Rank-K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

SSYRK♦

CSYRK♦

CHERK♦

DSYRK♦

ZSYRK♦

ZHERK♦

410

Rank-2K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

SSYR2K♦

CSYR2K♦

CHER2K♦

DSYR2K♦

ZSYR2K♦

ZHER2K♦

416

General Matrix Transpose (In-Place) SGETMI
CGETMI

DGETMI
ZGETMI

423

General Matrix Transpose (Out-of-Place) SGETMO
CGETMO

DGETMO
ZGETMO

426

♦ Level 3 BLAS

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new
programs.

Chapter 1. Introduction and Requirements 13

Linear Algebraic Equations
The linear algebraic equations consist of:
v Dense linear algebraic equations (Table 8)
v Banded linear algebraic equations (Table 9)
v Sparse linear algebraic equations (Table 10)
v Linear least squares (Table 11)

Note: Some of the linear algebraic equations were designed in accordance with the
Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these
subprograms do not comply with the standard as approved, IBM will
consider updating them to do so. If IBM updates these subprograms, the
updates could require modifications of the calling application program. For
details on the Level 2 and 3 BLAS, see [32] and [34]. For details on
LAPACK, see [8].

Dense Linear Algebraic Equations
The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, real symmetric
indefinite matrices and triangular matrices. Some of these subroutines correspond
to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references
[32], 34] and [8].

Table 8. List of Dense Linear Algebraic Equation Subroutines

Descriptive Name

Short-
Precision
Subroutine

Long-
Precision
Subroutine Page

General Matrix Factorization SGEF
CGEF
SGETRFn

CGETRFn

DGEF
ZGEF
DGETRFn

ZGETRFn

DGEFP§

438

449

General Matrix, Its Transpose, or Its Conjugate Transpose Solve SGES
CGES

DGES
ZGES

441

General Matrix, Its Transpose, or Its Conjugate Transpose
Multiple Right-Hand Side Solve

SGESM
CGESM
SGETRSn

CGETRSn

DGESM
ZGESM
DGETRSn

ZGETRSn

444

453

General Matrix Factorization, Condition Number Reciprocal, and
Determinant

SGEFCD DGEFCD 457

Positive Definite Real Symmetric or Complex Hermitian Matrix
Factorization

SPPF
SPOF
CPOF
SPOTRFn

CPOTRFn

DPPF
DPOF
ZPOF
DPOTRFn

ZPOTRFn

DPPFP§

461

Positive Definite Real Symmetric Matrix Solve SPPS DPPS 470

Positive Definite Real Symmetric or Complex Hermitian Matrix
Multiple Right-Hand Side Solve

SPOSM
CPOSM
SPOTRSn

CPOTRSn

DPOSM
ZPOSM
DPOTRSn

ZPOTRSn

473

Positive Definite Real Symmetric Matrix Factorization, Condition
Number Reciprocal, and Determinant

SPPFCD
SPOFCD

DPPFCD
DPOFCD

478

14 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

Table 8. List of Dense Linear Algebraic Equation Subroutines (continued)

Descriptive Name

Short-
Precision
Subroutine

Long-
Precision
Subroutine Page

Symmetric Indefinite Matrix Factorization and Multiple
Right-Hand Side Solve

DBSSV 484

Symmetric Indefinite Matrix Factorization DBSTRF 490

Symmetric Indefinite Matrix Multiple Right-Hand Side Solve DBSTRS 495

General Matrix Inverse, Condition Number Reciprocal, and
Determinant

SGEICD
SGETRIn

DGEICD
DGETRIn

499

Positive Definite Real Symmetric Matrix Inverse, Condition
Number Reciprocal, and Determinant

SPPICD
SPOICD
SPOTRIn

DPPICD
DPOICD
DPOTRIn

505

Solution of a Triangular System of Equations with a Single
Right-Hand Side

STRSVÍ

CTRSVÍ

STPSVÍ

CTPSVÍ

DTRSVÍ

ZTRSVÍ

DTPSVÍ

ZTPSVÍ

513

Solution of Triangular Systems of Equations with Multiple
Right-Hand Sides

STRSM♦

CTRSM♦
DTRSM♦

ZTRSM♦
519

Triangular Matrix Inverse STRI
STPI
STRTRIn

STPTRIn

DTRI
DTPI
DTRTRIn

DTPTRIn

526

Í Level 2 BLAS

♦ Level 3 BLAS

n LAPACK

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use is new
programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equations
The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for real general band matrices, real positive definite
symmetric band matrices, real or complex general tridiagonal matrices, real
positive definite symmetric tridiagonal matrices, and real or complex triangular
band matrices.

Table 9. List of Banded Linear Algebraic Equation Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

General Band Matrix Factorization SGBF DGBF 533

General Band Matrix Solve SGBS DGBS 537

Positive Definite Symmetric Band Matrix Factorization SPBF
SPBCHF

DPBF
DPBCHF

540

Positive Definite Symmetric Band Matrix Solve SPBS
SPBCHS

DPBS
DPBCHS

543

General Tridiagonal Matrix Factorization SGTF DGTF 546

General Tridiagonal Matrix Solve SGTS DGTS 549

General Tridiagonal Matrix Combined Factorization and Solve
with No Pivoting

SGTNP
CGTNP

DGTNP
ZGTNP

551

Chapter 1. Introduction and Requirements 15

||

||

|
|
|
|

Table 9. List of Banded Linear Algebraic Equation Subroutines (continued)

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

General Tridiagonal Matrix Factorization with No Pivoting SGTNPF
CGTNPF

DGTNPF
ZGTNPF

554

General Tridiagonal Matrix Solve with No Pivoting SGTNPS
CGTNPS

DGTNPS
ZGTNPS

557

Positive Definite Symmetric Tridiagonal Matrix Factorization SPTF DPTF 560

Positive Definite Symmetric Tridiagonal Matrix Solve SPTS DPTS 562

Triangular Band Equation Solve STBSVÍ

CTBSVÍ
DTBSVÍ

ZTBSVÍ
564

Í Level 2 BLAS

Sparse Linear Algebraic Equations
The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their
transposes and for sparse symmetric matrices.

Table 10. List of Sparse Linear Algebraic Equation Subroutines

Descriptive Name
Long- Precision
Subroutine Page

General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns DGSF 570

General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or
Columns

DGSS 576

General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve
Using Skyline Storage Mode

DGKFS
DGKFSP§

580

Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline
Storage Mode

DSKFS
DSKFSP§

597

Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored
by Rows

DSRIS 614

Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Matrix Storage Mode

DSMCG‡ 624

Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode

DSDCG 631

General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode DSMGCG‡ 638

General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode DSDGCG 645
§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

‡ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Use DSRIS instead.

Linear Least Squares
The linear least squares subroutines provide least squares solutions to linear
systems of equations for real general matrices. Three methods are provided: one
that uses the singular value decomposition; one that uses a QR decomposition with
column pivoting; and another that uses a QR decomposition without column
pivoting. Some of these subroutines correspond to the LAPACK routines described
in reference [8].

16 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|
|

Table 11. List of Linear Least Squares Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Singular Value Decomposition for a General Matrix SGESVF DGESVF 652

Linear Least Squares Solution for a General Matrix Using the
Singular Value Decomposition

SGESVS DGESVS 659

General Matrix QR Factorization DGEQRFn 663

Linear Least Squares Solution for a General Matrix DGELSn 667

Linear Least Squares Solution for a General Matrix with Column
Pivoting

SGELLS DGELLS 674

n LAPACK

Eigensystem Analysis
The eigensystem analysis subroutines provide solutions to the algebraic
eigensystem analysis problem Az = wz and the generalized eigensystem analysis
problem Az = wBz (Table 12). Many of the eigensystem analysis subroutines use
the algorithms presented in Linear Algebra by Wilkinson and Reinsch [99] or use
adaptations of EISPACK routines, as described in theEISPACK Guide Lecture Notes
in Computer Science in reference [87] or in the EISPACK Guide Extension Lecture
Notes in Computer Science in reference [58]. (EISPACK is available from the sources
listed in reference [49].)

Table 12. List of Eigensystem Analysis Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Eigenvalues and, Optionally, All or Selected Eigenvectors of a
General Matrix

SGEEV
CGEEV

DGEEV
ZGEEV

681

Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric
Matrix or a Complex Hermitian Matrix

SSPEV
CHPEV

DSPEV
ZHPEV

691

Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real
Symmetric Matrix or a Complex Hermitian Matrix

SSPSV
CHPSV

DSPSV
ZHPSV

699

Eigenvalues and, Optionally, the Eigenvectors of a Generalized
Real Eigensystem, Az=wBz, where A and B Are Real General
Matrices

SGEGV DGEGV 706

Eigenvalues and, Optionally, the Eigenvectors of a Generalized
Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric
and B Is Real Symmetric Positive Definite

SSYGV DSYGV 711

Fourier Transforms, Convolutions and Correlations, and
Related Computations

This signal processing area provides:
v Fourier transform subroutines (Table 13)
v Convolution and correlation subroutines (Table 14)
v Related-computation subroutines (Table 15)

Fourier Transforms
The Fourier transform subroutines perform mixed-radix transforms in one, two,
and three dimensions.

Chapter 1. Introduction and Requirements 17

|

|||

|
|

Table 13. List of Fourier Transform Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Complex Fourier Transform SCFT
SCFTP§

DCFT 727

Real-to-Complex Fourier Transform SRCFT DRCFT 735

Complex-to-Real Fourier Transform SCRFT DCRFT 742

Cosine Transform SCOSF
SCOSFT§

DCOSF 749

Sine Transform SSINF DSINF 756

Complex Fourier Transform in Two Dimensions SCFT2
SCFT2P§

DCFT2 763

Real-to-Complex Fourier Transform in Two Dimensions SRCFT2 DRCFT2 769

Complex-to-Real Fourier Transform in Two Dimensions SCRFT2 DCRFT2 776

Complex Fourier Transform in Three Dimensions SCFT3
SCFT3P§

DCFT3 783

Real-to-Complex Fourier Transform in Three Dimensions SRCFT3 DRCFT3 788

Complex-to-Real Fourier Transform in Three Dimensions SCRFT3 DCRFT3 793
§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Convolutions and Correlations
The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a
high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

Table 14. List of Convolution and Correlation Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Convolution or Correlation of One Sequence with One or More
Sequences

SCON§

SCOR§
799

Convolution or Correlation of One Sequence with Another
Sequence Using a Direct Method

SCOND
SCORD

805

Convolution or Correlation of One Sequence with One or More
Sequences Using the Mixed-Radix Fourier Method

SCONF
SCORF

810

Convolution or Correlation with Decimated Output Using a Direct
Method

SDCON
SDCOR

DDCON
DDCOR

818

Autocorrelation of One or More Sequences SACOR§ 822

Autocorrelation of One or More Sequences Using the Mixed-Radix
Fourier Method

SACORF 826

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Related Computations
The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those
provided on the IBM 3838 Array Processor; however, the ESSL subroutines
generally solve a wider range of problems.

18 ESSL Version 3 Release 3 Guide and Reference

Table 15. List of Related-Computation Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Polynomial Evaluation SPOLY DPOLY 832

I-th Zero Crossing SIZC DIZC 835

Time-Varying Recursive Filter STREC DTREC 838

Quadratic Interpolation SQINT DQINT 841

Wiener-Levinson Filter Coefficients SWLEV
CWLEV

DWLEV
ZWLEV

844

Sorting and Searching
The sorting and searching subroutines operate on three types of data: integer,
short-precision real, and long-precision real (Table 16). The sorting subroutines
perform sorts with or without index designations. The searching subroutines
perform either a binary or sequential search.

Table 16. List of Sorting and Searching Subroutines

Descriptive Name Integer
Subroutine

Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Sort the Elements of a Sequence ISORT SSORT DSORT 851

Sort the Elements of a Sequence and Note the
Original Element Positions

ISORTX SSORTX DSORTX 853

Sort the Elements of a Sequence Using a Stable
Sort and Note the Original Element Positions

ISORTS SSORTS DSORTS 856

Binary Search for Elements of a Sequence X in a
Sorted Sequence Y

IBSRCH SBSRCH DBSRCH 859

Sequential Search for Elements of a Sequence X
in the Sequence Y

ISSRCH SSSRCH DSSRCH 863

Interpolation
The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and both one- and two-dimensional
cubic spline interpolation (Table 17).

Table 17. List of Interpolation Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Polynomial Interpolation SPINT DPINT 869

Local Polynomial Interpolation STPINT DTPINT 873

Cubic Spline Interpolation SCSINT DCSINT 876

Two-Dimensional Cubic Spline Interpolation SCSIN2 DCSIN2 881

Numerical Quadrature
The numerical quadrature subroutines provide Gaussian quadrature methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration (Table 18).

Chapter 1. Introduction and Requirements 19

Table 18. List of Numerical Quadrature Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Numerical Quadrature Performed on a Set of Points SPTNQ DPTNQ 889

Numerical Quadrature Performed on a Function Using
Gauss-Legendre Quadrature

SGLNQ† DGLNQ† 892

Numerical Quadrature Performed on a Function Over a Rectangle
Using Two-Dimensional Gauss-Legendre Quadrature

SGLNQ2† DGLNQ2† 894

Numerical Quadrature Performed on a Function Using
Gauss-Laguerre Quadrature

SGLGQ† DGLGQ† 900

Numerical Quadrature Performed on a Function Using
Gauss-Rational Quadrature

SGRAQ† DGRAQ† 903

Numerical Quadrature Performed on a Function Using
Gauss-Hermite Quadrature

SGHMQ† DGHMQ† 907

† This subprogram is invoked as a function in a Fortran program.

Random Number Generation
Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers (Table 19).

Table 19. List of Random Number Generation Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Generate a Vector of Uniformly Distributed Random Numbers SURAND DURAND 913

Generate a Vector of Normally Distributed Random Numbers SNRAND DNRAND 916

Generate a Vector of Long Period Uniformly Distributed Random
Numbers

SURXOR DURXOR 919

Utilities
The utility subroutines perform general service functions that support ESSL, rather
than mathematical computations (Table 20).

Table 20. List of Utility Subroutines

Descriptive Name Subroutine Page

ESSL Error Information-Handler Subroutine EINFO 926

ESSL ERRSAV Subroutine for ESSL ERRSAV 929

ESSL ERRSET Subroutine for ESSL ERRSET 930

ESSL ERRSTR Subroutine for ESSL ERRSTR 932

Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library IVSSET§

Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library IEVOPS§

Determine the Level of ESSL Installed IESSL 933

Determine the Stride Value for Optimal Performance in Specified Fourier Transform
Subroutines

STRIDE 935

Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode DSRSM 944

For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline
Storage Mode

DGKTRN 948

20 ESSL Version 3 Release 3 Guide and Reference

Table 20. List of Utility Subroutines (continued)

Descriptive Name Subroutine Page

For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline
Storage Mode

DSKTRN 953

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Chapter 1. Introduction and Requirements 21

22 ESSL Version 3 Release 3 Guide and Reference

Chapter 2. Planning Your Program

This chapter provides information about ESSL that you need when planning your
program. Its purpose is to help you in performing the following tasks:
v Selecting an ESSL subroutine
v Avoiding Conflicts with Internal ESSL Routine Names That are Exported
v Setting up your data
v Setting up your ESSL calling sequences
v Using auxiliary storage in ESSL
v Providing a correct transform length to ESSL
v Getting the best accuracy
v Getting the best performance
v Dealing with errors when using ESSL

If you are using ESSL with PL/I Set for AIX, Version 1, see the PL/I publications
for details on calling subroutines and functions.

Selecting an ESSL Subroutine
Your choice of which ESSL subroutine to use is based mainly on the functional
needs of your program. However, you have a choice of several variations of many
of the subroutines. In addition, there are instances where certain subroutines
cannot be used. This section describes these variations and limitations. See the
answers to each question below that applies to you.

Which ESSL Library Do You Want to Use?
ESSL provides two run-time libraries:
v The ESSL SMP Library provides thread-safe versions of the ESSL subroutines

for use on all SMP processors. In addition, a subset of these subroutines are also
multithreaded versions; that is, they support the shared memory parallel
processing programming model. For a list of the multithreaded subroutines in
the ESSL SMP Library, see Table 21 on page 24.

v The ESSL Serial Library provides thread-safe versions of the ESSL subroutines
for use on all processors. You may choose to use this library if you decide to
develop your own multithreaded programs that call the thread-safe ESSL
subroutines.
The number of threads you choose to use depends on the problem size, the
specific subroutine being called, and the number of physical processors you are
running on. To achieve optimal performance, experimentation is necessary;
however, picking the number of threads equal to the number of online
processors generally provides good performance in most cases. In a few cases,
performance may increase if you choose the number of threads to be less than
the number of online processors. For more information about thread concepts,
see AIX General Programming Concepts: Writing and Debugging Programs.

The ESSL SERIAL Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications. For details see “Chapter 4.
Coding Your Program” on page 105 and “Chapter 5. Processing Your Program” on
page 157.

© Copyright IBM Corp. 1997, 2001 23

|
|

Table 21. Multithreaded ESSL SMP Subroutines

Subroutine Names

Vector-Scalar Linear Algebra Subprograms:
SASUM, DASUM, SCASUM, DZASUM
SAXPY, DAXPY, CAXPY, ZAXPY
SCOPY, DCOPY, CCOPY, ZCOPY
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC
SNDOT, DNDOT
SNORM2, DNORM2, CNORM2, ZNORM2
SROT, DROT, CROT, ZROT, CSROT, ZDROT
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL
SSWAP, DSWAP, CSWAP, ZSWAP
SVEA, DVEA, CVEA, ZVEA
SVES, DVES, CVES, ZVES
SVEM, DVEM, CVEM, ZVEM
SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX
SZAXPY, DZAXPY, CZAXPY, ZZAXPY

Matrix-Vector Linear Algebra Subprograms:
SGEMV, DGEMV, CGEMV, ZGEMV
SGER, DGER, CGERU, ZGERU, CGERC, ZGERC
SSPMV, DSPMV, CHPMV, ZHPMV
SSYMV, DSYMV, CHEMV, ZHEMV
SSPR, DSPR, CHPR, ZHPR
SSYR, DSYR, CHER, ZHER
SSPR2, DSPR2, CHPR2, ZHPR2
SSYR2, DSYR2, CHER2, ZHER2
SGBMV♦, DGBMV♦

CGBMV♦, ZGBMV♦

SSBMV♦, DSBMV♦

CHBMV♦, ZHBMV♦

STRMV, DTRMV, CTRMV, ZTRMV
STPMV, DTPMV, CTPMV, ZTPMV
STBMV♦, DTBMV♦

CTBMV♦, ZTBMV♦

Matrix Operations:
SGEADD, DGEADD, CGEADD, ZGEADD
SGESUB, DGESUB, CGESUB, ZGESUB
SGEMUL, DGEMUL, CGEMUL, ZGEMUL
SGEMM, DGEMM, CGEMM, ZGEMM
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM
STRMM, DTRMM, CTRMM, ZTRMM
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K
SGETMI, DGETMI, CGETMI, ZGETMI
SGETMO, DGETMO, CGETMO, ZGETMO

Dense Linear Algebraic Equations:
SGEF, DGEF, CGEF, ZGEF
SGETRF, DGETRF, CGETRF, ZGETRF
SPPF, DPPF, DPOF, DPOTRF
SPPFCD*, DPPFCD*, DPOFCD*
SPPICD*, DPPICD*, DPOICD*, DPOTRI*
STRSV, DTRSV, CTRSV, ZTRSV
STPSV, DTPSV, CTPSV, ZTPSV
STRSM, DTRSM, CTRSM, ZTRSM
STRI, DTRI, STRTRI, DTRTRI

Sparse Linear Algebraic Equations:
DSRIS†

24 ESSL Version 3 Release 3 Guide and Reference

|

|

|

Table 21. Multithreaded ESSL SMP Subroutines (continued)

Subroutine Names

Linear Least Squares:
DGEQRF

Fourier Transforms:
SCFT, DCFT
SRCFT, DRCFT
SCRFT, DCRFT
SCFT2, DCFT2
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SRCFT3, DRCFT3
DCRFT3, DCRFT3

Convolution and Correlation:
SCOND, SCORD
SDCON, SDCOR, DDCON, DDCOR

Many of the dense linear algebraic equations and eigensystem analysis subroutines make
one or more calls to the multithreaded versions of the matrix-vector linear algebra and
matrix operation subroutines shown in this table. SCOSF, DCOSF, SSINF, and DSINF make
one or more calls to the multithreaded versions of the Fourier Transform subroutines
shown in this table. These subroutines benefit from the increased performance of the
multithreaded versions of the ESSL SMP subroutines.

Your performance may be improved by setting the Environment variables:

export MALLOCMULTIHEAP=true

export XLSMPOPTS=″spins=0:yields=0″.

For additional information, see the AIX Performance Management Guide and the XLF
Manuals.

† DSRIS only uses multiple threads when IPARM(4) = 1 or 2.

♦ The Level 2 Banded BLAS use multiple threads only when the bandwidth is sufficiently
large.

* Multiple threads are used for the factor or inverse computation.

What Type of Data Are You Processing in Your Program?
The version of the ESSL subroutine you select should agree with the data you are
using. ESSL provides a short- and long-precision version of most of its subroutines
processing short- and long-precision data, respectively. In a few cases, it also
provides an integer version processing integer data or returning just integer data.
The subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real
D for long-precision real
C for short-precision complex
Z for long-precision complex
I for integer

The precision of your data affects the accuracy of your results. This is discussed in
“Getting the Best Accuracy” on page 41. For a description of these data types, see
“How Do You Set Up Your Scalar Data?” on page 26.

Chapter 2. Planning Your Program 25

|
|

How Is Your Data Structured? And What Storage Technique
Are You Using?

Some subroutines process specific data structures, such as sparse vectors and
matrices or dense and banded matrices. In addition, these data structures can be
stored using various storage techniques. You should select the proper subroutine
on the basis of the type of data structure you have and the storage technique you
want to use. If possible, you should use a storage technique that conserves storage
and potentially improves performance. For more about storage techniques, see
“Setting Up Your Data”.

What about Performance and Accuracy?
ESSL provides variations among some of its subroutines. You should consider
performance and accuracy when deciding which subroutine is the best to use.
Study the “Function” section in each subroutine description. It helps you
understand exactly what each subroutine does, and helps you determine which
subroutine is best for you. For example, some subroutines perform multiple
computations of a certain type. This might give you better performance than a
subroutine that does each computation individually. In other cases, one subroutine
may do scaling while another does not. If scaling is not necessary for your data,
you get better performance by using the subroutine without scaling.

Avoiding Conflicts with Internal ESSL Routine Names That are
Exported

Do not use names for your own subroutines, functions, and global variables that
are the same as the ESSL exported names. All internal ESSL routine names that are
exported begin with the ESV prefix, so you should avoid using this prefix for your
own names.

Setting Up Your Data
This section explains how to set up your scalar and array data and points you to
where you can find more detail.

How Do You Set Up Your Scalar Data?
A scalar item is a single item of data, whether it is a constant, a variable, or an
element of an array. ESSL assumes that your scalar data conforms to the
appropriate standards, as described below. The scalar data types and how you
should code them for each programming language are listed under “Coding Your
Scalar Data” in each language section in “Chapter 4. Coding Your Program” on
page 105.

Internal Representation
Scalar data passed to ESSL from all types of programs, including Fortran, C, and
C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point
format, as described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754–1985.

How Do You Set Up Your Arrays?
An array represents an area of storage in your program, containing data stored in
a series of locations. An array has a single name. It is made up of one or more
pieces of scalar data, all the same type. These are the elements of the array. It can

26 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|

be passed to the ESSL subroutine as input, returned to your program as output, or
used for both input and output, in which case the original contents are
overwritten.

Arrays can contain conceptual (mathematical) data structures, such as vectors,
matrices, or sequences. There are many different types of data structures. Each type
of data structure requires a unique arrangement of data in an array and does not
necessarily have to include all the elements of the array. In addition, the elements
of these data structures are not always contiguous in storage within an array.
Stride and leading dimension arguments passed to ESSL subroutines define the
separations in array storage for the elements of the vector, matrix, and sequence.
All these aspects of data structures are described in “Chapter 3. Setting Up Your
Data Structures” on page 53. You must first understand array storage techniques to
fully understand the concepts of data structures, stride, and leading dimension,
especially if you are using them in unconventional ways.

ESSL subroutines assume that all arrays passed to them are stored using the
Fortran array storage techniques (in column-major order), and they process your
data accordingly. For details, see “Setting Up Arrays in Fortran” on page 106. On
the other hand, C, C++, and PL/I programs store arrays in row-major order. For
details on what you can do, see:
v For C, see page “Setting Up Arrays in C” on page 127.
v For C++, see page “Setting Up Arrays in C++” on page 144.
v For PL/I, see the PL/I publications.

How Should Your Array Data Be Aligned?
All arrays, regardless of the type of data, should be aligned on a doubleword
boundary to ensure optimal performance; however, when running on a POWER2
processor, it is best to align your long-precision arrays on a quadword boundary.
For information on how your programming language aligns data, see your
programming language manuals.

What Storage Mode Should You Use for Your Data?
The amount of storage used by arrays and the storage arrangement of data in the
arrays can affect overall program performance. As a result, ESSL provides
subroutines that operate on different types of data structures, stored using various
storage modes. You should chose a storage mode that conserves storage and
potentially improves performance. For definitions of the various data structures
and their corresponding storage modes, see “Chapter 3. Setting Up Your Data
Structures” on page 53. You can also find special storage considerations, where
applicable, in the “Notes” section of each subroutine description.

How Do You Convert from One Storage Mode to Another?
This section describes how you can convert from one storage mode to another.

Conversion Subroutines
ESSL provides several subroutines that help you convert from one storage mode to
another:
v DSRSM is used to migrate your existing program from sparse matrices stored by

rows to sparse matrices stored in compressed-matrix storage mode. This
converts the matrices into a storage format that is compatible with the input
requirements for some ESSL sparse matrix subroutines, such as DSMMX.

Chapter 2. Planning Your Program 27

v DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

Sample Programs
In addition, sample programs are provided with many of the storage mode
descriptions in “Chapter 3. Setting Up Your Data Structures” on page 53. You can
use these sample programs to convert your data to the desired storage mode by
adapting them to your application program.

Setting Up Your ESSL Calling Sequences
This section gives the general rules for setting up the ESSL calling sequences. The
information given here applies to all types of programs, running in all
environments. For a description and examples of how to code the ESSL calling
sequences in your particular programming language, see the following sections:
v “Fortran Programs” on page 105
v “C Programs” on page 123
v “C++ Programs” on page 139

For details on the conventions used in this book to describe the calling sequence
syntax, see “How to Interpret the Subroutine Descriptions” on page xix. It describes
how required and optional arguments are indicated in the calling sequence and the
naming conventions used for different data types.

What Is an Input-Output Argument?
Some arguments are used for both input and output. The contents of the input
argument are overlaid with the output value(s) on return to your program. Be
careful that you save any data you need to preserve before calling the ESSL
subroutine.

What Are the General Rules to Follow when Specifying Data
for the Arguments?

You should follow the syntax rules given for each argument in “On Entry” in the
subroutine description. Input-argument error messages may be issued, and your
program may terminate when you make an error specifying the input arguments.
For example:
v Data passed to ESSL must be of the correct type: integer, character, real,

complex, short-precision, or long-precision. There is no conversion of data.
Assuming you are using the ESSL header file with your C and C++ programs,
you first need to define the following:
– Complex and logical data in C programs, using the guidelines given on page

126.
– Short-precision complex and logical data in C++ programs, using the

guidelines given on page 142.
v Character values must be one of the specified values. For example, it may have

to be 'N', 'T', or 'C'.
v Numeric values must fall within the correct range for that argument. For

example, a numeric value may need to be greater than or equal to 0, or it may
have to be a nonzero value.

v Arrays must be defined correctly; that is, they must have the correct dimensions,
or the dimensions must fall within the correct range. For example, input and
output matrices may need to be conformable, or the number of rows in the

28 ESSL Version 3 Release 3 Guide and Reference

matrix must be less than or equal to the leading dimension specified. (ESSL
assumes all arrays are stored in column-major order.)

What Happens When a Value of 0 Is Specified for N?
For most ESSL subroutines, if you specify 0 for the number of elements to be
processed in a vector or the order of a matrix (usually argument n), no
computation is performed. After checking for input-argument errors, the
subroutine returns immediately and no result is returned. In the other subroutines,
an error message may be issued.

How Do You Specify the Beginning of the Data Structure in
the ESSL Calling Sequence?

When you specify a vector, matrix, or sequence in your calling sequence, it does
not necessarily have to start at the beginning of the array. It can begin at any
point in the array. For example, if you want vector x to start at element 3 in array
A, which is declared A(1:12), specify A(3) in your calling sequence for argument x,
such as in the following SASUM calling sequence in your Fortran program:

N X INCX
| | |

X = SASUM(4 , A(3) , 2)

Also, for example, if you want matrix A to start at the second row and third
column of array A, which is declared A(0:10,2:8), specify A(1,4) in your calling
sequence for argument a, such as in the following SGEADD calling sequence in
your Fortran program:

A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A(1,4) , 11 , 'N' , B , 4 , 'N' , C , 4 , 4 , 3)

For more examples of specifying vectors and matrices, see “Chapter 3. Setting Up
Your Data Structures” on page 53.

Using Auxiliary Storage in ESSL
For the ESSL subroutines listed in Table 22, you need to provide extra working
storage to perform the computation. This section describes the use of dynamic
allocation for providing auxiliary storage in ESSL and how to calculate the amount
of auxiliary storage you need by use of formulas or error-handling capabilities
provided in ESSL, if dynamic allocation is not an option.

Auxiliary storage, or working storage, is supplied through one or more arguments,
such as aux, in the calling sequence for the ESSL subroutine. If the working
storage does not need to persist after the subroutine call, it is suggested you use
dynamic allocation. For example, in the Fourier Transforms subroutines, you may
allocate aux2 dynamically, but not aux1. See the subroutine descriptions in Part 2 of
this book for details and variations.

Table 22. ESSL Subroutines Requiring Auxiliary Working Storage

Subroutine Names

Linear Algebra Subprograms:
DSMTM

Matrix Operations:
_GEMMS

Chapter 2. Planning Your Program 29

Table 22. ESSL Subroutines Requiring Auxiliary Working Storage (continued)

Subroutine Names

Dense Linear Algebraic Equations:
_GEFCD _PPFCD _GEICD _PPICD _POFCD
_POICD DGEFP∆ DPPFP∆

Sparse Linear Algebraic Equations:
DGSF DGSS DGKFS DGKFSP∆ DSKFS DSKFSP∆

DSRIS DSMCG DSDCG DSMGCG DSDGCG

Linear Least Squares:
_GESVF _GELLS DGEQRF

Eigensystem Analysis:
_GEEV _SPEV _HPEV _SPSV _HPSV
_GEGV _SYGV

Fourier Transforms:
_CFT _RCFT _CRFT _COSF _SINF
SCOSFT∆ _CFT2 _RCFT2 _CRFT2 _CFT3
_RCFT3 _CRFT3 SCFTP∆ SCFT2P∆ SCFT3P∆

Convolutions and Correlations:
SCONF SCORF SACORF

Related Computations:
_WLEV

Interpolation:
_TPINT _CSIN2

Random Number Generation:
_NRAND

Utilities:
DGKTRN DSKTRN
∆ Documentation for this subroutine is no longer provided. The aux and naux arguments
for the subroutine are specified the same as for the corresponding serial ESSL subroutine.

Dynamic Allocation of Auxiliary Storage
Dynamic allocation for the auxiliary storage is performed when error 2015 is
unrecoverable and naux=0. For details on which aux arguments allow dynamic
allocation, see the subroutine descriptions in Part 2 of this book.

Setting Up Auxiliary Storage When Dynamic Allocation Is Not
Used

You set up the storage area in your program and pass it to ESSL through
arguments, specifying the size of the aux work area in the naux argument.

Who Do You Want to Calculate the Size? You or ESSL?
You have a choice of two methods for determining how much auxiliary storage
you should specify:
v Use the formulas provided in the subroutine description to derive sufficient

values for your current and future needs. Use them if ease of migration to
future machines and future releases of ESSL is your primary concern. For details,
see “How Do You Calculate the Size Using the Formulas?” on page 31.

v Use the ESSL error-handling facilities to return to you a minimum value for the
particular processor you are currently running on. (Values vary by platform.)

30 ESSL Version 3 Release 3 Guide and Reference

Use this approach if conserving storage is your primary concern. For details, see
“How Do You Get ESSL to Calculate the Size Using ESSL Error Handling?”.

How Do You Calculate the Size Using the Formulas?
The formulas provided for calculating naux indicate a sufficient amount of
auxiliary storage required, which, in most cases, is larger than the minimum
amount, returned by ESSL error handling. There are two types of formulas:
v Simple formulas

These are given in the naux argument syntax descriptions. In general, these
formulas result in the minimum required value, but, in a few cases, they provide
overestimates.

v Processor-independent formulas

These are given in separate sections in the subroutine description. In general,
these provide overestimates.

Both types of formulas provide values that are sufficient for all processors. As a
result, you can migrate to any other processor and to future releases of ESSL
without being concerned about having to increase the amount of storage for aux.
You do, of course, need to weigh your storage requirements against the
convenience of using this larger value.

To calculate the amount of storage using the formulas, you must substitute values
for specific variables, such as n, m, n1, or n2. These variables are arguments
specified in the ESSL calling sequence or derived from the arguments in the calling
sequence.

How Do You Get ESSL to Calculate the Size Using ESSL Error
Handling?

This section describes how you can get ESSL to calculate auxiliary storage.

Here Are the Two Ways You Can Do It
Ask yourself which of the following ways you prefer to obtain the information
from ESSL:
v By leaving error 2015 unrecoverable, you can obtain the minimum required

value of naux from the input-argument error message, but your program
terminates.

v By making error 2015 recoverable, you can obtain the minimum required value
of naux from the input-argument error message and have the updated naux
argument returned to your program.

For both techniques, the amount returned by the ESSL error-handling facility is the
minimum amount of auxiliary storage required to run your program successfully
on the particular processor you are currently running on. The ESSL
error-handling capability usually returns a smaller value than you derive by using
the formulas listed for the subroutine. This is because the formulas provide a good
estimate, but ESSL can calculate exactly what is needed on the basis of your data.

The values returned by ESSL error handling may not apply to future processors.
You should not use them if you plan to run your program on a future processor.
You should use them only if you are concerned with minimizing the amount of
auxiliary storage used by your program.

Chapter 2. Planning Your Program 31

The First Way
In this case, you obtain the minimum required value of naux from the error
message, but your program terminates. The following description assumes that
dynamic allocation is not selected as an option.

Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with the naux values smaller than required by the subroutine for the
particular processor you are running on. As a general guideline, specify values
smaller than those listed in the formulas. However, if a lower limit is specified in
the syntax (only for several naux1 arguments in the Fourier transform, convolution,
and correlation subroutines), you should not go below that limit. The ESSL error
monitor returns the necessary sizes of the aux storage areas in the input-argument
error message. This does, however, terminate your program when the error is
encountered. (If you accidentally specify a sufficient amount of storage for the
ESSL subroutine to perform the computation, error handling does not issue an
error message and processing continues normally.) Figure 1 on page 33 illustrates
what happens when error 2015 is unrecoverable.

32 ESSL Version 3 Release 3 Guide and Reference

The Second Way
In this case, you obtain the minimum required value of naux from the error
message and from the updated naux argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2015 recoverable. This allows you to dynamically determine in your program the
minimum sizes required for the auxiliary working storage areas, specified in the
naux arguments. Run your program with the naux values smaller than required by
the subroutine for the particular processor you are running on. As a general
guideline, specify values smaller than those listed in the formulas. However, if a
lower limit is specified in the syntax (only for several naux1 arguments in the
Fourier transform, convolution, and correlation subroutines), you should not go
below that limit. The ESSL error monitor returns the necessary sizes of the aux
storage areas in the input-argument error message and a return code is passed

ESSL Subroutine

Terminate

Issue message 2538-2015
with minimum
required value

no

Terminate

Issue message 2538-2015
with lower limit

yes

Perform ESSL
computation

Is NAUX
minimum
required
value?

>_

Call ESSL
subroutine Is NAUX

lower limit
?*

Is NAUX=0
and

dynamic allocation
is allowed

?

>_

yes

yes

no

no

User Program

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation
subroutines.

Figure 1. How to Obtain an NAUX Value from an Error Message, but Terminate

Chapter 2. Planning Your Program 33

back to your program, indicating that updated values are also returned in the naux
arguments. You can then react to these updated values during run time in your
program. ESSL does not perform any computation when this error occurs. For
details on how to do this, see “Chapter 4. Coding Your Program” on page 105. (If
you accidentally specify a sufficient amount of storage for the ESSL subroutine to
perform the computation, error handling does not issue an error message and
processing continues normally.) Figure 2 illustrates what happens when error 2015
is recoverable.

Here Is an Example of What Happens When You Use These Two
Techniques
The following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, naux. A key point
here is that if you want to have the updated argument value returned to your
program, you must make error 2015 recoverable and then specify an naux value

Set return code
= r

React to updated
NAUX value

Is return code
= r ?

Make error
2015 recoverable

ESSL Subroutine

Updated NAUX argument
with minimum
required value

Issue message 2538-2015
with minimum
required value

no

Terminate

Issue message 2538-2015
with lower limit

yes

Perform ESSL
computation

Is NAUX
minimum
required
value?

>_

Call ESSL
subroutine

Is NAUX
lower limit

?*

>_

yes

no

User Program

no

yes

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation
subroutines.

Figure 2. How to Obtain an NAUX Value from an Error Message and in Your Program

34 ESSL Version 3 Release 3 Guide and Reference

greater than or equal to 20 and less than 300. For values out of that range, the
error recovery facility is not in effect. (These values of naux, 20 and 300, are used
only for the purposes of this example and do not relate to any of the ESSL
subroutines.)

NAUX Meaning of the NAUX Value

20 Lower limit of naux required for using recoverable input-argument
error-handling facilities in ESSL. (This applies only to several naux1
arguments in the Fourier transform, convolution, and correlation
subroutines. You can find the lower limit in the syntax description for the
naux1 argument. For a list of subroutines, see Table 22 on page 29.)

300 Minimum value of naux, required for successful running (on the processor
the program is being run on).

Table 23 describes the actions taken by ESSL in every possible situation for the
values given in this example.

Table 23. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

NAUX Value Action When 2015 Is an Unrecoverable
Input-Argument Error

Action When 2015 Is a Recoverable
Input-Argument Error

naux < 20 An input-argument error message is issued.
The value in the error message is the lower
limit, 20. The application program stops.

An input-argument error message is issued.
The value in the error message is the lower
limit, 20. The application program stops.

20 ≤ naux < 300 An input-argument error message is issued.
The value in the error message is the
minimum required value, 300. The
application program stops.

ESSL returns the value of naux as 300 to the
application program, and an input-argument
error message is issued. The value in the
error message is the minimum required
value, 300. ESSL does no computation, and
control is returned to the application
program.

naux ≥ 300 Your application program runs successfully. Your application program runs successfully.

Here Is How You Code It in Your Program
If you leave error 2015 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the sizes of auxiliary storage. On the
other hand, if you want to make error 2015 recoverable to obtain the auxiliary
storage sizes dynamically in your program, you need to add some coding
statements to your program. For details on coding these statements in each
programming language, see the following examples:
v For Fortran, see page 115
v For C, see page 133
v For C++, see page 149

You may want to provide a separate subroutine to calculate the auxiliary storage
size whenever you need it. Figure 3 on page 36 shows how you might code a
separate Fortran subroutine. Before calling SCFT in your program, call this
subroutine, SCFT which calculates the minimum size and stores it in the naux
arguments. Upon return, your program checks the return code. If it is nonzero, the
naux arguments were updated, as planned. You should then make sure adequate
storage is available and call SCFT. On the other hand, if the return code is zero,
error handling was not invoked, the naux arguments were not updated, and the
initialization step was performed for SCFT.

Chapter 2. Planning Your Program 35

Providing a Correct Transform Length to ESSL
This section describes how to calculate the length of your transform by use of
formulas or error-handling capabilities provided in ESSL.

What ESSL Subroutines Require Transform Lengths?
For the ESSL subroutines listed in Table 24, you need to provide one or more
transform lengths for the computation of a Fourier transform. These transform
lengths are supplied through one or more arguments, such as n, n1, n2, and n3, in
the calling sequence for the ESSL subroutine. Only certain lengths of transforms
are permitted in the computation.

Table 24. ESSL Subroutines Requiring Transform Lengths

Subroutine Names

Fourier Transforms:
_CFT _RCFT _CRFT _COSF _SINF
SCOSFT _CFT2 _RCFT2 _CRFT2 _CFT3
_RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P

Who Do You Want to Calculate the Length? You or ESSL?
You have a choice of two methods for determining an acceptable length for your
transform to be processed by ESSL:
v Use the formula or large table in “Acceptable Lengths for the Transforms” on

page 719 to determine an acceptable length. For details, see “How Do You
Calculate the Length Using the Table or Formula?” on page 37.

v Use the ESSL error-handling facilities to return to you an acceptable length. For
details, see “How Do You Get ESSL to Calculate the Length Using ESSL Error
Handling?” on page 37.

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2015

CALL EINFO(0)
CALL ERRSAV(2015,S2015)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)

C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY

NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,

* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,S2015)
RETURN

10 CONTINUE
CALL ERRSTR(2015,S2015)
RETURN 1
END

Figure 3. Fortran Subroutine to Calculate Auxiliary Storage Sizes

36 ESSL Version 3 Release 3 Guide and Reference

How Do You Calculate the Length Using the Table or
Formula?

The lengths ESSL accepts for transforms in the Fourier transform subroutines are
listed in “Acceptable Lengths for the Transforms” on page 719. You should use the
table in that section to find the two values your length falls between. You then
specify the larger length for your transform. If you find a perfect match, you can
use that value without having to change it. The formula provided in that section
expresses how to calculate the acceptable values listed in the table. If necessary,
you can use the formula to dynamically check lengths in your program.

How Do You Get ESSL to Calculate the Length Using ESSL
Error Handling?

This section describes how to get ESSL to calculate transform lengths.

Here Are the Two Ways You Can Do It
Ask yourself which of the following ways you prefer to obtain the information
from ESSL:
v By leaving error 2030 unrecoverable, you can obtain an acceptable value for n

from the input-argument error message, but your program terminates.
v By making error 2030 recoverable, you obtain an acceptable value for n from

the input-argument error message and have the updated n argument returned to
your program.

Because the Fourier transform subroutines allow only certain lengths for
transforms, ESSL provides this error-handling capability to return acceptable
lengths to your program. It returns them in the transform length arguments. The
value ESSL returns is the next larger acceptable length for a transform, based on
the length you specify in the n argument.

The First Way
In this case, you obtain an acceptable value of n from the error message, but your
program terminates.

Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in input-argument error message. This does,
however, terminates your program when the error is encountered. (If you do
happen to specify an acceptable length for the transform, error handling does not
issue an error message and processing continues normally.) Figure 4 on page 38
illustrates what happens when error 2030 is unrecoverable.

Chapter 2. Planning Your Program 37

The Second Way
In this case, you obtain an acceptable value of n from the error message and from
the updated n argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2030 recoverable. This allows you to dynamically determine in your program an
acceptable length for your transform, specified in the n argument(s). Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in the input-argument error message and a
return code is passed back to your program, indicating that updated values are
also returned in the n argument(s). You can then react to these updated values
during run time in your program. ESSL does not perform any computation when
this error occurs. For details on how to do this, see “Chapter 4. Coding Your
Program” on page 105. (If you do happen to specify an acceptable length for the
transform, error handling does not issue an error message and processing
continues normally.) Figure 5 on page 39 illustrates what happens when error 2030
is recoverable.

ESSL Subroutine

Issue message 2538-2030
with next larger

acceptable transform
length

Terminate

Perform ESSL
computation

Call ESSL
subroutine

Is N=
acceptable
transform
length?

yes

no

User Program

Figure 4. How to Obtain an N Value from an Error Message, but Terminate

38 ESSL Version 3 Release 3 Guide and Reference

Here Is an Example of What Happens When You Use These Two
Techniques
The following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, n. The values of n
used in the example are as follows:

N Meaning of the N Value

7208960
An acceptable transform length, required for successful computing of a
Fourier transform

7340032
The next larger acceptable transform length, required for successful
computing of a Fourier transform

Table 25 on page 40 describes the actions taken by ESSL in every possible situation
for the values given in this example.

Update N argument
with next larger

acceptable transform
length

Set return code
= r

React to updated
N value

Is return code
= r ?

Make error
2030 recoverable

ESSL Subroutine

Issue message 2538-2030
with next larger

acceptable transform
length

Perform ESSL
computation

Call ESSL
subroutine

Is N=
acceptable
transform
length?

yes

no

User Program

no

yes

Figure 5. How to Obtain an N Value from an Error Message and in Your Program

Chapter 2. Planning Your Program 39

Table 25. Example of Input-Argument Error Recovery for Transform Lengths

N Value Action When 2030 Is an Unrecoverable
Input-Argument Error

Action When 2030 Is a Recoverable
Input-Argument Error

n = 7208960

–or–

n = 7340032

Your application program runs
successfully.

Your application program runs
successfully.

7208960 < n < 7340032 An input-argument error message is
issued. The value in the error message is
7340032. The application program stops.

ESSL returns the value of n as 7340032 to
the application program, and an
input-argument error message is issued.
The value in the error message is 7340032.
ESSL does no computation, and control is
returned to the application program.

Here Is How You Code It in Your Program
If you leave error 2030 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the transform lengths. On the other
hand, if you want to make error 2030 recoverable to obtain the transform lengths
dynamically in your program, you need to add some coding statements to your
program. For details on coding these statements in each programming language,
see the following examples:
v For Fortran, see page 115
v For C, see page 133
v For C++, see page 149

You may want to provide a separate subroutine to calculate the transform length
whenever you need it. Figure 6 shows how you might code a separate Fortran
subroutine. Before calling SCFT in your program, you call this subroutine, SCFT
which calculates the correct length and stores it in n. Upon return, your program
checks the return code. If it is nonzero, the n argument was updated, as planned.
You then do any necessary data setup and call SCFT. On the other hand, if the
return code is zero, error handling was not invoked, the n argument was not
updated, and the initialization step was performed for SCFT.

You might want to combine the request for auxiliary storage sizes along with your
request for transform lengths. Figure 7 on page 41 shows how you might code a

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2030

CALL EINFO(0)
CALL ERRSAV(2030,S2030)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,

* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2030,S2030)
RETURN

10 CONTINUE
CALL ERRSTR(2030,S2030)
RETURN 1
END

Figure 6. Fortran Subroutine to Calculate Transform Length

40 ESSL Version 3 Release 3 Guide and Reference

separate Fortran subroutine combining both requests. It combines the functions
performed by the subroutines in Figure 3 on page 36 and Figure 6 on page 40.

Getting the Best Accuracy
This section explains how accuracy of your results can be affected in various
situations and what you can do to achieve the best possible accuracy.

What Precisions Do ESSL Subroutines Operate On?
Both short- and long-precision real versions of the subroutines are provided in
most areas of ESSL. In some areas, short- and long-precision complex versions are
also provided, and, occasionally, an integer version is provided. The subroutine
names are distinguished by a one- or two-letter prefix based on the following
letters:

S for short-precision real
D for long-precision real
C for short-precision complex
Z for long-precision complex
I for integer

For a description of these data types, see “How Do You Set Up Your Scalar Data?”
on page 26. The scalar data types and how you should code them for each

programming language are listed under “Coding Your Scalar Data” in each
language section in “Chapter 4. Coding Your Program” on page 105.

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2015,S2030

CALL EINFO(0)
CALL ERRSAV(2015,S2015)
CALL ERRSAV(2030,S2030)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)

C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY

NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,

* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,S2015)
CALL ERRSTR(2030,S2030)
RETURN

10 CONTINUE
CALL ERRSTR(2015,S2015)
CALL ERRSTR(2030,S2030)
RETURN 1
END

Figure 7. Fortran Subroutine to Calculate Auxiliary Storage Sizes and Transform Length

Chapter 2. Planning Your Program 41

How does the Nature of the ESSL Computation Affect
Accuracy?

In subroutines performing operations such as copy and swap, the accuracy of data
is not affected. In subroutines performing computations involving mathematical
operations on array data, the accuracy of the result may be affected by the
following:
v The algorithm, which can vary depending on values or array sizes within the

computation or the number of threads used.
v The matrix and vector sizes

For this reason, the ESSL subroutines do not have a closed formula for the error of
computation. In other words, there is no formula with which you can calculate the
error of computation in each subroutine.

Short-precision subroutines sometimes provide increased accuracy of results by
accumulating intermediate results in long precision. This is also noted in the
functional description for each subroutine.

For the RS/6000 POWER and POWER2, the short-precision, floating-point
operands are stored by the hardware in the floating-point registers as
long-precision values, and, as a result, all arithmetic operations are performed in
long-precision. Where applicable, the ESSL subroutines use the Multiply-Add
instructions, which combine a Multiply and Add operation without an
intermediate rounding operation.

For the ESSL POWER Library, ESSL Thread-Safe Library, and ESSL SMP
Library, results obtained by 32-bit environment and 64-bit environment
applications using the same ESSL library are mathematically equivalent but may
not be bit identical.

What Data Type Standards Are Used by ESSL, and What
Exceptions Should You Know About?

The data types operated on by the short-precision, long-precision, and integer
versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary floating-point
format, and 32-bit integer. See the ANSI/IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754–1985 for more detail.

There are ESSL-specific rules that apply to the results of computations using the
ANSI/IEEE standards. When running your program, the result of a multiplication
of NaN (“Not-a-Number”) by a scalar zero, under certain circumstances, may
differ in the ESSL subroutines from the result you expect.

Usually, when NaN is multiplied by a scalar zero, the result is NaN; however, in
some ESSL subroutines where scaling is performed, the result may be zero. For
example, in computing αA, where α is a scalar and A is a matrix, if α is zero and
one (or more) of the elements of A is NaN, the scaled result, using that element,
may be a zero, rather than NaN. To avoid problems, you should consider this
when designing your program.

How is Underflow Handled?
ESSL does not mask underflow. If your program incurs a number of unmasked
underflows, its overall performance decreases. For the RS/6000, floating-point

42 ESSL Version 3 Release 3 Guide and Reference

exception trapping is disabled by default. Therefore, you do not have to mask
underflow unless you have changed the default.

Where Can You Find More Information on Accuracy?
Information about accuracy can be found in the following places:
v Migration considerations concerning accuracy of results between releases,

platforms, and so forth are described in “Chapter 6. Migrating Your Programs”
on page 161.

v Specific information on accuracy for each area of ESSL is given in “Performance
and Accuracy Considerations” in each chapter introduction in Part 2.

v The functional description under “Function” for each subroutine explains what
you need to know about the accuracy of the computation. Varying
implementation techniques are sometimes used to improve performance. To let
you know how accuracy is affected, the functional description may explain in
general terms the different techniques used in the computation.

Getting the Best Performance
This section describes how you can achieve the best possible performance from the
ESSL subroutines.

What General Coding Techniques Can You Use to Improve
Performance?

There are many ways in which you can improve the performance of your program.
Here are some of them:
v Use the basic linear algebra subprograms and matrix operations in the order of

optimum performance: matrix-matrix computations, matrix-vector computations,
and vector-scalar computations. When data is presented in matrices or vectors,
rather than vectors or scalars, multiple operations can be performed by a single
ESSL subroutine.

v Where possible, use subroutines that do multiple computations, such as SNDOT
and SNAXPY, rather than individual computations, such as SDOT and SAXPY.

v Use a stride of 1 for the data in your computations. Not having vector elements
consecutively accessed in storage can degrade your performance. The closer the
vector elements are to each other in storage, the better your performance. For an
explanation of stride, see “How Stride Is Used for Vectors” on page 56.

v Do not specify the size of the leading dimension of an array (lda) or stride of a
vector (inc) equal to or near a multiple of:
– 128 for a long-precision array
– 256 for a short-precision array

v Do not specify the individual sizes of your one-dimensional arrays as multiples
of 128. This is especially important when you are passing several
one-dimensional arrays to an ESSL subroutine. (The multiplicity can cause a
performance problem that otherwise might not occur.)

v For small problems, avoid using a large leading dimension (lda) for your matrix.
v In general, align your arrays on doubleword boundaries, regardless of the type

of data; however, when running on a POWER2 processor, it is best to align your
long-precision arrays on a quadword boundary. For information on how your
programming language aligns data, see your programming language manuals.

v One subroutine may do scaling while another does not. If scaling is not
necessary for your data, you get better performance by using the subroutine

Chapter 2. Planning Your Program 43

without scaling. SNORM2 and DNORM2 are examples of subroutines that do
not do scaling, versus SNRM2 and DNRM2, which do scaling.

v Use the STRIDE subroutine to calculate the optimal stride values for your input
or output data when using any of the Fourier transform subroutines, except
_RCFT and _CRFT. Using these stride values for your data allows the Fourier
transform subroutines to achieve maximum performance. You first obtain the
optimal stride values from STRIDE, calling it once for each stride value desired.
You then arrange your data using these stride values. After the data is set up,
you call the Fourier transform subroutine. For details on the STRIDE subroutine
and how to use it for each Fourier transform subroutine, see
“STRIDE—Determine the Stride Value for Optimal Performance in Specified
Fourier Transform Subroutines” on page 935. For additional information, see
“Setting Up Your Data” on page 722.

Where Can You Find More Information on Performance?
Information about performance can be found in the following places:
v Many of the techniques ESSL uses to achieve the best possible performance are

described in the “High Performance of ESSL” on page 6.
v Migration considerations concerning performance are described in “Migrating

ESSL Version 2 Programs to Version 3” on page 163.
v Specific information on performance for each area of ESSL is given in

“Performance and Accuracy Considerations” in each chapter introduction in Part
2.

v Detailed performance information for selected subroutines can be found in
reference [30], [41], [42].

Dealing with Errors when Using ESSL
At run time, you can encounter different types of errors or messages that are
related to the use of the ESSL subroutines:
v Program exceptions
v ESSL input-argument errors
v ESSL computational errors
v ESSL resource errors
v ESSL attention messages

This section explains how to handle all these situations.

What Can You Do about Program Exceptions?
The program exceptions you can encounter in ESSL are described in the ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

What Can You Do about ESSL Input-Argument Errors?
This section gives an overview on how you can handle input-argument errors.

All Input-Argument Errors
ESSL checks the validity of most input arguments. If it finds that any are invalid, it
issues the appropriate error messages. Also, except for the three recoverable errors
described below, it terminates your program. You should use standard
programming techniques to diagnose and fix unrecoverable input-argument errors,
as described in “Chapter 7. Handling Problems” on page 167.

44 ESSL Version 3 Release 3 Guide and Reference

|
|

You can determine the input-argument errors that can occur in a subroutine by
looking under “Error Conditions” in the subroutine description in Part 2 of this
book. Error messages for all input-argument errors are listed in “Input-Argument
Error Messages(2001-2099)” on page 172.

Recoverable Errors 2015, 2030 and 2200 Can Return Updated
Values in the NAUX, N and NSINFO Arguments
For three input-argument errors, 2015, 2030, and 2200 in Fortran, C, C++, and PL/I
programs, you have the option to continue running and have an updated value of
the input argument returned to your program for subsequent use. These are called
recoverable errors. This recoverable error-handling capability gives you flexibility
in determining the correct values for the arguments. You can:
v Determine the correct size of an auxiliary work area by using error 2015. For

help in deciding whether you want to use this capability and details on how to
use it, see “Using Auxiliary Storage in ESSL” on page 29.

v Determine the correct length of a transform by using error 2030. For help in
deciding whether you want to use this capability and details on how to use it,
see “Providing a Correct Transform Length to ESSL” on page 36.

v Determine the minimal size of the array AP for DBSTRF and DBSSV by using
error 2200. For help deciding whether you want to use this capability, see
“DBSTRF—Symmetric Indefinite Matrix Factorization” on page 490 and
“DBSSV—Symmetric Indefinite Matrix Factorization and Multiple Right-Hand
Side Solve” on page 484

If you chose to leave errors 2015, 2030 and 2200 unrecoverable, you do not need to
make any coding changes to your program. The input-argument error message is
issued upon termination, containing the updated values you could have specified
for the program to run successfully. You then make the necessary corrections in
your program and rerun it.

If you choose to make errors 2015, 2030 and 2200 recoverable, you call the ERRSET
subroutine to set up the ESSL error exit routine, ENOTRM, and then call the ESSL
subroutine. When one or more of these errors occurs, the input-argument error
message is issued with the updated values. In addition, the updated values are
returned to your program in the input arguments named in the error message,
along with a nonzero return code and processing continues. Return code values
associated with these recoverable errors are described under “Error Conditions” for
each ESSL subroutine in Part 2.

For details on how to code the necessary statements in your program to make
2015, 2030 and 2200 recoverable, see the following sections:
v “Input-Argument Errors in Fortran” on page 113
v “Input-Argument Errors in C” on page 130
v “Input-Argument Errors in C++” on page 146

What Can You Do about ESSL Computational Errors?
This section gives an overview on how you can handle computational errors.

All Computational Errors
ESSL computational errors are errors occurring in the computational data, such as
in your vectors and matrices. You can determine the computational errors that can
occur in a subroutine by looking under “Error Conditions” in the subroutine
description in Part 2 of this book. These errors cause your program to terminate
abnormally unless you take preventive action. A message is also provided in your

Chapter 2. Planning Your Program 45

output, containing information about the error. Messages are listed in
“Computational Error Messages(2100-2199)” on page 179.

When a computational error occurs, you should assume that the results are
unpredictable. The result of the computation is valid only if no errors have
occurred. In this case, a zero return code is returned.

Figure 8 shows what happens when a computational error occurs.

Recoverable Computational Errors Can Return Values Through
EINFO
In Fortran, C, C++, and PL/I programs, you have the capability to make certain
computational errors recoverable and have information returned to your program
about the errors. Recoverable computational errors are listed in Table 172 on
page 926. First, you call EINFO in the beginning of your program to initialize the
ESSL error option table. You then call ERRSET to reset the number of allowable
errors for the computational error codes in which you are interested. When a
computational error occurs, a nonzero return code is returned for each
computational error. Return code values associated with these errors are described
under “Error Conditions” in each subroutine description. Based on the return code,
your program can branch to an appropriate statement to call the ESSL error
information-handler subroutine, EINFO, to obtain specific information about the
data involved in the error. This information is returned in the EINFO output
arguments, inf1 and, optionally, inf2. You can then check the information returned
and continue processing, if you choose. The syntax for EINFO is described under
“EINFO—ESSL Error Information-Handler Subroutine” on page 926. You also get a
message in your output for each computational error encountered, containing
information about the error. The EINFO subroutine provides the same information
in the messages as it provides to your program.

For details on how to code the necessary statements in your program to obtain
specific information on computational errors, see the following sections:

ESSL Subroutine

Issue message 2538-21nn
with information on inf1

and, optionally, inf2

Terminate

Call ESSL
subroutine

Does error
21nn occur during

the ESSL
computation?

no

yes

User Program

Figure 8. How to Obtain Computational Error Information from an Error Message, but Terminate

46 ESSL Version 3 Release 3 Guide and Reference

v “Computational Errors in Fortran” on page 116
v “Computational Errors in C” on page 135
v “Computational Errors in C++” on page 151

Figure 9 shows what happens if you make a computational error recoverable.

What Can You Do about ESSL Resource Errors?
This section gives an overview on how you can handle resource errors.

All Resource Errors
ESSL returns a resource error and terminates your program when an attempt to
allocate work area fails. Some ESSL subroutines attempt to allocate work area for
their internal use. Other ESSL subroutines attempt to dynamically allocate auxiliary
storage when a user requests it through calling sequence arguments, such as aux
and naux. For information on how you could reduce memory constraints on the
system or increase the amount of memory available before rerunning the
application program, see “ESSL Resource Error Messages” on page 170.

You can determine the resource errors that can occur in a subroutine by looking
under “Error Conditions” in the subroutine description in Part 2 of this book. Error
messages for all resource errors are listed in “Resource Error Messages(2400-2499)”
on page 182.

Call EINFO to obtain
information on inf1
and, optionally, inf2

React to this
information

Is return code
= r ?

Make error
21nn recoverable

Call ESSL
subroutine

User Program

no

yes

ESSL Subroutine

Issue message 2538-21nn
with information on inf1

and, optionally, inf2

Set return code
= r

Does error
21nn occur during

the ESSL
computation?

no

yes

Figure 9. How to Obtain Computational Error Information in an Error Message and in Your Program

Chapter 2. Planning Your Program 47

What Can You Do about ESSL Attention Messages?
This section gives an overview on how you can handle attention messages.

All Attention Messages
ESSL returns an attention message to describe a condition that occurred, however,
ESSL is able to continue processing. For information on how you could reduce
memory constraints on the system or increase the amount of memory available, see
“ESSL Resource Error Messages” on page 170.

For example, an attention message may be issued when enough work area was
available to continue processing, but was not the amount initially requested. An
attention message would be issued to indicate that performance may be degraded.

For a list of subroutines that may generate an attention message, see Table 31 on
page 171. For a list of attention messages, see “Informational and Attention Error
Messages(2600-2699)” on page 182.

How Do You Control Error Handling by Setting Values in the
ESSL Error Option Table?

This section explains all aspects of using the ESSL error option table.

What Values Are Set in the ESSL Error Option Table?
The ESSL error option table contains information that tells ESSL what to do every
time it encounters an ESSL-generated error. Table 26 shows the default values
established in the table when ESSL is installed.

Table 26. ESSL Error Option Table Default Values

Range of Error Messages (From–To)

Number of
Allowable Errors
(ALLOW)

Number of Messages
Printed (PRINT)

Modifiable Table
Entry (MODENT)

2538–2000 Unlimited 255 NO

2538–2001 through 2538–2073 Unlimited 255 YES

2538–2074 Unlimited 5 YES

2538–2075 through 2538–2098 Unlimited 255 YES

2538–2099 1 255 YES

2538–2100 through 2538–2101 1 255 YES

2538–2102 Unlimited 255 YES

2538–2103 through 2538–2113 1 255 YES

2538–2114 Unlimited 255 YES

2538–2115 through 2538–2122 1 255 YES

2538–2123 through 2538–2124 Unlimited 255 YES

2538–2125 through 2538–2126 1 255 YES

2538–2127 Unlimited 255 YES

2538–2128 through 2538–2137 1 255 YES

2538–2138 through 2538–2143 Unlimited 255 YES

2538–2144 through 2538–2145 1 255 YES

2538–2146 through 2538–2149 Unlimited 255 YES

2538–2150 1 255 YES

2538–2151 Unlimited 255 YES

48 ESSL Version 3 Release 3 Guide and Reference

|

|

|

Table 26. ESSL Error Option Table Default Values (continued)

Range of Error Messages (From–To)

Number of
Allowable Errors
(ALLOW)

Number of Messages
Printed (PRINT)

Modifiable Table
Entry (MODENT)

2538–2152 through 2538–2198 1 255 YES

2538–2199 1 255 YES

2538–2200 through 2538–2299 Unlimited 255 YES

2538–2400 through 2538–2499 1 255 NO

2538–2600 through 2538–2699 Unlimited 255 NO

2538–2700 through 2538–2799 1 255 NO

How Can You Change the Values in the Error Option Table?
You can change any of the values in the ESSL error option table by calling the
ERRSET subroutine in your program. This dynamically changes values at run time.
You can also save and restore entries in the table by using the ERRSAV and
ERRSTR subroutines, respectively. For a description of the ERRSET, ERRSAV, and
ERRSTR subroutines see “Chapter 17. Utilities” on page 923.

When Do You Change the Values in the Error Option Table?
Because you can change the information in the error option table, you can control
what happens when any of the ESSL errors occur. There are a number of instances
when you may want to do this:

To Customize Your Error-Handling Environment: You may simply want to adjust
the number of times an error is allowed to occur before your program terminates.
You can use any of the capabilities available in ERRSET.

To Obtain Auxiliary Storage Sizes and Transform Lengths: You may want to
make ESSL input-argument error 2015 or 2030 recoverable, so ESSL returns
updated auxiliary storage sizes or transform lengths, respectively, to your program.
For a more detailed discussion, see “What Can You Do about ESSL
Input-Argument Errors?” on page 44. For how to use ERRSET to do this, see the
section for your programming language in “Chapter 4. Coding Your Program” on
page 105.

To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV: You may
want to make ESSL input-argument error 2200 recoverable, so ESSL returns an
updated size to your program. For a more detailed discussion, see “What Can You
Do about ESSL Input-Argument Errors?” on page 44. For how to use ERRSET to do
this, see the section for your programming language in “Chapter 4. Coding Your
Program” on page 105.

To Get More Information About a Computational Error: You may want ESSL to
return information about a computational error to your program. For a more
detailed discussion, see “What Can You Do about ESSL Computational Errors?” on
page 45. For how to do use ERRSET to do this, see the section for your
programming language in “Chapter 4. Coding Your Program” on page 105.

To Allow Parts of Your Application to Have Unique Error-Handling
Environments: If your program is part of a large application, you may want to
dynamically save and restore entries in the error option table that have been
altered by ERRSET. This ensures the integrity of the error option table when it is
used by multiple programs within an application. For a more detailed discussion,
see “How Can You Control Error Handling in Large Applications by Saving and

Chapter 2. Planning Your Program 49

|

Restoring Entries in the Error Option Table?” For how to use ERRSAV and
ERRSTR, see the section for your programming language in “Chapter 4. Coding
Your Program” on page 105.

How Can You Control Error Handling in Large Applications by
Saving and Restoring Entries in the Error Option Table?
When your program is part of a larger application, you should consider that one of
the following can occur:
v If you use ERRSET in your program to reset any of the values in the error

option table for any of the ESSL input-argument errors or computational errors,
some other program in the application may be adversely affected. It may be
expecting its original values.

v If some other program in the application uses ERRSET to reset any of the values
in the error option table for any of the ESSL input-argument errors or
computational errors, your program may be adversely affected. You may need a
certain value in the error option table, and the application may have reset that
value.

These situations can be avoided if every program that uses ERRSET, in the large
application, also uses the ERRSAV and ERRSTR facilities. For a particular error
number, ERRSAV saves an entry from the error option table in an area accessible to
your program. ERRSTR then stores the entry back into the error option table from
the storage area. You code an ERRSAV and ERRSTR for each input-argument error
number and computational error number for which you do an ERRSET to reset the
values in the error option table. Call ERRSAV at the beginning of your program
after you call EINFO, and then call ERRSTR at the end of your program after all
ESSL computations are completed. This saves the original contents of the error
option table while your program is running with different values, and then restores
it to its original contents when your program is done. For details on how to code
these statements in your program, see “Chapter 4. Coding Your Program” on
page 105.

How does Error Handling Work in a Threaded Environment?
When your application program or Fortran first creates a thread, ESSL initializes
the error option table information to the default settings shown in Table 26 on
page 48. You can change the default settings for each thread you created by calling
the appropriate error handling subroutines (ERRSET, ERRSAV, or ERRSTR) from
each thread. An example of how to initialize the error option table and change the
default settings on multiple threads is shown in “Example of Handling Errors in a
Multithreaded Application Program” on page 121.

ESSL issues error messages as they occur in a threaded environment. Error
messages issued from any of the existing threads are written to standard output in
the order in which they occur.

When a terminating condition occurs on any of the existing threads (for example,
the number of allowable errors was exceeded), ESSL terminates your application
program. One set of summary information corresponding to the terminating thread
is always printed. Summary information corresponding to other threads may also
be printed.

Where Can You Find More Information on Errors?
Information about errors and how to handle them can be found in the following
places:

50 ESSL Version 3 Release 3 Guide and Reference

v How to code your program to use the ESSL error-handling facilities is described
in “Chapter 4. Coding Your Program” on page 105.

v All ESSL error messages are listed under “Messages” on page 171.
v The errors and return codes associated with each ESSL subroutine are listed

under “Error Conditions” in each subroutine description in Part 2.
v Complete diagnostic procedures for all types of ESSL programming and

documentation problems, along with how to collect information and report a
problem, are provided in “Chapter 7. Handling Problems” on page 167.

Chapter 2. Planning Your Program 51

52 ESSL Version 3 Release 3 Guide and Reference

Chapter 3. Setting Up Your Data Structures

This chapter provides you with information that you need to set up your data
structures, consisting of vectors, matrices, and sequences. These techniques apply
to programs in all programming languages.

Concepts
Vectors, matrices, and sequences are conceptual data structures contained in arrays.
In many cases, ESSL uses stride or leading dimension to select the elements of the
vector, matrix, or sequence from an array. In other cases, ESSL uses a specific
mapping, or storage layout, that identifies the elements of the vector, matrix, or
sequence in an array, sometimes requiring several arrays to help define the
mapping. These elements selected from the array(s) make up the conceptual data
structure.

When you call an ESSL subroutine, it assumes that the data structure is set up
properly in the array(s) you pass to it. If it is not, your results are unpredictable.
ESSL also uses these same storage layouts for data structures passed back to your
program.

The use of the terms vector, matrix, and sequence in this book is consistent with
standard mathematical definitions, and their representations are consistent with
conventions used in mathematical texts. Special notations and conventions used in
this book for describing vectors, matrices, and sequences are explained in “Special
Notations and Conventions” on page xiv.

Overlapping Data Structures: Most of the subroutines do not allow vectors,
matrices, or sequences to overlap. If this occurs, results are unpredictable. Where
this applies, it is explained in Notes in each subroutine description. This means the
elements of the data structure cannot reside in the same storage locations as any of
the other data structures. It is possible, however, to have elements of different data
structures in the same array, as long as the elements are interleaved through
storage using strides greater than 1. For example, using vectors x and y with
strides of 2, where x starts at A(1) and y starts at A(2), the elements reside in array
A in the order x1, y1, x2, y2, x3, y3, ... and so forth.

When you use this technique, you should be careful that you specify different
starting locations for each data structure contained in the array.

Vectors
A vector is a one-dimensional, ordered collection of numbers. It can be a column
vector, which represents an n by 1 ordered collection, or a row vector, which
represents a 1 by n ordered collection.

The column vector appears symbolically as follows:

© Copyright IBM Corp. 1997, 2001 53

A row vector appears symbolically as follows:

Vectors can contain either real or complex numbers. When they contain real
numbers, they are sometimes called real vectors. When they contain complex
numbers, they are called complex vectors.

Transpose of a Vector
The transpose of a vector changes a column vector to a row vector, or vice versa:

The ESSL subroutines use the vector as it is intended in the computation, as either
a column vector or a row vector; therefore, no movement of data is necessary.

In the examples provided with the subroutine descriptions in Part 2. Reference
Information of this book, both types of vectors are represented in the same way,
showing the elements of the array that make up the vector x, as follows:

(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Conjugate Transpose of a Vector
The conjugate transpose of a vector x, containing complex numbers, is denoted by
xH and is expressed as follows:

54 ESSL Version 3 Release 3 Guide and Reference

Just as for the transpose of a vector, no movement of data is necessary for the
conjugate transpose of a vector.

In Storage
A vector is usually stored within a one- or two-dimensional array. Its elements are
stored sequentially in the array, but not necessarily contiguously.

The location of the vector in the array is specified by the argument for the vector
in the ESSL calling sequence. It can be specified in a number of ways. For example,
if A is an array of length 12, and you want to specify vector x as starting at the first
element of array A, specify A as the argument, such as in:

X = SASUM (4,A,2)

where the number of elements to be summed in the vector is 4, the location of the
vector is A, and the stride is 2.

If you want to specify vector x as starting at element 3 in array A, which is
declared as A(1:12), specify:

X = SASUM (4,A(3),2)

If A is declared as A(-1:8), specify the following for element 3:
X = SASUM (4,A(1),2)

If A is a two-dimensional array and declared as A(1:4,1:10), and you want vector
x to start at the second row and third column of A, specify the following:

X = SASUM (4,A(2,3),2)

The stride specified in the ESSL calling sequence is used to step through the array
to select the vector elements. The direction in which the vector elements are
selected from the array—that is, front to back or back to front—is indicated by the
sign (+ or −) of the stride. The absolute value of the stride gives the spacing
between each element selected from the array.

To calculate the total number of elements needed in an array for a vector, you can
use the following formula, which takes into account the number of elements, n, in
the array and the stride, inc, specified for the vector:

1+(n−1)|inc|

An array can be much larger than the vector that it contains; that is, there can be
many elements following the vector in the array, as well as elements preceding
the vector.

For a complete description of how vectors are stored within arrays, see “How
Stride Is Used for Vectors” on page 56.

For a complex vector, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex vectors and matrices as for
real vectors and matrices of the same precision. See “How Do You Set Up Your
Scalar Data?” on page 26 for a description of real and complex numbers, and “How
Do You Set Up Your Arrays?” on page 26 for a description of how real and
complex data is stored in arrays.

Chapter 3. Setting Up Your Data Structures 55

How Stride Is Used for Vectors
The stride for a vector is an increment that is used to step through array storage to
select the vector elements from an array. To define exactly which elements become
the conceptual vector in the array, the following items are used together:
v The location of the vector within the array
v The stride for the vector
v The number of elements, n, to be processed

The stride can be positive, negative, or 0. For positive and negative strides, if you
specify vector elements beyond the range of the array, your results are be
unpredictable, and you may get program errors.

This section explains how each of the three types of stride is used to select the
vector elements from the array.

Positive Stride
When a positive stride is specified for a vector, the location specified by the
argument for the vector is the location of the first element in the vector, element x1.
The vector is in forward order in the array: (x1, x2, ..., xn). For example, if you
specify X(1) for vector x, where X is declared as X(0:12) and defined as:
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)

then processing begins at the second element in X, which is 2.0.

To find each successive element, the stride is added cumulatively to the starting
point of vector x in the array. In this case, the starting point is X(1). If the stride
specified for vector x is 3 and the number of elements to be processed is 4, then
the resulting elements selected from X for vector x are: X(1),X(4),X(7), and X(10).

Vector x is then:
(2.0, 5.0, 8.0, 11.0)

As shown in this example, a vector does not have to extend to the end of the array.
Elements are selected from the second to the eleventh element of the array, and the
array elements after that are not used.

This element selection can be expressed in general terms. Using BEGIN as the
starting point in an array X and inc as the stride, this results in the following
elements being selected from the array:

X(BEGIN)
X(BEGIN+inc)
X(BEGIN+(2)inc)
X(BEGIN+(3)inc)
.
.
.
X(BEGIN+(n−1)inc)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

xi = X(BEGIN + (i−1)(inc)) for i = 1, n

When using an array with more than one dimension, you should understand how
the array elements are stored to ensure that elements are selected properly. For a
description of array storage, see “Setting Up Arrays in Fortran” on page 106. You

56 ESSL Version 3 Release 3 Guide and Reference

should remember that the elements of an array are selected as they are arranged in
storage, regardless of the number of dimensions defined in the array. Stride is used
to step through array storage until n elements are selected. ESSL processing stops
at that point. For example, given the following two-dimensional array, declared as
A(1:7,1:4).

Matrix A is:
┌ ┐
| 1.0 8.0 15.0 22.0 |
| 2.0 9.0 16.0 23.0 |
| 3.0 10.0 17.0 24.0 |
| 4.0 11.0 18.0 25.0 |
| 5.0 12.0 19.0 26.0 |
| 6.0 13.0 20.0 27.0 |
| 7.0 14.0 21.0 28.0 |
└ ┘

with A(3,1) specified for vector x, a stride of 2, and the number of elements to be
processed as 12, the resulting vector x is:

(3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)

This is not a conventional use of arrays, and you should be very careful when
using this technique.

Zero Stride
When a zero stride is specified for a vector, the starting point for the vector is the
only element used in the computation. The starting point for the vector is at the
location specified by the argument for the vector, just as though you had specified
a positive stride. For example, if you specify X for vector x, where X is defined as:

X = (5.0, 4.0, 3.0, 2.0, 1.0)

and you specify the number of elements, n, to be processed as 6, then processing
begins at the first element, which is 5.0. This element is used for each of the six
elements in vector x.

This makes the conceptual vector x appear as:
(5.0, 5.0, 5.0, 5.0, 5.0, 5.0)

The following general formula shows how to calculate each vector position in a
one-dimensional array:

xi = X(BEGIN) for i = 1, n

Negative Stride
When a negative stride is specified for a vector, the location specified for the vector
is actually the location of the last element in the vector. In other words, the vector
is in reverse order in the array: (xn, xn−1, ..., x1). You specify the end of the vector,
(xn). ESSL then calculates where the starting point (x1) is by using the following
arguments:
v The location of the vector in the array
v The stride for the vector, inc
v The number of elements, n, to be processed

If you specify vector x at location X(BEGIN) in array X with a negative stride of inc
and n elements to be processed, then the following formula gives the starting point
of vector x in the array:

X(BEGIN + (−n+1)(inc))

Chapter 3. Setting Up Your Data Structures 57

For example, if you specify X(2) for vector x, where X is declared as X(1:9) and
defined as:

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

and if you specify a stride of −2, and four elements to be processed, processing
begins at the following element in X:

X(2+(−4+1)(−2)) = X(8)

where element X(8) is 8.0.

To find each of the n successive element positions in the array, you successively
add the stride to the starting point n−1 times. Suppose the formula calculated a
starting point of X(SP); the elements selected are:

X(SP)
X(SP+inc)
X(SP+(2)inc)
X(SP+(3)inc)
.
.
.
X(SP+(n−1)inc)

In the above example, the resulting elements selected from X for vector x are X(8),
X(6), X(4), and X(2). This makes the resulting vector x appear as follows:

(8.0, 6.0, 4.0, 2.0)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

xi = X(BEGIN + (−n+i)(inc)) for i = 1, n

Sparse Vector
A sparse vector is a vector having a relatively small number of nonzero elements.

Consider the following as an example of a sparse vector x with n elements, where
n is 11, and vector x is:

(0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

In Storage
There are two storage modes that apply to sparse vectors: full-vector storage mode
and compressed-vector storage mode. When a sparse vector is stored in full-vector
storage mode, all its elements, including its zero elements, are stored in an array.

For example, sparse vector x is stored in full-vector storage mode in a
one-dimensional array X, as follows:

X = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

When a sparse vector is stored in compressed-vector storage mode, it is stored
without its zero elements. It consists of two one-dimensional arrays, each with a
length of nz, where nz is the number of nonzero elements in vector x:
v The first array contains the nonzero elements of the sparse vector x, stored

contiguously within the array.

Note: The ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.

58 ESSL Version 3 Release 3 Guide and Reference

v The second array contains a sequence of integers indicating the element
positions (indices) of the nonzero elements of the sparse vector x stored in
full-vector storage mode. This is referred to as the indices array.

For example, the sparse vector x shown above might have its five nonzero
elements stored in ascending order in array X of length 5, as follows:

X = (1.0, 2.0, 3.0, 4.0, 5.0)

in which case, the array of indices, INDX, also of length 5, contains:
INDX = (3, 5, 6, 8, 10)

If the sparse vector x has its elements stored in random order in the array X as:
X = (5.0, 3.0, 4.0, 1.0, 2.0)

then the array INDX contains:
INDX = (10, 6, 8, 3, 5)

In general terms, this storage technique can be expressed as follows:
For each xj ≠ 0, for j = 1, n
there exists i, where 1 ≤ i ≤ nz,
such that X(i) = xj and INDX(i) = j.

where:
x1, ..., xn are the n elements of sparse vector x, stored in full-vector storage
mode.
X is the array containing the nz nonzero elements of sparse vector x; that is,
vector x is stored in compressed-vector storage mode.
INDX is the array containing the nz indices indicating the element positions.

To avoid an error when using the INDX array to access the elements in any other
target vector, the length of the target vector must be greater than or equal to
max(INDX(i)) for i = 1, nz.

Matrices
A matrix, also referred to as a general matrix, is an m by n ordered collection of
numbers. It is represented symbolically as:

where the matrix is named A and has m rows and n columns. The elements of the
matrix are aij, where i = 1, m and j = 1, n.

Matrices can contain either real or complex numbers. Those containing real
numbers are called real matrices; those containing complex numbers are called
complex matrices.

Chapter 3. Setting Up Your Data Structures 59

Transpose of a Matrix
The transpose of a matrix A is a matrix formed from A by interchanging the rows
and columns such that row i of matrix A becomes column i of the transposed
matrix. The transpose of A is denoted by AT. Each element aij in A becomes
element aji in AT. If A is an m by n matrix, then AT is an n by m matrix. The
following represents a matrix and its transpose:

ESSL assumes that all matrices are stored in untransformed format, such as matrix
A shown above. No movement of data is necessary in your application program
when you are processing transposed matrices. The ESSL subroutines adjust their
selection of elements from the matrix when an argument in the calling sequence
indicates that the transposed matrix is to be used in the computation. Examples of
this are the transa and transb arguments specified for SGEADD, matrix addition.

Conjugate Transpose of a Matrix
The conjugate transpose of a matrix A, containing complex numbers, is denoted by
AH and is expressed as follows:

Just as for the transpose of a matrix, the conjugate transpose of a matrix is stored
in untransformed format. No movement of data is necessary in your program.

In Storage
A matrix is usually stored in a two-dimensional array. Its elements are stored
successively within the array. Each column of the matrix is stored successively in
the array. The leading dimension argument is used to select the matrix elements
from each successive column of the array. The starting point of the matrix in the
array is specified as the argument for the matrix in the ESSL calling sequence. For
example, if matrix A is contained in array A and starts at the first element in the
first row and first column of A, you should specify A as the argument for matrix A,
such as in:

CALL SGEMX (5,2,1.0,A,6,X,1,Y,1)

where, in the matrix-vector product, the number of rows in matrix A is 5, the
number of columns in matrix A is 2, the scaling constant is 1.0, the location of the
matrix is A, the leading dimension is 6, the vectors used in the matrix-vector
product are X and Y, and their strides are 1.

60 ESSL Version 3 Release 3 Guide and Reference

If matrix A is contained in the array BIG, declared as BIG(1:20,1:30), and starts at
the second row and third column of BIG, you should specify BIG(2,3) as the
argument for matrix A, such as in:

CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)

See “How Leading Dimension Is Used for Matrices” for a complete description of
how matrices are stored within arrays.

For a complex matrix, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex matrices as for real matrices
of the same precision. See “How Do You Set Up Your Scalar Data?” on page 26 for
a description of real and complex numbers, and “How Do You Set Up Your
Arrays?” on page 26 for a description of how real and complex data is stored in
arrays.

How Leading Dimension Is Used for Matrices
The leading dimension for a two-dimensional array is an increment that is used to
find the starting point for the matrix elements in each successive column of the
array. To define exactly which elements become the conceptual matrix in the array,
the following items are used together:
v The location of the matrix within the array
v The leading dimension
v The number of rows, m, to be processed in the array
v The number of columns, n, to be processed in the array

The leading dimension must always be positive. It must always be greater than or
equal to m, the number of rows in the matrix to be processed. For an array, A,
declared as A(E1:E2,F1:F2), the leading dimension is equal to:

(E2−E1+1)

The starting point for selecting the matrix elements from the array is at the location
specified by the argument for the matrix in the ESSL calling sequence. For
example, if you specify A(3,0) for a 4 by 4 matrix A, where A is declared as
A(1:7,0:4):

┌ ┐
| 1.0 8.0 15.0 22.0 29.0 |
| 2.0 9.0 16.0 23.0 30.0 |
| 3.0 10.0 17.0 24.0 31.0 |
| 4.0 11.0 18.0 25.0 32.0 |
| 5.0 12.0 19.0 26.0 33.0 |
| 6.0 13.0 20.0 27.0 34.0 |
| 7.0 14.0 21.0 28.0 35.0 |
└ ┘

then processing begins at the element at row 3 and column 0 in array A, which is
3.0.

The leading dimension is used to find the starting point for the matrix elements in
each of the n successive columns in the array. ESSL subroutines assume that the
arrays are stored in column-major order, as described under “How Do You Set Up
Your Arrays?” on page 26, and they add the leading dimension (times the size of
the element in bytes) to the starting point. They do this n−1 times. This finds the
starting point in each of the n columns of the array.

Chapter 3. Setting Up Your Data Structures 61

In the above example, the leading dimension is:
E2−E1+1 = 7−1+1 = 7

If the number of columns, n, to be processed is 4, the starting points are: A(3,0),
A(3,1), A(3,2), and A(3,3). These are elements 3.0, 10.0, 17.0, and 24.0 for a11, a12,
a13, and a14, respectively.

In general terms, this results in the following starting positions of each column in
the matrix being calculated as follows:

A(BEGINI, BEGINJ)
A(BEGINI, BEGINJ+1)
A(BEGINI, BEGINJ+2)
.
.
.
A(BEGINI, BEGINJ+n−1)

To find the elements in each column of the array, 1 is added successively to the
starting point in the column until m elements are selected. This is why the leading
dimension must be greater than or equal to m; otherwise, you go past the end of
each dimension of the array. In the above example, if the number of elements, m,
to be processed in each column is 4, the following elements are selected from array
A for the first column of the matrix: A(3,0), A(4,0), A(5,0), and A(6,0). These
are elements 3.0, 4.0, 5.0, and 6.0, corresponding to the matrix elements a11, a21, a31,
and a41, respectively.

Column element selection can also be expressed in general terms. Using
A(BEGINI,BEGINJ) as the starting point in the array, this results in the following
elements being selected from each column in the array:

A(BEGINI, BEGINJ)
A(BEGINI+1, BEGINJ)
A(BEGINI+2, BEGINJ)
.
.
.
A(BEGINI+m−1, BEGINJ)

Combining this with the technique already described for finding the starting point
in each column of the array, the resulting matrix in the example is:

As shown in this example, a matrix does not have to include all columns and rows
of an array. The elements of matrix A are selected from rows 3 through 6 and
columns 0 through 3 of the array. Rows 1, 2, and 7 and column 4 of the array are
not used.

Symmetric Matrix
The matrix A is symmetric if it has the property A = AT, which means:

62 ESSL Version 3 Release 3 Guide and Reference

v It has the same number of rows as it has columns; that is, it has n rows and n
columns.

v The value of every element aij on one side of the main diagonal equals its mirror
image aji on the other side: aij = aji for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

The following matrix illustrates a symmetric matrix of order n; that is, it has n
rows and n columns. The subscripts on each side of the diagonal appear the same
to show which elements are equal:

In Storage
The four storage modes used for storing symmetric matrices are described in the
following sections:
v “Lower-Packed Storage Mode”
v “Upper-Packed Storage Mode” on page 64
v “Lower Storage Mode” on page 65
v “Upper Storage Mode” on page 66

The storage technique you should use depends on the ESSL subroutine you are
using and is given under Notes in each subroutine description.

Lower-Packed Storage Mode: When a symmetric matrix is stored in
lower-packed storage mode, the lower triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. (This is equivalent to packing the upper triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element aij of matrix A in
an array, AP, using the lower triangular packed technique, use the following
formula:

AP(i + ((2n−j)(j−1)/2)) = aij where i ≥ j

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = a11 (start the first column)

AP(2) = a21

AP(3) = a31

. .

. .

. .

AP(n) = an1

AP(n+1) = a22 (start the second column)

AP(n+2) = a32

Chapter 3. Setting Up Your Data Structures 63

||

||

||

||

||

||

||

||

||

. .

. .

. .

AP(2n−1) = an2

AP(2n) = a33 (start the third column and so forth)

AP(2n+1) = a43

. .

. .

. .

AP(n(n+1)/2) = ann

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array.

Given the following matrix A:
┌ ┐
| 1 2 3 4 5 |
| 2 6 7 8 9 |
| 3 7 10 11 12 |
| 4 8 11 13 14 |
| 5 9 12 14 15 |
└ ┘

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Note: Additional work storage is required in the array for some ESSL subroutines;
for example, in the simultaneous linear algebraic equation subroutines SPPF,
DPPF, SPPS, and DPPS. See the description of those subroutines in Part 2.
Reference Information for details.

Following is an example of how to transform your symmetric matrix to
lower-packed storage mode:

K = 0
DO 1 J=1,N

DO 2 I=J,N
K = K+1
AP(K)=A(I,J)

2 CONTINUE
1 CONTINUE

Upper-Packed Storage Mode: When a symmetric matrix is stored in
upper-packed storage mode, the upper triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. (This is equivalent to packing the lower triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element aij of matrix A in
an array AP using the upper triangular packed technique, use the following
formula:

AP(i+(j(j−1)/2)) = aij where j ≥ i

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

64 ESSL Version 3 Release 3 Guide and Reference

||

||

||

||

||

||

||

||

||

||

AP(1) = a11 (start the first column)

AP(2) = a12 (start the second column)

AP(3) = a22

AP(4) = a13 (start the third column)

AP(5) = a23

AP(6) = a33

AP(7) = a14 (start the fourth column)

. .

. .

. .

AP(j(j−1)/2+1) = a1j (start the j-th column)

AP(j(j−1)/2+2) = a2j

AP(j(j−1)/2+3) = a3j

. .

. .

. .

AP(j(j−1)/2+j) = ajj (end of the j-th column)

. .

. .

. .

AP(n(n+1)/2) = ann

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array. Given the
following matrix A:

┌ ┐
| 1 2 4 7 11 |
| 2 3 5 8 12 |
| 4 5 6 9 13 |
| 7 8 9 10 14 |
| 11 12 13 14 15 |
└ ┘

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Following is an example of how to transform your symmetric matrix to
upper-packed storage mode:

K = 0
DO 1 J=1,N

DO 2 I=1,J
K = K+1
AP(K)=A(I,J)

2 CONTINUE
1 CONTINUE

Lower Storage Mode: When a symmetric matrix is stored in lower storage mode,
the lower triangular part of the symmetric matrix is stored, including the diagonal,

Chapter 3. Setting Up Your Data Structures 65

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The upper part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AL.

Given the following matrix A:
┌ ┐
| 1 2 3 4 5 |
| 2 6 7 8 9 |
| 3 7 10 11 12 |
| 4 8 11 13 14 |
| 5 9 12 14 15 |
└ ┘

the array is:
┌ ┐
| 1 * * * * |
| 2 6 * * * |

AL = | 3 7 10 * * |
| 4 8 11 13 * |
| 5 9 12 14 15 |
└ ┘

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Upper Storage Mode: When a symmetric matrix is stored in upper storage mode,
the upper triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The lower part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AU.

Given the following matrix A:
┌ ┐
| 1 2 3 4 5 |
| 2 6 7 8 9 |
| 3 7 10 11 12 |
| 4 8 11 13 14 |
| 5 9 12 14 15 |
└ ┘

the array is:
┌ ┐
| 1 2 3 4 5 |
| * 6 7 8 9 |

AU = | * * 10 11 12 |
| * * * 13 14 |
| * * * * 15 |
└ ┘

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

66 ESSL Version 3 Release 3 Guide and Reference

Positive Definite or Negative Definite Symmetric Matrix
A real symmetric matrix A is positive definite if and only if xTAx is positive for all
nonzero vectors x.

A real symmetric matrix A is negative definite if and only if xTAx is negative for
all nonzero vectors x.

In Storage
The positive definite or negative definite symmetric matrix is stored in the same
way the symmetric matrix is stored. For a description of this storage technique, see
“Symmetric Matrix” on page 62.

Symmetric Indefinite Matrix
A real symmetric matrix A is indefinite if and only if (xTAx) (A yTAy) < 0 for some
non-zero vectors x and y.

In Storage
The symmetric indefinite matrix is stored in the same way the symmetric matrix is
stored. For a description of this storage technique, see “Symmetric Matrix” on
page 62.

Complex Hermitian Matrix
A complex matrix is Hermitian if it is equal to its conjugate transpose:

H = HH

In Storage
The complex Hermitian matrix is stored using the same four techniques used for
symmetric matrices:
v Lower-packed storage mode, as described in “Lower-Packed Storage Mode” on

page 63. (The complex Hermitian matrix is not symmetric; therefore,
lower-packed storage mode is not equivalent to packing the upper triangle by
rows, as it is for a symmetric matrix.)

v Upper-packed storage mode, as described in “Upper-Packed Storage Mode” on
page 64. (The complex Hermitian matrix is not symmetric; therefore,
upper-packed storage mode is not equivalent to packing the lower triangle by
rows, as it is for a symmetric matrix.)

v Lower storage mode, as described in “Lower Storage Mode” on page 65.
v Upper storage mode, as described in “Upper Storage Mode” on page 66.

Following is an example of a complex Hermitian matrix H of order 5.

Given the following matrix H:
┌ ┐
| (11, 0) (21, -1) (31, 1) (41, -1) (51, -1) |
| (21, 1) (22, 0) (32, -1) (42, -1) (52, 1) |
| (31, -1) (32, 1) (33, 0) (43, -1) (53, -1) |
| (41, 1) (42, 1) (43, 1) (44, 0) (54, -1) |
| (51, 1) (52, -1) (53, 1) (54, 1) (55, 0) |
└ ┘

it is stored in a one-dimensional array, HP, in n(n+1)/2 = 15 elements as follows:
v In lower-packed storage mode:

HP = ((11, *), (21, 1), (31, -1), (41, 1), (51, 1),
(22, *), (32, 1), (42, 1), (52, -1), (33, *),
(43, 1), (53, 1), (44, *), (54, 1), (55, *))

Chapter 3. Setting Up Your Data Structures 67

v In upper-packed storage mode:
HP = ((11, *), (21, -1), (22, *), (31, 1), (32, -1),

(33, *), (41, -1), (42, -1), 43, -1), (44, *),
(51, -1), (52, 1), (53, -1), (54, -1), (55, *))

or it is stored in a two-dimensional array, HP, as follows:
v In lower storage mode:

┌ ┐
| (11, *) * * * * |
| (21, 1) (22, *) * * * |

HP = | (31, -1) (32, 1) (33, *) * * |
| (41, 1) (42, 1) (43, 1) (44, *) * |
| (51, 1) (52, -1) (53, 1) (54, 1) (55, *) |
└ ┘

v In upper storage mode
┌ ┐
| (11, *) (21, -1) (31, 1) (41, -1) (51, -1) |
| * (22, *) (32, -1) (42, -1) (52, 1) |

HP = | * * (33, *) (43, -1) (53, -1) |
| * * * (44, *) (54, -1) |
| * * * * (55, *) |
└ ┘

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian matrix are
always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Positive Definite or Negative Definite Complex Hermitian
Matrix

A complex Hermitian matrix A is positive definite if and only if xHAx is positive
for all nonzero vectors x.

A complex Hermitian matrix A is negative definite if and only if xHAx is negative
for all nonzero vectors x.

In Storage
The positive definite or negative definite complex Hermitian matrix is stored in the
same way the complex Hermitian matrix is stored. For a description of this storage
technique, see “Complex Hermitian Matrix” on page 67.

Positive Definite or Negative Definite Symmetric Toeplitz
Matrix

A positive definite or negative definite symmetric matrix A of order n is also a
Toeplitz matrix if and only if:

aij = ai−1,j−1 for i = 2, n and j = 2, n

The elements on each diagonal of the Toeplitz matrix have a constant value. For
the definition of a positive definite or negative definite symmetric matrix, see
“Positive Definite or Negative Definite Symmetric Matrix” on page 67.

The following matrix illustrates a symmetric Toeplitz matrix of order n; that is, it
has n rows and n columns:

68 ESSL Version 3 Release 3 Guide and Reference

A symmetric Toeplitz matrix of order n is represented by a vector x of length n
containing the elements of the first column of the matrix (or the elements of the
first row), such that xi = ai1 for i = 1, n.

The following vector represents the matrix A shown above:

In Storage
The elements of the vector x, which represent a positive definite symmetric
Toeplitz matrix, are stored sequentially in an array. This is called
packed-symmetric-Toeplitz storage mode. Following is an example of a positive
definite symmetric Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:
┌ ┐
| 99 12 13 14 15 16 |
| 12 99 12 13 14 15 |
| 13 12 99 12 13 14 |
| 14 13 12 99 12 13 |
| 15 14 13 12 99 12 |
| 16 15 14 13 12 99 |
└ ┘

the array is:
X = (99, 12, 13, 14, 15, 16)

Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix

A positive definite or negative definite complex Hermitian matrix A of order n is
also a Toeplitz matrix if and only if:

aij = ai−1,j−1 for i = 2, n and j = 2, n

The real part of the diagonal elements of the Toeplitz matrix must have a constant
value. The imaginary part of the diagonal elements must be zero.

For the definition of a positive definite of negative definite complex Hermitian
matrix, see “Positive Definite or Negative Definite Complex Hermitian Matrix” on
page 68.

Chapter 3. Setting Up Your Data Structures 69

The following matrix illustrates a complex Hermitian Toeplitz matrix of order n;
that is, it has n rows and n columns:

A complex Hermitian Toeplitz matrix of order n is represented by a vector x of
length n containing the elements of the first row of the matrix.

The following vector represents the matrix A shown above.

In Storage
The elements of the vector x, which represent a positive definite complex
Hermitian Toeplitz matrix, are stored sequentially in an array. This is called
packed-Hermitian-Toeplitz storage mode. Following is an example of a positive
definite complex Hermitian Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:
┌ ┐
| (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0) |
| (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) |
| (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) |
| (1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) |
└ ┘

the array is:
X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

Triangular Matrix
There are two types of triangular matrices: upper triangular matrix and lower
triangular matrix. Triangular matrices have the same number of rows as they have
columns; that is, they have n rows and n columns.

A matrix U is an upper triangular matrix if its nonzero elements are found only in
the upper triangle of the matrix, including the main diagonal; that is:

uij = 0 if i > j

A matrix L is an lower triangular matrix if its nonzero elements are found only in
the lower triangle of the matrix, including the main diagonal; that is:

lij = 0 if i < j

70 ESSL Version 3 Release 3 Guide and Reference

The following matrices, U and L, illustrate upper and lower triangular matrices of
order n, respectively:

A unit triangular matrix is a triangular matrix in which all the diagonal elements
have a value of one; that is:
v For an upper triangular matrix, uij = 1 if i = j.
v For an lower triangular matrix, lij = 1 if i = j.

The following matrices, U and L, illustrate upper and lower unit real triangular
matrices of order n, respectively:

In Storage
The four storage modes used for storing triangular matrices are described in the
following sections:
v “Upper-Triangular-Packed Storage Mode”
v “Lower-Triangular-Packed Storage Mode” on page 72
v “Upper-Triangular Storage Mode” on page 72
v “Lower-Triangular Storage Mode” on page 73

It is important to note that because the diagonal elements of a unit triangular
matrix are always one, you do not need to set these values in the array for these
four storage modes. ESSL always assumes that the values in these positions are
one.

Upper-Triangular-Packed Storage Mode: When an upper-triangular matrix is
stored in upper-triangular-packed storage mode, the upper triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
“Upper-Packed Storage Mode” on page 64.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Chapter 3. Setting Up Your Data Structures 71

Given the following matrix U:
┌ ┐
| 1 2 4 7 11 |
| 0 3 5 8 12 |
| 0 0 6 9 13 |
| 0 0 0 10 14 |
| 0 0 0 0 15 |
└ ┘

the array is:
UP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Lower-Triangular-Packed Storage Mode: When a lower-triangular matrix is
stored in lower-triangular-packed storage mode, the lower triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
“Lower-Packed Storage Mode” on page 63.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix L:
┌ ┐
| 1 0 0 0 0 |
| 2 6 0 0 0 |
| 3 7 10 0 0 |
| 4 8 11 13 0 |
| 5 9 12 14 15 |
└ ┘

the array is:
LP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Upper-Triangular Storage Mode: A triangular matrix is stored in upper-triangular
storage mode in a two-dimensional array. Only the elements in the upper triangle
of the matrix, including the diagonal, are stored in the upper triangle of the array.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UTA.

Given the following matrix U:
┌ ┐
| 11 12 13 14 15 |
| 0 22 23 24 25 |
| 0 0 33 34 35 |
| 0 0 0 44 45 |
| 0 0 0 0 55 |
└ ┘

the array is:
┌ ┐
| 11 12 13 14 15 |
| * 22 23 24 25 |

UTA = | * * 33 34 35 |

72 ESSL Version 3 Release 3 Guide and Reference

| * * * 44 45 |
| * * * * 55 |
└ ┘

where “*” means you do not have to store a value in that position in the array.

Lower-Triangular Storage Mode: A triangular matrix is stored in lower-triangular
storage mode in a two-dimensional array. Only the elements in the lower triangle
of the matrix, including the diagonal, are stored in the lower triangle of the array.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LTA.

Given the following matrix L:
┌ ┐
| 11 0 0 0 0 |
| 21 22 0 0 0 |
| 31 32 33 0 0 |
| 41 42 43 44 0 |
| 51 52 53 54 55 |
└ ┘

the array is:
┌ ┐
| 11 * * * * |
| 21 22 * * * |

LTA = | 31 32 33 * * |
| 41 42 43 44 * |
| 51 52 53 54 55 |
└ ┘

where “*” means you do not have to store a value in that position in the array.

General Band Matrix
A general band matrix has its nonzero elements arranged uniformly near the
diagonal, such that:

aij = 0 if (i−j) > ml or (j−i) > mu

where ml and mu are the lower and upper band widths, respectively, and ml+mu+1
is the total band width.

The following matrix illustrates a square general band matrix of order n, where the
band widths are ml = q−1 and mu = p−1:

Chapter 3. Setting Up Your Data Structures 73

Some special types of band matrices are:
v Tridiagonal matrix: ml = mu = 1
v 9-diagonal matrix: ml = mu = 4

The following two matrices illustrate m by n rectangular general band matrices,
where the band widths are ml = q−1 and mu = p−1. For both matrices, the leading
diagonal is a11, a22, a33, ..., ann. Following is a general band matrix with m > n:

Following is a general band matrix with m < n:

74 ESSL Version 3 Release 3 Guide and Reference

In Storage
The two storage modes used for storing general band matrices are described in the
following sections:
v “General-Band Storage Mode”
v “BLAS-General-Band Storage Mode” on page 77

General-Band Storage Mode: (This storage mode is used only for square
matrices.) Only the band elements of a general band matrix are stored for
general-band storage mode. Additional storage must also be provided for fill- in.
General-band storage mode packs the matrix elements by columns into a
two-dimensional array, such that each diagonal of the matrix appears as a row in
the packed array.

For a matrix A of order n with band widths ml and mu, the array must have a
leading dimension, lda, greater than or equal to 2ml+mu+16. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using array AGB, which is declared as AGB(2ml+mu+16, n), the columns of elements
in matrix A are stored in each column in array AGB as follows, where a11 is stored
at AGB(ml+mu+1, 1):

Chapter 3. Setting Up Your Data Structures 75

where “*” means you do not store an element in that position in the array.

In the ESSL subroutine computation, some of the positions in the array indicated
by an “*” are used for fill- in. Other positions may not be accessed at all.

Following is an example of a band matrix A of order 9 and band widths of ml = 2
and mu = 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 0 0 0 |
| 21 22 23 24 25 0 0 0 0 |
| 31 32 33 34 35 36 0 0 0 |
| 0 42 43 44 45 46 47 0 0 |
| 0 0 53 54 55 56 57 58 0 |
| 0 0 0 64 65 66 67 68 69 |
| 0 0 0 0 75 76 77 78 79 |
| 0 0 0 0 0 86 87 88 89 |
| 0 0 0 0 0 0 97 98 99 |
└ ┘

you store it in general-band storage mode in a 23 by 9 array AGB as follows, where
a11 is stored in AGB(6,1):

┌ ┐
| * * * * * * * * * |
| * * * * * * * * * |
| * * * 14 25 36 47 58 69 |
| * * 13 24 35 46 57 68 79 |
| * 12 23 34 45 56 67 78 89 |
| 11 22 33 44 55 66 77 88 99 |
| 21 32 43 54 65 76 87 98 * |

76 ESSL Version 3 Release 3 Guide and Reference

| 31 42 53 64 75 86 97 * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |

AGB = | * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
└ ┘

Following is an example of how to transform your general band matrix, of order n,
to general-band storage mode:

MD=ML+MU+1
DO 1 J=1,N

DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
AGB(I-J+MD,J)=A(I,J)

1 CONTINUE

BLAS-General-Band Storage Mode: (This storage mode is used for both square
and rectangular matrices.) Only the band elements of a general band matrix are
stored for BLAS-general-band storage mode. The storage mode packs the matrix
elements by columns into a two-dimensional array, such that each diagonal of the
matrix appears as a row in the packed array.

For an m by n matrix A with band widths ml and mu, the array AGB must have a
leading dimension, lda, greater than or equal to ml+mu+1. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using the array AGB, which is declared as AGB(ml+mu+1, n), the columns of
elements in matrix A are stored in each column in array AGB as follows, where a11
is stored at AGB(mu+1, 1):

where “*” means you do not store an element in that position in the array. These
positions are not accessed by ESSL. Unused positions in the array always occur in

Chapter 3. Setting Up Your Data Structures 77

the upper left triangle of the array, but may not occur in the lower right triangle
of the array, as you can see from the examples given here.

Following is an example where m > n, and general band matrix A is 9 by 8 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 0 0 |
| 21 22 23 24 25 0 0 0 |
| 31 32 33 34 35 36 0 0 |
| 0 42 43 44 45 46 47 0 |
| 0 0 53 54 55 56 57 58 |
| 0 0 0 64 65 66 67 68 |
| 0 0 0 0 75 76 77 78 |
| 0 0 0 0 0 86 87 88 |
| 0 0 0 0 0 0 97 98 |
└ ┘

you store it in array AGB, declared as AGB(6,8), as follows, where a11 is stored in
AGB(4,1):

┌ ┐
| * * * 14 25 36 47 58 |
| * * 13 24 35 46 57 68 |

AGB = | * 12 23 34 45 56 67 78 |
| 11 22 33 44 55 66 77 88 |
| 21 32 43 54 65 76 87 98 |
| 31 42 53 64 75 86 97 * |
└ ┘

Following is an example where m < n, and general band matrix A is 7 by 9 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 0 0 0 |
| 21 22 23 24 25 0 0 0 0 |
| 31 32 33 34 35 36 0 0 0 |
| 0 42 43 44 45 46 47 0 0 |
| 0 0 53 54 55 56 57 58 0 |
| 0 0 0 64 65 66 67 68 69 |
| 0 0 0 0 75 76 77 78 79 |
└ ┘

you store it in array AGB, declared as AGB(6,9), as follows, where a11 is stored in
AGB(4,1) and the leading diagonal does not fill up the whole row:

┌ ┐
| * * * 14 25 36 47 58 69 |
| * * 13 24 35 46 57 68 79 |

AGB = | * 12 23 34 45 56 67 78 * |
| 11 22 33 44 55 66 77 * * |
| 21 32 43 54 65 76 * * * |
| 31 42 53 64 75 * * * * |
└ ┘

and where “*” means you do not store an element in that position in the array.

Following is an example of how to transform your general band matrix, for all
values of m and n, to BLAS-general-band storage mode:

78 ESSL Version 3 Release 3 Guide and Reference

DO 20 J=1,N
K=MU+1-J
DO 10 I=MAX(1,J-MU),MIN(M,J+ML)

AGB(K+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Symmetric Band Matrix
A symmetric band matrix is a symmetric matrix whose nonzero elements are
arranged uniformly near the diagonal, such that:

aij = 0 if |i−j| > k

where k is the half band width.

The following matrix illustrates a symmetric band matrix of order n, where the
half band width k = q−1:

In Storage
The two storage modes used for storing symmetric band matrices are described in
the following sections:
v “Upper-Band-Packed Storage Mode”
v “Lower-Band-Packed Storage Mode” on page 80

Upper-Band-Packed Storage Mode: Only the band elements of the upper
triangular part of a symmetric band matrix, including the main diagonal, are
stored for upper-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(lda,n), where p = lda = k+1, the
elements of a symmetric band matrix are stored as follows:

Chapter 3. Setting Up Your Data Structures 79

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 |
| 12 22 23 24 25 0 |
| 13 23 33 34 35 36 |
| 14 24 34 44 45 46 |
| 0 25 35 45 55 56 |
| 0 0 36 46 56 66 |
└ ┘

you store it in upper-band-packed storage mode in array ASB, declared as ASB(4,6),
as follows.

┌ ┐
| * * * 14 25 36 |

ASB = | * * 13 24 35 46 |
| * 12 23 34 45 56 |
| 11 22 33 44 55 66 |
└ ┘

Following is an example of how to transform your symmetric band matrix to
upper-band-packed storage mode:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J

ASB(M+I,J)=A(I,J)
10 CONTINUE

20 CONTINUE

Lower-Band-Packed Storage Mode: Only the band elements of the lower
triangular part of a symmetric band matrix, including the main diagonal, are
stored for lower-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(lda,n), where q = lda = k+1, the elements
of a symmetric band matrix are stored as follows:

80 ESSL Version 3 Release 3 Guide and Reference

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 2.

Given the following matrix A:
┌ ┐
| 11 21 31 0 0 0 |
| 21 22 32 42 0 0 |
| 31 32 33 43 53 0 |
| 0 42 43 44 54 64 |
| 0 0 53 54 55 65 |
| 0 0 0 64 65 66 |
└ ┘

you store it in lower-band-packed storage mode in array ASB, declared as ASB(3,6),
as follows:

┌ ┐
| 11 22 33 44 55 66 |

ASB = | 21 32 43 54 65 * |
| 31 42 53 64 * * |
└ ┘

Following is an example of how to transform your symmetric band matrix to
lower-band-packed storage mode:

DO 20 J=1,N
DO 10 I=J,MIN(J+K,N)

ASB(I-J+1,J)=A(I,J)
10 CONTINUE

20 CONTINUE

Positive Definite Symmetric Band Matrix
A real symmetric band matrix A is positive definite if and only if xTAx is positive
for all nonzero vectors x.

In Storage
The positive definite symmetric band matrix is stored in the same way a
symmetric band matrix is stored. For a description of this storage technique, see
“Symmetric Band Matrix” on page 79.

Complex Hermitian Band Matrix
A complex band matrix is Hermitian if it is equal to its conjugate transpose:

H = HH

In Storage
The complex Hermitian band matrix is stored using the same two techniques used
for symmetric band matrices:

Chapter 3. Setting Up Your Data Structures 81

v Lower-band-packed storage mode, as described in “Lower-Band-Packed Storage
Mode” on page 80

v Upper-band-packed storage mode, as described in “Upper-Band-Packed Storage
Mode” on page 79

Following is an example of a complex Hermitian band matrix H of order 5, having
a half band width of 2.

Given the following matrix H:
┌ ┐
| (11, 0) (21, -1) (31, 1) (0, 0) (0, 0) |
| (21, 1) (22, 0) (32, -1) (42, -1) (0, 0) |
| (31, -1) (32, 1) (33, 0) (43, -1) (53, -1) |
| (0, 0) (42, 1) (43, 1) (44, 0) (54, -1) |
| (0, 0) (0, 0) (53, 1) (54, 1) (55, 0) |
└ ┘

you store it in a two-dimensional array HP, as follows:
v In lower-band-packed storage mode:

┌ ┐
| (11, *) (22, *) (33, *) (44, *) (55, *) |

HP = | (21, 1) (32, 1) (43, 1) (54, 1) * |
| (31, -1) (42, 1) (53, 1) * * |
└ ┘

v In upper-band-packed storage mode:
┌ ┐
| * * (31, 1) (42, -1) (53, -1) |

HP = | * (21, -1) (32, -1) (43, -1) (54, -1) |
| (11, *) (22, *) (33, *) (44, *) (55, *) |
└ ┘

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian band matrix
are always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Triangular Band Matrix
There are two types of triangular band matrices: upper triangular band matrix and
lower triangular band matrix. Triangular band matrices have the same number of
rows as they have columns; that is, they have n rows and n columns. They have an
upper or lower band width of k.

A band matrix U is an upper triangular band matrix if its nonzero elements are
found only in the upper triangle of the matrix, including the main diagonal; that
is:

uij = 0 if i > j

Its band elements are arranged uniformly near the diagonal in the upper triangle
of the matrix, such that:

uij = 0 if j−i > k

The following matrix U illustrates an upper triangular band matrix of order n with
an upper band width k = q−1:

82 ESSL Version 3 Release 3 Guide and Reference

A band matrix L is a lower triangular band matrix if its nonzero elements are
found only in the lower triangle of the matrix, including the main diagonal; that is:

lij = 0 if i < j

Its band elements are arranged uniformly near the diagonal in the lower triangle of
the matrix such that:

lij = 0 if i−j > k

The following matrix L illustrates an upper triangular band matrix of order n with
a lower band width k = q−1:

A triangular band matrix can also be a unit triangular band matrix if all the
diagonal elements have a value of 1. For an illustration of a unit triangular matrix,
see “Triangular Matrix” on page 70.

In Storage
The two storage modes used for storing triangular band matrices are described in
the following sections:
v “Upper-Triangular-Band-Packed Storage Mode” on page 84
v “Lower-Triangular-Band-Packed Storage Mode” on page 85

It is important to note that because the diagonal elements of a unit triangular
band matrix are always one, you do not need to set these values in the array for
these two storage modes. ESSL always assumes that the values in these positions
are one.

Chapter 3. Setting Up Your Data Structures 83

Upper-Triangular-Band-Packed Storage Mode: Only the band elements of the
upper triangular part of an upper triangular band matrix, including the main
diagonal, are stored for upper-triangular-band-packed storage mode.

For a matrix U of order n and an upper band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array UTB, which is declared as UTB(lda,n), where p = lda = k+1, the
elements of an upper triangular band matrix are stored as follows:

where “*” means you do not store an element in that position in the array.

Following is an example of an upper triangular band matrix U of order 6 and an
upper band width of 3.

Given the following matrix U:
┌ ┐
| 11 12 13 14 0 0 |
| 0 22 23 24 25 0 |
| 0 0 33 34 35 36 |
| 0 0 0 44 45 46 |
| 0 0 0 0 55 56 |
| 0 0 0 0 0 66 |
└ ┘

you store it in upper-triangular-band-packed storage mode in array UTB, declared
as UTB(4,6), as follows:

┌ ┐
| * * * 14 25 36 |

UTB = | * * 13 24 35 46 |
| * 12 23 34 45 56 |
| 11 22 33 44 55 66 |
└ ┘

Following is an example of how to transform your upper triangular band matrix to
upper-triangular-band-packed storage mode:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J

UTB(M+I,J)=U(I,J)
10 CONTINUE

20 CONTINUE

84 ESSL Version 3 Release 3 Guide and Reference

Lower-Triangular-Band-Packed Storage Mode: Only the band elements of the
lower triangular part of a lower triangular band matrix, including the main
diagonal, are stored for lower-triangular-band-packed storage mode.

Note: As an alternative to this storage mode, you can specify your arguments in
your subroutine in a special way so that ESSL selects the matrix elements
properly, and you can leave your matrix stored in full-matrix storage mode.
For details, see the Notes in the subroutine description in Part 2 of this
book.

For a matrix L of order n and a lower band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array LTB, which is declared as LTB(lda,n), where q = lda = k+1, the elements
of a lower triangular band matrix are stored as follows:

where “*” means you do not store an element in that position in the array.

Following is an example of a lower triangular band matrix L of order 6 and a
lower band width of 2.

Given the following matrix L:
┌ ┐
| 11 0 0 0 0 0 |
| 21 22 0 0 0 0 |
| 31 32 33 0 0 0 |
| 0 42 43 44 0 0 |
| 0 0 53 54 55 0 |
| 0 0 0 64 65 66 |
└ ┘

you store it in lower-triangular-band-packed storage mode in array LTB, declared
as LTB(3,6), as follows:

┌ ┐
| 11 22 33 44 55 66 |

LTB = | 21 32 43 54 65 * |
| 31 42 53 64 * * |
└ ┘

Following is an example of how to transform your lower triangular band matrix to
lower-triangular-band-packed storage mode:

DO 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)

LTB(M+I,J)=L(I,J)
10 CONTINUE

20 CONTINUE

Chapter 3. Setting Up Your Data Structures 85

General Tridiagonal Matrix
A general tridiagonal matrix is a matrix whose nonzero elements are found only
on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:

aij = 0 if |i−j| > 1

The following matrix illustrates a general tridiagonal matrix of order n:

In Storage
Only the diagonal, subdiagonal, and superdiagonal elements of the general
tridiagonal matrix are stored. This is called tridiagonal storage mode. The elements
of a general tridiagonal matrix, A, of order n are stored in three one-dimensional
arrays, C, D, and E, each of length n, where array C contains the subdiagonal
elements, stored as follows:

C = (*, a21, a32, a43, ..., an,n−1)

and array D contains the main diagonal elements, stored as follows:
D = (a11, a22, a33, ..., ann)

and array E contains the superdiagonal elements, stored as follows:
E = (a12, a23, a34, ..., an−1,n, *)

where “*” means you do not store an element in that position in the array.

Following is an example of a general tridiagonal matrix A of order 5:
┌ ┐
| 11 12 0 0 0 |
| 21 22 23 0 0 |
| 0 32 33 34 0 |
| 0 0 43 44 45 |
| 0 0 0 54 55 |
└ ┘

which you store in tridiagonal storage mode in arrays C, D, and E, each of length 5,
as follows:

C = (*, 21, 32, 43, 54)

D = (11, 22, 33, 44, 55)

E = (12, 23, 34, 45, *)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C, D, and E. These additional
locations are used for working storage by the ESSL subroutine. The reasons
for choosing this option are explained in the subroutine descriptions.

86 ESSL Version 3 Release 3 Guide and Reference

Symmetric Tridiagonal Matrix
A tridiagonal matrix A is also symmetric if and only if its nonzero elements are
found only on the diagonal, subdiagonal, and superdiagonal of the matrix, and its
subdiagonal elements and superdiagonal elements are equal; that is:

(aij = 0 if |i−j| > 1) and (aij = aji if |i−j| = 1)

The following matrix illustrates a symmetric tridiagonal matrix of order n:

In Storage
Only the diagonal and subdiagonal elements of the positive definite symmetric
tridiagonal matrix are stored. This is called symmetric-tridiagonal storage mode.
The elements of a symmetric tridiagonal matrix A of order n are stored in two
one-dimensional arrays C and D, each of length n, where array C contains the
subdiagonal elements, stored as follows:

C = (*, a21, a32, a43, ..., an,n−1)

where “*” means you do not store an element in that position in the array. Then
array D contains the main diagonal elements,stored as follows:

D = (a11, a22, a33, ..., ann)

Following is an example of a symmetric tridiagonal matrix A of order 5:
┌ ┐
| 10 1 0 0 0 |
| 1 20 2 0 0 |
| 0 2 30 3 0 |
| 0 0 3 40 4 |
| 0 0 0 4 50 |
└ ┘

which you store in symmetric-tridiagonal storage mode in arrays C and D, each of
length 5, as follows:

C = (*, 1, 2, 3, 4)

D = (10, 20, 30, 40, 50)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C and D. These additional locations
are used for working storage by the ESSL subroutine. The reasons for
choosing this option are explained in the subroutine descriptions.

Positive Definite Symmetric Tridiagonal Matrix
A real symmetric tridiagonal matrix A is positive definite if and only if xTAx is
positive for all nonzero vectors x.

Chapter 3. Setting Up Your Data Structures 87

In Storage
The positive definite symmetric tridiagonal matrix is stored in the same way the
symmetric tridiagonal matrix is stored. For a description of this storage technique,
see “Symmetric Tridiagonal Matrix” on page 87.

Sparse Matrix
A sparse matrix is a matrix having a relatively small number of nonzero elements.

Consider the following as an example of a sparse matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 51 0 0 54 55 0 |
| 61 62 0 0 65 66 |
└ ┘

In Storage
A sparse matrix can be stored in full-matrix storage mode or a packed storage
mode. When a sparse matrix is stored in full-matrix storage mode, all its elements,
including its zero elements, are stored in an array.

The seven packed storage modes used for storing sparse matrices are described in
the following sections:
v “Compressed-Matrix Storage Mode”
v “Compressed-Diagonal Storage Mode” on page 89
v “Storage-by-Indices” on page 92
v “Storage-by-Columns” on page 93
v “Storage-by-Rows” on page 93
v “Diagonal-Out Skyline Storage Mode” on page 95
v “Profile-In Skyline Storage Mode” on page 97

Note: When the elements of a sparse matrix are stored using any of these storage
modes, the ESSL subroutines do not check that all elements are nonzero. You
do not get an error if any elements are zero.

Compressed-Matrix Storage Mode: The sparse matrix A, stored in
compressed-matrix storage mode, uses two two-dimensional arrays to define the
sparse matrix storage, AC and KA. See reference [73]. Given the m by n sparse
matrix A, having a maximum of nz nonzero elements in each row:
v AC is defined as AC(lda,nz), where the leading dimension, lda, must be greater

than or equal to m. Each row of array AC contains the nonzero elements of the
corresponding row of matrix A. For each row in matrix A containing less than nz
nonzero elements, the corresponding row in array AC is padded with zeros. The
elements in each row can be stored in any order.

v KA is an integer array defined as KA(lda,nz), where the leading dimension, lda,
must be greater than or equal to m. It contains the column numbers of the
matrix A elements that are stored in the corresponding positions in array AC. For
each row in matrix A containing less than nz nonzero elements, the
corresponding row in array KA is padded with any values from 1 to n. Because
this array is used by the ESSL subroutines to access other target vectors in the
computation, you must adhere to these required values to avoid errors.

88 ESSL Version 3 Release 3 Guide and Reference

Unless all the rows of sparse matrix A contain approximately the same number
of nonzero elements, this storage mode requires a large amount of storage. This
diminishes the performance you can obtain by using this storage mode.

Consider the following as an example of a 6 by 6 sparse matrix A with a
maximum of four nonzero elements in each row. It shows how matrix A can be
stored in arrays AC and KA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 51 0 0 54 55 0 |
| 61 62 0 0 65 66 |
└ ┘

the arrays are:
┌ ┐
| 11 13 0 0 |
| 22 21 24 0 |

AC = | 33 32 35 0 |
| 44 43 46 0 |
| 55 51 54 0 |
| 66 61 62 65 |
└ ┘

┌ ┐
| 1 3 * * |
| 2 1 4 * |

KA = | 3 2 5 * |
| 4 3 6 * |
| 5 1 4 * |
| 6 1 2 5 |
└ ┘

where “*” means you can store any value from 1 to 6 in that position in the array.

Symmetric sparse matrices use the same storage technique as nonsymmetric sparse
matrices; that is, all nonzero elements of a symmetric matrix A must be stored in
array AC, not just the elements of the upper triangle and diagonal of matrix A.

In general terms, this storage technique can be expressed as follows:
For each aij ≠ 0, for i = 1, m and j = 1, n
there exists k, where 1 ≤ k ≤ nz,
such that AC(i,k) = aij and KA(i,k) = j.
For all other elements of AC and KA,
AC(i,k) = 0 and 1 ≤ KA(i,k) ≤ n

where:
v aij are the elements of the m by n matrix A that has a maximum of nz nonzero

elements in each row.
v Array AC is defined as AC(lda,nz), where lda ≥ m.
v Array KA is defined as KA(lda,nz), where lda ≥ m.

Compressed-Diagonal Storage Mode: The storage mode used for square sparse
matrices stored in compressed-diagonal storage mode has two variations,
depending on whether the matrix is a general sparse matrix or a symmetric sparse

Chapter 3. Setting Up Your Data Structures 89

matrix. This section explains both of these variations. This section begins, however,
by explaining the conventions used for numbering the diagonals in the matrix,
which apply to the storage descriptions.

Matrix A of order n has 2n−1 diagonals. Because k = j−i is constant for the
elements aij along each diagonal, each diagonal can be assigned a diagonal number,
k, having a value from 1−n to n−1. Then the diagonals can be referred to as dk,
where k = 1−n, n−1.

The following matrix shows the starting position of each diagonal, dk:

For a general (square) sparse matrix A, compressed-diagonal storage mode uses
two arrays to define the sparse matrix storage, AD and LA. Using the above
convention for numbering the diagonals, and given that sparse matrix A contains
nd diagonals having nonzero elements, arrays AD and LA are set up as follows:
v AD is defined as AD(lda,nd), where the leading dimension, lda, must be greater

than or equal to n. Each diagonal of matrix A that has at least one nonzero
element is stored in a column of array AD. All of the elements of the diagonal,
including its zero elements, are stored in n contiguous locations in the array, in
the same order as they appear in the diagonal. Padding with zeros is required as
follows to fill the n locations in each column of array AD:
– Each superdiagonal (k > 0), which has n−k elements, is padded with k

trailing zeros.
– The main diagonal (k = 0), which has n elements, does not require padding.
– Each subdiagonal (k < 0), which has n−|k| elements, is padded with |k|

leading zeros.

The diagonals can be stored in any columns in array AD.
v LA is a one-dimensional integer array of length nd, containing the diagonal

numbers k for the diagonals stored in each corresponding column in array AD.

Because this storage mode requires entire diagonals to be stored, if the nonzero
elements in matrix A are not concentrated along a few diagonals, this storage
mode requires a large amount of storage. This diminishes the performance you
obtain by using this storage mode.

Consider the following as an example of how a 6 by 6 general sparse matrix A
with 5 nonzero diagonals is stored in arrays AD and LA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |

90 ESSL Version 3 Release 3 Guide and Reference

| 0 0 43 44 0 46 |
| 51 0 0 54 55 0 |
| 61 62 0 0 65 66 |
└ ┘

the arrays are:
┌ ┐
| 11 13 0 0 0 |
| 22 24 21 0 0 |

AD = | 33 35 32 0 0 |
| 44 46 43 0 0 |
| 55 0 54 51 0 |
| 66 0 65 62 61 |
└ ┘

LA = (0, 2, -1, -4, -5)

For a symmetric sparse matrix, where each superdiagonal k is equal to subdiagonal
−k, compressed-diagonal storage mode uses the same storage technique as for the
general sparse matrix, except that only the nonzero main diagonal and one
diagonal of each couple of nonzero diagonals, k and −k, are used in setting up
arrays AD and LA. You can store either the upper or the lower diagonal of each
couple.

Consider the following as an example of a symmetric sparse matrix of order 6 and
how it is stored in arrays AD and LA, using only three nonzero diagonals in the
matrix.

Given the following matrix A:
┌ ┐
| 11 0 13 0 51 0 |
| 0 22 0 24 0 62 |
| 13 0 33 0 35 0 |
| 0 24 0 44 0 46 |
| 51 0 35 0 55 0 |
| 0 62 0 46 0 66 |
└ ┘

the arrays are:
┌ ┐
| 11 13 0 |
| 22 24 0 |

AD = | 33 35 0 |
| 44 46 0 |
| 55 0 51 |
| 66 0 62 |
└ ┘

LA = (0, 2, -4)

In general terms, this storage technique can be expressed as follows:
For each dk ≠ (0, ..., 0), for k = 1−n, n−1

for general square sparse matrices, or
for each unique dk ≠ (0, ..., 0), for k = 1−n, n−1

for symmetric sparse matrices,
there exists l, where 1 ≤ l ≤ nd,
such that LA(l) = k and column l in array AD contains dpk.

where:

Chapter 3. Setting Up Your Data Structures 91

v Array AD is defined as AD(lda,nd), where lda ≥ n, and where nd is the number of
nonzero diagonals, dk that are stored in array AD.

v Array LA has nd elements.
v k is the diagonal number of each diagonal, dk, where k = i−j.
v dpk are the diagonals, dk, with padding, which are constructed from the sparse

matrix A elements, aij, for i, j = 1, n as follows:
For superdiagonals (k > 0), dpk has k trailing zeros: dpk = (a1,k+1, a2,k+2, ...,
an−k,n, 01, ..., 0k)
For the main diagonal (k = 0), dp0 has no padding: dp0 = (a11, a22, ..., ann)
For subdiagonals (k < 0), dpk has |k| leading zeros: dpk = (01, ..., 0|k|,
a|k|+1,1, a|k|+2,2, ..., an, n−|k|)

Storage-by-Indices: For a sparse matrix A, storage-by-indices uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:
v AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,

stored contiguously in any order.
v IA, an integer array of (at least) length ne contains the corresponding row

numbers of each nonzero element, aij, in matrix A.
v JA, an integer array of (at least) length ne contains the corresponding column

numbers of each nonzero element, aij, in matrix A.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can
be stored in arrays AR, IA, and JA.:

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 0 0 0 0 0 0 |
| 61 62 0 0 65 66 |
└ ┘

the arrays are:
AR = (11, 22, 32, 33, 13, 21, 43, 24, 66, 46, 35, 62, 61, 65, 44)

IA = (1, 2, 3, 3, 1, 2, 4, 2, 6, 4, 3, 6, 6, 6, 4)

JA = (1, 2, 2, 3, 3, 1, 3, 4, 6, 6, 5, 2, 1, 5, 4)

In general terms, this storage technique can be expressed as follows:
For each aij ≠ 0, for i = 1, m and j = 1, n
there exists k, where 1 ≤ k ≤ ne, such that:

AR(k) = aij

IA(k) = i
JA(k) = j

where:
v aij are the elements of the m by n sparse matrix A.
v Arrays AR, IA, and JA each have ne elements.

92 ESSL Version 3 Release 3 Guide and Reference

Storage-by-Columns: For a sparse matrix, A, storage-by-columns uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:
v AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,

stored contiguously. The columns of matrix A are stored consecutively from 1 to
n in AR. The elements in each column of A are stored in any order in AR.

v IA, an integer array of (at least) length ne contains the corresponding row
numbers of each nonzero element, aij, in matrix A.

v JA, an integer array of (at least) length n+1 contains the relative starting position
of each column of matrix A in array AR; that is, each element JA(j) of the column
pointer array indicates where column j begins in array AR. If all elements in
column j are zero, then JA(j) = JA(j+1). The last element, JA(n+1), indicates the
position after the last element in array AR, which is ne+1.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can
be stored in arrays AR, IA, and JA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 0 0 |
| 0 0 43 44 0 46 |
| 0 0 0 0 0 0 |
| 61 62 0 0 0 66 |
└ ┘

the arrays are:
AR = (11, 61, 21, 62, 32, 22, 13, 33, 43, 44, 24, 46, 66)

IA = (1, 6, 2, 6, 3, 2, 1, 3, 4, 4, 2, 4, 6)

JA = (1, 4, 7, 10, 12, 12, 14)

In general terms, this storage technique can be expressed as follows:
For each aij ≠ 0, for i = 1, m and j = 1, n
there exists k, where 1 ≤ k ≤ ne, such that

AR(k) = aij

IA(k) = i
And for j = 1, n,

JA(j) = k, where aij, in AR(k), is the first element stored in AR for column j
JA(j) = JA(j+1), where all aij = 0 in column j
JA(n+1) = ne+1

where:
v aij are the elements of the m by n sparse matrix A.
v Arrays AR and IA each have ne elements.
v Array JA has n+1 elements.

Storage-by-Rows: The storage mode used for sparse matrices stored by rows has
three variations, depending on whether the matrix is a general sparse matrix or a
symmetric sparse matrix. This section explains these variations.

For a general sparse matrix A, storage-by-rows uses three one-dimensional arrays
to define the sparse matrix storage, AR, IA, and JA. Given the m by n sparse matrix
A having ne nonzero elements, the arrays are set up as follows:

Chapter 3. Setting Up Your Data Structures 93

v AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously. The rows of matrix A are stored consecutively from 1 to m
in AR. The elements in each row of A are stored in any order in AR.

v IA, an integer array of (at least) length m+1 contains the relative starting position
of each row of matrix A in array AR; that is, each element IA(i) of the row pointer
array indicates where row i begins in array AR. If all elements in row i are zero,
then IA(i) = IA(i+1). The last element, IA(m+1), indicates the position after the
last element in array AR, which is ne+1.

v JA, an integer array of (at least) length ne contains the corresponding column
numbers of each nonzero element, aij, in matrix A.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it can be stored in arrays AR, IA, and JA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 0 0 |
| 0 0 43 44 0 46 |
| 0 0 0 0 0 0 |
| 61 62 0 0 0 66 |
└ ┘

the arrays are:
AR = (11, 13, 24, 22, 21, 32, 33, 44, 43, 46, 61, 62, 66)

IA = (1, 3, 6, 8, 11, 11, 14)

JA = (1, 3, 4, 2, 1, 2, 3, 4, 3, 6, 1, 2, 6)

For a symmetric sparse matrix of order m, storage-by-rows uses the same storage
technique as for the general sparse matrix, except that only the upper or lower
triangle and diagonal elements are used in setting up arrays AR, IA, and JA.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it can be stored in arrays AR, IA, and JA using upper-storage-by-rows,
which stores only the upper triangle and diagonal elements.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 0 22 23 24 0 0 |
| 13 23 33 0 35 0 |
| 0 24 0 44 0 46 |
| 0 0 35 0 55 0 |
| 0 0 0 46 0 0 |
└ ┘

the arrays are:
AR = (11, 13, 22, 24, 23, 33, 35, 46, 44, 55)

IA = (1, 3, 6, 8, 10, 11, 11)

JA = (1, 3, 2, 3, 4, 3, 5, 4, 6, 5)

94 ESSL Version 3 Release 3 Guide and Reference

Using the same symmetric matrix A, consider the following as an example of how
it can be stored in arrays AR, IA, and JA using lower-storage-by-rows, which stores
only the lower triangle and diagonal elements:

AR = (11, 22, 23, 33, 13, 24, 44, 55, 35, 46)

IA = (1, 2, 3, 6, 8, 10, 11)

JA = (1, 2, 2, 3, 1, 2, 4, 5, 3, 4)

In general terms, this storage technique can be expressed as follows:
For each aij ≠ 0,

for i = 1, m and j = 1, n for general sparse matrices
or

for i = 1, m and j = i, m for symmetric sparse matrices using the lower
triangle

or
for i = 1, m and j = 1, i for symmetric sparse matrices using the upper
triangle

there exists k, where 1 ≤ k ≤ ne, such that
AR(k) = aij

JA(k) = j
And for i = 1, m,

IA(i) = k, where aij, in AR(k), is the first element stored in AR for row i
IA(i) = IA(i+1), where all aij = 0 in row i
IA(m+1) = ne+1

where:
v aij are the elements of sparse matrix A, which is either an m by n general sparse

matrix or a symmetric sparse matrix of order m containing ne nonzero elements.
v Arrays AR and JA each have ne elements.
v Array IA has m+1 elements.

Diagonal-Out Skyline Storage Mode: The diagonal-out skyline storage mode
used for sparse matrices has two variations, depending on whether the matrix is a
general sparse matrix or a symmetric sparse matrix. Both of these variations are
explained here.

For a general sparse matrix A, diagonal-out skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order n, containing nu+nl−n elements under the top
and left profiles, the arrays are set up as follows:
v AU of (at least) length nu contains the upper triangle of the sparse matrix A,

where the columns are stored consecutively from 1 to n in AU in the following
way. For each column, the elements starting at the diagonal element and ending
at the topmost nonzero element in the column are stored contiguously in AU. The
elements stored may include zero elements along with the nonzero elements. If
all elements in the column to be stored are zero, the diagonal element, aii, having
a value of zero, is stored in AU for that column. A total of nu elements are stored
for the upper triangle of A.

v IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

Chapter 3. Setting Up Your Data Structures 95

v AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to n in AL in the following way.
For each row, the elements starting at the diagonal element and ending at the
leftmost nonzero element in the row are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, aii, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

v IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is nl+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 21 22 0 24 0 0 |
| 31 0 33 34 0 36 |
| 41 42 43 44 45 0 |
| 0 0 0 54 55 56 |
| 0 0 63 0 65 66 |
└ ┘

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

IDU = (1, 2, 4, 7, 10, 12, 16) where nu=15
AL = (*, *, 21, *, 0, 31, *, 43, 42, 41, *, 54, *, 65, 0, 63)

IDL = (1, 2, 4, 7, 11, 13, 17) where nl=16

and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order n, diagonal-out skyline storage mode uses
the same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 12 22 0 24 0 0 |
| 13 0 33 34 0 36 |
| 0 24 34 44 45 0 |
| 0 0 0 45 55 56 |
| 0 0 36 0 56 66 |
└ ┘

the arrays are:

96 ESSL Version 3 Release 3 Guide and Reference

AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

IDU = (1, 2, 4, 7, 10, 12, 16) where nu=15

In general terms, this storage technique can be expressed as follows:
For general sparse matrices and symmetric sparse matrices:

For each aij for j = 1, n and i = j, k,
where akj is the topmost aij ≠ 0 in each column j,
there exists m, where 1 ≤ m ≤ nu, such that

AU(m+j−i) = aij

IDU(j) = m for each ajj

IDU(n+1) = nu+1
Also, for general sparse matrices:

For each aij for i = 1, n and i = j, k,
where aik is the leftmost aij ≠ 0 in each row i,
there exists m, where 1 ≤ m ≤ nl, such that

AL(m+i−j) = aij

IDL(i) = m for each aii

IDL(n+1) = nl+1

where:
v aij are the elements of sparse matrix A, of order n.
v Array AU has nu elements.
v Array AL has nl elements.
v Arrays IDU and IDL each have n+1 elements.

Profile-In Skyline Storage Mode: The profile-in skyline storage mode used for
sparse matrices has two variations, depending on whether the matrix is a general
sparse matrix or a symmetric sparse matrix. Both of these variations are explained
here.

For a general sparse matrix A, profile-in skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order n, containing nu+nl−n elements under the top
and left profiles, the arrays are set up as follows:
v AU of (at least) length nu contains the upper triangle of the sparse matrix A,

where the columns are stored consecutively from 1 to n in AU in the following
way. For each column, the elements starting at the topmost nonzero element in
the column and ending at the diagonal element are stored contiguously in AU.
The elements stored may include zero elements along with the nonzero
elements. If all elements in the column to be stored are zero, the diagonal
element, aii, having a value of zero, is stored in AU for that column. A total of nu
elements are stored for the upper triangle of A.

v IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

v AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to n in AL in the following way.
For each row, the elements starting at the leftmost nonzero element in the row
and ending at the diagonal element are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, aii, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for

Chapter 3. Setting Up Your Data Structures 97

the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

v IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is nl+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 21 22 0 24 0 0 |
| 31 0 33 34 0 36 |
| 41 42 43 44 45 0 |
| 0 0 0 54 55 56 |
| 0 0 63 0 65 66 |
└ ┘

the arrays are:
AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

IDU = (1, 3, 6, 9, 11, 15, 16) where nu=15
AL = (*, 21, *, 31, 0, *, 41, 42, 43, *, 54, *, 63, 0, 65, *)

IDL = (1, 3, 6, 10, 12, 16, 17) where nl=16

and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order n, profile-in skyline storage mode uses the
same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 12 22 0 24 0 0 |
| 13 0 33 34 0 36 |
| 0 24 34 44 45 0 |
| 0 0 0 45 55 56 |
| 0 0 36 0 56 66 |
└ ┘

the arrays are:
AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

IDU = (1, 3, 6, 9, 11, 15, 16) where nu=15

In general terms, this storage technique can be expressed as follows:
For general sparse matrices and symmetric sparse matrices:

For each aij for j = 1, n and i = k, j,

98 ESSL Version 3 Release 3 Guide and Reference

where akj is the topmost aij ≠ 0 in each column j,
there exists m, where 1 ≤ m ≤ nu, such that

AU(m−j+i) = aij

IDU(j) = m for each ajj

IDU(n+1) = nu+1
Also, for general sparse matrices:

For each aij for i = 1, n and j = k, i,
where aik is the leftmost aij ≠ 0 in each row i,
there exists m, where 1 ≤ m ≤ nl, such that

AL(m−i+j) = aij

IDL(i) = m for each aii

IDL(n+1) = nl+1

where:
v aij are the elements of sparse matrix A, of order n.
v Array AU has nu elements.
v Array AL has nl elements.
v Arrays IDU and IDL each have n+1 elements.

Sequences
A sequence is an ordered collection of numbers. It can be a one-, two-, or
three-dimensional sequence. Sequences are used in the areas of sorting, searching,
Fourier transforms, convolutions, and correlations.

Real and Complex Elements in Storage
Sequences can contain either real or complex data. For sequences containing
complex data, a special storage arrangement is used to accommodate the two
parts, a and b, of each complex number, a+bi, in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex sequences as for real
sequences of the same precision. See “How Do You Set Up Your Scalar Data?” on
page 26 for a description of real and complex numbers, and “How Do You Set Up
Your Arrays?” on page 26 for a description of how real and complex data is stored
in arrays.

One-Dimensional Sequences
A one-dimensional sequence appears symbolically as follows, where the subscripts
indicate the element positions within the sequence:

(x1, x2, x3, ... xn)

In Storage
A one-dimensional sequence is stored in an array using stride in the same way a
vector uses stride. For details, see “How Stride Is Used for Vectors” on page 56.

Two-Dimensional Sequences
A two-dimensional sequence appears symbolically as a series of columns of
elements. (They are represented in the same way as a matrix without the square
brackets.) The two subscripts indicate the element positions in the first and second
dimensions, respectively:

Chapter 3. Setting Up Your Data Structures 99

In Storage
A two-dimensional sequence is stored in an array using the stride for the second
dimension in the same way that a matrix uses leading dimension. It uses a stride
of 1 for the first dimension. For details, see “How Leading Dimension Is Used for
Matrices” on page 61. (In the area of Fourier transforms, a two-dimensional
sequence may be stored in transposed form in an array. In this case, the stride for
the second dimension is 1, and the stride for the first dimension is the leading
dimension of the array.)

Three-Dimensional Sequences
A three-dimensional sequence is represented as a series of blocks of elements. Each
block is equivalent to a two-dimensional sequence. The number of blocks indicates
the length of the third dimension. The three subscripts indicate the element
positions in the first, second, and third dimensions, respectively:

100 ESSL Version 3 Release 3 Guide and Reference

In Storage
Each block of elements in a three-dimensional sequence is stored successively in an
array. The stride for the third dimension is used to select the elements for each
successive block of elements in the array. The starting point of the
three-dimensional sequence is specified as the argument for the sequence in the
ESSL calling statement. For example, if the three-dimensional sequence is contained
in array BIG, declared as BIG(1:20,1:30,1:10), and starts at the second element in
the first dimension, the third element in the second dimension, and the first
element in the third dimension of array BIG, you should specify BIG(2,3,1) as the
argument for the sequence, such as in:

CALL SCFT3 (BIG(2,3,1),20,600,Y,32,2056,16,20,10,1,1.0,AUX,30000)

See “How Stride Is Used for Three-Dimensional Sequences” on page 102 for a
detailed description of how three-dimensional sequences are stored within arrays
using strides.

Chapter 3. Setting Up Your Data Structures 101

How Stride Is Used for Three-Dimensional Sequences
The elements of the three-dimensional sequence can be defined as aijk for i = 1, m,
j = 1, n, and k = 1, p. The first two subscripts, i and j, define the elements in the
first two dimensions of the sequence, and the third subscript, k, defines the
elements in the third dimension. Using this definition of three-dimensional
sequences, this section explains how these elements are mapped into an array
using the concepts of stride. (Remember that the elements aijk are the elements of
the conceptual data structure, the three-dimensional sequence to be processed by
ESSL. The sequence does not have to include all the elements in the array. Strides
are used by the ESSL subroutines to select the desired elements to be processed in
the array.)

The sequence elements in the first two dimensions are mapped into an array in the
same way a matrix or two-dimensional sequence is mapped into an array. It uses
all the items listed in “How Leading Dimension Is Used for Matrices” on page 61,
such as the starting point, the number of rows and columns, and the leading
dimension. The stride for the first dimension, inc1, of a three-dimensional sequence
is assumed to be 1, as for matrices. The stride for the second dimension, inc2, of a
three-dimensional sequence is equivalent to the leading dimension for a matrix.

The stride for the third dimension, inc3, is used to define the array elements that
make up the third dimension of the three-dimensional sequence. The stride for the
third dimension is used as an increment to step through the array to find the
starting point for each of the p successive blocks of elements in the array. The
stride, inc3, must always be positive. It must always be greater than or equal to the
number of elements to be processed in the first two dimensions; that is,
inc3 ≥ (inc2)(n).

A three-dimensional sequence is usually stored in a one-, two-, or
three-dimensional array; however, for the sake of this discussion, a
three-dimensional array is used here. For an array, A, declared as
A(E1:E2,F1:F2,G1:G2), the strides in the first, second, and third dimensions are:

inc1 = 1
inc2 = (E2−E1+1)
inc3 = (E2−E1+1)(F2−F1+1)

Given an array A, declared as A(1:7,1:3,0:3), where the lengths of the first,
second, and third dimensions are 7, 3, and 4, respectively, the resulting strides are
inc1 = 1, inc2 = 7, and inc3 = 21.

The starting point for a three-dimensional sequence in an array is at the location
specified by the argument for the sequence in the ESSL calling statement. Using
the array A, described above, if you specify A(2,2,1) for a three-dimensional
sequence, where A is defined as follows, in four blocks, for planes 0 - 3,
respectively:

1.0 8.0 15.0 22.0 29.0 36.0 43.0 50.0 57.0 64.0 71.0 78.0
2.0 9.0 16.0 23.0 30.0 37.0 44.0 51.0 58.0 65.0 72.0 79.0
3.0 10.0 17.0 24.0 31.0 38.0 45.0 52.0 59.0 66.0 73.0 80.0
4.0 11.0 18.0 25.0 32.0 39.0 46.0 53.0 60.0 67.0 74.0 81.0
5.0 12.0 19.0 26.0 33.0 40.0 47.0 54.0 61.0 68.0 75.0 82.0
6.0 13.0 20.0 27.0 34.0 41.0 48.0 55.0 62.0 69.0 76.0 83.0
7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0 77.0 84.0

then processing begins in the second block of elements at row 2 and column 2 in
array A, which is 30.0. The stride in the third dimension is then used to find the

102 ESSL Version 3 Release 3 Guide and Reference

starting point for each of the next p−1 successive blocks of elements in the array.
The stride, inc3, is added to the starting point p−1 times. In this example, the stride
for the third dimension is 21, and the number of blocks of elements, p, to be
processed is 3, so the starting points in array A are A(2,2,1), A(2,2,2), and
A(2,2,3). These are elements 30.0, 51.0, and 72.0. These array elements then
correspond to the sequence elements a111, a112, and a113, respectively.

In general terms, this results in the following starting positions for the blocks of
elements in the array:

A(BEGINI, BEGINJ, BEGINK)
A(BEGINI, BEGINJ, BEGINK+1)
A(BEGINI, BEGINJ, BEGINK+2)
.
.
A(BEGINI, BEGINJ, BEGINK+p−1)

Using m = 4, n = 2, and p = 3 to define the elements of the three-dimensional
data structure in this example, the resulting three-dimensional sequence is defined
as follows, in three blocks, for planes 0 - 2, respectively:

Plane 0: Plane 1: Plane 2:
a000 a010 a001 a011 a002 a012

a100 a110 a101 a111 a102 a112

a200 a210 a201 a211 a202 a212

a300 a310 a301 a311 a302 a312

Plane 0: Plane 1: Plane 2:
30.0 37.0 51.0 58.0 72.0 79.0
31.0 38.0 52.0 59.0 73.0 80.0
32.0 39.0 53.0 60.0 74.0 81.0
33.0 40.0 54.0 61.0 75.0 82.0

As shown in this example, the three-dimensional sequence does not have to
include all the blocks of elements in the array. In this case, the three-dimensional
sequence includes only the second through the fourth block of elements in the
array. The first block is not used. Elements of an array are selected as they are
arranged in storage, regardless of the number of dimensions defined in the array.
Therefore, when using a one- or two-dimensional array to store your
three-dimensional sequence, you should understand how your array elements are
stored to ensure that elements are selected properly. See “Setting Up Arrays in
Fortran” on page 106 for a description of array storage.

Note: Three-dimensional sequences are used by the three-dimensional Fourier
transform subroutines. By specifying certain stride values for inc2 and inc3
and declaring your arrays to have certain number of dimensions, you
achieve optimal performance in these subroutines. For details, see “Setting
Up Your Data” on page 722 and the Notes section for each subroutine.

Chapter 3. Setting Up Your Data Structures 103

104 ESSL Version 3 Release 3 Guide and Reference

Chapter 4. Coding Your Program

This chapter provides you with information you need to code your Fortran, C, and
C++ programs.

Fortran Programs
This section describes how to code your Fortran program using any of the ESSL
run-time libraries.

Calling ESSL Subroutines and Functions in Fortran
In Fortran programs, most ESSL subroutines are invoked with the CALL statement:

An example of a calling sequence for the SAXPY subroutine might be:

The remaining ESSL subroutines are invoked as functions by coding a function
reference. You first declare the type of value returned by the function: short- or
long-precision real, short- or long-precision complex, or integer. Then you code the
function reference as part of an expression in a statement. An example of declaring
and invoking the DASUM function might be:

Values are returned differently for ESSL subroutines and functions. For
subroutines, the results of the computation are returned in an argument specified
in the calling sequence. In the CALL statement above, the result is returned in
argument Y. For functions, the result is returned as the value of the function. In the
assignment statement above, the result is assigned to SUM.

See the Fortran publications for details on how to code the CALL statement and a
function reference.

Setting Up a User-Supplied Subroutine for ESSL in Fortran
Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in Fortran, there are some coding rules you must
follow:
v You must declare subf as EXTERNAL in your program.
v You should code the subf subroutine to the specifications given in “Programming

Considerations for the SUBF Subroutine” on page 886. For examples of coding a
subf subroutine in Fortran, see the subroutine descriptions in that chapter.

CALL subroutine-name (argument-1, . . . , argument-n)

CALL SAXPY (5,A,X,J+INC,Y,1)

DOUBLE PRECISION DASUM,SUM,X
.
.
.

SUM = DASUM (N,X,INCX)

© Copyright IBM Corp. 1997, 2001 105

|
|

Setting Up Scalar Data in Fortran
Table 27 lists the scalar data types in Fortran that are used for ESSL. Only those
types and lengths used by ESSL are listed.

Table 27. Scalar Data Types in Fortran Programs

Terminology Used by ESSL Fortran Equivalent

Character item1

'N', 'T', 'C' or 'n', 't', 'c'

CHARACTER*1

'N', 'T', 'C'

Logical item

.TRUE., .FALSE.

LOGICAL

.TRUE., .FALSE.

32-bit environment integer

12345, −12345

INTEGER or INTEGER*4

12345, −12345

64-bit environment integer2

12345, −12345

INTEGER*83

12345_8, −12345_8

Short-precision real number4

12.345

REAL or REAL*4

0.12345E2

Long-precision real number4

12.345

DOUBLE PRECISION or REAL*8

0.12345D2

Short-precision complex number4

(123.45, −54321.0)

COMPLEX or COMPLEX*8

(123.45E0, −543.21E2)

Long-precision complex number4

(123.45, −54321.0)

COMPLEX*16

(123.45D0, −543.21D2)

Note: 1 ESSL accepts character data in either upper- or lowercase in its calling sequences.

2 In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits
except for the iusadr argument for ERRSET.

3 INTEGER may be used if you specify the compiler option -qintsize=8.

4 Short- and long-precision numbers look the same in this book.

Setting Up Arrays in Fortran
Arrays are declared in Fortran by specifying the array name, the number of
dimensions, and the range of each dimension in a DIMENSION statement or an
explicit data type statement, such as REAL, DOUBLE PRECISION, and so forth.

Real and Complex Array Elements
Each array element can be either a real or complex data item of short or long
precision. The type of the array determines the size of the element storage
locations. Short-precision data requires 4 bytes, and long-precision data requires 8
bytes. Complex data requires two storage locations of either 4 or 8 bytes each, for
short or long precision, respectively, to accommodate the two parts of the complex
number: c = a+bi. Therefore, exactly twice as much storage is required for complex
data as for real data of the same precision. See “How Do You Set Up Your Scalar
Data?” on page 26 for a description of real and complex numbers.

106 ESSL Version 3 Release 3 Guide and Reference

Even though complex data items require two storage locations, the same number
of elements exist in the array as for real data. A reference to an element—for
example, C(3)—in an array containing complex data gives you the whole complex
number; that is, it contains both a and b, where the complex number is expressed
as follows:

C(I)←(ai, bi) for a one-dimensional array
C(I,J)←(aij, bij) for a two-dimensional array
C(I,J,K)←(aijk, bijk) for a three-dimensional arra y

One-Dimensional Array
For a one-dimensional array in Fortran 77, you can code:

DIMENSION A(E1:E2)

where A is the name of the array, E1 is the lower bound, and E2 is the upper bound
of the single dimension in the array. If the lower bound is not specified, such as in
A(E2), the value is assumed to be 1. The upper bound is required.

A one-dimensional array is stored in ascending storage locations (relative to some
base storage address) in the following order:

Relative Location Array Element
1 A(E1)
2 A(E1+1)
3 A(E1+2)
. .
. .
. .
E2–E1+1 A(E2)

For example, the array A of length 4 specified in the DIMENSION statement as
A(0:3) and containing the following elements:
A = (1, 2, 3, 4)

has its elements arranged in storage as follows:

Relative Location Array Element Value
1 1
2 2
3 3
4 4

Two-Dimensional Array
For a two-dimensional array in Fortran 77, you can code:

DIMENSION A(E1:E2,F1:F2)

where A is the name of the array. E1 and F1 are the lower bounds of the first and
second dimensions, respectively, and E2 and F2 are the upper bounds of the first
and second dimensions, respectively. If either of the lower bounds is not specified,
such as in A(E2,F1:F2), the value is assumed to be 1. The upper bounds are
always required for each dimension. For examples of Fortran 77 usage, see
“SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and
DGEMTX—Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose” on page 285.

The elements of a two-dimensional array are stored in column-major order; that is,
they are stored in the following ascending storage locations (relative to some base
storage address) with the value of the first (row) subscript expression increasing

Chapter 4. Coding Your Program 107

most rapidly and the value of the second (column) subscript expression increasing
least rapidly. Following are the locations of the elements in the array:

Relative Location Array Element
1 A(E1,F1) (starting column 1)
2 A(E1+1,F1)
. .
. .
. .
E2–E1+1 A(E2,F1)
(E2–E1+1)+1 A(E1,F1+1) (starting column 2)
(E2–E1+1)+2 A(E1+1,F1+1)
. .
. .
. .
(E2–E1+1)(2) A(E2,F1+1)
(E2–E1+1)(2)+1 A(E1,F1+2) (starting column 3)
(E2–E1+1)(2)+2 A(E1+1,F1+2)
. .
. .
. .
(E2–E1+1)(F2–F1) A(E2,F2-1)
(E2–E1+1)(F2–F1)+1 A(E1,F2) (starting column F2−F1+1)
(E2–E1+1)(F2–F1)+2 A(E1+1,F2)
. .
. .
. .
(E2–E1+1)(F2–F1+1) A(E2,F2)

For example, the 3 by 4 array A specified in the DIMENSION statement as
A(2:4,1:4) and containing the following elements:

┌ ┐
| 11 12 13 14 |

A = | 21 22 23 24 |
| 31 32 33 34 |
└ ┘

has its elements arranged in storage as follows:

Relative Location Array Element Value
1 11 (starting column 1)
2 21
3 31
4 12 (starting column 2)
5 22
6 32
7 13 (starting column 3)
8 23
9 33
10 14 (starting column 4)
11 24
12 34

Each element A(I,J) of the array A, declared A(1:n, 1:m), containing real or complex
data, occupies the storage location whose address is given by the following
formula:

address {A(I,J)} = address {A} + (I−1 + n(J−1))f

108 ESSL Version 3 Release 3 Guide and Reference

for:
I = 1, n and
J = 1, m

where:
f = 4 for short-precision real numbers
f = 8 for long-precision real numbers
f = 8 for short-precision complex numbers
f = 16 for long-precision complex numbers

Three-Dimensional Array
For a three-dimensional array in Fortran 77, you can code:

DIMENSION A(E1:E2,F1:F2,G1:G2)

where A is the name of the array. E1, F1, and G1 are the lower bounds of the first,
second, and third dimensions, respectively, and E2, F2, and G2 are the upper
bounds of the first, second, and third dimensions, respectively. If any of the lower
bounds are not specified, such as in A(E1:E2,F1:F2,G2), the value is assumed to be
1. The upper bounds are always required for each dimension. For examples of
Fortran 77 usage, see “SCFT3 and DCFT3—Complex Fourier Transform in Three
Dimensions” on page 783.

The elements of a three-dimensional array can be thought of as a set of
two-dimensional arrays, stored sequentially in ascending storage locations in the
array. The elements in each two-dimensional array are stored as defined in the
previous section. In the three-dimensional array, the value of the first (row)
subscript expression increases most rapidly, the second (column) subscript
expression increases less rapidly, and the third subscript expression (set of rows
and columns) increases least rapidly. Following are the locations of the elements in
the array:

Relative Location Array Element
1 A(E1,F1,G1) (starting the first set)
2 A(E1+1,F1,G1)
. .
. .
. .
(E2–E1+1)(F2–F1+1) A(E2,F2,G1)
(E2–E1+1)(F2–F1+1)+1 A(E1,F1,G1+1) (starting the second set)
(E2–E1+1)(F2–F1+1)+2 A(E1+1,F1,G1+1)
. .
. .
. .
(E2–E1+1)(F2–F1+1)(2) A(E2,F2,G1+1)
(E2–E1+1)(F2–F1+1)(2)+1 A(E1,F1,G1+2) (starting the third set)
(E2–E1+1)(F2–F1+1)(2)+2 A(E1+1,F1+2)
. .
. .
. .
(E2–E1+1)(F2–F1+1)(G2–G1) A(E2,F2,G2–1)
(E2–E1+1)(F2–F1+1)(G2–G1)+1 A(E1,F1,G2) (starting the last set*)
(E2–E1+1)(F2–F1+1)(G2–G1)+2 A(E1+1,F1,G2)
. .
. .
. .
(E2–E1+1)(F2–F1+1)(G2–G1+1) A(E2,F2,G2)

Chapter 4. Coding Your Program 109

* The last set is the G2–G1+1 set.

For example, the 3 by 2 by 4 array A specified in the DIMENSION statement as
A(1:3,0:1,2:5) and containing the following sets of rows and columns of
elements:

┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
| 111 121 | | 112 122 | | 113 123 | | 114 124 |

A = | 211 221 | | 212 222 | | 213 223 | | 214 224 |
| 311 321 | | 312 322 | | 313 323 | | 314 324 |
└ ┘ └ ┘ └ ┘ └ ┘

has its elements arranged in storage as follows:

Relative Location Array Element Value
1 111 (starting the first set)
2 211
3 311
4 121
5 221
6 321
7 112 (starting the second set)
8 212
9 312
10 122
11 222
12 322
13 113 (starting the third set)
14 213
15 313
16 123
17 223
18 323
19 114 (starting the fourth set)
20 214
21 314
22 124
23 224
24 324

Each element A(I,J,K) of the array A, declared A(1:n, 1:m, 1:p), containing real or
complex data, occupies the storage location whose address is given by the
following formula:

address {A(I,J,K)} = address {A} + (I−1 + n(J−1) + mn(K−1))f

for:
I = 1, n
J = 1, m
K = 1, p

where:
f = 4 for short-precision real numbers
f = 8 for long-precision real numbers
f = 8 for short-precision complex numbers
f = 16 for long-precision complex numbers

110 ESSL Version 3 Release 3 Guide and Reference

Creating Multiple Threads and Calling ESSL from Your Fortran
Program

The following example shows how to create up to a maximum of eight threads,
where each thread calls the DURAND and DGEICD subroutines.

Note: Be sure to compile this program with the xlf_r command and the -qnosave
option.

Chapter 4. Coding Your Program 111

program matinv_example
implicit none

!
! program to invert m nxn random matrices
!

real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
real(8) :: dummy_aux, seed=1998, sd
integer :: rc, i, m=8, n=500, iopt=3, naux=0

!
! allocate storage
!

allocate(A(n,n,m),stat=rc)
call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)
call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)
call error_exit(rc,"Allocation of rcond")

!
! Calculate inverses in parallel
!
!SMP$ parallel do private(i,sd), schedule(static),
!SMP$& share(n,a,iopt,rcond,det,dummy_aux,naux)

do i=1,m

sd = seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),

& dummy_aux,naux)
enddo

write(*,*)'Reciprocal condition numbers of the matrices are:'
write(*,'(4E12.4)') rcond

!
!
!

deallocate(A,stat=rc)

call error_exit(rc,"Deallocation of matrix A")
deallocate(det,stat=rc)
call error_exit(rc,"Deallocation of det")
deallocate(rcond,stat=rc)
call error_exit(rc,"Deallocation of rcond")
stop

contains
subroutine error_exit(error_code,string)
character(*) :: string
integer :: error_code
if(error_code .eq. 0) return
write(0,*)string,": failing return code was ",error_code
stop 1
end subroutine error_exit

end

112 ESSL Version 3 Release 3 Guide and Reference

Handling Errors in Your Fortran Program
ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:
v For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable

errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the
subroutine descriptions in Part 2 of this book.

v For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in Fortran” and “Computational Errors in Fortran” on
page 116 explain how to use these facilities by describing the additional statements
you must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in “Input-Argument Errors in Fortran”
and “Computational Errors in Fortran” on page 116 on each thread that calls ESSL.
An example is shown in “Example of Handling Errors in a Multithreaded
Application Program” on page 121.

Input-Argument Errors in Fortran
To obtain corrected input-argument values in a Fortran program and to avert
program termination for the optionally-recoverable input-argument errors 2015,
2030, and 2200 add the statements in the following steps your program. Steps 3
and 7 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps
makes the effect of the call to ERRSET temporary.

Step 1. Declare ENOTRM as External:

This declares the ESSL error exit routine ENOTRM as an external reference in your
program. This should be coded in the beginning of your program before any of the
following statements.

Step 2. Call EINFO for Initialization:

This calls the EINFO subroutine with one argument of value 0 to initialize the
ESSL error option table. It is required only if you call ERRSET in your program. It
is coded only once in the beginning of your program before any calls to ERRSET.
For a description of EINFO, see “EINFO—ESSL Error Information-Handler
Subroutine” on page 926.

EXTERNAL ENOTRM

CALL EINFO (0)

Chapter 4. Coding Your Program 113

Step 3. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, tabent, which is
accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 7, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 50. For an example, see “Example 3” on page 120, as the use is the same

as for computational errors.

Step 4. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)
v The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030 or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see Table 26 on
page 48. For a description of the input-argument errors, see “Input-Argument Error
Messages(2001-2099)” on page 172. For a description of ERRSET, see “Chapter 17.
Utilities” on page 923.

Step 5. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg-1,..., arg-n are the input and output arguments.
v yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran

statement numbers indicating where you want to branch when you get a
nonzero return code. Each corresponds to a different ESSL value. Control goes to
the corresponding statement number when a nonzero return code value is

CALL ERRSAV (ierno,tabent)

CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

114 ESSL Version 3 Release 3 Guide and Reference

returned for the CALL statement. Return code values are described under “Error
Conditions” in each ESSL subroutine description in Part 2 of this book.

Step 6. Perform the Desired Action: These are the statements at statement
number yyy or zzz, shown in the CALL statement in Step 5, and preceded by an
“*”. The statement to which control is passed corresponds to the return code value
for the error.

These statements perform whatever action is desired when the recoverable error
occurs. These statements may check the new values set in the input arguments to
determine whether adequate program storage is available, and then decide
whether to continue or terminate the program. Otherwise, these statements may
check that the size of the working storage arrays or the length of the transform
agrees with other data in the program. The program may also store this corrected
input argument value for future reference.

Step 7. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area, tabent,
which is accessible to your program. ERRSTR must be called for each entry you
want to store. This step is used, along with step 3, for ERRSAV. For information on
whether you should use ERRSAV and ERRSTR, see “How Can You Control Error
Handling in Large Applications by Saving and Restoring Entries in the Error
Option Table?” on page 50. For an example, see “Example 3” on page 120, as the
use is the same as for computational errors.

Example
This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

CALL ERRSTR (ierno,tabent)

Chapter 4. Coding Your Program 115

Computational Errors in Fortran
To obtain information about an ESSL computational error in a Fortran program,
add the statements in the following steps to your program. Steps 2 and 7 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary. For a list of those computational errors that
return information and to which these steps apply, see “EINFO—ESSL Error
Information-Handler Subroutine” on page 926.

Step 1. Call EINFO for Initialization:

This calls the EINFO subroutine with one argument of value 0 to initialize the
ESSL error option table. It is required only if you call ERRSET in your program. It

.

.

.
C DECLARE ENOTRM AS EXTERNAL

EXTERNAL ENOTRM
.
.
.

C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
.
.
.

C MAKE ERROR CODE 2015 A RECOVERABLE
C ERROR AND SUPPRESS PRINTING ALL
C ERROR MESSAGES FOR IT

CALL ERRSET(2015,0,-1,0,ENOTRM,2015)
.
.
.

C CALL ESSL ROUTINE SWLEV.
C IF THE NAUX INPUT
C ARGUMENT IS TOO SMALL, ERROR
C 2015 OCCURS. THE MINIMUM VALUE
C REQUIRED IS STORED IN THE NAUX
C INPUT ARGUMENT AND CONTROL GOES
C TO LABEL 400.

CALL SWLEV(X,INCX,U,INCU,Y,INCY,N,AUX,NAUX,*400)
.
.
.

C CHECK THE RESULTING INPUT ARGUMENT
C VALUE IN NAUX AND TAKE THE
C DESIRED ACTION
400 .

.

.

CALL EINFO (0)

116 ESSL Version 3 Release 3 Guide and Reference

is coded only once in the beginning of your program before any calls to ERRSET.
For a description of EINFO, see “EINFO—ESSL Error Information-Handler
Subroutine” on page 926.

Step 2. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, tabent, which is
accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 7, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 50.

Step 3. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
Table 172 on page 926. To allow your program to continue after an error in the
specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr
should be specified as either 0 or 1 in a 32-bit environment (0_8 or 1_8 in a 64-bit
environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see Table 26 on
page 48. For a description of the computational errors, see “Computational Error
Messages(2100-2199)” on page 179. For a description of ERRSET, see “Chapter 17.
Utilities” on page 923.

Step 4. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg-1,..., arg-n are the input and output arguments.
v yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran

statement numbers indicating where you want to branch when you get a
nonzero return code. Each corresponds to a different ESSL value. Control goes to

CALL ERRSAV (ierno,tabent)

CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

Chapter 4. Coding Your Program 117

the corresponding statement number when a nonzero return code value is
returned for the CALL statement. Return code values are described under “Error
Conditions” in each ESSL subroutine description in Part 2 of this book.

Step 5. Call EINFO for Information:

This calls the EINFO subroutine, which returns information about certain
computational errors, where:
v nmbr is the statement number yyy, zzz, or any of the other statement numbers

preceded by an “*” in the CALL statement in Step 4, corresponding to the return
code value for this error code.

v icode is the error code of interest.
v inf1 and inf2 are the integer variables used to receive the information, where inf1

is assigned a value for all errors, and inf2 is assigned a value for some errors.
For a description of EINFO, see “EINFO—ESSL Error Information-Handler
Subroutine” on page 926.

Step 6. Check the Values in the Information Receivers: These statements check
the values returned in the output argument information receivers, inf1 and inf2,
which contain the information about the computational error.

Step 7. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area, tabent,
which is accessible to your program. ERRSTR must be called for each entry you
want to store. This step is used, along with step 2, for ERRSAV. For information on
whether you should use ERRSAV and ERRSTR, see “How Can You Control Error
Handling in Large Applications by Saving and Restoring Entries in the Error
Option Table?” on page 50.

Example 1
This 32-bit environment example shows an error code 2104, which returns one
piece of information: the index of the last diagonal with nonpositive value (I1).

nmbr CALL EINFO (icode,inf1)
-or-
nmbr CALL EINFO (icode,inf1,inf2)

CALL ERRSTR (ierno,tabent)

118 ESSL Version 3 Release 3 Guide and Reference

Example 2
This 32-bit environment example shows an error code 2103, which returns one
piece of information: the index of the zero diagonal (I1) found by DGEF.

.

.

.
C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
.
.
.

C ALLOW 100 ERRORS FOR CODE 2104
CALL ERRSET(2104,100,0,0,0,2104)
.
.
.

C CALL ESSL ROUTINE DPPF.
C IF THE INPUT MATRIX IS NOT
C POSITIVE DEFINITE, CONTROL GOES TO
C LABEL 400

IOPT=0
CALL DPPF(APP,N,IOPT,*400)
.
.
.

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2104 TO
C RETURN ONE PIECE OF INFORMATION
C IN VARIABLE I1, THE INDEX OF THE
C LAST NONPOSITIVE DIAGONAL FOUND
C BY ROUTINE DPPF
400 CALL EINFO (2104,I1)

.

.

.

Chapter 4. Coding Your Program 119

Example 3
This 32-bit environment example shows an error code 2101, which returns two
pieces of information: the eigenvalue (I1) that failed to converge after the indicated
(I2) number of iterations. It uses ERRSAV and ERRSTR to insulate the effects of
the error handling for error 2101 by this program.

.

.

.
C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
.
.
.

C ALLOW 100 ERRORS FOR CODE 2103
CALL ERRSET(2103,100,0,0,0,2103)
.
.
.

C CALL ESSL SUBROUTINE DGEF.
C IF THE INPUT MATRIX IS
C SINGULAR, CONTROL GOES TO
C LABEL 400

CALL DGEF(A,LDA,N,IPVT,*400)
.
.
.

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2103 TO
C RETURN ONE PIECE OF INFORMATION
C IN VARIABLE I1, THE INDEX OF THE
C LAST ZERO DIAGONAL FOUND BY
C SUBROUTINE DGEF
400 CALL EINFO (2103,I1)

.

.

.

120 ESSL Version 3 Release 3 Guide and Reference

Example of Handling Errors in a Multithreaded Application
Program

This 32-bit environment example shows how to modify the MATINV_EXAMPLE
program in “Creating Multiple Threads and Calling ESSL from Your Fortran
Program” on page 111 with calls to the ESSL error handling subroutines. The ESSL
error handling subroutines are called from each thread to: initialize the error
option table, save the current error option table values for input-argument error
2015 and computational error 2105, change the default values for errors 2015 and
2105, and then restore the original default values for errors 2015 and 2105.

.

.
C DECLARE AN AREA TO SAVE THE
C ERROR OPTION TABLE INFORMATION
C FOR ERROR CODE 2101

CHARACTER*8 SAV2101
.
.

C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
C SAVE THE EXISTING ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2101

CALL ERRSAV(2101,SAV2101)
.
.

C ALLOW 255 ERRORS FOR CODE 2101
CALL ERRSET(2101,255,0,0,0,2101)
.
.

C CALL ESSL SUBROUTINE DGEEV.
C IF THE EIGENVALUE FAILED TO
C CONVERGE, CONTROL GOES TO LABEL 400

CALL DGEEV(IOPT,A,LDA,W,Z,LDZ,SELECT,N,AUX,NAUX,*400)
.
.

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2101 TO
C RETURN TWO PIECES OF INFORMATION.
C VARIABLE I1 CONTAINS THE EIGENVALUE
C THAT FAILED TO CONVERGE. VARIABLE
C I2 CONTAINS THE NUMBER OF ITERATIONS.
400 CALL EINFO (2101,I1,I2)

.

.

C RESTORE THE PREVIOUS ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2101.
C ERROR PROCESSING RETURNS TO HOW IT
C WAS BEFORE IT WAS ALTERED BY THE ABOVE
C ERRSET STATEMENT.

CALL ERRSTR(2101,SAV2101)
.
.

Chapter 4. Coding Your Program 121

program matinv_example
implicit none

!
! program to invert m nxn random matrices
!

real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
real(8) :: dummy_aux, seed=1998, sd
integer :: rc, i, m=8, n=500, iopt=3, naux=0
integer :: inf1(8)
character(8) :: sav2015(8)
character(8) :: sav2105(8)
integer :: ENOTRM

!
external ENOTRM

!
! allocate storage

allocate(A(n,n,m),stat=rc)
call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)
call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)

call error_exit(rc,"Allocation of rcond")
!
! Calculate inverses in parallel
!
!SMP$ parallel do private(i,sd), schedule(static),
!SMP$& share(n,m,a,iopt,rcond,det,dummy_aux,naux,sav2015,sav2105,inf1)

do i=1,m
!
! initialize error handling

call einfo(0)
!
! Save existing option table values for error 2015

call errsav(2015,sav2015(i))
!
! Set Error 2015 to be non-recoverable so dgeicd will dynamically
! allocate the work area.

call errset(2015,100,100,0,1,2015)
!
! Save existing option table values for error 2105

call errsav(2105,sav2105(i))
!
! Set Error 2105 to be recoverable

call errset(2105,100,100,0,ENOTRM,2105)
!

sd = seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),

& dummy_aux,naux,*10,*20)
10 goto 30
!
! Catch singular matrix returned by dgeicd.
20 CALL EINFO(2105,inf1(i))

WRITE(*,*) 'ERROR: Zero pivot found at location ',inf1(i)
!
! Restore the error option table entries
30 continue

call errstr(2015,SAV2015(i))
call errstr(2105,SAV2105(i))

enddo

122 ESSL Version 3 Release 3 Guide and Reference

C Programs
This section describes how to code your C program.

Calling ESSL Subroutines and Functions in C
This section shows how to call ESSL subroutines and functions from your C
program.

Before You Call ESSL
Before you can call the ESSL subroutines from your C program, you must have the
appropriate ESSL header file installed on your system. The ESSL header file allows
you to code your function calls as described in this section. It contains entries for
all the ESSL subroutines. The ESSL header file is distributed with the ESSL
package. The ESSL header file to be used with the C compiler is named essl.h.
You should check with your system support group to verify that the appropriate
ESSL header file is installed.

In the beginning of your program, before you call any of the ESSL subroutines,
you must code the following statement for the ESSL header file:

#include <essl.h>

If you are planning to create your own threads for the ESSL Thread-Safety or SMP
Library, you must include the pthread.h header file as the first include file in your
C program. For an example, see “Creating Multiple Threads and Calling ESSL from
Your C Program” on page 128.

Coding the Calling Sequences
In C programs, the ESSL subroutines, not returning a function value, are invoked
with the following type of statement:

An example of a calling sequence for SAXPY might be:

write(*,*)'Reciprocal condition numbers of the matrices are:'
write(*,'(4E12.4)') rcond

!
deallocate(A,stat=rc)
call error_exit(rc,"Deallocation of matrix A")
deallocate(det,stat=rc)
call error_exit(rc,"Deallocation of det")

deallocate(rcond,stat=rc)
call error_exit(rc,"Deallocation of rcond")
stop
contains
subroutine error_exit(error_code,string)
character(*) :: string
integer :: error_code
if(error_code .eq. 0) return
write(0,*)string,": failing return code was ",error_code
stop 1
end subroutine error_exit

end

subroutine-name (argument-1, . . . , argument-n);

Chapter 4. Coding Your Program 123

saxpy (5,a,x,incx,y,1);

The ESSL subroutines returning a function value are invoked with the following
type of statement:

An example of invoking DASUM might be:
sum = dasum (n,x,incx);

See the C publications for details about how to code the function calls.

Passing Arguments in C
This section describes how to pass arguments in your C program.

About the Syntax Shown in This Book
The argument syntax shown in this book assumes that you have installed and are
using the ESSL header file. For further details, see “Calling ESSL Subroutines and
Functions in C” on page 123.

No Optional Arguments
In the ESSL calling sequences for C, there are no optional arguments, as for some
programming languages. You must code all the arguments listed in the syntax.

Arguments That Must Be Passed by Value
All scalar arguments that are not modified must be passed by value in the ESSL
calling sequence. (This refers to input-only scalar arguments, such as incx, m, and
lda.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a
pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.

Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The
name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output argument is a scalar data item, it
must be passed by reference. This is true for all scalar data types: real, complex,
and so forth. When this occurs, it is listed in the notes of each subroutine
description in Part 2 of this book.

Character Arguments: Character arguments must be passed as strings, by
reference. You specify the character, in upper- or lowercase, in the ESSL calling
sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as
strings n and t, respectively:
sgeadd (a,5,"n",b,3,"t",c,4,4,3);

Altered Arguments When Using Error Handling: If you use ESSL error handling
in your C program, as described in “Handling Errors in Your C Program” on
page 130, you must pass by reference all the arguments that can potentially be
altered by ESSL error handling. This applies to all your ESSL call statements after
the point where you code the #define statement, shown in step 1 in

function-value-name=subroutine-name (argument-1, . . . , argument-n);

124 ESSL Version 3 Release 3 Guide and Reference

“Input-Argument Errors in C” on page 130 and in step 1 in “Computational Errors
in C” on page 135. The two types of ESSL arguments are:
v naux arguments for auxiliary storage
v n arguments for transform lengths

Setting Up a User-Supplied Subroutine for ESSL in C
Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in C, there are some coding rules you must follow
for the subf subroutine:
v You can code the subf subroutine using only C or Fortran.
v You must declare subf as an external subroutine in your application program.
v You should code the subf subroutine to the specifications given in “Programming

Considerations for the SUBF Subroutine” on page 886. For an example of coding
a subf subroutine in C, see “Example 1” on page 896.

Setting Up Scalar Data in C
Table 28 lists the scalar data types in C that are used for ESSL. Only those types
and lengths used by ESSL are listed.

Table 28. Scalar Data Types in C Programs

Terminology Used by ESSL C Equivalent

Character item1

'N', 'T', 'C' or 'n', 't', 'c'

char *

“n”, “t”, “c”

Logical item

.TRUE., .FALSE.

int

For additional information, see “Using
Logical Data in C” on page 127.2

32-bit environment integer

12345, −12345

int

64-bit environment integer3

12345l, −12345l

long

Short-precision real number4

12.345

float

Long-precision real number4

12.345

double

Short-precision complex number4

(123.45, −54321.0)

Specify it as described in “Setting Up
Complex Data Types in C” on page 126.2

Long-precision complex number4

(123.45, −54321.0)

Specify it as described in “Setting Up
Complex Data Types in C” on page 126.2

Chapter 4. Coding Your Program 125

|

|
|

|

Table 28. Scalar Data Types in C Programs (continued)

Terminology Used by ESSL C Equivalent

Note: 1 ESSL accepts character data in either upper- or lowercase in its calling sequences.

2 There are no equivalent data types for logical and complex data in C. These require
special procedures. For details, see the referenced section.

3 In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits
except for the iusadr argument for ERRSET.

4 Short- and long-precision numbers look the same in this book.

Setting Up Complex Data Types in C
Complex data types are not part of the C language; however, some ESSL
subroutines require arguments of these data types.

Complex Data
ESSL provides identifiers, cmplx and dcmplx, for complex data types, defined in the
ESSL header file, as well as two macro definitions, RE and IM, for handling the
real and imaginary parts of complex numbers:

#ifndef _CMPLX
#ifndef _REIM
#define _REIM 1
#endif
typedef union { struct { float _re, _im;}

_data; double _align;} cmplx;
#endif
#ifndef _DCMPLX
#ifndef _REIM
#define _REIM 1
#endif
typedef union { struct { double _re, _im;}

_data; double _align;} dcmplx;
#endif
#ifdef _REIM
#define RE(x) ((x)._data._re)
#define IM(x) ((x)._data._im)
#endif

You must, therefore, code an include statement for the ESSL header file in the
beginning of your program to use these definitions. For details, see “Calling ESSL
Subroutines and Functions in C” on page 123.

Assuming you are using the ESSL header file, if you declare data items to be of
type cmplx or dcmplx, you can pass them as short- and long-precision complex data
to ESSL, respectively. You may want to write a CSET macro to initialize complex
variables, using the RE and IM macros provided in the ESSL header file. Following
is an example of how to use the CSET macro to initialize the complex variable
alpha:

#include <essl.h>
#define CSET(x,a,b) (RE(x)=a, IM(x)=b)
main()
{
cmplx alpha,t[3],s[5];
.
.
.
CSET (alpha,2.0,3.0);
caxpy (3,alpha,s,1,t,2);

126 ESSL Version 3 Release 3 Guide and Reference

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

.

.

.
}

If you choose to use your own definitions for complex data, instead of those
provided in the ESSL header file, you can define _CMPLX and _DCMPLX in your
program for short- and long-precision complex data, respectively, using the
following #define statements. These statements are coded with your global declares
in the front of your program and must be coded before the #include statement for
the ESSL header file.

#define _CMPLX
#define _DCMPLX

If you prefer to define your complex data at compile time, you can use the job
processing procedures described in “Chapter 5. Processing Your Program” on
page 157.

Using Logical Data in C
Logical data types are not part of the C language; however, some ESSL subroutines
require arguments of these data types.

By coding the following simple macro definitions in your program, you can then
use TRUE or FALSE in assigning values to or specifying any logical arguments
passed to ESSL:

#define FALSE 0
#define TRUE 1

Setting Up Arrays in C
C arrays are arranged in storage in row-major order. This means that the last
subscript expression increases most rapidly, the next-to-the-last subscript
expression increases less rapidly, and so forth, with the first subscript expression
increasing least rapidly. ESSL subroutines require that arrays passed as arguments
be in column-major order. This is the array storage convention used by Fortran,
described in “Setting Up Arrays in Fortran” on page 106. To pass an array from
your C program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C program, you can do any of the
following:
v Build and process the matrix, logically transposed from the outset, and transpose

the results as necessary.
v Before the ESSL call, transpose the input arrays. Then, following the ESSL call,

transpose any arrays updated as output.
v If there are arguments in the ESSL calling sequence indicating whether the

arrays are to be processed in normal or transposed form, such as the transa and
transb arguments in the _GEMM subroutines, use these arguments in
combination with the matrix equivalence rules to avoid having to transpose your
data in separate operations. For further detail, see “SGEMMS, DGEMMS,
CGEMMS, and ZGEMMS—Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s
Algorithm” on page 384.

Chapter 4. Coding Your Program 127

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

Creating Multiple Threads and Calling ESSL from Your C
Program

The example shown below shows how to create two threads, where each thread
calls the ISAMAX subroutine. To use the AIX pthreads library, you must specify
the pthread.h header file as the first include file in your program.

Note: Be sure to compile this program with the cc_r command.

128 ESSL Version 3 Release 3 Guide and Reference

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <essl.h>

/* Create structure for argument list */
typedef struct {
int n;
float *x;
int incx;

} arg_list;

/* Define prototype for thread routine */
void *Thread(void *v);

int main()
{
float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
pthread_t first_th;
pthread_t second_th;
int rc;
arg_list a_l,b_l;

/* Creating argument list for the first thread */
a_l.n = 9;
a_l.incx = 1;
a_l.x = sx1;

/* Creating argument list for the second thread */
b_l.n = 8;
b_l.incx = 1;
b_l.x = sx2;

/* Creating first thread which calls the ESSL subroutine ISAMAX */
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
if (rc) exit(-1);

/* Creating second thread which calls the ESSL subroutine ISAMAX */
rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
if (rc) exit(-1);

sleep(1);
exit(0);

}

/* Thread routine which call ESSL routine ISAMAX */
void *Thread(void *v)
{
arg_list *al;
float *x;
int n,incx;
int i;

al = (arg_list *)(v);
x = al->x;
n = al->n;
incx = al->incx;

/* Calling the ESSL subroutine ISAMAX */
i = isamax(n,x,incx);

if (i == 8)
printf("max for sx2 should be 8 = %d\n",i);

else
printf("max for sx1 should be 6 = %d\n",i);

}

Chapter 4. Coding Your Program 129

Handling Errors in Your C Program
ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:
v For input-argument errors 2015, 2030, and 2200, which are optionally-recoverable

errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the
subroutine descriptions in Part 2 of this book.

v For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in C” and “Computational Errors in C” on page 135
explain how to use these facilities by describing the additional statements you
must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in “Input-Argument Errors in C” and
“Computational Errors in C” on page 135 on each thread that calls ESSL.

Input-Argument Errors in C
To obtain corrected input-argument values in a C program and to avert program
termination for the optionally-recoverable input-argument errors 2015, 2030, and
2200, add the statements in the following steps to your program. Steps 4 and 8 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.
The extern statement declares the ESSL error exit routine ENOTRM as an external
reference in your program. After the point where you code these statements in
your program, you must pass by reference all ESSL calling sequence arguments
that can potentially be altered by ESSL error handling. This applies to all your
ESSL call statements. The two types of arguments are:
v naux arguments for auxiliary storage
v n arguments for transform lengths

/* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>

extern int enotrm();

130 ESSL Version 3 Release 3 Guide and Reference

Step 2. Declare the Variables:

This declares a pointer, iusadr, to be used for the ESSL error exit routine ENOTRM.
Also included are declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

The first statement sets the function pointer, iusadr, to ENOTRM, the ESSL error
exit routine. The last statement calls the EINFO subroutine to initialize the ESSL
error option table, where dummy is a declared integer and is a placeholder. For a
description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine”
on page 926. These statements should be coded only once in the beginning of your

program before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 50. For an example, see “Example 1” on page 137, as the use is the same

as for computational errors.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

int (*iusadr) ();
int ierno,inoal,inomes,itrace,irange,irc,dummy;
char storarea[8];

iusadr = enotrm;
einfo (0,&dummy,&dummy);

errsav (&ierno,storarea);

errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

Chapter 4. Coding Your Program 131

v The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see Table 26 on
page 48. For a description of the input-argument errors, see “Input-Argument Error
Messages(2001-2099)” on page 172. For a description of ERRSET, see “Chapter 17.
Utilities” on page 923.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments. As explained in step 1, all

arguments that can potentially be altered by error handling must be coded by
reference.

v irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

v rc1, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

Step 7. Perform the Desired Action: These are the statements following the test
for each value of the return code, returned in irc in step 6. These statements
perform whatever action is desired when the recoverable error occurs. These
statements may check the new values set in the input arguments to determine
whether adequate program storage is available, and then decide whether to
continue or terminate the program. Otherwise, these statements may check that the
size of the working storage arrays or the length of the transform agrees with other
data in the program. The program may also store this corrected input argument
value for future reference.

Step 8. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.

}

errstr (&ierno,storarea);

132 ESSL Version 3 Release 3 Guide and Reference

entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 50. For an example, see “Example 1” on page 137,
as the use is the same as for computational errors.

Example 1
This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

Chapter 4. Coding Your Program 133

.

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define __ESVERR
#include <essl.h>
extern int enotrm();
.
.
.

/*DECLARE THE VARIABLES*/
main ()
{
int (*iusadr) ();
int ierno,inoal,inomes,itrace,irc,dummy;
int naux;
.
.
.

/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
iusadr = enotrm;
.
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
einfo (0,&dummy,&dummy);
.
.
.

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/

ierno = 2015;
inoal = 0;
inomes = −1;
itrace = 0;
irange = 2015;
errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);
.
.
.

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
RETURN CODE OF 1 IS SET IN IRC.*/

irc = swlev (x,incx,u,incu,y,incy,n,aux,&naux);
if irc == 1

{
. /*CHECK THE RESULTING INPUT ARGUMENT VALUE
. IN NAUX AND TAKE THE DESIRED ACTION*/
.
}

.

.

.
}

134 ESSL Version 3 Release 3 Guide and Reference

Computational Errors in C
To obtain information about an ESSL computational error in a C program, add the
statements in the following steps to your program. Steps 4 and 9 for ERRSAV and
ERRSTR, respectively, are optional. Adding these steps makes the effect of the call
to ERRSET temporary. For a list of those computational errors that return
information and to which these steps apply, see “EINFO—ESSL Error
Information-Handler Subroutine” on page 926.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.
After the point where you code these statements in your program, you must pass
by reference all ESSL calling sequence arguments that can potentially be altered
by ESSL error handling. This applies to all your ESSL call statements. The two
types of arguments are:
v naux arguments for auxiliary storage
v n arguments for transform lengths

Step 2. Declare the Variables:

These statements include declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

This statement calls the EINFO subroutine to initialize the ESSL error option table,
where dummy is a declared integer and is a placeholder. For a description of
EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 926.
These statements should be coded only once in the beginning of your program
before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which

/* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>

int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int inf1,inf2,dummy;
char storarea[8];

einfo (0,&dummy,&dummy);

errsav (&ierno,storarea);

Chapter 4. Coding Your Program 135

is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 50. For an example, see “Example 1” on page 137.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
Table 172 on page 926. To allow your program to continue after an error in the
specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr
should be specified as either 0 or 1 in a 32-bit environment (0l or 1l in a 64-bit
environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see Table 26 on
page 48. For a description of the computational errors, see “Computational Error
Messages(2100-2199)” on page 179. For a description of ERRSET, see “Chapter 17.
Utilities” on page 923.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments. As explained in step 1, all

arguments that can potentially be altered by error handling must be coded by
reference.

v irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.

}
if irc == rc2

{
.
.
.
}

136 ESSL Version 3 Release 3 Guide and Reference

v rc1, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

The statements following each test of the return code can perform any desired
action. This includes calling EINFO for more information about the error, as
described in step 7.

Step 7. Call EINFO for Information:

This calls the EINFO subroutine, which returns information about certain
computational errors, where:
v ierno is the error code of interest.
v inf1 and inf2 are the integer variables used to receive the information, where inf1

is assigned a value for all errors, and inf2 is assigned a value for some errors.
You must specify both arguments, as there are no optional arguments for C.
Both arguments must be passed by reference, because they are output scalar
arguments. For a description of EINFO, see “EINFO—ESSL Error
Information-Handler Subroutine” on page 926.

Step 8. Check the Values in the Information Receivers: These statements check
the values returned in the output argument information receivers, inf1 and inf2,
which contain the information about the computational error.

Step 9. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 50. For an example, see “Example 1”.

Example 1
This 32-bit environment example shows an error code 2105, which returns one
piece of information: the index of the pivot element (i) near zero, causing
factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects of the error
handling for error 2105 by this program.

einfo (ierno,&inf1,&inf2);

errstr (&ierno,storarea);

Chapter 4. Coding Your Program 137

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define __ESVERR
#include <essl.h>
.
.

/*DECLARE THE VARIABLES*/
main ()
{
int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int inf1,inf2,dummy;
char sav2105[8];
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
einfo (0,&dummy,&dummy);

/*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105*/

ierno = 2105;
errsav (&ierno,sav2105);
.
.

/*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
FOR THEM. THIS SHOWS HOW YOU CODE THE
ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */

ierno = 2101;
inoal = 0;
inomes = 0; /*A DUMMY ARGUMENT*/
itrace = 0; /*A DUMMY ARGUMENT*/
iusadr = 0; /*A DUMMY ARGUMENT*/
irange = 2105
errset (&ierno,&inoal,&inomes,&itrace, &iusadr,&irange);
.
.

/*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/

irc = dgeicd (a,lda,n,iopt,&rcond,det,aux,&naux);
if irc == 2

{
/*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
CODE 2105 TO RETURN ONE PIECE OF INFORMATION
IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
INF2 IS NOT USED, BUT MUST BE SPECIFIED.
BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/

ierno = 2105;
einfo (ierno,&inf1,&inf2);

/*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
DESIRED ACTION*/

.

.
}

.

.
/*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY

FOR ERROR CODE 2105. ERROR PROCESSING
RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
THE ABOVE ERRSAV STATEMENT*/

ierno = 2105;
errstr (&ierno,sav2105);
.
.
}

138 ESSL Version 3 Release 3 Guide and Reference

C++ Programs
This section describes how to code your C++ program.

Calling ESSL Subroutines and Functions in C++
This section shows how to call ESSL subroutines and functions from your C++
program.

Before You Call ESSL
Before you can call the ESSL subroutines from your C++ program, you must have
the appropriate ESSL header file installed on your system. The ESSL header file
allows you to code your function calls as described in this section. It contains
entries for all the ESSL subroutines. The ESSL header file is distributed with the
ESSL package. The ESSL header file to be used with the C++ compiler is named
essl.h.

In the beginning of your program, before you call any of the ESSL subroutines,
you must code the following statement for the ESSL header file:

#include <essl.h>

If you are creating your own threads for the ESSL Thread-Safe or SMP Library, you
must include the pthread.h header file in your C++ program. For an example, see
“Creating Multiple Threads and Calling ESSL from Your C++ Program” on
page 144.

Coding the Calling Sequences
In C++ programs, the ESSL subroutines, not returning a function value, are
invoked with the following type of statement:

An example of a calling sequence for SAXPY might be:
saxpy (5,a,x,incx,y,1);

The ESSL subroutines returning a function value are invoked with the following
type of statement:

An example of invoking DASUM might be:
sum = dasum (n,x,incx);

See the C++ publications for details about how to code the function calls.

Passing Arguments in C++
This section describes how to pass arguments in your C++ program.

subroutine-name (argument-1, . . . , argument-n);

function-value-name=subroutine-name (argument-1, . . . , argument-n);

Chapter 4. Coding Your Program 139

About the Syntax Shown in This Book
The argument syntax shown in this book assumes that you have installed and are
using the ESSL header file. For further details, see “Calling ESSL Subroutines and
Functions in C++” on page 139.

No Optional Arguments
In the ESSL calling sequences for C++, there are no optional arguments, as for
some programming languages. You must code all the arguments listed in the
syntax.

Arguments That Must Be Passed by Value
All scalar arguments that are not modified must be passed by value in the ESSL
calling sequence. (This refers to input-only scalar arguments, such as incx, m, and
lda.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a
pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.

Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The
name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output scalar argument is a scalar data item,
it must be passed by reference as shown below. This is true for all scalar data
types: real, complex, and so forth.

The ESSL header file supports two alternatives:
v The arguments are declared to be type reference in the function prototype. This

is the default. Following is an example of how you can call DURAND using this
alternative:
durand (seed, n, x);

v The arguments are declared as pointers in the function prototype. If you wish to
use this alternative, you must define _ESVCPTR using one of the following
methods:
– Define _ESVCPTR in your program using a #define statement, as shown

below:
#define _ESVCPTR

This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

– Define _ESVCPTR at compile time by using the job processing procedure
described in “C++ Program Procedures” on page 159.

Following is an example of how you can call DURAND using this alternative:
durand (&seed, n, x);

Character Arguments: Character arguments must be passed as strings, by
reference. You specify the character, in upper- or lowercase, in the ESSL calling
sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as
strings n and t, respectively:

sgeadd (a,5,"n",b,3,"t",c,4,4,3);

140 ESSL Version 3 Release 3 Guide and Reference

|

|
|
|

|

|
|
|

|

|
|
|

|
|

|

|
|

|
|

|

|

|

Setting Up a User-Supplied Subroutine for ESSL in C++
Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in C++, there are some coding rules you must
follow for the subf subroutine:
v You can code the subf subroutine using only C, C++, or Fortran.
v You must declare subf as an external subroutine in your application program.
v You should code the subf subroutine to the specifications given in “Programming

Considerations for the SUBF Subroutine” on page 886. For an example of coding
a subf subroutine in C++, see “Example 1” on page 896.

Setting Up Scalar Data in C++
Table 29 lists the scalar data types in C++ that are used for ESSL. Only those types
and lengths used by ESSL are listed.

Table 29. Scalar Data Types in C++ Programs

Terminology Used by ESSL C++ Equivalent

Character item1

'N', 'T', 'C' or 'n', 't', 'c'

char *

“n”, “t”, “c”

Logical item

.TRUE., .FALSE.

int

For additional information, see “Using
Logical Data in C++” on page 144.2

32-bit environment integer

12345, −12345

int

64-bit environment integer3

12345l, −12345l

long

Short-precision real number4

12.345

float

Long-precision real number4

12.345

double

Short-precision complex number4

(123.45, −54321.0)

complex <float>5, or as described in “Setting
Up Short-Precision Complex Data Types If
You Are Using the IBM Open Class
Complex Mathematics Library in C++” on
page 142.

Long-precision complex number4

(123.45, −54321.0)

complex <double>5 or complex6

Chapter 4. Coding Your Program 141

|

|
|

|

|
|
|
|
|

|

Table 29. Scalar Data Types in C++ Programs (continued)

Terminology Used by ESSL C++ Equivalent

Note: 1 ESSL accepts character data in either upper- or lowercase in its calling sequences.

2 There are no equivalent data types for logical data in C++. These require special
procedures. For details, see the referenced section.

3 In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits
except for the iusadr argument for ERRSET.

4 Short- and long-precision numbers look the same in this book.

5 This data type is defined in file <complex>.

6 This data type is defined in file <complex.h>.

Selecting the <complex> or <complex.h> Header File
The ESSL header file supports both the IBM Open Class Complex Mathematics
Library (<complex.h>) and the Standard Numerics Library facilities for complex
arithmetic (<complex>). Although the header files <complex> and <complex.h> are
similar in purpose, they are mutually incompatible and cannot be simultaneously
used.

If you wish to use the Standard Numerics Library facilities for complex arithmetic,
you must do one of the following:
v Code the #include statement for the Standard Numerics Library facilities for

complex arithmetic (#include <complex>) in your program prior to coding the
#include statement for the ESSL header file.

v Define _ESV_COMPLEX_, using one of the following methods:
– Define _ESV_COMPLEX_ in your program using a #define statement, as

shown below:
#define _ESV_COMPLEX_

This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

– Define _ESV_COMPLEX_ at compile time by using the job processing
procedures described in “Chapter 5. Processing Your Program” on page 157.

If you take none of the preceding steps, the ESSL header file will use the IBM
Open Class Complex Mathematics Library. The ESSL header file will also use the
IBM Open Class Complex Mathematics Library if you:
v Code the #include statement for the IBM Open Class Complex Mathematics

Library (#include<complex.h>) in your program prior to coding the #include
statement for the ESSL header file.

Setting Up Short-Precision Complex Data Types If You Are
Using the IBM Open Class Complex Mathematics Library in
C++

Short-precision complex data types are not part of the C++ language; however,
some ESSL subroutines require arguments of these data types.

142 ESSL Version 3 Release 3 Guide and Reference

|
|

|

|

|

|
|
|
|
|

|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|

Short-Precision Complex Data
ESSL provides an identifier, cmplx, for the short-precision complex data type,
defined in the ESSL header file, as well as two member functions, sreal and simag,
for handling the real and imaginary parts of short-precision complex numbers:

#ifndef _CMPLX
class cmplx
{
private:
float _re,_im;

public:
cmplx() { _re = 0.0; _im = 0.0; }
cmplx(float r, float i = 0.0) { _re = r; _im = i; }
friend inline float sreal(const cmplx& a) { return a._re; }
friend inline float simag(const cmplx& a) { return a._im; }

};
#endif

You must, therefore, code an include statement for the ESSL header file in the
beginning of your program to use these definitions. For details, see “Calling ESSL
Subroutines and Functions in C++” on page 139.

Assuming you are using the ESSL header file, if you declare data items to be of
type cmplx or complex, you can pass them as short- or long-precision complex data
to ESSL, respectively. Following is an example of how you might code your
program:

#include <complex.h>
#include <essl.h>
main()
{
cmplx alpha,t[3],s[5];
complex beta,td[3],sd[5];
.
.
.
alpha = cmplx(2.0,3.0);
caxpy (3,alpha,s,1,t,2);
.
.
.
beta = complex(2.0,3.0);
zaxpy (3,beta,sd,1,td,2);
.
.
.
}

If you choose to use your own definition for short-precision complex data, instead
of that provided in the ESSL header file, you can define _CMPLX in your program,
using the following #define statement. This statement is coded with your global
declares in the front of your program and must be coded before the #include
statement for the ESSL header file.

#define _CMPLX

If you prefer to define your short-precision complex data at compile time, you can
use the job processing procedures described in “Chapter 5. Processing Your
Program” on page 157.

Chapter 4. Coding Your Program 143

Using Logical Data in C++
Logical data types are not part of the C++ language; however, some ESSL
subroutines require arguments of these data types.

By coding the following simple macro definitions in your program, you can then
use TRUE or FALSE in assigning values to or specifying any logical arguments
passed to ESSL:

#define FALSE 0
#define TRUE 1

Setting Up Arrays in C++
C++ arrays are arranged in storage in row-major order. This means that the last
subscript expression increases most rapidly, the next-to-the-last subscript
expression increases less rapidly, and so forth, with the first subscript expression
increasing least rapidly. ESSL subroutines require that arrays passed as arguments
be in column-major order. This is the array storage convention used by Fortran,
described in “Setting Up Arrays in Fortran” on page 106. To pass an array from
your C++ program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C++ program, you can do any of the
following:
v Build and process the matrix, logically transposed from the outset, and transpose

the results as necessary.
v Before the ESSL call, transpose the input arrays. Then, following the ESSL call,

transpose any arrays updated as output.
v If there are arguments in the ESSL calling sequence indicating whether the

arrays are to be processed in normal or transposed form, such as the transa and
transb arguments in the _GEMM subroutines, use these arguments in
combination with the matrix equivalence rules to avoid having to transpose your
data in separate operations. For further detail, see “SGEMMS, DGEMMS,
CGEMMS, and ZGEMMS—Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s
Algorithm” on page 384.

Creating Multiple Threads and Calling ESSL from Your C++
Program

The example shown below shows how to create two threads, where each thread
calls the ISAMAX subroutine. To use the AIX pthreads library, you must remember
to code the pthread.h header file in your C++ program.

Note: Be sure to compile this program with the xlC_r command.

144 ESSL Version 3 Release 3 Guide and Reference

|
|

#include "essl.h"
#include <iostream.h>

/* Define prototype for thread routine */
void *Thread(void *v);

/* Define prototype for thread library routine, which is in C */
extern "C" {
#include <pthread.h>
#include <stdlib.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg);
}
extern "Fortran" int isamax(const int &, float *, const int &);
/* Create structure for argument list */
struct arg_list {
int n;
float *x;
int incx;

};
void main()
{
float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
pthread_t first_th;
pthread_t second_th;
int rc;
struct arg_list a_l,b_l;

a_l.n = 9;
a_l.incx = 1;
a_l.x = sx1;

b_l.n = 8;
b_l.incx = 1;
b_l.x = sx2;

/* Creating argument list for first thread */
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
if (rc) exit(-1);

/* Creating argument list for second thread */
rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
if (rc) exit(-1);

sleep(20);
exit(0);

}
/* Thread routine which calls the ESSL subroutine ISAMAX */
void* Thread(void *v)
{
struct arg_list *al;
float *t;
int n,incx;
int i;

al = (struct arg_list *)(v);
t = al->x;
n = al->n;
incx = al->incx;

Chapter 4. Coding Your Program 145

Handling Errors in Your C++ Program
ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:
v For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable

errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the
subroutine descriptions in Part 2 of this book.

v For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in C++” and “Computational Errors in C++” on page 151
explain how to use these facilities by describing the additional statements you
must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in “Input-Argument Errors in C++” and
“Computational Errors in C++” on page 151 on each thread that calls ESSL.

Input-Argument Errors in C++
To obtain corrected input-argument values in a C++ program and to avert program
termination for the optionally-recoverable input-argument errors 2015, 2030, and
2200, add the statements in the following steps to your program. Steps 4 and 8 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statements for the ESSL header

/* Calling the ESSL subroutine ISAMAX */
i = isamax(n,t,incx);
if (i == 8)
cout << "max for sx2 should be 8 = " << i << "\n";

else
cout << "max for sx1 should be 6 = " << i << "\n";

return NULL;
}

/* Code one underscore */
/* before the letters ESVERR */
#define _ESVERR
#include <iostream.h>
#include <stdio.h>
#include <essl.h>
extern “Fortran” int enotrm(int &,int &);
extern “Fortran” typedef int (*FN) (int &,int &);

146 ESSL Version 3 Release 3 Guide and Reference

file. The extern statements are required to call the ESSL error exit routine
ENOTRM as an external reference in your program.

Step 2. Declare the Variables:

This declares a pointer, iusadr, to be used for the ESSL error exit routine ENOTRM.
Also included are declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

The first statement sets the function pointer, iusadr, to ENOTRM, the ESSL error
exit routine. The last statement calls the EINFO subroutine to initialize the ESSL
error option table, where dummy is a declared integer and is a placeholder. For a
description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine”
on page 926. These statements should be coded only once in the beginning of your

program before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 50. For an example, see “Example” on page 153, as the use is the same as

for computational errors.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:

FN iusadr;
int ierno,inoal,inomes,itrace,irange,irc,dummy;
char storarea[8];

iusadr = enotrm;
dummy = 0;
einfo (0,dummy,dummy);

errsav (ierno,storarea);

errset (ierno,inoal,inomes,itrace,iusadr,irange);

Chapter 4. Coding Your Program 147

v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)
v The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see Table 26 on
page 48. For a description of the input-argument errors, see “Input-Argument Error
Messages(2001-2099)” on page 172. For a description of ERRSET, see “Chapter 17.
Utilities” on page 923.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments.
v irc is the integer variable containing the return code resulting from the

computation performed by the ESSL subroutine.
v rc1, rc2, and so forth are the possible return code values that can be passed back

from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

Step 7. Perform the Desired Action: These are the statements following the test
for each value of the return code, returned in irc in step 6. These statements
perform whatever action is desired when the recoverable error occurs. These
statements may check the new values set in the input arguments to determine
whether adequate program storage is available, and then decide whether to
continue or terminate the program. Otherwise, these statements may check that the
size of the working storage arrays or the length of the transform agrees with other
data in the program. The program may also store this corrected input argument
value for future reference.

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.
}

if irc == rc2
{
.
.
.
}

148 ESSL Version 3 Release 3 Guide and Reference

Step 8. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 50. For an example, see “Example” on page 153,
as the use is the same as for computational errors.

Example
This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

errstr (ierno,storarea);

Chapter 4. Coding Your Program 149

.

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define _ESVERR
#include <essl.h>
#include <iostream.h>
#include <stdio.h>
extern “Fortran” int enotrm(int &,int &);
extern “Fortran” typedef int (*FN) (int &,int &);
.
.
.

/*DECLARE THE VARIABLES*/
main ()
{
FN iusadr;
int ierno,inoal,inomes,itrace,irc,dummy;
int naux;
.
.
.

/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
iusadr = enotrm;
.
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;
einfo (0,dummy,dummy);
.
.
.

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/

ierno = 2015;
inoal = 0;
inomes = −1;
itrace = 0;
irange = 2015;
errset (ierno,inoal,inomes,itrace,iusadr,irange);
.
.
.

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
RETURN CODE OF 1 IS SET IN IRC.*/

irc = swlev (x,incx,u,incu,y,incy,n,aux,naux);
if irc == 1

{
. /*CHECK THE RESULTING INPUT ARGUMENT VALUE
. IN NAUX AND TAKE THE DESIRED ACTION*/
.
}

.

.

.
}

150 ESSL Version 3 Release 3 Guide and Reference

Computational Errors in C++
To obtain information about an ESSL computational error in a C++ program, add
the statements in the following steps to your program. Steps 4 and 9 for ERRSAV
and ERRSTR, respectively, are optional. Adding these steps makes the effect of the
call to ERRSET temporary. For a list of those computational errors that return
information and to which these steps apply, see “EINFO—ESSL Error
Information-Handler Subroutine” on page 926.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.

Step 2. Declare the Variables:

These statements include declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

The last statement calls the EINFO subroutine to initialize the ESSL error option
table, where dummy is a declared integer and is a placeholder. For a description of
EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 926.
These statements should be coded only once in the beginning of your program
before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling

/* Code one underscore */
/* before the letters ESVERR */
#define _ESVERR
#include <iostream.h>
#include <stdio.h>
#include <essl.h>

int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int inf1,inf2,dummy;
char storarea[8];

dummy = 0;
einfo (0,dummy,dummy);

errsav (ierno,storarea);

Chapter 4. Coding Your Program 151

in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 50. For an example, see “Example” on page 153.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
Table 172 on page 926. To allow your program to continue after an error in the
specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr
should be specified as either 0 or 1 in a 32-bit environment (0l or 1l in a 64-bit
environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see Table 26 on
page 48. For a description of the computational errors, see “Computational Error
Messages(2100-2199)” on page 179. For a description of ERRSET, see “Chapter 17.
Utilities” on page 923.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments.
v irc is the integer variable containing the return code resulting from the

computation performed by the ESSL subroutine.
v rc1, rc2, and so forth are the possible return code values that can be passed back

from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description in Part 2 of this book.

errset (ierno,inoal,inomes,itrace,iusadr,irange);

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.
}

if irc == rc2
{
.
.
.
}

152 ESSL Version 3 Release 3 Guide and Reference

The statements following each test of the return code can perform any desired
action. This includes calling EINFO for more information about the error, as
described in step 7.

Step 7. Call EINFO for Information:

This calls the EINFO subroutine, which returns information about certain
computational errors, where:
v ierno is the error code of interest.
v inf1 and inf2 are the integer variables used to receive the information, where inf1

is assigned a value for all errors, and inf2 is assigned a value for some errors.
You must specify both arguments, as there are no optional arguments for C. For
a description of EINFO, see “EINFO—ESSL Error Information-Handler
Subroutine” on page 926.

Step 8. Check the Values in the Information Receivers: These statements check
the values returned in the output argument information receivers, inf1 and inf2,
which contain the information about the computational error.

Step 9. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 50. For an example, see “Example”.

Example
This 32-bit environment example shows an error code 2105, which returns one
piece of information: the index of the pivot element (i) near zero, causing
factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects of the error
handling for error 2105 by this program.

einfo (ierno,inf1,inf2);

errstr (ierno,storarea);

Chapter 4. Coding Your Program 153

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define _ESVERR
#include <essl.h>
#include <iostream.h>
#include <stdio.h>
.
.

/*DECLARE THE VARIABLES*/
main ()
{
int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int inf1,inf2,dummy;
char sav2105[8];
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;
einfo (0,dummy,dummy);

/*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105*/

ierno = 2105;
errsav (ierno,sav2105);
.
.

/*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
FOR THEM. THIS SHOWS HOW YOU CODE THE
ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */

ierno = 2101;
inoal = 0;
inomes = 0; /*A DUMMY ARGUMENT*/
itrace = 0; /*A DUMMY ARGUMENT*/
iusadr = 0; /*A DUMMY ARGUMENT*/
irange = 2105
errset (ierno,inoal,inomes,itrace, iusadr,irange);
.
.

/*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/

irc = dgeicd (a,lda,n,iopt,rcond,det,aux,naux);
if irc == 2

{
/*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR

CODE 2105 TO RETURN ONE PIECE OF INFORMATION
IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
INF2 IS NOT USED, BUT MUST BE SPECIFIED.
BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/

ierno = 2105;
einfo (ierno,inf1,inf2);

/*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
DESIRED ACTION*/

.

.
}

154 ESSL Version 3 Release 3 Guide and Reference

.

.
/*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY

FOR ERROR CODE 2105. ERROR PROCESSING
RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
THE ABOVE ERRSAV STATEMENT*/

ierno = 2105;
errstr (ierno,sav2105);
.
.
}

Chapter 4. Coding Your Program 155

|

156 ESSL Version 3 Release 3 Guide and Reference

Chapter 5. Processing Your Program

This section describes the ESSL-specific changes you need to make to your job
procedures for compiling, linking, and running your program.

You can use any procedures you are currently using to compile, link, and run your
Fortran, C, and C++ programs, as long as you make the necessary modifications
required by ESSL.

Notes:

1. The default search path for the ESSL libraries is: ⁄usr⁄lib. (Note that ⁄lib is a
symbolic link to ⁄usr⁄lib.)
If the libraries are installed somewhere else, add the path name of that
directory to the beginning of the LIBPATH environment variable, being careful
to keep ⁄usr⁄lib in the path. The correct LIBPATH setting is needed both for
linking and executing the program.
For example, if you installed the ESSL libraries in ⁄home⁄me⁄lib you would issue
ksh commands similar to the following in order to compile and link a program:

LIBPATH=⁄home⁄me⁄lib:⁄usr⁄lib
export LIBPATH
xlf -o myprog myprog.f -lessl

After setting the LIBPATH command, the ⁄home⁄me⁄lib directory is the directory
that gets searched first for the necessary libraries. This same search criterion is
used at both compile and link time and run time.

2. For the ESSL SMP Library, you can use the XL Fortran XLSMPOPTS or
OMP_NUM_THREADS environment variable to specify options which affect
SMP execution. For details, see the Fortran publications.

3. If you are accessing ESSL from a 64-bit–environment program, you must add
the -q64 compiler option.

4. ESSL supports the XL Fortran compile-time option -qextname. For details, see
the Fortran manuals.

5. In your job procedures, you must use only the allowable compilers and
libraries listed in Table 2 on page 8 for AIX.

Dynamic Linking Versus Static Linking
Only dynamic linking is supported for programs using ESSL.

Fortran Program Procedures
You do not need to modify your existing Fortran compilation procedures when
using ESSL.

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

If you are accessing ESSL from a Fortran program, you can compile and link using
the commands shown in the table below.

© Copyright IBM Corp. 1997, 2001 157

|

|

|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

ESSL Library Name Command

SMP
32-bit xlf_r -O -qnosave xyz.f -lesslsmp

64-bit xlf_r -O -qnosave -q64 xyz.f -lesslsmp

Serial
32-bit xlf_r -O -qnosave xyz.f -lessl

64-bit xlf_r -O -qnosave -q64 xyz.f -lessl

Serial
32-bit xlf -O xyz.f -lessl

64-bit xlf -O -q64 xyz.f -lessl

where xyz.f is the name of your Fortran program.

ESSL supports the XL Fortran compile-time option -qextname. For details, see the
Fortran manuals.

C Program Procedures
The ESSL header file essl.h, used for C and C++ programs, is installed in the
⁄usr⁄include directory. You do not need to modify your existing C compilation
procedures when using ESSL, unless you want to specify your own definitions for
complex data.

If you do want to specify your own definitions for short- and long-precision
complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile
and link command. Otherwise, you automatically use the definitions of short- and
long-precision complex data provided in the ESSL header file (as shown in the
table below).

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

If you are accessing ESSL from a C program, you can compile and link using the
commands also shown in the table below.

ESSL Library Name Command

SMP

32-bit
cc_r -O xyz.c -lesslsmp

cc_r -O -D_CMPLX -D_DCMPLX xyz.c -lesslsmp

64-bit
cc_r -O -q64 xyz.c -lesslsmp

cc_r -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lesslsmp

Serial

32-bit
cc_r -O xyz.c -lessl

cc_r -O -D_CMPLX -D_DCMPLX xyz.c -lessl

64-bit
cc_r -O -q64 xyz.c -lessl

cc_r -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lessl

158 ESSL Version 3 Release 3 Guide and Reference

|||

|
||

||

|
||

||

|
||

||
|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|||

|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

ESSL Library Name Command

Serial

32-bit
cc -O xyz.c -lessl

cc -O -D_CMPLX -D_DCMPLX xyz.c -lessl

64-bit
cc -O -q64 xyz.c -lessl

cc -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lessl

C++ Program Procedures
The ESSL header file essl.h, used for C and C++ programs, is installed in the
⁄usr⁄include directory. When using ESSL, the compiler option
-qnocinc=/usr/include/essl must be specified.

If you are using the IBM Open Class Complex Mathematics Library, you
automatically use the definition of short-precision complex data provided in the
ESSL header file. If you prefer to specify your own definition for short-precision
complex data, add -D_CMPLX to your commands (as shown in the table below).
Otherwise, ESSL will use the IBM Open Class Complex Mathematics Library or the
Standard Numerics Library, as described in “Selecting the <complex> or
<complex.h> Header File” on page 142.

If you prefer to explicitly specify that you want to use the Standard Numerics
Library facilities for complex arithmetic, add -D_ESV_COMPLEX_ to your
command as shown in the table below.

The ESSL header file supports two alternatives for declaring scalar output
arguments. By default, the arguments are declared to be type reference. If you
prefer for them to be declared as pointers, add -D_ESVCPTR to your commands
as shown in the table below.

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

If you are accessing ESSL from a C++ program, you can compile and link using the
commands shown in the table below.

ESSL Library Name Command

SMP

32-bit

xlC_r -O xyz.C -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX xyz.C -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ xyz.C -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR xyz.C -lesslsmp -qnocinc=/usr/include/essl

64-bit

xlC_r -O -q64 xyz.C -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX -q64 xyz.C -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ -q64 xyz.C -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR -q64 xyz.C -lesslsmp -qnocinc=/usr/include/essl

Chapter 5. Processing Your Program 159

||

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|||

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

ESSL Library Name Command

Serial

32-bit

xlC_r -O xyz.C -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX xyz.C -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ xyz.C -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR xyz.C -lessl -qnocinc=/usr/include/essl

64-bit

xlC_r -O -q64 xyz.C -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX -q64 xyz.C -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ -q64 xyz.C -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR -q64 xyz.C -lessl -qnocinc=/usr/include/essl

Serial

32-bit

xlC -O xyz.C -lessl -qnocinc=/usr/include/essl

xlC -O -D_CMPLX xyz.C -lessl -qnocinc=/usr/include/essl

xlC -O -D_ESV_COMPLEX_ xyz.C -lessl -qnocinc=/usr/include/essl

xlC -O -D_ESVCPTR xyz.C -lessl -qnocinc=/usr/include/essl

64-bit

xlC -O -q64 xyz.C -lessl -qnocinc=/usr/include/essl

xlC -O -D_CMPLX -q64 xyz.C -lessl -qnocinc=/usr/include/essl

xlC -O -D_ESV_COMPLEX_ -q64 xyz.C -lessl -qnocinc=/usr/include/essl

xlC -O -D_ESVCPTR -q64 xyz.C -lessl -qnocinc=/usr/include/essl

160 ESSL Version 3 Release 3 Guide and Reference

||

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

Chapter 6. Migrating Your Programs

This chapter explains many aspects of migrating your application programs to use
the ESSL subroutines. It covers:
v Migrating ESSL Version 3 programs to Version 3 Release 3
v Migrating ESSL Version 3 programs to Version 3 Release 2
v Migrating ESSL Version 3 programs to Version 3 Release 1.2
v Migrating ESSL Version 3 programs to Version 3 Release 1.1
v Migrating ESSL Version 2 programs to Version 3
v Planning for future migration
v Migrating between IBM Eserver pSeries and RS/6000 processors
v Migrating from other libraries to ESSL

Migrating ESSL Version 3 Programs to Version 3 Release 3
This section describes all the aspects of migrating your ESSL Version 3 application
programs to Version 3 Release 3.

Note: For a list of the new features added in ESSL Version 3 Release 3, see “What’s
New for ESSL Version 3 Release 3” on page xxi.

v No changes to your FORTRAN or C application programs are required if you
are migrating from ESSL Version 3 Release 2 to ESSL Version 3 Release 3.

v Changes may be required in your C++ application programs. The ESSL Version 3
Release 2 header file inconsistently declared output scalar arguments in the
function prototypes. Some were declared to be type reference and some as
pointers. In ESSL Version 3 Release 3, by default all scalar output arguments are
declared to be type reference; optionally, you may choose to have all scalar
output arguments declared as pointers (see “Output Scalar Arguments” on
page 140).
If you used any of the following subroutines in your C++ application program,
you will need to make updates to your application program and/or compilation
procedures:

_ROTG
_GEFCD
_PPFCD
_POFCD
_PPICD
_POICD
_GELLS
_PINT
_CSINT
_PTNQ
_URAND
_NRAND
_URXOR
STRIDE
DSRSM

v AIX 5L for POWER Version 5.1, with service, provides a more scalable
application binary interface for 64-bit applications. To take advantage of the
scalability improvements to 64-bit programs, all 64-bit applications and libraries
must be recompiled on AIX 5L for POWER Version 5.1, with service.

© Copyright IBM Corp. 1997, 2001 161

|

|

|

|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

ESSL Subroutines
The calling sequences for the subroutines in ESSL Version 3 Release 2 and ESSL
Version 3 Release 3 are identical.

Migrating ESSL Version 3 Programs to Version 3 Release 2
This section describes all the aspects of migrating your ESSL Version 3 application
programs to Version 3 Release 2.

Note: For a list of the new features added in ESSL Version 3 Release 2, see
“Changes for ESSL Version 3 Release 2” on page xxi.

v No changes to your application programs are required if you are migrating from
ESSL Version 3 Release 1.2 to ESSL Version 3 Release 2.

v The ESSL POWER2 and Thread-Safe POWER2 libraries are no longer provided.
Existing applications that use these libraries will continue to run because
appropriate symbolic links are created at install time to preserve binary
compatibility1 However, if you are creating new applications you should use:
– The ESSL Serial or SMP library instead of the ESSL Thread-Safe POWER2

Library.
– The ESSL Serial Library instead of the ESSL POWER2 Library.

v The ESSL POWER and Thread-Safe libraries have been replaced by a
thread-safe library referred to as the ESSL Serial Library.

ESSL Subroutines
The calling sequences for the subroutines in ESSL Version 3 Release 1.2 and ESSL
Version 3 Release 2 are identical. No changes to your application programs are
required if you are migrating from ESSL Version 3 Release 1.2 to ESSL Version 3
Release 2.

Migrating ESSL Version 3 Programs to Version 3 Release 1.2
This section describes all the aspects of migrating your ESSL Version 3 application
programs to Version 3 Release 1.2.

Note: For a list of the new features added in ESSL Version 3 Release 1.2, see
“Changes for ESSL Version 3 Release 1.2” on page xxii.

ESSL Subroutines
The calling sequences for the subroutines in ESSL Version 3 Release 1.1 and ESSL
Version 3 Release 1.2 are identical. No changes to your application programs are
required if you are migrating from ESSL Version 3 Release 1.1 to ESSL Version 3
Release 1.2.

Migrating ESSL Version 3 Programs to Version 3 Release 1.1
This section describes all the aspects of migrating your ESSL Version 3 application
programs to Version 3 Release 1.1.

Note: For a list of the new features added in ESSL Version 3 Release 1.1, see
“Changes for ESSL Version 3 Release 1.1” on page xxii.

1. Customers that require the tuned POWER2 libraries for performance reasons have the option of retaining the ESSL Version 3
Release 1.2 POWER2 libraries when ESSL Version 3 Release 2 is installed. See the ESSL Install Memo for details.

162 ESSL Version 3 Release 3 Guide and Reference

|

|
|

ESSL Subroutines
The calling sequences for the subroutines in ESSL Version 3 and ESSL Version 3
Release 1.1 are identical.

Distinct libraries are provided for AIX 4.2.1 and AIX 4.3.2
v For AIX 4.2.1, the ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2

Library, and the ESSL SMP Library were built using the pthreads draft 7
supplied on AIX 4.2.1. (This is the same as ESSL 3.1)

v For AIX 4.3.2, the ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2
Library, and the ESSL SMP Library were built using the pthreads library that
conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Threaded applications built using ESSL 3.1 will continue to run with ESSL 3.1.1.

If you are migrating to a 64-bit environment you may need to make changes to
your call to ERRSET. See “ERRSET—ESSL ERRSET Subroutine for ESSL” on
page 930.

Migrating ESSL Version 2 Programs to Version 3
This section describes all the aspects of migrating your ESSL Version 2 application
programs to Version 3.

Note: For a list of the new features and subroutines added in ESSL Version 3, see
“Changes for ESSL Version 3” on page xxii.

ESSL Subroutines
The calling sequences for the subroutines in ESSL Version 2 and ESSL Version 3 are
identical. This includes the new ESSL SMP and Thread-Safe Libraries that are
included in the ESSL Version 3 product. You do not have to change your existing
application programs that call ESSL subroutines when migrating to the ESSL
Version 3 product. You must, however, re-link your application program. Therefore,
you can simply re-link your existing programs to take advantage of the the
increased performance of using the ESSL SMP Library on the SMP processors.

For the _GEF and _GEFCD subroutines, the first column of the matrix L with the
corresponding Uii = 0 diagonal element is identified in a computational error
message. Previously, the last column was identified. You do not have to make any
modifications to your existing application programs that call these subroutines.

ESSL Messages
The text of message format has changed. ESV has been removed from the message
text. For details on the new format, see “Message Format” on page 172.

Some input-argument and computational error message numbers have been
changed. The old message numbers can still be used when calling ERRSET,
however, you should migrate to the new message numbers. The following
describes which error messages have been modified:

Old Error Message Number New Error Message Number

2074 2608

2123 2609

2128 2700

Chapter 6. Migrating Your Programs 163

Planning for Future Migration
With respect to planning for the future, if working storage does not need to persist
after the subroutine call, you should use dynamic allocation. Otherwise, you
should use the processor-independent formulas or simple formulas for calculating
the values for the naux arguments in the ESSL calling sequences. Two things may
occur that could cause the minimum values of naux, returned by ESSL error
handling, to increase in the future:
v If changes are made to the ESSL subroutines to improve performance
v If changes are necessary to support future processors

The formulas allow you to specify your auxiliary storage large enough to
accommodate any future improvements to ESSL and any future processors. If you
do not provide, at least, these amounts of storage, your program may not run in
the future.

You should use the following rule of thumb: To protect your application from
having to be recoded in the future because of possible increased requirements for
auxiliary storage, use dynamic allocation if possible. If the working storage must
persists after the subroutine call, then you should provide as much storage as
possible in your current application. In determining the right amount to specify,
you should weigh your storage constraints against the inconvenience of making
future changes, then specify what you think is best. If possible, you should provide
this larger amount of storage to prevent future migration problems.

Migrating between IBM Eserver pSeries and RS/6000 Processors
This section describes all the aspects of migrating your ESSL application programs
(back and forth) between the PowerPC, POWER, POWER2, POWER3, POWER3–II,
and POWER4 processors.

Auxiliary Storage
The minimum amount of auxiliary storage returned by ESSL error handling may
vary among the IBM Eserver pSeries and RS/6000 processors for the following
subroutines: all the Fourier transform subroutines, SCONF, SCORF, and SACORF.
Therefore, to guarantee that your application programs always migrate from any
platform to any other platform, you should use the processor independent
formulas to determine the amount of auxiliary storage to use.

Bitwise-Identical Results
Because of hardware and ESSL design differences, the results you obtain when
migrating from one ESSL Library to another may not be bitwise identical. The
results, however, are mathematically equivalent.

Migrating from Other Libraries to ESSL
This section describes some general aspects of moving from an IBM or non-IBM
engineering and scientific library to ESSL.

Migrating from ESSL/370
There is a high degree of compatibility between ESSL/370 and ESSL for AIX.
However you may need to make some coding changes for certain subroutines.

164 ESSL Version 3 Release 3 Guide and Reference

|

|

|

Migrating from Another IBM Subroutine Library
If you are migrating from other IBM library products—such as Subroutine
Library—Mathematics (SL MATH) or Scientific Subroutine Package (SSP), which
have some functions similar to ESSL—the ESSL calling sequences differ from the
calling sequences you are currently using. Your program must be modified to add
the ESSL calling sequences and make the other ESSL-related coding changes.

If you are migrating from the Basic Linear Algebra Subroutine Library provided
with the RS/6000 basic operating system, your calling sequences do not need to be
changed.

Migrating from LAPACK
ESSL contains a few subroutines that conform to the LAPACK interface (see
“Appendix B. LAPACK” on page 961). If you are using these subroutines, no
coding changes are needed to migrate to ESSL.

Additionally, you may be interested in using the Call Conversion Interface (CCI)
that is available with LAPACK. The CCI substitutes a call to an ESSL subroutine in
place of an LAPACK subroutine whenever an ESSL subroutine provides either
functional or near-functional equivalence. Using the CCI allows LAPACK users to
obtain the optimized performance of ESSL for an additional subset of LAPACK
subroutines. For details, see reference [40].

Migrating from a Non-IBM Subroutine Library
If you are using a non-IBM library, ESSL may provide subroutines corresponding
to those you are currently using. You may choose to migrate your program to
benefit from the increased performance offered by the ESSL subroutines. In this
case, you may have to recode your program to use the ESSL calling sequences,
because the names and arguments used by ESSL may be different from those used
by the non-IBM library. On the other hand, if you are using any of the standard
Level 1, 2, and 3 BLAS or LAPACK routines that correspond to ESSL subroutines,
you do not need to recode the calling sequences. The ESSL calling sequences are
the same as the public domain code.

Chapter 6. Migrating Your Programs 165

166 ESSL Version 3 Release 3 Guide and Reference

Chapter 7. Handling Problems

This chapter provides the following information for your use when dealing with
errors:
v How to obtain IBM support.
v What to do about NLS (National Language Support) problems.
v A description of the different types of errors that can occur in ESSL. It explains

what happens when an error occurs and, in some instances, how you can use
error handling to obtain further information.

v All of the ESSL error messages are categorized into the different error types.
There is also a description of the error message format.

Where to Find More Information About Errors
Specific errors associated with each ESSL subroutine are listed under ″Error
Conditions″ in each subroutine description in Part 3 of this book.

Getting Help from IBM Support
Should you require help from IBM in resolving an ESSL problem, report it and
provide the following information, if available and appropriate.
1. Your customer number
2. The ESSL program number:
v 5765-C42

This is important information that speeds up the correct routing of your call.
3. The version and release of the operating system that you are running on. To get

this information on AIX, enter the following command:
oslevel

4. The names and versions of key products being run. To get this information on
AIX, enter the following command:

lslpp -h product

where the appropriate values of product are listed in Table 30.

Table 30. Product File Set Names

Product File Sets Descriptive Name

essl.* ESSL

xlfrte XL Fortran Run-Time Environment

xlsmp.rte SMP Run-Time Environment

xlfcmp XL Fortran Compiler

vac.C C for AIX Compiler

vacpp.cmp.C VisualAge® C++ Professional for AIX
Compiler

5. The message that is returned when an error is detected.
6. Any error message relating to core dumps.

© Copyright IBM Corp. 1997, 2001 167

|

7. The compiler listings, including compiler options in effect, and any run-time
listings produced

8. Program changes made in comparison with a previous successful run
9. A small test case demonstrating the problem using the minimum number of

statements and variables, including input data

Consult your IBM Service representative for more assistance.

National Language Support
For National Language Support (NLS), all ESSL subroutines display messages
located in externalized message catalogs. English versions of the message catalogs
are shipped with the IBM Engineering and Scientific Subroutine Library for AIX
product, but your site maybe using its own translated message catalogs. The AIX
environment variable NLSPATH is used by the various ESSL subroutines to find
the appropriate message catalog. NLSPATH specifies a list of directories to search
for message catalogs. The directories are searched, in the order listed, to locate the
message catalog. In resolving the path to the message catalog, NLSPATH is
affected by the value of the environment variables LC_MESSAGES and LANG. If
you get an error saying that a message catalog is not found and want the default
message catalog, enter the following:

export NLSPATH = /usr/lib/nls/msg/%L/%N

export LANG = C

The ESSL message catalogs are in English, and are located in the following
directories:
/usr/lib/nls/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see AIX General Programming
Concepts: Writing and Debugging Programs.

If ESSL cannot successfully find a message, ESSL returns message 2799, indicating
which message could not be located. Message 2799 is described in “Miscellaneous
Error Messages” on page 171.

Dealing with Errors
At run time, you can encounter a number of different types of errors that are
specifically related to the use of the ESSL subroutines:
v Program exceptions
v Input-argument errors (2001-2099) and (2200–2299)
v Computational errors (2100-2199)
v Resource errors (2401-2499)
v Informational and Attention messages (2600-2699)
v Miscellaneous errors (2700-2799)

Program Exceptions
The program exceptions you can encounter in ESSL are described in ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

168 ESSL Version 3 Release 3 Guide and Reference

|
|
|

ESSL Input-Argument Error Messages
If you receive an error message in the form 2538-20nn or 2538–22nn, you have an
input-argument error in the calling sequence for an ESSL subroutine. Your program
terminated at this point unless you did one of the following:
v Specified the ESSL user exit routine, ENOTRM, with ERRSET to determine the

correct input argument values in your program for the optionally-recoverable
ESSL errors 2015, 2030 or 2200. For details on how to do this, see “Chapter 4.
Coding Your Program” on page 105.

v Reset the number of allowable errors (2099) during ESSL installation or using
ERRSET in your program. This is not recommended for input-argument errors.

Note: For many of the ESSL subroutines requiring auxiliary storage, you can avoid
program termination due to error 2015 by allowing ESSL to dynamically
allocate auxiliary storage for you. You do this by setting naux = 0 and
making error 2015 unrecoverable. For details on which aux arguments allow
dynamic allocation and how to specify them, see the subroutine descriptions
in Part 2 of this book.

The name of the ESSL subroutine detecting the error is listed as part of the
message. The argument number(s) involved in the error appears in the message
text. See “Input-Argument Error Messages(2001-2099)” on page 172 for a complete
description of the information contained in each message and for an indication of
which messages correspond to optionally-recoverable errors. Regardless of whether
the name in the message is a user-callable ESSL subroutine or an internal ESSL
routine, the message-text and its unique parts apply to the user-callable ESSL
subroutine. Return code values are described under “Error Conditions” for each
ESSL subroutine in Part 2 of this book.

You may get more than one error message, because most of the arguments are
checked by ESSL for possible errors during each call to the subroutine. The ESSL
subroutine returns as many messages as there are errors detected. As a result,
fewer runs are necessary to diagnose your program.

Fix the error(s), recompile, relink, and rerun your program.

ESSL Computational Error Messages
If you receive an error message in the form 2538-21nn, you have a computational
error in the ESSL subroutine. A computational error is any error occurring in the
ESSL subroutine while using the computational data (that is, scalar and array
data). The name of the ESSL subroutine detecting the error is listed as part of the
message. Regardless of whether the name in the message is a user-callable ESSL
subroutine or an internal ESSL routine, the message-text and its unique parts apply
to the user-callable ESSL subroutine. A nonzero return code is returned when the
ESSL subroutine encounters a computational error. See “Computational Error
Messages(2100-2199)” on page 179 for a complete description of the information in
each message. Return code values are described under “Error Conditions” for each
ESSL subroutine in Part 2 of this book.

Your program terminates for some computational errors unless you have called
ERRSET to reset the number of allowable errors for that particular error, and the
number has not been exceeded. A message is issued for each computational error.
You should use the message to determine where the error occurred in your
program.

Chapter 7. Handling Problems 169

If you called ERRSET and you have not reached the limit of errors you had set,
you can check the return code. If it is not 0, you should call the EINFO subroutine
to obtain information about the data involved in the error. EINFO provides the
same information provided in the messages; however, it is provided to your
program so your program can check the information during run time. Depending
on what you want to do, you may choose to continue processing or terminate your
program after the error occurs. For information on how to make these changes in
your program to reset the number of allowable errors, how to diagnose the error,
and how to decide whether to continue or terminate your program, see “Chapter 4.
Coding Your Program” on page 105.

If you are unable to solve the problem, report it and provide the following
information, if available and appropriate:
v The message number and the module that detected an error
v The system dump, system error code, and system log of this job
v The compiler listings, including compiler options in effect, and any run-time

listings produced
v Program changes made in comparison with a previous successful run
v A small test case demonstrating the problem using the minimum number of

statements and variables, including input data
v A brief description of the problem

ESSL Resource Error Messages
If you receive a message in the form 2538-24nn, it means that ESSL issued a
resource error message.

A resource error occurs when a buffer storage allocation request fails in a ESSL
subroutine. In general, the ESSL subroutines allocate internal auxiliary storage
dynamically as needed. Without sufficient storage, the subroutine cannot complete
the computation.

When a buffer storage allocation request fails, a resource error message is issued,
and the application program is terminated. You need to reduce the memory
constraint on the system or increase the amount of memory available before
rerunning the application program.

The following ways may reduce memory constraints:
v Investigate the load of your process and run in a more dedicated environment.
v Increase your processor’s paging space.
v Select a machine with more memory.
v Consider specifying the -bmaxdata binder option when linking your program.

For details see the Fortran publications.
v Check the setting of your user ID’s user limit (ulimit). (See the AIX Commands

Reference).

ESSL Informational and Attention Messages
If you receive a message in the form 2538-26nn, it means that ESSL issued an
informational or attention message.

Informational Messages
When you receive an informational message, check your application to determine
why the condition was detected.

170 ESSL Version 3 Release 3 Guide and Reference

|
|

ESSL Attention Messages
An attention message is issued to describe a condition that occurred. ESSL is able
to continue processing, but performance may be degraded.

One condition that may produce an attention message is when enough work area
was available to continue processing, but was not the amount initially requested.
ESSL does not terminate your application program, but performance may be
degraded. If you want to reduce the memory constraint on the system or increase
the amount of memory available to eliminate the attention message, see the
suggestions in “ESSL Resource Error Messages” on page 170. For a list of
subroutines that may generate this type of attention message, see Table 31.

Table 31. ESSL Subroutines

Subroutine Names

Matrix-Vector Linear Algebra Subprograms:
_GEMV, _GER, _SPMV, _SYMV, _SPR, _SYR, _SPR2, _SYR2
_GERC, _GERU, _HPMV, _HEMV, _HPR, _HER, _HPR2, _HER2
_SBMV, _TBMV, _GBMV
_TPMV
_TRMV

Matrix Operations:
_GEMM, _GEMUL
_SYMM, _SYR2K, _TRMM
_HEMM, _HER2K

Dense Linear Algebraic Equations:
_POF, _POICD, _PPF, _PPFCD, _PPICD, _POTRF, _POTRI
_GEICD, _GETRI, _TPI, _TRI, _TRTRI, _TPTRI
_TRSM, _TPSV, _TRSV

Banded Linear Algebraic Equations:
STBSV, DTBSV

Linear Least Squares:
_GESVS

Fourier Transforms:
_CFT, _CFT3
_RCFT, _RCFT3
_CRFT, _CRFT3

Miscellaneous Error Messages
If you receive a message in the form 2538-27nn, it means that ESSL issued a
miscellaneous error message.

A miscellaneous error is an error that does not fall under any other categories.

When ESSL detects a miscellaneous error, you receive an error message with
information on how to proceed and your application program is terminated.

Messages
This section explains the conventions used for the ESSL messages and lists all the
ESSL messages. For a description of each of the four types of ESSL messages, see
“Dealing with Errors” on page 168.

Chapter 7. Handling Problems 171

|
|
|

Message Conventions
This section describes the message conventions for the ESSL product.

About Upper- and Lowercase
The literals, such as, 'N', 'T', 'U', and so forth, appear in the messages in this book
in uppercase; however, they may be specified in your ESSL calling sequence in
either upper- or lowercase, for example, 'n', 't', and 'u'.

Message Format
The ESSL messages are issued in your output in the following format:

The parts of the ESSL message are as follows:

rtn-name
gives the name of the ESSL subroutine that encountered the error.

2538 is the ESSL component identification number.

mm indicates the type of ESSL error message:
20—Input-argument error message
21—Computational error message
22—Input-argument error message
24—Resource error message
26—Information and attention message
27—Miscellaneous error message

nn is the message identification number.

message-text
describes the nature of the error. Where one of several possible
message-texts can be issued for a particular ESSL error, they are listed in
this book with an “or” between them. The possible unique parts are:
v The argument number of each argument involved in the error is

included in the message description as (ARG NO. _)
v Additional information about the error is included in the message. The

placement of this information is shown in the messages as (_)

Input-Argument Error Messages(2001-2099)
RTN_NAME : 2538-2001
The number of elements (ARG NO. _) in a vector must be greater than
or equal to zero.

RTN_NAME : 2538-2002
The stride (ARG NO. _) for a vector must be nonzero.

RTN_NAME : 2538-2003
The number of rows (ARG NO. _) in a matrix must be greater than or equal
to zero.

RTN_NAME : 2538-2004
The number of columns (ARG NO. _) in a matrix must be greater than or
equal to zero.

RTN_NAME : 2538-2005
The size of the leading dimension (ARG NO. _) of an array must be greater
than zero.

rtn-name : 2538-mmnn
message-text

Figure 10. Message Format

172 ESSL Version 3 Release 3 Guide and Reference

RTN_NAME : 2538-2006
The number of rows (ARG NO. _) of a matrix must be less than or equal
to the size of the leading dimension (ARG NO. _) of its array.

RTN_NAME : 2538-2007
The degree of a polynomial (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 2538-2008
The number of elements (ARG NO. _) to be scanned must be greater than or
equal to 2.

RTN_NAME : 2538-2009
The number of elements (ARG NO. _) in a vector to be processed must be
greater than or equal to 3.

RTN_NAME : 2538-2010
The transform length (ARG NO. _) must be a power of 2.

RTN_NAME : 2538-2011
The number of points used in the interpolation (ARG NO. _) must be
greater than or equal to zero and less than or equal to the number of data
points (ARG NO. _).

RTN_NAME : 2538-2012
The transform length (ARG NO. _) must be less than or equal to (_).

RTN_NAME : 2538-2013
The transform length (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 2538-2014
The routine must be initialized with the present value of (ARG NO. _).

RTN_NAME : 2538-2015
The number of elements (ARG NO. _) in a work array must be greater than
or equal to (_).

RTN_NAME : 2538-2016
The form (ARG NO. _) of a matrix must be 'N' or 'T'.

or
The form (ARG NO. _) of a matrix must be 'N', 'T', or 'C'.

or
The form (ARG NO. _) of a matrix must be 'N' or 'C'.

RTN_NAME : 2538-2017
The dimension (ARG NO. _) of the matrices must be greater than or equal to zero.

RTN_NAME : 2538-2018
The matrix form is specified by (ARG NO. _); therefore, the leading
dimension (ARG NO. _) of its array must be greater than or equal to the
number of its rows (ARG NO. _).

RTN_NAME : 2538-2019
The number of sequences (ARG NO. _) must be greater than zero.

RTN_NAME : 2538-2020
(ARG NO. _) must be nonzero.

RTN_NAME : 2538-2021
The storage control switch (ARG NO. _) must be 1, 2, 3, or 4.

RTN_NAME : 2538-2022
(ARG NO. _) must be less than (_).

RTN_NAME : 2538-2023
The outer loop increment (ARG NO. _) must be greater than or equal to zero.

Chapter 7. Handling Problems 173

RTN_NAME : 2538-2024
The stride (ARG NO. _) for a vector must be greater than or equal to zero.

RTN_NAME : 2538-2025
The stride (ARG NO. _) for a vector must be greater than zero.

RTN_NAME : 2538-2026
The stride (ARG NO. _) for a vector must be greater than or equal to (_).

RTN_NAME : 2538-2027
The order (ARG NO. _) of a matrix must be greater than or equal to zero.

RTN_NAME : 2538-2028
The job option argument (ARG NO. _) must be 0, 1, or 2.

or
The job option argument (ARG NO. _) must be 0, 1, 2, or 3.

or
The job option argument (ARG NO. _) must be 0, 1, 2, 10, 11, or 12.

or
The job option argument (ARG NO. _) must be 0, 1, 10, or 11.

or
The job option argument (ARG NO. _) must be 0, 1, 20, or 21.

or
The job option argument (ARG NO. _) must be 0, 1, 10, 11, 20, 21, 30,
or 31.

or
The job option argument (ARG NO. _) must be 0, 1, 2, 3, or 4.

RTN_NAME : 2538-2029
The job option argument (ARG NO. _) must be 0 or 1.

RTN_NAME : 2538-2030
The transform length (ARG NO. _) is not an allowed value. The next higher
allowed value is (_).

RTN_NAME : 2538-2031
The resulting convolution length obtained from ARG NO. 10 = (_),
ARG NO.11 = (_), ARG NO.13 = (_), and ARG NO.14 = (_)
must be less than (_).

RTN_NAME : 2538-2032
The size of the leading dimension (ARG NO. _) of the matrix must be greater
than or equal to (_), the bandwidth constraint.

RTN_NAME : 2538-2033
The lower bandwidth (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 2538-2034
The upper bandwidth (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 2538-2035
The half-band bandwidth (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 2538-2036
The lower bandwidth (ARG NO. _) must be less than the order (ARG NO. _)
of the matrix.

RTN_NAME : 2538-2037
The upper bandwidth (ARG NO. _) must be less than the order (ARG NO. _)
of the matrix.

RTN_NAME : 2538-2038
The half-band bandwidth (ARG NO. _) must be less than the order (ARG NO. _)
of the matrix.

RTN_NAME : 2538-2039
(ARG NO. _) must be greater than zero.

174 ESSL Version 3 Release 3 Guide and Reference

RTN_NAME : 2538-2040
Insufficient storage allocated for positive definite solve.
(_) additional bytes required.

RTN_NAME : 2538-2041
The resulting correlation length obtained from ARG NO. 8 = (_) and
ARG NO. 10 = (_) must be less than (_).

RTN_NAME : 2538-2042
(ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 2538-2043
(ARG NO. _) must be greater than (_).

RTN_NAME : 2538-2044
The number of initialized coefficients (ARG NO. _) cannot exceed the size
of the coefficient vector (ARG NO. _).

RTN_NAME : 2538-2045
The order specified (ARG NO. _) is not supported for this quadrature method.
The nearest supported order is (_).

RTN_NAME : 2538-2046
The scaling parameter (ARG NO. _) must be greater than zero for this
quadrature method.

RTN_NAME : 2538-2047
The scaling parameter (ARG NO. _) must be nonzero for this quadrature
method.

RTN_NAME : 2538-2048
The sum of (ARG NO. _) and (ARG NO. _) must be nonzero for this quadrature
method.

RTN_NAME : 2538-2049
The number of data points (ARG NO. _) must be greater than one in order
to perform numerical quadrature.

RTN_NAME : 2538-2050
The number of columns specified for the arrays to store the matrix in
compressed matrix mode (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 2538-2051
The number of columns (ARG NO. _) specified for the matrix used to store
the sparse matrix in compressed mode must be greater than zero.

RTN_NAME : 2538-2052
The total number of non-zero elements of the input sparse matrix stored by
rows, obtained from element (_) of the row pointers array (ARG NO. _),
must be greater than or equal to zero.

RTN_NAME : 2538-2053
The number of non-zero elements in row (_) obtained from the row pointer
array (ARG NO. _) is less than zero.

RTN_NAME : 2538-2054
The number of diagonals (ARG NO. _) specified for the matrix used to store the
sparse matrix in compressed diagonal mode must be greater than zero.

RTN_NAME : 2538-2055
Element (_) of the vector used to store the diagonal numbers (ARG NO. _)
is incompatible with the order of the sparse matrix (ARG NO. _).

RTN_NAME : 2538-2056
The matrix is singular because the number of non-zero entries (ARG NO. _)
is zero.

Chapter 7. Handling Problems 175

RTN_NAME : 2538-2057
Element (_) in the integer parameter vector (ARG NO. _) must be greater than
or equal to zero.

RTN_NAME : 2538-2058
Element (_) in the integer parameter vector (ARG NO. _) must be (_),(_), or (_).

RTN_NAME : 2538-2059
Element (_) in the real parameter vector (ARG NO. _) must be greater than zero.

RTN_NAME : 2538-2060
The size of the leading dimension (ARG NO. _) of an array must be greater
than or equal to the maximum of (ARG NO. _) and (ARG NO. _).

RTN_NAME : 2538-2061
Parameter (ARG NO. _), which specifies the number of columns of the input
sparse matrix (ARG NO. _ and ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 2538-2062
The number of random numbers generated (ARG NO. _) must be even and
greater than or equal to zero.

RTN_NAME : 2538-2063
SIDE (ARG NO. _), which specifies whether the triangular input matrix
(ARG NO. _) appears on the left or right of the other input matrix, must
be 'L' or 'R'.

RTN_NAME : 2538-2064
UPLO (ARG NO. _), which specifies whether an input matrix (ARG NO. _)
is upper or lower triangular, must be 'U' or 'L'.

RTN_NAME : 2538-2065
DIAG (ARG NO. _), which specifies whether an input matrix (ARG NO. _)
is unit triangular, must be 'U' or 'N'.

RTN_NAME : 2538-2066
Given the value which has been assigned to SIDE (ARG NO. _), the leading
dimension (ARG NO. _) for the triangular input matrix must be greater
than or equal to (ARG NO. _).

RTN_NAME : 2538-2067
TRANSA (ARG NO. _) specifies whether an input matrix (ARG NO. _), its transpose,
or its conjugate transpose should be used. TRANSA must be 'N', 'T', or 'C'.

RTN_NAME : 2538-2068
The size of the leading dimension (ARG NO. _) of an array must be greater
than or equal to zero.

RTN_NAME : 2538-2069
The vector section size of the scalar library (ARG NO. _) must be 128 or 256.

RTN_NAME : 2538-2070
Element (_) in (ARG NO. _) must be 0 or 1.

or
Element (_) in (ARG NO. _) must be greater than zero.

or
Element (_) in (ARG NO. _) must be greater than or equal to zero.

or
Element (_) in (ARG NO. _) must be greater than or equal to zero and
less than or equal to 1.

or
Element (_) in (ARG NO. _) must be greater than the preceding element.

or
Element (_) in (ARG NO. _) must be greater than or equal to 1 and
less than or equal to n.

or

176 ESSL Version 3 Release 3 Guide and Reference

Element (_) in (ARG NO. _) must be -1 or 1.
or

Element (_) in (ARG NO. _) must be nonzero.
or

Element (_) in (ARG NO. _) must be 0, 1, 2, 10, or 11.
or

Element (_) in (ARG NO. _) must be 0, 1, 2, 10, 11, 100, 102, or 110.
or

Element (_) in (ARG NO. _) must be 0.
or

Element (_) in (ARG NO. _) must be 1.
or

Element (_) in (ARG NO. _) must be 0, 1, 2, 10, 11, 100, 101, 102,
110, or 111.

or
Element (_) in (ARG NO. _) must be 1, 2, 3, or 4.

or
Element (_) in (ARG NO. _) must be 1, 2, 3, 4, or 5.

RTN_NAME : 2538-2071
The number of eigenvalues (ARG NO. _) must be less than or equal to the
order of the matrix (ARG NO. _).

RTN_NAME : 2538-2072
The work area (ARG NO. _) does not contain a valid vector seed. The
routine must be called with a nonzero value of ISEED (ARG NO. _).

RTN_NAME : 2538-2073
(ARG NO. _) must be a double precision whole number greater than or equal
to 1.0 and less than 2147483647.0.

RTN_NAME : 2538-2074
Performance can be improved by using a larger work array. For best performance,
specify the number of elements (ARG NO. _) in the work array to be greater
than or equal to (_).

RTN_NAME : 2538-2075
The data type parameter (ARG NO. _) must be 'S', 'D', 'C', or 'Z'.

RTN_NAME : 2538-2076
(ARG NO. _) must be greater than or equal to (_) and smaller than (_).

RTN_NAME : 2538-2077
The matrix is singular. Column (_) is empty in the matrix specified by
(ARG NO. _), (ARG NO. _), and (ARG NO. _).

RTN_NAME : 2538-2078
The matrix is singular. Row (_) is empty in the matrix specified by
(ARG NO. _), (ARG NO. _), and (ARG NO. _).

RTN_NAME : 2538-2079
The matrix, specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _),
contains at least one duplicate column index in row (_).

RTN_NAME : 2538-2080
Element (_) in (ARG NO. _) must be greater than or equal to (_)
and less than or equal to (_).

or
Element (_) in (ARG NO. _) must be greater than or equal to (_) and
less than or equal to (ARG NO. _).

or
Element (_) in (ARG NO. _) must be greater than or equal to element (_)
and less than or equal to (_).

or
Element (_) in (ARG NO. _) must be zero or must be greater than or
equal to (_).

Chapter 7. Handling Problems 177

RTN_NAME : 2538-2081
Element (_) in (ARG NO. _) must be less than or equal to (_).

RTN_NAME : 2538-2082
Element (_) in (ARG NO. _) may cause incorrect or misleading results.
A nonzero number with absolute value less than or equal to 1 is recommended.

or
Element (_) in (ARG NO. _) may cause incorrect or misleading results.
A positive number less than or equal to 1 is recommended.

RTN_NAME : 2538-2083
The pivot tolerance (element (_) in (ARG NO. _)) may cause incorrect
or misleading results. A number greater than or equal to 0 and less than or
equal to 1 is recommended.

RTN_NAME : 2538-2084
The dimension (ARG NO. _) of the array (ARG NO. _) must be greater than or
equal to (_).

RTN_NAME : 2538-2085
The number of steps after which the generalized minimum residual method is
restarted, element (_) in (ARG NO. _), must be greater than 0.

RTN_NAME : 2538-2086
The acceleration parameter, element (_) in (ARG NO. _), must be greater than 0
when using the SSOR preconditioner.

RTN_NAME : 2538-2087
STOR (ARG NO. _), which specifies the storage variation used to represent
the input sparse matrix, must be 'G', 'L', or 'U'.

RTN_NAME : 2538-2088
INIT (ARG NO. _), which specifies the type of computation to be performed,
must be 'I', or 'S'.

RTN_NAME : 2538-2089
Element (_) in (ARG NO. _) must be greater than or equal to (_).

or
Element (_) in (ARG NO. _) must be greater than or equal to element (_).

RTN_NAME : 2538-2090
For level (_), the number of grid points for dimension (_) must be
an odd number greater than 1.

RTN_NAME : 2538-2091
Since the mesh spacing (ARG NO. _) here is not constant, the second order
prolongation method must be used. That is, element (_) of (ARG NO. _)
must be (_).

RTN_NAME : 2538-2092
The index into (ARG NO. _) is out of range.
This index is element (_,_) of (ARG NO. _).

RTN_NAME : 2538-2093
The index into (ARG NO. _) is out of range.
This index is element (_,_,_) of (ARG NO. _).

RTN_NAME : 2538-2094
For dimension (_) on level (_), the mesh spacing must be changed to
a positive value.

RTN_NAME : 2538-2095
Excess space in (ARG NO. _) has been decreased and may be inadequate.
To avoid this, specify the coarse level matrix as the final item in this
argument.

RTN_NAME : 2538-2096

178 ESSL Version 3 Release 3 Guide and Reference

For level (_), the matrix type, solver, and preconditioner are incompatible.

RTN_NAME : 2538-2097
The solver requested for level (_) requires a square matrix.
Elements (_,_,_) and (_,_,_) in (ARG NO. _) must be equal.

RTN_NAME : 2538-2098
Element (_,_) of (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 2538-2099
End of input argument error reporting. For more information, refer to
Engineering and Scientific Subroutine Library Guide and Reference (SA22-7272).

Note: There are more input-argument error messages listed in “Input-Argument
Error Messages(2200-2299)” on page 182

Computational Error Messages(2100-2199)
RTN_NAME : 2538-2100
The computed index of a vector is out of the range (_) to (_).

RTN_NAME : 2538-2101
Eigenvalue (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2102
Eigenvector (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2103
The matrix (ARG NO. _) is singular.
Zero diagonal element (_) has been detected.

RTN_NAME : 2538-2104
The matrix (ARG NO. _) is not positive definite. The last diagonal element
with nonpositive value is (_).

RTN_NAME : 2538-2105
Factorization failed due to near zero pivot number (_).

RTN_NAME : 2538-2106
Vector boundary misalignment detected in ESSL scalar library.

RTN_NAME : 2538-2107
Singular value (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2108
The matrix specified by (ARG NO. _) and (ARG NO. _) is not definite
because the diagonal is not of constant sign.

RTN_NAME : 2538-2109
The matrix specified by (ARG NO. _) and (ARG NO. _) is not definite
and the iterative process is stopped at iteration number (_).

RTN_NAME : 2538-2110
The maximum allowed number of iterations, element number (_) of (ARG NO. _),
were performed but the iterative process did not converge to a solution
according to the stopping procedure.

RTN_NAME : 2538-2111
The factorization matrix (ARG NO. _) is not consistent with the sparse
matrix specified by (ARG NO. _) and (ARG NO. _).

RTN_NAME : 2538-2112
The incomplete factorization of the sparse matrix specified by
(ARG NO. _) and (ARG NO. _) is not stable.

RTN_NAME : 2538-2113

Chapter 7. Handling Problems 179

Unexpected nonzero vector mask detected in ESSL scalar routine.
Contact your IBM Service Representative.

RTN_NAME : 2538-2114
Eigenvalue (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2115
The matrix (ARG NO. _) is not positive definite.
The leading minor of order (_) has a nonpositive determinant.

RTN_NAME : 2538-2116
The matrix specified by (ARG NO. _) and (ARG NO. _) is singular.

RTN_NAME : 2538-2117
The pivot element in column (_) is smaller than the first element in
(ARG NO. _).

RTN_NAME : 2538-2118
The pivot element in row (_) is smaller than the first element in
(ARG NO. _).

RTN_NAME : 2538-2119
The storage space, specified by (ARG NO. _), is insufficient.

RTN_NAME : 2538-2120
The matrix is singular. The last row processed in the matrix was row (_).

RTN_NAME : 2538-2121
The matrix is singular. the last column processed was column (_).

RTN_NAME : 2538-2122
The factorization failed. No pivot element was found in the active submatrix.

RTN_NAME : 2538-2123
Performance can be improved by specifying a larger value for (ARG NO. _).
(_) compressions were performed.

RTN_NAME : 2538-2124
The data contained in AUX1, (ARG NO. _), was computed for a different
algorithm.

RTN_NAME : 2538-2125
This subroutine initializes part of the ESSL run-time environment. It may
be called only once, at the beginning of the run. It must be called before
any ESSL computational routines are called.

RTN_NAME : 2538-2126
The pivot value at row (_) is not acceptable based on pivot criteria
((ARG NO. _) and (ARG NO. _)). No fixup was applicable to this pivot.
The matrix (ARG NO. _) may be singular or not definite.

RTN_NAME : 2538-2127
The pivot value at row (_) was replaced with element (_) in
(ARG NO. _). The matrix (ARG NO. _) may be singular or not definite.

RTN_NAME : 2538-2128
Internal ESSL error. contact your IBM service representative.

RTN_NAME : 2538-2129
The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _)
is not definite because the diagonal is not of constant sign or some diagonal
element is zero.

RTN_NAME : 2538-2130
The incomplete factorization of the sparse matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _) is not stable.

180 ESSL Version 3 Release 3 Guide and Reference

RTN_NAME : 2538-2131
The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _) is singular.

RTN_NAME : 2538-2132
Element (_) in (ARG NO. _) indicates that factorization was done on a previous
call. The data passed is not the result of a prior valid factorization.

RTN_NAME : 2538-2133
An error occurred on level (_), in the user-supplied subroutine specified
by (ARG NO. _).

RTN_NAME : 2538-2134
The data contained in (ARG NO. _) is not consistent with the sparse matrix
specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _).

RTN_NAME : 2538-2135
For level (_), loss of orthogonality occurred in a minimum residual solver
because the input matrix (element (_,_) of (ARG NO. _)) is inappropriate.
Choose one of the other non-symmetric solvers.

RTN_NAME : 2538-2136
For level (_), the main diagonal element for row (_) of a matrix is 0.

RTN_NAME : 2538-2137
This subroutine may be called only once in the beginning of the program.

RTN_NAME : 2538-2138
An error was detected while attempting to open the ESSLPARM file. A default
ESSL processor family number of (_) will be assumed. This may not be the
best choice for optimal performance. Be sure that you have defined the
interface to ESSLPARM correctly for the run. If you have, contact ESSL
system installation personnel.

RTN_NAME : 2538-2139
An error was detected while attempting to close the ESSLPARM file. An ESSL
processor family number of (_) was assigned.

RTN_NAME : 2538-2140
An input/output error was detected while attempting to read line (_) of
the ESSLPARM file. A default ESSL process or family number of (_) will
be assumed. This may not be the best choice for optimal performance.
Be sure that you have defined the interface to ESSLPARM correctly for the run.
If you have, contact ESSL system installation personnel.

RTN_NAME : 2538-2141
The end of file marker on line (_) of the ESSLPARM file was reached
before a valid specification for the ESSL processor family number was read.
A default ESSL processor family number of (_) will be assumed.
This may not be the best choice for optimal performance. Be sure that you
have defined the interface to ESSLPARM correctly for the run. If you have,
contact ESSL system installation personnel.

RTN_NAME : 2538-2142
A syntax error was detected on line (_), column (_), of the ESSLPARM
file. No valid specification for the ESSL processor family number was read.
A default ESSL processor family number of (_) will be assumed.
This may not be the best choice for optimal performance. Contact ESSL system
installation personnel.

RTN_NAME : 2538-2143
The processor family number (_) on line (_) of the ESSLPARM file is
not in the allowable range. Please specify a processor family number greater
than or equal to (_) and less than or equal to (_). A default ESSL
processor family number of (_) will be assumed. This may not be the best
choice for optimal performance. Contact ESSL system installation personnel.

RTN_NAME : 2538-2144

Chapter 7. Handling Problems 181

This subroutine must be called before any computational ESSL routines are
called.

RTN_NAME : 2538-2145
The input matrix (ARG NO. _) is singular. The first diagonal element found to
be exactly 0, was in column (_).

RTN_NAME : 2538-2146
The input matrix (ARG NO. _) is singular. The first diagonal element found to
be exactly 0, was in column (_).

RTN_NAME : 2538-2147
The matrix (ARG NO. _) is singular.
Zero diagonal element (_) has been detected.

RTN_NAME : 2538-2148
The matrix (ARG NO. _) is not positive definite.
The leading minor of order (_) has a nonpositive determinant.

RTN_NAME : 2538-2149
Factorization failed due to near zero pivot number (_).

RTN_NAME : 2538-2150
The inverse of matrix (ARG NO. _) could not be computed.
The first diagonal element of the factored matrix found to be
exactly 0, was in column (_).

RTN_NAME : 2538-2151
The inverse of matrix (ARG NO. _) could not be computed.
The first diagonal element of the factored matrix found to be
exactly 0, was in column (_).

RTN_NAME : 2538-2199
End of computational error reporting. For more information, refer to
Engineering and Scientific Subroutine Library Guide and Reference (SA22-7272).

Input-Argument Error Messages(2200-2299)

RTN_NAME : 2538-2200
The dimension (ARG NO. _) of the array (ARG NO. _) must be greater than or
equal to (_).

RTN_NAME : 2538-2201
The number of elements (ARG NO. _) in a work array (ARG NO. _)
must be zero, to indicate dynamic allocation, minus one, to indicate
workspace query, or greater than or equal to (_) if a work array
is being supplied.

Resource Error Messages(2400-2499)
RTN_NAME : 2538-2400
An internal buffer allocation has failed due to insufficient memory.

Informational and Attention Error Messages(2600-2699)
RTN_NAME : 2538-2600
Performance may be degraded due to limited buffer space availability.

RTN_NAME : 2538-2601
Execution terminating due to error count for error number (_)
Message summary: Message number - Count

RTN_NAME : 2538-2602
User error corrective routine entered.
User corrective action taken. Execution continuing.

182 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RTN_NAME : 2538-2603
Standard corrective action taken. Execution continuing.

RTN_NAME : 2538-2604
Execution terminating due to error count for error number _.

RTN_NAME : 2538-2605
Message summary: _ - _

RTN_NAME : 2538-2606
Serial execution is taking place since the input array is equal
to the output array and either:
INC2X (ARG NO. _) is not equal to 2 times INC2Y (ARG NO. _) or
INC3X (ARG NO. _) is not equal to 2 times INC3Y (ARG NO. _).

RTN_NAME : 2538-2607
Serial execution is taking place since the input array is equal
to the output array and either:
INC2X (ARG NO. _) is not equal to INC2Y (ARG NO. _) or
INC3X (ARG NO. _) is not equal to INC3Y (ARG NO. _).

RTN_NAME : 2538-2608
Performance may be improved by using a larger work array. For best
performance, specify the number of elements (ARG NO. _) in the work array
to be greater than or equal to (_).

RTN_NAME : 2538-2609
Performance may be improved by specifying a larger value for (ARG NO. _).
(_) compressions were performed.

Miscellaneous Error Messages(2700-2799)
RTN_NAME : 2538-2700
Internal ESSL error number (_).
Contact your IBM service representative.

RTN_NAME : 2538-2703
Internal ESSL error: message number requested (_) is outside of the
valid range. Contact your IBM service representative.

Chapter 7. Handling Problems 183

184 ESSL Version 3 Release 3 Guide and Reference

Part 2. Reference Information

This part of the book is organized into ten areas, providing reference information
for coding the ESSL calling sequences. It is organized as follows:
v Linear Algebra Subprograms
v Matrix Operations
v Linear Algebraic Equations
v Eigensystem Analysis
v Fourier Transforms, Convolutions and Correlations, and Related Computations
v Sorting and Searching
v Interpolation
v Numerical Quadrature
v Random Number Generation
v Utilities

© Copyright IBM Corp. 1997, 2001 185

186 ESSL Version 3 Release 3 Guide and Reference

Chapter 8. Linear Algebra Subprograms

The linear algebra subprograms, provided in four areas, are described in this
chapter.

Overview of the Linear Algebra Subprograms
This section describes the subprograms in each of the four linear algebra
subprogram areas:
v Vector-scalar linear algebra subprograms (Table 32)
v Sparse vector-scalar linear algebra subprograms (Table 33)
v Matrix-vector linear algebra subprograms (Table 34)
v Sparse matrix-vector linear algebra subprograms (Table 35)

Notes:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the
BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Vector-Scalar Linear Algebra Subprograms
The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference [79]. The remainder of the
vector-scalar linear algebra subprograms are commonly used computations
provided for your applications. Both real and complex versions of the subprograms
are provided.

Table 32. List of Vector-Scalar Linear Algebra Subprograms

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Position of the First or Last Occurrence of the Vector Element
Having the Largest Magnitude

ISAMAX†u

ICAMAX†u
IDAMAX†u

IZAMAX†u
193

Position of the First or Last Occurrence of the Vector Element
Having Minimum Absolute Value

ISAMIN† IDAMIN† 196

Position of the First or Last Occurrence of the Vector Element
Having Maximum Value

ISMAX† IDMAX† 199

Position of the First or Last Occurrence of the Vector Element
Having Minimum Value

ISMIN† IDMIN† 202

Sum of the Magnitudes of the Elements in a Vector SASUM†u

SCASUM†u
DASUM†u

DZASUM†u
205

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the
Vector Y

SAXPYu

CAXPYu
DAXPYu

ZAXPYu
208

Copy a Vector SCOPYu

CCOPYu
DCOPYu

ZCOPYu
211

© Copyright IBM Corp. 1997, 2001 187

Table 32. List of Vector-Scalar Linear Algebra Subprograms (continued)

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Dot Product of Two Vectors SDOT†u

CDOTU†u

CDOTC†u

DDOT†u

ZDOTU†u

ZDOTC†u

214

Compute SAXPY or DAXPY N Times SNAXPY DNAXPY 218

Compute Special Dot Products N Times SNDOT DNDOT 223

Euclidean Length of a Vector with Scaling of Input to Avoid
Destructive Underflow and Overflow

SNRM2†u

SCNRM2†u
DNRM2†u

DZNRM2†u
228

Euclidean Length of a Vector with No Scaling of Input SNORM2†

CNORM2†
DNORM2†

ZNORM2†
231

Construct a Givens Plane Rotation SROTGu

CROTGu
DROTGu

ZROTGu
234

Apply a Plane Rotation SROTu

CROTu

CSROTu

DROTu

ZROTu

ZDROTu

240

Multiply a Vector X by a Scalar and Store in the Vector X SSCALu

CSCALu

CSSCALu

DSCALu

ZSCALu

ZDSCALu

244

Interchange the Elements of Two Vectors SSWAPu

CSWAPu
DSWAPu

ZSWAPu
247

Add a Vector X to a Vector Y and Store in a Vector Z SVEA
CVEA

DVEA
ZVEA

250

Subtract a Vector Y from a Vector X and Store in a Vector Z SVES
CVES

DVES
ZVES

254

Multiply a Vector X by a Vector Y and Store in a Vector Z SVEM
CVEM

DVEM
ZVEM

258

Multiply a Vector X by a Scalar and Store in a Vector Y SYAX
CYAX
CSYAX

DYAX
ZYAX
ZDYAX

262

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a
Vector Z

SZAXPY
CZAXPY

DZAXPY
ZZAXPY

265

† This subprogram is invoked as a function in a Fortran program.

u Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms
The sparse vector-scalar linear algebra subprograms operate on sparse vectors
using optimized storage techniques; that is, only the nonzero elements of the
vector are stored. These subprograms provide similar functions to the vector-scalar
subprograms. These subprograms represent a subset of the sparse extensions to the
Level 1 BLAS described in reference [29]. Both real and complex versions of the
subprograms are provided.

Table 33. List of Sparse Vector-Scalar Linear Algebra Subprograms

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Scatter the Elements of a Sparse Vector X in Compressed-Vector
Storage Mode into Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode

SSCTR
CSCTR

DSCTR
ZSCTR

269

188 ESSL Version 3 Release 3 Guide and Reference

Table 33. List of Sparse Vector-Scalar Linear Algebra Subprograms (continued)

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Gather Specified Elements of a Sparse Vector Y in Full-Vector
Storage Mode into a Sparse Vector X in Compressed-Vector Storage
Mode

SGTHR
CGTHR

DGTHR
ZGTHR

272

Gather Specified Elements of a Sparse Vector Y in Full-Vector
Mode into a Sparse Vector X in Compressed-Vector Mode, and
Zero the Same Specified Elements of Y

SGTHRZ
CGTHRZ

DGTHRZ
ZGTHRZ

275

Multiply a Sparse Vector X in Compressed-Vector Storage Mode by
a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode,
and Store in the Vector Y

SAXPYI
CAXPYI

DAXPYI
ZAXPYI

278

Dot Product of a Sparse Vector X in Compressed-Vector Storage
Mode and a Sparse Vector Y in Full-Vector Storage Mode

SDOTI†

CDOTCI†

CDOTUI†

DDOTI†

ZDOTCI†

ZDOTUI†

281

† This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms
The matrix-vector linear algebra subprograms operate on a higher-level data
structure—matrix-vector rather than vector-scalar—using optimized algorithms to
improve performance. These subprograms represent a subset of the Level 2 BLAS
described in references [34] and [35]. Both real and complex versions of the
subprograms are provided.

Table 34. List of Matrix-Vector Linear Algebra Subprograms

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose

SGEMVÍ

CGEMVÍ

SGEMX§

SGEMTX§

DGEMVÍ

ZGEMVÍ

DGEMX§

DGEMTX§

285

Rank-One Update of a General Matrix SGERÍ

CGERUÍ

CGERCÍ

DGERÍ

ZGERUÍ

ZGERCÍ

295

Matrix-Vector Product for a Real Symmetric or Complex Hermitian
Matrix

SSPMVÍ

CHPMVÍ

SSYMVÍ

CHEMVÍ

SSLMX§

DSPMVÍ

ZHPMVÍ

DSYMVÍ

ZHEMVÍ

DSLMX§

302

Rank-One Update of a Real Symmetric or Complex Hermitian
Matrix

SSPRÍ

CHPRÍ

SSYRÍ

CHERÍ

SSLR1§

DSPRÍ

ZHPRÍ

DSYRÍ

ZHERÍ

DSLR1§

309

Rank-Two Update of a Real Symmetric or Complex Hermitian
Matrix

SSPR2Í

CHPR2Í

SSYR2Í

CHER2Í

SSLR2§

DSPR2Í

ZHPR2Í

DSYR2Í

ZHER2Í

DSLR2§

316

Matrix-Vector Product for a General Band Matrix, Its Transpose, or
Its Conjugate Transpose

SGBMVÍ

CGBMVÍ
DGBMVÍ

ZGBMVÍ
324

Chapter 8. Linear Algebra Subprograms 189

Table 34. List of Matrix-Vector Linear Algebra Subprograms (continued)

Descriptive Name
Short- Precision
Subprogram

Long- Precision
Subprogram Page

Matrix-Vector Product for a Real Symmetric or Complex Hermitian
Band Matrix

SSBMVÍ

CHBMVÍ
DSBMVÍ

ZHBMVÍ
330

Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose

STRMVÍ

CTRMVÍ

STPMVÍ

CTPMVÍ

DTRMVÍ

ZTRMVÍ

DTPMVÍ

ZTPMVÍ

335

Matrix-Vector Product for a Triangular Band Matrix, Its Transpose,
or Its Conjugate Transpose

STBMVÍ

CTBMVÍ
DTBMVÍ

ZTBMVÍ
341

Í Level 2 BLAS

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Sparse Matrix-Vector Linear Algebra Subprograms
The sparse matrix-vector linear algebra subprograms operate on sparse matrices
using optimized storage techniques; that is, only the nonzero elements of the
vector are stored. These subprograms provide similar functions to the
matrix-vector subprograms.

Table 35. List of Sparse Matrix-Vector Linear Algebra Subprograms

Descriptive Name Long- Precision
Subprogram

Page

Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode DSMMX 347

Transpose a Sparse Matrix in Compressed-Matrix Storage Mode DSMTM 350

Matrix-Vector Product for a Sparse Matrix or Its Transpose in
Compressed-Diagonal Storage Mode

DSDMX 354

Use Considerations
If your program uses a sparse matrix stored by rows, as defined in
“Storage-by-Rows” on page 93, you should first convert your sparse matrix to
compressed-matrix storage mode by using the subroutine DSRSM on page 944.
DSRSM converts a matrix to compressed-matrix storage mode. To convert your
sparse matrix to compressed-diagonal storage mode, you need to perform this
conversion in your application program before calling the ESSL subroutine.

Performance and Accuracy Considerations
1. In ESSL, the SSCAL and DSCAL subroutines provide the fastest way to zero

out contiguous (stride 1) arrays, by specifying incx = 1 and α = 0.
2. Where possible, use the matrix-vector linear algebra subprograms, rather than

the vector-scalar, to optimize performance. Because data is presented in
matrices rather than vectors, multiple operations can be performed by a single
ESSL subprogram.

3. Where possible, use subprograms that do multiple computations, such as
SNDOT and SNAXPY, rather than individual computations, such as SDOT and
SAXPY. You get better performance.

190 ESSL Version 3 Release 3 Guide and Reference

4. Many of the short-precision subprograms provide increased accuracy by
accumulating results in long precision. This is noted in the functional
description of each subprogram.

5. In some of the subprograms, because implementation techniques vary to
optimize performance, accuracy of the results may vary for different array
sizes. In the subprograms in which this occurs, a general description of the
implementation techniques is given in the functional description for each
subprogram.

6. To select the sparse matrix subroutine that gives you the best performance, you
must consider the layout of the data in your matrix. From this, you can
determine the most efficient storage mode for your sparse matrix. ESSL
provides two versions of each of its sparse matrix-vector subroutines that you
can use. One operates on sparse matrices stored in compressed-matrix storage
mode, and the other operates on sparse matrices stored in compressed-diagonal
storage mode. These two storage modes are described in “Sparse Matrix” on
page 88.
Compressed-matrix storage mode is generally applicable. It should be used
when each row of the matrix contains approximately the same number of
nonzero elements. However, if the matrix has a special form—that is, where the
nonzero elements are concentrated along a few diagonals—compressed-
diagonal storage mode gives improved performance.

7. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 42.

Chapter 8. Linear Algebra Subprograms 191

Vector-Scalar Subprograms
This section contains the vector-scalar subprogram descriptions.

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

192 ESSL Version 3 Release 3 Guide and Reference

ISAMAX, IDAMAX, ICAMAX, and IZAMAX—Position of the First or Last
Occurrence of the Vector Element Having the Largest Magnitude

ISAMAX and IDAMAX find the position i of the first or last occurrence of a vector
element having the maximum absolute value. ICAMAX and IZAMAX find the
position i of the first or last occurrence of a vector element having the largest sum
of the absolute values of the real and imaginary parts of the vector elements.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 36. Data Types

x Subprogram

Short-precision real ISAMAX

Long-precision real IDAMAX

Short-precision complex ICAMAX

Long-precision complex IZAMAX

Syntax

Fortran ISAMAX | IDAMAX | ICAMAX | IZAMAX (n, x, incx)

C and C++ isamax | idamax | icamax | izamax (n, x, incx);

PL/I ISAMAX | IDAMAX | ICAMAX | IZAMAX (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 36.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value

is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 ≤ i ≤ n.

Note
Declare the ISAMAX, IDAMAX, ICAMAX, and IZAMAX functions in your
program as returning a fullword integer value.

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

Chapter 8. Linear Algebra Subprograms 193

Function
ISAMAX and IDAMAX find the first element xk, where k is defined as the smallest
index k, such that:

|xk| = max{|xj| for j = 1, n}

ICAMAX and IZAMAX find the first element xk, where k is defined as the smallest
index k, such that:

|ak|+|bk| = max{|aj|+|bj| for j = 1, n}
where xk = (ak, bk)

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n−k+1

See reference [79]. The result is returned as a function value. If n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(9 , X , 1)

X = (1.0, 2.0, 7.0, -8.0, -5.0, -10.0, -9.0, 10.0, 6.0)

Output:
IMAX = 6

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(5 , X , 2)

X = (1.0, . , 7.0, . , -5.0, . , -9.0, . , 6.0)

Output:
IMAX = 4

Example 3
This example shows a vector, x, with a stride of 0.

Function Reference and Input:

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

194 ESSL Version 3 Release 3 Guide and Reference

N X INCX
| | |

IMAX = ISAMAX(9 , X , 0)

X = (1.0, . , . , . , . , . , . , . , .)

Output:
IMAX = 1

Example 4
This example shows a vector, x, with a negative stride. Processing begins at
element X(15), which is 2.0.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(8 , X , -2)

X = (3.0, . , 5.0, . , -8.0, . , 6.0, . , 8.0, . ,
4.0, . , 8.0, . , 2.0)

Output:
IMAX = 7

Example 5
This example shows a vector, x, containing complex numbers and having a stride
of 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ICAMAX(5 , X , 1)

X = ((9.0 , 2.0) , (7.0 , -8.0) , (-5.0 , -10.0) , (-4.0 , 10.0),
(6.0 , 3.0))

Output:
IMAX = 2

ISAMAX, IDAMAX, ICAMAX, and IZAMAX

Chapter 8. Linear Algebra Subprograms 195

ISAMIN and IDAMIN—Position of the First or Last Occurrence of the
Vector Element Having Minimum Absolute Value

These subprograms find the position i of the first or last occurrence of a vector
element having the minimum absolute value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 37. Data Types

x Subprogram

Short-precision real ISAMIN

Long-precision real IDAMIN

Syntax

Fortran ISAMIN | IDAMIN (n, x, incx)

C and C++ isamin | idamin (n, x, incx);

PL/I ISAMIN | IDAMIN (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 37.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value

is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 ≤ i ≤ n.

Note
Declare the ISAMIN and IDAMIN functions in your program as returning a
fullword integer value.

Function
These subprograms find the first element xk, where k is defined as the smallest
index k, such that:

|xk| = min{|xj| for j = 1, n}

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the

ISAMIN and IDAMIN

196 ESSL Version 3 Release 3 Guide and Reference

function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n−k+1

See reference [79]. The result is returned as a function value. If n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

Output:
IMIN = 3

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(4 , X , 2)

X = (-3.0, . , -9.0, . , -8.0, . , 3.0)

Output:
IMIN = 1

Example 3
This example shows a vector, x, with a positive stride and two elements with the
minimum absolute value. The position of the first occurrence is returned.

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(4 , X , 2)

X = (2.0, . , -1.0, . , 4.0, . , 1.0)

Output:
IMIN = 2

Example 4
This example shows a vector, x, with a negative stride and two elements with the
minimum absolute value. The position of the last occurrence is returned.
Processing begins at element X(7), which is 1.0.

ISAMIN and IDAMIN

Chapter 8. Linear Algebra Subprograms 197

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(4 , X , -2)

X = (2.0, . , -1.0, . , 4.0, . , 1.0)

Output:
IMIN = 4

ISAMIN and IDAMIN

198 ESSL Version 3 Release 3 Guide and Reference

ISMAX and IDMAX—Position of the First or Last Occurrence of the
Vector Element Having the Maximum Value

These subprograms find the position i of the first or last occurrence of a vector
element having the maximum value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 38. Data Types

x Subprogram

Short-precision real ISMAX

Long-precision real IDMAX

Syntax

Fortran ISMAX | IDMAX (n, x, incx)

C and C++ ismax | idmax (n, x, incx);

PL/I ISMAX | IDMAX (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 38.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value

is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 ≤ i ≤ n.

Note
Declare the ISMAX and IDMAX functions in your program as returning a fullword
integer value.

Function
These subprograms find the first element xk, where k is defined as the smallest
index k, such that:

xk = max{xj for j = 1, n}

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the

ISMAX and IDMAX

Chapter 8. Linear Algebra Subprograms 199

function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n−k+1

See reference [79]. The result is returned as a function value. If n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 8.0)

Output:
IMAX = 4

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(4 , X , 2)

X = (-3.0, . , 9.0, . , -8.0, . , 3.0)

Output:
IMAX = 2

Example 3
This example shows a vector, x, with a positive stride and two elements with the
maximum value. The position of the first occurrence is returned.

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(4 , X , 2)

X = (2.0, . , 4.0, . , 4.0, . , 1.0)

Output:
IMAX = 2

Example 4
This example shows a vector, x, with a negative stride and two elements with the
maximum value. The position of the last occurrence is returned. Processing begins
at element X(7), which is 1.0.

ISMAX and IDMAX

200 ESSL Version 3 Release 3 Guide and Reference

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(4 , X , -2)

X = (2.0, . , 4.0, . , 4.0, . , 1.0)

Output:
IMAX = 3

ISMAX and IDMAX

Chapter 8. Linear Algebra Subprograms 201

ISMIN and IDMIN—Position of the First or Last Occurrence
of the Vector Element Having Minimum Value

These subprograms find the position i of the first or last occurrence of a vector
element having the minimum value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 39. Data Types

x Subprogram

Short-precision real ISMIN

Long-precision real IDMIN

Syntax

Fortran ISMIN | IDMIN (n, x, incx)

C and C++ ismin | idmin (n, x, incx);

PL/I ISMIN | IDMIN (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 39.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value

is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: a fullword integer; 0 ≤ i ≤ n.

Note
Declare the ISMIN and IDMIN functions in your program as returning a fullword
integer value.

Function
These subprograms find the first element xk, where k is defined as the smallest
index k, such that:

xk = min{xj for j = 1, n}

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the

ISMIN and IDMIN

202 ESSL Version 3 Release 3 Guide and Reference

function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n−k+1

See reference [79]. The result is returned as a function value. If n is 0, then 0 is
returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

Output:
IMIN = 3

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(4 , X , 2)

X = (-3.0, . , -9.0, . , -8.0, . , 3.0)

Output:
IMIN = 2

Example 3
This example shows a vector, x, with a positive stride and two elements with the
minimum value. The position of the first occurrence is returned. Processing begins
at element X(7), which is 1.0.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(4 , X , 2)

X = (2.0, . , 1.0, . , 4.0, . , 1.0)

Output:
IMIN = 2

ISMIN and IDMIN

Chapter 8. Linear Algebra Subprograms 203

Example 4
This example shows a vector, x, with a negative stride and two elements with the
minimum value. The position of the last occurrence is returned. Processing begins
at element X(7), which is 1.0.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(4 , X , -2)

X = (2.0, . , 1.0, . , 4.0, . , 1.0)

Output:
IMIN = 4

ISMIN and IDMIN

204 ESSL Version 3 Release 3 Guide and Reference

SASUM, DASUM, SCASUM, and DZASUM—Sum of the Magnitudes of
the Elements in a Vector

SASUM and DASUM compute the sum of the absolute values of the elements in
vector x. SCASUM and DZASUM compute the sum of the absolute values of the
real and imaginary parts of the elements in vector x.

Table 40. Data Types

x Result Subprogram

Short-precision real Short-precision real SASUM

Long-precision real Long-precision real DASUM

Short-precision complex Short-precision real SCASUM

Long-precision complex Long-precision real DZASUM

Syntax

Fortran SASUM | DASUM | SCASUM | DZASUM (n, x, incx)

C and C++ sasum | dasum | scasum | dzasum (n, x, incx);

PL/I SASUM | DASUM | SCASUM | DZASUM (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 40.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value
is the result of the summation. Returned as: a number of the data type
indicated in Table 40.

Note
Declare this function in your program as returning a value of the type indicated in
Table 40.

Function
SASUM and DASUM compute the sum of the absolute values of the elements of x,
which is expressed as follows:

SCASUM and DZASUM compute the sum of the absolute values of the real and
imaginary parts of the elements of x, which is expressed as follows:

SASUM, DASUM, SCASUM, and DZASUM

Chapter 8. Linear Algebra Subprograms 205

See reference [79]. The result is returned as a function value. If n is 0, then 0.0 is
returned as the value of the function. For SASUM and SCASUM, intermediate
results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(7 , X , 1)

X = (1.0, -3.0, -6.0, 7.0, 5.0, 2.0, -4.0)

Output:
SUMM = 28.0

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(4 , X , 2)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)

Output:
SUMM = 16.0

Example 3
This example shows a vector, x, with negative stride. Processing begins at element
X(7), which is −4.0.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(4 , X , -2)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)

Output:
SUMM = 16.0

SASUM, DASUM, SCASUM, and DZASUM

206 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows a vector, x, with a stride of 0. The result in SUMM is nx1.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(7 , X , 0)

X = (-2.0, . , . , . , . , . , .)

Output:
SUMM = 14.0

Example 5
This example shows a vector, x, containing complex numbers and having a stride
of 1.

Function Reference and Input:
N X INCX
| | |

SUMM = SCASUM(5 , X , 1)

X = ((1.0, 2.0), (-3.0, 4.0), (5.0, -6.0), (-7.0, -8.0),
(9.0, 10.0))

Output:
SUMM = 55.0

SASUM, DASUM, SCASUM, and DZASUM

Chapter 8. Linear Algebra Subprograms 207

SAXPY, DAXPY, CAXPY, and ZAXPY—Multiply a Vector X by a Scalar,
Add to a Vector Y, and Store in the Vector Y

These subprograms perform the following computation, using the scalar α and
vectors x and y:

y ← y+αx

Table 41. Data Types

alpha, x, y Subprogram

Short-precision real SAXPY

Long-precision real DAXPY

Short-precision complex CAXPY

Long-precision complex ZAXPY

Syntax

Fortran CALL SAXPY | DAXPY | CAXPY | ZAXPY (n, alpha, x, incx, y, incy)

C and C++ saxpy | daxpy | caxpy | zaxpy (n, alpha, x, incx, y, incy);

PL/I CALL SAXPY | DAXPY | CAXPY | ZAXPY (n, alpha, x, incx, y, incy);

On Entry:

n is the number of elements in vectors x and y. Specified as: a fullword
integer; n ≥ 0.

alpha is the scalar alpha. Specified as: a number of the data type indicated in
Table 41.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 41.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 41.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

On Return:

y is the vector y, containing the results of the computation y+αx. Returned
as: a one-dimensional array, containing numbers of the data type indicated
in Table 41.

Notes
1. If you specify the same vector for x and y, incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 53.

SAXPY, DAXPY, CAXPY, and ZAXPY

208 ESSL Version 3 Release 3 Guide and Reference

Function
The computation is expressed as follows:

See reference [79]. If alpha or n is zero, no computation is performed. For CAXPY,
intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(5 , 2.0 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Y = (3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0)

Example 2
This example shows vectors x and y having strides of opposite signs. For y, which
has negative stride, processing begins at element Y(5), which is 1.0.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(5 , 2.0 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Y = (15.0, 12.0, 9.0, 6.0, 3.0)

Example 3
This example shows a vector, x, with 0 stride. Vector x is treated like a vector of
length n, all of whose elements are the same as the single element in x.

Call Statement and Input:

SAXPY, DAXPY, CAXPY, and ZAXPY

Chapter 8. Linear Algebra Subprograms 209

N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(5 , 2.0 , X , 0 , Y , 1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Y = (7.0, 6.0, 5.0, 4.0, 3.0)

Example 4
This example shows how SAXPY can be used to compute a scalar value. In this
case, vectors x and y contain scalar values and the strides for both vectors are 0.
The number of elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(1 , 2.0 , X , 0 , Y , 0)

X = (1.0)
Y = (5.0)

Output:
Y = (7.0)

Example 5
This example shows how to use CAXPY, where vectors x and y contain complex
numbers. In this case, vectors x and y have positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL CAXPY(3 ,ALPHA, X , 1 , Y , 2)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))

Output:
Y = ((-3.0, 8.0), . , (4.0, 8.0), . , (-4.0, 23.0))

SAXPY, DAXPY, CAXPY, and ZAXPY

210 ESSL Version 3 Release 3 Guide and Reference

SCOPY, DCOPY, CCOPY, and ZCOPY—Copy a Vector
These subprograms copy vector x to another vector, y:

y←x

Table 42. Data Types

x, y Subprogram

Short-precision real SCOPY

Long-precision real DCOPY

Short-precision complex CCOPY

Long-precision complex ZCOPY

Syntax

Fortran CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, incx, y, incy)

C and C++ scopy | dcopy | ccopy | zcopy (n, x, incx, y, incy);

PL/I CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, incx, y, incy);

On Entry:

n is the number of elements in vectors x and y. Specified as: a fullword
integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 42.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y See “On Return”.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

On Return:

y is the vector y of length n. Returned as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 42.

Notes
1. If you specify the same vector for x and y, incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function
The copy is expressed as follows:

SCOPY, DCOPY, CCOPY, and ZCOPY

Chapter 8. Linear Algebra Subprograms 211

See reference [79]. If n is 0, no copy is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows input vector x and output vector y with positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SCOPY(5 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

Example 2
This example shows how to obtain a reverse copy of the input vector x by
specifying strides with the same absolute value, but with opposite signs, for input
vector x and output vector y. For y, which has a negative stride, results are stored
beginning at element Y(5).

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SCOPY(5 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Example 3
This example shows an input vector, x, with 0 stride. Vector x is treated like a
vector of length n, all of whose elements are the same as the single element in x.
This is a technique for replicating an element of a vector.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SCOPY(5 , X , 0 , Y , 1)

X = (13.0)

Output:
Y = (13.0, 13.0, 13.0, 13.0, 13.0)

SCOPY, DCOPY, CCOPY, and ZCOPY

212 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows input vector x and output vector y, containing complex
numbers and having positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL CCOPY(4 , X , 1 , Y , 2)

X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0))

Output:
Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . ,

(4.0, 4.0))

SCOPY, DCOPY, CCOPY, and ZCOPY

Chapter 8. Linear Algebra Subprograms 213

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC—Dot Product of
Two Vectors

SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of vectors x and y:

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector
x with vector y:

Table 43. Data Types

x, y, Result Subprogram

Short-precision real SDOT

Long-precision real DDOT

Short-precision complex CDOTU and CDOTC

Long-precision complex ZDOTU and ZDOTC

Syntax

Fortran SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (n, x, incx, y, incy)

C and C++ sdot | ddot | cdotu | zdotu | cdotc | zdotc (n, x, incx, y, incy);

PL/I SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (n, x, incx, y, incy);

On Entry:

n is the number of elements in vectors x and y. Specified as: a fullword
integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 43.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 43.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

On Return:

Function value
is the result of the dot product computation. Returned as: a number of the
data type indicated in Table 43.

Note
Declare this function in your program as returning a value of the data type
indicated in Table 43.

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

214 ESSL Version 3 Release 3 Guide and Reference

Function
SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of the vectors x and
y, which is expressed as follows:

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector
x with vector y, which is expressed as follows:

See reference [79]. The result is returned as a function value. If n is 0, then zero is
returned as the value of the function.

For SDOT, CDOTU, and CDOTC, intermediate results are accumulated in long
precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows how to compute the dot product of two vectors, x and y,
having strides of 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 1 , Y , 1)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, 8.0, 7.0, -6.0, 5.0)

Output:
DOTT = (9.0 + 16.0 - 21.0 - 24.0 + 25.0) = 5.0

Example 2
This example shows how to compute the dot product of a vector, x, with a stride
of 1, and a vector, y, with a stride greater than 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 1 , Y , 2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)

Output:
DOTT = (9.0 + 14.0 - 15.0 - 12.0 + 5.0) = 1.0

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

Chapter 8. Linear Algebra Subprograms 215

Example 3
This example shows how to compute the dot product of a vector, x, with a
negative stride, and a vector, y, with a stride greater than 1. For x, processing
begins at element X(5), which is 5.0.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , -1 , Y , 2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)

Output:
DOTT = (45.0 + 28.0 - 15.0 - 6.0 + 1.0) = 53.0

Example 4
This example shows how to compute the dot product of a vector, x, with a stride
of 0, and a vector, y, with a stride of 1. The result in DOTT is x1(y1+...+yn).

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 0 , Y , 1)

X = (1.0, . , . , . , .)
Y = (9.0, 8.0, 7.0, -6.0, 5.0)

Output:
DOTT = (1.0) × (9.0 + 8.0 + 7.0 - 6.0 + 5.0) = 23.0

Example 5
This example shows how to compute the dot product of two vectors, x and y, with
strides of 0. The result in DOTT is nx1y1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 0 , Y , 0)

X = (1.0, . , . , . , .)
Y = (9.0, . , . , . , .)

Output:
DOTT = (5) × (1.0) × (9.0) = 45.0

Example 6
This example shows how to compute the dot product of two vectors, x and y,
containing complex numbers, where x has a stride of 1, and y has a stride greater
than 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = CDOTU(3 , X , 1 , Y , 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))

Output:

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

216 ESSL Version 3 Release 3 Guide and Reference

DOTT = ((10.0 - 18.0 - 10.0) - (18.0 - 20.0 + 6.0),
(9.0 + 15.0 - 5.0) + (20.0 + 24.0 + 12.0))

= (-22.0, 75.0)

Example 7
This example shows how to compute the dot product of the conjugate of a vector,
x, with vector y, both containing complex numbers, where x has a stride of 1, and
y has a stride greater than 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = CDOTC(3 , X , 1 , Y , 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))

Output:
DOTT = ((10.0 - 18.0 - 10.0) + (18.0 - 20.0 + 6.0),

(9.0 + 15.0 - 5.0) - (20.0 + 24.0 + 12.0))
= (-14.0, -37.0)

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

Chapter 8. Linear Algebra Subprograms 217

SNAXPY and DNAXPY—Compute SAXPY or DAXPY N Times
These subprograms compute SAXPY or DAXPY, respectively, n times:

yi ← yi + αixi for i = 1, n

where each αi is a scalar value, contained in the vector a, and each xi and yi are
vectors, contained in vectors (or matrices) x and y, respectively. For an explanation
of the SAXPY and DAXPY computations, see “SAXPY, DAXPY, CAXPY, and
ZAXPY—Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the
Vector Y” on page 208.

Table 44. Data Types

a, x, y Subprogram

Short-precision real SNAXPY

Long-precision real DNAXPY

Syntax

Fortran CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo)

C and C++ snaxpy | dnaxpy (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);

PL/I CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);

On Entry:

n is the number of SAXPY or DAXPY computations to be performed and the
number of elements in vector a. Specified as: a fullword integer; n ≥ 0.

m is the number of elements in vectors xi and yi for each SAXPY or DAXPY
computation. Specified as: a fullword integer; m ≥ 0.

a is the vector a of length n, containing the scalar values αi, used in each
computation of yi + αixi. Specified as: a one-dimensional array of (at least)
length 1+(n−1)|inca|, containing numbers of the data type indicated in
Table 44.

inca is the stride for vector a. Specified as: a fullword integer. It can have any
value.

x is the vector (or matrix) x, containing the xi vectors of length m, used in the
n computations of yi + αixi. Specified as: a one- or two-dimensional array
of (at least) length (1+(n−1)(incxo)) + (m−1)|incxi|, containing numbers of
the data type indicated in Table 44.

incxi is the stride for x in the inner loop—that is, the stride identifying the
elements in each vector xi. Specified as: a fullword integer. It can have any
value.

incxo is the stride for x in the outer loop—that is, the stride identifying each
vector xi in x. Specified as: a fullword integer; incxo ≥ 0.

y is the vector (or matrix) y, containing the yi vectors of length m, used in
the n computations of yi + αixi. Specified as: a one- or two-dimensional
array of (at least) length (1+(n−1)(incyo)) + (m−1)|incyi|, containing
numbers of the data type indicated in Table 44.

incyi is the stride for y in the inner loop—that is, the stride identifying the
elements in each vector yi in y. Specified as: a fullword integer; incyi > 0
or incyi < 0.

SNAXPY and DNAXPY

218 ESSL Version 3 Release 3 Guide and Reference

incyo is the stride for y in the outer loop—that is, the stride identifying each
vector yi in y. Specified as: a fullword integer; incyo ≥ 0.

On Return:

y is the vector (or matrix) y, containing the yi vectors of length m, which
contain the results of the n SAXPY or DAXPY computations, yi + αixi for
i = 1, n. Returned as: a one- or two-dimensional array, containing numbers
of the data type indicated in Table 44 on page 218.

Note
Vector y must have no common elements with vector a or vector x; otherwise,
results are unpredictable. See “Concepts” on page 53.

Function
The SAXPY or DAXPY computations:

y ← y + αx

are performed n times. This is expressed as follows:
yi ← yi + αixi for i = 1, n

where each αi is a scalar value, contained in the vector a, and each xi and yi are
vectors, contained in vectors (or matrices) x and y, respectively.

Each computation of SAXPY or DAXPY on page 208 uses the length of the xi and
yi vectors, m, for its input argument, n. It also uses the strides for the inner loop,
incxi and incyi, for its parameters incx and incy, respectively. See “Function” on
page 209 for a description of how the computation is done.

The outer loop of the SNAXPY or DNAXPY computation uses the strides of inca,
incxo, and incyo to locate the elements in a and vectors in x and y for each i-th
computation. These are:

For i = 1, n:
α((i−1)inca+1) for inca ≥ 0
α((i−n)inca+1) for inca < 0
x((i−1)incxo+1)
y((i−1)incyo+1)

If m or n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. m < 0
3. incxo < 0
4. incyi = 0
5. incyo < 0

Example 1
This example shows vectors, contained in matrices, with the stride of the inner
loops incxi and incyi equal to 1.

Call Statement and Input:

SNAXPY and DNAXPY

Chapter 8. Linear Algebra Subprograms 219

N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , 1 , 5)

A = (3.0, 2.0, 4.0)

┌ ┐
| 1.0 4.0 3.0 |
| 2.0 3.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 1.0 1.0 |

X = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 1.0 3.0 |
| 3.0 2.0 4.0 |

Y = | 2.0 3.0 2.0 |
| 1.0 4.0 1.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 7.0 9.0 15.0 |
| 9.0 8.0 20.0 |

Y = | 11.0 7.0 10.0 |
| 13.0 6.0 5.0 |
| . . . |
└ ┘

Example 2
This example shows vectors, contained in matrices, with a stride of the inner loop
incxi greater than 1.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , 1 , X , 2 , 10 , Y , 1 , 5)

A = (3.0, 2.0, 4.0)

┌ ┐
| 1.0 4.0 3.0 |
| . . . |
| 2.0 3.0 4.0 |
| . . . |

X = | 3.0 2.0 2.0 |
| . . . |
| 4.0 1.0 1.0 |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 1.0 3.0 |
| 3.0 2.0 4.0 |

Y = | 2.0 3.0 2.0 |
| 1.0 4.0 1.0 |
| . . . |
└ ┘

SNAXPY and DNAXPY

220 ESSL Version 3 Release 3 Guide and Reference

Output:

Y =(same as output Y in Example 1)

Example 3
This example shows vectors, contained in matrices, with a negative stride, incyi, for
the inner loop.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , -1 , 5)

A = (3.0, 2.0, 4.0)

┌ ┐
| 1.0 4.0 3.0 |
| 2.0 3.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 1.0 1.0 |

X = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 1.0 4.0 1.0 |
| 2.0 3.0 2.0 |

Y = | 3.0 2.0 4.0 |
| 4.0 1.0 3.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 13.0 6.0 5.0 |
| 11.0 7.0 10.0 |

Y = | 9.0 8.0 20.0 |
| 7.0 9.0 15.0 |
| . . . |
└ ┘

Example 4
This example shows vectors, contained in matrices, with a negative stride, inca, for
vector a. For vector a, processing begins at element A(5), which is 3.0.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , -2 , X , 1 , 10 , Y , 1 , 5)

A = (4.0, . , 2.0, . , 3.0)

┌ ┐
| 1.0 4.0 3.0 |
| 2.0 3.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 1.0 1.0 |

X = | . . . |
| . . . |
| . . . |

SNAXPY and DNAXPY

Chapter 8. Linear Algebra Subprograms 221

| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 1.0 3.0 |
| 3.0 2.0 4.0 |

Y = | 2.0 3.0 2.0 |
| 1.0 4.0 1.0 |
| . . . |
└ ┘

Output:

Y =(same as output Y in Example 1)

SNAXPY and DNAXPY

222 ESSL Version 3 Release 3 Guide and Reference

SNDOT and DNDOT—Compute Special Dot Products N Times
These subprograms compute one of the following special dot products n times:

si ← xi v yi Store positive dot product
si ← −xi v yi Store negative dot product
si ← si+xi v yi Accumulate positive dot product
si ← si−xi v yi Accumulate negative dot product

for i = 1, n

where each si is an element in vector s, and each xi and yi are vectors contained in
vectors (or matrices) x and y, respectively.

Table 45. Data Types

s, x, y Subprogram

Short-precision real SNDOT

Long-precision real DNDOT

Syntax

Fortran CALL SNDOT | DNDOT (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo)

C and C++ sndot | dndot (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo);

PL/I CALL SNDOT | DNDOT (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo);

On Entry:

n is the number of dot product computations to be performed and the
number of elements in the vector s. Specified as: a fullword integer; n ≥ 0.

m is the number of elements in vectors xi and yi for each dot product
computation. Specified as: a fullword integer; m ≥ 0.

s is the vector s, containing the n scalar values si, where: If isw = 1 or 2, si is
not used in the computation (no input value specified.)

If isw = 3 or 4, si is used in the computation (input value specified.)

Specified as: a one-dimensional array of (at least) length 1+(n−1)|incs|,
containing numbers of the data type indicated in Table 45.

incs is the stride for vector s. Specified as: a fullword integer; incs > 0 or
incs < 0.

isw indicates the type of computation to perform, depending on the value
specified:

If isw = 1, si ← xi v yi

If isw = 2, si ← −xi v yi

If isw = 3, si ← si + xi v yi

If isw = 4, si ← si − xi v yi

where i = 1, n

Specified as: a fullword integer. Its value must be 1, 2, 3, or 4.

x is the vector (or matrix) x, containing the xi vectors of length m, used in the

SNDOT and DNDOT

Chapter 8. Linear Algebra Subprograms 223

n dot product computations. Specified as: a one- or two-dimensional array
of (at least) length (1+(n−1)(incxo))+(m−1)|incxi|, containing numbers of
the data type indicated in Table 45 on page 223.

incxi is the stride for x in the inner loop—that is, the stride identifying the
elements in each vector xi. Specified as: a fullword integer. It can have any
value.

incxo is the stride for x in the outer loop—that is, the stride identifying each
vector xi in x. Specified as: a fullword integer; incxo ≥ 0.

y is the vector (or matrix) y, containing the yi vectors of length m, used in
the n dot product computations. Specified as: a one- or two-dimensional
array of (at least) length (1+(n−1)(incyo)) + (m−1)|incyi|, containing
numbers of the data type indicated in Table 45 on page 223.

incyi is the stride for y in the inner loop—that is, the stride identifying the
elements in each vector yi. Specified as: a fullword integer. It can have any
value.

incyo is the stride for y in the outer loop—that is, the stride identifying each
vector yi in y. Specified as: a fullword integer; incyo ≥ 0.

On Return:

s is the vector s of length n, containing the results of the n dot product
computations. The type of dot product computation depends of the value
specified for isw.

If isw = 1, si ← xi v yi

If isw = 2, si ← −xi v yi

If isw = 3, si ← si + xi v yi

If isw = 4, si ← si − xi v yi

where i = 1, n

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 45 on page 223.

Function
The four possible computations that can be performed by these subprograms are:

si ← xi v yi Store positive dot product
si ← −xi v yi Store negative dot product
si ← si+xi v yi Accumulate positive dot

product
si ← si−xi v yi Accumulate negative dot

product
for i = 1, n

where each si is a scalar element in the vector s of length n, and each of the n xi

and yi vectors of length m are contained in vectors (or matrices) x and y,
respectively. Each computation uses the dot product, which is expressed:

xi v yi = u1v1 + u2v2 + ... + umvm

where ui and vi are elements of xi and yi, respectively. To find the elements for the
computation, it uses:
v The strides for the inner loops, incxi and incyi, to locate the elements in vectors

xi and yi, respectively.

SNDOT and DNDOT

224 ESSL Version 3 Release 3 Guide and Reference

v The strides for the outer loops, incs, incxo, and incyo, to locate the element si in
vector s and the vectors xi and yi in vectors (or matrices) x and y, respectively.

If m or n is 0, no computation is performed. For SNDOT, intermediate results are
accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. m < 0
3. incs = 0
4. isw < 1 or isw > 4
5. incxo < 0
6. incyo < 0

Example 1
This example shows a store positive dot product computation using vectors with
positive strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , 1 , 1 , X , 1 , 4 , Y , 1 , 4)

┌ ┐
| 1.0 2.0 3.0 |

X = | 2.0 3.0 4.0 |
| 3.0 4.0 5.0 |
| 4.0 5.0 6.0 |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |

Y = | 3.0 2.0 1.0 |
| 2.0 1.0 4.0 |
| 1.0 4.0 3.0 |
└ ┘

Output:
S = (20.0, 36.0, 48.0)

Example 2
This example shows a store negative dot product computation using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , -1 , 2 , X , 2 , 10 , Y , -1 , 6)

┌ ┐
| 1.0 2.0 3.0 |
| . . . |
| 2.0 3.0 4.0 |
| . . . |

X = | 3.0 4.0 5.0 |
| . . . |
| 4.0 5.0 6.0 |

SNDOT and DNDOT

Chapter 8. Linear Algebra Subprograms 225

| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |
| 3.0 2.0 1.0 |

Y = | 2.0 1.0 4.0 |
| 1.0 4.0 3.0 |
| . . . |
| . . . |
└ ┘

Output:
S = (-42.0, -34.0, -30.0)

Example 3
This example shows an accumulative positive dot product using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , 1 , 3 , X , -2 , 10 , Y , 2 , 10)

S = (2.0, 5.0, 8.0)

┌ ┐
| 1.0 2.0 3.0 |
| . . . |
| 2.0 3.0 4.0 |
| . . . |

X = | 3.0 4.0 5.0 |
| . . . |
| 4.0 5.0 6.0 |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |
| . . . |
| 3.0 2.0 1.0 |
| . . . |

Y = | 2.0 1.0 4.0 |
| . . . |
| 1.0 4.0 3.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
S = (32.0, 39.0, 50.0)

Example 4
This example shows an accumulative negative dot product using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , -1 , 4 , X , 1 , 6 , Y , 2 , 10)

SNDOT and DNDOT

226 ESSL Version 3 Release 3 Guide and Reference

S = (3.0, 6.0, 9.0)
┌ ┐
| 1.0 2.0 3.0 |
| 2.0 3.0 4.0 |

X = | 3.0 4.0 5.0 |
| 4.0 5.0 6.0 |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |
| . . . |
| 3.0 2.0 1.0 |
| . . . |

Y = | 2.0 1.0 4.0 |
| . . . |
| 1.0 4.0 3.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
S = (-45.0, -30.0, -11.0)

SNDOT and DNDOT

Chapter 8. Linear Algebra Subprograms 227

SNRM2, DNRM2, SCNRM2, and DZNRM2—Euclidean Length of a
Vector with Scaling of Input to Avoid Destructive Underflow and
Overflow

These subprograms compute the Euclidean length (l2 norm) of vector x, with
scaling of input to avoid destructive underflow and overflow.

Table 46. Data Types

x Result Subprogram

Short-precision real Short-precision real SNRM2

Long-precision real Long-precision real DNRM2

Short-precision complex Short-precision real SCNRM2

Long-precision complex Long-precision real DZNRM2

Note: If there is a possibility that your data will cause the computation to
overflow or underflow, you should use these subroutines instead of
SNORM2, DNORM2, CNORM2, and ZNORM2, because the intermediate
computational results may exceed the maximum or minimum limits of the
machine. “Notes” on page 231 explains how to estimate whether your data
will cause an overflow or underflow.

Syntax

Fortran SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx)

C and C++ snrm2 | dnrm2 | scnrm2 | dznrm2 (n, x, incx);

PL/I SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n, whose Euclidean length is to be computed.
Specified as: a one-dimensional array of (at least) length 1+(n−1)|incx|,
containing numbers of the data type indicated in Table 46.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value
is the Euclidean length (l2 norm) of the vector x. Returned as: a number of
the data type indicated in Table 46.

Note
Declare this function in your program as returning a value of the data type
indicated in Table 46.

Function
The Euclidean length (l2 norm) of vector x is expressed as follows, with scaling of
input to avoid destructive underflow and overflow:

SNRM2, DNRM2, SCNRM2, and DZNRM2

228 ESSL Version 3 Release 3 Guide and Reference

See reference [79]. The result is returned as the function value. If n is 0, then 0.0 is
returned as the value of the function.

For SNRM2 and SCNRM2, the sum of the squares of the absolute values of the
elements is accumulated in long precision. The square root of this long-precision
sum is then computed and, if necessary, is unscaled.

Although these subroutines eliminate destructive underflow, nondestructive
underflows may occur if the input elements differ greatly in magnitude. This does
not affect accuracy, but it degrades performance. The system default is to mask
underflow, which improves the performance of these subroutines.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Important Information About the Following Examples
Workstations use workstation architecture precisions: ANSI/IEEE 32-bit and 64-bit
binary floating-point format. The ranges are:
v For short-precision: 3.37×10−38 to 3.37×1038

v For long-precision: 1.67×10−308 to 1.67×10308

Example 1
This example shows a vector, x, whose elements must be scaled to prevent
overflow.

Function Reference and Input:
N X INCX
| | |

DNORM = DNRM2(6 , X , 1)

X = (0.68056D+200, 0.25521D+200, 0.34028D+200,
0.85071D+200, 0.25521D+200, 0.85071D+200)

Output:
DNORM = 0.1469D+201

Example 2
This example shows a vector, x, whose elements must be scaled to prevent
destructive underflow.

Function Reference and Input:
N X INCX
| | |

DNORM = DNRM2(4 , X , 2)

X = (0.10795D-200, . , 0.10795D-200, . , 0.10795D-200,
. , 0.10795D-200)

Output:
DNORM = 0.21590D-200

SNRM2, DNRM2, SCNRM2, and DZNRM2

Chapter 8. Linear Algebra Subprograms 229

Example 3
This example shows a vector, x, with a stride of 0. The result in SNORM is:

Function Reference and Input:
N X INCX
| | |

SNORM = SNRM2(4 , X , 0)

X = (4.0)

Output:
SNORM = 8.0

Example 4
This example shows a vector, x, containing complex numbers, and whose elements
must be scaled to prevent overflow.

Function Reference and Input:
N X INCX
| | |

DZNORM = DZNRM2(3 , X , 1)

X = ((0.68056D+200, 0.25521D+200), (0.34028D+200, 0.85071D+200),
(0.25521D+200, 0.85071D+200))

Output:
DZNORM = 0.1469D+201

Example 5
This example shows a vector, x, containing complex numbers, and whose elements
must be scaled to prevent destructive underflow.

Function Reference and Input:
N X INCX
| | |

DZNORM = DZNRM2(2 , X , 2)

X = ((0.10795D-200, 0.10795D-200), . ,
(0.10795D-200, 0.10795D-200))

Output:
DZNORM = 0.2159D-200

SNRM2, DNRM2, SCNRM2, and DZNRM2

230 ESSL Version 3 Release 3 Guide and Reference

SNORM2, DNORM2, CNORM2, and ZNORM2—Euclidean Length of a
Vector with No Scaling of Input

These subprograms compute the euclidean length (l2 norm) of vector x with no
scaling of input.

Table 47. Data Types

x Result Subprogram

Short-precision real Short-precision real SNORM2

Long-precision real Long-precision real DNORM2

Short-precision complex Short-precision real CNORM2

Long-precision complex Long-precision real ZNORM2

Syntax

Fortran SNORM2 | DNORM2 | CNORM2 | ZNORM2 (n, x, incx)

C and C++ snorm2 | dnorm2 | cnorm2 | znorm2 (n, x, incx);

PL/I SNORM2 | DNORM2 | CNORM2 | ZNORM2 (n, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

x is the vector x of length n, whose euclidean length is to be computed.
Specified as: a one-dimensional array of (at least) length 1+(n−1)|incx|,
containing numbers of the data type indicated in Table 47.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

Function value
is the euclidean length (l2 norm) of the vector x. Returned as: a number of
the data type indicated in Table 47.

Notes
1. This subroutine does not underflow or overflow if the values of the elements in

vector x conform to the following conditions. If these conditions are violated,
overflow or destructive underflow may occur:
v For short-precision numbers:

Any valid short-precision number.
v For long-precision numbers:

|xi| = 0 or 0.10010E−145 < |xi| < 0.13408E+155 for i = 1, n

2. Declare this function in your program as returning a value of the data type
indicated in Table 47.

Function
The euclidean length (l2 norm) of vector x is expressed as follows with no scaling
of input:

SNORM2, DNORM2, CNORM2, and ZNORM2

Chapter 8. Linear Algebra Subprograms 231

See reference [79]. The result is returned as the function value. If n is 0, then 0.0 is
returned as the value of the function.

For SNORM2 and CNORM2, the sum of the squares of the absolute values of the
elements is accumulated in long-precision. The square root of this long-precision
sum is then computed.

This subroutine should not be used if the values in vector x do not conform to the
restriction given in “Notes” on page 231.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

SNORM = SNORM2(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

Output:
SNORM = 10.0

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

SNORM = SNORM2(6 , X , 2)

X = (3.0, . , 4.0, . , 1.0, . , 8.0, . , 1.0, . , 3.0)

Output:
SNORM = 10.0

Example 3
This example shows a vector, x, with a stride of 0. The result in SNORM is:

Function Reference and Input:
N X INCX
| | |

SNORM = SNORM2(4 , X , 0)

X = (4.0)

SNORM2, DNORM2, CNORM2, and ZNORM2

232 ESSL Version 3 Release 3 Guide and Reference

Output:
SNORM = 8.0

Example 4
This example shows a vector, x, containing complex numbers and having a stride
of 1.

Function Reference and Input:
N X INCX
| | |

CNORM = CNORM2(3 , X , 1)

X = ((3.0, 4.0), (1.0, 8.0), (-1.0, 3.0))

Output:
CNORM = 10.0

SNORM2, DNORM2, CNORM2, and ZNORM2

Chapter 8. Linear Algebra Subprograms 233

SROTG, DROTG, CROTG, and ZROTG—Construct a Givens Plane
Rotation

SROTG and DROTG construct a real Givens plane rotation, and CROTG and
ZROTG construct a complex Givens plane rotation. The computations use
rotational elimination parameters a and b. Values are returned for r, as well as the
cosine c and the sine s of the angle of rotation. SROTG and DROTG also return a
value for z.

Note: Throughout this description, the symbols r and z are used to represent two
of the output values returned for this computation. It is important to note
that the values for r and z are actually returned in the input-output
arguments a and b, respectively, overwriting the original values passed in a
and b.

Table 48. Data Types

a, b, r, s c z Subprogram

Short-precision real Short-precision real Short-precision real SROTG

Long-precision real Long-precision real Long-precision real DROTG

Short-precision complex Short-precision real (No value returned) CROTG

Long-precision complex Long-precision real (No value returned) ZROTG

Syntax

Fortran CALL SROTG | DROTG | CROTG | ZROTG (a, b, c, s)

C and C++ srotg | drotg | crotg | zrotg (a, b, c, s);

PL/I CALL SROTG | DROTG | CROTG | ZROTG (a, b, c, s);

On Entry:

a is the rotational elimination parameter a. Specified as: a number of the data
type indicated in Table 48.

b is the rotational elimination parameter b. Specified as: a number of the data
type indicated in Table 48.

c See “On Return”.

s See “On Return”.

On Return:

a is the value computed for r.

For SROTG and DROTG:

where:
σ = SIGN(a) if |a| > |b|
σ = SIGN(b) if |a| ≤ |b|

For CROTG and ZROTG:

SROTG, DROTG, CROTG, and ZROTG

234 ESSL Version 3 Release 3 Guide and Reference

where:
ψ = a/|a|

Returned as: a number of the data type indicated in Table 48 on page 234.

b is the value computed for z.

For SROTG and DROTG:
z = s if |a| > |b|
z = 1/c if |a| ≤ |b| and c ≠ 0 and r ≠ 0
z = 1 if |a| ≤ |b| and c = 0 and r ≠ 0
z = 0 if r = 0

For CROTG and ZROTG: no value is returned, and the input value is not
changed.

Returned as: a number of the data type indicated in Table 48 on page 234.

c is the cosine c of the angle of (Givens) rotation. For SROTG and DROTG:
c = a/r if r ≠ 0
c = 1 if r = 0

For CROTG and ZROTG:

Returned as: a number of the data type indicated in Table 48 on page 234.

s is the sine s of the angle of (Givens) rotation.

For SROTG and DROTG:
s = b/r if r ≠ 0
s = 0 if r = 0

For CROTG and ZROTG:

where ψ = a/|a|

SROTG, DROTG, CROTG, and ZROTG

Chapter 8. Linear Algebra Subprograms 235

Returned as: a number of the data type indicated in Table 48 on page 234.

Note
In your C program, arguments a, b, c, and s must be passed by reference.

Function

SROTG and DROTG: A real Givens plane rotation is constructed for values a
and b by computing values for r, c, s, and z, where:

where:
σ = SIGN(a) if |a| > |b|
σ = SIGN(b) if |a| ≤ |b|

c = a/r if r ≠ 0

c = 1 if r = 0

s = b/r if r ≠ 0

s = 0 if r = 0

z = s if |a| > |b|

z = 1/c if |a| ≤ |b| and c ≠ 0 and r ≠ 0

z = 1 if |a| ≤ |b| and c = 0 and r ≠ 0

z = 0 if r = 0

See reference [79].

Following are some important points about the computation:
1. The numbers for c, s, and r satisfy:

2. Where necessary, scaling is used to avoid overflow and destructive underflow
in the computation of r, which is expressed as follows:

3. σ is not essential to the computation of a Givens rotation matrix, but its use
permits later stable reconstruction of c and s from just one stored number, z.
See reference [91]. c and s are reconstructed from z as follows:

SROTG, DROTG, CROTG, and ZROTG

236 ESSL Version 3 Release 3 Guide and Reference

CROTG and ZROTG: A complex Givens plane rotation is constructed for values
a and b by computing values for r, c, and s, where:

where:
ψ = a/|a|

See reference [79].

Following are some important points about the computation:
1. The numbers for c, s, and r satisfy:

2. Where necessary, scaling is used to avoid overflow and destructive underflow
in the computation of r, which is expressed as follows:

SROTG, DROTG, CROTG, and ZROTG

Chapter 8. Linear Algebra Subprograms 237

Error Conditions

Computational Errors: None

Input-Argument Errors: None

Example 1
This example shows the construction of a real Givens plane rotation, where r is 0.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(0.0 , 0.0 , C , S)

Output:
A = 0.0
B = 0.0
C = 1.0
S = 0.0

Example 2
This example shows the construction of a real Givens plane rotation, where c is 0.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(0.0 , 2.0 , C , S)

Output:
A = 2.0
B = 1.0
C = 0.0
S = 1.0

Example 3
This example shows the construction of a real Givens plane rotation, where
|b| > |a|.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(6.0 , -8.0 , C , S)

Output:
A = -10.0

_
B = -1.666
C = -0.6
S = 0.8

Example 4
This example shows the construction of a real Givens plane rotation, where
|a| > |b|.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(8.0 , 6.0 , C , S)

Output:

SROTG, DROTG, CROTG, and ZROTG

238 ESSL Version 3 Release 3 Guide and Reference

A = 10.0
B = 0.6
C = 0.8
S = 0.6

Example 5
This example shows the construction of a complex Givens plane rotation, where
|a| = 0.

Call Statement and Input:
A B C S
| | | |

CALL CROTG(A , B , C , S)

A = (0.0, 0.0)
B = (1.0, 0.0)

Output:
A = (1.0, 0.0)
C = 0.0
S = (1.0, 0.0)

Example 6
This example shows the construction of a complex Givens plane rotation, where
|a| ≠ 0.

Call Statement and Input:
A B C S
| | | |

CALL CROTG(A , B , C , S)

A = (3.0, 4.0)
B = (4.0, 6.0)

Output:
A = (5.26, 7.02)
C = 0.57
S = (0.82, -0.05)

SROTG, DROTG, CROTG, and ZROTG

Chapter 8. Linear Algebra Subprograms 239

SROT, DROT, CROT, ZROT, CSROT, and ZDROT—Apply a Plane
Rotation

SROT and DROT apply a real plane rotation to real vectors; CROT and ZROT
apply a complex plane rotation to complex vectors; and CSROT and ZDROT apply
a real plane rotation to complex vectors. The plane rotation is applied to n points,
where the points to be rotated are contained in vectors x and y, and where the
cosine and sine of the angle of rotation are c and s, respectively.

Table 49. Data Types

x, y c s Subprogram

Short-precision real Short-precision real Short-precision real SROT

Long-precision real Long-precision real Long-precision real DROT

Short-precision complex Short-precision real Short-precision complex CROT

Long-precision complex Long-precision real Long-precision complex ZROT

Short-precision complex Short-precision real Short-precision real CSROT

Long-precision complex Long-precision real Long-precision real ZDROT

Syntax

Fortran CALL SROT | DROT | CROT | ZROT | CSROT | ZDROT (n, x, incx, y, incy, c, s)

C and C++ srot | drot | crot | zrot | csrot | zdrot (n, x, incx, y, incy, c, s);

PL/I CALL SROT | DROT | CROT | ZROT | CSROT | ZDROT (n, x, incx, y, incy, c, s);

On Entry:

n is the number of points to be rotated—that is, the number of elements in
vectors x and y. Specified as: a fullword integer; n ≥ 0.

x is the vector x of length n, containing the xi coordinates of the points to be
rotated. Specified as: a one-dimensional array of (at least) length
1+(n−1)|incx|, containing numbers of the data type indicated in Table 49.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n, containing the yi coordinates of the points to be
rotated. Specified as: a one-dimensional array of (at least) length
1+(n−1)|incy|, containing numbers of the data type indicated in Table 49.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

c the cosine, c, of the angle of rotation. Specified as: a number of the data
type indicated in Table 49.

s the sine, s, of the angle of rotation. Specified as: a number of the data type
indicated in Table 49.

On Return:

x is the vector x of length n, containing the rotated xi coordinates, where:
xi ← cxi+syi for i = 1,

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 49.

SROT, DROT, CROT, ZROT, CSROT, ZDROT

240 ESSL Version 3 Release 3 Guide and Reference

y is the vector y of length n, containing the rotated yi coordinates, where:

For SROT, DROT, CSROT, and ZDROT:
yi ← −sxi+cyi for i = 1, n

For CROT and ZROT:

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 49 on page 240.

Note
The vectors x and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 53.

Function
Applying a plane rotation to n points, where the points to be rotated are contained
in vectors x and y, is expressed as follows, where c and s are the cosine and sine of
the angle of rotation, respectively. For SROT, DROT, CSROT, and ZDROT:

For CROT and ZROT:

See references [57] and [79]. No computation is performed if n is 0 or if c is 1.0 and
s is zero. For SROT, CROT, and CSROT, intermediate results are accumulated in
long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows how to apply a real plane rotation to real vectors x and y
having positive strides.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL SROT(5 , X , 1 , Y , 2 , 0.5 , S)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)

SROT, DROT, CROT, ZROT, CSROT, ZDROT

Chapter 8. Linear Algebra Subprograms 241

Output:
X = (-0.366, -0.732, -1.098, -1.464, -1.830)
Y = (-1.366, -2.732, -4.098, -5.464, -6.830)

Example 2
This example shows how to apply a real plane rotation to real vectors x and y
having strides of opposite sign.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL SROT(5 , X , 1 , Y , -1 , 0.5 , S)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-5.0, -4.0, -3.0, -2.0, -1.0)

Output:

X =(same as output X in Example 1)
Y = (-6.830, -5.464, -4.098, -2.732, -1.366)

Example 3
This example shows how scalar values in vectors x and y can be processed by
specifying 0 strides and the number of elements to be processed, n, equal to 1.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL SROT(1 , X , 0 , Y , 0 , 0.5 , S)

X = (1.0)
Y = (-1.0)

Output:
X = (-0.366)
Y = (-1.366)

Example 4
This example shows how to apply a complex plane rotation to complex vectors x
and y having positive strides.

Call Statement and Input:

SROT, DROT, CROT, ZROT, CSROT, ZDROT

242 ESSL Version 3 Release 3 Guide and Reference

N X INCX Y INCY C S
| | | | | | |

CALL CROT(3 , X , 1 , Y , 2 , 0.5 , S)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))
S = (0.75, 0.50)

Output:
X = ((-2.750, 4.250), (-2.500, 3.500), (-2.250, 2.750))
Y = ((-2.250, 1.500), . , (-4.000, 0.750), . ,

(-5.750, 0.000))

Example 5
This example shows how to apply a real plane rotation to complex vectors x and y
having positive strides.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL CSROT(3 , X , 1 , Y , 2 , 0.5 , S)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))

Output:
X = ((-0.366, 5.330), (-0.732, 4.964), (-1.098, 4.598))
Y = ((-1.366, 0.768), . , (-2.732, -0.598), . ,

(-4.098, -1.964))

SROT, DROT, CROT, ZROT, CSROT, ZDROT

Chapter 8. Linear Algebra Subprograms 243

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL—Multiply a
Vector X by a Scalar and Store in the Vector X

These subprograms perform the following computation, using the scalar α and the
vector x:

x←αx

Table 50. Data Types

α x Subprogram

Short-precision real Short-precision real SSCAL

Long-precision real Long-precision real DSCAL

Short-precision complex Short-precision complex CSCAL

Long-precision complex Long-precision complex ZSCAL

Short-precision real Short-precision complex CSSCAL

Long-precision real Long-precision complex ZDSCAL

Syntax

Fortran CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx)

C and C++ sscal | dscal | cscal | zscal | csscal | zdscal (n, alpha, x, incx);

PL/I CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx);

On Entry:

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 0.

alpha is the scalar α. Specified as: a number of the data type indicated in
Table 50.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 50.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

On Return:

x is the vector x of length n, containing the result of the computation αx.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 50.

Note
The fastest way in ESSL to zero out contiguous (stride 1) arrays is to call SSCAL or
DSCAL, specifying incx = 1 and α = 0.

Function
The computation is expressed as follows:

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

244 ESSL Version 3 Release 3 Guide and Reference

See reference [79]. If n is 0, no computation is performed. For CSCAL, intermediate
results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a vector, x, with a stride of 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(5 , 2.0 , X , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
X = (2.0, 4.0, 6.0, 8.0, 10.0)

Example 2
This example shows vector, x, with a stride greater than 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(5 , 2.0 , X , 2)

X = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

Output:
X = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

Example 3
This example illustrates that when the strides for two similar computations
(Example 1 and Example 3) have the same absolute value but have opposite signs,
the output is the same. This example is the same as Example 1, except the stride
for x is negative (−1). For performance reasons, it is better to specify the positive
stride. For x, processing begins at element X(5), which is 5.0, and results are stored
beginning at the same element.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(5 , 2.0 , X , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

Chapter 8. Linear Algebra Subprograms 245

X = (2.0, 4.0, 6.0, 8.0, 10.0)

Example 4
This example shows how SSCAL can be used to compute a scalar value. In this
case, input vector x contains a scalar value, and the stride is 0. The number of
elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(1 , 2.0 , X , 0)

X = (1.0)

Output:
X = (2.0)

Example 5
This example shows a scalar, α, and a vector, x, containing complex numbers,
where vector x has a stride of 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL CSCAL(3 ,ALPHA, X , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
X = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

Example 6
This example shows a scalar, α, containing a real number, and a vector, x,
containing complex numbers, where vector x has a stride of 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL CSSCAL(3 , 2.0 , X , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
X = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

246 ESSL Version 3 Release 3 Guide and Reference

SSWAP, DSWAP, CSWAP, and ZSWAP—Interchange the Elements of
Two Vectors

These subprograms interchange the elements of vectors x and y:
y ←→ x

Table 51. Data Types

x, y Subprogram

Short-precision real SSWAP

Long-precision real DSWAP

Short-precision complex CSWAP

Long-precision complex ZSWAP

Syntax

Fortran CALL SSWAP | DSWAP | CSWAP | ZSWAP (n, x, incx, y, incy)

C and C++ sswap | dswap | cswap | zswap (n, x, incx, y, incy);

PL/I CALL SSWAP | DSWAP | CSWAP | ZSWAP (n, x, incx, y, incy);

On Entry:

n is the number of elements in vectors x and y. Specified as: a fullword
integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 51.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 51.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

On Return:

x is the vector x of length n, containing the elements that were swapped
from vector y. Returned as: a one-dimensional array, containing numbers
of the data type indicated in Table 51.

y is the vector y of length n, containing the elements that were swapped
from vector x. Returned as: a one-dimensional array, containing numbers of
the data type indicated in Table 51.

Notes
1. If you specify the same vector for x and y, then incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 53.

SSWAP, DSWAP, CSWAP, and ZSWAP

Chapter 8. Linear Algebra Subprograms 247

Function
The elements of vectors x and y are interchanged as follows:

See reference [79]. If n is 0, no elements are interchanged.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SSWAP(5 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)

Output:
X = (-1.0, -2.0, -3.0, -4.0, -5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

Example 2
This example shows how to obtain output vectors x and y that are reverse copies
of the input vectors y and x. You must specify strides with the same absolute
value, but with opposite signs. For y, which has negative stride, processing begins
at element Y(5), which is −5.0, and the results of the swap are stored beginning at
the same element.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SSWAP(5 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, -2.0, -3.0, -4.0, -5.0)

Output:
X = (-5.0, -4.0, -3.0, -2.0, -1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Example 3
This example shows how SSWAP can be used to interchange scalar values in
vectors x and y by specifying 0 strides and the number of elements to be processed
as 1.

Call Statement and Input:

SSWAP, DSWAP, CSWAP, and ZSWAP

248 ESSL Version 3 Release 3 Guide and Reference

N X INCX Y INCY
| | | | |

CALL SSWAP(1 , X , 0 , Y , 0)

X = (1.0)
Y = (-4.0)

Output:
X = (-4.0)
Y = (1.0)

Example 4
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL CSWAP(4 , X , 1 , Y , 2)

X = ((1.0, 6.0), (2.0, 7.0), (3.0, 8.0), (4.0, 9.0))
Y = ((-1.0, -1.0), . , (-2.0, -2.0), . , (-3.0, -3.0), . ,

(-4.0, -4.0))

Output:
X = ((-1.0, -1.0), (-2.0, -2.0), (-3.0, -3.0), (-4.0, -4.0))
Y = ((1.0, 6.0), . , (2.0, 7.0), . , (3.0, 8.0), . ,

(4.0, 9.0))

SSWAP, DSWAP, CSWAP, and ZSWAP

Chapter 8. Linear Algebra Subprograms 249

SVEA, DVEA, CVEA, and ZVEA—Add a Vector X to a Vector Y and
Store in a Vector Z

These subprograms perform the following computation, using vectors x, y, and z:
z←x+y

Table 52. Data Types

x, y, z Subprogram

Short-precision real SVEA

Long-precision real DVEA

Short-precision complex CVEA

Long-precision complex ZVEA

Syntax

Fortran CALL SVEA | DVEA | CVEA | ZVEA (n, x, incx, y, incy, z, incz)

C and C++ svea | dvea | cvea | zvea (n, x, incx, y, incy, z, incz);

PL/I CALL SVEA | DVEA | CVEA | ZVEA (n, x, incx, y, incy, z, incz);

On Entry:

n is the number of elements in vectors x, y, and z. Specified as: a fullword
integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 52.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 52.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

z See “On Return”.

incz is the stride for vector z. Specified as: a fullword integer. It can have any
value.

On Return:

z is the vector z of length n, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length 1+(n−1)|incz|,
containing numbers of the data type indicated in Table 52.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 53.

SVEA, DVEA, CVEA, and ZVEA

250 ESSL Version 3 Release 3 Guide and Reference

Function
The computation is expressed as follows:

If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (2.0, 3.0, 4.0, 5.0, 6.0)

Example 2
This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y(5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

Example 3
This example shows a vector, x, with 0 stride and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:

SVEA, DVEA, CVEA, and ZVEA

Chapter 8. Linear Algebra Subprograms 251

N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (2.0, 3.0, 4.0, 5.0, 6.0)

Example 4
This example shows a vector, y, with 0 stride. y is treated like a vector of length n,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (6.0, 7.0, 8.0, 9.0, 10.0)

Example 5
This example shows the output vector, z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (10.0)

Example 6
This example shows the output vector z, with 0 stride, where the vector x has 0
stride, and the vector y has negative stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (6.0)

SVEA, DVEA, CVEA, and ZVEA

252 ESSL Version 3 Release 3 Guide and Reference

Example 7
This example shows how SVEA can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z,
are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (6.0)

Example 8
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL CVEA(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

Output:
Z = ((8.0, 10.0), (12.0, 14.0), (16.0, 18.0))

SVEA, DVEA, CVEA, and ZVEA

Chapter 8. Linear Algebra Subprograms 253

SVES, DVES, CVES, and ZVES—Subtract a Vector Y from a Vector X
and Store in a Vector Z

These subprograms perform the following computation, using vectors x, y, and z:
z←x−y

Table 53. Data Types

x, y, z Subprogram

Short-precision real SVES

Long-precision real DVES

Short-precision complex CVES

Long-precision complex ZVES

Syntax

Fortran CALL SVES | DVES | CVES | ZVES (n, x, incx, y, incy, z, incz)

C and C++ sves | dves | cves | zves (n, x, incx, y, incy, z, incz);

PL/I CALL SVES | DVES | CVES | ZVES (n, x, incx, y, incy, z, incz);

On Entry:

n is the number of elements in vectors x, y, and z. Specified as: a fullword
integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 53.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 53.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

z See On Return.

incz is the stride for vector z. Specified as: a fullword integer. It can have any
value.

On Return:

z is the vector z of length n, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length 1+(n−1)|incz|,
containing numbers of the data type indicated in Table 53.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 53.

SVES, DVES, CVES, and ZVES

254 ESSL Version 3 Release 3 Guide and Reference

Function
The computation is expressed as follows:

If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (0.0, 1.0, 2.0, 3.0, 4.0)

Example 2
This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y(5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (0.0, . , 0.0, . , 0.0, . , 0.0, . , 0.0)

Example 3
This example shows a vector, x, with 0 stride, and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:

SVES, DVES, CVES, and ZVES

Chapter 8. Linear Algebra Subprograms 255

N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (0.0, -1.0, -2.0, -3.0, -4.0)

Example 4
This example shows a vector, y, with 0 stride. y is treated like a vector of length n,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (-4.0, -3.0, -2.0, -1.0, 0.0)

Example 5
This example shows the output vector z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (0.0)

Example 6
This example shows the output vector z, with 0 stride, where the vector x has 0
stride, and the vector y has negative stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (-4.0)

SVES, DVES, CVES, and ZVES

256 ESSL Version 3 Release 3 Guide and Reference

Example 7
This example shows how SVES can be used to compute a scalar value. In this case,
vectors x and y contain scalar values. The strides of all vectors, x, y, and z, are 0.
The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (-4.0)

Example 8
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL CVES(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

Output:
Z = ((-6.0, -6.0), (-6.0, -6.0), (-6.0, -6.0))

SVES, DVES, CVES, and ZVES

Chapter 8. Linear Algebra Subprograms 257

SVEM, DVEM, CVEM, and ZVEM—Multiply a Vector X by a Vector Y and
Store in a Vector Z

These subprograms perform the following computation, using vectors x, y, and z:
z←xy

Table 54. Data Types

x, y, z Subprogram

Short-precision real SVEM

Long-precision real DVEM

Short-precision complex CVEM

Long-precision complex ZVEM

Syntax

Fortran CALL SVEM | DVEM | CVEM | ZVEM (n, x, incx, y, incy, z, incz)

C and C++ svem | dvem | cvem | zvem (n, x, incx, y, incy, z, incz);

PL/I CALL SVEM | DVEM | CVEM | ZVEM (n, x, incx, y, incy, z, incz);

On Entry:

n is the number of elements in vectors x, y, and z. Specified as: a fullword
integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 54.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 54.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

z See “On Return”.

incz is the stride for vector z. Specified as: a fullword integer. It can have any
value.

On Return:

z is the vector z of length n, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length 1+(n−1)|incz|,
containing numbers of the data type indicated in Table 54.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 53.

SVEM, DVEM, CVEM, and ZVEM

258 ESSL Version 3 Release 3 Guide and Reference

Function
The computation is expressed as follows:

zi ← xiyi for i = 1, n

If n is 0, no computation is performed. For CVEM, intermediate results are
accumulated in long precision (short-precision Multiply followed by a
long-precision Add), with the final result truncated to short precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (1.0, 2.0, 3.0, 4.0, 5.0)

Example 2
This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y(5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (1.0, . , 4.0, . , 9.0, . , 16.0, . , 25.0)

Example 3
This example shows a vector, x, with 0 stride, and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (1.0, 2.0, 3.0, 4.0, 5.0)

SVEM, DVEM, CVEM, and ZVEM

Chapter 8. Linear Algebra Subprograms 259

Example 4
This example shows a vector, y, with 0 stride. y is treated like a vector of length n,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (5.0, 10.0, 15.0, 20.0, 25.0)

Example 5
This example shows the output vector, z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (25.0)

Example 6
This example shows the output vector z, with 0 stride, where the vector x has 0
stride, and the vector y has negative stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (5.0)

Example 7
This example shows how SVEM can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z,
are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

SVEM, DVEM, CVEM, and ZVEM

260 ESSL Version 3 Release 3 Guide and Reference

Output:
Z = (5.0)

Example 8
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL CVEM(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

Output:
Z = ((-9.0, 22.0), (-13.0, 66.0), (-17.0, 126.0))

SVEM, DVEM, CVEM, and ZVEM

Chapter 8. Linear Algebra Subprograms 261

SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX—Multiply a Vector X by
a Scalar and Store in a Vector Y

These subprograms perform the following computation, using the scalar α and
vectors x and y:

y←αx

Table 55. Data Types

α x, y Subprogram

Short-precision real Short-precision real SYAX

Long-precision real Long-precision real DYAX

Short-precision complex Short-precision complex CYAX

Long-precision complex Long-precision complex ZYAX

Short-precision real Short-precision complex CSYAX

Long-precision real Long-precision complex ZDYAX

Syntax

Fortran CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy)

C and C++ syax | dyax | cyax | zyax | csyax | zdyax (n, alpha, x, incx, y, incy);

PL/I CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy);

On Entry:

n is the number of elements in vector x and y. Specified as: a fullword
integer; n ≥ 0.

alpha is the scalar α. Specified as: a number of the data type indicated in
Table 55.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 55.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y See “On Return”.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

On Return:

y is the vector y of length n, containing the result of the computation αx.
Returned as: a one-dimensional array of (at least) length 1+(n−1)|incy|,
containing numbers of the data type indicated in Table 55.

Notes
1. If you specify the same vector for x and y, then incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 53.

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

262 ESSL Version 3 Release 3 Guide and Reference

Function
The computation is expressed as follows:

See reference [79]. If n is 0, no computation is performed. For CYAX, intermediate
results are accumulated in long precision.

Error Condition

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(5 , 2.0 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

Example 2
This example shows vectors x and y that have strides of opposite signs. For y,
which has negative stride, results are stored beginning in element Y(5).

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(5 , 2.0 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (10.0, 8.0, 6.0, 4.0, 2.0)

Example 3
This example shows a vector, x, with 0 stride. x is treated like a vector of length n,
all of whose elements are the same as the single element in x.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(5 , 2.0 , X , 0 , Y , 1)

X = (1.0)

Output:

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

Chapter 8. Linear Algebra Subprograms 263

Y = (2.0, 2.0, 2.0, 2.0, 2.0)

Example 4
This example shows how SYAX can be used to compute a scalar value. In this case
both vectors x and y contain scalar values, and the strides for both vectors are 0.
The number of elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(1 , 2.0 , X , 0 , Y , 0)

X = (1.0)

Output:
Y = (2.0)

Example 5
This example shows a scalar, α, and vectors x and y, containing complex numbers,
where both vectors have a stride of 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL CYAX(3 ,ALPHA, X , 1 , Y , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
Y = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

Example 6
This example shows a scalar, α, containing a real number, and vectors x and y,
containing complex numbers, where both vectors have a stride of 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL CSYAX(3 , 2.0 , X , 1 , Y , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
Y = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

264 ESSL Version 3 Release 3 Guide and Reference

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY—Multiply a Vector X by a
Scalar, Add to a Vector Y, and Store in a Vector Z

These subprograms perform the following computation, using the scalar α and
vectors x, y, and z:

z←y+αx

Table 56. Data Types

α, x, y, z Subprogram

Short-precision real SZAXPY

Long-precision real DZAXPY

Short-precision complex CZAXPY

Long-precision complex ZZAXPY

Syntax

Fortran CALL SZAXPY | DZAXPY | CZAXPY | ZZAXPY (n, alpha, x, incx, y, incy, z, incz)

C and C++ szaxpy | dzaxpy | czaxpy | zzaxpy (n, alpha, x, incx, y, incy, z, incz);

PL/I CALL SZAXPY | DZAXPY | CZAXPY | ZZAXPY (n, alpha, x, incx, y, incy, z, incz);

On Entry:

n is the number of elements in vectors x, y, and z. Specified as: a fullword
integer; n ≥ 0.

alpha is the scalar α. Specified as: a number of the data type indicated in
Table 56.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 56.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 56.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

z See “On Return”.

incz is the stride for vector z. Specified as: a fullword integer. It can have any
value.

On Return:

z is the vector z of length n, containing the result of the computation y+αx .
Returned as: a one-dimensional array of (at least) length 1+(n−1)|incz|,
containing numbers of the data type indicated in Table 56.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

Chapter 8. Linear Algebra Subprograms 265

2. If you specify different vectors for x and z, they must have no common
elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 53.

Function
The computation is expressed as follows:

See reference [79]. If n is 0, no computation is performed. For CZAXPY,
intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (3.0, 5.0, 7.0, 9.0, 11.0)

Example 2
This example shows vectors x and y having strides of opposite sign, and an output
vector z having a positive stride. For y, which has negative stride, processing
begins at element Y(5), which is 1.0.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (3.0, . , 6.0, . , 9.0, . , 12.0, . , 15.0)

Example 3
This example shows a vector, x, with 0 stride, and a vector, z, with negative stride.
x is treated like a vector of length n, all of whose elements are the same as the
single element in x. For vector z, results are stored beginning in element Z(5).

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

266 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (3.0, 4.0, 5.0, 6.0, 7.0)

Example 4
This example shows a vector, y, with 0 stride. y is treated like a vector of length n,
all of whose elements are the same as the single element in y.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (7.0, 9.0, 11.0, 13.0, 15.0)

Example 5
This example shows how SZAXPY can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z,
are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(1 , 2.0 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (7.0)

Example 6
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL CZAXPY(3 ,ALPHA, X , 1 , Y , 2 , Z , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))

Output:
Z = ((-3.0, 8.0), (4.0, 8.0), (-4.0, 23.0))

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

Chapter 8. Linear Algebra Subprograms 267

Sparse Vector-Scalar Subprograms
This section contains the sparse vector-scalar subprogram descriptions.

SSCTR, DSCTR, CSCTR, and ZSCTR

268 ESSL Version 3 Release 3 Guide and Reference

SSCTR, DSCTR, CSCTR, ZSCTR—Scatter the Elements of a Sparse
Vector X in Compressed-Vector Storage Mode into Specified Elements
of a Sparse Vector Y in Full-Vector Storage Mode

These subprograms scatter the elements of sparse vector x, stored in
compressed-vector storage mode, into specified elements of sparse vector y, stored
in full-vector storage mode.

Table 57. Data Types

x, y Subprogram

Short-precision real SSCTR

Long-precision real DSCTR

Short-precision complex CSCTR

Long-precision complex ZSCTR

Syntax

Fortran CALL SSCTR | DSCTR | CSCTR | ZSCTR (nz, x, indx, y)

C and C++ ssctr | dsctr | csctr | zsctr (nz, x, indx, y);

PL/I CALL SSCTR | DSCTR | CSCTR | ZSCTR (nz, x, indx, y);

On Entry:

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: a fullword integer; nz ≥ 0.

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X. Specified as: a one-dimensional
array of (at least) length nz, containing numbers of the data type indicated
in Table 57.

indx is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions in vector y into which the elements
are copied.

Specified as: a one-dimensional array of (at least) length nz, containing
fullword integers.

y See “On Return”.

On Return:

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz, into which nz elements of vector x are
copied at positions indicated by the indices array INDX.

Returned as: a one-dimensional array of (at least) length max(INDX(i)) for
i = 1, nz, containing numbers of the data type indicated in Table 57.

Notes
1. Each value specified in array INDX must be unique; otherwise, results are

unpredictable.
2. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 53.

SSCTR, DSCTR, CSCTR, and ZSCTR

Chapter 8. Linear Algebra Subprograms 269

3. For a description of how sparse vectors are stored, see “Sparse Vector” on
page 58 .

Function
The copy is expressed as follows:

yINDX(i) ← xi for i = 1, nz

where:
x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [29]. If nz is 0, no copy is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: nz < 0

Example 1
This example shows how to use SSCTR to copy a sparse vector x of length 5 into
the following vector y, where the elements of array INDX are in ascending order:

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Call Statement and Input:
NZ X INDX Y
| | | |

CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)

Output:
Y = (1.0, 2.0, 2.0, 3.0, 6.0, 10.0, 4.0, 8.0, 9.0, 5.0)

Example 2
This example shows how to use SSCTR to copy a sparse vector x of length 5 into
the following vector y, where the elements of array INDX are in random order:

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Call Statement and Input:
NZ X INDX Y
| | | |

CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)

Output:
Y = (3.0, 2.0, 2.0, 1.0, 6.0, 10.0, 5.0, 8.0, 9.0, 4.0)

Example 3
This example shows how to use CSCTR to copy a sparse vector x of length 3 into
the following vector y, where the elements of array INDX are in random order:

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Call Statement and Input:

SSCTR, DSCTR, CSCTR, and ZSCTR

270 ESSL Version 3 Release 3 Guide and Reference

NZ X INDX Y
| | | |

CALL CSCTR(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)

Output:
Y = ((3.0, 4.0), (-2.0, 3.0), (5.0, 6.0), (1.0, 2.0))

SSCTR, DSCTR, CSCTR, and ZSCTR

Chapter 8. Linear Algebra Subprograms 271

SGTHR, DGTHR, CGTHR, and ZGTHR—Gather Specified Elements of a
Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode

These subprograms gather specified elements of vector y, stored in full-vector
storage mode, into sparse vector x, stored in compressed-vector storage mode.

Table 58. Data Types

x, y Subprogram

Short-precision real SGTHR

Long-precision real DGTHR

Short-precision complex CGTHR

Long-precision complex ZGTHR

Syntax

Fortran CALL SGTHR | DGTHR | CGTHR | ZGTHR (nz, y, x, indx)

C and C++ sgthr | dgthr | cgthr | zgthr (nz, y, x, indx);

PL/I CALL SGTHR | DGTHR | CGTHR | ZGTHR (nz, y, x, indx);

On Entry:

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: a fullword integer; nz ≥ 0.

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz, from which nz elements are copied from
positions indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length max(INDX(i)) for
i = 1, nz, containing numbers of the data type indicated in Table 58.

x See “On Return”.

indx is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions in vector y from which elements are
copied.

Specified as: a one-dimensional array of (at least) length nz, containing
fullword integers.

On Return:

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X, into which are copied the
elements of vector y from positions indicated by the indices array INDX.

Returned as: a one-dimensional array of (at least) length nz, containing
numbers of the data type indicated in Table 58.

Notes
1. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 53.
2. For a description of how sparse vectors are stored, see “Sparse Vector” on

page 58.

SGTHR, DGTHR, CGTHR, and ZGTHR

272 ESSL Version 3 Release 3 Guide and Reference

Function
The copy is expressed as follows:

xi ← yINDX(i) for i = 1, nz

where:
x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [29]. If nz is 0, no copy is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: nz < 0

Example 1
This example shows how to use SGTHR to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in
ascending order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3, 4, 7, 9)

Output:
X = (6.0, 4.0, 7.0, -2.0, 9.0)

Example 2
This example shows how to use SGTHR to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in random
order. (Note that the element 0.0 occurs in output vector x. This does not produce
an error.)

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3, 1, 10, 7)

Output:
X = (7.0, 4.0, 6.0, 0.0, -2.0)

Example 3
This example shows how to use CGTHR to copy specified elements of a vector, y,
into a sparse vector, x, of length 3, where the elements of array INDX are in random
order.

Call Statement and Input:

SGTHR, DGTHR, CGTHR, and ZGTHR

Chapter 8. Linear Algebra Subprograms 273

NZ Y X INDX
| | | |

CALL CGTHR(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4, 1, 3)

Output:
X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

SGTHR, DGTHR, CGTHR, and ZGTHR

274 ESSL Version 3 Release 3 Guide and Reference

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ—Gather Specified Elements
of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in
Compressed-Vector Mode, and Zero the Same Specified Elements of Y

These subprograms gather specified elements of sparse vector y, stored in
full-vector storage mode, into sparse vector x, stored in compressed-vector storage
mode, and zero the same specified elements of vector y.

Table 59. Data Types

x, y Subprogram

Short-precision real SGTHRZ

Long-precision real DGTHRZ

Short-precision complex CGTHRZ

Long-precision complex ZGTHRZ

Syntax

Fortran CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx)

C and C++ sgthrz | dgthrz | cgthrz | zgthrz (nz, y, x, indx);

PL/I CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx);

On Entry:

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: a fullword integer; nz ≥ 0.

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz, from which nz elements are copied from
positions indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length max(INDX(i)) for
i = 1, nz, containing numbers of the data type indicated in Table 59.

x See “On Return”.

indx is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions in vector y from which elements are
copied then set to zero.

Specified as: a one-dimensional array of (at least) length nz, containing
fullword integers.

On Return:

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz, whose elements are set to zero at
positions indicated by the indices array INDX.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 59.

x is the sparse vector x, containing nz elements stored in compressed-vector
storage mode in an array, referred to as X, into which are copied the
elements of vector y from positions indicated by the indices array INDX.

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ

Chapter 8. Linear Algebra Subprograms 275

Returned as: a one-dimensional array of (at least) length nz, containing
numbers of the data type indicated in Table 59 on page 275.

Notes
1. Each value specified in array INDX must be unique; otherwise, results are

unpredictable.
2. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 53.
3. For a description of how sparse vectors are stored, see “Sparse Vector” on

page 58.

Function
The copy is expressed as follows:

xi ← yINDX(i)
yINDX(i)←0.0 (for SGTHRZ and DGTHRZ)
yINDX(i)←(0.0,0.0) (for CGTHRZ and ZGTHRZ)

for i = 1,nz

where:
x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [29]. If nz is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: nz < 0

Example 1
This example shows how to use SGTHRZ to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in
ascending order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3, 4, 7, 9)

Output:
Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 0.0, 0.0)
X = (6.0, 4.0, 7.0, -2.0, 9.0)

Example 2
This example shows how to use SGTHRZ to copy specified elements of a vector y
into a sparse vector x of length 5, where the elements of array INDX are in random
order. (Note that the element 0.0 occurs in output vector x. This does not produce
an error.)

Call Statement and Input:

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ

276 ESSL Version 3 Release 3 Guide and Reference

NZ Y X INDX
| | | |

CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3, 1, 10, 7)

Output:
Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 9.0, 0.0)
X = (7.0, 4.0, 6.0, 0.0, -2.0)

Example 3
This example shows how to use CGTHRZ to copy specified elements of a vector y
into a sparse vector x of length 3, where the elements of array INDX are in random
order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL CGTHRZ(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4, 1, 3)

Output:
Y = ((0.0, 0.0), (-2.0, 3.0), (0.0, 0.0), (0.0, 0.0))
X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ

Chapter 8. Linear Algebra Subprograms 277

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector X in
Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector
Y in Full-Vector Storage Mode, and Store in the Vector Y

These subprograms multiply sparse vector x, stored in compressed-vector storage
mode, by scalar α, add it to sparse vector y, stored in full-vector storage mode, and
store the result in vector y.

Table 60. Data Types

α, x, y Subprogram

Short-precision real SAXPYI

Long-precision real DAXPYI

Short-precision complex CAXPYI

Long-precision complex ZAXPYI

Syntax

Fortran CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y)

C and C++ saxpyi | daxpyi | caxpyi | zaxpyi (nz, alpha, x, indx, y);

PL/I CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y);

On Entry:

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: a fullword integer; nz ≥ 0.

alpha is the scalar α. Specified as: a number of the data type indicated in
Table 60.

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X. Specified as: a one-dimensional
array of (at least) length nz, containing numbers of the data type indicated
in Table 60.

indx is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions of the elements in vector y that are
used in the computation.

Specified as: a one-dimensional array of (at least) length nz, containing
fullword integers.

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz. Specified as: a one-dimensional array of
(at least) length max(INDX(i)) for i = 1, nz, containing numbers of the data
type indicated in Table 60.

On Return:

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz containing the results of the computation,
stored at positions indicated by the indices array INDX.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 60.

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

278 ESSL Version 3 Release 3 Guide and Reference

Notes
1. Each value specified in array INDX must be unique; otherwise, results are

unpredictable.
2. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 53.
3. For a description of how sparse vectors are stored, see “Sparse Vector” on

page 58.

Function
The computation is expressed as follows:

yINDX(i) ← yINDX(i) + αxi for i = 1, nz

where:
x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [29]. If α or nz is zero, no computation is performed. For SAXPYI and
CAXPYI, intermediate results are accumulated in long-precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: nz < 0

Example 1
This example shows how to use SAXPYI to perform a computation using a sparse
vector x of length 5, where the elements of array INDX are in ascending order.

Call Statement and Input:
NZ ALPHA X INDX Y
| | | | |

CALL SAXPYI(5 , 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
Y = (3.0, 5.0, 8.0, 9.0, 6.0, 10.0, 6.0, 8.0, 9.0, 10.0)

Example 2
This example shows how to use SAXPYI to perform a computation using a sparse
vector x of length 5, where the elements of array INDX are in random order.

Call Statement and Input:
NZ ALPHA X INDX Y
| | | | |

CALL SAXPYI(5 , 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
Y = (7.0, 5.0, 8.0, 5.0, 6.0, 10.0, 8.0, 8.0, 9.0, 8.0)

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

Chapter 8. Linear Algebra Subprograms 279

Example 3
This example shows how to use CAXPYI to perform a computation using a sparse
vector x of length 3, where the elements of array INDX are in random order.

Call Statement and Input:
NZ ALPHA X INDX Y
| | | | |

CALL CAXPYI(3 , ALPHA , X , INDX , Y)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Output:
Y = ((0.0, 22.0), (-2.0, 3.0), (7.0, 31.0), (5.0, 7.0))

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

280 ESSL Version 3 Release 3 Guide and Reference

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI—Dot Product
of a Sparse Vector X in Compressed-Vector Storage Mode and a
Sparse Vector Y in Full-Vector Storage Mode

SDOTI, DDOTI, CDOTUI, and ZDOTUI compute the dot product of sparse vector
x, stored in compressed-vector storage mode, and full vector y, stored in full-vector
storage mode.

CDOTCI and ZDOTCI compute the dot product of the complex conjugate of sparse
vector x, stored in compressed-vector storage mode, and full vector y, stored in
full-vector storage mode.

Table 61. Data Types

x, y, Result Subprogram

Short-precision real SDOTI

Long-precision real DDOTI

Short-precision complex CDOTUI

Long-precision complex ZDOTUI

Short-precision complex CDOTCI

Long-precision complex ZDOTCI

Syntax

Fortran SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y)

C and C++ sdoti | ddoti | cdotui | zdotui | cdotci | zdotci (nz, x, indx, y);

PL/I SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y);

On Entry:

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: a fullword integer; nz ≥ 0.

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X. Specified as: a one-dimensional
array of (at least) length nz, containing numbers of the data type indicated
in Table 61.

indx is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions of elements in vector y that are
used in the computation.

Specified as: a one-dimensional array of (at least) length nz, containing
fullword integers.

y is the sparse vector y, stored in full-vector storage mode, of (at least)
length max(INDX(i)) for i = 1, nz. Specified as: a one-dimensional array of
(at least) length max(INDX(i)) for i = 1, nz, containing numbers of the data
type indicated in Table 61.

On Return:

Function value

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

Chapter 8. Linear Algebra Subprograms 281

is the result of the dot product computation.

Returned as: a number of the data type indicated in Table 61 on page 281.

Note
1. Declare this function in your program as returning a value of the data type

indicated in Table 61 on page 281.
2. For a description of how sparse vectors are stored, see “Sparse Vector” on

page 58.

Function
For SDOTI, DDOTI, CDOTUI, and ZDOTUI, the dot product computation is
expressed as follows:

For CDOTCI and ZDOTCI, the dot product computation is expressed as follows:

where:

x is a sparse vector, stored in compressed-vector storage mode.

INDX is the indices array for sparse vector x.

y is a sparse vector, stored in full-vector storage mode.

See reference [29]. The result is returned as the function value. If nz is 0, then zero
is returned as the value of the function.

For SDOTI, CDOTUI, and CDOTCI, intermediate results are accumulated in
long-precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: nz < 0

Example 1
This example shows how to use SDOTI to compute a dot product using a sparse
vector x of length 5, where the elements of array INDX are in ascending order.

Function Reference and Input:

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

282 ESSL Version 3 Release 3 Guide and Reference

NZ X INDX Y
| | | |

DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
DOTT = (1.0 + 8.0 + 9.0 -8.0 + 0.0) = 10.0

Example 2
This example shows how to use SDOTI to compute a dot product using a sparse
vector x of length 5, where the elements of array INDX are in random order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
DOTT = (3.0 + 8.0 + 3.0 + 0.0 -10.0) = 4.0

Example 3
This example shows how to use CDOTUI to compute a dot product using a sparse
vector x of length 3, where the elements of array INDX are in ascending order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = CDOTUI(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (1, 3, 4)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Output:
DOTT = (70.0, 143.0)

Example 4
This example shows how to use CDOTCI to compute a dot product using the
complex conjugate of a sparse vector x of length 3, where the elements of array
INDX are in random order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = CDOTCI(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Output:
DOTT = (146.0, -97.0)

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

Chapter 8. Linear Algebra Subprograms 283

Matrix-Vector Subprograms
This section contains the matrix-vector subprogram descriptions.

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

284 ESSL Version 3 Release 3 Guide and Reference

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and
DGEMTX—Matrix-Vector Product for a General Matrix, Its Transpose,
or Its Conjugate Transpose

SGEMV and DGEMV compute the matrix-vector product for either a real general
matrix or its transpose, using the scalars α and β, vectors x and y, and matrix A or
its transpose:

y← β y+α Ax
y ← βy+α ATx

CGEMV and ZGEMV compute the matrix-vector product for either a complex
general matrix, its transpose, or its conjugate transpose, using the scalars α and β,
vectors x and y, and matrix A, its transpose, or its conjugate transpose:

y ← β y+α Ax
y ← β y+α ATx
y ← β y+α AHx

SGEMX and DGEMX compute the matrix-vector product for a real general matrix,
using the scalar α, vectors x and y, and matrix A:

y← y+α Ax

SGEMTX and DGEMTX compute the matrix-vector product for the transpose of a
real general matrix, using the scalar α, vectors x and y, and the transpose of matrix
A:

y ← y+α ATx

Table 62. Data Types

α, β, x, y, A Subprogram

Short-precision real SGEMV, SGEMX, and SGEMTX

Long-precision real DGEMV, DGEMX, and DGEMTX

Short-precision complex CGEMV

Long-precision complex ZGEMV

Note: SGEMV and DGEMV are Level 2 BLAS subroutines. It is suggested that
these subroutines be used instead of SGEMX, DGEMX, SGEMTX, and
DGEMTX, which are provided only for compatibility with earlier releases of
ESSL.

Syntax

Fortran CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, lda, x, incx, beta, y, incy)

CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy)

C and C++ sgemv | dgemv | cgemv | zgemv (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);

sgemx | dgemx | sgemtx | dgemtx (m, n, alpha, a, lda, x, incx, y, incy);

PL/I CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);

CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy);

On Entry:

transa indicates the form of matrix A to use in the computation, where:

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Chapter 8. Linear Algebra Subprograms 285

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

m is the number of rows in matrix A, and:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it is the length of vector y.
If transa = 'T' or 'C', it is the length of vector x.

For SGEMX and DGEMX, it is the length of vector y.

For SGEMTX and DGEMTX, it is the length of vector x.

Specified as: a fullword integer; 0 ≤ m ≤ lda.

n is the number of columns in matrix A, and:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it is the length of vector x.
If transa = 'T' or 'C', it is the length of vector y.

For SGEMX and DGEMX, it is the length of vector x.

For SGEMTX and DGEMTX, it is the length of vector y.

Specified as: a fullword integer; n ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 62 on page 285.

a is the m by n matrix A, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', A is used in the computation.
If transa = 'T', AT is used in the computation.
If transa = 'C', AH is used in the computation.

For SGEMX and DGEMX, A is used in the computation.

For SGEMTX and DGEMTX, AT is used in the computation.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 62 on page 285.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ m.

x is the vector x, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it has length n.
If transa = 'T' or 'C', it has length m.

For SGEMX and DGEMX, it has length n.

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

286 ESSL Version 3 Release 3 Guide and Reference

For SGEMTX and DGEMTX, it has length m.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 62 on page 285, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it must have at least 1+(n−1)|incx| elements.
If transa = 'T' or 'C', it must have at least 1+(m−1)|incx| elements.

For SGEMX and DGEMX, it must have at least 1+(n−1)|incx| elements.

For SGEMTX and DGEMTX, it must have at least 1+(m−1)|incx| elements.

incx is the stride for vector x. Specified as: a fullword integer; It can have any
value.

beta is the scaling constant β. Specified as: a number of the data type indicated
in Table 62 on page 285.

y is the vector y, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it has length m.
If transa = 'T' or 'C', it has length n.

For SGEMX and DGEMX, it has length m.

For SGEMTX and DGEMTX, it has length n.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 62 on page 285, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it must have at least 1+(m−1)|incy| elements.
If transa = 'T' or 'C', it must have at least 1+(n−1)|incy| elements.

For SGEMX and DGEMX, it must have at least 1+(m−1)|incy| elements.

For SGEMTX and DGEMTX, it must have at least 1+(n−1)|incy| elements.

incy is the stride for vector y. Specified as: a fullword integer; incy > 0 or
incy < 0.

On Return:

y is the vector y, containing the result of the computation, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
If transa = 'N', it has length m.
If transa = 'T' or 'C', it has length n.

For SGEMX and DGEMX, it has length m.

For SGEMTX and DGEMTX, it has length n.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 62 on page 285.

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Chapter 8. Linear Algebra Subprograms 287

Notes
1. For SGEMV and DGEMV, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
2. The SGEMV, DGEMV, CGEMV, and ZGEMV subroutines accept lowercase

letters for the transa argument.
3. In the SGEMV, DGEMV, CGEMV, and ZGEMV subroutines, incx = 0 is valid;

however, the Level 2 BLAS standard considers incx = 0 to be invalid. See
references [34] and [35].

4. Vector y must have no common elements with matrix A or vector x; otherwise,
results are unpredictable. See “Concepts” on page 53.

Function
The possible computations that can be performed by these subroutines are
described in the following sections. Varying implementation techniques are used
for this computation to improve performance. As a result, accuracy of the
computational result may vary for different computations.

For SGEMV, CGEMV, SGEMX, and SGEMTX, intermediate results are accumulated
in long precision. Occasionally, for performance reasons, these intermediate results
are stored.

See references [34], [35], [38], [46], and [79]. No computation is performed if m or n
is 0 or if α is zero and β is one.

General Matrix: For SGEMV, DGEMV, CGEMV, and ZGEMV, the matrix-vector
product for a general matrix:

y←βy+αAx

is expressed as follows:

For SGEMX and DGEMX, the matrix-vector product for a real general matrix:
y←y+αAx

is expressed as follows:

In these expressions:
y is a vector of length m.
α is a scalar.
β is a scalar.

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

288 ESSL Version 3 Release 3 Guide and Reference

A is an m by n matrix.
x is a vector of length n.

Transpose of a General Matrix: For SGEMV, DGEMV, CGEMV and ZGEMV, the
matrix-vector product for the transpose of a general matrix:

y ← βy+αATx

is expressed as follows:

For SGEMTX and DGEMTX, the matrix-vector product for the transpose of a real
general matrix:

y ← y+αATx

is expressed as follows:

In these expressions:
y is a vector of length n.
α is a scalar.
β is a scalar.
AT is the transpose of matrix A, where A is an m by n matrix.
x is a vector of length m.

Conjugate Transpose of a General Matrix: For CGEMV and ZGEMV, the
matrix-vector product for the conjugate transpose of a general matrix:

y ← βy+αAHx

is expressed as follows:

where:
y is a vector of length n.
α is a scalar.
β is a scalar.

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Chapter 8. Linear Algebra Subprograms 289

AH is the conjugate transpose of matrix A, where A is an m by n matrix.
x is a vector of length m.

Error Conditions

Resource Errors: Unable to allocate internal work area (for SGEMV, DGEMV,
CGEMV, and ZGEMV).

Computational Errors: None

Input-Argument Errors:
1. transa ≠ 'N', 'T', or 'C'
2. m < 0
3. m > lda
4. n < 0
5. lda ≤ 0
6. incy = 0

Example 1
This example shows the computation for TRANSA equal to 'N', where the real
general matrix A is used in the computation. Because lda is 10 and n is 3, array A
must be declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. In this
example, array A is declared as A(1:10,0:2).

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SGEMV('N' , 4 , 3 , 1.0 , A(1,0) , 10 , X , 1 , 1.0 , Y , 2)

┌ ┐
| 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, . , 5.0, . , 2.0, . , 3.0)

Output:
Y = (14.0, . , 19.0, . , 17.0, . , 20.0)

Example 2
This example shows the computation for TRANSA equal to 'T', where the transpose
of the real general matrix A is used in the computation. Array A must follow the
same rules as given in Example 1. In this example, array A is declared as
A(-1:8,1:3).

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SGEMV('T' , 4 , 3 , 1.0 , A(-1,1) , 10 , X , 1 , 2.0 , Y , 2)

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

290 ESSL Version 3 Release 3 Guide and Reference

A =(same as input A in Example 1)
X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0)

Output:
Y = (28.0, . , 24.0, . , 29.0)

Example 3
This example shows the computation for TRANSA equal to 'N', where the complex
general matrix A is used in the computation.

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CGEMV('N' , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (1.0, 0.0)

┌ ┐
| (1.0, 2.0) (3.0, 5.0) (2.0, 0.0) |
| (2.0, 3.0) (7.0, 9.0) (4.0, 8.0) |
| (7.0, 4.0) (1.0, 4.0) (6.0, 0.0) |
| (8.0, 2.0) (2.0, 5.0) (8.0, 0.0) |

A = | (9.0, 1.0) (3.0, 6.0) (1.0, 0.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0), (3.0, 4.0),

(2.0, 0.0))

Output:
Y = ((12.0, 28.0), (24.0, 55.0), (10.0, 39.0), (23.0, 50.0),

(22.0, 44.0))

Example 4
This example shows the computation for TRANSA equal to 'T', where the transpose
of complex general matrix A is used in the computation. Because β is zero, the
result of the computation is αATx

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CGEMV('T' , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (1.0, 0.0)
A =(same as input A in Example 3)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
BETA = (0.0, 0.0)
Y =(not relevant)

Output:
Y = ((42.0, 67.0), (10.0, 87.0), (50.0, 74.0))

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Chapter 8. Linear Algebra Subprograms 291

Example 5
This example shows the computation for TRANSA equal to 'C', where the conjugate
transpose of the complex general matrix A is used in the computation.

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CGEMV('C' , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (-1.0, 0.0)
A =(same as input A in Example 3)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

Output:
Y = ((-73.0, -13.0), (-74.0, 57.0), (-49.0, -11.0))

Example 6
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are positive. Because lda is 10 and n is 3, array A must be declared
as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. For this example, array A
is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 10 , X , 1 , Y , 2)

┌ ┐
| 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, . , 5.0, . , 2.0, . , 3.0)

Output:
Y = (14.0, . , 19.0, . , 17.0, . , 20.0)

Example 7
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are of opposite sign. For y, which has negative stride, processing
begins at element Y(7), which is 4.0. Array A must follow the same rules as given
in Example 6. For this example, array A is declared as A(-1:8,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(-1,1) , 10 , X , 1 , Y , -2)

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

292 ESSL Version 3 Release 3 Guide and Reference

A =(same as input A in Example 6)
X = (3.0, 2.0, 1.0)
Y = (3.0, . , 2.0, . , 5.0, . , 4.0)

Output:
Y = (20.0, . , 17.0, . , 19.0, . , 14.0)

Example 8
This example shows a matrix, A, contained in a larger array, A, and the first
element of the matrix is not the first element of the array. Array A must follow the
same rules as given in Example 6. For this example, array A is declared as
A(1:10,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(5,1) , 10 , X , 1 , Y , 1)

┌ ┐
| . . . |
| . . . |
| . . . |
| . . . |

A = | 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
| . . . |
| . . . |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

Output:
Y = (14.0, 19.0, 17.0, 20.0)

Example 9
This example shows a matrix, A, and an array, A, having the same number of rows.
For this case, m and lda are equal. Because lda is 4 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For this example,
array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

Output:
Y = (14.0, 19.0, 17.0, 20.0)

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

Chapter 8. Linear Algebra Subprograms 293

Example 10
This example shows a matrix, A, and an array, A, having the same number of rows.
For this case, m and lda are equal. Because lda is 4 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For this
example, array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMTX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
└ ┘

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

Output:
Y = (27.0, 22.0, 26.0)

Example 11
This example shows a computation in which alpha is greater than 1. Array A must
follow the same rules as given in Example 10. For this example, array A is declared
as A(-1:2,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMTX(4 , 3 , 2.0 , A(-1,1) , 4 , X , 1 , Y , 1)

A =(same as input A in Example 10)
X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

Output:
Y = (53.0, 42.0, 49.0)

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

294 ESSL Version 3 Release 3 Guide and Reference

SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC—Rank-One
Update of a General Matrix

SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general
matrix, using the scalar α, matrix A, vector x, and the transpose of vector y:

A ← A+αxyT

CGERC and ZGERC compute the rank-one update of a general matrix, using the
scalar α, matrix A, vector x, and the conjugate transpose of vector y:

A ← A+αxyH

Table 63. Data Types

α, A, x, y Subprogram

Short-precision real SGER

Long-precision real DGER

Short-precision complex CGERU and CGERC

Long-precision complex ZGERU and ZGERC

Note: For compatibility with earlier releases of ESSL, you can use the names
SGER1 and DGER1 for SGER and DGER, respectively.

Syntax

Fortran CALL SGER | DGER | CGERU | ZGERU | CGERC | ZGERC (m, n, alpha, x, incx, y, incy, a, lda)

C and C++ sger | dger | cgeru | zgeru | cgerc | zgerc (m, n, alpha, x, incx, y, incy, a, lda);

PL/I CALL SGER | DGER | CGERU | ZGERU | CGERC | ZGERC (m, n, alpha, x, incx, y, incy, a, lda);

On Entry:

m is the number of rows in matrix A and the number of elements in vector x.
Specified as: a fullword integer; 0 ≤ m ≤ lda.

n is the number of columns in matrix A and the number of elements in
vector y. Specified as: a fullword integer; n ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 63.

x is the vector x of length m. Specified as: a one-dimensional array of (at
least) length 1+(m−1)|incx|, containing numbers of the data type indicated
in Table 63.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y is the vector y of length n, whose transpose or conjugate transpose is used
in the computation.

Note: No data should be moved to form yT or yH; that is, the vector y
should always be stored in its untransposed form.

Specified as: a one-dimensional array of (at least) length 1+(n−1)|incy|,
containing numbers of the data type indicated in Table 63.

incy is the stride for vector y. Specified as: a fullword integer. It can have any
value.

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Chapter 8. Linear Algebra Subprograms 295

a is the m by n matrix A. Specified as: an lda by (at least) n array, containing
numbers of the data type indicated in Table 63 on page 295.

lda is the size of the leading dimension of the array specified for a. Specified
as: a fullword integer; lda > 0 and lda ≥ m.

On Return:

a is the m by n matrix A, containing the result of the computation.

Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 63 on page 295.

Notes
1. In these subroutines, incx = 0 and incy = 0 are valid; however, the Level 2

BLAS standard considers incx = 0 and incy = 0 to be invalid. See references
[34] and [35].

2. Matrix A can have no common elements with vectors x and y; otherwise,
results are unpredictable. See “Concepts” on page 53.

Function
SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general
matrix:

A ← A+αxyT

where:
A is an m by n matrix.
α is a scalar.
x is a vector of length m.
yT is the transpose of vector y of length n.

It is expressed as follows:

It can also be expressed as:

CGERC and ZGERC compute a slightly different rank-one update of a general
matrix:

A ← A+αxyH

where:
A is an m by n matrix.
α is a scalar.

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

296 ESSL Version 3 Release 3 Guide and Reference

x is a vector of length m.
yH is the conjugate transpose of vector y of length n.

It is expressed as follows:

It can also be expressed as:

See references [34], [35], and [79]. No computation is performed if m, n, or α is
zero. For CGERU and CGERC, intermediate results are accumulated in long
precision. For SGER, intermediate results are accumulated in long precision on
some platforms.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors:
1. m < 0
2. n < 0
3. lda ≤ 0
4. m > lda

Example 1
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are positive. Because lda is 10 and n is 3, array A must be declared
as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. For this example, array A
is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 1 , Y , 2 , A(1,0) , 10)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0)

┌ ┐
| 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Chapter 8. Linear Algebra Subprograms 297

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| 4.0 8.0 12.0 |
| 4.0 6.0 10.0 |
| 4.0 4.0 5.0 |
| 8.0 10.0 13.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Example 2
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are of opposite sign. For y, which has negative stride, processing
begins at element Y(5), which is 1.0. Array A must follow the same rules as given
in Example 1. For this example, array A is declared as A(-1:8,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 1 , Y , -2 , A(-1,1) , 10)

X = (3.0, 2.0, 1.0, 4.0)
Y = (3.0, . , 2.0, . , 1.0)
A =(same as input A in Example 1)

Output:

A =(same as input A in Example 1)

Example 3
This example shows a matrix, A, contained in a larger array, A, and the first
element of the matrix is not the first element of the array. Array A must follow the
same rules as given in Example 1. For this example, array A is declared as
A(1:10,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 3 , Y , 1 , A(4,1) , 10)

X = (3.0, . , . , 2.0, . , . , 1.0, . , . , 4.0)
Y = (1.0, 2.0, 3.0)

┌ ┐
| . . . |
| . . . |
| . . . |
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

298 ESSL Version 3 Release 3 Guide and Reference

| 4.0 2.0 1.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| . . . |
| . . . |
| . . . |
| 4.0 8.0 12.0 |

A = | 4.0 6.0 10.0 |
| 4.0 4.0 5.0 |
| 8.0 10.0 13.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Example 4
This example shows a matrix, A, and array, A, having the same number of rows.
For this case, m and lda are equal. Because lda is 4 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For this example,
array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 1 , Y , 1 , A(1,0) , 4)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
└ ┘

Output:
┌ ┐
| 4.0 8.0 12.0 |

A = | 4.0 6.0 10.0 |
| 4.0 4.0 5.0 |
| 8.0 10.0 13.0 |
└ ┘

Example 5
This example shows a computation in which scalar value for alpha is greater than
1. Array A must follow the same rules as given in Example 4. For this example,
array A is declared as A(-1:2,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 2.0 , X , 1 , Y , 1 , A(-1,1) , 4)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)
A =(same as input A in Example 4)

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Chapter 8. Linear Algebra Subprograms 299

Output:
┌ ┐
| 7.0 14.0 21.0 |

A = | 6.0 10.0 16.0 |
| 5.0 6.0 8.0 |
| 12.0 18.0 25.0 |
└ ┘

Example 6
This example shows a rank-one update in which all data items contain complex
numbers, and the transpose yT is used in the computation. Matrix A is contained
in a larger array, A. The strides of vectors x and y are positive. The Fortran
DIMENSION statement for array A must follow the same rules as given in
Example 1. For this example, array A is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CGERU(5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,0) , 10)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

┌ ┐
| (1.0, 2.0) (3.0, 5.0) (2.0, 0.0) |
| (2.0, 3.0) (7.0, 9.0) (4.0, 8.0) |
| (7.0, 4.0) (1.0, 4.0) (6.0, 0.0) |
| (8.0, 2.0) (2.0, 5.0) (8.0, 0.0) |

A = | (9.0, 1.0) (3.0, 6.0) (1.0, 0.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-2.0, 6.0) (7.0, 13.0) (5.0, 1.0) |
| (6.0, 11.0) (23.0, 9.0) (8.0, 4.0) |
| (6.0, 7.0) (5.0, 8.0) (8.0, 0.0) |
| (3.0, 12.0) (14.0, 21.0) (15.0, 1.0) |

A = | (11.0, 5.0) (11.0, 6.0) (3.0, -2.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Example 7
This example shows a rank-one update in which all data items contain complex
numbers, and the conjugate transpose yH is used in the computation. Matrix A is
contained in a larger array, A. The strides of vectors x and y are positive. The
Fortran DIMENSION statement for array A must follow the same rules as given in
Example 1. For this example, array A is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CGERC(5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,0) , 10)

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

300 ESSL Version 3 Release 3 Guide and Reference

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
A =(same as input A in Example 6)

Output:
┌ ┐
| (6.0, 2.0) (7.0, 13.0) (1.0, 3.0) |
| (6.0, -5.0) (23.0, 9.0) (8.0, 12.0) |
| (10.0, 3.0) (5.0, 8.0) (6.0, 2.0) |
| (19.0, 0.0) (14.0, 21.0) (7.0, 7.0) |

A = | (11.0, -3.0) (11.0, 6.0) (3.0, 2.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

Chapter 8. Linear Algebra Subprograms 301

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV,
SSLMX, and DSLMX—Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV
compute the matrix-vector product for either a real symmetric matrix or a complex
Hermitian matrix, using the scalars α and β, matrix A, and vectors x and y:

y←βy+αAx

SSLMX and DSLMX compute the matrix-vector product for a real symmetric
matrix, using the scalar α, matrix A, and vectors x and y:

y←y+αAx

The following storage modes are used:
v For SSPMV, DSPMV, CHPMV, and ZHPMV, matrix A is stored in upper- or

lower-packed storage mode.
v For SSYMV, DSYMV, CHEMV, and ZHEMV, matrix A is stored in upper or

lower storage mode.
v For SSLMX and DSLMX, matrix A is stored in lower-packed storage mode.

Table 64. Data Types

α, β, A, x, y Subprogram

Short-precision real SSPMV, SSYMV, and SSLMX

Long-precision real DSPMV, DSYMV, and DSLMX

Short-precision complex CHPMV and CHEMV

Long-precision complex ZHPMV and ZHEMV

Note: SSPMV and DSPMV are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLMX and DSLMX, which are provided only for
compatibility with earlier releases of ESSL.

Syntax

Fortran CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)

CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CALL SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy)

C and C++ sspmv | dspmv | chpmv | zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy);

ssymv | dsymv | chemv | zhemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy);

sslmx | dslmx (n, alpha, ap, x, incx, y, incy);

PL/I CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy);

CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy);

CALL SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy);

On Entry:

uplo indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

302 ESSL Version 3 Release 3 Guide and Reference

If uplo = 'L', A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the number of elements in vectors x and y and the order of matrix A.
Specified as: a fullword integer; n ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 64 on page 302.

ap has the following meaning:

For SSPMV and DSPMV, ap is the real symmetric matrix A of order n,
stored in upper- or lower-packed storage mode.

For CHPMV and ZHPMV, ap is the complex Hermitian matrix A of order
n, stored in upper- or lower-packed storage mode.

For SSLMX and DSLMX, ap is the real symmetric matrix A of order n,
stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in Table 64 on page 302.

a has the following meaning:

For SSYMV and DSYMV, a is the real symmetric matrix A of order n,
stored in upper or lower storage mode.

For CHEMV and ZHEMV, a is the complex Hermitian matrix A of order n,
stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 64 on page 302.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 64 on page 302.

incx is the stride for vector x. Specified as: a fullword integer, where:

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and
ZHEMV, incx < 0 or incx > 0.

For SSLMX and DSLMX, incx can have any value.

beta is the scaling constant β. Specified as: a number of the data type indicated
in Table 64 on page 302.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 64 on page 302.

incy is the stride for vector y. Specified as: a fullword integer; incy > 0 or
incy < 0.

On Return:

y is the vector y of length n, containing the result of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 64 on page 302.

Notes
1. All subroutines accept lowercase letters for the uplo argument.

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

Chapter 8. Linear Algebra Subprograms 303

2. The vector y must have no common elements with vector x or matrix A;
otherwise, results are unpredictable. See “Concepts” on page 53.

3. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see “Symmetric
Matrix” on page 62. For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see “Complex Hermitian Matrix” on page 67.

Function
These subroutines perform the computations described in the two sections below.
See references [34], [35], and [79]. For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV,
DSYMV, CHEMV, and ZHEMV, if n is zero or if α is zero and β is one, no
computation is performed. For SSLMX and DSLMX, if n or α is zero, no
computation is performed.

For SSLMX, SSPMV, SSYMV, CHPMV, and CHEMV, intermediate results are
accumulated in long precision. However, several intermediate stores may occur for
each element of the vector y.

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and
ZHEMV: These subroutines compute the matrix-vector product for either a real
symmetric matrix or a complex Hermitian matrix:

y←βy+αAx

where:
y is a vector of length n.
α is a scalar.
β is a scalar.
A is a real symmetric or complex Hermitian matrix of order n.
x is a vector of length n.

It is expressed as follows:

For SSLMX and DSLMX: These subroutines compute the matrix-vector product
for a real symmetric matrix stored in lower-packed storage mode:

y←y+αAx

where:
y is a vector of length n.
α is a scalar.
A is a real symmetric matrix of order n.
x is a vector of length n.

It is expressed as follows:

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

304 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'L' or 'U'
2. n < 0
3. lda < n
4. lda ≤ 0
5. incx = 0
6. incy = 0

Example 1
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL SSPMV('L' , 3 , 1.0 , AP , X , 1 , 1.0 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

Output:
Y = (39.0, . , 34.0, . , 25.0)

Example 2
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 1.0. The real
symmetric matrix A of order 3 is stored in upper-packed storage mode. It uses the
same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL SSPMV('U' , 3 , 1.0 , AP , X , -2 , 2.0 , Y , 1)

AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)

Output:

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

Chapter 8. Linear Algebra Subprograms 305

Y = (36.0, 54.0, 36.0)

Example 3
This example shows vector x and y with positive stride and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
| (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
| (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL CHPMV('L' , 3 , ALPHA , AP , X , 1 , BETA , Y , 2)

ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),

(4.0, 8.0), (6.0, .))
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

Output:
Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))

Example 4
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0, 2.0). The
complex Hermitian matrix A of order 3 is stored in upper-packed storage mode. It
uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL CHPMV('U' , 3 , ALPHA , AP , X , -2 , BETA , Y , 2)

ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
BETA = (0.0, 0.0)
Y =(not relevant)

Output:
Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))

Example 5
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 1.

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

306 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL SSYMV('L' , 3 , 1.0 , A , 3 , X , 1 , 1.0 , Y , 2)

┌ ┐
| 8.0 . . |

A = | 4.0 6.0 . |
| 2.0 7.0 3.0 |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

Output:
Y = (39.0, . , 34.0, . , 25.0)

Example 6
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 1.0. The real
symmetric matrix A of order 3 is stored in upper storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL SSYMV('U' , 3 , 1.0 , A , 4 , X , -2 , 2.0 , Y , 1)

┌ ┐
| 8.0 4.0 2.0 |

A = | . 6.0 7.0 |
| . . 3.0 |
| . . . |
└ ┘

X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)

Output:
A = (36.0, 54.0, 36.0)

Example 7
This example shows vector x and y with positive stride and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL CHEMV('L' , 3 , ALPHA , A , 3 , X , 1 , BETA , Y , 2)

ALPHA = (1.0, 0.0)

┌ ┐
| (1.0, .) . . |

A = | (3.0, -5.0) (7.0, .) . |
| (2.0, 3.0) (4.0, 8.0) (6.0, .) |

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

Chapter 8. Linear Algebra Subprograms 307

└ ┘

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

Output:
Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))

Example 8
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0, 2.0). The
complex Hermitian matrix A of order 3 is stored in upper storage mode. It uses the
same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL CHEMV('U' , 3 , ALPHA , A , 3 , X , -2 , BETA , Y , 2)

ALPHA = (1.0, 0.0)

┌ ┐
| (1.0, .) (3.0, 5.0) (2.0, -3.0) |

A = | . (7.0, .) (4.0, -8.0) |
| . . (6.0, .) |
└ ┘

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
BETA = (0.0, 0.0)
Y =(not relevant)

Output:
Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))

Example 9
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
N ALPHA AP X INCX Y INCY
| | | | | | |

CALL SSLMX(3 , 1.0 , AP , X , 1 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

Output:
Y = (39.0, . , 34.0, . , 25.0)

SSPMV DSPMV CHPMV ZHPMV SSYMV DSYMV CHEMV ZHEMV SSLMX DSLMX

308 ESSL Version 3 Release 3 Guide and Reference

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and
DSLR1 —Rank-One Update of a Real Symmetric or Complex Hermitian
Matrix

SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1 compute the rank-one update of a
real symmetric matrix, using the scalar α, matrix A, vector x, and its transpose xT:

A←A+αxxT

CHPR, ZHPR, CHER, and ZHER compute the rank-one update of a complex
Hermitian matrix, using the scalar α, matrix A, vector x, and its conjugate
transpose xH:

A←A+αxxH

The following storage modes are used:
v For SSPR, DSPR, CHPR, and ZHPR, matrix A is stored in upper- or

lower-packed storage mode.
v For SSYR, DSYR, CHER, and ZHER, matrix A is stored in upper or lower

storage mode.
v For SSLR1 and DSLR1, matrix A is stored in lower-packed storage mode.

Table 65. Data Types

A, x α Subprogram

Short-precision real Short-precision real SSPR, SSYR, and SSLR1

Long-precision real Long-precision real DSPR, DSYR, and DSLR1

Short-precision complex Short-precision real CHPR and CHER

Long-precision complex Long-precision real ZHPR and ZHER

Note: SSPR and DSPR are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLR1 and DSLR1, which are only provided for
compatibility with earlier releases of ESSL.

Syntax

Fortran CALL SSPR | DSPR | CHPR | ZHPR (uplo, n, alpha, x, incx, ap)

CALL SSYR | DSYR | CHER | ZHER (uplo, n, alpha, x, incx, a, lda)

CALL SSLR1 | DSLR1 (n, alpha, x, incx, ap)

C and C++ sspr | dspr | chpr | zhpr (uplo, n, alpha, x, incx, ap);

ssyr | dsyr | cher | zher (uplo, n, alpha, x, incx, a, lda);

sslr1 | dslr1 (n, alpha, x, incx, ap);

PL/I CALL SSPR | DSPR | CHPR | ZHPR (uplo, n, alpha, x, incx, ap);

CALL SSYR | DSYR | CHER | ZHER (uplo, n, alpha, x, incx, a, lda);

CALL SSLR1 | DSLR1 (n, alpha, x, incx, ap);

On Entry:

uplo indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

Chapter 8. Linear Algebra Subprograms 309

If uplo = 'L', A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the number of elements in vector x and the order of matrix A. Specified
as: a fullword integer; n ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 65 on page 309.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 65 on page 309.

incx is the stride for vector x. Specified as: a fullword integer, where:

For SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, and ZHER, incx < 0
or incx > 0.

For SSLR1 and DSLR1, incx can have any value.

ap has the following meaning:

For SSPR and DSPR, ap is the real symmetric matrix A of order n, stored in
upper- or lower-packed storage mode.

For CHPR and ZHPR, ap is the complex Hermitian matrix A of order n,
stored in upper- or lower-packed storage mode.

For SSLR1 and DSLR1, ap is the real symmetric matrix A of order n, stored
in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in Table 65 on page 309.

a has the following meaning:

For SSYR and DSYR, a is the real symmetric matrix A of order n, stored in
upper or lower storage mode.

For CHER and ZHER, a is the complex Hermitian matrix A of order n,
stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 65 on page 309.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

On Return:

ap is the matrix A of order n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 65 on page 309.

a is the matrix A of order n, containing the results of the computation.
Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 65 on page 309.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. The vector x must have no common elements with matrix A; otherwise, results

are unpredictable. See “Concepts” on page 53.

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

310 ESSL Version 3 Release 3 Guide and Reference

3. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see “Symmetric
Matrix” on page 62. For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see “Complex Hermitian Matrix” on page 67.

Function
These subroutines perform the computations described in the two sections below.
See references [34], [35], and [79]. If n or α is 0, no computation is performed.

For CHPR and CHER, intermediate results are accumulated in long precision. For
SSPR, SSYR, and SSLR1, intermediate results are accumulated in long precision on
some platforms.

For SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1: These subroutines compute
the rank-one update of a real symmetric matrix:

A←A+αxxT

where:
A is a real symmetric matrix of order n.
α is a scalar.
x is a vector of length n.
xT is the transpose of vector x.

It is expressed as follows:

For CHPR, ZHPR, CHER, and ZHER: These subroutines compute the rank-one
update of a complex Hermitian matrix:

A←A+αxxH

where:
A is a complex Hermitian matrix of order n.
α is a scalar.
x is a vector of length n.
xH is the conjugate transpose of vector x.

It is expressed as follows:

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

Chapter 8. Linear Algebra Subprograms 311

Error Condition

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'L' or 'U'
2. n < 0
3. incx = 0
4. lda ≤ 0
5. lda < n

Example 1
This example shows a vector x with a positive stride, and a real symmetric matrix
A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N ALPHA X INCX AP
| | | | | |

CALL SSPR('L' , 3 , 1.0 , X , 1 , AP)

X = (3.0, 2.0, 1.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

Example 2
This example shows a vector x with a negative stride, and a real symmetric matrix
A of order 3, stored in upper-packed storage mode. It uses the same input matrix
A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX AP
| | | | | |

CALL SSPR('U' , 3 , 1.0 , X , -2 , AP)

X = (1.0, . , 2.0, . , 3.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)

Output:
AP = (17.0, 10.0, 10.0, 5.0, 9.0, 4.0)

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

312 ESSL Version 3 Release 3 Guide and Reference

Example 3
This example shows a vector x with a positive stride, and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
| (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
| (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX AP
| | | | | |

CALL CHPR('L' , 3 , 1.0 , X , 1 , AP)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),

(4.0, 8.0), (6.0, .))

Output:
AP = ((6.0, 0.0), (7.0, -13.0), (13.0, 1.0), (23.0, 0.0),

(16.0, 24.0), (31.0, 0.0))

Example 4
This example shows a vector x with a negative stride, and a complex Hermitian
matrix A of order 3, stored in upper-packed storage mode. It uses the same input
matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX AP
| | | | | |

CALL CHPR('U' , 3 , 1.0 , X , -2 , AP)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))

Output:
AP = ((6.0, 0.0), (7.0, 13.0), (23.0, 0.0), (13.0, -1.0),

(16.0, -24.0), (31.0, 0.0))

Example 5
This example shows a vector x with a positive stride, and a real symmetric matrix
A of order 3, stored in lower storage mode. It uses the same input matrix A as in
Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL SSYR('L' , 3 , 1.0 , X , 1 , A , 3)

X = (3.0, 2.0, 1.0)

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

Chapter 8. Linear Algebra Subprograms 313

┌ ┐
| 8.0 . . |

A = | 4.0 6.0 . |
| 2.0 7.0 3.0 |
└ ┘

Output:
┌ ┐
| 17.0 . . |

A = | 10.0 10.0 . |
| 5.0 9.0 4.0 |
└ ┘

Example 6
This example shows a vector x with a negative stride, and a real symmetric matrix
A of order 3, stored in upper storage mode. It uses the same input matrix A as in
Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL SSYR('U' , 3 , 1.0 , X , -2 , A , 4)

X = (1.0, . , 2.0, . , 3.0)

┌ ┐
| 8.0 4.0 2.0 |

A = | . 6.0 7.0 |
| . . 3.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 17.0 10.0 5.0 |

A = | . 10.0 9.0 |
| . . 4.0 |
| . . . |
└ ┘

Example 7
This example shows a vector x with a positive stride, and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL CHER('L' , 3 , 1.0 , X , 1 , A , 3)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

┌ ┐
| (1.0, .) . . |

A = | (3.0, -5.0) (7.0, .) . |
| (2.0, 3.0) (4.0, 8.0) (6.0, .) |
└ ┘

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

314 ESSL Version 3 Release 3 Guide and Reference

Output:
┌ ┐
| (6.0, 0.0) . . |

A = | (7.0, -13.0) (23.0, 0.0) . |
| (13.0, 1.0) (16.0, 24.0) (31.0, 0.0) |
└ ┘

Example 8
This example shows a vector x with a negative stride, and a complex Hermitian
matrix A of order 3, stored in upper storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL CHER('U' , 3 , 1.0 , X , -2 , A , 3)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

┌ ┐
| (1.0, .) (3.0, 5.0) (2.0, -3.0) |

A = | . (7.0, .) (4.0, -8.0) |
| . . (6.0, .) |
└ ┘

Output:
┌ ┐
| (6.0, 0.0) (7.0, 13.0) (13.0, -1.0) |

A = | . (23.0, 0.0) (16.0, -24.0) |
| . . (31.0, 0.0) |
└ ┘

Example 9
This example shows a vector x with a positive stride, and a real symmetric matrix
A of order 3, stored in lower-packed storage mode. It uses the same input matrix A
as in Example 1.

Call Statement and Input:
N ALPHA X INCX AP
| | | | |

CALL SSLR1(3 , 1.0 , X , 1 , AP)

X = (3.0, 2.0, 1.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

Chapter 8. Linear Algebra Subprograms 315

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2,
SSLR2, and DSLR2—Rank-Two Update of a Real Symmetric or
Complex Hermitian Matrix

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2 compute the rank-two update of
a real symmetric matrix, using the scalar α, matrix A, vectors x and y, and their
transposes xT and yT:

A ← A+αxyT + αyxT

CHPR2, ZHPR2, CHER2, and ZHER2, compute the rank-two update of a complex
Hermitian matrix, using the scalar α, matrix A, vectors x and y, and their conjugate
transposes xH and yH:

The following storage modes are used:
v For SSPR2, DSPR2, CHPR2, and ZHPR2, matrix A is stored in upper- or

lower-packed storage mode.
v For SSYR2, DSYR2, CHER2, and ZHER2, matrix A is stored in upper or lower

storage mode.
v For SSLR2 and DSLR2, matrix A is stored in lower-packed storage mode.

Table 66. Data Types

α, A, x, y Subprogram

Short-precision real SSPR2, SSYR2, and SSLR2

Long-precision real DSPR2, DSYR2, and DSLR2

Short-precision complex CHPR2 and CHER2

Long-precision complex ZHPR2 and ZHER2

Note: SSPR2 and DSPR2 are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLR2 and DSLR2, which are only provided for
compatibility with earlier releases of ESSL.

Syntax

Fortran CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap)

CALL SSYR2 | DSYR2 | CHER2 | ZHER2 (uplo, n, alpha, x, incx, y, incy, a, lda)

CALL SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap)

C and C++ sspr2 | dspr2 | chpr2 | zhpr2 (uplo, n, alpha, x, incx, y, incy, ap);

ssyr2 | dsyr2 | cher2 | zher2 (uplo, n, alpha, x, incx, y, incy, a, lda);

sslr2 | dslr2 (n, alpha, x, incx, y, incy, ap);

PL/I CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap);

CALL SSYR2 | DSYR2 | CHER2 | ZHER2 (uplo, n, alpha, x, incx, y, incy, a lda);

CALL SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap);

On Entry:

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

316 ESSL Version 3 Release 3 Guide and Reference

uplo indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.

If uplo = 'L', A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the number of elements in vectors x and y and the order of matrix A.
Specified as: a fullword integer; n ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 66 on page 316.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 66 on page 316.

incx is the stride for vector x.

Specified as: a fullword integer, where:

For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and ZHER2,
incx < 0 or incx > 0.

For SSLR2 and DSLR2, incx can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incy|, containing numbers of the data type indicated
in Table 66 on page 316.

incy is the stride for vector y. Specified as: a fullword integer, where:

For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and ZHER2,
incy < 0 or incy > 0.

For SSLR2 and DSLR2, incy can have any value.

ap has the following meaning:

For SSPR2 and DSPR2, ap is the real symmetric matrix A of order n, stored
in upper- or lower-packed storage mode.

For CHPR2 and ZHPR2, ap is the complex Hermitian matrix A of order n,
stored in upper- or lower-packed storage mode.

For SSLR2 and DSLR2, ap is the real symmetric matrix A of order n, stored
in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in Table 66 on page 316.

a has the following meaning:

For SSYR2 and DSYR2, a is the real symmetric matrix A of order n, stored
in upper or lower storage mode.

For CHER2 and ZHER2, a is the complex Hermitian matrix A of order n,
stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 66 on page 316.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

On Return:

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Chapter 8. Linear Algebra Subprograms 317

ap is the matrix A of order n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 66 on page 316.

a is the matrix A of order n, containing the results of the computation.
Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 66 on page 316.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. The vectors x and y must have no common elements with matrix A; otherwise,

results are unpredictable. See “Concepts” on page 53.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements
are set to zero.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see “Symmetric
Matrix” on page 62. For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see “Complex Hermitian Matrix” on page 67.

Function
These subroutines perform the computation described in the two sections below.
See references [34], [35], and [79]. If n or α is zero, no computation is performed.

For SSPR2, SSYR2, SSLR2, CHPR2, and CHER2, intermediate results are
accumulated in long precision.

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2: These subroutines compute
the rank-two update of a real symmetric matrix:

A ← A + αxyT + αyxT

where:
A is a real symmetric matrix of order n.
α is a scalar.
x is a vector of length n.
xT is the transpose of vector x.
y is a vector of length n.
yT is the transpose of vector y.

It is expressed as follows:

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

318 ESSL Version 3 Release 3 Guide and Reference

CHPR2, ZHPR2, CHER2, and ZHER2: These subroutines compute the rank-two
update of a complex Hermitian matrix:

where:
A is a complex Hermitian matrix of order n.
α is a scalar.
x is a vector of length n.
xH is the conjugate transpose of vector x.
y is a vector of length n.
yH is the conjugate transpose of vector y.

It is expressed as follows:

Error Condition

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'L' or 'U'
2. n < 0
3. incx = 0
4. incy = 0
5. lda ≤ 0

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Chapter 8. Linear Algebra Subprograms 319

6. lda < n

Example 1
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL SSPR2('L' , 3 , 1.0 , X , 1 , Y , 2 , AP)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

Example 2
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 3.0. The real
symmetric matrix A of order 3 is stored in upper-packed storage mode. It uses the
same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL SSPR2('U' , 3 , 1.0 , X , -2 , Y , 2 , AP)

X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)

Output:
AP = (38.0, 23.0, 18.0, 13.0, 14.0, 7.0)

Example 3
This example shows vector x and y with positive stride and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
| (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
| (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL CHPR2('L' , 3 , ALPHA , X , 1 , Y , 2 , AP)

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

320 ESSL Version 3 Release 3 Guide and Reference

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),

(4.0, 8.0), (6.0, .))

Output:
AP = ((3.0, 0.0), (7.0, -10.0), (9.0, 4.0), (23.0, 0.0),

(14.0, 23.0), (26.0, 0.0))

Example 4
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0,2.0). The
complex Hermitian matrix A of order 3 is stored in upper-packed storage mode. It
uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL CHPR2('U' , 3 , ALPHA , X , -2 , Y , 2 , AP)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))

Output:
AP = ((3.0, 0.0), (7.0, 10.0), (23.0, 0.0), (9.0, -4.0),

(14.0, -23.0), (26.0, 0.0))

Example 5
This example shows vectors x and y with positive strides, and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SSYR2('L' , 3 , 1.0 , X , 1 , Y , 2 , A , 3)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

┌ ┐
| 8.0 . . |

A = | 4.0 6.0 . |
| 2.0 7.0 3.0 |
└ ┘

Output:
┌ ┐
| 38.0 . . |

A = | 23.0 18.0 . |
| 13.0 14.0 7.0 |
└ ┘

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Chapter 8. Linear Algebra Subprograms 321

Example 6
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is 3.0. The real
symmetric matrix A of order 3 is stored in upper storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SSYR2('U' , 3 , 1.0 , X , -2 , Y , 2 , A , 4)

X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)

┌ ┐
| 8.0 4.0 2.0 |

A = | . 6.0 7.0 |
| . . 3.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 38.0 23.0 13.0 |

A = | . 18.0 14.0 |
| . . 7.0 |
| . . . |
└ ┘

Example 7
This example shows vector x and y with positive stride, and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input matrix A
as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CHER2('L' , 3 , ALPHA , X , 1 , Y , 2 , A , 3)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

┌ ┐
| (1.0, .) . . |

A = | (3.0, -5.0) (7.0, .) . |
| (2.0, 3.0) (4.0, 8.0) (6.0, .) |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) . . |

A = | (7.0, -10.0) (23.0, 0.0) . |
| (9.0, 4.0) (14.0, 23.0) (26.0, 0.0) |
└ ┘

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

322 ESSL Version 3 Release 3 Guide and Reference

Example 8
This example shows vector x and y having strides of opposite signs. For x, which
has negative stride, processing begins at element X(5), which is (1.0, 2.0). The
complex Hermitian matrix A of order 3 is stored in upper storage mode. It uses the
same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements
are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CHER2('U' , 3 , ALPHA , X , -2 , Y , 2 , A , 3)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

┌ ┐
| (1.0, .) (3.0, 5.0) (2.0, -3.0) |

A = | . (7.0, .) (4.0, -8.0) |
| . . (6.0, .) |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) (7.0, 10.0) (9.0, -4.0) |

A = | . (23.0, 0.0) (14.0, -23.0) |
| . . (26.0, 0.0) |
└ ┘

Example 9
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. It uses the same input
matrix A as in Example 1.

Call Statement and Input:
N ALPHA X INCX Y INCY AP
| | | | | | |

CALL SSLR2(3 , 1.0 , X , 1 , Y , 2 , AP)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Chapter 8. Linear Algebra Subprograms 323

SGBMV, DGBMV, CGBMV, and ZGBMV—Matrix-Vector Product for a
General Band Matrix, Its Transpose, or Its Conjugate Transpose

SGBMV and DGBMV compute the matrix-vector product for either a real general
band matrix or its transpose, where the general band matrix is stored in
BLAS-general-band storage mode. It uses the scalars α and β, vectors x and y, and
general band matrix A or its transpose:

y←βy+αAx
y ← βy+αATx

CGBMV and ZGBMV compute the matrix-vector product for either a complex
general band matrix, its transpose, or its conjugate transpose, where the general
band matrix is stored in BLAS-general-band storage mode. It uses the scalars α and
β, vectors x and y, and general band matrix A, its transpose, or its conjugate
transpose:

y ← βy+αAx
y ← βy+αATx
y ← βy+αAHx

Table 67. Data Types

α, β, x, y, A Subprogram

Short-precision real SGBMV

Long-precision real DGBMV

Short-precision complex CGBMV

Long-precision complex ZGBMV

Syntax

Fortran CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y,
incy)

C and C++ sgbmv | dgbmv | cgbmv | zgbmv (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);

PL/I CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y,
incy);

On Entry:

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

m is the number of rows in matrix A, and:

If transa = 'N', it is the length of vector y.

If transa = 'T' or 'C', it is the length of vector x.

Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix A, and:

If transa = 'N', it is the length of vector x.

If transa = 'T' or 'C', it is the length of vector y.

SGBMV, DGBMV, CGBMV, and ZGBMV

324 ESSL Version 3 Release 3 Guide and Reference

Specified as: a fullword integer; n ≥ 0.

ml is the lower band width ml of the matrix A. Specified as: a fullword
integer; ml ≥ 0.

mu is the upper band width mu of the matrix A. Specified as: a fullword
integer; mu ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 67 on page 324.

a is the m by n general band matrix A, stored in BLAS-general-band storage
mode. It has an upper band width mu and a lower band width ml. Also:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form in
BLAS-general-band storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 67 on page 324, where lda ≥ ml+mu+1.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ ml+mu+1.

x is the vector x, where:

If transa = 'N', it has length n.

If transa = 'T' or 'C', it has length m.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 67 on page 324, where:

If transa = 'N', it must have at least 1+(n−1)|incx| elements.

If transa = 'T' or 'C', it must have at least 1+(m−1)|incx| elements.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

beta is the scaling constant β. Specified as: a number of the data type indicated
in Table 67 on page 324.

y is the vector y, where:

If transa = 'N', it has length m.

If transa = 'T' or 'C', it has length n.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 67 on page 324, where:

If transa = 'N', it must have at least 1+(m−1)|incy| elements.

If transa = 'T' or 'C', it must have at least 1+(n−1)|incy| elements.

incy is the stride for vector y. Specified as: a fullword integer; incy > 0 or
incy < 0.

On Return:

y is the vector y, containing the result of the computation, where:

SGBMV, DGBMV, CGBMV, and ZGBMV

Chapter 8. Linear Algebra Subprograms 325

If transa = 'N', it has length m.

If transa = 'T' or 'C', it has length n.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 67 on page 324.

Notes
1. For SGBMV and DGBMV, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
2. All subroutines accept lowercase letters for the transa argument.
3. Vector y must have no common elements with matrix A or vector x; otherwise,

results are unpredictable. See “Concepts” on page 53.
4. To achieve optimal performance, use lda = mu+ml+1.
5. For general band matrices, if you specify ml ≥ m or mu ≥ n, ESSL assumes,

only for purposes of the computation, that the lower band width is m−1 or the
upper band width is n−1, respectively. However, ESSL uses the original values
for ml and mu for the purposes of finding the locations of element a11 and all
other elements in the array specified for A, as described in “General Band
Matrix” on page 73. For an illustration of this technique, see “Example 4” on
page 329.

6. For a description of how a general band matrix is stored in BLAS-general-band
storage mode in an array, see “General Band Matrix” on page 73.

Function
The possible computations that can be performed by these subroutines are
described in the following sections. Varying implementation techniques are used
for this computation to improve performance. As a result, accuracy of the
computational result may vary for different computations.

In all the computations, general band matrix A is stored in its untransposed form
in an array, using BLAS-general-band storage mode.

For SGBMV and CGBMV, intermediate results are accumulated in long precision.
Occasionally, for performance reasons, these intermediate results are truncated to
short precision and stored.

See references [34], [35], [38], [46], and [79]. No computation is performed if m or n
is 0 or if α is zero and β is one.

General Band Matrix: For SGBMV, DGBMV, CGBMV, and ZGBMV, the
matrix-vector product for a general band matrix is expressed as follows:

y←βy+αAx

where:
x is a vector of length n.
y is a vector of length m.
α is a scalar.
β is a scalar.
A is an m by n general band matrix, having a lower band width of ml and an
upper band width of mu.

Transpose of a General Band Matrix: For SGBMV, DGBMV, CGBMV, and
ZGBMV, the matrix-vector product for the transpose of a general band matrix is
expressed as:

y ← βy+αATx

SGBMV, DGBMV, CGBMV, and ZGBMV

326 ESSL Version 3 Release 3 Guide and Reference

where:
x is a vector of length m.
y is a vector of length n.
α is a scalar.
β is a scalar.
AT is the transpose of an m by n general band matrix A, having a lower band
width of ml and an upper band width of mu.

Conjugate Transpose of a General Band Matrix: For CGBMV and ZGBMV, the
matrix-vector product for the conjugate transpose of a general band matrix is
expressed as follows:

y ← βy+αAHx

where:
x is a vector of length m.
y is a vector of length n.
α is a scalar.
β is a scalar.
AH is the conjugate transpose of an m by n general band matrix A of order n,
having a lower band width of ml and an upper band width of mu.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. transa ≠ 'N', 'T', or 'C'
2. m < 0
3. n < 0
4. ml < 0
5. mu < 0
6. lda ≤ 0
7. lda < ml+mu+1
8. incx = 0
9. incy = 0

Example 1
This example shows how to use SGBMV to perform the computation y←βy+αAx,
where TRANSA is equal to 'N', and the following real general band matrix A is used
in the computation. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 |
| 2.0 2.0 2.0 2.0 |
| 3.0 3.0 3.0 3.0 |
| 4.0 4.0 4.0 4.0 |
| 0.0 5.0 5.0 5.0 |
└ ┘

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL SGBMV('N' , 5 , 4 , 3 , 2 , 2.0 , A , 8 , X , 1 , 10.0 , Y , 2)

┌ ┐
| . . 1.0 2.0 |
| . 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |

A = | 2.0 3.0 4.0 5.0 |
| 3.0 4.0 5.0 . |

SGBMV, DGBMV, CGBMV, and ZGBMV

Chapter 8. Linear Algebra Subprograms 327

| 4.0 5.0 . . |
| |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)

Output:
Y = (22.0, . , 60.0, . , 90.0, . , 120.0, . , 140.0, .)

Example 2
This example shows how to use SGBMV to perform the computation y ← βy+αATx,
where TRANSA is equal to 'T', and the transpose of a real general band matrix A is
used in the computation. It uses the same input as Example 1.

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL SGBMV('T' , 5 , 4 , 3 , 2 , 2.0 , A , 8 , X , 1 , 10.0 , Y , 2)

Output:
Y = (70.0, . , 130.0, . , 140.0, . , 148.0, .)

Example 3
This example shows how to use CGBMV to perform the computation y←βy+αAHx,
where TRANSA is equal to 'C', and the complex conjugate of the following general
band matrix A is used in the computation. Matrix A is:

┌ ┐
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) |
| (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) |
| (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) |
| (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
| (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (0.0, 0.0) |
└ ┘

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL CGBMV('C' , 5 , 4 , 3 , 2 , ALPHA , A , 8 , X , 1 , BETA , Y , 2)

┌ ┐
| . . (1.0, 1.0) (2.0, 2.0) |
| . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) |

A = | (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) |
| (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) . |
| (4.0, 4.0) (5.0, 5.0) . . |
| |
| |
└ ┘

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0), (4.0, 5.0),
(5.0, 6.0))

ALPHA = (1.0, 1.0)
BETA = (10.0, 0.0)
Y = ((1.0, 2.0), . , (2.0, 3.0), . , (3.0, 4.0), . ,

(4.0, 5.0), .)

Output:
Y = ((70.0, 100.0), . , (130.0, 170.0), . ,

(140.0, 180.0), . , (148.0, 186.0), .)

SGBMV, DGBMV, CGBMV, and ZGBMV

328 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows how to use SGBMV to perform the computation y←βy+αAx,
where ml ≥ m and mu ≥ n, TRANSA is equal to 'N', and the following real general
band matrix A is used in the computation. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 |
| 2.0 2.0 2.0 2.0 2.0 |
| 3.0 3.0 3.0 3.0 3.0 |
| 4.0 4.0 4.0 4.0 4.0 |
└ ┘

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL SGBMV('N' , 4 , 5 , 6 , 5 , 2.0 , A , 12 , X , 1 , 10.0 , Y , 2)

┌ ┐
| |
| 1.0 |
| . . . 1.0 2.0 |
| . . 1.0 2.0 3.0 |
| . 1.0 2.0 3.0 4.0 |

A = | 1.0 2.0 3.0 4.0 . |
| 2.0 3.0 4.0 . . |
| 3.0 4.0 . . . |
| 4.0 |
| |
| |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, .)

Output:
Y = (40.0, . , 80.0, . , 120.0, . , 160.0, .)

SGBMV, DGBMV, CGBMV, and ZGBMV

Chapter 8. Linear Algebra Subprograms 329

SSBMV, DSBMV, CHBMV, and ZHBMV—Matrix-Vector Product for a
Real Symmetric or Complex Hermitian Band Matrix

SSBMV and DSBMV compute the matrix-vector product for a real symmetric band
matrix. CHBMV and ZHBMV compute the matrix-vector product for a complex
Hermitian band matrix. The band matrix A is stored in either upper- or
lower-band-packed storage mode. It uses the scalars α and β, vectors x and y, and
band matrix A:

y←βy+αAx
y←βy+αAx

Table 68. Data Types

α, β, x, y, A Subprogram

Short-precision real SSBMV

Long-precision real DSBMV

Short-precision complex CHBMV

Long-precision complex ZHBMV

Syntax

Fortran CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

C and C++ ssbmv | dsbmv | chbmv | zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);

PL/I CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);

On Entry:

uplo indicates the storage mode used for matrix A, where either the upper or
lower triangle can be stored:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order of matrix A and the number of elements in vectors x and y.
Specified as: a fullword integer; n ≥ 0.

k is the half band width k of the matrix A. Specified as: a fullword integer;
k ≥ 0.

alpha is the scaling constant α. Specified as: a number of the data type indicated
in Table 68.

a is the real symmetric or complex Hermitian band matrix A of order n,
having a half band width of k, where:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 68, where lda ≥ k+1.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ k+1.

SSBMV, DSBMV, CHBMV, and ZHBMV

330 ESSL Version 3 Release 3 Guide and Reference

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 68 on page 330.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

beta is the scaling constant β. Specified as: a number of the data type indicated
in Table 68 on page 330.

y is the vector y of length n. Specified as: a one-dimensional array of (at
least) length n, containing numbers of the data type indicated in Table 68
on page 330.

incy is the stride for vector y. Specified as: a fullword integer; incy > 0 or
incy < 0.

On Return:

y is the vector y of length n, containing the result of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 68 on page 330.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. Vector y must have no common elements with matrix A or vector x; otherwise,

results are unpredictable. See “Concepts” on page 53.
3. To achieve optimal performance in these subroutines, use lda = k+1.
4. The imaginary parts of the diagonal elements of the complex Hermitian matrix

A are assumed to be zero, so you do not have to set these values.
5. For real symmetric and complex Hermitian band matrices, if you specify k ≥ n,

ESSL assumes, only for purposes of the computation, that the half band width
of matrix A is n−1; that is, it processes matrix A, of order n, as though it is a
(nonbanded) real symmetric or complex Hermitian matrix. However, ESSL uses
the original value for k for the purposes of finding the locations of element a11
and all other elements in the array specified for A, as described in the storage
modes referenced in the next note. For an illustration of this technique, see
“Example 3” on page 333.

6. For a description of how a real symmetric band matrix is stored, see
“Upper-Band-Packed Storage Mode” on page 79 or “Lower-Band-Packed
Storage Mode” on page 80. For a description of how a complex Hermitian band
matrix is stored, see “Complex Hermitian Matrix” on page 67.

Function
These subroutines perform the following matrix-vector product, using a real
symmetric or complex Hermitian band matrix A, stored in either upper- or
lower-band-packed storage mode:

y←βy+αAx

where:
x and y are vectors of length n.
α and β are scalars.
A is an real symmetric or complex Hermitian band matrix of order n, having a
half band width of k.

For SSBMV and CHBMV, intermediate results are accumulated in long precision.
Occasionally, for performance reasons, these intermediate results are truncated to
short precision and stored.

SSBMV, DSBMV, CHBMV, and ZHBMV

Chapter 8. Linear Algebra Subprograms 331

See references [34], [38], [46], and [79]. No computation is performed if n is 0 or if
α is zero and β is one.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. n < 0
3. k < 0
4. lda ≤ 0
5. lda < k+1
6. incx = 0
7. incy = 0

Example 1
This example shows how to use SSBMV to perform the matrix-vector product,
where the real symmetric band matrix A of order 7 and half band width of 3 is
stored in upper-band-packed storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 2.0 0.0 0.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 0.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 |
| 0.0 2.0 3.0 4.0 5.0 5.0 5.0 |
| 0.0 0.0 3.0 4.0 5.0 6.0 6.0 |
| 0.0 0.0 0.0 4.0 5.0 6.0 7.0 |
└ ┘

Call Statement and Input:
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SSBMV('U' , 7 , 3 , 2.0 , A , 5 , X , 1 , 10.0 , Y , 2)

┌ ┐
| . . . 1.0 2.0 3.0 4.0 |
| . . 1.0 2.0 3.0 4.0 5.0 |

A = | . 1.0 2.0 3.0 4.0 5.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, . , 6.0, . , 7.0)

Output:
Y = (30.0, . , 78.0, . , 148.0, . , 244.0, . , 288.0, . ,

316.0, . , 322.0)

Example 2
This example shows how to use CHBMV to perform the matrix-vector product,
where the complex Hermitian band matrix A of order 7 and half band width of 3
is stored in lower-band-packed storage mode. Matrix A is:

SSBMV, DSBMV, CHBMV, and ZHBMV

332 ESSL Version 3 Release 3 Guide and Reference

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not need to set these values.

Call Statement and Input:
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CHBMV('L' , 7 , 3 , ALPHA , A , 5 , X , 1 , BETA , Y , 2)

ALPHA = (2.0, 0.0)
BETA = (10.0, 0.0)

X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0),
(5.0, 5.0), (6.0, 6.0), (7.0, 7.0))

Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . ,
(4.0, 4.0), . , (5.0, 5.0), . , (6.0, 6.0), . ,
(7.0, 7.0))

Output:
Y = ((48.0, 12.0), . , (124.0, 32.0), . , (228.0, 68.0), . ,

(360.0, 128.0), . , (360.0, 216.0), . ,
(300.0, 332.0), . , (168.0, 476.0))

Example 3
This example shows how to use SSBMV to perform the matrix-vector product,
where n ≥ k. Matrix A is a real 5 by 5 symmetric band matrix with a half band
width of 5, stored in upper-band-packed storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 |
└ ┘

Call Statement and Input:
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SSBMV('U' , 5 , 5 , 2.0 , A , 7 , X , 1 , 10.0 , Y , 2)

┌ ┐
| |
| 1.0 |
| . . . 1.0 2.0 |

A = | . . 1.0 2.0 3.0 |

┌ ┐
| (1.0, 0.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, -1.0) (2.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, -1.0) (2.0, -2.0) (3.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0) |
| (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
| (0.0, 0.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, 0.0) (5.0, 5.0) (5.0, 5.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) (6.0, 0.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, -4.0) (5.0, -5.0) (6.0, -6.0) (7.0, 0.0) |
└ ┘

┌ ┐
| (1.0, .) (2.0, .) (3.0, .) (4.0, .) (5.0, .) (6.0, .) (7.0, .) |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) . |

A = | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) . . |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) . . . |
| |
└ ┘

SSBMV, DSBMV, CHBMV, and ZHBMV

Chapter 8. Linear Algebra Subprograms 333

| . 1.0 2.0 3.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)

Output:
Y = (40.0, . , 78.0, . , 112.0, . , 140.0, . , 160.0, .)

SSBMV, DSBMV, CHBMV, and ZHBMV

334 ESSL Version 3 Release 3 Guide and Reference

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and
ZTPMV—Matrix-Vector Product for a Triangular Matrix, Its Transpose,
or Its Conjugate Transpose

STRMV, DTRMV, STPMV, and DTPMV compute one of the following matrix-vector
products, using the vector x and triangular matrix A or its transpose:

x←Ax
x←ATx

CTRMV, ZTRMV, CTPMV, and ZTPMV compute one of the following
matrix-vector products, using the vector x and triangular matrix A, its transpose, or
its conjugate transpose:

x←Ax
x←ATx
x←AHx

Matrix A can be either upper or lower triangular, where:
v For the _TRMV subroutines, it is stored in upper- or lower-triangular storage

mode, respectively.
v For the _TPMV subroutines, it is stored in upper- or lower-triangular-packed

storage mode, respectively.

Table 69. Data Types

A, x Subprogram

Short-precision real STRMV and STPMV

Long-precision real DTRMV and DTPMV

Short-precision complex CTRMV and CTPMV

Long-precision complex ZTRMV and ZTPMV

Syntax

Fortran CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, lda, x, incx)

CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx)

C and C++ strmv | dtrmv | ctrmv | ztrmv (uplo, transa, diag, n, a, lda, x, incx);

stpmv | dtpmv | ctpmv | ztpmv (uplo, transa, diag, n, ap, x, incx);

PL/I CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, lda, x, incx);

CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx);

On Entry:

uplo indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

Chapter 8. Linear Algebra Subprograms 335

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

n is the order of triangular matrix A. Specified as: a fullword integer;
0 ≤ n ≤ lda.

a is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular storage mode, respectively.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 69 on page 335.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

ap is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular-packed storage mode, respectively. Specified as: a
one-dimensional array of (at least) length n(n+1)/2, containing numbers of
the data type indicated in Table 69 on page 335.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 69 on page 335.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

On Return:

x is the vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 69 on page 335.

Notes
1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.
2. For STRMV, DTRMV, STPMV, and DTPMV if you specify 'C' for the transa

argument, it is interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a

result, you do not have to set these values. For unit triangular matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and
lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see “Triangular Matrix” on page 70.

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

336 ESSL Version 3 Release 3 Guide and Reference

Function
These subroutines can perform the following matrix-vector product computations,
using the triangular matrix A, its transpose, or its conjugate transpose, where A
can be either upper or lower triangular:

x←Ax
x←ATx
x←AHx (for CTRMV, ZTRMV, CTPMV, and ZTPMV only)

where:
x is a vector of length n.
A is an upper or lower triangular matrix of order n. For _TRMV, it is stored in
upper- or lower-triangular storage mode, respectively. For _TPMV, it is stored
in upper- or lower-triangular-packed storage mode, respectively.

See references [32] and [38]. If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'L' or 'U'
2. transa ≠ 'T', 'N', or 'C'
3. diag ≠ 'N' or 'U'
4. n < 0
5. lda ≤ 0
6. lda < n
7. incx = 0

Example 1
This example shows the computation x←Ax. Matrix A is a real 4 by 4 lower
triangular matrix that is unit triangular, stored in lower-triangular storage mode.
Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 . . . |
| 1.0 1.0 . . |
| 2.0 3.0 1.0 . |
| 3.0 4.0 3.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRMV('L' , 'N' , 'U' , 4 , A , 4 , X , 1)

┌ ┐
| |

A = | 1.0 . . . |
| 2.0 3.0 . . |
| 3.0 4.0 3.0 . |
└ ┘

X = (1.0, 2.0, 3.0, 4.0)

Output:
X = (1.0, 3.0, 11.0, 24.0)

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

Chapter 8. Linear Algebra Subprograms 337

Example 2
This example shows the computation x←ATx. Matrix A is a real 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular storage mode.
Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| . 1.0 2.0 5.0 |
| . . 1.0 3.0 |
| . . . 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRMV('U' , 'T' , 'U' , 4 , A , 4 , X , 1)

┌ ┐
| . 2.0 3.0 2.0 |

A = | . . 2.0 5.0 |
| . . . 3.0 |
| |
└ ┘

X = (5.0, 4.0, 3.0, 2.0)

Output:
X = (5.0, 14.0, 26.0, 41.0)

Example 3
This example shows the computation x←AHx. Matrix A is a complex 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular storage mode.
Vector x is a vector of length 4. Matrix A is:

┌ ┐
| (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
| . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
| . . (1.0, 0.0) (3.0, 3.0) |
| . . . (1.0, 0.0) |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL CTRMV('U' , 'C' , 'U' , 4 , A , 4 , X , 1)

┌ ┐
| . (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |

A = | . . (2.0, 2.0) (5.0, 5.0) |
| . . . (3.0, 3.0) |
| |
└ ┘

X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

Output:
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

338 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows the computation x←Ax. Matrix A is a real 4 by 4 lower
triangular matrix that is unit triangular, stored in lower-triangular-packed storage
mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 . . . |
| 1.0 1.0 . . |
| 2.0 3.0 1.0 . |
| 3.0 4.0 3.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPMV('L' , 'N' , 'U' , 4 , AP , X , 1)

AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
X = (1.0, 2.0, 3.0, 4.0)

Output:
X = (1.0, 3.0, 11.0, 24.0)

Example 5
This example shows the computation x←ATx. Matrix A is a real 4 by 4 upper
triangular matrix that is not unit triangular, stored in upper-triangular-packed
storage mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| . 2.0 2.0 5.0 |
| . . 3.0 3.0 |
| . . . 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPMV('U' , 'T' , 'N' , 4 , AP , X , 1)

AP = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
X = (5.0, 4.0, 3.0, 2.0)

Output:
X = (5.0, 18.0, 32.0, 41.0)

Example 6
This example shows the computation x←AHx. Matrix A is a complex 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular-packed storage
mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
| . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
| . . (1.0, 0.0) (3.0, 3.0) |
| . . . (1.0, 0.0) |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

Chapter 8. Linear Algebra Subprograms 339

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL CTPMV('U' , 'C' , 'U' , 4 , AP , X , 1)

AP = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . ,
(2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .)

X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

Output:
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV

340 ESSL Version 3 Release 3 Guide and Reference

STBMV, DTBMV, CTBMV, and ZTBMV—Matrix-Vector Product for a
Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose

STBMV and DTBMV compute one of the following matrix-vector products, using
the vector x and triangular band matrix A or its transpose:

x←Ax
x←ATx

CTBMV and ZTBMV compute one of the following matrix-vector products, using
the vector x and triangular band matrix A, its transpose, or its conjugate transpose:

x←Ax
x←ATx
x←AHx

Matrix A can be either upper or lower triangular and is stored in upper- or
lower-triangular-band-packed storage mode, respectively.

Table 70. Data Types

A, x Subprogram

Short-precision real STBMV

Long-precision real DTBMV

Short-precision complex CTBMV

Long-precision complex ZTBMV

Syntax

Fortran CALL STBMV | DTBMV | CTBMV | ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx)

C and C++ stbmv | dtbmv | ctbmv | ztbmv (uplo, transa, diag, n, k, a, lda, x, incx);

PL/I CALL STBMV | DTBMV | CTBMV | ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx);

On Entry:

uplo indicates whether matrix A is an upper or lower triangular band matrix,
where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

STBMV, DTBMV, CTBMV, and ZTBMV

Chapter 8. Linear Algebra Subprograms 341

n is the order of triangular band matrix A. Specified as: a fullword integer;
n ≥ 0.

k is the upper or lower band width k of the matrix A. Specified as: a
fullword integer; k ≥ 0.

a is the upper or lower triangular band matrix A of order n, stored in upper-
or lower-triangular-band-packed storage mode, respectively.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 70 on page 341.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ k+1.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n−1)|incx|, containing numbers of the data type indicated
in Table 70 on page 341.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

On Return:

x is the vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 70 on page 341.

Notes
1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.
2. For STBMV and DTBMV, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. To achieve optimal performance in these subroutines, use lda = k+1.
5. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0

for real matrices and (1.0, 0.0) for complex matrices. As a result, you do not
have to set these values.

6. For both upper and lower triangular band matrices, if you specify k ≥ n, ESSL
assumes, only for purposes of the computation, that the upper or lower band
width of matrix A is n−1; that is, it processes matrix A, of order n, as though it
is a (nonbanded) triangular matrix. However, ESSL uses the original value for k
for the purposes of finding the locations of element a11 and all other elements
in the array specified for A, as described in “Triangular Band Matrix” on
page 82. For an illustration of this technique, see “Example 4” on page 345.

7. For a description of triangular band matrices and how they are stored in upper-
and lower-triangular-band-packed storage mode, see “Triangular Band Matrix”
on page 82.

8. If you are using a lower triangular band matrix, you may want to use this
alternate approach instead of using lower-triangular-band-packed storage
mode. Leave matrix A in full-matrix storage mode when you pass it to ESSL
and specify the lda argument to be lda+1, which is the leading dimension of
matrix A plus 1. ESSL then processes the matrix elements in the same way as
though you had set them up in lower-triangular-band-packed storage mode.

STBMV, DTBMV, CTBMV, and ZTBMV

342 ESSL Version 3 Release 3 Guide and Reference

Function
These subroutines can perform the following matrix-vector product computations,
using the triangular band matrix A, its transpose, or its conjugate transpose, where
A can be either upper or lower triangular:

x←Ax
x←ATx
x←AHx (for CTBMV and ZTBMV only)

where:
x is a vector of length n.
A is an upper or lower triangular band matrix of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively.

See references [34], [46], and [38]. If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'L' or 'U'
2. transa ≠ 'T', 'N', or 'C'
3. diag ≠ 'N' or 'U'
4. n < 0
5. k < 0
6. lda ≤ 0
7. lda < k+1
8. incx = 0

Example 1
This example shows the computation x←Ax. Matrix A is a real 7 by 7 upper
triangular band matrix with a half band width of 3 that is not unit triangular,
stored in upper-triangular-band-packed storage mode. Vector x is a vector of length
7. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 2.0 2.0 2.0 2.0 0.0 0.0 |
| 0.0 0.0 3.0 3.0 3.0 3.0 0.0 |
| 0.0 0.0 0.0 4.0 4.0 4.0 4.0 |
| 0.0 0.0 0.0 0.0 5.0 5.0 5.0 |
| 0.0 0.0 0.0 0.0 0.0 6.0 6.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 7.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBMV('U' , 'N' , 'N' , 7 , 3 , A , 5 , X , 1)

┌ ┐
| . . . 1.0 2.0 3.0 4.0 |
| . . 1.0 2.0 3.0 4.0 5.0 |

A = | . 1.0 2.0 3.0 4.0 5.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

Output:

STBMV, DTBMV, CTBMV, and ZTBMV

Chapter 8. Linear Algebra Subprograms 343

X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)

Example 2
This example shows the computation x←ATx. Matrix A is a real 7 by 7 lower
triangular band matrix with a half band width of 3 that is not unit triangular,
stored in lower-triangular-band-packed storage mode. Vector x is a vector of length
7. Matrix A is:

┌ ┐
| 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 4.0 0.0 0.0 0.0 |
| 0.0 2.0 3.0 4.0 5.0 0.0 0.0 |
| 0.0 0.0 3.0 4.0 5.0 6.0 0.0 |
| 0.0 0.0 0.0 4.0 5.0 6.0 7.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBMV('L' , 'T' , 'N' , 7 , 3 , A , 5 , X , 1)

┌ ┐
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 . |

A = | 1.0 2.0 3.0 4.0 5.0 . . |
| 1.0 2.0 3.0 4.0 . . . |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

Output:
X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)

Example 3
This example shows the computation x←AHx. Matrix A is a complex 7 by 7 upper
triangular band matrix with a half band width of 3 that is not unit triangular,
stored in upper-triangular-band-packed storage mode. Vector x is a vector of length
7. Matrix A is:

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL CTBMV('U' , 'C' , 'N' , 7 , 3 , A , 5 , X , 1)

┌ ┐
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (5.0, 5.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (6.0, 6.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (7.0, 7.0) |
└ ┘

STBMV, DTBMV, CTBMV, and ZTBMV

344 ESSL Version 3 Release 3 Guide and Reference

X = ((1.0, 2.0), (2.0, 4.0), (3.0, 6.0), (4.0, 8.0),
(5.0, 10.0), (6.0, 12.0), (7.0, 14.0))

Output:
X = ((1.0, 2.0), (7.0, 9.0), (24.0, 23.0), (58.0, 46.0),

(112.0, 79.0), (186.0, 122.0), (280.0, 175.0))

Example 4
This example shows the computation x←ATx, where k > n. Matrix A is a real 4 by 4
upper triangular band matrix with a half band width of 5 that is not unit
triangular, stored in upper-triangular-band-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 |
| . 2.0 2.0 2.0 |
| . . 3.0 3.0 |
| . . . 4.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBMV('U' , 'T' , 'N' , 4 , 5 , A , 6 , X , 1)

┌ ┐
| |

A = | |
| . . . 1.0 |
| . . 1.0 2.0 |
| . 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |
└ ┘

X = (1.0, 2.0, 3.0, 4.0)

Output:
X = (1.0, 5.0, 14.0, 30.0)

┌ ┐
| . . . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) |
| . . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) |

A = | . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) (7.0, 7.0) |
| |
└ ┘

STBMV, DTBMV, CTBMV, and ZTBMV

Chapter 8. Linear Algebra Subprograms 345

Sparse Matrix-Vector Subprograms
This section contains the sparse matrix-vector subprogram descriptions.

DSMMX

346 ESSL Version 3 Release 3 Guide and Reference

DSMMX—Matrix-Vector Product for a Sparse Matrix in
Compressed-Matrix Storage Mode

This subprogram computes the matrix-vector product for sparse matrix A, stored
in compressed-matrix storage mode, using the matrix and vectors x and y:

y←Ax

where A, x, and y contain long-precision real numbers. You can use DSMTM to
transpose matrix A before calling this subroutine. The resulting computation
performed by this subroutine is then y←ATx.

Syntax

Fortran CALL DSMMX (m, nz, ac, ka, lda, x, y)

C and C++ dsmmx (m, nz, ac, ka, lda, x, y);

PL/I CALL DSMMX (m, nz, ac, ka, lda, x, y);

On Entry:

m is the number of rows in sparse matrix A and the number of elements in
vector y. Specified as: a fullword integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix
A. Specified as: a fullword integer; nz ≥ 0.

ac is the m by n sparse matrix A, stored in compressed-matrix storage mode
in an array, referred to as AC. Specified as: an lda by (at least) nz array,
containing long-precision real numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix
A elements stored in the corresponding positions in array AC. Specified as:
an lda by (at least) nz array, containing fullword integers, where
1 ≤ (elements of KA) ≤ n.

lda is the size of the leading dimension of the arrays specified for ac and ka.
Specified as: a fullword integer; lda > 0 and lda ≥ m.

x is the vector x of length n. Specified as: a one-dimensional array of (at
least) length n, containing long-precision real numbers.

y See “On Return”.

On Return:

y is the vector y of length m, containing the result of the computation.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

Notes
1. Matrix A must have no common elements with vectors x and y; otherwise,

results are unpredictable.
2. For the KA array, where there are no corresponding nonzero elements in AC, you

must still fill in a number between 1 and n. See the “Example” on page 348.
3. For a description of how sparse matrices are stored in compressed-matrix

storage mode, see “Compressed-Matrix Storage Mode” on page 88.
4. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on

page 93, you should first use the DSRSM utility subroutine, described in

DSMMX

Chapter 8. Linear Algebra Subprograms 347

“DSRSM—Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode” on page 944, to convert your sparse matrix
to compressed-matrix storage mode.

Function
The matrix-vector product is computed for a sparse matrix, stored in compressed
matrix mode:

y←Ax

where:
A is an m by n sparse matrix, stored in compressed-matrix storage mode in
arrays AC and KA.
x is a vector of length n.
y is a vector of length m.

It is expressed as follows:

See reference [73]. If m is 0, no computation is performed; if nz is 0, output vector
y is set to zero, because matrix A contains all zeros.

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, you should first convert your sparse matrix to compressed-matrix
storage mode by using the DSRSM utility subroutine described in
“DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix
Storage Mode” on page 944.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. m < 0
2. lda ≤ 0
3. m > lda
4. nz < 0

Example
This example shows the matrix-vector product computed for the following sparse
matrix A, which is stored in compressed-matrix storage mode in arrays AC and KA.
Matrix A is:

┌ ┐
| 4.0 0.0 7.0 0.0 0.0 0.0 |
| 3.0 4.0 0.0 2.0 0.0 0.0 |
| 0.0 2.0 4.0 0.0 4.0 0.0 |
| 0.0 0.0 7.0 4.0 0.0 1.0 |
| 1.0 0.0 0.0 3.0 4.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 4.0 |
└ ┘

Call Statement and Input:

DSMMX

348 ESSL Version 3 Release 3 Guide and Reference

M NZ AC KA LDA X Y
| | | | | | |

CALL DSMMX(6 , 4 , AC , KA , 6 , X , Y)

┌ ┐
| 4.0 7.0 0.0 0.0 |
| 4.0 3.0 2.0 0.0 |

AC = | 4.0 2.0 4.0 0.0 |
| 4.0 7.0 1.0 0.0 |
| 4.0 1.0 3.0 0.0 |
| 4.0 1.0 1.0 3.0 |
└ ┘

┌ ┐
| 1 3 1 1 |
| 2 1 4 1 |

KA = | 3 2 5 1 |
| 4 3 6 1 |
| 5 1 4 1 |
| 6 1 2 5 |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output:
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

DSMMX

Chapter 8. Linear Algebra Subprograms 349

DSMTM—Transpose a Sparse Matrix in Compressed-Matrix Storage
Mode

This subprogram transposes sparse matrix A, stored in compressed-matrix storage
mode, where A contains long-precision real numbers.

Syntax

Fortran CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux)

C and C++ dsmtm (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux);

PL/I CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux);

On Entry:

m is the number of rows in sparse matrix A. Specified as: a fullword integer;
m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix
A. Specified as: a fullword integer; nz ≥ 0.

ac is the m by n sparse matrix A, stored in compressed-matrix storage mode
in an array, referred to as AC. Specified as: an lda by (at least) nz array,
containing long-precision real numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix
A elements stored in the corresponding positions in array AC. Specified as:
an lda by (at least) nz array, containing fullword integers, where
1 ≤ (elements of KA) ≤ n.

lda is the size of the leading dimension of the arrays specified for ac and ka.
Specified as: a fullword integer; lda > 0 and lda ≥ m.

n is the number of columns in sparse matrix A. Specified as: a fullword
integer; 0 ≤ n ≤ ldt and n ≥ (maximum column index in KA).

nt is the number of columns in output arrays AT and KT that are available for
use. Specified as: a fullword integer; nt > 0.

at See “On Return” on page 351.

kt See “On Return” on page 351.

ldt is the size of the leading dimension of the arrays specified for at and kt.
Specified as: a fullword integer; ldt > 0 and ldt ≥ n.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing long-precision real numbers.
They can have any value.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, DSMTM dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, naux ≥ n.

DSMTM

350 ESSL Version 3 Release 3 Guide and Reference

On Return:

n is the number of rows in the transposed matrix AT. Returned as: a fullword
integer; n = (maximum column index in KA).

nt is the maximum number of nonzero elements, nt, in each row of the
transposed matrix AT. Returned as: a fullword integer; nt ≤ m.

at is the n by (at least) m sparse matrix transpose AT, stored in
compressed-matrix storage mode in an array, referred to as AT. Returned
as: an ldt by (at least) nt array, containing long-precision real numbers.

kt is the array, referred to as KT, containing the column numbers of the
transposed matrix AT elements, stored in the corresponding positions in
array AT. Returned as: an ldt by (at least) nt array, containing fullword
integers, where 1 ≤ (elements of KT) ≤ m.

Notes
1. In your C program, arguments n and nt must be passed by reference.
2. The value specified for input argument nt should be greater than or equal to

the number of nonzero elements you estimate to be in each row of the
transposed sparse matrix AT. The output value is less than or equal to the input
value you specify.

3. For the KA array, where there are no corresponding nonzero elements in AC, you
must still fill in a number between 1 and n. See the “Example” on page 352.

4. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 88.

5. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 93, you should first use the DSRSM utility subroutine, described in
“DSRSM—Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode” on page 944, to convert your sparse matrix
to compressed-matrix storage mode.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
A sparse matrix A, stored in arrays AC and KA in compressed-matrix storage mode,
is transposed, forming AT, and is stored in arrays AT and KT in compressed-matrix
storage mode. See reference [73]. This subroutine is provided for when you want
to do a matrix-vector product using a transposed matrix, AT. First, you transpose a
matrix, A, using this subroutine, then you call DSMMX with the transposed matrix
AT. This results in the following computation being performed: y←ATx.

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, you should first convert your sparse matrix to compressed-matrix
storage mode by using the DSRSM utility subroutine described in
“DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix
Storage Mode” on page 944.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

DSMTM

Chapter 8. Linear Algebra Subprograms 351

Input-Argument Errors:
1. m, n < 0
2. lda, ldt < 1
3. lda < m
4. ldt < n
5. nz < 0
6. n is less than the maximum column index in KA.
7. nt or ldt are too small.
8. When the following two errors occur, arrays AT, KT, and AUX are overwritten:

naux < n
nt ≤ 0

9. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the
minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example
This example shows how to transpose the following 5 by 4 sparse matrix A, which
is stored in compressed-matrix storage mode in arrays AC and KA. Matrix A is:

┌ ┐
| 11.0 0.0 0.0 0.0 |
| 21.0 0.0 23.0 0.0 |
| 0.0 0.0 33.0 34.0 |
| 0.0 42.0 0.0 44.0 |
| 51.0 0.0 53.0 0.0 |
└ ┘

The resulting 4 by 5 matrix transpose AT, stored in compressed-matrix storage
mode in arrays AT and KT, is as follows. Matrix AT is:

┌ ┐
| 11.0 21.0 0.0 0.0 51.0 |
| 0.0 0.0 0.0 42.0 0.0 |
| 0.0 23.0 33.0 0.0 53.0 |
| 0.0 0.0 34.0 44.0 0.0 |
└ ┘

As shown here, the value of N is larger than the actual number of columns in the
matrix A. On output, the exact number of rows in the transposed matrix is
returned in the output argument N.

On output, row 6 of AT and KT is is not accessed or modified by the subroutine.
Column 4 and row 5 are accessed and modified. They are of no use in further
computations and will not be used, because NT = 3 and M = 4.

Call Statement and Input:
M NZ AC KA LDA N NT AT KT LDT AUX NAUX
| | | | | | | | | | | |

CALL DSMTM(5 , 2 , AC , KA , 5 , 5 , 4 , AT , KT , 6 , AUX , 5)

┌ ┐
| 11.0 0.0 |
| 21.0 23.0 |

AC = | 33.0 34.0 |
| 42.0 44.0 |
| 51.0 53.0 |
└ ┘

┌ ┐
| 1 1 |
| 1 3 |

KA = | 3 4 |
| 2 4 |
| 1 3 |
└ ┘

DSMTM

352 ESSL Version 3 Release 3 Guide and Reference

Output:
N = 4
NT = 3

┌ ┐
| 11.0 21.0 51.0 0.0 |
| 42.0 0.0 0.0 0.0 |

AT = | 33.0 23.0 53.0 0.0 |
| 34.0 44.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 |
| |
└ ┘

┌ ┐
| 1 2 5 1 |
| 4 1 1 1 |

KT = | 3 2 5 1 |
| 3 4 1 1 |
| 1 1 1 1 |
| |
└ ┘

DSMTM

Chapter 8. Linear Algebra Subprograms 353

DSDMX—Matrix-Vector Product for a Sparse Matrix or Its Transpose in
Compressed-Diagonal Storage Mode

This subprogram computes the matrix-vector product for square sparse matrix A,
stored in compressed-diagonal storage mode, using either the matrix or its
transpose, and vectors x and y:

y←Ax
y←ATx

where A, x, and y contain long-precision real numbers.

Syntax

Fortran CALL DSDMX (iopt, n, nd, ad, lda, trans, la, x, y)

C and C++ dsdmx (iopt, n, nd, ad, lda, trans, la, x, y);

PL/I CALL DSDMX (iopt, n, nd, ad, lda, trans, la, x, y);

On Entry:

iopt indicates the storage variation used for sparse matrix A, stored in
compressed-diagonal storage mode, where:

If iopt = 0, matrix A is a general sparse matrix, where all the nonzero
diagonals in matrix A are used to set up the storage arrays.

If iopt = 1, matrix A is a symmetric sparse matrix, where only the nonzero
main diagonal and one of each of the unique nonzero diagonals are used
to set up the storage arrays.

Specified as: a fullword integer; iopt = 0 or 1.

n is the order of sparse matrix A and the number of elements in vectors x
and y. Specified as: a fullword integer; n ≥ 0.

nd is the number of diagonals stored in the columns of array AD, as well as the
number of columns in AD and the number of elements in array LA.
Specified as: a fullword integer; nd ≥ 0.

ad is the sparse matrix A of order n, stored in compressed diagonal storage in
an array, referred to as AD. The iopt argument indicates the storage
variation used for storing matrix A. The trans argument indicates the
following:

If trans = 'N', A is used in the computation.

If trans = 'T', AT is used in the computation.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: an lda by (at least) nd array, containing long-precision real
numbers; lda ≥ n.

lda is the size of the leading dimension of the array specified for ad. Specified
as: a fullword integer; lda > 0 and lda ≥ n.

trans indicates the form of matrix A to use in the computation, where:

If trans = 'N', A is used in the computation.

If trans = 'T', AT is used in the computation.

DSDMX

354 ESSL Version 3 Release 3 Guide and Reference

Specified as: a single character; trans = 'N' or 'T'.

la is the array, referred to as LA, containing the diagonal numbers k for the
diagonals stored in each corresponding column in array AD. (For an
explanation of how diagonal numbers are assigned, see
“Compressed-Diagonal Storage Mode” on page 89.)

Specified as: a one-dimensional array of (at least) length nd, containing
fullword integers; 1−n ≤ LA(i) ≤ n−1.

x is the vector x of length n. Specified as: a one-dimensional array, containing
long-precision real numbers.

y See “On Return”.

On Return:

y is the vector y of length n, containing the result of the computation.
Returned as: a one-dimensional array, containing long-precision real
numbers.

Notes
1. All subroutines accept lowercase letters for the trans argument.
2. Matrix A must have no common elements with vectors x and y; otherwise,

results are unpredictable.
3. For a description of how sparse matrices are stored in compressed-diagonal

storage mode, see “Compressed-Diagonal Storage Mode” on page 89.

Function
The matrix-vector product of a square sparse matrix or its transpose, is computed
for a matrix stored in compressed-diagonal storage mode:

y←Ax
y←ATx

where:
A is a sparse matrix of order n, stored in compressed-diagonal storage mode in
AD and LA, using the storage variation for either general or symmetric sparse
matrices, as indicated by the iopt argument.
x and y are vectors of length n.

It is expressed as follows for y←Ax:

It is expressed as follows for y←ATx:

DSDMX

Chapter 8. Linear Algebra Subprograms 355

If n is 0, no computation is performed; if nd is 0, output vector y is set to zero,
because matrix A contains all zeros.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. iopt ≠ 0 or 1
2. n < 0
3. lda ≤ 0
4. n > lda
5. trans ≠ 'N' or 'T'
6. nd < 0
7. LA(j) ≤ −n or LA(j) ≥ n, for any j = 1, n

Example 1
This example shows the matrix-vector product using trans = 'N', which is
computed for the following sparse matrix A of order 6. The matrix is stored in
compressed-matrix storage mode in arrays AD and LA using the storage variation
for general sparse matrices, storing all nonzero diagonals. Matrix A is:

┌ ┐
| 4.0 0.0 7.0 0.0 0.0 0.0 |
| 3.0 4.0 0.0 2.0 0.0 0.0 |
| 0.0 2.0 4.0 0.0 4.0 0.0 |
| 0.0 0.0 7.0 4.0 0.0 1.0 |
| 1.0 0.0 0.0 3.0 4.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 4.0 |
└ ┘

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
| | | | | | | | |

CALL DSDMX(0 , 6 , 5 , AD , 6 , 'N' , LA , X , Y)

┌ ┐
| 4.0 0.0 0.0 0.0 7.0 |
| 4.0 0.0 0.0 3.0 2.0 |

AD = | 4.0 0.0 0.0 2.0 4.0 |
| 4.0 0.0 0.0 7.0 1.0 |
| 4.0 0.0 1.0 3.0 0.0 |
| 4.0 1.0 1.0 3.0 0.0 |
└ ┘

LA = (0, -5, -4, -1, 2)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output:
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

Example 2
This example shows the matrix-vector product using trans = 'N', which is
computed for the following sparse matrix A of order 6. The matrix is stored in

DSDMX

356 ESSL Version 3 Release 3 Guide and Reference

compressed-matrix storage mode in arrays AD and LA using the storage variation
for symmetric sparse matrices, storing the nonzero main diagonal and one of each
of the unique nonzero diagonals. Matrix A is:

┌ ┐
| 11.0 0.0 13.0 0.0 15.0 0.0 |
| 0.0 22.0 0.0 24.0 0.0 26.0 |
| 13.0 0.0 33.0 0.0 35.0 0.0 |
| 0.0 24.0 0.0 44.0 0.0 46.0 |
| 15.0 0.0 35.0 0.0 55.0 0.0 |
| 0.0 26.0 0.0 46.0 0.0 66.0 |
└ ┘

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
| | | | | | | | |

CALL DSDMX(1 , 6 , 3 , AD , 6 , 'N' , LA , X , Y)

┌ ┐
| 11.0 13.0 0.0 |
| 22.0 24.0 0.0 |

AD = | 33.0 35.0 0.0 |
| 44.0 46.0 0.0 |
| 55.0 0.0 15.0 |
| 66.0 0.0 26.0 |
└ ┘

LA = (0, 2, -4)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output:
Y = (125.0, 296.0, 287.0, 500.0, 395.0, 632.0)

Example 3
This example is the same as Example 1 except that it shows the matrix-vector
product for the transpose of a matrix, using trans = 'T'. It is computed using the
transpose of the following sparse matrix A of order 6, which is stored in
compressed-matrix storage mode in arrays AD and LA, using the storage variation
for general sparse matrices, storing all nonzero diagonals. It uses the same matrix
A as in Example 1.

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
| | | | | | | | |

CALL DSDMX(0 , 6 , 5 , AD , 6 , 'T' , LA , X , Y)

AD =(same as input AD in Example 1)
LA =(same as input LA in Example 1)
X =(same as input X in Example 1)

Output:
Y = (21.0, 20.0, 47.0, 35.0, 50.0, 28.0)

DSDMX

Chapter 8. Linear Algebra Subprograms 357

DSDMX

358 ESSL Version 3 Release 3 Guide and Reference

Chapter 9. Matrix Operations

The matrix operation subroutines are described in this chapter.

Overview of the Matrix Operation Subroutines
Some of the matrix operation subroutines were designed in accordance with the
Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the calling
application program. For details on the Level 3 BLAS, see reference [32]. The
matrix operation subroutines also include the commonly used matrix operations:
addition, subtraction, multiplication, and transposition (Table 71).

Table 71. List of Matrix Operation Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Matrix Addition for General Matrices or Their Transposes SGEADD
CGEADD

DGEADD
ZGEADD

363

Matrix Subtraction for General Matrices or Their Transposes SGESUB
CGESUB

DGESUB
ZGESUB

369

Matrix Multiplication for General Matrices, Their Transposes, or
Conjugate Transposes

SGEMUL
CGEMUL

DGEMUL
ZGEMUL
DGEMLP§

375

Matrix Multiplication for General Matrices, Their Transposes, or
Conjugate Transposes Using Winograd’s Variation of Strassen’s
Algorithm

SGEMMS
CGEMMS

DGEMMS
ZGEMMS

384

Combined Matrix Multiplication and Addition for General
Matrices, Their Transposes, or Conjugate Transposes

SGEMM♦

CGEMM♦
DGEMM♦

ZGEMM♦
389

Matrix-Matrix Product Where One Matrix is Real or Complex
Symmetric or Complex Hermitian

SSYMM♦

CSYMM♦

CHEMM♦

DSYMM♦

ZSYMM♦

ZHEMM♦

397

Triangular Matrix-Matrix Product STRMM♦

CTRMM♦
DTRMM♦

ZTRMM♦
404

Rank-K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

SSYRK♦

CSYRK♦

CHERK♦

DSYRK♦

ZSYRK♦

ZHERK♦

410

Rank-2K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

SSYR2K♦

CSYR2K♦

CHER2K♦

DSYR2K♦

ZSYR2K♦

ZHER2K♦

416

General Matrix Transpose (In-Place) SGETMI
CGETMI

DGETMI
ZGETMI

423

General Matrix Transpose (Out-of-Place) SGETMO
CGETMO

DGETMO
ZGETMO

426

♦ Level 3 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

© Copyright IBM Corp. 1997, 2001 359

Use Considerations
This section describes some key points about using the matrix operations
subroutines.

Specifying Normal, Transposed, or Conjugate Transposed
Input Matrices

On each invocation, the matrix operation subroutines can perform one of several
possible computations, using different forms of the input matrices A and B. For the
real and complex versions of the subroutines, there are four and nine
combinations, respectively, depending on the characters specified for the transa and
transb arguments:
'N' Normal form
'T' Transposed form subroutines)
'C' Conjugate transposed form

The four and nine possible combinations are defined as follows:

Real Combinations Complex Combinations

AB AB

ATB ATB

AHB

ABT ABT

ATBT ATBT

AHBT

ABH

ATBH

AHBH

Transposing or Conjugate Transposing:
This section describes some key points about using transposed and conjugate
transposed matrices.

On Input
In every case, the input arrays for the matrix, its transpose, or its conjugate
transpose should be stored in the original untransposed form. You then specify the
desired form of the matrix to be used in the computation in the transa or transb
arguments. For a description of matrix transpose and matrix conjugate transpose,
see “Matrices” on page 59.

On Output
If you want to compute the transpose or the conjugate transpose of a matrix
operation—that is, the output stored in matrix C—you should use the matrix
identities described in Special Usage for each subroutine description. Examples are
provided in the subroutine descriptions to show the use of these matrix identities.
This accomplishes the transpose or conjugate transpose as part of the multiply
operation.

360 ESSL Version 3 Release 3 Guide and Reference

Performance and Accuracy Considerations
This section describes some key points about performance and accuracy in the
matrix operations subroutines.

In General
1. The matrix operation subroutines use algorithms that are tuned specifically to

the workstation processors they run on. The techniques involve using any one
of several computational methods, based on certain operation counts and sizes
of data.

2. The short-precision multiplication subroutines provide increased accuracy by
partially accumulating results in long precision.

3. Strassen’s method is not stable for certain row or column scalings of the input
matrices A and B. Therefore, for matrices A and B with divergent exponent
values, Strassen’s method may give inaccurate results. For these cases, you
should use the _GEMUL or _GEMM subroutines.

4. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 42.

For Large Matrices
If you are using large square matrices in your matrix multiplication operations,
you get better performance by using SGEMMS, DGEMMS, CGEMMS, and
ZGEMMS. These subroutines use Winograd’s variation of Strassen’s algorithm for
both real and complex matrices.

For Combined Operations
If you want to perform a combined matrix multiplication and addition with
scaling, SGEMM, DGEMM, CGEMM, and ZGEMM provide better performance
than if you perform the parts of the computation separately in your program. See
references [32] and [35].

Chapter 9. Matrix Operations 361

Matrix Operation Subroutines
This section contains the matrix operation subroutine descriptions.

SGEADD, DGEADD, CGEADD, and ZGEADD

362 ESSL Version 3 Release 3 Guide and Reference

SGEADD, DGEADD, CGEADD, and ZGEADD—Matrix Addition for
General Matrices or Their Transposes

These subroutines can perform any one of the following matrix additions, using
matrices A and B or their transposes, and matrix C:

C←A+B
C←AT+B
C←A+BT

C←AT+BT

Table 72. Data Types

A, B, C Subroutine

Short-precision real SGEADD

Long-precision real DGEADD

Short-precision complex CGEADD

Long-precision complex ZGEADD

Syntax

Fortran CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, ldb, transb, c, ldc, m, n)

C and C++ sgeadd | dgeadd | cgeadd | zgeadd (a, lda, transa, b, ldb, transb, c, ldc, m, n);

PL/I CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, ldb, transb, c, ldc, m, n);

On Entry:

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has m rows and n
columns.

If transa = 'T', AT is used in the computation, and A has n rows and m
columns.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 72, where:

If transa = 'N', its size must be lda by (at least) n.

If transa = 'T', its size must be lda by (at least) m.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If transa = 'N', lda ≥ m.

If transa = 'T', lda ≥ n.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

Specified as: a single character; transa = 'N' or 'T'.

SGEADD, DGEADD, CGEADD, and ZGEADD

Chapter 9. Matrix Operations 363

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n
columns.

If transb = 'T', BT is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 72 on page 363, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T', its size must be ldb by (at least) m.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T', ldb ≥ n.

transb indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

Specified as: a single character; transb = 'N' or 'T'.

c See “On Return”.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ m.

m is the number of rows in matrix C. Specified as: a fullword integer;
0 ≤ m ≤ ldc.

n is the number of columns in matrix C. Specified as: a fullword integer;
0 ≤ n.

On Return:

c is the m by n matrix C, containing the results of the computation. Returned
as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 72 on page 363.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.
2. Matrix C must have no common elements with matrices A or B. However, C

may (exactly) coincide with A if transa = 'N', and C may (exactly) coincide
with B if transb = 'N'. Otherwise, results are unpredictable. See “Concepts” on
page 53.

Function
The matrix sum is expressed as follows, where aij, bij, and cij are elements of
matrices A, B, and C, respectively:

cij = aij+bij for C←A+B
cij = aij+bji for C←A+BT

cij = aji+bij for C←AT+B

SGEADD, DGEADD, CGEADD, and ZGEADD

364 ESSL Version 3 Release 3 Guide and Reference

cij = aji+bji for C←AT+BT

for i = 1, m and j = 1, n

If m or n is 0, no computation is performed.

Special Usage
You can compute the transpose CT of each of the four computations listed under
“Function” on page 364 by using the following matrix identities:

(A+B)T = AT+BT

(A+BT)T = AT+B
(AT+B)T = A+BT

(AT+BT)T = A+B

Be careful that your output array receiving CT has dimensions large enough to
hold the transposed matrix. See “Example 4” on page 367.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. lda, ldb, ldc ≤ 0
2. m, n < 0
3. m > ldc
4. transa, transb ≠ 'N' or 'T'
5. transa = 'N' and m > lda
6. transa = 'T' and n > lda
7. transb = 'N' and m > ldb
8. transb = 'T' and n > ldb

Example 1
This example shows the computation C←A+B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B, in which it is
contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 6 , 'N' , B , 4 , 'N' , C , 5 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
| . . . |
└ ┘

┌ ┐
| 11.0 12.0 13.0 |

B = | 21.0 22.0 23.0 |
| 31.0 32.0 33.0 |
| 41.0 42.0 43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120012.0 130013.0 |
| 210021.0 220022.0 230023.0 |

SGEADD, DGEADD, CGEADD, and ZGEADD

Chapter 9. Matrix Operations 365

C = | 310031.0 320032.0 330033.0 |
| 410041.0 420042.0 430043.0 |
| . . . |
└ ┘

Example 2
This example shows the computation C←AT+B, where A, B, and C are the same size
as arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 3 , 'T' , B , 4 , 'N' , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| 11.0 12.0 13.0 |

B = | 21.0 22.0 23.0 |
| 31.0 32.0 33.0 |
| 41.0 42.0 43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210012.0 310013.0 |

C = | 120021.0 220022.0 320023.0 |
| 130031.0 230032.0 330033.0 |
| 140041.0 240042.0 340043.0 |
└ ┘

Example 3
This example shows computation C←A+BT, where A is contained in a larger array
A, and B and C are the same size as arrays B and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
└ ┘

┌ ┐
| 11.0 12.0 13.0 14.0 |

B = | 21.0 22.0 23.0 24.0 |
| 31.0 32.0 33.0 34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120021.0 130031.0 |

C = | 210012.0 220022.0 230032.0 |
| 310013.0 320023.0 330033.0 |
| 410014.0 420024.0 430034.0 |
└ ┘

SGEADD, DGEADD, CGEADD, and ZGEADD

366 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows how to produce the transpose of the result of the computation
performed in “Example 3” on page 366, C←A+BT, which uses the calling sequence:

CALL SGEADD(A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3)

You instead code a calling sequence for CT←AT+B, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 3. Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
“Special Usage” on page 365.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 5 , 'T' , B , 3 , 'N' , CT , 4 , 3 , 4)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
└ ┘

┌ ┐
| 11.0 12.0 13.0 14.0 |

B = | 21.0 22.0 23.0 24.0 |
| 31.0 32.0 33.0 34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210012.0 310013.0 410014.0 |

CT = | 120021.0 220022.0 320023.0 420024.0 |
| 130031.0 230032.0 330033.0 430034.0 |
| |
└ ┘

Example 5
This example shows the computation C←AT+BT, where A, B, and C are the same
size as the arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| 11.0 12.0 13.0 14.0 |

B = | 21.0 22.0 23.0 24.0 |
| 31.0 32.0 33.0 34.0 |
└ ┘

Output:

SGEADD, DGEADD, CGEADD, and ZGEADD

Chapter 9. Matrix Operations 367

┌ ┐
| 110011.0 210021.0 310031.0 |

C = | 120012.0 220022.0 320032.0 |
| 130013.0 230023.0 330033.0 |
| 140014.0 240024.0 340034.0 |
└ ┘

Example 6
This example shows the computation C←A+B, where A, B, and C are contained in
larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL CGEADD(A , 6 , 'N' , B , 5 , 'N' , C , 5 , 4 , 3)

┌ ┐
| (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
| (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |

A = | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
| (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
| . . . |
| . . . |
└ ┘

┌ ┐
| (1.0, 8.0) (2.0, 7.0) (3.0, 2.0) |
| (4.0, 4.0) (6.0, 8.0) (6.0, 3.0) |

B = | (6.0, 2.0) (4.0, 5.0) (4.0, 5.0) |
| (7.0, 2.0) (6.0, 4.0) (1.0, 6.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (2.0, 13.0) (11.0, 9.0) (4.0, 11.0) |
| (6.0, 8.0) (14.0, 11.0) (7.0, 11.0) |

C = | (9.0, 5.0) (11.0, 10.0) (5.0, 12.0) |
| (13.0, 8.0) (9.0, 10.0) (2.0, 10.0) |
| . . . |
└ ┘

SGEADD, DGEADD, CGEADD, and ZGEADD

368 ESSL Version 3 Release 3 Guide and Reference

SGESUB, DGESUB, CGESUB, and ZGESUB—Matrix Subtraction for
General Matrices or Their Transposes

These subroutines can perform any one of the following matrix subtractions, using
matrices A and B or their transposes, and matrix C:

C←A−B
C←AT−B
C←A−BT

C←AT−BT

Table 73. Data Types

A, B, C Subroutine

Short-precision real SGESUB

Long-precision real DGESUB

Short-precision complex CGESUB

Long-precision complex ZGESUB

Syntax

Fortran CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, ldb, transb, c, ldc, m, n)

C and C++ sgesub | dgesub | cgesub | zgesub (a, lda, transa, b, ldb, transb, c, ldc, m, n);

PL/I CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, ldb, transb, c, ldc, m, n);

On Entry:

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has m rows and n
columns.

If transa = 'T', AT is used in the computation, and A has n rows and m
columns.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 73, where:

If transa = 'N', its size must be lda by (at least) n.

If transa = 'T', its size must be lda by (at least) m.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If transa = 'N', lda ≥ m.

If transa = 'T', lda ≥ n.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

Specified as: a single character; transa = 'N' or 'T'.

SGESUB, DGESUB, CGESUB, and ZGESUB

Chapter 9. Matrix Operations 369

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n
columns.

If transb = 'T', BT is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 72 on page 363, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T', its size must be ldb by (at least) m.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T', ldb ≥ n.

transb indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

Specified as: a single character; transb = 'N' or 'T'.

c See “On Return”.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ m.

m is the number of rows in matrix C. Specified as: a fullword integer;
0 ≤ m ≤ ldc.

n is the number of columns in matrix C. Specified as: a fullword integer;
0 ≤ n.

On Return:

c is the m by n matrix C, containing the results of the computation. Returned
as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 73 on page 369.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.
2. Matrix C must have no common elements with matrices A or B. However, C

may (exactly) coincide with A if transa = 'N', and C may (exactly) coincide
with B if transb = 'N'. Otherwise, results are unpredictable. See “Concepts” on
page 53.

Function
The matrix subtraction is expressed as follows, where aij, bij, and cij are elements of
matrices A, B, and C, respectively:

cij = aij−bij for C←A−B
cij = aij−bji for C←A−BT

cij = aji−bij for C←AT−B

SGESUB, DGESUB, CGESUB, and ZGESUB

370 ESSL Version 3 Release 3 Guide and Reference

cij = aji−bji for C←AT−BT

for i = 1, m and j = 1, n

If m or n is 0, no computation is performed.

Special Usage
You can compute the transpose CT of each of the four computations listed under
“Function” on page 370 by using the following matrix identities:

(A−B)T = AT−BT

(A−BT)T = AT−B
(AT−B)T = A−BT

(AT−BT)T = A−B

Be careful that your output array receiving CT has dimensions large enough to
hold the transposed matrix. See “Example 5” on page 373.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. lda, ldb, ldc ≤ 0
2. m, n < 0
3. m > ldc
4. transa, transb ≠ 'N' or 'T'
5. transa = 'N' and m > lda
6. transa = 'T' and n > lda
7. transb = 'N' and m > ldb
8. transb = 'T' and n > ldb

Example 1
This example shows the computation C←A−B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B, in which it is
contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 6 , 'N' , B , 4 , 'N' , C , 5 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
| . . . |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 |

B = | -21.0 -22.0 -23.0 |
| -31.0 -32.0 -33.0 |
| -41.0 -42.0 -43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120012.0 130013.0 |
| 210021.0 220022.0 230023.0 |

SGESUB, DGESUB, CGESUB, and ZGESUB

Chapter 9. Matrix Operations 371

C = | 310031.0 320032.0 330033.0 |
| 410041.0 420042.0 430043.0 |
| . . . |
└ ┘

Example 2
This example shows the computation C←AT−B, where A, B, and C are the same size
as arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 3 , 'T' , B , 4 , 'N' , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 |

B = | -21.0 -22.0 -23.0 |
| -31.0 -32.0 -33.0 |
| -41.0 -42.0 -43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210012.0 310013.0 |

C = | 120021.0 220022.0 320023.0 |
| 130031.0 230032.0 330033.0 |
| 140041.0 240042.0 340043.0 |
└ ┘

Example 3
This example shows computation C←A−BT, where A is contained in a larger array
A, and B and C are the same size as arrays B and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 -14.0 |

B = | -21.0 -22.0 -23.0 -24.0 |
| -31.0 -32.0 -33.0 -34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120021.0 130031.0 |

C = | 210012.0 220022.0 230032.0 |
| 310013.0 320023.0 330033.0 |
| 410014.0 420024.0 430034.0 |
└ ┘

SGESUB, DGESUB, CGESUB, and ZGESUB

372 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows the computation C←AT−BT, where A, B, and C are the same
size as the arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 -14.0 |

B = | -21.0 -22.0 -23.0 -24.0 |
| -31.0 -32.0 -33.0 -34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210021.0 310031.0 |

C = | 120012.0 220022.0 320032.0 |
| 130013.0 230023.0 330033.0 |
| 140014.0 240024.0 340034.0 |
└ ┘

Example 5
This example shows how to produce the transpose of the result of the computation
performed in “Example 4”, C←AT−BT, which uses the calling sequence:

CALL SGESUB(A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3)

You instead code a calling sequence for CT←A−B, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 4. Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
“Special Usage” on page 371.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 3 , 'N' , B , 3 , 'N' , CT , 3 , 3 , 4)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 -14.0 |

B = | -21.0 -22.0 -23.0 -24.0 |
| -31.0 -32.0 -33.0 -34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120012.0 130013.0 140014.0 |

CT = | 210021.0 220022.0 230023.0 240024.0 |
| 310031.0 320032.0 330033.0 340034.0 |
└ ┘

SGESUB, DGESUB, CGESUB, and ZGESUB

Chapter 9. Matrix Operations 373

Example 6
This example shows the computation C←A−B, where A, B, and C are contained in
larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL CGESUB(A , 6 , 'N' , B , 5 , 'N' , C , 5 , 4 , 3)

┌ ┐
| (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
| (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |

A = | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
| (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
| . . . |
| . . . |
└ ┘

┌ ┐
| (1.0, 8.0) (2.0, 7.0) (3.0, 2.0) |
| (4.0, 4.0) (6.0, 8.0) (6.0, 3.0) |

B = | (6.0, 2.0) (4.0, 5.0) (4.0, 5.0) |
| (7.0, 2.0) (6.0, 4.0) (1.0, 6.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (0.0, -3.0) (7.0, -5.0) (-2.0, 7.0) |
| (-2.0, 0.0) (2.0, -5.0) (-5.0, 5.0) |

C = | (-3.0, 1.0) (3.0, 0.0) (-3.0, 2.0) |
| (-1.0, 4.0) (-3.0, 2.0) (0.0, -2.0) |
| . . . |
└ ┘

SGESUB, DGESUB, CGESUB, and ZGESUB

374 ESSL Version 3 Release 3 Guide and Reference

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL—Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes

SGEMUL and DGEMUL can perform any one of the following matrix
multiplications, using matrices A and B or their transposes, and matrix C:

C←AB C←ABT

C←ATB C←ATBT

CGEMUL and ZGEMUL can perform any one of the following matrix
multiplications, using matrices A and B, their transposes or their conjugate
transposes, and matrix C:

C←AB C←ABT C←ABH

C←ATB C←ATBT C←ATBH

C←AHB C←AHBT C←AHBH

Table 74. Data Types

A, B, C Subroutine

Short-precision real SGEMUL

Long-precision real DGEMUL

Short-precision complex CGEMUL

Long-precision complex ZGEMUL

Syntax

Fortran CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, lda, transa, b, ldb, transb, c, ldc, l, m, n)

C and C++ sgemul | dgemul | cgemul | zgemul (a, lda, transa, b, ldb, transb, c, ldc, l, m, n);

PL/I CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, lda, transa, b, ldb, transb, c, ldc, l, m, n);

APL2 SGEMUL | DGEMUL | CGEMUL | ZGEMUL a lda transa b ldb transb 'c' ldc l m n

On Entry:

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has l rows and m
columns.

If transa = 'T', AT is used in the computation, and A has m rows and l
columns.

If transa = 'C', AH is used in the computation, and A has m rows and l
columns.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 74, where:

If transa = 'N', its size must be lda by (at least) m.

If transa = 'T' or 'C', its size must be lda by (at least) l.

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Chapter 9. Matrix Operations 375

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If transa = 'N', lda ≥ l.

If transa = 'T' or 'C', lda ≥ m.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character; transa = 'N' or 'T' for SGEMUL and
DGEMUL; transa = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n
columns.

If transb = 'T', BT is used in the computation, and B has n rows and m
columns.

If transb = 'C', BH is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT or BH; that is, the matrix B
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 74 on page 375, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T' or 'C', its size must be ldb by (at least) m.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T' or 'C', ldb ≥ n.

transb indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

If transb = 'C', BH is used in the computation.

Specified as: a single character; transb = 'N' or 'T' for SGEMUL and
DGEMUL; transb = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.

c See “On Return” on page 377.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ l.

l is the number of rows in matrix C. Specified as: a fullword integer;
0 ≤ l ≤ ldc.

m has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

376 ESSL Version 3 Release 3 Guide and Reference

If transa = 'T' or 'C', it is the number of rows in matrix A.

In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.

Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix C. Specified as: a fullword integer;
n ≥ 0.

On Return:

c is the l by n matrix C, containing the results of the computation. Returned
as: an ldc by (at least) n numbers of the data type indicated in Table 74 on
page 375.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.
2. Matrix C must have no common elements with matrices A or B; otherwise,

results are unpredictable. See “Concepts” on page 53.

Function
The matrix multiplication is expressed as follows, where aik, bkj, and cij are elements
of matrices A, B, and C, respectively:

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Chapter 9. Matrix Operations 377

See reference [38]. If l or n is 0, no computation is performed. If l and n are greater
than 0, and m is 0, an l by n matrix of zeros is returned.

Special Usage

Equivalence Rules: By using the following equivalence rules, you can compute
the transpose CT or the conjugate transpose CH of some of the computations
performed by these subroutines:

Transpose Conjugate Transpose
(AB)T = BTAT (AB)H = BHAH

(ATB)T = BTA (AHB)H = BHA
(ABT)T = BAT (ABH)H = BAH

(ATBT)T = BA (AHBH)H = BA

When coding the calling sequences for these cases, be careful to code your matrix
arguments and dimension arguments in the order indicated by the rule. Also, be
careful that your output array, receiving CT or CH, has dimensions large enough to
hold the resulting transposed or conjugate transposed matrix. See “Example 2” on
page 379 and “Example 4” on page 381.

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

378 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Resource Errors: Unable to allocate internal work area (CGEMUL and ZGEMUL
only).

Computational Errors: None

Input-Argument Errors:
1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc
4. transa, transb ≠ 'N' or 'T' for SGEMUL and DGEMUL
5. transa, transb ≠ 'N', 'T', or 'C' for CGEMUL and ZGEMUL
6. transa = 'N' and l > lda
7. transa = 'T' or 'C' and m > lda
8. transb = 'N' and m > ldb
9. transb = 'T' or 'C' and n > ldb

Example 1
This example shows the computation C←AB, where A, B, and C are contained in
larger arrays A, B, and C, respectively.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 8 , 'N' , B , 6 , 'N' , C , 7 , 6 , 5 , 4)

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| 2.0 0.0 1.0 1.0 -1.0 |
| 1.0 -1.0 -1.0 1.0 2.0 |

A = | -3.0 2.0 2.0 2.0 0.0 |
| 4.0 0.0 -2.0 1.0 -1.0 |
| -1.0 -1.0 1.0 -3.0 2.0 |
| |
| |
└ ┘

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

Output:
┌ ┐
| 23.0 12.0 -6.0 2.0 |
| -4.0 -5.0 1.0 3.0 |
| 3.0 0.0 1.0 4.0 |

C = | -3.0 5.0 -2.0 -10.0 |
| -5.0 -7.0 4.0 4.0 |
| 15.0 6.0 -5.0 6.0 |
| |
└ ┘

Example 2
This example shows how to produce the transpose of the result of the computation
performed in “Example 1”, C←AB, which uses the calling sequence:

CALL SGEMUL (A,8,'N',B,6,'N',C,7,6,5,4)

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Chapter 9. Matrix Operations 379

You instead code a calling sequence for CT←BTAT, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 1. Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
“Special Usage” on page 378.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(B , 6 , 'T' , A , 8 , 'T' , CT , 5 , 4 , 5 , 6)

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| 2.0 0.0 1.0 1.0 -1.0 |
| 1.0 -1.0 -1.0 1.0 2.0 |

A = | -3.0 2.0 2.0 2.0 0.0 |
| 4.0 0.0 -2.0 1.0 -1.0 |
| -1.0 -1.0 1.0 -3.0 2.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 23.0 -4.0 3.0 -3.0 -5.0 15.0 |
| 12.0 -5.0 0.0 5.0 -7.0 6.0 |

CT = | -6.0 1.0 1.0 -2.0 4.0 -5.0 |
| 2.0 3.0 4.0 -10.0 4.0 6.0 |
| |
└ ┘

Example 3
This example shows the computation C←ATB, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 4 , 'T' , B , 3 , 'N' , C , 5 , 3 , 3 , 6)

┌ ┐
| 1.0 -3.0 2.0 |

A = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 2.0 -1.0 2.0 |

B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
| 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
└ ┘

Output:

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

380 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 6.0 4.0 1.0 1.0 0.0 -1.0 |
| 4.0 26.0 -5.0 -5.0 8.0 -15.0 |

C = | 1.0 -5.0 5.0 5.0 -1.0 3.0 |
| |
| |
└ ┘

Example 4
This example shows how to produce the transpose of the result of the computation
performed in “Example 3” on page 380, C←ATB, which uses the calling sequence:

CALL SGEMUL (A,4,'T',B,3,'N',C,5,3,3,6)

You instead code the calling sequence for CT←BTA, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 3. Note that the array CT has dimensions large enough
to receive the transposed matrix. For a description of all the matrix identities, see
“Special Usage” on page 378.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(B , 3 , 'T' , A , 4 , 'N' , CT , 8 , 6 , 3 , 3)

┌ ┐
| 1.0 -3.0 2.0 2.0 -1.0 2.0 |

B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
| 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 |

A = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 6.0 4.0 1.0 |
| 4.0 26.0 -5.0 |
| 1.0 -5.0 5.0 |

CT = | 1.0 -5.0 5.0 |
| 0.0 8.0 -1.0 |
| -1.0 -15.0 3.0 |
| . . . |
| . . . |
└ ┘

Example 5
This example shows the computation C←ABT, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the array B in which it
is contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 4 , 'N' , B , 3 , 'T' , C , 5 , 3 , 2 , 3)

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Chapter 9. Matrix Operations 381

┌ ┐
| 1.0 -3.0 |

A = | 2.0 4.0 |
| 1.0 -1.0 |
| . . |
└ ┘

┌ ┐
| 1.0 -3.0 |

B = | 2.0 4.0 |
| 1.0 -1.0 |
└ ┘

Output:
┌ ┐
| 10.0 -10.0 4.0 |
| -10.0 20.0 -2.0 |

C = | 4.0 -2.0 2.0 |
| . . . |
| . . . |
└ ┘

Example 6
This example shows the computation C←ATBT, where A, B, and C are the same size
as the arrays A, B, and C in which they are contained. (Based on the dimensions of
the matrices, A is actually a column vector, and C is actually a row vector.)

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 3 , 'T' , B , 3 , 'T' , C , 1 , 1 , 3 , 3)

┌ ┐
| 1.0 |

A = | 2.0 |
| 1.0 |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 |

B = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
└ ┘

Output:
┌ ┐

B = | -3.0 10.0 -2.0 |
└ ┘

Example 7
This example shows the computation C←ATB using complex data, where A, B, and
C are contained in larger arrays A, B, and C, respectively.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL CGEMUL(A , 6 , 'T' , B , 7 , 'N' , C , 3 , 2 , 3 , 3)

┌ ┐
| (1.0, 2.0) (3.0, 4.0) |
| (4.0, 6.0) (7.0, 1.0) |

A = | (6.0, 3.0) (2.0, 5.0) |
| . . |
| . . |
| . . |
└ ┘

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

382 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| (1.0, 9.0) (2.0, 6.0) (5.0, 6.0) |
| (2.0, 5.0) (6.0, 2.0) (6.0, 4.0) |
| (2.0, 6.0) (5.0, 4.0) (2.0, 6.0) |

B = | . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-45.0, 85.0) (20.0, 93.0) (-13.0, 110.0) |

C = | (-50.0, 90.0) (12.0, 79.0) (3.0, 94.0) |
| . . . |
└ ┘

Example 8
This example shows the computation C←ABH using complex data, where A and C
are contained in larger arrays A and C, respectively, and B is the same size as the
array B in which it is contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL CGEMUL(A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3)

┌ ┐
| (1.0, 2.0) (-3.0, 2.0) |

A = | (2.0, 6.0) (4.0, 5.0) |
| (1.0, 2.0) (-1.0, 8.0) |
| . . |
└ ┘

┌ ┐
| (1.0, 3.0) (-3.0, 2.0) |

B = | (2.0, 5.0) (4.0, 6.0) |
| (1.0, 1.0) (-1.0, 9.0) |
└ ┘

Output:
┌ ┐
| (20.0, -1.0) (12.0, 25.0) (24.0, 26.0) |

C = | (18.0, -23.0) (80.0, -2.0) (49.0, -37.0) |
| (26.0, -23.0) (56.0, 37.0) (76.0, 2.0) |
| . . . |
└ ┘

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

Chapter 9. Matrix Operations 383

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS—Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes Using
Winograd’s Variation of Strassen’s Algorithm

These subroutines use Winograd’s variation of the Strassen’s algorithm to perform
the matrix multiplication for both real and complex matrices. SGEMMS and
DGEMMS can perform any one of the following matrix multiplications, using
matrices A and B or their transposes, and matrix C:

C←AB C←ABT

C←ATB C←ATBT

CGEMMS and ZGEMMS can perform any one of the following matrix
multiplications, using matrices A and B, their transposes or their conjugate
transposes, and matrix C:

C←AB C←ABT C←ABH

C←ATB C←ATBT C←ATBH

C←AHB C←AHBT C←AHBH

Table 75. Data Types

A, B, C aux Subroutine

Short-precision real Short-precision real SGEMMS

Long-precision real Long-precision real DGEMMS

Short-precision complex Short-precision real CGEMMS

Long-precision complex Long-precision real ZGEMMS

Syntax

Fortran CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, ldb, transb, c, ldc, l, m, n,
aux, naux)

C and C++ sgemms | dgemms | cgemms | zgemms (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux, naux);

PL/I CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, ldb, transb, c, ldc, l, m, n,
aux, naux);

On Entry:

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has l rows and m
columns.

If transa = 'T', AT is used in the computation, and A has m rows and l
columns.

If transa = 'C', AH is used in the computation, and A has m rows and l
columns.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 75, where:

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

384 ESSL Version 3 Release 3 Guide and Reference

If transa = 'N', its size must be lda by (at least) m.

If transa = 'T' or 'C', its size must be lda by (at least) l.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If transa = 'N', lda ≥ l.

If transa = 'T' or 'C', lda ≥ m.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character; transa = 'N' or 'T' for SGEMMS and
DGEMMS; transa = 'N', 'T', or 'C' for CGEMMS and ZGEMMS.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n
columns.

If transb = 'T', BT is used in the computation, and B has n rows and m
columns.

If transb = 'C', BH is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT or BH; that is, the matrix B
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 75 on page 384, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T' or 'C', its size must be ldb by (at least) m.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T' or 'C', ldb ≥ n.

transb indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

If transb = 'C', BH is used in the computation.

Specified as: a single character; transb = 'N' or 'T' for SGEMMS and
DGEMMS; transb = 'N', 'T', or 'C' for CGEMMS and ZGEMMS.

c See “On Return” on page 386.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ l.

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

Chapter 9. Matrix Operations 385

l is the number of rows in matrix C. Specified as: a fullword integer;
0 ≤ l ≤ ldc.

m has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

If transa = 'T' or 'C', it is the number of rows in matrix A.

In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.

Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix C. Specified as: a fullword integer;
n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage containing numbers of the data type
indicated in Table 75 on page 384.

naux is the size of the work area specified by aux—that is, the number of
elements in aux.

Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEMMS, DGEMMS,
CGEMMS, and ZGEMMS dynamically allocate the work area used by the
subroutine. The work area is deallocated before control is returned to the
calling program.

Otherwise,

When this subroutine uses Strassen’s algorithm:
v For SGEMMS and DGEMMS:

Use naux = max[(n)(l), 0.7m(l+n)].
v For CGEMMS and ZGEMMS:

Use naux = max[(n)(l), 0.7m(l+n)]+nb1+nb2, where:
If l ≥ n, then nb1 ≥ (l)(n+20) and nb2 ≥ max[(n)(l), (m)(n+20)].
If l < n, then nb1 ≥ (m)(n+20) and nb2 ≥ max[(n)(l), (l)(m+20)].

When this subroutine uses the direct method (_GEMUL), use naux ≥ 0.

Notes:

1. In most cases, these formulas provide an overestimate.
2. For an explanation of when this subroutine uses the direct method

versus Strassen’s algorithm, see “Notes” on page 387.

On Return:

c is the l by n matrix C, containing the results of the computation. Returned
as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 75 on page 384.

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

386 ESSL Version 3 Release 3 Guide and Reference

Notes
1. There are two instances when these subroutines use the direct method

(_GEMUL), rather than using Strassen’s algorithm:
v When either or both of the input matrices are small
v For CGEMMS and ZGEMMS, when input matrices A and B overlap

In these instances when the direct method is used, the subroutine does not use
auxiliary storage, and you can specify naux = 0.

2. For CGEMMS and ZGEMMS, one of the input matrices, A or B, is rearranged
during the computation and restored to its original form on return. Keep this in
mind when diagnosing an abnormal termination.

3. All subroutines accept lowercase letters for the transa and transb arguments.
4. Matrix C must have no common elements with matrices A or B; otherwise,

results are unpredictable. See “Concepts” on page 53.
5. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The matrix multiplications performed by these subroutines are functionally
equivalent to those performed by SGEMUL, DGEMUL, CGEMUL, and ZGEMUL.
For details on the computations performed, see “Function” on page 377.

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS use Winograd’s variation of the
Strassen’s algorithm with minor changes for tuning purposes. (See pages 45 and 46
in reference [11].) The subroutines compute matrix multiplication for both real and
complex matrices of large sizes. Complex matrix multiplication uses a special
technique, using three real matrix multiplications and five real matrix additions.
Each of these three resulting matrix multiplications then uses Strassen’s algorithm.

Strassen’s Algorithm: The steps of Strassen’s algorithm can be repeated up to
four times by these subroutines, with each step reducing the dimensions of the
matrix by a factor of two. The number of steps used by this subroutine depends on
the size of the input matrices. Each step reduces the number of operations by
about 10% from the normal matrix multiplication. On the other hand, if the matrix
is small, a normal matrix multiplication is performed without using the Strassen’s
algorithm, and no improvement is gained. For details about small matrices, see
“Notes”.

Complex Matrix Multiplication: The complex multiplication is performed by
forming the real and imaginary parts of the input matrices. These subroutines uses
three real matrix multiplications and five real matrix additions, instead of the
normal four real matrix multiplications and two real matrix additions. Using only
three real matrix multiplications allows the subroutine to achieve up to a 25%
reduction in matrix operations, which can result in a significant savings in
computing time for large matrices.

Accuracy Considerations: Strassen’s method is not stable for certain row or
column scalings of the input matrices A and B. Therefore, for matrices A and B
with divergent exponent values Strassen’s method may give inaccurate results. For
these cases, you should use the _GEMUL or _GEMM subroutines.

Special Usage
The equivalence rules, defined for matrix multiplication of A and B in “Special
Usage” on page 378, also apply to these subroutines. You should use the

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

Chapter 9. Matrix Operations 387

equivalence rules when you want to transpose or conjugate transpose the result of
the multiplication computation. When coding the calling sequences for these cases,
be careful to code your matrix arguments and dimension arguments in the order
indicated by the rule. Also, be careful that your output array, receiving CT or CH,
has dimensions large enough to hold the resulting transposed or conjugate
transposed matrix. See “Example 2” on page 379 and “Example 4” on page 381.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc
4. transa, transb ≠ 'N' or 'T' for SGEMMS and DGEMMS
5. transa, transb ≠ 'N', 'T', or 'C' for CGEMMS and ZGEMMS
6. transa = 'N' and l > lda
7. transa = 'T' or 'C' and m > lda
8. transb = 'N' and m > ldb
9. transb = 'T' or 'C' and n > ldb

10. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows the computation C←AB, where A, B, and C are contained in
larger arrays A, B, and C, respectively. It shows how to code the calling sequence
for SGEMMS, but does not use the Strassen algorithm for doing the computation.
The calling sequence is shown below. The input and output, other than auxiliary
storage, is the same as in “Example 1” on page 379 for SGEMUL.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
| | | | | | | | | | | | |

CALL SGEMMS(A , 8 , 'N' , B , 6 , 'N' , C , 7 , 6 , 5 , 4 , AUX , 0)

Example 2
This example shows the computation C←ABH, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the array B in which it
is contained. The arrays contain complex data. This example shows how to code
the calling sequence for CGEMMS, but does not use the Strassen algorithm for
doing the computation. The calling sequence is shown below. The input and
output, other than auxiliary storage, is the same as in “Example 8” on page 383 for
CGEMUL.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
| | | | | | | | | | | | |

CALL CGEMMS(A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3 , AUX , 0)

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

388 ESSL Version 3 Release 3 Guide and Reference

SGEMM, DGEMM, CGEMM, and ZGEMM—Combined Matrix
Multiplication and Addition for General Matrices, Their Transposes, or
Conjugate Transposes

SGEMM and DGEMM can perform any one of the following combined matrix
computations, using scalars α and β, matrices A and B or their transposes, and
matrix C:

C ← αAB+βC C ← αABT+βC
C ← αATB+βC C ← αATBT+βC

CGEMM and ZGEMM can perform any one of the following combined matrix
computations, using scalars α and β, matrices A and B, their transposes or their
conjugate transposes, and matrix C:

C ← αAB+βC C ← αABT+βC C ← αABH+βC
C ← αATB+βC C ← αATBT+βC C ← αATBH+βC
C ← αAHB+βC C ← αAHBT+βC C ← αAHBH+βC

Table 76. Data Types

A, B, C, α, β Subroutine

Short-precision real SGEMM

Long-precision real DGEMM

Short-precision complex CGEMM

Long-precision complex ZGEMM

Syntax

Fortran CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c,
ldc)

C and C++ sgemm | dgemm | cgemm | zgemm (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc);

PL/I CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c,
ldc);

On Entry:

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character; transa = 'N', 'T', or 'C'.

transb indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

If transb = 'C', BH is used in the computation.

Specified as: a single character; transb = 'N', 'T', or 'C'.

SGEMM, DGEMM, CGEMM, and ZGEMM

Chapter 9. Matrix Operations 389

l is the number of rows in matrix C. Specified as: a fullword integer;
0 ≤ l ≤ ldc.

n is the number of columns in matrix C. Specified as: a fullword integer;
n ≥ 0.

m has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

If transa = 'T' or 'C', it is the number of rows in matrix A.

In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.

Specified as: a fullword integer; m ≥ 0.

alpha is the scalar α. Specified as: a number of the data type indicated in Table 76
on page 389.

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has l rows and m
columns.

If transa = 'T', AT is used in the computation, and A has m rows and l
columns.

If transa = 'C', AH is used in the computation, and A has m rows and l
columns.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 76 on page 389, where:

If transa = 'N', its size must be lda by (at least) m.

If transa = 'T' or 'C', its size must be lda by (at least) l.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If transa = 'N', lda ≥ l.

If transa = 'T' or 'C', lda ≥ m.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n
columns.

If transb = 'T', BT is used in the computation, and B has n rows and m
columns.

If transb = 'C', BH is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT or BH; that is, the matrix B
should always be stored in its untransposed form.

SGEMM, DGEMM, CGEMM, and ZGEMM

390 ESSL Version 3 Release 3 Guide and Reference

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 76 on page 389, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T' or 'C', its size must be ldb by (at least) m.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T' or 'C', ldb ≥ n.

beta is the scalar β. Specified as: a number of the data type indicated in Table 76
on page 389.

c is the l by n matrix C. Specified as: a two-dimensional array, containing
numbers of the data type indicated in Table 76 on page 389.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ l.

On Return:

c is the l by n matrix C, containing the results of the computation. Returned
as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 76 on page 389.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.
2. For SGEMM and DGEMM, if you specify 'C' for the transa or transb argument,

it is interpreted as though you specified 'T'.
3. Matrix C must have no common elements with matrices A or B; otherwise,

results are unpredictable. See “Concepts” on page 53.

Function
The combined matrix addition and multiplication is expressed as follows, where
aik, bkj, and cij are elements of matrices A, B, and C, respectively:

SGEMM, DGEMM, CGEMM, and ZGEMM

Chapter 9. Matrix Operations 391

See references [32] and [38]. In the following three cases, no computation is
performed:
v l is 0.
v n is 0.
v β is 1 and α is 0.

Assuming the above conditions do not exist, if β ≠ 1 and m is 0, then βC is
returned.

Special Usage

Equivalence Rules: The equivalence rules, defined for matrix multiplication of A
and B in “Special Usage” on page 378, also apply to the matrix multiplication part
of the computation performed by this subroutine. You should use the equivalent
rules when you want to transpose or conjugate transpose the multiplication part of
the computation. When coding the calling sequences for these cases, be careful to
code your matrix arguments and dimension arguments in the order indicated by
the rule. Also, be careful that your input and output array C has dimensions large
enough to hold the resulting matrix. See “Example 4” on page 395.

SGEMM, DGEMM, CGEMM, and ZGEMM

392 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Resource Errors: Unable to allocate internal work area (CGEMM and ZGEMM
only).

Computational Errors: None

Input-Argument Errors:
1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc
4. transa, transb ≠ 'N', 'T', or 'C'
5. transa = 'N' and l > lda
6. transa = 'T' or 'C' and m > lda
7. transb = 'N' and m > ldb
8. transb = 'T' or 'C' and n > ldb

Example 1
This example shows the computation C←αAB+βC, where A, B, and C are contained
in larger arrays A, B, and C, respectively.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL SGEMM('N' , 'N' , 6 , 4 , 5 , 1.0 , A , 8 , B , 6 , 2.0 , C , 7)

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| 2.0 0.0 1.0 1.0 -1.0 |
| 1.0 -1.0 -1.0 1.0 2.0 |

A = | -3.0 2.0 2.0 2.0 0.0 |
| 4.0 0.0 -2.0 1.0 -1.0 |
| -1.0 -1.0 1.0 -3.0 2.0 |
| |
| |
└ ┘

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

┌ ┐
| 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |

C = | 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |
| |
└ ┘

Output:
┌ ┐
| 24.0 13.0 -5.0 3.0 |
| -3.0 -4.0 2.0 4.0 |
| 4.0 1.0 2.0 5.0 |

C = | -2.0 6.0 -1.0 -9.0 |

SGEMM, DGEMM, CGEMM, and ZGEMM

Chapter 9. Matrix Operations 393

| -4.0 -6.0 5.0 5.0 |
| 16.0 7.0 -4.0 7.0 |
| |
└ ┘

Example 2
This example shows the computation C←αABT+βC, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B in which it is
contained.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL SGEMM('N' , 'T' , 3 , 3 , 2 , 1.0 , A , 4 , B , 3 , 2.0 , C , 5)

┌ ┐
| 1.0 -3.0 |

A = | 2.0 4.0 |
| 1.0 -1.0 |
| . . |
└ ┘

┌ ┐
| 1.0 -3.0 |

B = | 2.0 4.0 |
| 1.0 -1.0 |
└ ┘

┌ ┐
| 0.5 0.5 0.5 |
| 0.5 0.5 0.5 |

C = | 0.5 0.5 0.5 |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| 11.0 -9.0 5.0 |
| -9.0 21.0 -1.0 |

C = | 5.0 -1.0 3.0 |
| . . . |
| . . . |
└ ┘

Example 3
This example shows the computation C←αAB+βC using complex data, where A, B,
and C are contained in larger arrays, A, B, and C, respectively.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL CGEMM('N' , 'N' , 6 , 2 , 3 , ALPHA , A , 8 , B , 4 , BETA , C , 8)

ALPHA = (1.0, 0.0)
BETA = (2.0, 0.0)

┌ ┐
| (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
| (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |
| (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |

A = | (4.0, 2.0) (4.0, 7.0) (1.0, 5.0) |
| (5.0, 1.0) (5.0, 1.0) (1.0, 6.0) |
| (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |

SGEMM, DGEMM, CGEMM, and ZGEMM

394 ESSL Version 3 Release 3 Guide and Reference

| . . . |
| . . . |
└ ┘

┌ ┐
| (1.0, 8.0) (2.0, 7.0) |

B = | (4.0, 4.0) (6.0, 8.0) |
| (6.0, 2.0) (4.0, 5.0) |
| . . |
└ ┘

┌ ┐
| (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |

C = | (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |
| . . |
| . . |
└ ┘

Output:
┌ ┐
| (-22.0, 113.0) (-35.0, 142.0) |
| (-19.0, 114.0) (-35.0, 141.0) |
| (-20.0, 119.0) (-43.0, 146.0) |

C = | (-27.0, 110.0) (-58.0, 131.0) |
| (8.0, 103.0) (0.0, 112.0) |
| (-55.0, 116.0) (-75.0, 135.0) |
| . . |
| . . |
└ ┘

Example 4
This example shows how to obtain the conjugate transpose of ABH.

This shows the conjugate transpose of the computation performed in “Example 8”
on page 383 for CGEMUL, which uses the following calling sequence:
CALL CGEMUL(A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3)

You instead code the calling sequence for C←βC+αBAH, where β = 0, α = 1, and
the array C has the correct dimensions to receive the transposed matrix. Because β
is zero, βC = 0. For a description of all the matrix identities, see “Special Usage”
on page 378.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL CGEMM('N' , 'C' , 3 , 3 , 2 , ALPHA , B , 3 , A , 3 , BETA , C , 4)

ALPHA = (1.0, 0.0)
BETA = (0.0, 0.0)

┌ ┐
| (1.0, 3.0) (-3.0, 2.0) |

B = | (2.0, 5.0) (4.0, 6.0) |
| (1.0, 1.0) (-1.0, 9.0) |
└ ┘

SGEMM, DGEMM, CGEMM, and ZGEMM

Chapter 9. Matrix Operations 395

┌ ┐
| (1.0, 2.0) (-3.0, 2.0) |

A = | (2.0, 6.0) (4.0, 5.0) |
| (1.0, 2.0) (-1.0, 8.0) |
| . . |
└ ┘

C =(not relevant)

Output:
┌ ┐
| (20.0, 1.0) (18.0, 23.0) (26.0, 23.0) |

C = | (12.0, -25.0) (80.0, 2.0) (56.0, -37.0) |
| (24.0, -26.0) (49.0, 37.0) (76.0, -2.0) |
| . . . |
└ ┘

Example 5
This example shows the computation C←αATBH+βC using complex data, where A,
B, and C are the same size as the arrays A, B, and C, in which they are contained.
Because β is zero, βC = 0. (Based on the dimensions of the matrices, A is actually a
column vector, and C is actually a row vector.)

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL CGEMM('T' , 'C' , 1 , 3 , 3 , ALPHA , A , 3 , B , 3 , BETA , C , 1)

ALPHA = (1.0, 1.0)
BETA = (0.0, 0.0)

┌ ┐
| (1.0, 2.0) |

A = | (2.0, 5.0) |
| (1.0, 6.0) |
└ ┘

┌ ┐
| (1.0, 6.0) (-3.0, 4.0) (2.0, 6.0) |

B = | (2.0, 3.0) (4.0, 6.0) (0.0, 3.0) |
| (1.0, 3.0) (-1.0, 6.0) (-1.0, 9.0) |
└ ┘

C =(not relevant)

Output:
┌ ┐

C = | (86.0, 44.0) (58.0, 70.0) (121.0, 55.0) |
└ ┘

SGEMM, DGEMM, CGEMM, and ZGEMM

396 ESSL Version 3 Release 3 Guide and Reference

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM—Matrix-
Matrix Product Where One Matrix is Real or Complex Symmetric or
Complex Hermitian

These subroutines compute one of the following matrix-matrix products, using the
scalars α and β and matrices A, B, and C:

1. C←αAB+βC
2. C←αBA+βC

where matrix A is stored in either upper or lower storage mode, and:
v For SSYMM and DSYMM, matrix A is real symmetric.
v For CSYMM and ZSYMM, matrix A is complex symmetric.
v For CHEMM and ZHEMM, matrix A is complex Hermitian.

Table 77. Data Types

α, A, B, β, C Subprogram

Short-precision real SSYMM

Long-precision real DSYMM

Short-precision complex CSYMM and CHEMM

Long-precision complex ZSYMM and ZHEMM

Syntax

Fortran CALL SSYMM | DSYMM | CSYMM | ZSYMM | CHEMM | ZHEMM (side, uplo, m, n, alpha, a,
lda, b, ldb, beta, c, ldc)

C and C++ ssymm | dsymm | csymm | zsymm | chemm | zhemm (side, uplo, m, n, alpha, a, lda, b, ldb, beta,
c, ldc);

PL/I CALL SSYMM | DSYMM | CSYMM | ZSYMM | CHEMM | ZHEMM (side, uplo, m, n, alpha, a,
lda, b, ldb, beta, c, ldc);

On Entry:

side indicates whether matrix A is located to the left or right of rectangular
matrix B in the equation used for this computation, where:

If side = 'L', A is to the left of B, resulting in equation 1.

If side = 'R', A is to the right of B, resulting in equation 2.

Specified as: a single character. It must be 'L' or 'R'.

uplo indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

m is the number of rows in rectangular matrices B and C, and:

If side = 'L', m is the order of matrix A.

Specified as: a fullword integer; 0 ≤ m ≤ ldb, m ≤ ldc, and:

If side = 'L', m ≤ lda.

n is the number of columns in rectangular matrices B and C, and:

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Chapter 9. Matrix Operations 397

If side = 'R', n is the order of matrix A.

Specified as: a fullword integer; n ≥ 0 and:

If side = 'R', n ≤ lda.

alpha is the scalar α. Specified as: a number of the data type indicated in Table 77
on page 397.

a is the real symmetric, complex symmetric, or complex Hermitian matrix A,
where:

If side = 'L', A is order m.

If side = 'R', A is order n.

and where it is stored as follows:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 77 on page 397, where:

If side = 'L', its size must be lda by (at least) m.

If side = 'R', it size must be lda by (at least) n.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If side = 'L', lda ≥ m.

If side = 'R', lda ≥ n.

b is the m by n rectangular matrix B. Specified as: an ldb by (at least) n array,
containing numbers of the data type indicated in Table 77 on page 397.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ m.

beta is the scalar β. Specified as: a number of the data type indicated in Table 77
on page 397.

c is the m by n rectangular matrix C. Specified as: an ldc by (at least) n array,
containing numbers of the data type indicated in Table 77 on page 397.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ m.

On Return:

c is the m by n matrix C, containing the results of the computation.

Returned as: an ldc by (at least) n array, containing numbers of the data
type indicated in Table 77 on page 397.

Notes
1. These subroutines accept lowercase letters for the side and uplo arguments.
2. Matrices A, B, and C must have no common elements; otherwise, results are

unpredictable.
3. If matrix A is upper triangular (uplo = 'U'), these subroutines use only the data

in the upper triangular portion of the array. If matrix A is lower triangular,
(uplo = 'L'), these subroutines use only the data in the lower triangular portion
of the array. In each case, the other portion of the array is altered during the
computation, but restored before exit.

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

398 ESSL Version 3 Release 3 Guide and Reference

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A
are assumed to be zero, so you do not have to set these values.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see “Symmetric Matrix” on page 62. For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
“Complex Hermitian Matrix” on page 67.

Function
These subroutines can perform the following matrix-matrix product computations
using matrix A, which is real symmetric for SSYMM and DSYMM, complex
symmetric for CSYMM and ZSYMM, and complex Hermitian for CHEMM and
ZHEMM:
1. C←αAB+βC

2. C←αBA+βC

where:
α and β are scalars.
A is a matrix of the type indicated above, stored in upper or lower storage
mode. It is order m for equation 1 and order n for equation 2.
B and C are m by n rectangular matrices.

See references [32] and [38]. In the following two cases, no computation is
performed:
v n or m is 0.
v β is one and α is zero.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors:
1. m < 0
2. m > ldb
3. m > ldc
4. n < 0
5. lda, ldb, ldc ≤ 0
6. side ≠ 'L' or 'R'
7. uplo ≠ 'L' or 'U'
8. side = 'L' and m > lda
9. side = 'R' and n > lda

Example 1
This example shows the computation C←αAB+βC, where A is a real symmetric
matrix of order 5, stored in upper storage mode, and B and C are 5 by 4
rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM('L' , 'U' , 5 , 4 , 2.0 , A , 8 , B , 6 , 1.0 , C , 5)

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| . 0.0 1.0 1.0 -1.0 |
| . . -1.0 1.0 2.0 |

A = | . . . 2.0 0.0 |
| -1.0 |

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Chapter 9. Matrix Operations 399

| |
| |
| |
└ ┘

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

┌ ┐
| 23.0 12.0 -6.0 2.0 |
| -4.0 -5.0 1.0 3.0 |

C = | 5.0 6.0 -1.0 -4.0 |
| -4.0 1.0 0.0 -5.0 |
| 8.0 -4.0 -2.0 13.0 |
└ ┘

Output:
┌ ┐
| 69.0 36.0 -18.0 6.0 |
| -12.0 -15.0 3.0 9.0 |

C = | 15.0 18.0 -3.0 -12.0 |
| -12.0 3.0 0.0 -15.0 |
| 8.0 -20.0 -2.0 35.0 |
└ ┘

Example 2
This example shows the computation C←αAB+βC, where A is a real symmetric
matrix of order 3, stored in lower storage mode, and B and C are 3 by 6
rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM('L' , 'L' , 3 , 6 , 2.0 , A , 4 , B , 3 , 2.0 , C , 5)

┌ ┐
| 1.0 . . |

A = | 2.0 4.0 . |
| 1.0 -1.0 -1.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 2.0 -1.0 2.0 |

B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
| 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
└ ┘

┌ ┐
| 6.0 4.0 1.0 1.0 0.0 -1.0 |
| 9.0 11.0 5.0 5.0 3.0 -5.0 |

C = | -2.0 -6.0 3.0 3.0 -1.0 32.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 24.0 16.0 4.0 4.0 0.0 -4.0 |
| 36.0 44.0 20.0 20.0 12.0 -20.0 |

C = | -8.0 -24.0 12.0 12.0 -4.0 12.0 |

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

400 ESSL Version 3 Release 3 Guide and Reference

| |
| |
└ ┘

Example 3
This example shows the computation C←αBA+βC, where A is a real symmetric
matrix of order 3, stored in upper storage mode, and B and C are 2 by 3
rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM('R' , 'U' , 2 , 3 , 2.0 , A , 4 , B , 3 , 1.0 , C , 5)

┌ ┐
| 1.0 -3.0 1.0 |

A = | . 4.0 -1.0 |
| . . 2.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 -3.0 3.0 |

B = | 2.0 4.0 -1.0 |
| . . . |
└ ┘

┌ ┐
| 13.0 -18.0 10.0 |
| -11.0 11.0 -4.0 |

C = | . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| 39.0 -54.0 30.0 |
| -33.0 33.0 -12.0 |

C = | . . . |
| . . . |
| . . . |
└ ┘

Example 4
This example shows the computation C←αBA+βC, where A is a real symmetric
matrix of order 3, stored in lower storage mode, and B and C are 3 by 3 square
matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM('R' , 'L' , 3 , 3 , -1.0 , A , 3 , B , 3 , 1.0 , C , 3)

┌ ┐
| 1.0 . . |

A = | 2.0 10.0 . |
| 1.0 11.0 4.0 |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 |

B = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
└ ┘

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Chapter 9. Matrix Operations 401

┌ ┐
| 1.0 5.0 -9.0 |

C = | -3.0 10.0 -2.0 |
| -2.0 8.0 0.0 |
└ ┘

Output:
┌ ┐
| 4.0 11.0 15.0 |

C = | -13.0 -34.0 -48.0 |
| 0.0 27.0 14.0 |
└ ┘

Example 5
This example shows the computation C←αBA+βC, where A is a complex symmetric
matrix of order 3, stored in upper storage mode, and B and C are 2 by 3
rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CSYMM('R' , 'U' , 2 , 3 , ALPHA , A , 4 , B , 3 , BETA , C , 5)

ALPHA = (2.0, 3.0)

BETA = (1.0, 6.0)

┌ ┐
| (1.0, 5.0) (-3.0, 2.0) (1.0, 6.0) |

A = | . (4.0, 5.0) (-1.0, 4.0) |
| . . (2.0, 5.0) |
| . . . |
└ ┘

┌ ┐
| (1.0, 1.0) (-3.0, 2.0) (3.0, 3.0) |

B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0) |
| . . . |
└ ┘

┌ ┐
| (13.0, 6.0) (-18.0, 6.0) (10.0, 7.0) |
| (-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-96.0, 72.0) (-141.0, -226.0) (-112.0, 38.0) |
| (-230.0, -269.0) (-133.0, -23.0) (-272.0, -198.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

Example 6
This example shows the computation C←αBA+βC, where A is a complex Hermitian
matrix of order 3, stored in lower storage mode, and B and C are 3 by 3 square
matrices.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values.

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

402 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CHEMM('R' , 'L' , 2 , 3 , ALPHA , A , 4 , B , 3 , BETA , C , 5)

ALPHA = (2.0, 3.0)

BETA = (1.0, 6.0)

┌ ┐
| (1.0, .) . . |

A = | (3.0, 2.0) (4.0, .) . |
| (-1.0, 6.0) (1.0, 4.0) (2.0, .) |
| . . . |
└ ┘

┌ ┐
| (1.0, 1.0) (-3.0, 2.0) (3.0, 3.0) |

B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0) |
| . . . |
└ ┘

┌ ┐
| (13.0, 6.0) (-18.0, 6.0) (10.0, 7.0) |
| (-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-137.0, 17.0) (-158.0, -102.0) (-39.0, 141.0) |
| (-154.0, -77.0) (-63.0, 186.0) (159.0, 104.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

Chapter 9. Matrix Operations 403

STRMM, DTRMM, CTRMM, and ZTRMM—Triangular Matrix-Matrix
Product

STRMM and DTRMM compute one of the following matrix-matrix products, using
the scalar α, rectangular matrix B, and triangular matrix A or its transpose:

1. B←αAB 3. B←αBA
2. B←αATB 4. B←αBAT

CTRMM and ZTRMM compute one of the following matrix-matrix products, using
the scalar α, rectangular matrix B, and triangular matrix A, its transpose, or its
conjugate transpose:

1. B←αAB 3. B←αBA 5. B←αAHB
2. B←αATB 4. B←αBAT 6. B←αBAH

Table 78. Data Types

A, B, α Subroutine

Short-precision real STRMM

Long-precision real DTRMM

Short-precision complex CTRMM

Long-precision complex ZTRMM

Syntax

Fortran CALL STRMM | DTRMM | CTRMM | ZTRMM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

C and C++ strmm | dtrmm | ctrmm | ztrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

PL/I CALL STRMM | DTRMM | CTRMM | ZTRMM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

On Entry:

side indicates whether the triangular matrix A is located to the left or right of
rectangular matrix B in the equation used for this computation, where:

If side = 'L', A is to the left of B in the equation, resulting in either
equation 1, 2, or 5.

If side = 'R', A is to the right of B in the equation, resulting in either
equation 3, 4, or 6.

Specified as: a single character. It must be 'L' or 'R'.

uplo indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation, resulting in either equation 1
or 3.

If transa = 'T', AT is used in the computation, resulting in either equation 2
or 4.

STRMM, DTRMM, CTRMM, and ZTRMM

404 ESSL Version 3 Release 3 Guide and Reference

If transa = 'C', AH is used in the computation, resulting in either equation
5 or 6.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

m is the number of rows in rectangular matrix B, and:

If side = 'L', m is the order of triangular matrix A.

Specified as: a fullword integer, where:

If side = 'L', 0 ≤ m ≤ lda and m ≤ ldb.

If side = 'R', 0 ≤ m ≤ ldb.

n is the number of columns in rectangular matrix B, and:

If side = 'R', n is the order of triangular matrix A.

Specified as: a fullword integer; n ≥ 0 and:

If side = 'R', n ≤ lda.

alpha is the scalar α. Specified as: a number of the data type indicated in Table 78
on page 404.

a is the triangular matrix A, of which only the upper or lower triangular
portion is used, where:

If side = 'L', A is order m.

If side = 'R', A is order n.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 78 on page 404, where:

If side = 'L', its size must be lda by (at least) m.

If side = 'R', it size must be lda by (at least) n.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If side = 'L', lda ≥ m.

If side = 'R', lda ≥ n.

b is the m by n rectangular matrix B. Specified as: an ldb by (at least) n array,
containing numbers of the data type indicated in Table 78 on page 404.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ m.

On Return:

STRMM, DTRMM, CTRMM, and ZTRMM

Chapter 9. Matrix Operations 405

b is the m by n matrix B, containing the results of the computation. Returned
as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 78 on page 404.

Notes
1. These subroutines accept lowercase letters for the side, uplo, transa, and diag

arguments.
2. For STRMM and DTRMM, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements; otherwise, results are

unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a

result, you do not have to set these values. For unit triangular matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored, see
“Triangular Matrix” on page 70.

Function
These subroutines can perform the following matrix-matrix product computations,
using the triangular matrix A, its transpose, or its conjugate transpose, where A
can be either upper- or lower-triangular:
1. B←αAB

2. B←αATB

3. B←αAHB (for CTRMM and ZTRMM only)
where:

α is a scalar.
A is a triangular matrix of order m.
B is an m by n rectangular matrix.

4. B←αBA

5. B←αBAT

6. B←αBAH (for CTRMM and ZTRMM only)
where:

α is a scalar.
A is a triangular matrix of order n.
B is an m by n rectangular matrix.

See references [32] and [38]. If n or m is 0, no computation is performed.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors:
1. m < 0
2. n < 0
3. lda, ldb ≤ 0
4. side ≠ 'L' or 'R'
5. uplo ≠ 'L' or 'U'
6. transa ≠ 'T', 'N', or 'C'

STRMM, DTRMM, CTRMM, and ZTRMM

406 ESSL Version 3 Release 3 Guide and Reference

7. diag ≠ 'N' or 'U'
8. side = 'L' and m > lda
9. m > ldb

10. side = 'R' and n > lda

Example 1
This example shows the computation B←αAB, where A is a 5 by 5 upper triangular
matrix that is not unit triangular, and B is a 5 by 3 rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM('L' , 'U' , 'N' , 'N' , 5 , 3 , 1.0 , A , 7 , B , 6)

┌ ┐
| 3.0 -1.0 2.0 2.0 1.0 |
| . -2.0 4.0 -1.0 3.0 |
| . . -3.0 0.0 2.0 |

A = | . . . 4.0 -2.0 |
| 1.0 |
| |
| |
└ ┘

┌ ┐
| 2.0 3.0 1.0 |
| 5.0 5.0 4.0 |

B = | 0.0 1.0 2.0 |
| 3.0 1.0 -3.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 6.0 10.0 -2.0 |
| -16.0 -1.0 6.0 |

B = | -2.0 1.0 -4.0 |
| 14.0 0.0 -14.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Example 2
This example shows the computation B←αATB, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 4 rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM('L' , 'U' , 'T' , 'N' , 5 , 4 , 1.0 , A , 7 , B , 6)

┌ ┐
| -1.0 -4.0 -2.0 2.0 3.0 |
| . -2.0 2.0 2.0 2.0 |
| . . -3.0 -1.0 4.0 |

A = | . . . 1.0 0.0 |
| -2.0 |
| |
| |
└ ┘

┌ ┐
| 1.0 2.0 3.0 4.0 |
| 3.0 3.0 -1.0 2.0 |

B = | -2.0 -1.0 0.0 1.0 |

STRMM, DTRMM, CTRMM, and ZTRMM

Chapter 9. Matrix Operations 407

| 4.0 4.0 -3.0 -3.0 |
| 2.0 2.0 2.0 2.0 |
| |
└ ┘

Output:
┌ ┐
| -1.0 -2.0 -3.0 -4.0 |
| 2.0 -2.0 -14.0 -12.0 |

B = | 10.0 5.0 -8.0 -7.0 |
| 14.0 15.0 1.0 8.0 |
| -3.0 4.0 3.0 16.0 |
| |
└ ┘

Example 3
This example shows the computation B←αBA, where A is a 5 by 5 lower triangular
matrix that is not unit triangular, and B is a 3 by 5 rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM('R' , 'L' , 'N' , 'N' , 3 , 5 , 1.0 , A , 7 , B , 4)

┌ ┐
| 2.0 |
| 2.0 3.0 . . . |
| 2.0 1.0 1.0 . . |

A = | 0.0 3.0 0.0 -2.0 . |
| 2.0 4.0 -1.0 2.0 -1.0 |
| |
| |
└ ┘

┌ ┐
| 3.0 4.0 -1.0 -1.0 -1.0 |

B = | 2.0 1.0 -1.0 0.0 3.0 |
| -2.0 -1.0 -3.0 0.0 2.0 |
| |
└ ┘

Output:
┌ ┐
| 10.0 4.0 0.0 0.0 1.0 |

B = | 10.0 14.0 -4.0 6.0 -3.0 |
| -8.0 2.0 -5.0 4.0 -2.0 |
| |
└ ┘

Example 4
This example shows the computation B←αBA, where A is a 6 by 6 upper triangular
matrix that is unit triangular, and B is a 1 by 6 rectangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM('R' , 'U' , 'N' , 'U' , 1 , 6 , 1.0 , A , 7 , B , 2)

┌ ┐
| . 2.0 -3.0 1.0 2.0 4.0 |
| . . 0.0 1.0 1.0 -2.0 |
| . . . 4.0 -1.0 1.0 |

STRMM, DTRMM, CTRMM, and ZTRMM

408 ESSL Version 3 Release 3 Guide and Reference

A = | 0.0 -1.0 |
| 2.0 |
| |
| |
└ ┘

┌ ┐
B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 |

| |
└ ┘

Output:
┌ ┐

B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 |
| |
└ ┘

Example 5
This example shows the computation B←αAHB, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 1 rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL CTRMM('L' , 'U' , 'C' , 'N' , 5 , 1 , ALPHA , A , 6 , B , 6)

ALPHA = (1.0, 0.0)

┌ ┐
| (-4.0, 1.0) (4.0, -3.0) (-1.0, 3.0) (0.0, 0.0) (-1.0, 0.0) |
| . (-2.0, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0) |

A = | . . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0) |
| . . . (4.0, -4.0) (2.0, 0.0) |
| (2.0, -1.0) |
| |
└ ┘

┌ ┐
| (3.0, 4.0) |
| (-4.0, 2.0) |

B = | (-5.0, 0.0) |
| (1.0, 3.0) |
| (3.0, 1.0) |
| . |
└ ┘

Output:
┌ ┐
| (-8.0, -19.0) |
| (8.0, 21.0) |

B = | (44.0, -8.0) |
| (13.0, -7.0) |
| (19.0, 2.0) |
| . |
└ ┘

STRMM, DTRMM, CTRMM, and ZTRMM

Chapter 9. Matrix Operations 409

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK—Rank-K Update
of a Real or Complex Symmetric or a Complex Hermitian Matrix

These subroutines compute one of the following rank-k updates, where matrix C is
stored in either upper or lower storage mode. SSYRK, DSYRK, CSYRK, and ZSYRK
use the scalars α and β, real or complex matrix A or its transpose, and real or
complex symmetric matrix C to compute:

1. C ← αAAT+βC
2. C ← αATA+βC

CHERK and ZHERK use the scalars α and β, complex matrix A or its complex
conjugate transpose, and complex Hermitian matrix C to compute:

3. C ← αAAH+βC
4. C ← αAHA+βC

Table 79. Data Types

A, C α, β Subprogram

Short-precision real Short-precision real SSYRK

Long-precision real Long-precision real DSYRK

Short-precision complex Short-precision complex CSYRK

Long-precision complex Long-precision complex ZSYRK

Short-precision complex Short-precision real CHERK

Long-precision complex Long-precision real ZHERK

Syntax

Fortran CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a, lda,
beta, c, ldc)

C and C++ ssyrk | dsyrk | csyrk | zsyrk | cherk | zherk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc);

PL/I CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a, lda,
beta, c, ldc);

On Entry:

uplo indicates the storage mode used for matrix C, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

trans indicates the form of matrix A to use in the computation, where:

If trans = 'N', A is used, resulting in equation 1 or 3.

If trans = 'T', AT is used, resulting in equation 2.

If trans = 'C', AH is used, resulting in equation 4.

Specified as: a single character, where:

For SSYRK and DSYRK, it must be 'N', 'T', or 'C'.

For CSYRK and ZSYRK, it must be 'N' or 'T'.

For CHERK and ZHERK, it must be 'N' or 'C'.

n is the order of matrix C. Specified as: a fullword integer; 0 ≤ n ≤ ldc and:

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

410 ESSL Version 3 Release 3 Guide and Reference

If trans = 'N', then n ≤ lda.

k has the following meaning, where:

If trans = 'N', it is the number of columns in matrix A.

If trans = 'T' or 'C', it is the number of rows in matrix A.

Specified as: a fullword integer; k ≥ 0 and:

If trans = 'T' or 'C', then k ≤ lda.

alpha is the scalar α. Specified as: a number of the data type indicated in Table 79
on page 410.

a is the rectangular matrix A, where:

If trans = 'N', A is n by k.

If trans = 'T' or 'C', A is k by n.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 79 on page 410, where:

If trans = 'N', its size must be lda by (at least) k.

If trans = 'T' or 'C', its size must be lda by (at least) n.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If trans = 'N', lda ≥ n.

If trans = 'T' or 'C', lda ≥ k.

beta is the scalar β. Specified as: a number of the data type indicated in Table 79
on page 410.

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: an ldc by (at least) n array, containing numbers of the data
type indicated in Table 79 on page 410.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ n.

On Return:

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, containing the results of the computation, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Returned as: an ldc by (at least) n array, containing numbers of the data
type indicated in Table 79 on page 410.

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

Chapter 9. Matrix Operations 411

Notes
1. These subroutines accept lowercase letters for the uplo and trans arguments.
2. For SSYRK and DSYRK, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
3. Matrices A and C must have no common elements; otherwise, results are

unpredictable.
4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A

are assumed to be zero, so you do not have to set these values. On output, they
are set to zero, except when β is one and α or k is zero, in which case no
computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see “Symmetric Matrix” on page 62. For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
“Complex Hermitian Matrix” on page 67.

Function
These subroutines can perform the following rank-k updates. For SSYRK and
DSYRK, matrix C is real symmetric. For CSYRK and ZSYRK, matrix C is complex
symmetric. They perform:

1. C←αAAT+βC
2. C←αATA+βC

For CHERK and ZHERK, matrix C is complex Hermitian. They perform:
3. C←αAAH+βC
4. C←αAHA+βC

where:
α and β are scalars.
A is a rectangular matrix, which is n by k for equations 1 and 3, and is k by n
for equations 2 and 4.
C is a matrix of order n of the type indicated above, stored in upper or lower
storage mode.

See references [32] and [38]. In the following two cases, no computation is
performed:
v n is 0.
v β is one, and α is zero or k is zero.

Assuming the above conditions do not exist, if β is not one, and α is zero or k is
zero, then βC is returned.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors:
1. lda, ldc ≤ 0
2. ldc < n
3. k, n < 0
4. uplo ≠ 'U' or 'L'
5. trans ≠ 'N', 'T', or 'C' for SSYRK and DSYRK
6. trans ≠ 'N' or 'T' for CSYRK and ZSYRK
7. trans ≠ 'N' or 'C' for CHERK and ZHERK

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

412 ESSL Version 3 Release 3 Guide and Reference

8. trans = 'N' and lda < n
9. trans = 'T' or 'C' and lda < k

Example 1
This example shows the computation C←αAAT+βC, where A is an 8 by 2 real
rectangular matrix, and C is a real symmetric matrix of order 8, stored in upper
storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL SSYRK('U' , 'N' , 8 , 2 , 1.0 , A , 9 , 1.0 , C , 10)

┌ ┐
| 0.0 8.0 |
| 1.0 9.0 |
| 2.0 10.0 |
| 3.0 11.0 |

A = | 4.0 12.0 |
| 5.0 13.0 |
| 6.0 14.0 |
| 7.0 15.0 |
| . . |
└ ┘

┌ ┐
| 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 |
| . 2.0 4.0 7.0 11.0 16.0 22.0 29.0 |
| . . 5.0 8.0 12.0 17.0 23.0 30.0 |
| . . . 9.0 13.0 18.0 24.0 31.0 |

C = | 14.0 19.0 25.0 32.0 |
| 20.0 26.0 33.0 |
| 27.0 34.0 |
| 35.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 64.0 73.0 83.0 94.0 106.0 119.0 133.0 148.0 |
| . 84.0 96.0 109.0 123.0 138.0 154.0 171.0 |
| . . 109.0 124.0 140.0 157.0 175.0 194.0 |
| . . . 139.0 157.0 176.0 196.0 217.0 |

C = | 174.0 195.0 217.0 240.0 |
| 214.0 238.0 263.0 |
| 259.0 286.0 |
| 309.0 |
| |
| |
└ ┘

Example 2
This example shows the computation C←αATA+βC, where A is a 3 by 8 real
rectangular matrix, and C is a real symmetric matrix of order 8, stored in lower
storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL SSYRK('L' , 'T' , 8 , 3 , 1.0 , A , 4 , 1.0 , C , 8)

┌ ┐
| 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 |

A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 |

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

Chapter 9. Matrix Operations 413

| 2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 |
| |
└ ┘

┌ ┐
| 0.0 |
| 1.0 8.0 |
| 2.0 9.0 15.0 |

C = | 3.0 10.0 16.0 21.0 |
| 4.0 11.0 17.0 22.0 26.0 . . . |
| 5.0 12.0 18.0 23.0 27.0 30.0 . . |
| 6.0 13.0 19.0 24.0 28.0 31.0 33.0 . |
| 7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0 |
└ ┘

Output:
┌ ┐
| 5.0 |
| 15.0 58.0 |
| 25.0 95.0 164.0 |

C = | 35.0 132.0 228.0 323.0 |
| 45.0 169.0 292.0 414.0 535.0 . . . |
| 55.0 206.0 356.0 505.0 653.0 800.0 . . |
| 65.0 243.0 420.0 596.0 771.0 945.0 1118.0 . |
| 75.0 280.0 484.0 687.0 889.0 1090.0 1290.0 1489.0 |
└ ┘

Example 3
This example shows the computation C←αAAT+βC, where A is a 3 by 5 complex
rectangular matrix, and C is a complex symmetric matrix of order 3, stored in
upper storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL CSYRK('U' , 'N' , 3 , 5 , ALPHA , A , 3 , BETA , C , 4)

ALPHA = (1.0, 1.0)
BETA = (1.0, 1.0)

┌ ┐
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) (1.0, 7.0) (0.0, 0.0) |

A = | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) (2.0, 4.0) (1.0, 2.0) |
| (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) (3.0, 2.0) (2.0, 2.0) |
└ ┘

┌ ┐
| (2.0, 1.0) (1.0, 9.0) (4.0, 5.0) |

C = | . (3.0, 1.0) (6.0, 7.0) |
| . . (8.0, 1.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (-57.0, 13.0) (-63.0, 79.0) (-24.0, 70.0) |

C = | . (-28.0, 90.0) (-55.0, 103.0) |
| . . (13.0, 75.0) |
| . . . |
└ ┘

Example 4
This example shows the computation C←αAHA+βC, where A is a 5 by 3 complex
rectangular matrix, and C is a complex Hermitian matrix of order 3, stored in
lower storage mode.

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

414 ESSL Version 3 Release 3 Guide and Reference

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL CHERK('L' , 'C' , 3 , 5 , 1.0 , A , 5 , 1.0 , C , 4)

┌ ┐
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |

A = | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
| (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
└ ┘

┌ ┐
| (6.0, .) . . |

C = | (3.0, 4.0) (10.0, .) . |
| (9.0, 1.0) (12.0, 2.0) (3.0, .) |
| . . . |
└ ┘

Output:
┌ ┐
| (138.0, 0.0) . . |

C = | (65.0, 80.0) (165.0, 0.0) . |
| (134.0, 46.0) (88.0, -88.0) (199.0, 0.0) |
| . . . |
└ ┘

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

Chapter 9. Matrix Operations 415

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and
ZHER2K—Rank-2K Update of a Real or Complex Symmetric or a
Complex Hermitian Matrix

These subroutines compute one of the following rank-2k updates, where matrix C
is stored in upper or lower storage mode. SSYR2K, DSYR2K, CSYR2K, and
ZSYR2K use the scalars α and β, real or complex matrices A and B or their
transposes, and real or complex symmetric matrix C to compute:

1. C ← αABT+αBAT+βC
2. C ← αATB+αBTA+βC

CHER2K and ZHER2K use the scalars α and β, complex matrices A and B or their
complex conjugate transposes, and complex Hermitian matrix C to compute:

Table 80. Data Types

A, B, C, α β Subprogram

Short-precision real Short-precision real SSYR2K

Long-precision real Long-precision real DSYR2K

Short-precision complex Short-precision complex CSYR2K

Long-precision complex Long-precision complex ZSYR2K

Short-precision complex Short-precision real CHER2K

Long-precision complex Long-precision real ZHER2K

Syntax

Fortran CALL SSYR2K | DSYR2K | CSYR2K | ZSYR2K | CHER2K | ZHER2K (uplo, trans, n, k, alpha, a,
lda, b, ldb, beta, c, ldc)

C and C++ ssyr2k | dsyr2k | csyr2k | zsyr2k | cher2k | zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c,
ldc);

PL/I CALL SSYR2K | DSYR2K | CSYR2K | ZSYR2K | CHER2K | ZHER2K (uplo, trans, n, k, alpha, a,
lda, b, ldb, beta, c, ldc);

On Entry:

uplo indicates the storage mode used for matrix C, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

trans indicates the form of matrices A and B to use in the computation, where:

If trans = 'N', A and B are used, resulting in equation 1 or 3.

If trans = 'T', AT and BT are used, resulting in equation 2.

If trans = 'C', AH and BH are used, resulting in equation 4.

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

416 ESSL Version 3 Release 3 Guide and Reference

Specified as: a single character, where:

For SSYR2K and DSYR2K, it must be 'N', 'T', or 'C'.

For CSYR2K and ZSYR2K, it must be 'N' or 'T'.

For CHER2K and ZHER2K, it must be 'N' or 'C'.

n is the order of matrix C. Specified as: a fullword integer; 0 ≤ n ≤ ldc and:

If trans = 'N', then n ≤ lda and n ≤ ldb.

k has the following meaning, where:

If trans = 'N', it is the number of columns in matrices A and B.

If trans = 'T' or 'C', it is the number of rows in matrices A and B.

Specified as: a fullword integer; k ≥ 0 and:

If trans = 'T' or 'C', then k ≤ lda and k ≤ ldb.

alpha is the scalar α. Specified as: a number of the data type indicated in Table 80
on page 416.

a is the rectangular matrix A, where:

If trans = 'N', A is n by k.

If trans = 'T' or 'C', A is k by n.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 80 on page 416, where:

If trans = 'N', its size must be lda by (at least) k.

If trans = 'T' or 'C', its size must be lda by (at least) n.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and:

If trans = 'N', lda ≥ n.

If trans = 'T' or 'C', lda ≥ k.

b is the rectangular matrix B, where:

If trans = 'N', B is n by k.

If trans = 'T' or 'C', B is k by n.

Note: No data should be moved to form BT or BH; that is, the matrix B
should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 80 on page 416, where:

If trans = 'N', its size must be ldb by (at least) k.

If trans = 'T' or 'C', its size must be ldb by (at least) n.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and:

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

Chapter 9. Matrix Operations 417

If trans = 'N', ldb ≥ n.

If trans = 'T' or 'C', ldb ≥ k.

beta is the scalar β. Specified as: a number of the data type indicated in Table 80
on page 416.

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: an ldc by (at least) n array, containing numbers of the data
type indicated in Table 80 on page 416.

ldc is the leading dimension of the array specified for c. Specified as: a
fullword integer; ldc > 0 and ldc ≥ n.

On Return:

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, containing the results of the computation, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Returned as: an ldc by (at least) n array, containing numbers of the data
type indicated in Table 80 on page 416.

Notes
1. These subroutines accept lowercase letters for the uplo and trans arguments.
2. For SSYR2K and DSYR2K, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements with matrix C; otherwise,

results are unpredictable.
4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A

are assumed to be zero, so you do not have to set these values. On output, they
are set to zero, except when β is one and α or k is zero, in which case no
computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see “Symmetric Matrix” on page 62. For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
“Complex Hermitian Matrix” on page 67.

Function
These subroutines can perform the following rank-2k updates. For SSYR2K and
DSYR2K, matrix C is real symmetric. For CSYR2K and ZSYR2K, matrix C is
complex symmetric. They perform:

1. C ← αABT + αBAT + βC
2. C ← αATB + αBTA + βC

For CHER2K and ZHER2K, matrix C is complex Hermitian. They perform:

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

418 ESSL Version 3 Release 3 Guide and Reference

where:
α and β are scalars.
A and B are rectangular matrices, which are n by k for equations 1 and 3, and
are k by n for equations 2 and 4.
C is a matrix of order n of the type indicated above, stored in upper or lower
storage mode.

See references [32], [38], and [72]. In the following two cases, no computation is
performed:
v n is 0.
v β is one, and α is zero or k is zero.

Assuming the above conditions do not exist, if β is not one, and α is zero or k is
zero, then βC is returned.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors:
1. lda, ldb, ldc ≤ 0
2. ldc < n
3. k, n < 0
4. uplo ≠ 'U' or 'L'
5. trans ≠ 'N', 'T', or 'C' for SSYR2K and DSYR2K
6. trans ≠ 'N' or 'T' for CSYR2K and ZSYR2K
7. trans ≠ 'N' or 'C' for CHER2K and ZHER2K
8. trans = 'N' and lda < n
9. trans = 'T' or 'C' and lda < k

10. trans = 'N' and ldb < n
11. trans = 'T' or 'C' and ldb < k

Example 1
This example shows the computation C←αABT+αBAT+βC, where A and B are 8 by 2
real rectangular matrices, and C is a real symmetric matrix of order 8, stored in
upper storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYR2K('U' , 'N' , 8 , 2 , 1.0 , A , 9 , B , 8 , 1.0 , C , 10)

┌ ┐
| 0.0 8.0 |
| 1.0 9.0 |
| 2.0 10.0 |
| 3.0 11.0 |

A = | 4.0 12.0 |
| 5.0 13.0 |

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

Chapter 9. Matrix Operations 419

| 6.0 14.0 |
| 7.0 15.0 |
| . . |
└ ┘

┌ ┐
| 15.0 7.0 |
| 14.0 6.0 |
| 13.0 5.0 |

B = | 12.0 4.0 |
| 11.0 3.0 |
| 10.0 2.0 |
| 9.0 1.0 |
| 8.0 0.0 |
└ ┘

┌ ┐
| 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 |
| . 2.0 4.0 7.0 11.0 16.0 22.0 29.0 |
| . . 5.0 8.0 12.0 17.0 23.0 30.0 |
| . . . 9.0 13.0 18.0 24.0 31.0 |

C = | 14.0 19.0 25.0 32.0 |
| 20.0 26.0 33.0 |
| 27.0 34.0 |
| 35.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 112.0 127.0 143.0 160.0 178.0 197.0 217.0 238.0 |
| . 138.0 150.0 163.0 177.0 192.0 208.0 225.0 |
| . . 157.0 166.0 176.0 187.0 199.0 212.0 |
| . . . 169.0 175.0 182.0 190.0 199.0 |

C = | 174.0 177.0 181.0 186.0 |
| 172.0 172.0 173.0 |
| 163.0 160.0 |
| 147.0 |
| |
| |
└ ┘

Example 2
This example shows the computation C←αATB+αBTA+βC, where A and B are 3 by 8
real rectangular matrices, and C is a real symmetric matrix of order 8, stored in
lower storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYR2K('L' , 'T' , 8 , 3 , 1.0 , A , 4 , B , 5 , 1.0 , C , 8)

┌ ┐
| 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 |

A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 |
| 2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 |
| |
└ ┘

┌ ┐
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 |
| 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |

B = | 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 |
| |
| |
└ ┘

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

420 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 0.0 |
| 1.0 8.0 |
| 2.0 9.0 15.0 |

C = | 3.0 10.0 16.0 21.0 |
| 4.0 11.0 17.0 22.0 26.0 . . . |
| 5.0 12.0 18.0 23.0 27.0 30.0 . . |
| 6.0 13.0 19.0 24.0 28.0 31.0 33.0 . |
| 7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0 |
└ ┘

Output:
┌ ┐
| 16.0 |
| 38.0 84.0 |
| 60.0 124.0 187.0 |

C = | 82.0 164.0 245.0 325.0 |
| 104.0 204.0 303.0 401.0 498.0 . . . |
| 126.0 244.0 361.0 477.0 592.0 706.0 . . |
| 148.0 284.0 419.0 553.0 686.0 818.0 949.0 . |
| 170.0 324.0 477.0 629.0 780.0 930.0 1079.0 1227.0 |
└ ┘

Example 3
This example shows the computation C←αABT+αBAT+βC, where A and B are 3 by 5
complex rectangular matrices, and C is a complex symmetric matrix of order 3,
stored in lower storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CSYR2K('L' , 'N' , 3 , 5 , ALPHA , A , 3 , B , 3 , BETA , C , 4)

ALPHA = (1.0, 1.0)

BETA = (1.0, 1.0)

┌ ┐
| (2.0, 5.0) (3.0, 2.0) (4.0, 1.0) (1.0, 7.0) (0.0, 0.0) |

A = | (3.0, 3.0) (8.0, 5.0) (2.0, 5.0) (2.0, 4.0) (1.0, 2.0) |
| (1.0, 3.0) (2.0, 1.0) (6.0, 5.0) (3.0, 2.0) (2.0, 2.0) |
└ ┘

┌ ┐
| (1.0, 5.0) (6.0, 2.0) (3.0, 1.0) (2.0, 0.0) (1.0, 0.0) |

B = | (2.0, 4.0) (7.0, 5.0) (2.0, 5.0) (2.0, 4.0) (0.0, 0.0) |
| (3.0, 5.0) (8.0, 1.0) (1.0, 5.0) (1.0, 0.0) (1.0, 1.0) |
└ ┘

┌ ┐
| (2.0, 3.0) . . |

C = | (1.0, 9.0) (3.0, 3.0) . |
| (4.0, 5.0) (6.0, 7.0) (8.0, 3.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (-101.0, 121.0) . . |

C = | (-182.0, 192.0) (-274.0, 248.0) . |
| (-98.0, 146.0) (-163.0, 205.0) (-151.0, 115.0) |
| . . . |
└ ┘

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

Chapter 9. Matrix Operations 421

Example 4
This example shows the computation:

where A and B are 5 by 3 complex rectangular matrices, and C is a complex
Hermitian matrix of order 3, stored in upper storage mode.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CHER2K('U' , 'C' , 3 , 5 , ALPHA , A , 5 , B , 5 , 1.0 , C , 4)

ALPHA = (1.0, 1.0)

┌ ┐
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |

A = | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
| (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
└ ┘

┌ ┐
| (4.0, 5.0) (6.0, 7.0) (8.0, 0.0) |
| (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |

B = | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
| (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
└ ┘

┌ ┐
| (6.0, .) (3.0, 4.0) (9.0, 1.0) |

C = | . (10.0, .) (12.0, 2.0) |
| . . (3.0, .) |
| . . . |
└ ┘

Output:
┌ ┐
| (102.0, 0.0) (56.0, -143.0) (244.0, -96.0) |

C = | . (174.0, 0.0) (238.0, 78.0) |
| . . (363.0, 0.0) |
| . . . |
└ ┘

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

422 ESSL Version 3 Release 3 Guide and Reference

SGETMI, DGETMI, CGETMI, and ZGETMI—General Matrix Transpose
(In-Place)

These subroutines transpose an n by n matrix A in place—that is, in matrix A:
A←AT

Table 81. Data Types

A Subroutine

Short-precision real SGETMI

Long-precision real DGETMI

Short-precision complex CGETMI

Long-precision complex ZGETMI

Syntax

Fortran CALL SGETMI | DGETMI | CGETMI | ZGETMI (a, lda, n)

C and C++ sgetmi | dgetmi | cgetmi | zgetmi (a, lda, n);

PL/I CALL SGETMI | DGETMI | CGETMI | ZGETMI (a, lda, n);

On Entry:

a is the matrix A having n rows and n columns. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 81.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the number of rows and columns in matrix A. Specified as: a fullword
integer; n ≥ 0.

On Return:

a is the n by n matrix AT, containing the results of the matrix transpose
operation Returned as: an lda by (at least) n array, containing numbers of
the data type indicated in Table 81.

Notes
1. To achieve optimal performance in these subroutines, specify an even value for

lda. An odd value may degrade performance.
2. To achieve optimal performance in CGETMI, align the array specified for a on a

doubleword boundary.

Function
Matrix A is transposed in place; that is, the n rows and n columns in matrix A are
exchanged. For matrix A with elements aij, where i, j = 1, n, the in-place transpose
is expressed as aji = aij for i, j = 1, n.

For the following input matrix A:

SGETMI, DGETMI, CGETMI, and ZGETMI

Chapter 9. Matrix Operations 423

the in-place matrix transpose operation A←AT is expressed as:

If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0 or n > lda
2. lda ≤ 0

Example
This example shows an in-place matrix transpose of matrix A having 5 rows and 5
columns.

Call Statement and Input:
A LDA N
| | |

CALL SGETMI(A(2,3) , 10 , 5)

┌ ┐
| |
| . . 1.0 6.0 11.0 16.0 21.0 |
| . . 2.0 7.0 12.0 17.0 22.0 |
| . . 3.0 8.0 13.0 18.0 23.0 |

A = | . . 4.0 9.0 14.0 19.0 24.0 |
| . . 5.0 10.0 15.0 20.0 25.0 |
| |
| |
| |
| |
└ ┘

Output:
┌ ┐
| |
| . . 1.0 2.0 3.0 4.0 5.0 |
| . . 6.0 7.0 8.0 9.0 10.0 |
| . . 11.0 12.0 13.0 14.0 15.0 |

A = | . . 16.0 17.0 18.0 19.0 20.0 |
| . . 21.0 22.0 23.0 24.0 25.0 |
| |
| |

SGETMI, DGETMI, CGETMI, and ZGETMI

424 ESSL Version 3 Release 3 Guide and Reference

| |
| |
└ ┘

SGETMI, DGETMI, CGETMI, and ZGETMI

Chapter 9. Matrix Operations 425

SGETMO, DGETMO, CGETMO, and ZGETMO—General Matrix
Transpose (Out-of-Place)

These subroutines transpose an m by n matrix A out of place, returning the result
in matrix B:

B←AT

Table 82. Data Types

A, B Subroutine

Short-precision real SGETMO

Long-precision real DGETMO

Short-precision complex CGETMO

Long-precision complex ZGETMO

Syntax

Fortran CALL SGETMO | DGETMO | CGETMO | ZGETMO (a, lda, m, n, b, ldb)

C and C++ sgetmo | dgetmo | cgetmo | zgetmo (a, lda, m, n, b, ldb);

PL/I CALL SGETMO | DGETMO | CGETMO | ZGETMO (a, lda, m, n, b, ldb);

On Entry:

a is the matrix A having m rows and n columns. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 82.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ m.

m is the number of rows in matrix A and the number of columns in matrix B.
Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix A and the number of rows in matrix B.
Specified as: a fullword integer; n ≥ 0.

b See “On Return”.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ n.

On Return:

b is the matrix B having n rows and m columns, containing the results of the
matrix transpose operation, AT. Returned as: an ldb by (at least) m array,
containing numbers of the data type indicated in Table 82.

Notes
1. The matrix B must have no common elements with matrix A; otherwise, results

are unpredictable. See “Concepts” on page 53.
2. To achieve optimal performance in CGETMO, align the arrays specified for a

and b on doubleword boundaries.

Function
Matrix A is transposed out of place; that is, the m rows and n columns in matrix A
are stored in n rows and m columns of matrix B. For matrix A with elements aij,
where i = 1, m and j = 1, n, the out-of-place transpose is expressed as bji = aij for
i = 1, m and j = 1, n.

SGETMO, DGETMO, CGETMO, and ZGETMO

426 ESSL Version 3 Release 3 Guide and Reference

For the following input matrix A:

the out-of-place matrix transpose operation B←AT is expressed as:

If m or n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. m < 0 or m > lda
2. n < 0 or n > ldb
3. lda ≤ 0
4. ldb ≤ 0

Example 1
This example shows an out-of-place matrix transpose of matrix A, having 5 rows
and 4 columns, with the result going into matrix B.

Call Statement and Input:
A LDA M N B LDB
| | | | | |

CALL SGETMO(A(2,3) , 10 , 5 , 4 , B(2,2) , 6)

┌ ┐
| |
| . . 1.0 6.0 11.0 16.0 . |
| . . 2.0 7.0 12.0 17.0 . |
| . . 3.0 8.0 13.0 18.0 . |

A = | . . 4.0 9.0 14.0 19.0 . |
| . . 5.0 10.0 15.0 20.0 . |
| |
| |
| |
| |
└ ┘

Output:
┌ ┐
| |
| . 1.0 2.0 3.0 4.0 5.0 . |

B = | . 6.0 7.0 8.0 9.0 10.0 . |
| . 11.0 12.0 13.0 14.0 15.0 . |

SGETMO, DGETMO, CGETMO, and ZGETMO

Chapter 9. Matrix Operations 427

| . 16.0 17.0 18.0 19.0 20.0 . |
| |
└ ┘

Example 2
This example uses the same input matrix A as in Example 1 to show that
transposes can be achieved in the same array as long as the input and output data
do not overlap. On output, the input data is not overwritten in the array.

Call Statement and Input:
A LDA M N B LDB
| | | | | |

CALL SGETMO(A(2,3) , 10 , 5 , 4 , A(7,1) , 10)

┌ ┐
| |
| . . 1.0 6.0 11.0 16.0 . |
| . . 2.0 7.0 12.0 17.0 . |
| . . 3.0 8.0 13.0 18.0 . |

A = | . . 4.0 9.0 14.0 19.0 . |
| . . 5.0 10.0 15.0 20.0 . |
| 1.0 2.0 3.0 4.0 5.0 . . |
| 6.0 7.0 8.0 9.0 10.0 . . |
| 11.0 12.0 13.0 14.0 15.0 . . |
| 16.0 17.0 18.0 19.0 20.0 . . |
└ ┘

SGETMO, DGETMO, CGETMO, and ZGETMO

428 ESSL Version 3 Release 3 Guide and Reference

Chapter 10. Linear Algebraic Equations

The linear algebraic equation subroutines, provided in four areas, are described in
this chapter.

Overview of the Linear Algebraic Equation Subroutines
This section describes the subroutines in each of the four linear algebraic equation
areas:
v Dense linear algebraic equations (Table 83)
v Banded linear algebraic equations (Table 84)
v Sparse linear algebraic equations (Table 85)
v Linear least squares (Table 86)

Note: Some of the linear algebraic equations were designed in accordance with the
Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these
subprograms do not comply with the standard as approved, IBM will
consider updating them to do so. If IBM updates these subprograms, the
updates could require modifications of the calling application program. For
details on the Level 2 and 3 BLAS, see references [32] and [34]. For details
on the LAPACK routines, see reference [8].

Dense Linear Algebraic Equation Subroutines
The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, real symmetric
indefinite matrices and triangular matrices. Some of these subroutines correspond
to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references
[32], [34], and [8].

Table 83. List of Dense Linear Algebraic Equation Subroutines

Descriptive Name

Short-
Precision
Subroutine

Long-
Precision
Subroutine Page

General Matrix Factorization SGEF
CGEF
SGETRFn

CGETRFn

DGEF
ZGEF
DGETRFn

ZGETRFn

DGEFP§

438

449

General Matrix, Its Transpose, or Its Conjugate Transpose Solve SGES
CGES

DGES
ZGES

441

General Matrix, Its Transpose, or Its Conjugate Transpose
Multiple Right-Hand Side Solve

SGESM
CGESM
SGETRSn

CGETRSn

DGESM
ZGESM
DGETRSn

ZGETRSn

444

453

General Matrix Factorization, Condition Number Reciprocal, and
Determinant

SGEFCD DGEFCD 457

© Copyright IBM Corp. 1997, 2001 429

Table 83. List of Dense Linear Algebraic Equation Subroutines (continued)

Descriptive Name

Short-
Precision
Subroutine

Long-
Precision
Subroutine Page

Positive Definite Real Symmetric or Complex Hermitian Matrix
Factorization

SPPF
SPOF
CPOF
SPOTRFn

CPOTRFn

DPPF
DPOF
ZPOF
DPOTRFn

ZPOTRFn

DPPFP§

461

Positive Definite Real Symmetric Matrix Solve SPPS DPPS 470

Positive Definite Real Symmetric or Complex Hermitian Matrix
Multiple Right-Hand Side Solve

SPOSM
CPOSM
SPOTRSn

CPOTRSn

DPOSM
ZPOSM
DPOTRSn

ZPOTRSn

473

Positive Definite Real Symmetric Matrix Factorization, Condition
Number Reciprocal, and Determinant

SPPFCD
SPOFCD

DPPFCD
DPOFCD

478

Symmetric Indefinite Matrix Factorization and Multiple
Right-Hand Side Solve

DBSSV 484

Symmetric Indefinite Matrix Factorization DBSTRF 490

Symmetric Indefinite Matrix Multiple Right-Hand Side Solve DBSTRS 495

General Matrix Inverse, Condition Number Reciprocal, and
Determinant

SGEICD
SGETRIn

DGEICD
DGETRIn

499

Positive Definite Real Symmetric Matrix Inverse, Condition
Number Reciprocal, and Determinant

SPPICD
SPOICD
SPOTRIn

DPPICD
DPOICD
DPOTRIn

505

Solution of a Triangular System of Equations with a Single
Right-Hand Side

STRSVÍ

CTRSVÍ

STPSVÍ

CTPSVÍ

DTRSVÍ

ZTRSVÍ

DTPSVÍ

ZTPSVÍ

513

Solution of Triangular Systems of Equations with Multiple
Right-Hand Sides

STRSM♦

CTRSM♦
DTRSM♦

ZTRSM♦
519

Triangular Matrix Inverse STRI
STPI
STRTRIn

STPTRIn

DTRI
DTPI
DTRTRIn

DTPTRIn

526

Í Level 2 BLAS

♦ Level 3 BLAS

n LAPACK

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use is new
programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equation Subroutines
The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for real general band matrices, real positive definite
symmetric band matrices, real or complex general tridiagonal matrices, real
positive definite symmetric tridiagonal matrices, and real or complex triangular
band matrices.

430 ESSL Version 3 Release 3 Guide and Reference

|
|

|
|
|
|

||

||

|
|
|
|

Table 84. List of Banded Linear Algebraic Equation Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

General Band Matrix Factorization SGBF DGBF 533

General Band Matrix Solve SGBS DGBS 537

Positive Definite Symmetric Band Matrix Factorization SPBF
SPBCHF

DPBF
DPBCHF

540

Positive Definite Symmetric Band Matrix Solve SPBS
SPBCHS

DPBS
DPBCHS

543

General Tridiagonal Matrix Factorization SGTF DGTF 546

General Tridiagonal Matrix Solve SGTS DGTS 549

General Tridiagonal Matrix Combined Factorization and Solve
with No Pivoting

SGTNP
CGTNP

DGTNP
ZGTNP

551

General Tridiagonal Matrix Factorization with No Pivoting SGTNPF
CGTNPF

DGTNPF
ZGTNPF

554

General Tridiagonal Matrix Solve with No Pivoting SGTNPS
CGTNPS

DGTNPS
ZGTNPS

557

Positive Definite Symmetric Tridiagonal Matrix Factorization SPTF DPTF 560

Positive Definite Symmetric Tridiagonal Matrix Solve SPTS DPTS 562

Triangular Band Equation Solve STBSVÍ

CTBSVÍ
DTBSVÍ

ZTBSVÍ
564

Í Level 2 BLAS

Sparse Linear Algebraic Equation Subroutines
The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their
transposes and for sparse symmetric matrices.

Table 85. List of Sparse Linear Algebraic Equation Subroutines

Descriptive Name
Long- Precision
Subroutine Page

General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns DGSF 570

General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or
Columns

DGSS 576

General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve
Using Skyline Storage Mode

DGKFS 580

Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline
Storage Mode

DSKFS 597

Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored
by Rows

DSRIS 614

Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Matrix Storage Mode

DSMCG§ 624

Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode

DSDCG 631

General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode DSMGCG§ 638

General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode DSDGCG 645

Chapter 10. Linear Algebraic Equations 431

Table 85. List of Sparse Linear Algebraic Equation Subroutines (continued)

Descriptive Name
Long- Precision
Subroutine Page

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs. Use DSRIS instead.

Linear Least Squares Subroutines
The linear least squares subroutines provide least squares solutions to linear
systems of equations for real general matrices. Three methods are provided: one
that uses the singular value decomposition; one that uses a QR decomposition with
column pivoting; and another that uses a QR decomposition without column
pivoting. Some of these subroutines correspond to the LAPACK routines described
in reference [8].

Table 86. List of Linear Least Squares Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Singular Value Decomposition for a General Matrix SGESVF DGESVF 652

Linear Least Squares Solution for a General Matrix Using the
Singular Value Decomposition

SGESVS DGESVS 659

General Matrix QR Factorization DGEQRFn 663

Linear Least Squares Solution for a General Matrix DGELSn 667

Linear Least Squares Solution for a General Matrix with Column
Pivoting

SGELLS DGELLS 674

n LAPACK

Dense and Banded Linear Algebraic Equation Considerations
This section provides some key points about using the dense and banded linear
algebraic equation subroutines.

Use Considerations
1. To solve a system of equations, you need to use both the factorization and

solve subroutines for the type of matrix you have. Each factorization subroutine
should be followed in your program by the corresponding solve subroutine.
The output from the factorization subroutine should be used as input to the
solve subroutine.

2. To solve a system of equations with one or more right-hand sides, follow the
call to the factorization subroutine with one or more calls to a solve subroutine
or one call to a multiple solve subroutine.

Performance and Accuracy Considerations
1. Except in a few instances, the _GTNP subroutines provide better performance

than the _GTNPF and _GTNPS subroutines. For details, see the subroutine
descriptions.

2. The general subroutines (dense and banded) use partial pivoting for accuracy
and fast performance.

432 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|
|

|

||||

|

|

3. The short-precision subroutines provide increased accuracy by accumulating
intermediate results in long precision. Occasionally, for performance reasons,
these intermediate results are stored.

4. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 42.

Sparse Matrix Direct Solver Considerations
This section provides some key points about using the sparse matrix direct solver
subroutines.

Use Considerations
1. To solve a sparse system of equations by a direct method, you must use both

the factorization and solve subroutines. The factorization subroutine should be
followed in your program by the corresponding solve subroutine; that is, the
output from the factorization subroutine should be used as input to the solve
subroutine.

2. To solve a system of equations with one or more right-hand sides, follow the
call to the factorization subroutine with one or more calls to the solve
subroutine.

3. The amount of storage required for the arrays depends on the sparsity pattern
of the matrix. The requirement that lna > 2nz on entry to DGSF does not
guarantee a successful run of the program. Some programs may be terminated
because of the large number of fill-ins generated upon factorization. Fill-ins
generated in a program depend on the structure of each matrix. If a large
number of fill-ins is anticipated when factoring a matrix, the value of lna
should be large enough to accommodate your problem.

Performance and Accuracy Considerations
1. To make the subroutine more efficient, an input matrix comprised of all

nonzero elements is preferable. See the syntax description of each subroutine
for details.

2. DGSF optionally checks the validity of the indices and pointers of the input
matrix. Use of this option is suggested; however, it may affect performance. For
details, see the syntax description for DGSF.

3. In DGSS, if there are multiple sparse right-hand sides to be solved, you should
take advantage of the sparsity by selecting a proper value for jopt (such as
jopt = 10 or 11). If there is only one right-hand side to be solved, it is
suggested that you do not exploit the sparsity.

4. In DGSF, the value you enter for the lower bound of all elements in the matrix
(RPARM(1)) affects the accuracy of the result. Specifying a larger number allows
you to gain some performance; however, you may lose some accuracy in the
solution.

5. In DGSF, the threshold pivot tolerance (RPARM(2)) is used to select pivots. A
value that is close to 0.0 approaches no pivoting. A value close to 1.0
approaches partial pivoting. A value of 0.1 is considered to be a good
compromise between numerical stability and sparsity.

6. If the ESSL subroutine performs storage compressions, you receive an attention
message. When this occurs, the performance of this subroutine is affected. You
can improve the performance by increasing the value specified for lna.

Chapter 10. Linear Algebraic Equations 433

7. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 42.

Sparse Matrix Skyline Solver Considerations
This section provides some key points about using the sparse matrix skyline solver
subroutines.

Use Considerations
1. To solve a system of equations with one or more right-hand sides, where the

matrix is stored in skyline storage mode, you can use either of the following
methods. The factored output matrix is the same for both of these methods.
v Call the skyline subroutine with the combined factor-and-solve option.
v Call the skyline subroutine with the factor-only option, followed in your

program by a call to the same subroutine with the solve-only option. The
factored output matrix resulting from the factorization should be used as
input to the same subroutine to do the solve. You can solve for the
right-hand sides in a single call or in individual calls.

You also have the option of doing a partial factorization, where the subroutine
assumes that the initial part of the input matrix is already factored. It then
factors the remaining rows and columns. If you want, you can factor a very
large matrix progressively by using this option.

2. Forward elimination can be done with or without scaling the right-hand side
by the diagonal matrix elements. To perform the computation without scaling,
call DGKFS with the normal solve-only option, and define the upper triangular
skyline matrix (AU) as a diagonal. To perform the computation with scaling, call
DGKFS with the transpose solve-only, option and define the lower triangular
skyline matrix (AL) as a diagonal.

3. Back substitution can be done with or without scaling the right-hand side by
the diagonal matrix elements. To perform the computation without scaling, call
DGKFS with the transpose solve-only option, and define the upper triangular
skyline matrix (AU) as a diagonal. To perform the computation with scaling, call
DGKFS with the normal solve-only option, and define the lower triangular
skyline matrix (AL) as a diagonal.

Performance and Accuracy Considerations
1. For optimal performance, use diagonal-out skyline storage mode for both your

input and output matrices. If you specify profile-in skyline storage mode for
your input matrix, and either you do not plan to use the factored output or
you plan to do a solve only, it is more efficient to specify diagonal-out skyline
storage mode for your output matrix. These rules apply to all the
computations.

2. In some cases, elapsed time may be reduced significantly by using the
combined factor-and-solve option to solve for all right-hand sides at once, in
conjunction with the factorization, rather than doing the factorization and solve
separately.

3. If you do a solve only, and you solve for more than one right-hand side, it is
most efficient to call the skyline subroutine once with all right-hand sides,
rather than once for each right-hand side.

434 ESSL Version 3 Release 3 Guide and Reference

4. The skyline subroutines allow some control over processing of the pivot
(diagonal) elements of the matrix during the factorization phase. Pivot
processing is controlled by IPARM(10) through IPARM(15) and RPARM(10)
through RPARM(15). If a pivot occurs within a range that is designated to be
fixed (IPARM(0) = 1, IPARM(10) = 1, and the appropriate element IPARM(11)
through IPARM(15) = 1), it is replaced with the corresponding element of
RPARM(11) through RPARM(15). Should this pivot fix-up occur, you receive an
attention message. This message indicates that the matrix being factored may
be unstable (singular or not definite). The results produced in this situation
may be inaccurate, and you should review them carefully.

Sparse Matrix Iterative Solver Considerations
This section provides some key points about using the sparse matrix iterative
solver subroutines.

Use Considerations
If you need to solve linear systems with different right-hand sides but with the
same matrix using the preconditioned algorithms, you can reuse the incomplete
factorization computed during the first call to the subroutine.

Performance and Accuracy Considerations
1. The DSMCG and DSMGCG subroutines are provided for migration purposes

from earlier releases of ESSL. You get better performance and a wider choice of
algorithms if you use the DSRIS subroutine.

2. To select the sparse matrix subroutine that provides the best performance, you
must consider the sparsity pattern of the matrix. From this, you can determine
the most efficient storage mode for your sparse matrix. ESSL provides a
number of versions of the sparse matrix iterative solve subroutines. They
operate on sparse matrices stored in row-wise, diagonal, and
compressed-matrix storage modes. These storage modes are described in
“Sparse Matrix” on page 88.
Storage-by-rows is generally applicable. You should use this storage mode
unless your matrices are already set up in one of the other storage modes. If,
however, your matrix has a regular sparsity pattern—that is, where the nonzero
elements are concentrated along a few diagonals—you may want to use
compressed-diagonal storage mode. This can save some storage space.
Compressed-matrix storage mode is provided for migration purposes from
earlier releases of ESSL and is not intended for use. (You get better performance
and a wider choice of algorithms if you use the DSRIS subroutine, which uses
storage-by-rows.)

3. The performance achieved in the sparse matrix iterative solver subroutines
depends on the value specified for the relative accuracy ε. For details, see
Notes for each subroutine.

4. You can select the iterative algorithm you want to use to solve your linear
system. The methods include conjugate gradient (CG), conjugate gradient
squared (CGS), generalized minimum residual (GMRES), more smoothly
converging variant of the CGS method (Bi-CGSTAB), or transpose-free
quasi-minimal residual method (TFQMR).

5. For a general sparse or positive definite symmetric matrix, the iterative
algorithm may fail to converge for one of the following reasons:
v The value of ε is too small, asking for too much precision.

Chapter 10. Linear Algebraic Equations 435

v The maximum number of iterations is too small, allowing too few iterations
for the algorithm to converge.

v The matrix is not positive real; that is, the symmetric part, (A+AT)/2, is not
positive definite.

v The matrix is ill-conditioned, which may cause overflows during the
computation.

6. These algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Linear Least Squares Considerations
This section provides some key points about using the linear least squares
subroutines.

Use Considerations
If you want to use a singular value decomposition method to compute the minimal
norm linear least squares solution of AXïB, calls to SGESVF or DGESVF should be
followed by calls to SGESVS or DGESVS, respectively.

Performance and Accuracy Considerations
1. Least squares solutions obtained by using a singular value decomposition

require more storage and run time than those obtained using a QR
decomposition with column pivoting. The singular value decomposition
method, however, is a more reliable way to handle rank deficiency.

2. The short-precision subroutines provide increased accuracy by accumulating
intermediate results in long precision. Occasionally, for performance reasons,
these intermediate results are stored.

3. The accuracy of the resulting singular values and singular vectors varies
between the short- and long-precision versions of each subroutine. The degree
of difference depends on the size and conditioning of the matrix computation.

4. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 42.

436 ESSL Version 3 Release 3 Guide and Reference

Dense Linear Algebraic Equation Subroutines
This section contains the dense linear algebraic equation subroutine descriptions.

SGEF, DGEF, CGEF, and ZGEF

Chapter 10. Linear Algebraic Equations 437

SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization
This subroutine factors a square general matrix A using Gaussian elimination with
partial pivoting. To solve the system of equations with one or more right-hand
sides, follow the call to these subroutines with one or more calls to SGES/SGESM,
DGES/DGESM, CGES/CGESM, or ZGES/ZGESM, respectively. To compute the
inverse of matrix A, follow the call to these subroutines with a call to SGEICD or
DGEICD, respectively.

Table 87. Data Types

A Subroutine

Short-precision real SGEF

Long-precision real DGEF

Short-precision complex CGEF

Long-precision complex ZGEF

Note: The output from these factorization subroutines should be used only as
input to the following subroutines for performing a solve or inverse:
SGES/SGESM/SGEICD, DGES/DGESM/DGEICD, CGES/CGESM, and
ZGES/ZGESM, respectively.

Syntax

Fortran CALL SGEF | DGEF | CGEF | ZGEF (a, lda, n, ipvt)

C and C++ sgef | dgef | cgef | zgef (a, lda, n, ipvt);

PL/I CALL SGEF | DGEF | CGEF | ZGEF (a, lda, n, ipvt);

On Entry:

a is the n by n general matrix A to be factored. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 87.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order of matrix A. Specified as: a fullword integer; 0 ≤ n ≤ lda.

ipvt See “On Return”.

On Return:

a is the n by n transformed matrix A, containing the results of the
factorization. See “Function” on page 439. Returned as: an lda by (at least)
n array, containing numbers of the data type indicated in Table 87.

ipvt is the integer vector ipvt of length n, containing the pivot indices.
Returned as: a one-dimensional array of (at least) length n, containing
fullword integers.

Notes
1. Calling SGEFCD or DGEFCD with iopt = 0 is equivalent to calling SGEF or

DGEF.
2. On both input and output, matrix A conforms to LAPACK format.

SGEF, DGEF, CGEF, and ZGEF

438 ESSL Version 3 Release 3 Guide and Reference

Function
The matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to
compute the LU factorization of A, where (A = PLU) :

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle and L in the
strict lower triangle where ipvt contains the pivots representing permutation P,
such that A = PLU.

If n is 0, no computation is performed. See references [36] and [38].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix A is singular.
v One or more columns of L and the corresponding diagonal of U contain all zeros

(all columns of L are checked). The first column, i, of L with a corresponding
U = 0 diagonal element is identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities. To

obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2103 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs. For
details, see “What Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. lda ≤ 0
2. n < 0
3. n > lda

Example 1
This example shows a factorization of a real general matrix A of order 9.

Call Statement and Input:
A LDA N IPVT
| | | |

CALL SGEF(A , 9 , 9 , IPVT)

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |

A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

SGEF, DGEF, CGEF, and ZGEF

Chapter 10. Linear Algebraic Equations 439

Output:

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

Example 2
This example shows a factorization of a complex general matrix A of order 4.

Call Statement and Input:
A LDA N IPVT
| | | |

CALL CGEF(A , 4 , 4 , IPVT)

┌ ┐
| (1.0, 2.0) (1.0, 7.0) (2.0, 4.0) (3.0, 1.0) |

A = | (2.0, 0.0) (1.0, 3.0) (4.0, 4.0) (2.0, 3.0) |
| (2.0, 1.0) (5.0, 0.0) (3.0, 6.0) (0.0, 0.0) |
| (8.0, 5.0) (1.0, 9.0) (6.0, 6.0) (8.0, 1.0) |
└ ┘

Output:

IPVT = (4, 4, 3, 4)

┌ ┐
| 4.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 |
| 0.0000 5.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 |
| 0.0000 0.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 |
| 0.0000 0.0000 0.0000 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |

A = | 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 11.0000 12.0000 |
| 0.2500 0.1500 0.1000 0.0714 0.0536 -0.0694 -0.0306 0.1806 0.3111 |
| 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0556 -0.0194 0.9385 -0.0031 |
└ ┘

┌ ┐
| (8.0000, 5.0000) (1.0000, 9.0000) (6.0000, 6.0000) (8.0000, 1.0000) |

A = | (0.2022, 0.1236) (1.9101, 5.0562) (1.5281, 2.0449) (1.5056, -0.1910) |
| (0.2360, -0.0225) (-0.0654, -0.9269) (-0.3462, 6.2692) (-1.6346, 1.3269) |
| (0.1798, -0.1124) (0.2462, 0.1308) (0.4412, -0.3655) (0.2900, 2.3864) |
└ ┘

SGEF, DGEF, CGEF, and ZGEF

440 ESSL Version 3 Release 3 Guide and Reference

SGES, DGES, CGES, and ZGES—General Matrix, Its Transpose, or Its
Conjugate Transpose Solve

These subroutines solve the system Ax = b for x, where A is a general matrix and
x and b are vectors. Using the iopt argument, they can also solve the real system
ATx = b or the complex system AHx = b for x. These subroutines use the results
of the factorization of matrix A, produced by a preceding call to SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.

Table 88. Data Types

A, b, x Subroutine

Short-precision real SGES

Long-precision real DGES

Short-precision complex CGES

Long-precision complex ZGES

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF,
and ZGEF, respectively.

Syntax

Fortran CALL SGES | DGES | CGES | ZGES (a, lda, n, ipvt, bx, iopt)

C and C++ sges | dges | cges | zges (a, lda, n, ipvt, bx, iopt);

PL/I CALL SGES | DGES | CGES | ZGES (a, lda, n, ipvt, bx, iopt);

On Entry:

a is the factorization of matrix A, produced by a preceding call to
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 88.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order of matrix A. Specified as: a fullword integer; 0 ≤ n ≤ lda.

ipvt is the integer vector ipvt of length n, containing the pivot indices produced
by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or
ZGEF, respectively. Specified as: a one-dimensional array of (at least)
length n, containing fullword integers.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 88.

iopt determines the type of computation to be performed, where:

If iopt = 0, A is used in the computation.

If iopt = 1, AT is used in SGES and DGES. AH is used in CGES and ZGES.

Note: No data should be moved to form AT or AH; that is, the matrix A
should always be stored in its untransposed form.

Specified as: a fullword integer; iopt = 0 or 1.

SGES, DGES, CGES, ZGES

Chapter 10. Linear Algebraic Equations 441

On Return:

bx is the solution vector x of length n, containing the results of the
computation. Returned as: a one-dimensional array, containing numbers of
the data type indicated in Table 88 on page 441.

Notes
1. The scalar data specified for input arguments lda and n for these subroutines

must be the same as the corresponding input arguments specified for
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

2. The array data specified for input arguments a and ipvt for these subroutines
must be the same as the corresponding output arguments for SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

3. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function
The system Ax = b is solved for x, where A is a general matrix and x and b are
vectors. Using the iopt argument, this subroutine can also solve the real system
ATx = b or the complex system AHx = b for x. These subroutines use the results
of the factorization of matrix A, produced by a preceding call to SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. For a description of how A
is factored, see “SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization” on
page 438.

If n is 0, no computation is performed. See references [36] and [38].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SGEF, DGEF, CGEF, ZGEF, SGEFCD,
DGEFCD, or DGEFP failed because a pivot element is zero, the results
returned by this subroutine are unpredictable, and there may be a
divide-by-zero program exception message.

Input-Argument Errors:
1. lda ≤ 0
2. n < 0
3. n > lda
4. iopt ≠ 0 or 1

Example 1

Part 1: This part of the example shows how to solve the system Ax = b, where
matrix A is the same matrix factored in the “Example 1” on page 439 for SGEF and
DGEF.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL SGES(A , 9 , 9 , IPVT , BX , 0)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
BX = (4.0, 5.0, 9.0, 10.0, 11.0, 12.0, 12.0, 12.0, 33.0)
A = (same as output A in “Example 1” on page 439)

SGES, DGES, CGES, ZGES

442 ESSL Version 3 Release 3 Guide and Reference

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Part 2: This part of the example shows how to solve the system ATx = b, where
matrix A is the input matrix factored in “Example 1” on page 439 for SGEF and
DGEF. Most of the input is the same in Part 2 as in Part 1.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL SGES(A , 9 , 9 , IPVT , BX , 1)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
BX = (6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0)
A = (same as output A in “Example 1” on page 439)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2

Part 1: This part of the example shows how to solve the system Ax = b, where
matrix A is the same matrix factored in the “Example 2” on page 440 for CGEF and
ZGEF.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL CGES(A , 4 , 4 , IPVT , BX , 0)

IPVT = (4, 4, 3, 4)
BX = ((-10.0, 85.0), (-6.0, 61.0), (10.0, 38.0),

(58.0, 168.0))
A = (same as output A in “Example 1” on page 439)

Output:
BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))

Part 2: This part of the example shows how to solve the system AHx = b, where
matrix A is the input matrix factored in “Example 2” on page 440 for CGEF and
ZGEF. Most of the input is the same in Part 2 as in Part 1.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL CGES(A , 4 , 4 , IPVT , BX , 1)

IPVT = (4, 4, 3, 4)
BX = ((71.0, 12.0), (61.0, -70.0), (123.0, -34.0),

(68.0, 7.0))
A = (same as output A in “Example 1” on page 439)

Output:
BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))

SGES, DGES, CGES, ZGES

Chapter 10. Linear Algebraic Equations 443

SGESM, DGESM, CGESM, and ZGESM—General Matrix, Its Transpose,
or Its Conjugate Transpose Multiple Right-Hand Side Solve

These subroutines solve the following systems of equations for multiple right-hand
sides, where A, X, and B are general matrices. SGESM and DGESM solve one of
the following:

1. AX = B
2. ATX = B

CGESM and ZGESM solve one of the following:
1. AX = B
2. ATX = B
3. AHX = B

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF,
respectively.

Table 89. Data Types

A, B, X Subroutine

Short-precision real SGESM

Long-precision real DGESM

Short-precision complex CGESM

Long-precision complex ZGESM

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF,
and ZGEF, respectively.

Syntax

Fortran CALL SGESM | DGESM | CGESM | ZGESM (trans, a, lda, n, ipvt, b, ldb, nrhs)

C and C++ sgesm | dgesm | cgesm | zgesm (trans, a, lda, n, ipvt, b, ldb, nrhs);

PL/I CALL SGESM | DGESM | CGESM | ZGESM (trans, a, lda, n, ipvt, b, ldb, nrhs);

On Entry:

trans indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation, resulting in equation 1.

If transa = 'T', AT is used in the computation, resulting in equation 2.

If transa = 'C', AH is used in the computation, resulting in equation 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

a is the factorization of matrix A, produced by a preceding call to
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 89.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order of matrix A. Specified as: a fullword integer; 0 ≤ n ≤ lda.

SGESM, DGESM, CGESM, ZGESM

444 ESSL Version 3 Release 3 Guide and Reference

ipvt is the integer vector ipvt of length n, containing the pivot indices produced
by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or
ZGEF, respectively. Specified as: a one-dimensional array of (at least)
length n, containing fullword integers.

b is the matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.
Specified as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 89 on page 444.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ n.

nrhs is the number of right-hand sides in the system to be solved. Specified as:
a fullword integer; nrhs ≥ 0.

On Return:

b is the matrix B, containing the nrhs solutions to the system in the columns
of B. Specified as: an ldb by (at least) nrhs array, containing numbers of the
data type indicated in Table 89 on page 444.

Notes
1. For SGESM and DGESM, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
2. The scalar data specified for input arguments lda and n for these subroutines

must be the same as the corresponding input arguments specified for
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

3. The array data specified for input arguments a and ipvt for these subroutines
must be the same as the corresponding output arguments for SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function
One of the following systems of equations is solved for multiple right-hand sides:

1. AX = B
2. ATX = B
3. AHX = B (only for CGESM and ZGESM)

where A, B, and X are general matrices. These subroutines use the results of the
factorization of matrix A, produced by a preceding call to SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. For a description of how A
is factored, see “SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization” on
page 438.

If n or nrhs is 0, no computation is performed. See references [36] and [38].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SGEF, DGEF, CGEF, ZGEF, SGEFCD,
DGEFCD, or DGEFP failed because a pivot element is zero, the results
returned by this subroutine are unpredictable, and there may be a
divide-by-zero program exception message.

Input-Argument Errors:

SGESM, DGESM, CGESM, ZGESM

Chapter 10. Linear Algebraic Equations 445

1. trans ≠ 'N', 'T', or 'C'
2. lda, ldb ≤ 0
3. n < 0
4. n > lda, ldb
5. nrhs < 0

Example 1

Part 1: This part of the example shows how to solve the system AX = B for two
right-hand sides, where matrix A is the same matrix factored in the “Example 1”
on page 439 for SGEF and DGEF.

Call Statement and Input:
TRANS A LDA N IPVT B LDB NRHS
| | | | | | | |

CALL SGESM('N' , A , 9 , 9 , IPVT , B , 9 , 2)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
A = (same as output A in “Example 1” on page 439)

┌ ┐
| 4.0 10.0 |
| 5.0 15.0 |
| 9.0 24.0 |
| 10.0 35.0 |

B = | 11.0 48.0 |
| 12.0 63.0 |
| 12.0 70.0 |
| 12.0 78.0 |
| 33.0 266.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

B = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

Part 2: This part of the example shows how to solve the system ATX = B for two
right-hand sides, where matrix A is the input matrix factored in “Example 1” on
page 439 for SGEF and DGEF.

Call Statement and Input:
TRANS A LDA N IPVT B LDB NRHS
| | | | | | | |

CALL SGESM('T' , A , 9 , 9 , IPVT , B , 9 , 2)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
A = (same as output A in “Example 1” on page 439)

┌ ┐
| 6.0 15.0 |
| 8.0 26.0 |
| 10.0 40.0 |
| 12.0 57.0 |

B = | 13.0 76.0 |

SGESM, DGESM, CGESM, ZGESM

446 ESSL Version 3 Release 3 Guide and Reference

| 14.0 97.0 |
| 15.0 120.0 |
| 15.0 125.0 |
| 15.0 129.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

B = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

Example 2

Part 1: This part of the example shows how to solve the system AX = B for two
right-hand sides, where matrix A is the same matrix factored in the “Example 2”
on page 440 for CGEF and ZGEF.

Call Statement and Input:
TRANS A LDA N IPVT B LDB NRHS
| | | | | | | |

CALL CGESM('N' , A , 4 , 4 , IPVT , B , 4 , 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in “Example 2” on page 440)

┌ ┐
| (-10.0, 85.0) (-11.0, 53.0) |

B = | (-6.0, 61.0) (-6.0, 54.0) |
| (10.0, 38.0) (2.0, 40.0) |
| (58.0, 168.0) (15.0, 105.0) |
└ ┘

Output:
┌ ┐
| (9.0, 0.0) (1.0, 1.0) |

B = | (5.0, 1.0) (2.0, 2.0) |
| (1.0, 6.0) (3.0, 3.0) |
| (3.0, 4.0) (4.0, 4.0) |
└ ┘

Part 2: This part of the example shows how to solve the system ATX = B for two
right-hand sides, where matrix A is the input matrix factored in “Example 2” on
page 440 for CGEF and ZGEF.

Call Statement and Input:
TRANS A LDA N IPVT B LDB NRHS
| | | | | | | |

CALL CGESM('T' , A , 4 , 4 , IPVT , B , 4 , 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in “Example 2” on page 440)

SGESM, DGESM, CGESM, ZGESM

Chapter 10. Linear Algebraic Equations 447

┌ ┐
| (71.0, 12.0) (18.0, 68.0) |

B = | (61.0, -70.0) (-27.0, 71.0) |
| (123.0, -34.0) (-11.0, 97.0) |
| (68.0, 7.0) (28.0, 50.0) |
└ ┘

Output:
┌ ┐
| (9.0, 0.0) (1.0, 1.0) |

B = | (5.0, 1.0) (2.0, 2.0) |
| (1.0, 6.0) (3.0, 3.0) |
| (3.0, 4.0) (4.0, 4.0) |
└ ┘

Part 3: This part of the example shows how to solve the system AHX = B for two
right-hand sides, where matrix A is the input matrix factored in “Example 2” on
page 440 for CGEF and ZGEF.

Call Statement and Input:
TRANS A LDA N IPVT B LDB NRHS
| | | | | | | |

CALL CGESM('C' , A , 4 , 4 , IPVT , B , 4 , 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in “Example 2” on page 440)

┌ ┐
| (58.0, -3.0) (45.0, 20.0) |

B = | (68.0, -31.0) (83.0, -20.0) |
| (89.0, -22.0) (98.0, 1.0) |
| (53.0, 15.0) (45.0, 25.0) |
└ ┘

Output:
┌ ┐
| (1.0, 4.0) (4.0, 5.0) |

B = | (2.0, 3.0) (3.0, 4.0) |
| (3.0, 2.0) (2.0, 3.0) |
| (4.0, 1.0) (1.0, 2.0) |
└ ┘

SGESM, DGESM, CGESM, ZGESM

448 ESSL Version 3 Release 3 Guide and Reference

SGETRF, DGETRF, CGETRF and ZGETRF—General Matrix Factorization
These subroutines factor general matrix A using Gaussian elimination with partial
pivoting. To solve the system of equations with one or more right-hand sides,
follow the call to these subroutines with one or more calls to SGETRS, DGETRS
CGETRS, or ZGETRS, respectively. To compute the inverse of real matrix A, follow
the call to these subroutines with a call to SGETRI or DGETRI.

Table 90. Data Types

A Subroutine

Short-precision real SGETRF

Long-precision real DGETRF

Short-precision complex CGETRF

Long-precision complex ZGETRF

Note: The output from these factorization subroutines should be used only as
input to the following subroutines for performing a solve or inverse:
SGETRS, DGETRS, CGETRS, ZGETRS, SGETRI, or DGETRI, respectively.

Syntax

Fortran CALL SGETRF | DGETRF | CGETRF | ZGETRF (m, n, a, lda, ipvt, info)

C and C++ sgetrf | dgetrf | cgetrf | zgetrf (m, n, a, lda, ipvt, info);

PL/I CALL SGETRF | DGETRF | CGETRF | ZGETRF (m, n, a, lda, ipvt, info);

On Entry:

m the number of rows in general matrix A used in the computation. Specified
as: a fullword integer; 0 ≤ m ≤ lda.

n the number of columns in general matrix A used in the computation.
Specified as: a fullword integer; n ≥ 0.

a is the m by n general matrix A to be factored. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 90.

lda is the leading dimension of matrix A. Specified as: a fullword integer;
lda > 0 and lda ≥ m.

ipvt See “On Return”.

info See “On Return”.

On Return:

a is the m by n transformed matrix A, containing the results of the
factorization. See “Function” on page 450. Returned as: an lda by (at least)
n array, containing numbers of the data type indicated in Table 90.

ipvt is the integer vector ipvt of length min(m,n), containing the pivot indices.
Returned as: a one-dimensional array of (at least) length min(m,n),
containing fullword integers,where 1 ≤ ipvt(i) ≤ m.

info has the following meaning:

If info = 0, the factorization of general matrix A completed successfully.

If info > 0, info is set equal to the first i, where Uii is singular and its
inverse could not be computed.

SGETRF, DGETRF, CGETRF and ZGETRF

Chapter 10. Linear Algebraic Equations 449

|
|

|

Specified as: a fullword integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. The matrix A and vector ipvt must have no common elements; otherwise

results are unpredictable.
3. The way these subroutines handle singularity differs from LAPACK. These

subroutines use the info argument to provide information about the singularity
of A, like LAPACK, but also provide an error message.

4. On both input and output, matrix A conforms to LAPACK format.

Function
The matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to
compute the LU factorization of A, where (A=PLU):

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle (if m ≥ n) or
upper trapezoid (if m < n) and L in the strict lower triangle (if m ≤ n) or lower
trapezoid (if m > n). ipvt contains the pivots representing permutation P, such
that A = PLU.

If m or n is 0, no computation is performed and the subroutine returns after doing
some parameter checking. See references [8][36] and [62].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix A is singular.
v The first column, i, of L with a corresponding Uii = 0 diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2146 is set to be unlimited in the ESSL error option table.

Input-Argument Errors:
1. m < 0
2. n < 0
3. m > lda
4. lda ≤ 0

Example 1
This example shows a factorization of a real general matrix A of order 9.

Call Statement and Input:
M N A LDA IPVT INFO
| | | | | |

CALL DGETRF(9 , 9 , A, 9 , IPVT, INFO)

┌ ┐
| 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 |
| 1.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 |
| 1.4 1.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 |
| 1.6 1.4 1.2 1.0 1.2 1.4 1.6 1.8 2.0 |

A = | 1.8 1.6 1.4 1.2 1.0 1.2 1.4 1.6 1.8 |
| 2.0 1.8 1.6 1.4 1.2 1.0 1.2 1.4 1.6 |

SGETRF, DGETRF, CGETRF and ZGETRF

450 ESSL Version 3 Release 3 Guide and Reference

|

|

| 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.2 1.4 |
| 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.2 |
| 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
└ ┘

Output:
┌ ┐
| 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
| 0.4 0.3 0.6 0.8 1.1 1.4 1.7 1.9 2.2 |
| 0.5 -0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 |
| 0.5 -0.3 0.0 0.4 0.8 1.2 1.6 2.0 2.4 |

A = | 0.6 -0.3 0.0 0.0 0.4 0.8 1.2 1.6 2.0 |
| 0.7 -0.2 0.0 0.0 0.0 0.4 0.8 1.2 1.6 |
| 0.8 -0.2 0.0 0.0 0.0 0.0 0.4 0.8 1.2 |
| 0.8 -0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.8 |
| 0.9 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 |
└ ┘

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
INFO = 0

Example 2
This example shows a factorization of a complex general matrix A of order 9.

Call Statement and Input:
M N A LDA IPVT INFO
| | | | | |

CALL ZGETRF(9 , 9 , A, 9 , IPVT, INFO)

Output:

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
INFO = 0

Example 3
This example shows a factorization of a real general matrix A of order 9.

Call Statement and Input:

┌ ┐
| (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) (4.8,-1.0) (5.2,-1.0) |
| (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) (4.8,-1.0) |
| (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) |
| (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) |

A = | (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) |
| (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) |
| (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) |
| (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) |
| (5.2, 1.0) (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) |
└ ┘

┌ ┐
| (5.2, 1.0) (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) |
| (0.4, 0.1) (0.6,-2.0) (1.1,-1.9) (1.7,-1.9) (2.3,-1.8) (2.8,-1.8) (3.4,-1.7) (3.9,-1.7) (4.5,-1.6) |
| (0.5, 0.1) (0.0,-0.1) (0.6,-1.9) (1.2,-1.8) (1.8,-1.7) (2.5,-1.6) (3.1,-1.5) (3.7,-1.4) (4.3,-1.3) |
| (0.6, 0.1) (0.0,-0.1) (-0.1,-0.1) (0.7,-1.9) (1.3,-1.7) (2.0,-1.6) (2.7,-1.5) (3.4,-1.4) (4.0,-1.2) |

A = | (0.6, 0.1) (0.0,-0.1) (-0.1,-0.1) (-0.1, 0.0) (0.7,-1.9) (1.5,-1.7) (2.2,-1.6) (2.9,-1.5) (3.7,-1.3) |
| (0.7, 0.1) (0.0,-0.1) (0.0, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.8,-1.9) (1.6,-1.8) (2.4,-1.6) (3.2,-1.5) |
| (0.8, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-1.9) (1.7,-1.8) (2.5,-1.8) |
| (0.9, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-2.0) (1.7,-1.9) |
| (0.9, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-2.0) |
└ ┘

SGETRF, DGETRF, CGETRF and ZGETRF

Chapter 10. Linear Algebraic Equations 451

|
|

|

M N A LDA IPVT INFO
| | | | | |

CALL SGETRF(9 , 9 , A, 9 , IPVT, INFO)

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |

A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

Output:

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

┌ ┐
| 4.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 |
| 0.0000 5.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 |
| 0.0000 0.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 |
| 0.0000 0.0000 0.0000 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |

A = | 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 11.0000 12.0000 |
| 0.2500 0.1500 0.1000 0.0714 0.0536 -0.0694 -0.0306 0.1806 0.3111 |
| 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0556 -0.0194 0.9385 -0.0031 |
└ ┘

SGETRF, DGETRF, CGETRF and ZGETRF

452 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

SGETRS, DGETRS, CGETRS, and ZGETRS—General Matrix Multiple
Right-Hand Side Solve

SGETRS and DGETRS solve one of the following systems of equations for multiple
right-hand sides:

1. AX = B
2. ATX = B

CGETRS and ZGETRS solve one of the following systems of equations for multiple
right-hand sides:

1. AX = B
2. ATX = B
3. AHX = B

In the formulas above:
A represents the general matrix A containing the LU factorization.
B represents the general matrix B containing the right-hand sides in its
columns.
X represents the general matrix B containing the solution vectors in its
columns.

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.

Table 91. Data Types

A, B Subroutine

Short-precision real SGETRS

Long-precision real DGETRS

Short-precision complex CGETRS

Long-precision complex ZGETRS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGETRF, DGETRF, CGETRF and ZGETRF,
respectively.

Syntax

Fortran CALL SGETRS | DGETRS | CGETRS | ZGETRS (transa, n, nrhs, a, lda, ipvt, bx, ldb, info)

C and C++ sgetrs | dgetrs | cgetrs | zgetrs (transa, n, nrhs, a, lda, ipvt, bx, ldb, info);

PL/I CALL SGETRS | DGETRS | CGETRS | ZGETRS (transa, n, nrhs, a, lda, ipvt, bx, ldb, info);

On Entry:

transa indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation, resulting in solution 1.

If transa = 'T', AT is used in the computation, resulting in solution 2.

If transa = 'C', AH is used in the computation, resulting in solution 3.

Specified as: a single character; transa = 'N', 'T', or 'C'.

n is the order of factored matrix A and the number of rows in matrix B.
Specified as: a fullword integer; n ≥ 0.

SGETRS, DGETRS, CGETRS, and ZGETRS

Chapter 10. Linear Algebraic Equations 453

nrhs the number of right-hand sides—that is, the number of columns in matrix
B used in the computation. Specified as: a fullword integer; nrhs ≥ 0.

a is the factorization of matrix A, produced by a preceding call to SGETRF,
DGETRF, CGETRF, or ZGETRF, respectively. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 91 on
page 453.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

ipvt is the integer vector ipvt of length n, containing the pivot indices produced
by a preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF,
respectively. Specified as: a one-dimensional array of (at least) length n,
containing fullword integers, where 1 ≤ ipvt(i) ≤ n.

bx is the general matrix B containing the right-hand side of the system.
Specified as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 91 on page 453.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ n.

info See “On Return”.

On Return:

bx is the solution X containing the results of the computation. Returned as: an
ldb by (at least) nrhs array, containing numbers of the data type indicated
in Table 91 on page 453.

info info has the following meaning:

If info = 0, the solve of general matrix A completed successfully.

Notes
1. In your C program, argument info must be passed by reference.
2. These subroutines accept lower case letters for the transa argument.
3. For SGETRS and DGETRS, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
4. The scalar data specified for input argument n must be the same for both

_GETRF and _GETRS. In addition, the scalar data specified for input argument
m in _GETRF must be the same as input argument n in both _GETRF and
_GETRS.
If, however, you do not plan to call _GETRS after calling _GETRF, then input
arguments m and n in _GETRF do not need to be equal.

5. The array data specified for input arguments a and ipvt for these subroutines
must be the same as the corresponding output arguments for SGETRF,
DGETRF, CGETRF, and ZGETRF, respectively.

6. The matrices and vector used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

7. On both input and output, matrices A and B conform to LAPACK format.

Function
One of the following systems of equations is solved for multiple right-hand sides:

1. AX = B
2. ATX = B
3. AHX = B (only for CGETRS and ZGETRS)

SGETRS, DGETRS, CGETRS, and ZGETRS

454 ESSL Version 3 Release 3 Guide and Reference

where A, B, and X are general matrices. These subroutines uses the results of the
factorization of matrix A, produced by a preceding call to SGETRF, DGETRF,
CGETRF or ZGETRF, respectively. For details on the factorization, see “SGETRF,
DGETRF, CGETRF and ZGETRF—General Matrix Factorization” on page 449.

If n = 0 or nrhs = 0, no computation is performed and the subroutine returns after
doing some parameter checking. See references [8, [36], and [62].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SGETRF, DGETRF, CGETRF or ZGETRF
failed because a pivot element is zero, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors:
1. transa ≠ 'N', 'T', or 'C'
2. n < 0
3. nrhs < 0
4. n > lda
5. n > ldb
6. lda ≤ 0
7. ldb ≤ 0

Example 1
This example shows how to solve the system AX = B, where matrix A is the same
matrix factored in the “Example 1” on page 450 for DGETRF.

Call Statement and Input:
TRANSA N NRHS A LDA IPIV BX LDB INFO
| | | | | | | | |

CALL DGETRS('N' , 9 , 5 , A , 9 , IPIV, B , 9 , INFO)

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
A = (same as output A in “Example 1” on page 450)

┌ ┐
| 93.0 186.0 279.0 372.0 465.0 |
| 84.4 168.8 253.2 337.6 422.0 |
| 76.6 153.2 229.8 306.4 383.0 |
| 70.0 140.0 210.0 280.0 350.0 |

B = | 65.0 130.0 195.0 260.0 325.0 |
| 62.0 124.0 186.0 248.0 310.0 |
| 61.4 122.8 184.2 245.6 307.0 |
| 63.6 127.2 190.8 254.4 318.0 |
| 69.0 138.0 207.0 276.0 345.0 |
└ ┘

Output:
┌ ┐
| 1.0 2.0 3.0 4.0 5.0 |
| 2.0 4.0 6.0 8.0 10.0 |
| 3.0 6.0 9.0 12.0 15.0 |
| 4.0 8.0 12.0 16.0 20.0 |

B = | 5.0 10.0 15.0 20.0 25.0 |
| 6.0 12.0 18.0 24.0 30.0 |

SGETRS, DGETRS, CGETRS, and ZGETRS

Chapter 10. Linear Algebraic Equations 455

|

| 7.0 14.0 21.0 28.0 35.0 |
| 8.0 16.0 24.0 32.0 40.0 |
| 9.0 18.0 27.0 36.0 45.0 |
└ ┘

INFO = 0

Example 2
This example shows how to solve the system AX = b, where matrix A is the same
matrix factored in the “Example 2” on page 451 for ZGETRF.

Call Statement and Input:
TRANS N NRHS A LDA IPIV B LDB INFO
| | | | | | | | |

CALL ZGETRS('N' , 9 , 5 , A , 9 , IPIV, B , 9 , INFO)

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
A = (same as output A in “Example 2” on page 451)

Output:

┌ ┐
| (193.0,-10.6) (200.0, 21.8) (207.0, 54.2) (214.0, 86.6) (221.0,119.0) |
| (173.8, -9.4) (178.8, 20.2) (183.8, 49.8) (188.8, 79.4) (193.8,109.0) |
| (156.2, -5.4) (159.2, 22.2) (162.2, 49.8) (165.2, 77.4) (168.2,105.0) |
| (141.0, 1.4) (142.0, 27.8) (143.0, 54.2) (144.0, 80.6) (145.0,107.0) |

B = | (129.0, 11.0) (128.0, 37.0) (127.0, 63.0) (126.0, 89.0) (125.0,115.0) |
| (121.0, 23.4) (118.0, 49.8) (115.0, 76.2) (112.0,102.6) (109.0,129.0) |
| (117.8, 38.6) (112.8, 66.2) (107.8, 93.8) (102.8,121.4) (97.8,149.0) |
| (120.2, 56.6) (113.2, 86.2) (106.2,115.8) (99.2,145.4) (92.2,175.0) |
| (129.0, 77.4) (120.0,109.8) (111.0,142.2). (102.0,174.6) (93.0,207.0) |
└ ┘

┌ ┐
| (1.0,1.0) (1.0,2.0) (1.0,3.0) (1.0,4.0) (1.0,5.0) |
| (2.0,1.0) (2.0,2.0) (2.0,3.0) (2.0,4.0) (2.0,5.0) |
| (3.0,1.0) (3.0,2.0) (3.0,3.0) (3.0,4.0) (3.0,5.0) |
| (4.0,1.0) (4.0,2.0) (4.0,3.0) (4.0,4.0) (4.0,5.0) |

B = | (5.0,1.0) (5.0,2.0) (5.0,3.0) (5.0,4.0) (5.0,5.0) |
| (6.0,1.0) (6.0,2.0) (6.0,3.0) (6.0,4.0) (6.0,5.0) |
| (7.0,1.0) (7.0,2.0) (7.0,3.0) (7.0,4.0) (7.0,5.0) |
| (8.0,1.0) (8.0,2.0) (8.0,3.0) (8.0,4.0) (8.0,5.0) |
| (9.0,1.0) (9.0,2.0) (9.0,3.0) (9.0,4.0) (9.0,5.0) |
└ ┘

INFO = 0

SGETRS, DGETRS, CGETRS, and ZGETRS

456 ESSL Version 3 Release 3 Guide and Reference

SGEFCD and DGEFCD—General Matrix Factorization, Condition
Number Reciprocal, and Determinant

These subroutines factor general matrix A using Gaussian elimination. An estimate
of the reciprocal of the condition number and the determinant of matrix A can also
be computed. To solve a system of equations with one or more right-hand sides,
follow the call to these subroutines with one or more calls to SGES/SGESM or
DGES/DGESM, respectively. To compute the inverse of matrix A, follow the call to
these subroutines with a call to SGEICD and DGEICD, respectively.

Table 92. Data Types

A, aux, rcond, det Subroutine

Short-precision real SGEFCD

Long-precision real DGEFCD

Note: The output from these factorization subroutines should be used only as
input to the following subroutines for performing a solve or inverse:
SGES/SGESM/SGEICD and DGES/DGESM/DGEICD, respectively.

Syntax

Fortran CALL SGEFCD | DGEFCD (a, lda, n, ipvt, iopt, rcond, det, aux, naux)

C and C++ sgefcd | dgefcd (a, lda, n, ipvt, iopt, rcond, det, aux, naux);

PL/I CALL SGEFCD | DGEFCD (a, lda, n, ipvt, iopt, rcond, det, aux, naux);

On Entry:

a is a general matrix A of order n, whose factorization, reciprocal of
condition number, and determinant are computed. Specified as: an lda by
(at least) n array, containing numbers of the data type indicated in Table 92.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order of matrix A. Specified as: a fullword integer; 0 ≤ n ≤ lda.

ipvt See “On Return” on page 458.

iopt indicates the type of computation to be performed, where:

If iopt = 0, the matrix is factored.

If iopt = 1, the matrix is factored, and the reciprocal of the condition
number is computed.

If iopt = 2, the matrix is factored, and the determinant is computed.

If iopt = 3, the matrix is factored, and the reciprocal of the condition
number and the determinant are computed.

Specified as: a fullword integer; iopt = 0, 1, 2, or 3.

rcond See “On Return” on page 458.

det See “On Return” on page 458.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

SGEFCD, DGEFCD

Chapter 10. Linear Algebraic Equations 457

Otherwise, it is is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 92 on page 457.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEFCD and DGEFCD
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ n.

On Return:

a is the transformed matrix A of order n, containing the results of the
factorization. See “Function”. Returned as: an lda by (at least) n array,
containing numbers of the data type indicated in Table 92 on page 457.

ipvt is the integer vector ipvt of length n, containing the pivot indices.
Returned as: a one-dimensional array of (at least) length n, containing
fullword integers.

rcond is an estimate of the reciprocal of the condition number, rcond, of matrix A.
Returned as: a number of the data type indicated in Table 92 on page 457;
rcond ≥ 0.

det is the vector det, containing the two components, det1 and det2, of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing
numbers of the data type indicated in Table 92 on page 457.

Notes
1. In your C program, argument rcond must be passed by reference.
2. When iopt = 0, these subroutines provide the same function as a call to SGEF

or DGEF, respectively.
3. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

4. On both input and output, matrix A conforms to LAPACK format.

Function
Matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to
compute the LU factorization of A, where (A=PLU):

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle and L in the
strict lower triangle where ipvt contains the pivots representing permutation P,
such that A = PLU.

SGEFCD, DGEFCD

458 ESSL Version 3 Release 3 Guide and Reference

An estimate of the reciprocal of the condition number, rcond, and the determinant,
det, can also be computed by this subroutine. The estimate of the condition
number uses an enhanced version of the algorithm described in references [69] and
[70].

If n is 0, no computation is performed. See reference [36].

These subroutines call SGEF and DGEF, respectively, to perform the factorization.
ipvt is an output vector of SGEF and DGEF. It is returned for use by SGES/SGESM
and DGES/DGESM, the solve subroutines.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: Matrix A is singular.
v If your program is not terminated by SGEF and DGEF, then SGEFCD and

DGEFCD, respectively, return 0 for rcond and det.
v One or more columns of L and the corresponding diagonal of U contain all zeros

(all columns of L are checked). The first column, i, of L with a corresponding
U = 0 diagonal element is identified in the computational error message, issued
by SGEF or DGEF, respectively.

v i can be determined at run time by using the ESSL error-handling facilities. To
obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2103 in the ESSL error option table; otherwise,
the default value causes your program to be terminated by SGEF or DGEF,
respectively, when this error occurs. If your program is not terminated by SGEF
or DGEF, respectively, the return code is set to 2. For details, see “What Can You
Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. lda ≤ 0
2. n < 0
3. n > lda
4. iopt ≠ 0, 1, 2, or 3
5. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example
This example shows a factorization of matrix A of order 9. The input is the same
as used in SGEF and DGEF. See “Example 1” on page 439. The reciprocal of the
condition number and the determinant of matrix A are also computed. The values
used to estimate the reciprocal of the condition number in this example are
obtained with the following values:

\A\1 = max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0

Estimate of \A−1\1 = 1091.87

This estimate is equal to the actual rcond of 5.436(10−5), which is computed by
SGEICD and DGEICD. (See “Example 1” on page 503.) On output, the value in det,
|A|, is equal to 336.

Call Statement and Input:

SGEFCD, DGEFCD

Chapter 10. Linear Algebraic Equations 459

A LDA N IPVT IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL DGEFCD(A , 9 , 9 , IPVT , 3 , RCOND , DET , AUX , 9)

A =(same as input A in
“Example 1” on page 439)

Output:

A =(same as output A in “Example 1” on page 439)
IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
RCOND = 0.00005436
DET = (3.36, 2.00)

SGEFCD, DGEFCD

460 ESSL Version 3 Release 3 Guide and Reference

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF,
and ZPOTRF—Positive Definite Real Symmetric or Complex Hermitian
Matrix Factorization

These subroutines factor matrix A as explained below:

SPPF and DPPF

The SPPF and DPPF subroutines factor positive definite real symmetric
matrix A, stored in lower-packed storage mode, using Gaussian elimination
(LDLT) or the Cholesky factorization method. To solve a system of
equations with one or more right-hand sides, follow the call to these
subroutines with one or more calls to SPPS or DPPS, respectively. To find
the inverse of matrix A, follow the call to these subroutines, performing
Cholesky factorization, with a call to SPPICD or DPPICD, respectively.

SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

The SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF
subroutines factor matrix A stored in upper or lower storage mode, where:
v For SPOF, DPOF, SPOTRF, and DPOTRF, A is a positive definite real

symmetric matrix.
v For CPOF, ZPOF, CPOTRF, and ZPOTRF, A is a positive definite

complex Hermitian matrix.

Matrix A is factored using Cholesky factorization as follows:
v For SPOF, DPOF, SPOTRF, and DPOTRF, using LLT or UTU.
v For CPOF, ZPOF, CPOTRF, and ZPOTRF, using LLH or UHU.

To solve the system of equations with one or more right-hand sides, follow
the call to SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, or
ZPOTRF with a call to SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS,
DPOTRS, CPOTRS, or ZPOTRS, respectively.

To find the inverse of matrix A, follow the call to SPOF, DPOF, SPOTRF, or
DPOTRF with a call to SPOICD, DPOICD, SPOTRI, or DPOTRI.

Table 93. Data Types

A Subroutine

Short-precision real SPPF, SPOF, and SPOTRF

Long-precision real DPPF, DPOF, and DPOTRF

Short-precision complex CPOF and CPOTRF

Long-precision complex ZPOF and ZPOTRF

Note: The output from each of these subroutines should be used only as input for
specific other subroutines, as shown in the table below.

Output from this subroutine: Should be used only as input to the
following subroutine(s) for performing a
solve or inverse:

SPPF SPPS, SPPICD

DPPF DPPS, DPPICD

SPOF SPOSM, SPOICD

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

Chapter 10. Linear Algebraic Equations 461

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|

|
|

|

|

|

|

|

|
|

|||
|
|

||

||

||

Output from this subroutine: Should be used only as input to the
following subroutine(s) for performing a
solve or inverse:

DPOF DPOSM, DPOICD

CPOF CPOSM

ZPOF ZPOSM

SPOTRF SPOTRS, SPOTRI

DPOTRF DPOTRS, DPOTRI

CPOTRF CPOTRS

ZPOTRF ZPOTRS

Syntax

Fortran CALL SPPF | DPPF (ap, n, iopt)

CALL SPOF | DPOF | CPOF | ZPOF (uplo, a, lda, n)

CALL SPOTRF | DPOTRF | CPOTRF | ZPOTRF (uplo, n, a, lda, info)

C and C++ sppf | dppf (ap, n, iopt);

spof | dpof | cpof | zpof (uplo, a, lda, n);

spotrf | dpotrf | cpotrf | zpotrf (uplo, n, a, lda, info);

PL/I CALL SPPF | DPPF (ap, n, iopt);

CALL SPOF | DPOF | CPOF | ZPOF (uplo, a, lda, n);

CALL SPOTRF | DPOTRF | CPOTRF | ZPOTRF (uplo, n, a, lda, info);

On Entry:

uplo indicates whether matrix A is stored in upper or lower storage mode,
where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap is array, referred to as AP, in which matrix A, to be factored, is stored in
lower-packed storage mode.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 93 on page 461. See Notes.

If iopt = 0 or 10, the array must have at least n(n+1)/2+n elements.

If iopt = 1 or 11, the array must have at least n(n+1)/2 elements.

a is the positive definite matrix A, to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 93 on page 461.

lda is the leading dimension of the array specified for a.

Specified as: a fullword integer; lda > 0 and lda ≥ n.

n is the order n of matrix A.

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

462 ESSL Version 3 Release 3 Guide and Reference

||
|
|

||

||

||

||

||

||

||
|

|

|

|

|

|

|

Specified as: a fullword integer; n ≥ 0.

iopt determines the type of computation to be performed, where:

If iopt = 0, the matrix is factored using the LDLT method, and the output
is stored in an internal format.

If iopt = 1, the matrix is factored using Cholesky factorization, and the
output is stored in an internal format.

If iopt = 10, the matrix is factored using the LDLT method, and the output
is stored in lower-packed storage mode.

If iopt = 11, the matrix is factored using Cholesky factorization, and the
output is stored in lower-packed storage mode.

Specified as: a fullword integer; iopt = 0, 1, 10, or 11.

info See “On Return”.

On Return:

ap is the transformed matrix A of order n, containing the results of the
factorization.

If iopt is 0 or 1, the transformed matrix is stored in an internal format and
should only be used as input to the corresponding solve or inverse
subroutine.

If iopt is 10 or 11, the transformed matrix is stored in lower-packed storage
mode.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 93 on page 461.

If iopt = 0 or 10, the array contains n(n+1)/2+n elements.

If iopt = 1 or 11, the array contains n(n+1)/2 elements.

See “Notes” and see “Function” on page 464.

a is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 464.

Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 93 on page 461.

info has the following meaning:

If info = 0, the factorization completed successfully.

If info > 0, info is set equal to the order i of the first minor encountered
having a nonpositive determinant.

Specified as: a fullword integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. In the input and output arrays specified for ap, the first n(n+1)/2 elements are

matrix elements. The additional n locations, required in the array when
iopt = 0 or 10, are used for working storage by this subroutine and should not
be altered between calls to the factorization and solve subroutines.

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

Chapter 10. Linear Algebraic Equations 463

|
|

|
|

|
|

|
|

|

||

|
|
|

|
|

|

|

|

||

|

|
|

|

|

|

4. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

5. If iopt is 0 or 1, SPPF and DPPF in some cases utilize algorithms based on
recursive packed storage format. As a result, on output, if iopt is 0 or 1, the
array specified for AP may be stored in this new format rather than the
conventional lower packed format. (See references [52], [66], and [67]).
The array specified for AP should not be altered between calls to the
factorization and solve subroutines; otherwise unpredictable results may occur.

6. The way _POTRF subroutines handle computational errors differs from
LAPACK. These subroutines use the info argument to provide information
about the computational error, like LAPACK, but also provide an error
message.

7. On both input and output, matrix A conforms to LAPACK format.
8. For a description of the storage modes used for the matrices, see:
v For positive definite symmetric matrices, see “Positive Definite or Negative

Definite Symmetric Matrix” on page 67.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 68.

Function
The functions for these subroutines are described in the sections below.

For SPPF and DPPF: If iopt = 0 or 10, the positive definite symmetric matrix A,
stored in lower-packed storage mode, is factored using Gaussian elimination,
where A is expressed as:

A = LDLT

where:
L is a unit lower triangular matrix.
LT is the transpose of matrix L.
D is a diagonal matrix.

If iopt = 1 or 11, the positive definite symmetric matrix A is factored using
Cholesky factorization, where A is expressed as:

A = LLT

where L is a lower triangular matrix.

If n is 0, no computation is performed. See references [36] and [38].

For SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF: The
positive definite matrix A, stored in upper or lower storage mode, is factored using
Cholesky factorization, where A is expressed as:

A = LLT or A = UTU for SPOF, DPOF, SPOTRF, and DPOTRF
A = LLH or A = UHU for CPOF, ZPOF, CPOTRF, and ZPOTRF

where:
L is a lower triangular matrix.
LT is the transpose of matrix L.
LH is the conjugate transpose of matrix L.
U is an upper triangular matrix.
UT is the transpose of matrix U.
UH is the conjugate transpose of matrix U.

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

464 ESSL Version 3 Release 3 Guide and Reference

|
|

|
|
|
|

|

|

|

|
|

If n is 0, no computation is performed. See references [8], [70], and [36].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors:
1. Matrix A is not positive definite (for SPPF and DPPF when iopt = 0 or 10).
v Processing continues to the end of the matrix.
v One or more elements of D contain values less than or equal to 0; all

elements of D are checked. The index i of the last nonpositive element
encountered is identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2104 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

2. Matrix A is not positive definite (for SPPF and DPPF when iopt = 1 or 11 and
for SPOF, DPOF, CPOF, and ZPOF).
v Processing stops at the first occurrence of a nonpositive definite diagonal

element.
v The order i of the first minor encountered having a nonpositive determinant

is identified in the computational error message.
v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2115 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

3. Matrix A is not positive definite (for SPOTRF, DPOTRF, CPOTRF, and
ZPOTRF).
v The order i of the first minor encountered having a nonpositive determinant

is identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2148 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors:
1. n < 0
2. iopt ≠ 0, 1, 10, or 11
3. uplo ≠ 'U' or 'L'
4. lda ≤ 0
5. n > lda

Example 1
This example shows a factorization of positive definite symmetric matrix A of
order 9, stored in lower-packed storage mode, where on input matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

Chapter 10. Linear Algebraic Equations 465

|

|

|
|

|
|

|
|
|
|

|

| 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

On output, all elements of this matrix A are 1.0.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT
| | |

CALL SPPF(AP, 9, 0)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0,
. , . , . , . , . , . , . , . , .)

Output:
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0,
1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2
This example shows a factorization of the same positive definite symmetric matrix
A of order 9 used in Example 1, stored in lower-packed storage mode.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT
| | |

CALL SPPF(AP, 9, 1)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0)

Output:

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

466 ESSL Version 3 Release 3 Guide and Reference

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0,
1.0)

Example 3
This example shows a factorization of the same positive definite symmetric matrix
A of order 9 used in Example 1, but stored in lower storage mode.

Call Statement and Input:
UPLO A LDA N
| | | |

CALL SPOF('L' , A , 9 , 9)

or
UPLO N A LDA INFO
| | | | |

CALL SPOTRF('L' , 9 , A , 9 , INFO)

┌ ┐
| 1.0 |
| 1.0 2.0 |
| 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |

A = | 1.0 2.0 3.0 4.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

Output:
┌ ┐
| 1.0 |
| 1.0 1.0 |
| 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

INFO = 0

Example 4
This example shows a factorization of the same positive definite symmetric matrix
A of order 9 used in Example 1, but stored in upper storage mode.

Call Statement and Input:
UPLO A LDA N
| | | |

CALL SPOF('U' , A , 9 , 9)

or
UPLO N A LDA INFO
| | | | |

CALL SPOTRF('U' , 9 , A , 9 , INFO)

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

Chapter 10. Linear Algebraic Equations 467

|

|
|
|

|

|

|
|
|

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| . . . 4.0 4.0 4.0 4.0 4.0 4.0 |

A = | 5.0 5.0 5.0 5.0 5.0 |
| 6.0 6.0 6.0 6.0 |
| 7.0 7.0 7.0 |
| 8.0 8.0 |
| 9.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . . . 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 |
| 1.0 1.0 |
| 1.0 |
└ ┘

INFO = 0

Example 5
This example shows a factorization of positive definite complex Hermitian matrix
A of order 3, stored in lower storage mode, where on input matrix A is:

┌ ┐
| (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
| (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
| (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO A LDA N
| | | |

CALL CPOF('L' , A , 3 , 3)

or
UPLO N A LDA INFO
| | | | |

CALL CPOTRF('L' , 3 , A , 3 , INFO)

┌ ┐
| (25.0, .) . . |

A = | (-5.0, 5.0) (51.0, .) . |
| (10.0, -5.0) (4.0, 6.0) (71.0, .) |
└ ┘

Output:
┌ ┐
| (5.0, 0.0) . . |

A = | (-1.0, 1.0) (7.0, 0.0) . |
| (2.0, -1.0) (1.0, 1.0) (8.0, 0.0) |
└ ┘

INFO = 0

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

468 ESSL Version 3 Release 3 Guide and Reference

|

|

|
|
|

|

Example 6
This example shows a factorization of positive definite complex Hermitian matrix
A of order 3, stored in upper storage mode, where on input matrix A is:

┌ ┐
| (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |
| (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
| (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO A LDA N
| | | |

CALL CPOF('U' , A , 3 , 3)

or
UPLO N A LDA INFO
| | | | |

CALL CPOTRF('U' , 3 , A , 3 , INFO)

┌ ┐
| (9.0, .) (3.0,3.0) (3.0,-3.0) |

A = | . (18.0, .) (8.0,-6.0) |
| . . (43.0, .) |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) (1.0, 1.0) (1.0, -1.0) |

A = | . (4.0, 0.0) (2.0, -1.0) |
| . . (6.0, 0.0) |
└ ┘

INFO = 0

SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF

Chapter 10. Linear Algebraic Equations 469

|

|
|
|

|

SPPS and DPPS—Positive Definite Real Symmetric Matrix Solve
These subroutines solve the system Ax = b for x, where A is a positive definite
symmetric matrix, and x and b are vectors. The subroutines use the results of the
factorization of matrix A, produced by a preceding call to SPPF/SPPFCD or
DPPF/DPPFP/DPPFCD, respectively.

Table 94. Data Types

A, b, x Subroutine

Short-precision real SPPS

Long-precision real DPPS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SPPF/SPPFCD and DPPF/DPPFP/DPPFCD,
respectively.

Syntax

Fortran CALL SPPS | DPPS (ap, n, bx, iopt)

C and C++ spps | dpps (ap, n, bx, iopt);

PL/I CALL SPPS | DPPS (ap, n, bx, iopt);

On Entry:

ap is the factorization of matrix A, produced by a preceding call to
SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively. Specified as: a
one-dimensional array, containing numbers of the data type indicated in
Table 94, where:

If iopt = 0, the array must contain n(n+1)/2+n elements.

If iopt = 1, the array must contain n(n+1)/2 elements.

n is the order of matrix A used in the factorization, and the lengths of
vectors b and x. Specified as: a fullword integer; n ≥ 0.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 94.

iopt indicates the type of factorization that was performed on matrix A, where:

If iopt = 0, the matrix was factored using the LDLT method.

If iopt = 1, the matrix was factored using Cholesky factorization.

Specified as: a fullword integer; iopt = 0 or 1.

On Return:

bx is the solution vector x of length n, containing the results of the
computation. Specified as: a one-dimensional array, containing numbers of
the data type indicated in Table 94.

Notes
1. The array data specified for input argument ap for these subroutines must be

the same as the corresponding output argument for SPPF/SPPFCD and
DPPF/DPPFP/DPPFCD, respectively.

SPPS and DPPS

470 ESSL Version 3 Release 3 Guide and Reference

2. The scalar data specified for input argument n for these subroutines must be
the same as that specified for SPPF/SPPFCD and DPPF/DPPFP/DPPFCD,
respectively.

3. When you call these subroutines after calling SPPF or DPPF, the value of input
argument iopt must be as follows:

SPPF/DPPF Input iopt SPPS/DPPS Input iopt

0 or 10 0

1 or 11 1

4. When you call these subroutines after calling SPPFCD or DPPFCD, the value of
input argument iopt must be 0.

5. When you call these subroutines after calling DPPFP, the value of input
argument iopt must be 1.

6. In the input array specified for ap, the first n(n+1)/2 elements are matrix
elements. The additional n locations, required in the array when iopt = 0, are
used for working storage by this subroutine and should not be altered between
calls to the factorization and solve subroutines.

7. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

8. For a description of how a positive definite symmetric matrix is stored in
lower-packed storage mode in an array, see “Symmetric Matrix” on page 62.

Function
The system Ax = b is solved for x, where A is a positive definite symmetric
matrix, stored in lower-packed storage mode in array AP, and x and b are vectors.
These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively.

If n is 0, no computation is performed. See references [36] and [38].

Error Conditions

Computational Errors: None

Note: If a call to SPPF, DPPF, SPPFCD, DPPFCD, or DPPFP resulted in a
nonpositive definite matrix, error 2104 or 2115, SPPS or DPPS results may be
unpredictable or numerically unstable.

Input-Argument Errors:
1. n < 0
2. iopt ≠ 0 or 1

Example 1
This example shows how to solve the system Ax = b, where matrix A is the same
matrix factored in the “Example 1” on page 465 for SPPF and DPPF.

Call Statement and Input:
AP N BX IOPT
| | | |

CALL SPPS (AP , 9 , BX , 0)

AP = (same as output AP in “Example 1” on page 465
for SPPF and DPPF)

SPPS and DPPS

Chapter 10. Linear Algebraic Equations 471

|
|

|||

||

||
|

|

BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2
This example shows how to solve the same system as in Example 1, where matrix
A is the same matrix factored in the “Example 2” on page 466 for SPPF and DPPF.

Call Statement and Input:
AP N BX IOPT
| | | |

CALL SPPS(AP , 9 , BX , 1)

AP = (same as output AP in “Example 2” on page 466
for SPPF and DPPF)

BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

SPPS and DPPS

472 ESSL Version 3 Release 3 Guide and Reference

SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and
ZPOTRS—Positive Definite Real Symmetric or Complex Hermitian
Matrix Multiple Right-Hand Side Solve

These subroutines solve the system AX = B for X, using multiple right-hand
sides, where X and B are general matrices and:
v For SPOSM, DPOSM, SPOTRS, and DPOTRS A is a positive definite real

symmetric matrix.
v For CPOSM, ZPOSM, CPOTRS, and ZPOTRS A is a positive definite complex

Hermitian matrix.

SPOSM, DPOSM, CPOSM, and ZPOSM use the results of the factorization of
matrix A, produced by a preceding call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF,
or ZPOF, respectively.

SPOTRS, DPOTRS, CPOTRS, and ZPOTRS use the results of the factorization of
matrix A, produced by a preceding call to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF,
respectively.

Table 95. Data Types

A, B, X Subroutine

Short-precision real SPOSM and SPOTRS

Long-precision real DPOSM and DPOTRF

Short-precision complex CPOSM and CPOTRF

Long-precision complex ZPOSM and ZPOTRF

Note: The input to these solve subroutines must be the output from the
corresponding factorization subroutines.

Syntax

Fortran CALL SPOSM | DPOSM | CPOSM | ZPOSM (uplo, a, lda, n, b, ldb, nrhs)

CALL SPOTRS | DPOTRS | CPOTRS | ZPOTRS (uplo, n, nrhs, a, lda, b, ldb, info)

C and C++ sposm | dposm | cposm | zposm (uplo, a, lda, n, b, ldb, nrhs);

spotrs | dpotrs | cpotrs | zpotrs (uplo, n, nrhs, a, lda, b, ldb, info);

PL/I CALL SPOSM | DPOSM | CPOSM | ZPOSM (uplo, a, lda, n, b, ldb, nrhs);

CALL SPOTRS | DPOTRS | CPOTRS | ZPOTRS (uplo, n, nrhs, a, lda, b, ldb, info);

On Entry:

uplo indicates whether the original matrix A is stored in upper or lower storage
mode, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

a is the factorization of positive definite matrix A, produced by a preceding
call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF, ZPOF, SPOTRF, DPOTRF,
CPOTRF, or ZPOTRF, respectively. Specified as: an lda by (at least) n array,
containing numbers of the data type indicated in Table 95.

SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and ZPOTRS

Chapter 10. Linear Algebraic Equations 473

|
|
|
|

|

|
|
|

|

|

|

|

|
|

|

|

|

|
|

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order of matrix A. Specified as: a fullword integer; 0 ≤ n ≤ lda.

b is the matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.
Specified as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 95 on page 473.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ n.

nrhs is the number of right-hand sides in the system to be solved. Specified as:
a fullword integer; nrhs ≥ 0.

info See “On Return”.

On Return:

b is the matrix B, containing the nrhs solutions to the system in the columns
of B. Specified as: an ldb by (at least) nrhs array, containing numbers of the
data type indicated in Table 95 on page 473.

info info has the following meaning:

If info = 0, the solve completed successfully.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. The scalar data specified for input arguments uplo, lda, and n for these

subroutines must be the same as the corresponding input arguments specified
for SPOF/SPOFCD/SPOTRF, DPOF/DPOFCD/DPOTRF, CPOF/CPOTRF, and
ZPOF/ZPOTRF, respectively.

4. The array data specified for input argument a for these subroutines must be the
same as the corresponding output arguments for SPOF/SPOFCD/SPOTRF,
DPOF/DPOFCD/DPOTRF, CPOF/CPOTRF, and ZPOF/ZPOTRF, respectively.

5. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

6. For a description of how the matrices are stored:
v For positive definite symmetric matrices, see “Positive Definite or Negative

Definite Symmetric Matrix” on page 67.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 68.

Function
The system AX = B is solved for X, using multiple right-hand sides, where X and
B are general matrices, and A is a positive definite symmetric matrix for SPOSM,
DPOSM, SPOTRS, and DPOTRS, and a positive definite complex Hermitian matrix
for CPOSM, ZPOSM, CPOTRS, and ZPOTRS. These subroutines use the results of
the factorization of matrix A, produced by a preceding call to
SPOF/SPOFCD/SPOTRF, DPOF/DPOFCD/DPOTRF, CPOF/CPOTRF, or
ZPOF/ZPOTRF, respectively. For a description of how A is factored, see “SPPF,
DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and
ZPOTRF—Positive Definite Real Symmetric or Complex Hermitian Matrix
Factorization” on page 461.

If n or nrhs is 0, no computation is performed. See references [8] and [36].

SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and ZPOTRS

474 ESSL Version 3 Release 3 Guide and Reference

||

||

|

|

|
|

|
|

|
|

|
|

Error Conditions

Computational Errors: None

Note: If the factorization performed by SPOF, DPOF, CPOF, ZPOF, SPOFCD,
DPOFCD, SPOTRF, DPOTRF, CPOTRF, or ZPOTRF failed because matrix A
was not positive definite, the results returned by this subroutine are
unpredictable, and there may be a divide-by-zero program exception
message.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. lda, ldb ≤ 0
3. n < 0
4. n > lda
5. n > ldb
6. nrhs < 0

Example 1
This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in the “Example 3” on page 467 for
SPOF and SPOTRF.

Call Statement and Input:
UPLO A LDA N B LDB NRHS
| | | | | | |

CALL SPOSM('L' , A , 9 , 9 , B , 9 , 2)

or
UPLO N NRHS A LDA B LDB INFO
| | | | | | | |

CALL SPOTRS('L' , 9 , 2 , A , 9 , B , 9 , INFO)

A =(same as output A in “Example 3” on page 467)
┌ ┐
| 9.0 45.0 |
| 17.0 89.0 |
| 24.0 131.0 |
| 30.0 170.0 |

B = | 35.0 205.0 |
| 39.0 235.0 |
| 42.0 259.0 |
| 44.0 276.0 |
| 45.0 285.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

B = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and ZPOTRS

Chapter 10. Linear Algebraic Equations 475

|

|

|
|
|

|

Example 2
This example shows how to solve the system ATX = B for two right-hand sides,
where matrix A is the input matrix factored in “Example 4” on page 467 for SPOF
and SPOTRF.

Call Statement and Input:
UPLO A LDA N B LDB NRHS
| | | | | | |

CALL SPOSM('U' , A , 9 , 9 , B , 9 , 2)

or
UPLO N NRHS A LDA B LDB INFO
| | | | | | | |

CALL SPOTRS('U' , 9 , 2 , A , 9 , B , 9 , INFO)

A =(same as output A in “Example 4” on page 467)
┌ ┐
| 9.0 45.0 |
| 17.0 89.0 |
| 24.0 131.0 |
| 30.0 170.0 |

B = | 35.0 205.0 |
| 39.0 235.0 |
| 42.0 259.0 |
| 44.0 276.0 |
| 45.0 285.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

B = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 3
This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in the “Example 5” on page 468 for
CPOF and CPOTRF.

Call Statement and Input:
UPLO A LDA N B LDB NRHS
| | | | | | |

CALL CPOSM('L' , A , 3 , 3 , B , 3 , 2)

or
UPLO N NRHS A LDA X LDB INFO
| | | | | | | |

CALL CPOTRS('L' , 3 , 2 , A , 3 , BX , 3 , INFO)

A =(same as output A in “Example 5” on page 468)

SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and ZPOTRS

476 ESSL Version 3 Release 3 Guide and Reference

|

|
|
|

|

|

|

|
|
|

┌ ┐
| (60.0, -55.0) (70.0, 10.0) |

B = | (34.0, 58.0) (-51.0, 110.0) |
| (13.0, -152.0) (75.0, 63.0) |
└ ┘

Output:
┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

B = | (1.0, 1.0) (-1.0, 2.0) |
| (0.0, -2.0) (1.0, 1.0) |
└ ┘

INFO = 0

Example 4
This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the input matrix factored in “Example 6” on page 469 for CPOF
and CPOTRF.

Call Statement and Input:
UPLO A LDA N B LDB NRHS
| | | | | | |

CALL CPOSM('U' , A , 3 , 3 , B , 3 , 2)

or
UPLO N NRHS A LDA B LDB INFO
| | | | | | | |

CALL CPOTRS('U' , 3 , 2 , A , 3 , B , 3 , INFO)

A =(same as output A in “Example 6” on page 469)
┌ ┐
| (33.0, -18.0) (15.0, -3.0) |

B = | (45.0, -45.0) (8.0, -2.0) |
| (152.0, 1.0) (43.0, -29.0) |
└ ┘

Output:
┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

B = | (1.0, -1.0) (0.0, 1.0) |
| (3.0, 0.0) (1.0, -1.0) |
└ ┘

INFO = 0

SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and ZPOTRS

Chapter 10. Linear Algebraic Equations 477

|

|

|

|
|
|

|

SPPFCD, DPPFCD, SPOFCD, and DPOFCD—Positive Definite Real
Symmetric Matrix Factorization, Condition Number Reciprocal, and
Determinant

The SPPFCD and DPPFCD subroutines factor positive definite symmetric matrix A,
stored in lower-packed storage mode, using Gaussian elimination (LDLT). The
reciprocal of the condition number and the determinant of matrix A can also be
computed. To solve the system of equations with one or more right-hand sides,
follow the call to these subroutines with one or more calls to SPPS or DPPS,
respectively.

The SPOFCD and DPOFCD subroutines factor positive definite symmetric matrix
A, stored in upper or lower storage mode, using Cholesky factorization (LLT or
UTU). The reciprocal of the condition number and the determinant of matrix A can
also be computed. To solve the system of equations with one or more right-hand
sides, follow the call to these subroutines with a call to SPOSM or DPOSM,
respectively. To find the inverse of matrix A, follow the call to these subroutines
with a call to SPOICD or DPOICD, respectively.

Table 96. Data Types

A, aux, rcond, det Subroutine

Short-precision real SPPFCD and SPOFCD

Long-precision real DPPFCD and DPOFCD

Note: The output factorization from SPPFCD and DPPFCD should be used only as
input to the solve subroutines SPPS and DPPS, respectively. The output from
SPOFCD and DPOFCD should be used only as input to the following
subroutines for performing a solve or inverse: SPOSM/SPOICD and
DPOSM/DPOICD, respectively.

Syntax

Fortran CALL SPPFCD | DPPFCD (ap, n, iopt, rcond, det, aux, naux)

CALL SPOFCD | DPOFCD (uplo, a, lda, n, iopt, rcond, det, aux, naux)

C and C++ sppfcd | dppfcd (ap, n, iopt, rcond, det, aux, naux);

spofcd | dpofcd (uplo, a, lda, n, iopt, rcond, det, aux, naux);

PL/I CALL SPPFCD | DPPFCD (ap, n, iopt, rcond, det, aux, naux);

CALL SPOFCD | DPOFCD (uplo, a, lda, n, iopt, rcond, det, aux, naux);

On Entry:

uplo indicates whether matrix A is stored in upper or lower storage mode,
where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap is the array, referred to as AP, in which the matrix A, to be factored, is

SPPFCD, DPPFCD, SPOFCD, and DPOFCD

478 ESSL Version 3 Release 3 Guide and Reference

stored in lower-packed storage mode. Specified as: a one-dimensional array
of (at least) length n(n+1)/2+n, containing numbers of the data type
indicated in Table 96 on page 478.

a is the positive definite symmetric matrix A, to be factored. Specified as: an
lda by (at least) n array, containing numbers of the data type indicated in
Table 96 on page 478.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order n of matrix A. Specified as: a fullword integer, where:

For SPPFCD and DPPFCD, n ≥ 0.

For SPOFCD and DPOFCD, 0 ≤ n ≤ lda.

iopt indicates the type of computation to be performed, where:

If iopt = 0, the matrix is factored.

If iopt = 1, the matrix is factored, and the reciprocal of the condition
number is computed.

If iopt = 2, the matrix is factored, and the determinant is computed.

If iopt = 3, the matrix is factored and the reciprocal of the condition
number and the determinant are computed.

Specified as: a fullword integer; iopt = 0, 1, 2, or 3.

rcond See “On Return”.

det See “On Return”.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, is the storage work area used by these subroutines. Its size is
specified by naux. Specified as: an area of storage, containing numbers of
the data type indicated in Table 96 on page 478.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SPPFCD, DPPFCD, SPOFCD,
and DPOFCD dynamically allocate the work area used by the subroutine.
The work area is deallocated before control is returned to the calling
program.

Otherwise, naux ≥ n.

On Return:

ap is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 480. Returned as: a one-dimensional
array of (at least) length n(n+1)/2+n, containing numbers of the data type
indicated in Table 96 on page 478.

a is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 480. Returned as: a two-dimensional
array, containing numbers of the data type indicated in Table 96 on
page 478.

SPPFCD, DPPFCD, SPOFCD, and DPOFCD

Chapter 10. Linear Algebraic Equations 479

rcond is the estimate of the reciprocal of the condition number, rcond, of matrix A.
Returned as: a number of the data type indicated in Table 96 on page 478;
rcond ≥ 0.

det is the vector det, containing the two components det1 and det2 of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing
numbers of the data type indicated in Table 96 on page 478.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. In your C program, argument rcond must be passed by reference.
3. When iopt = 0, SPPFCD and DPPFCD provide the same function as a call to

SPPF or DPPF, respectively. When iopt = 0, SPOFCD and DPOFCD provide the
same function as a call to SPOF or DPOF, respectively.

4. SPPFCD and DPPFCD in many cases utilize new algorithms based on recursive
packed storage format. As a result, on output, the array specified for AP may
be stored in this new format rather than the conventional lower packed format.
(See references [52], [66], and [67]).
The array specified for AP should not be altered between calls to the
factorization and solve subroutines; otherwise unpredictable results may occur.

5. See “Notes” on page 470 for information on specifying a value for iopt in the
SPPS and DPPS subroutines after calling SPPFCD and DPPFCD, respectively.

6. In the input and output arrays specified for ap, the first n(n+1)/2 elements are
matrix elements. The additional n locations in the array are used for working
storage by this subroutine and should not be altered between calls to the
factorization and solve subroutines.

7. For a description of how a positive definite symmetric matrix is stored in
lower-packed storage mode in an array, see “Symmetric Matrix” on page 62. For
a description of how a positive definite symmetric matrix is stored in upper or
lower storage mode, see “Positive Definite or Negative Definite Symmetric
Matrix” on page 67.

8. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The functions for these subroutines are described in the sections below.

For SPPFCD and DPPFCD: The positive definite symmetric matrix A, stored in
lower-packed storage mode, is factored using Gaussian elimination, where A is
expressed as:

A = LDL T

where:
L is a unit lower triangular matrix.
LT is the transpose of matrix L.
D is a diagonal matrix.

SPPFCD, DPPFCD, SPOFCD, and DPOFCD

480 ESSL Version 3 Release 3 Guide and Reference

An estimate of the reciprocal of the condition number, rcond, and the determinant,
det, can also be computed by this subroutine. The estimate of the condition
number uses an enhanced version of the algorithm described in references [69] and
[70].

If n is 0, no computation is performed. See references [36] and [38].

These subroutines call SPPF and DPPF, respectively, to perform the factorization
using Gaussian elimination (LDLT). If you want to use the Cholesky factorization
method, you must call SPPF and DPPF directly.

For SPOFCD and DPOFCD: The positive definite symmetric matrix A, stored in
upper or lower storage mode, is factored using Cholesky factorization, where A is
expressed as:

A = LL T or A = UTU

where:
L is a lower triangular matrix.
LT is the transpose of matrix L.
U is an upper triangular matrix.
UT is the transpose of matrix U.

If specified, the estimate of the reciprocal of the condition number and the
determinant can also be computed. The estimate of the condition number uses an
enhanced version of the algorithm described in references [69] and [70].

If n is 0, no computation is performed. See references [8] and [36].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors:
1. Matrix A is not positive definite (for SPPFCD and DPPFCD).
v If matrix A is singular (at least one of the diagonal elements are 0), then

rcond and det, if you requested them, are set to 0.
v If matrix A is nonsingular and nonpositive definite (none of the diagonal

elements are 0 and at least one diagonal element is negative), then rcond and
det, if you requested them, are computed.

v One or more elements of D contain values less than or equal to 0; all
elements of D are checked. The index i of the last nonpositive element
encountered is identified in the computational error message, issued by SPPF
or DPPF, respectively.

v i can be determined at run time by using the ESSL error-handling facilities.
To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2104 in the ESSL error option table; otherwise,
the default value causes your program to be terminated by SPPF or DPPF,
respectively, when this error occurs. If your program is not terminated by
SPPF or DPPF, respectively, the return code is set to 2. For details, see “What
Can You Do about ESSL Computational Errors?” on page 45.

2. Matrix A is not positive definite (for SPOFCD and DPOFCD).
v If matrix A is singular (at least one of the diagonal elements are 0), then

rcond and det, if you requested them, are set to 0.

SPPFCD, DPPFCD, SPOFCD, and DPOFCD

Chapter 10. Linear Algebraic Equations 481

v If matrix A is nonsingular and nonpositive definite (none of the diagonal
elements are 0 and at least one diagonal element is negative), then rcond and
det, if you requested them, are computed.

v Processing stops at the first occurrence of a nonpositive definite diagonal
element.

v The order i of the first minor encountered having a nonpositive determinant
is identified in the computational error message.

v i can be determined at run time by using the ESSL error-handling facilities.
To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2115 in the ESSL error option table; otherwise,
the default value causes your program to be terminated by SPPF or DPPF,
respectively, when this error occurs. If your program is not terminated by
SPPF or DPPF, respectively, the return code is set to 2. For details, see “What
Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. lda ≤ 0
3. lda < n
4. n < 0
5. iopt ≠ 0, 1, 2, or 3
6. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1
This example computes the factorization, reciprocal of the condition number, and
determinant of matrix A. The input is the same as used in “Example 1” on
page 465 for SPPF.

The values used to estimate the reciprocal of the condition number are obtained
with the following values:
\A\1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
Estimate of \A\ = 4.0

On output, the value in det, |A|, is equal to 1.

Call Statement and Input:
AP N IOPT RCOND DET AUX NAUX
| | | | | | |

CALL DPPFCD(AP , 9 , 3 , RCOND , DET , AUX , 9)

AP =(same as input AP in
“Example 1” on page 465)

Output:

AP =(same as output AP in “Example 1” on page 465)
RCOND = 0.0055555
DET = (1.0, 0.0)

Example 2
This example computes the factorization, reciprocal of the condition number, and
determinant of matrix A. The input is the same as used in “Example 3” on
page 467 for SPOF.

The values used to estimate the reciprocal of the condition number are obtained
with the following values:

SPPFCD, DPPFCD, SPOFCD, and DPOFCD

482 ESSL Version 3 Release 3 Guide and Reference

\A\1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
Estimate of \A\ = 4.0

On output, the value in det, |A|, is equal to 1.

Call Statement and Input:
UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOFCD('L', A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

A =(same as input A in
“Example 3” on page 467)

Output:

A =(same as output A in “Example 3” on page 467)
RCOND = 0.0055555
DET = (1.0, 0.0)

Example 3
This example computes the factorization, reciprocal of the condition number, and
determinant of matrix A. The input is the same as used in “Example 4” on
page 467 for SPOF.

The values used to estimate the reciprocal of the condition number are obtained
with the following values:
\A\1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
Estimate of \A\ = 4.0

On output, the value in det, |A|, is equal to 1.

Call Statement and Input:
UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOFCD('U', A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

A =(same as input A in
“Example 4” on page 467)

Output:

A =(same as output A in “Example 4” on page 467)
RCOND = 0.0055555
DET = (1.0, 0.0)

SPPFCD, DPPFCD, SPOFCD, and DPOFCD

Chapter 10. Linear Algebraic Equations 483

DBSSV—Symmetric Indefinite Matrix Factorization and Multiple
Right-Hand Side Solve

The DBSSV subroutine solves a system of linear equations AX = B for X, where A
is a real symmetric indefinite matrix, and X and B are real general matrices.

The matrix A, stored in upper- or lower-packed storage mode, is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as:

A = UDUT or
A = LDLT

where:
U is a product of permutation and unit upper triangular matrices.
L is a product of permutation and unit lower triangular matrices.
D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

Table 97. Data Types

A, B ipvt Subroutine

Long-precision real Integer DBSSV

Syntax

Fortran CALL DBSSV (uplo, n, nrhs, ap, ipvt, b, ldb, nsinfo)

C and C++ dbssv (uplo, n, nrhs, ap, ipvt, b, ldb, nsinfo);

PL/I CALL DBSSV (uplo, n, nrhs, ap, ipvt, b, ldb, nsinfo);

On Entry:

uplo indicates whether matrix A is stored in upper- or lower-packed storage
mode, where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A and the number of rows of matrix B.

Specified as: a fullword integer; n ≥ 0.

nrhs is the number of right-hand sides; i.e., the number of columns of matrix B.

Specified as: a fullword integer; nrhs ≥ 0.

ap is array, referred to as AP, in which matrix A, to be factored, is stored in
upper- or lower-packed storage mode.

Specified as: a one-dimensional array of length nsinfo, containing numbers
of the data type indicated in Table 97. See “Notes” on page 486.

ipvt See “On Return” on page 485.

b is the matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 97.

ldb is the leading dimension of the array specified for B.

DBSSV

484 ESSL Version 3 Release 3 Guide and Reference

Specified as: a fullword integer; ldb > 0 and ldb ≥ n.

nsinfo is the number of elements in array, AP.

If n ≤ nco, nsinfo = n(n + 1) / 2

Where:

ics is the size in doublewords of the data cache. The data cache size can
be obtained by utilizing the following C language code fragment:
#include <sys/systemcfg.h>
int ics;

.

.

.
ics=_system_configuration.dcache_size/8;

Otherwise, to determine a sufficient amount of storage, use the following
processor-independent formula:

n0 = 100
ns = (n + n0) (n + n0 + 1) / 2 + n(n0)
For uplo = 'L',

nsinfo ≥ ns
For uplo = 'U',

n1 = (n + 1) / 2
nt = n((n + 1) / 2)
nt1 = n1(n1 + 1)
ns1 = nt + nt1
nsinfo ≥ max(ns, ns1)

To determine the minimal amount of storage see “Notes” on page 486.

Specified as: a fullword integer; nsinfo > 0.

On Return:

ap is the transformed matrix A of order n, containing the results of the
factorization.

If nsinfo ≥ 0 and n > nco, additional information that can be used to
obtain a minimum nsinfo is stored in AP(1). See “Notes” on page 486 and
“Function” on page 486.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 97 on page 484.

ipvt is an integer vector of length n, containing the pivot information necessary
to construct the factored form of A.

Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 97 on page 484.

b is the matrix B, containing the nrhs solutions to the system in the columns
of B.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 97 on page 484.

nsinfo indicates the result of the computation.

DBSSV

Chapter 10. Linear Algebraic Equations 485

v If nsinfo = 0, the subroutine completed successfully.
v If nsinfo > 0, factorization was unsuccessful and array B was not

updated. nsinfo is set to i where dii is exactly zero.
v If nsinfo < 0, factorization did not take place and the arrays, AP and B,

remain unchanged. |nsinfo| is the minimal storage required for
factorization to take place. Error message 2200 is issued and execution
terminates, unless you have used ERRSET to make error code 2200
recoverable. See “What Can You Do about ESSL Input-Argument
Errors?” on page 44.

Specified as: a fullword integer.

Notes
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your C program, argument nsinfo must be passed by reference.
3. In the input array specified for ap, the first n(n+1)/2 elements are matrix

elements. The additional locations, required in the array, are used for working
storage.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. On return, if nsinfo ≥ 0 and n > nco, ap contains additional information in AP(1)
that can be used to obtain the minimal required nsinfo. This information can be
accessed using the following code fragment:
REAL*8 AP(NSINFO)
INTEGER API(2)
EQUIVALENCE(API, AP)

.

.

.
NSINFOMIN = API(2)

6. For a description of how a symmetric matrix is stored in upper- or
lower-packed storage mode in an array, see “Symmetric Matrix” on page 62.

Function
The system AX = B is solved for X, where A is a real symmetric indefinite matrix,
and X and B are real general matrices.

The matrix A, stored in upper- or lower-packed storage mode, is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as:

A = UDUT or
A = LDLT

where:
U is a product of permutation and unit upper triangular matrices.
L is a product of permutation and unit lower triangular matrices.
D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

If n or nrhs is 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See references [8] and [65].

DBSSV

486 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Resource Errors: None.

Computational Errors: Matrix A is singular.
v The factorization completed but the block diagonal matrix D is exactly singular.

nsinfo is set to i, where dii is exactly zero. This diagonal element is identified in
the computational error message.

v The computational error message may occur multiple times with processing
continuing after each error, because the default for the number of allowable
errors for error code 2147 is set to be unlimited in the ESSL error option table.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. n < 0
3. n > ldb
4. ldb ≤ 0
5. nrhs < 0
6. nsinfo < (minimum value).
v For the minimum value, see the nsinfo argument description.
v Return code 1 is returned if error 2200 is recoverable.

Example 1
This example shows how to solve the system AX = B, for three right-hand sides,
where matrix A is a real symmetric indefinite matrix of order 8, stored in
lower-packed storage mode, and X and B are real general matrices.

On input, matrix A is:
┌ ┐
| 3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0 |
| 5.0 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0 |
| -2.0 2.0 0.0 0.0 -2.0 2.0 0.0 6.0 |

A = | 2.0 -2.0 0.0 8.0 -6.0 -10.0 -8.0 -14.0 |
| 3.0 5.0 -2.0 -6.0 12.0 6.0 8.0 6.0 |
| -5.0 -3.0 2.0 -10.0 6.0 16.0 8.0 20.0 |
| -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 18.0 |
| -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
└ ┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in lower-packed storage mode.

Call Statement and Input:
UPLO N NRHS AP IPVT B LDB NSINFO
| | | | | | | |

CALL DBSSV ('L', 8, 3, AP, IPVT, B, 8, 36)

AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
8.0, -6.0,-10.0, -8.0,-14.0,

12.0, 6.0, 8.0, 6.0,
16.0, 8.0, 20.0,
6.0, 18.0,

34.0)

┌ ┐
| 1.0 -38.0 47.0 |
| 7.0 -10.0 73.0 |

DBSSV

Chapter 10. Linear Algebraic Equations 487

| 6.0 52.0 2.0 |
B = | -30.0 -228.0 -42.0 |

| 32.0 183.0 105.0 |
| 34.0 297.0 9.0 |
| 32.0 244.0 44.0 |
| 62.0 497.0 61.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

NSINFO = 0

Note: AP and IPVT are stored in an internal format.

Example 2
This example shows how to solve the system AX = B, for three right-hand sides,
where matrix A is a real symmetric indefinite matrix of order 8, stored in
upper-packed storage mode, and X and B are real general matrices.

On input, matrix A is:
┌ ┐
| 34.0 18.0 17.0 6.0 -14.0 6.0 -5.0 -3.0 |
| 18.0 6.0 6.0 8.0 -8.0 0.0 2.0 -2.0 |
| 17.0 6.0 9.0 9.0 -8.0 0.0 2.0 -2.0 |
| 6.0 8.0 9.0 12.0 -6.0 -2.0 5.0 3.0 |
|-14.0 -8.0 -8.0 -6.0 8.0 0.0 -2.0 2.0 |
| 6.0 0.0 0.0 -2.0 0.0 0.0 2.0 -2.0 |
| -5.0 2.0 2.0 5.0 -2.0 2.0 3.0 5.0 |
| -3.0 -2.0 -2.0 3.0 2.0 -2.0 5.0 3.0 |
└ ┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in upper-packed storage mode.

Call Statement and Input:
UPLO N NRHS AP IPVT B LDB NSINFO
| | | | | | | |

CALL DBSSV ('U', 8, 3, AP, IPVT, B, 8, 36)

AP = (34.0,
18.0, 6.0,
17.0, 6.0, 9.0,
6.0, 8.0, 9.0, 12.0,

-14.0, -8.0, -8.0, -6.0, 8.0,
6.0, 0.0, 0.0, -2.0, 0.0, 0.0,

-5.0, 2.0, 2.0, 5.0, -2.0, 2.0, 3.0,
-3.0, -2.0, -2.0, 3.0, 2.0, -2.0, 5.0, 3.0)

┌ ┐
| 59.0 52.0 479.0 |
| 30.0 38.0 232.0 |
| 33.0 50.0 247.0 |

B = | 35.0 114.0 201.0 |
| -28.0 -36.0 -216.0 |

DBSSV

488 ESSL Version 3 Release 3 Guide and Reference

| 4.0 -4.0 40.0 |
| 12.0 88.0 20.0 |
| 4.0 56.0 -20.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

NSINFO = 0

Note: AP and IPVT are stored in an internal format.

DBSSV

Chapter 10. Linear Algebraic Equations 489

DBSTRF—Symmetric Indefinite Matrix Factorization
DBSTRF factors a real symmetric indefinite matrix A. The matrix A, stored in
upper- or lower-packed storage mode, is factored using the Bunch-Kaufman
diagonal pivoting method, where A is expressed as:

A = UDUT or
A = LDLT

where:
U is a product of permutation and unit upper triangular matrices.
L is a product of permutation and unit lower triangular matrices.
D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

To solve a system of equations with one or more right-hand sides, follow the call
to this subroutine with one or more calls to DBSTRS.

Table 98. Data Types

A ipvt Subroutine

Long-precision real Integer DBSTRF

Note: The output from DBSTRF should be used only as input to DBSTRS, for
performing a solve.

Syntax

Fortran CALL DBSTRF (uplo, n, ap, ipvt, nsinfo)

C and C++ dbstrf (uplo, n, ap, ipvt, nsinfo);

PL/I CALL DBSTRF (uplo, n, ap, ipvt, nsinfo);

On Entry:

uplo indicates whether matrix A is stored in upper- or lower-packed storage
mode, where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A.

Specified as: a fullword integer; n ≥ 0.

ap is array, referred to as AP, in which matrix A, to be factored, is stored in
upper- or lower-packed storage mode.

Specified as: a one-dimensional array of length nsinfo, containing numbers
of the data type indicated in Table 98. See “Notes” on page 492.

ipvt See “On Return” on page 491.

nsinfo is the number of elements in array, AP.

If n ≤ nco, nsinfo = n(n + 1) / 2

Where:

DBSTRF

490 ESSL Version 3 Release 3 Guide and Reference

ics is the size in doublewords of the data cache. The data cache size can
be obtained by utilizing the following C language code fragment:
#include <sys/systemcfg.h>
int ics;

.

.

.
ics=_system_configuration.dcache_size/8;

Otherwise, to determine a sufficient amount of storage, use the following
processor-independent formula:

n0 = 100
ns = (n + n0) (n + n0 + 1) / 2 + n(n0)
For uplo = 'L',

nsinfo ≥ ns
For uplo = 'U',

n1 = (n + 1) / 2
nt = n((n + 1) / 2)
nt1 = n1(n1 + 1)
ns1 = nt + nt1
nsinfo ≥ max(ns, ns1)

To determine the minimal amount of storage see “Notes” on page 492.

Specified as: a fullword integer; nsinfo > 0.

On Return:

ap is the transformed matrix A of order n, containing the results of the
factorization.

If nsinfo ≥ 0 and n > nco, additional information that can be used to
obtain a minimum nsinfo is stored in AP(1). See “Notes” on page 492 and
“Function” on page 492.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 98 on page 490.

ipvt is an integer vector of length n, containing the pivot information necessary
to construct the factored form of A.

Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 98 on page 490.

nsinfo indicates the result of the computation.
v If nsinfo = 0, the factorization completed successfully.
v If nsinfo > 0, factorization was unsuccessful and nsinfo is set toi where

dii is exactly zero.
v If nsinfo < 0, factorization did not take place and the array AP remains

unchanged. |nsinfo| is the minimal storage required for factorization to
take place. Error message 2200 is issued and execution terminates, unless
you have used ERRSET to make error code 2200 recoverable. See “What
Can You Do about ESSL Input-Argument Errors?” on page 44.

Specified as: a fullword integer.

DBSTRF

Chapter 10. Linear Algebraic Equations 491

Notes
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your C program, argument nsinfo must be passed by reference.
3. In the input array specified for ap, the first n(n+1)/2 elements are matrix

elements. The additional locations, required in the array, are used for working
storage.

4. The array specified for ap should not be altered between calls to the
factorization and solve subroutines; otherwise, unpredictable results may occur.

5. On return, if nsinfo ≥ 0 and n > nco, ap contains additional information in AP(1)
that can be used to obtain the minimal required nsinfo. This information can be
accessed using the following code fragment:
REAL*8 AP(NSINFO)
INTEGER API(2)
EQUIVALENCE(API, AP)

.

.

.
NSINFOMIN = API(2)

6. For a description of how a symmetric matrix is stored in upper- or
lower-packed storage mode in an array, see “Symmetric Matrix” on page 62.

Function
A real symmetric indefinite matrix A, stored in upper- or lower-packed storage
mode, is factored using the Bunch-Kaufman diagonal pivoting method, where A is
expressed as:

A = UDUT or
A = LDLT

where:
U is a product of permutation and unit upper triangular matrices.
L is a product of permutation and unit lower triangular matrices.
D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking.

See references [8] and [65].

Error Conditions

Resource Errors: None.

Computational Errors: Matrix A is singular.
v The factorization completed but the block diagonal matrix D is exactly singular.

nsinfo is set to i, where dii is exactly zero. This diagonal element is identified in
the computational error message.

v The computational error message may occur multiple times with processing
continuing after each error, because the default for the number of allowable
errors for error code 2147 is set to be unlimited in the ESSL error option table.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. n < 0

DBSTRF

492 ESSL Version 3 Release 3 Guide and Reference

3. nsinfo < (minimum value).
v For the minimum value, see the nsinfo argument description.
v Return code 1 is returned if error 2200 is recoverable.

Example 1
This example shows a factorization of a symmetric indefinite matrix A of order 8,
stored in lower-packed storage mode, where on input matrix A is:

┌ ┐
| 3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0 |
| 5.0 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0 |
| -2.0 2.0 0.0 0.0 -2.0 2.0 0.0 6.0 |
| 2.0 -2.0 0.0 8.0 -6.0 -10.0 -8.0 -14.0 |
| 3.0 5.0 -2.0 -6.0 12.0 6.0 8.0 6.0 |
| -5.0 -3.0 2.0 -10.0 6.0 16.0 8.0 20.0 |
| -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 18.0 |
| -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
└ ┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in lower-packed storage mode.

Call Statement and Input:
UPLO N AP IPVT NSINFO
| | | | |

CALL DBSTRF ('L', 8, AP, IPVT, 36)

AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
8.0, -6.0,-10.0, -8.0,-14.0,

12.0, 6.0, 8.0, 6.0,
16.0, 8.0, 20.0,
6.0, 18.0,

34.0)

Output: NSINFO = 0

Note: AP and IPVT are stored in an internal format and must be passed unchanged
to the solve subroutine.

Example 2
This example shows a factorization of a symmetric indefinite matrix A of order 8,
stored in upper-packed storage mode, where on input matrix A is:

┌ ┐
| 34.0 18.0 17.0 6.0 -14.0 6.0 -5.0 -3.0 |
| 18.0 6.0 6.0 8.0 -8.0 0.0 2.0 -2.0 |
| 17.0 6.0 9.0 9.0 -8.0 0.0 2.0 -2.0 |
| 6.0 8.0 9.0 12.0 -6.0 -2.0 5.0 3.0 |
|-14.0 -8.0 -8.0 -6.0 8.0 0.0 -2.0 2.0 |
| 6.0 0.0 0.0 -2.0 0.0 0.0 2.0 -2.0 |
| -5.0 2.0 2.0 5.0 -2.0 2.0 3.0 5.0 |
| -3.0 -2.0 -2.0 3.0 2.0 -2.0 5.0 3.0 |
└ ┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in upper-packed storage mode.

Call Statement and Input:
UPLO N AP IPVT NSINFO
| | | | |

CALL DBSTRF ('U', 8, AP, IPVT, 36)

DBSTRF

Chapter 10. Linear Algebraic Equations 493

AP = (34.0,
18.0, 6.0,
17.0, 6.0, 9.0,
6.0, 8.0, 9.0, 12.0,

-14.0, -8.0, -8.0, -6.0, 8.0,
6.0, 0.0, 0.0, -2.0, 0.0, 0.0,

-5.0, 2.0, 2.0, 5.0, -2.0, 2.0, 3.0,
-3.0, -2.0, -2.0, 3.0, 2.0, -2.0, 5.0, 3.0)

Output: NSINFO = 0

Note: AP and IPVT are stored in an internal format and must be passed unchanged
to the solve subroutine.

DBSTRF

494 ESSL Version 3 Release 3 Guide and Reference

DBSTRS—Symmetric Indefinite Matrix Multiple Right-Hand Side Solve
The DBSTRS subroutine solves a system of linear equations AX = B for X, where
A is a real symmetric indefinite matrix, and X and B are real general matrices. This
subroutine uses the results of the factorization of matrix A, produced by a
preceding call to DBSTRF.

Table 99. Data Types

A, B ipvt Subroutine

Long-precision real Integer DBSTRS

Note: The input to this solve subroutine must be the output from the factorization
subroutine DBSTRF.

Syntax

Fortran CALL DBSTRS (uplo, n, nrhs, ap, ipvt, b, ldb, info)

C and C++ dbstrs (uplo, n, nrhs, ap, ipvt, b, ldb, info);

PL/I CALL DBSTRS (uplo, n, nrhs, ap, ipvt, b, ldb, info);

On Entry:

uplo indicates whether original matrix A is stored in upper- or lower-packed
storage mode, where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of factored matrix A and the number of rows of matrix B.

Specified as: a fullword integer; n ≥ 0.

nrhs is the number of right-hand sides; i.e., the number of columns of matrix B.

Specified as: a fullword integer; nrhs ≥ 0.

ap is the factored matrix A produced by a preceding call to DBSTRF.

Specified as: a one-dimensional array of length nsinfo, containing numbers
of the data type indicated in Table 99. See Notes and “DBSTRF—Symmetric
Indefinite Matrix Factorization” on page 490.

ipvt is an integer vector of length n, containing the pivot information necessary
to construct the factored form of A, produced by a preceding call to
DBSTRF..

Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 99. See Notes.

b is the matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 99.

ldb is the leading dimension of the array specified for B.

Specified as: a fullword integer; ldb > 0 and ldb ≥ n.

DBSTRS

Chapter 10. Linear Algebraic Equations 495

info See On Return.

On Return:

b is the matrix B, containing the nrhs solutions to the system in the columns
of B.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 99 on page 495.

info indicates the result of the computation.
v If info = 0, the subroutine completed successfully.

Returned as: a fullword integer.

Notes
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your C program, argument info must be passed by reference.
3. The array data specified for input arguments ap and ipvt for this subroutine

must be the same as the corresponding output arguments for DBSTRF.
4. The scalar data specified for input arguments uplo and n must be the same as

that specified for DBSTRF.
5. The vectors and matrices used in this computation must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 53.
6. For a description of how a symmetric matrix is stored in upper- or

lower-packed storage mode in an array, see “Symmetric Matrix” on page 62.
7. To solve AX = B for X, where B and X are n by nrhs matrices, precede the call

to DBSTRS with a call to DBSTRF.

Function
The system AX = B is solved for X, where A is a real symmetric indefinite matrix,
and X and B are real general matrices. This subroutine uses the results of the
factorization of matrix A, produced by a preceding call to DBSTRF.

If n or nrhs is 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See references [8] and [65].

Error Conditions

Resource Errors: None.

Computational Errors: None.

Note: If the factorization performed by DBSTRF failed because matrix A is
singular, the results returned by this subroutine are unpredictable, and there
may be a divide-by-zero program exception message.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. n > ldb
5. ldb ≤ 0

DBSTRS

496 ESSL Version 3 Release 3 Guide and Reference

Example 1
This example shows how to solve the system AX = B, for three right-hand sides,
where matrix A is the same matrix factored in the “Example 1” on page 493 for
DBSTRF.

Call Statement and Input:
UPLO N NRHS AP IPVT B LDB INFO
| | | | | | | |

CALL DBSTRS ('L', 8, 3, AP, IPVT, B, 8, INFO)

AP = (for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See “Example 1” on page 493 for DBSTRF.)

IPVT = (for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See “Example 1” on page 493 for DBSTRF.)

┌ ┐
| 1.0 -38.0 47.0 |
| 7.0 -10.0 73.0 |
| 6.0 52.0 2.0 |

B = | -30.0 -228.0 -42.0 |
| 32.0 183.0 105.0 |
| 34.0 297.0 9.0 |
| 32.0 244.0 44.0 |
| 62.0 497.0 61.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

INFO = 0

Example 2
This example shows how to solve the system AX = B, for three right-hand sides,
where matrix A is the same matrix factored in the “Example 2” on page 493 for
DBSTRF.

Call Statement and Input:
UPLO N NRHS AP IPVT B LDB INFO
| | | | | | | |

CALL DBSTRS ('U', 8, 3, AP, IPVT, B, 8, INFO)

AP =(for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See “Example 2” on page 493 for DBSTRF.)

IPVT =(for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See “Example 2” on page 493 for DBSTRF.)

DBSTRS

Chapter 10. Linear Algebraic Equations 497

┌ ┐
| 59.0 52.0 479.0 |
| 30.0 38.0 232.0 |
| 33.0 50.0 247.0 |

B = | 35.0 114.0 201.0 |
| -28.0 -36.0 -216.0 |
| 4.0 -4.0 40.0 |
| 12.0 88.0 20.0 |
| 4.0 56.0 -20.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

INFO = 0

DBSTRS

498 ESSL Version 3 Release 3 Guide and Reference

SGEICD, DGEICD, SGETRI and DGETRI—General Matrix Inverse
These subroutines find the inverse of general matrix A.

Subroutines SGEICD and DGEICD also find the reciprocal of the condition number
and the determinant of general matrix A.

Table 100. Data Types

A, aux, rcond, det, work Subroutine

Short-precision real SGEICD and SGETRI

Long-precision real DGEICD and DGETRI

Note: If you call subroutines SGEICD and DGEICD with iopt = 4, the input must
be the output from the factorization subroutines SGEF/SGEFCD/SGETRF or
DGEF/DGEFCD/DGEFP/DGETRF, respectively.

The input to SGETRI and DGETRI must be the output from the factorization
subroutines SGETRF and DGETRF, respectively.

Syntax

Fortran CALL SGEICD | DGEICD (a, lda, n, iopt, rcond, det, aux, naux)

CALL SGETRI | DGETRI (n, a, lda, ipvt, work, lwork, info)

C and C++ sgeicd | dgeicd (a, lda, n, iopt, rcond, det, aux, naux);

sgetri | dgetri (n, a, lda, ipvt, work, lwork, info);

PL/I CALL SGEICD | DGEICD (a, lda, n, iopt, rcond, det, aux, naux);

CALL SGETRI | DGETRI (n, a, lda, ipvt, work, lwork, info);

On Entry:

a has the following meaning, where:

For subroutines SGEICD and DGEICD:

If iopt = 0, 1, 2, or 3, it is matrix A of order n, whose inverse,
reciprocal of condition number, and determinant are computed.

If iopt = 4, it is the transformed matrix A of order n, resulting from
the factorization performed in a previous call to SGEF/SGEFCD or
DGEF/DGEFCD/DGEFP, respectively, whose inverse is computed.

For subroutines SGETRI and DGETRI:

It is the transformed matrix A of order n, resulting from the
factorization performed in a previous call to SGETRF or DGETRF,
respectively, whose inverse is computed.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 100.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order of matrix A. Specified as: a fullword integer; 0 ≤ n ≤ lda.

iopt indicates the type of computation to be performed, where:

SGEICD, DGEICD, SGETRI, and DGETRI

Chapter 10. Linear Algebraic Equations 499

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

If iopt = 0, the inverse is computed for matrix A.

If iopt = 1, the inverse and the reciprocal of the condition number are
computed for matrix A.

If iopt = 2, the inverse and the determinant are computed for matrix A.

If iopt = 3, the inverse, the reciprocal of the condition number, and the
determinant are computed for matrix A.

If iopt = 4, the inverse is computed using the factored matrix A.

Specified as: a fullword integer; iopt = 0, 1, 2, 3, 4.

rcond See “On Return” on page 501.

det See “On Return” on page 501.

aux has the following meaning, and its size is specified by naux:

If iopt = 0, 1, 2, or 3, then if naux = 0 and error 2015 is unrecoverable, aux
is ignored. Otherwise, it is the storage work area used by this subroutine.

If iopt = 4, aux has the following meaning:
v For SGEICD, the first n locations in aux must contain the ipvt integer

vector of length n, resulting from a previous call to SGEF, SGETRF, or
SGEFCD.

v For DGEICD, the first ceiling(n/2) locations in aux must contain the ipvt
integer vector of length n, resulting from a previous call to DGEF,
DGETRF, DGEFCD, or DGEFP.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 100 on page 499.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If iopt ≠ 4, then if naux = 0 and error 2015 is unrecoverable, SGEICD and
DGEICD dynamically allocate the work area used by the subroutine. The
work area is deallocated before control is returned to the calling program.

Otherwise naux must have the following value:

For the POWER, POWER3, POWER4, or PowerPC processors, naux ≥ 100n.

For the POWER2 processors, naux ≥ 200n.

Note: naux values specified for releases prior to ESSL Version 2 Release 2
will still work, but you may not achieve optimal performance.

ipvt is the integer vector ipvt of length n, containing the pivot indices resulting
from a previous call to SGETRF or DGETRF. Specified as: a
one-dimensional array of (at least) length n, containing fullword integers,
where 1 ≤ ipvt(i) ≤ n.

work has the following meaning:

If lwork = 0, work is ignored.

If lwork ≠ 0, work is the work area used by this subroutine, where:
v If lwork ≠ −1, its size is (at least) of length lwork.
v If lwork = −1, its size is (at least) of length 1.

SGEICD, DGEICD, SGETRI, and DGETRI

500 ESSL Version 3 Release 3 Guide and Reference

|

|

||
|
|
|

||

|

|

|

|

Specified as: an area of storage containing numbers of data type indicated
in Table 100 on page 499.

lwork is the number of elements in array WORK.

Specified as: a fullword integer; where:
v If lwork = 0, SGETRI/DGETRI dynamically allocates the work area used

by this subroutine. The work area is deallocated before control is
returned to the calling program. This option is an extension to the
LAPACK standard.

v If lwork = −1, SGETRI/DGETRI performs a work area query and returns
the optimal size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise, it must be:
lwork ≥ max(1, n)

v For optimal performance, lwork ≥100*n.

info See “On Return”.

On Return:

a is the resulting inverse of matrix A of order n. Returned as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 100
on page 499.

rcond is the reciprocal of the condition number, rcond, of matrix A. Returned as: a
real number of the data type indicated in Table 100 on page 499; rcond ≥ 0.

det is the vector det, containing the two components det1 and det2 of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing
numbers of the data type indicated in Table 100 on page 499.

work is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ −1, its size is (at least) of length lwork.

If lwork = −1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = −1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 100 on page 499.
Except for work1, the contents of work are overwritten on return.

info has the following meaning:

If info = 0, the inverse completed successfully.

If info > 0, info is set equal to the first i, where Uii is exactly zero. The
matrix is singular, and its inverse could not be computed.

Specified as: a fullword integer; info ≥ 0.

Notes
1. In your C program, arguments rcond and info must be passed by reference.

SGEICD, DGEICD, SGETRI, and DGETRI

Chapter 10. Linear Algebraic Equations 501

|

|

|
|

||

|

|
|
|
|

|
|
|

|

|

|

||

||

|

|

|

|
|
|

||

|

|
|

|

|

2. If iopt = 4, the input scalar arguments for SGEICD and DGEICD must be set to
the same values as the corresponding input arguments in the previous call to
SGEF/SGEFCD or DGEF/DGEFCD/DGEFP, respectively.
The input scalar arguments for SGETRI and DGETRI must be set to the same
values as the corresponding input arguments in the previous call to SGETRF or
DGETRF, respectively.

3. You have the option of having the value for naux dynamically returned to your
program. For details, see “Using Auxiliary Storage in ESSL” on page 29.

4. The way _GETRI subroutines handle computational errors differs from
LAPACK. These subroutines use the info argument to provide information
about the computational error, like LAPACK, but also provide an error
message.

5. On both input and output, matrix A conforms to LAPACK format.
6. For best performance, specify lwork = 0.

Function
For subroutines SGEICD and DGEICD, the inverse, the reciprocal of the condition
number, and the determinant of a general square matrix A are computed using
partial pivoting to preserve accuracy, where:
v A−1 is the inverse of matrix A, where AA−1 = A−1A = I, and I is the identity

matrix.
v 1/(\A\1)(\A−1\1) is the reciprocal of the condition number, where \A\1 is the

one-norm of matrix A.
v |A| is the determinant of matrix A, where |A| is expressed as:

The iopt argument is used to determine the combination of output items produced
by this subroutine: the inverse, the reciprocal of the condition number, and the
determinant.

For subroutines SGETRI and DGETRI, the inverse of general square matrix A is
computed.

If n is 0, no computation is performed. See references [36], [38], and [44].

Error Conditions

Resource Errors: If iopt = 0, 1, 2, or 3, then error 2015 is unrecoverable, naux = 0,
and unable to allocate work area.

Computational Errors:

1. Matrix A is singular or nearly singular (for SGEICD and DGEICD).
v The index i of the first pivot element having a value equal to 0, is identified

in the computational error message.
v These subroutines return 0 for rcond and det, if you requested them.
v The return code is set to 2.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2105 in the ESSL error option table; otherwise,

SGEICD, DGEICD, SGETRI, and DGETRI

502 ESSL Version 3 Release 3 Guide and Reference

|
|
|

|
|
|

|
|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|

the default value causes your program to terminate when this error occurs.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

2. Matrix A is singular or nearly singular (for SGETRI and DGETRI).
v The index i of the first pivot element having a value equal to 0, is identified

in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2149 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors:
1. lda ≤ 0
2. n < 0
3. n > lda
4. iopt ≠ 0, 1, 2, 3, or 4
5. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1
This example computes the inverse, the reciprocal of the condition number, and the
determinant of matrix A. The values used to compute the reciprocal of the
condition number in this example are obtained with the following values:
\A\1 = max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0
\A−1\1 = 1226.33

On output, the value in det, |A|, is equal to 336.

Call Statement and Input:
A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | |

CALL DGEICD(A , 9 , 9 , 3 , RCOND , DET , AUX , 293)

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |

A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

Output:
┌ ┐
| 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
| 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
| -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
| -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |

A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
| -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
| 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
| -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
└ ┘

RCOND = 0.00005436
DET = (3.36, 2.00)

SGEICD, DGEICD, SGETRI, and DGETRI

Chapter 10. Linear Algebraic Equations 503

|
|
|

|

|
|

|
|
|
|

Example 2
This example computes the inverse of matrix A, where: iopt = 4; matrix A is the
transformed matrix factored by SGEF in “Example 1” on page 439; and the input
contents of AUX are the same as the output contents of IPVT in “Example 1” on
page 439.

Call Statement and Input:
A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | |

CALL SGEICD(A , 9 , 9 , 4 , RCOND , DET , AUX , 300)

A = (same as output A in “Example 1” on page 439)
AUX = (same as output IPVT in “Example 1” on page 439)

Output:
┌ ┐
| 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
| 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
| -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
| -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |

A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
| -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
| 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
| -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
└ ┘

Example 3
This example computes the inverse of matrix A, where matrix A is the transformed
matrix factored by SGETRF in “Example 3” on page 451 and the input contents of
IPVT are the same as the output contents of IPVT in “Example 3” on page 451.

Note: Because lwork is 0, SGETRI dynamically allocates the work area used by this
subroutine.

Call Statement and Input:
N A LDA IPVT WORK LWORK INFO
| | | | | | |

CALL SGETRI(9 , A , 9 , IPVT , WORK , 0 , INFO)

A = (same as output A in “Example 3” on page 451)
IPVT = (same as output IPVT in “Example 3” on page 451)

Output:
┌ ┐
| 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
| 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
| -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
| -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |

A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
| -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
| 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
| -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
└ ┘

INFO = 0

SGEICD, DGEICD, SGETRI, and DGETRI

504 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI and DPOTRI—Positive
Definite Real Symmetric Matrix Inverse

These subroutines find the inverse of positive definite real symmetric matrix A
using Cholesky factorization, where:
v For SPPICD and DPPICD, A is stored in lower-packed storage mode.
v For SPOICD, DPOICD, SPOTRI, and DPOTRI, A is stored in upper or lower

storage mode.

Subroutines SPPICD, DPPICD, SPOICD, and DPOICD also find the reciprocal of
the condition number and the determinant of matrix A.

Table 101. Data Types

A, aux, rcond, det Subroutine

Short-precision real SPPICD, SPOICD, and SPOTRI

Long-precision real DPPICD, DPOICD, and DPOTRI

Note: If you call subroutines SPPICD, SPOICD, DPPICD, and DPOICD with
iopt = 4, the input must be the output from the factorization subroutines
SPPF, DPPF, SPOF/SPOFCD, or DPOF/DPOFCD, respectively, where
Cholesky factorization was performed.

For SPOTRI and DPOTRI, the input must be the output from the
factorization subroutines SPOTRF or DPOTRF, respectively.

Syntax

Fortran CALL SPPICD | DPPICD (ap, n, iopt, rcond, det, aux, naux)

CALL SPOICD | DPOICD (uplo, a, lda, n, iopt, rcond, det, aux, naux)

CALL SPOTRI | DPOTRI (uplo, n, a, lda, info)

C and C++ sppicd | dppicd (ap, n, iopt, rcond, det, aux, naux);

spoicd | dpoicd (uplo, a, lda, n, iopt, rcond, det, aux, naux);

spotri | dpotri (uplo, n, a, lda, info);

PL/I CALL SPPICD | DPPICD (ap, n, iopt, rcond, det, aux, naux);

CALL SPOICD | DPOICD (uplo, a, lda, n, iopt, rcond, det, aux, naux);

CALL SPOTRI | DPOTRI (uplo, n, a, lda, info);

On Entry:

uplo indicates whether matrix A is stored in upper or lower storage mode,
where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap is the array, referred to as AP, where:

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

Chapter 10. Linear Algebraic Equations 505

|

|
|

|
|

|

|

|
|
|
|

|
|

|

|

|

If iopt = 0, 1, 2, or 3, then AP contains the positive definite real symmetric
matrix A, whose inverse, condition number reciprocal, and determinant are
computed, where matrix A is stored in lower-packed storage mode.

If iopt = 4, then AP contains the transformed matrix A of order n, resulting
from the Cholesky factorization performed in a previous call to SPPF or
DPPF, respectively, whose inverse is computed.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in Table 101 on page 505.

a has the following meaning, where:

For SPPICD, DPPICD, SPOICD, and DPOICD:

If iopt = 0, 1, 2, or 3, it is the positive definite real symmetric
matrix A, whose inverse, condition number reciprocal, and
determinant are computed, where matrix A is stored in upper or
lower storage mode.

If iopt = 4, it is the transformed matrix A of order n, containing
results of the factorization from a previous call to SPOF/SPOFCD
or DPOF/DPOFCD, respectively, whose inverse is computed.

For SPOTRI and DPOTRI:

It is the transformed matrix A of order n, containing results of the
factorization from a previous call to SPOTRF or DPOTRF,
respectively, whose inverse is computed.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 101 on page 505.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

n is the order n of matrix A. Specified as: a fullword integer; n ≥ 0.

iopt indicates the type of computation to be performed, where:

If iopt = 0, the inverse is computed for matrix A.

If iopt = 1, the inverse and the reciprocal of the condition number are
computed for matrix A.

If iopt = 2, the inverse and the determinant are computed for matrix A.

If iopt = 3, the inverse, the reciprocal of the condition number, and the
determinant are computed for matrix A.

If iopt = 4, the inverse is computed for the (Cholesky) factored matrix A.

Specified as: a fullword integer; iopt = 0, 1, 2, 3, or 4.

rcond See “On Return” on page 507.

det See “On Return” on page 507.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux. Specified as: an area of storage, containing numbers of
the data type indicated in Table 101 on page 505.

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

506 ESSL Version 3 Release 3 Guide and Reference

|

|

|
|
|

|

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SPPICD, DPPICD, SPOICD,
and DPOICD dynamically allocate the work area used by the subroutine.
The work area is deallocated before control is returned to the calling
program.

Otherwise, naux ≥ n.

info See “On Return”.

On Return:

ap is the resulting array, referred to as AP, containing the inverse of the matrix
in lower-packed storage mode. Returned as: a one-dimensional array of (at
least) length n(n+1)/2, containing numbers of the data type indicated in
Table 101 on page 505.

a is the transformed matrix A of order n, containing the inverse of the matrix
in upper or lower storage mode. Returned as: a two-dimensional array,
containing numbers of the data type indicated in Table 101 on page 505.

rcond is the reciprocal of the condition number, rcond, of matrix A. Returned as: a
real number of the data type indicated in Table 101 on page 505; rcond ≥ 0.

det is the vector det, containing the two components det1 and det2 of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing
numbers of the data type indicated in Table 101 on page 505.

info has the following meaning:

If info = 0, the inverse completed successfully.

If info > 0, info is set equal to the first i, where Aii is zero; the matrix is not
positive definite, and its inverse could not be completed.

Specified as: a fullword integer; info ≥ 0.

Notes
1. In your C program, the arguments info and rcond must be passed by reference.
2. For SPPICD, DPPICD, SPOICD, and DPOICD, when you specify iopt = 4, you

must do the following:
v For SPPICD and DPPICD, use Cholesky factorization in the previous call to

SPPF or DPPF, respectively.
v For SPOICD and DPOICD, specify the same storage mode for matrix A that

was specified in the previous call to SPOF/SPOFCD or DPOF/DPOFCD,
respectively.

3. The scalar data specified for input arguments uplo, lda, and n for these
subroutines must be the same as the corresponding input arguments specified
for SPOF/SPOFCD/SPOTRF and DPOF/DPOFCD/DPOTRF, respectively.

4. All subroutines accept lowercase letters for the uplo argument.
5. SPPICD and DPPICD in some cases utilize algorithms based on recursive

packed storage format. (See references [52], [66], and [67]).

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

Chapter 10. Linear Algebraic Equations 507

|

||

||

|

|
|

|

|

|
|

|
|

|
|
|

|

|

|

|

6. The way _POTRI subroutines handle computational errors differs from
LAPACK. These subroutines use the info argument to provide information
about the computational error, like LAPACK, but also provide an error
message.

7. On both input and output, matrix A conforms to LAPACK format.
8. For a description of how a positive definite symmetric matrix is stored in

lower-packed storage mode in an array, see “Symmetric Matrix” on page 62. For
a description of how a positive definite symmetric matrix is stored in upper or
lower storage mode, see “Positive Definite or Negative Definite Symmetric
Matrix” on page 67.

9. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
These subroutines perform the following function:

SPPICD, DPPICD, SPOICD, and DPOICD

Find the inverse, the reciprocal of the condition number, and the
determinant of positive definite symmetric matrix A using Cholesky
factorization, where:
v A−1 is the inverse of matrix A, where AA−1 = A−1A = I, and I is the

identity matrix.
v 1/(\A\1)(\A−1\1) is the reciprocal of the condition number, where \A\1 is

the one-norm of matrix A.
v |A| is the determinant of matrix A, where |A| is expressed as:

The iopt argument is used to determine the combination of output items
produced by this subroutine: the inverse, the reciprocal of the condition
number, and the determinant.

SPOTRI and DPOTRI
Find the inverse of positive definite symmetric matrix A.

If n is 0, no computation is performed. See references [36], [38], and [44].

Error Conditions

Resource Errors:
v Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.
v Unable to allocate internal work area.

Computational Errors:

For SPPICD, DPPICD, SPOICD, and DPOICD:

Matrix A is not positive definite.
v These subroutines do not perform the inverse, determinant, and

reciprocal of the condition number computations.
v For iopt = 1, 2, or 3, the leading minor of order i has a nonpositive

determinant. The order i is identified in the computational error
message.

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

508 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|

|

|

|

|
|

|

|

v i can be determined at run time by using the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change
the number of allowable errors for error code 2115 in the error option
table; otherwise, the default value causes your program to terminate. If
your program is not terminated, the return code is set to 2. For details,
see “What Can You Do about ESSL Computational Errors?” on page 45.

The inverse of matrix A could not be computed.
v For iopt = 4, for _POICD and _PPICD, one or more of the diagonal

elements of the factored matrix A are zero. i is the first diagonal element
that is found to be exactly zero and is identified in the computational
error message. If one or more of the diagonal elements of the factored
matrix A are negative, the results are unpredictable.

v i can be determined at run time by using the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change
the number of allowable errors for error code 2150 in the error option
table; otherwise, the default value causes your program to terminate. If
your program is not terminated, the return code is set to 3. For details,
see “What Can You Do about ESSL Computational Errors?” on page 45.

For SPOTRI and DPOTRI:

The inverse of matrix A could not be computed.
v One or more of the diagonal elements of the factored matrix A are zero.

The first diagonal element that is found to be exactly zero is identified in
the computational error message and returned in info. If one or more of
the diagonal elements of the factored matrix A are negative, the results
are unpredictable.

v The computational error message may occur multiple times with
processing continuing after each error because the default for the
number of allowable errors for error code 2151 is set to be unlimited in
the ESSL error option table.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. n < 0
3. lda ≤ 0
4. lda < n
5. iopt ≠ 0, 1, 2, 3, or 4
6. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1
This example uses SPPICD to compute the inverse, reciprocal of the condition
number, and determinant of matrix A. Where A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

Chapter 10. Linear Algebraic Equations 509

|

|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

The values used to compute the reciprocal of the condition number in this example
are obtained with the following values:
\A\1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
\A−1\1 = 4.0

On output, the value in det, |A|, is equal to 1, and RCOND = 1/180.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT RCOND DET AUX NAUX
| | | | | | |

CALL SPPICD(AP , 9 , 3 , RCOND , DET , AUX , 9)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0)

Output:
AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0,
2.0, -1.0, 0.0,
2.0, -1.0,
1.0)

RCOND = 0.005556
DET = (1.0, 0.0)

Example 2
This example uses SPPICD to compute the inverse of matrix A, where iopt = 4,
and matrix A is the transformed matrix factored in “Example 1” on page 465 by
SPPF.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT RCOND DET AUX NAUX
| | | | | | |

CALL SPPICD(AP , 9 , 4 , RCOND , DET , AUX , 9)

AP =(same as output AP in “Example 2” on page 466 for SPPF)

Output:
AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0,

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

510 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|

|

|

|
|
|
|
|

2.0, -1.0, 0.0, 0.0,
2.0, -1.0, 0.0,
2.0, -1.0,
1.0)

Example 3
This example uses SPOICD to compute the inverse, reciprocal of the condition
number, and determinant of the same matrix A used in Example 1; however,
matrix A is stored in upper storage mode in this example.

The values used to compute the reciprocal of the condition number in this example
are obtained with the following values:
\A\1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
\A−1\1 = 4.0

On output, the value in det, |A|, is equal to 1, and RCOND = 1/180.

Call Statement and Input:
UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOICD('U' , A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| . . . 4.0 4.0 4.0 4.0 4.0 4.0 |

A = | 5.0 5.0 5.0 5.0 5.0 |
| 6.0 6.0 6.0 6.0 |
| 7.0 7.0 7.0 |
| 8.0 8.0 |
| 9.0 |
└ ┘

Output:
┌ ┐
| 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| . . . 2.0 -1.0 0.0 0.0 0.0 0.0 |

A = | 2.0 -1.0 0.0 0.0 0.0 |
| 2.0 -1.0 0.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 |
| 1.0 |
└ ┘

RCOND = 0.005555556
DET = (1.0, 0.0)

Example 4
This example uses SPOICD or SPOTRI to compute the inverse of matrix A, where
iopt = 4, and matrix A is the transformed matrix factored by SPOF or SPOTRF in
“Example 1” on page 465.

Call Statement and Input:
UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOICD('U' , A , 9 , 9 , 4 , RCOND , DET , AUX , 9)

or

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

Chapter 10. Linear Algebraic Equations 511

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

UPLO N A LDA INFO
| | | | |

CALL SPOTRI('U' , 9 , A , 9 , INFO)

A =(same as output A in “Example 4” on page 467 for SPOF or SPOTRF)

Output:
┌ ┐
| 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| . . . 2.0 -1.0 0.0 0.0 0.0 0.0 |

A = | 2.0 -1.0 0.0 0.0 0.0 |
| 2.0 -1.0 0.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 |
| 1.0 |
└ ┘

INFO = 0

SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI, and DPOTRI

512 ESSL Version 3 Release 3 Guide and Reference

|
|
|

|

|

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and
ZTPSV—Solution of a Triangular System of Equations with a Single
Right-Hand Side

STRSV, DTRSV, STPSV, and DTPSV perform one of the following solves for a
triangular system of equations with a single right-hand side, using the vector x
and triangular matrix A or its transpose:

Solution Equation
1. x←A−1x Ax = b
2. x←A−Tx ATx = b

CTRSV, ZTRSV, CTPSV, and ZTPSV perform one of the following solves for a
triangular system of equations with a single right-hand side, using the vector x
and and triangular matrix A, its transpose, or its conjugate transpose:

Solution Equation
1. x←A−1x Ax = b
2. x←A−Tx ATx = b
3. x←A−Hx AHx = b

Matrix A can be either upper or lower triangular, where:
v For the _TRSV subroutines, it is stored in upper- or lower-triangular storage

mode, respectively.
v For the _TPSV subroutines, it is stored in upper- or lower-triangular-packed

storage mode, respectively.

Note: The term b used in the systems of equations listed above represents the
right-hand side of the system. It is important to note that in these
subroutines the right-hand side of the equation is actually provided in the
input-output argument x.

Table 102. Data Types

A, x Subroutine

Short-precision real STRSV and STPSV

Long-precision real DTRSV and DTPSV

Short-precision complex CTRSV and CTPSV

Long-precision complex ZTRSV and ZTPSV

Syntax

Fortran CALL STRSV | DTRSV | CTRSV | ZTRSV (uplo, transa, diag, n, a, lda, x, incx)

CALL STPSV | DTPSV | CTPSV | ZTPSV (uplo, transa, diag, n, ap, x, incx)

C and C++ strsv | dtrsv | ctrsv | ztrsv (uplo, transa, diag, n, a, lda, x, incx);

stpsv | dtpsv | ctpsv | ztpsv (uplo, transa, diag, n, ap, x, incx);

PL/I CALL STRSV | DTRSV | CTRSV | ZTRSV (uplo, transa, diag, n, a, lda, x, incx);

CALL STPSV | DTPSV | CTPSV | ZTPSV (uplo, transa, diag, n, ap, x, incx);

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV

Chapter 10. Linear Algebraic Equations 513

On Entry:

uplo indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

transa indicates the form of matrix A used in the system of equations, where:

If transa = 'N', A is used, resulting in solution 1.

If transa = 'T', AT is used, resulting in solution 2.

If transa = 'C', AH is used, resulting in solution 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

n is the order of triangular matrix A. Specified as: a fullword integer; n ≥ 0
and n ≤ lda.

a is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular storage mode, respectively. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 102
on page 513.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

ap is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular-packed storage mode, respectively. Specified as: a
one-dimensional array of (at least) length n(n+1)/2, containing numbers of
the data type indicated in Table 102 on page 513.

x is the vector x of length n, containing the right-hand side of the triangular
system to be solved. Specified as: a one-dimensional array of (at least)
length 1+(n−1)|incx|, containing numbers of the data type indicated in
Table 102 on page 513.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

On Return:

x is the solution vector x of length n, containing the results of the
computation. Returned as: a one-dimensional array, containing numbers of
the data type indicated in Table 102 on page 513.

Notes
1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.
2. For STRSV, DTRSV, STPSV, and DTPSV, if you specify 'C' for the transa

argument, it is interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV

514 ESSL Version 3 Release 3 Guide and Reference

4. ESSL assumes certain values in your array for parts of a triangular matrix. As a
result, you do not have to set these values. For unit diagonal matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and
lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see “Triangular Matrix” on page 70.

Function
These subroutines solve a triangular system of equations with a single right-hand
side. The solution x may be any of the following, where triangular matrix A, its
transpose, or its conjugate transpose is used, and where A can be either upper- or
lower-triangular:
1. x←A−1x
2. x←A−Tx
3. x←A−Hx (only for CTRSV, ZTRSV, CTPSV, and ZTPSV)

where:
x is a vector of length n.
A is an upper or lower triangular matrix of order n. For _TRSV, it is stored in
upper- or lower-triangular storage mode, respectively. For _TPSV, it is stored in
upper- or lower-triangular-packed storage mode, respectively.

If n is 0, no computation is performed. See references [32], [36], and [38].

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. uplo ≠ 'L' or 'U'
2. transa ≠ 'T', 'N', or 'C'
3. diag ≠ 'N' or 'U'
4. n < 0
5. lda ≤ 0
6. lda < n
7. incx = 0

Example 1
This example shows the solution x←A−1x. Matrix A is a real 4 by 4 lower unit
triangular matrix, stored in lower-triangular storage mode. Vector x is a vector of
length 4.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRSV('L' , 'N' , 'U' , 4 , A , 4 , X , 1)

┌ ┐
| |
| 1.0 . . . |

A = | 2.0 3.0 . . |

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV

Chapter 10. Linear Algebraic Equations 515

| 3.0 4.0 3.0 . |
└ ┘

X = (1.0, 3.0, 11.0, 24.0)

Output:
X = (1.0, 2.0, 3.0, 4.0)

Example 2
This example shows the solution x←A−Tx. Matrix A is a real 4 by 4 upper nonunit
triangular matrix, stored in upper-triangular storage mode. Vector x is a vector of
length 4.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRSV('U' , 'T' , 'N' , 4 , A , 4 , X , 1)

┌ ┐
| 1.0 2.0 3.0 2.0 |

A = | . 2.0 2.0 5.0 |
| . . 3.0 3.0 |
| . . . 1.0 |
└ ┘

X = (5.0, 18.0, 32.0, 41.0)

Output:
X = (5.0, 4.0, 3.0, 2.0)

Example 3
This example shows the solution x←A−Hx. Matrix A is a complex 4 by 4 upper unit
triangular matrix, stored in upper-triangular storage mode. Vector x is a vector of
length 4.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL CTRSV('U' , 'C' , 'U' , 4 , A , 4 , X , 1)

┌ ┐
| . (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |

A = | . . (2.0, 2.0) (5.0, 5.0) |
| . . . (3.0, 3.0) |
| |
└ ┘

X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Output:
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

Example 4
This example shows the solution x←A−1x. Matrix A is a real 4 by 4 lower unit
triangular matrix, stored in lower-triangular-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV

516 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 1.0 . . . |
| 1.0 1.0 . . |
| 2.0 3.0 1.0 . |
| 3.0 4.0 3.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPSV('L' , 'N' , 'U' , 4 , AP , X , 1)

AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
X = (1.0, 3.0, 11.0, 24.0)

Output:
X = (1.0, 2.0, 3.0, 4.0)

Example 5
This example shows the solution x←A−Tx. Matrix A is a real 4 by 4 upper nonunit
triangular matrix, stored in upper-triangular-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| . 2.0 2.0 5.0 |
| . . 3.0 3.0 |
| . . . 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPSV('U' , 'T' , 'N' , 4 , AP , X , 1)

AP = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
X = (5.0, 18.0, 32.0, 41.0)

Output:
X = (5.0, 4.0, 3.0, 2.0)

Example 6
This example shows the solution x←A−Hx. Matrix A is a complex 4 by 4 upper unit
triangular matrix, stored in upper-triangular-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

┌ ┐
| (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
| . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
| . . (1.0, 0.0) (3.0, 3.0) |
| . . . (1.0, 0.0) |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV

Chapter 10. Linear Algebraic Equations 517

UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL CTPSV('U' , 'C' , 'U' , 4 , AP , X , 1)

AP = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . ,
(2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .)

X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Output:
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV

518 ESSL Version 3 Release 3 Guide and Reference

STRSM, DTRSM, CTRSM, and ZTRSM—Solution of Triangular Systems
of Equations with Multiple Right-Hand Sides

STRSM and DTRSM perform one of the following solves for a triangular system of
equations with multiple right-hand sides, using scalar α, rectangular matrix B, and
triangular matrix A or its transpose:

Solution Equation
1. B←α(A−1)B AX = αB
2. B←α(A−T)B ATX = αB
3. B←αB(A−1) XA = αB
4. B←αB(A−T) XAT = αB

CTRSM and ZTRSM perform one of the following solves for a triangular system of
equations with multiple right-hand sides, using scalar α, rectangular matrix B, and
triangular matrix A, its transpose, or its conjugate transpose:

Solution Equation
1. B←α(A−1)B AX = αB
2. B←α(A−T)B ATX = αB
3. B←αB(A−1) XA = αB
4. B←αB(A−T) XAT = αB
5. B←α(A−H)B AHX = αB
6. B←αB(A−H) XAH = αB

Note: The term X used in the systems of equations listed above represents the
output solution matrix. It is important to note that in these subroutines the
solution matrix is actually returned in the input-output argument b.

Table 103. Data Types

A, B, α Subroutine

Short-precision real STRSM

Long-precision real DTRSM

Short-precision complex CTRSM

Long-precision complex ZTRSM

Syntax

Fortran CALL STRSM | DTRSM | CTRSM | ZTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

C and C++ strsm | dtrsm | ctrsm | ztrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

PL/I CALL STRSM | DTRSM | CTRSM | ZTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

On Entry:

side indicates whether the triangular matrix A is located to the left or right of
rectangular matrix B in the system of equations, where:

If side = 'L', A is to the left of B, resulting in solution 1, 2, or 5.

If side = 'R', A is to the right of B, resulting in solution 3, 4, or 6.

Specified as: a single character. It must be 'L' or 'R'.

uplo indicates whether matrix A is an upper or lower triangular matrix, where:

STRSM, DTRSM, CTRSM, and ZTRSM

Chapter 10. Linear Algebraic Equations 519

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

transa indicates the form of matrix A used in the system of equations, where:

If transa = 'N', A is used, resulting in solution 1 or 3.

If transa = 'T', AT is used, resulting in solution 2 or 4.

If transa = 'C', AH is used, resulting in solution 5 or 6.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

m is the number of rows in rectangular matrix B, and:

If side = 'L', m is the order of triangular matrix A.

Specified as: a fullword integer, where:

If side = 'L', 0 ≤ m ≤ lda and m ≤ ldb.

If side = 'R', 0 ≤ m ≤ ldb.

n is the number of columns in rectangular matrix B, and:

If side = 'R', n is the order of triangular matrix A.

Specified as: a fullword integer; n ≥ 0, and:

If side = 'R', n ≤ lda.

alpha is the scalar α. Specified as: a number of the data type indicated in
Table 103 on page 519.

a is the triangular matrix A, of which only the upper or lower triangular
portion is used, where:

If side = 'L', A is order m.

If side = 'R', A is order n.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 103 on page 519, where:

If side = 'L', its size must be lda by (at least) m.

If side = 'R', it size must be lda by (at least) n.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0, and:

If side = 'L', lda ≥ m.

If side = 'R', lda ≥ n.

b is the m by n rectangular matrix B, which contains the right-hand sides of
the triangular system to be solved. Specified as: an ldb by (at least) n array,
containing numbers of the data type indicated in Table 103 on page 519.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ m.

STRSM, DTRSM, CTRSM, and ZTRSM

520 ESSL Version 3 Release 3 Guide and Reference

On Return:

b is the m by n matrix B, containing the results of the computation.

Returned as: an ldb by (at least) n array, containing numbers of the data
type indicated in Table 103 on page 519.

Notes
1. These subroutines accept lowercase letters for the transa, side, diag, and uplo

arguments.
2. For STRSM and DTRSM, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements or results are unpredictable.
4. If matrix A is upper triangular (uplo = 'U'), these subroutines refer to only the

upper triangular portion of the matrix. If matrix A is lower triangular,
(uplo = 'L'), these subroutines refer to only the lower triangular portion of the
matrix. The unreferenced elements are assumed to be zero.

5. The elements of the diagonal of a unit triangular matrix are always one, so you
do not need to set these values. The ESSL subroutines always assume that the
values in these positions are 1.0 for STRSM and DTRSM and (1.0, 0.0) for
CTRSM and ZTRSM.

6. For a description of triangular matrices and how they are stored, see
“Triangular Matrix” on page 70.

Function
These subroutines solve a triangular system of equations with multiple right-hand
sides. The solution B may be any of the following, where A is a triangular matrix
and B is a rectangular matrix:

1. B←α(A−1)B
2. B←α(A−T)B
3. B←αB(A−1)
4. B←αB(A−T)
5. B←α(A−H)B (only for CTRSM and ZTRSM)
6. B←αB(A−H) (only for CTRSM and ZTRSM)

where:
α is a scalar.
B is an m by n rectangular matrix.
A is an upper or lower triangular matrix, where:

If side = 'L', it has order m, and equation 1, 2, or 5 is performed.
If side = 'R', it has order n, and equation 3, 4, or 6 is performed.

If n or m is 0, no computation is performed. See references [32] and [36].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Note: If the triangular matrix A is singular, the results returned by this subroutine
are unpredictable, and there may be a divide-by-zero program exception
message.

Input-Argument Errors:
1. m < 0

STRSM, DTRSM, CTRSM, and ZTRSM

Chapter 10. Linear Algebraic Equations 521

2. n < 0
3. lda, ldb ≤ 0
4. side ≠ 'L' or 'R'
5. uplo ≠ 'L' or 'U'
6. transa ≠ 'T', 'N', or 'C'
7. diag ≠ 'N' or 'U'
8. side = 'L' and m > lda
9. m > ldb

10. side = 'R' and n > lda

Example 1
This example shows the solution B←α(A−1)B, where A is a real 5 by 5 upper
triangular matrix that is not unit triangular, and B is a real 5 by 3 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM('L' , 'U' , 'N' , 'N' , 5 , 3 , 1.0 , A , 7 , B , 6)

┌ ┐
| 3.0 -1.0 2.0 2.0 1.0 |
| . -2.0 4.0 -1.0 3.0 |
| . . -3.0 0.0 2.0 |

A = | . . . 4.0 -2.0 |
| 1.0 |
| |
| |
└ ┘

┌ ┐
| 6.0 10.0 -2.0 |
| -16.0 -1.0 6.0 |

B = | -2.0 1.0 -4.0 |
| 14.0 0.0 -14.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 2.0 3.0 1.0 |
| 5.0 5.0 4.0 |

B = | 0.0 1.0 2.0 |
| 3.0 1.0 -3.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Example 2
This example shows the solution B←α(A−T)B, where A is a real 5 by 5 upper
triangular matrix that is not unit triangular, and B is a real 5 by 4 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM('L' , 'U' , 'T' , 'N' , 5 , 4 , 1.0 , A , 7 , B , 6)

┌ ┐
| -1.0 -4.0 -2.0 2.0 3.0 |
| . -2.0 2.0 2.0 2.0 |
| . . -3.0 -1.0 4.0 |

A = | . . . 1.0 0.0 |

STRSM, DTRSM, CTRSM, and ZTRSM

522 ESSL Version 3 Release 3 Guide and Reference

| -2.0 |
| |
| |
└ ┘

┌ ┐
| -1.0 -2.0 -3.0 -4.0 |
| 2.0 -2.0 -14.0 -12.0 |

B = | 10.0 5.0 -8.0 -7.0 |
| 14.0 15.0 1.0 8.0 |
| -3.0 4.0 3.0 16.0 |
| |
└ ┘

Output:
┌ ┐
| 1.0 2.0 3.0 4.0 |
| 3.0 3.0 -1.0 2.0 |

B = | -2.0 -1.0 0.0 1.0 |
| 4.0 4.0 -3.0 -3.0 |
| 2.0 2.0 2.0 2.0 |
| |
└ ┘

Example 3
This example shows the solution B←αB(A−1), where A is a real 5 by 5 lower
triangular matrix that is not unit triangular, and B is a real 3 by 5 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM('R' , 'L' , 'N' , 'N' , 3 , 5 , 1.0 , A , 7 , B , 4)

┌ ┐
| 2.0 |
| 2.0 3.0 . . . |
| 2.0 1.0 1.0 . . |

A = | 0.0 3.0 0.0 -2.0 . |
| 2.0 4.0 -1.0 2.0 -1.0 |
| |
| |
└ ┘

┌ ┐
| 10.0 4.0 0.0 0.0 1.0 |

B = | 10.0 14.0 -4.0 6.0 -3.0 |
| -8.0 2.0 -5.0 4.0 -2.0 |
| |
└ ┘

Output:
┌ ┐
| 3.0 4.0 -1.0 -1.0 -1.0 |

B = | 2.0 1.0 -1.0 0.0 3.0 |
| -2.0 -1.0 -3.0 0.0 2.0 |
| |
└ ┘

Example 4
This example shows the solution B←αB(A−1), where A is a real 6 by 6 upper
triangular matrix that is unit triangular, and B is a real 1 by 6 rectangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal element.

STRSM, DTRSM, CTRSM, and ZTRSM

Chapter 10. Linear Algebraic Equations 523

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM('R' , 'U' , 'N' , 'U' , 1 , 6 , 1.0 , A , 7 , B , 2)

┌ ┐
| . 2.0 -3.0 1.0 2.0 4.0 |
| . . 0.0 1.0 1.0 -2.0 |
| . . . 4.0 -1.0 1.0 |

A = | 0.0 -1.0 |
| 2.0 |
| |
| |
└ ┘

┌ ┐
B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 |

| |
└ ┘

Output:
┌ ┐

B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 |
| |
└ ┘

Example 5
This example shows the solution B←αB(A−1), where A is a complex 5 by 5 lower
triangular matrix that is not unit triangular, and B is a complex 3 by 5 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL CTRSM('R' , 'L' , 'N' , 'N' , 3 , 5 , ALPHA , A , 7 , B , 4)

ALPHA = (1.0, 0.0)

┌ ┐
| (2.0, -3.0) |
| (2.0, -4.0) (3.0, -1.0) . . . |
| (2.0, 2.0) (1.0, 2.0) (1.0, 1.0) . . |

A = | (0.0, 0.0) (3.0, -1.0) (0.0, -1.0) (-2.0, 1.0) . |
| (2.0, 2.0) (4.0, 0.0) (-1.0, 2.0) (2.0, -4.0) (-1.0, -4.0) |
| |
| |
└ ┘

┌ ┐
| (22.0, -41.0) (7.0, -26.0) (9.0, 0.0) (-15.0, -3.0) (-15.0, 8.0) |

B = | (29.0, -18.0) (24.0, -10.0) (9.0, 6.0) (-12.0, -24.0) (-19.0, -8.0) |
| (-15.0, 2.0) (-3.0, -21.0) (-2.0, 4.0) (-4.0, -12.0) (-10.0, -6.0) |
| |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) (4.0, 0.0) (-1.0, -2.0) (-1.0, -1.0) (-1.0, -4.0) |

B = | (2.0, -1.0) (1.0, 2.0) (-1.0, -3.0) (0.0, 2.0) (3.0, -4.0) |
| (-2.0, 1.0) (-1.0, -3.0) (-3.0, 1.0) (0.0, 0.0) (2.0, -2.0) |
| |
└ ┘

STRSM, DTRSM, CTRSM, and ZTRSM

524 ESSL Version 3 Release 3 Guide and Reference

Example 6
This example shows the solution B←α(A−H)B, where A is a complex 5 by 5 upper
triangular matrix that is not unit triangular, and B is a complex 5 by 1 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL CTRSM('L' , 'U' , 'C' , 'N' , 5 , 1 , ALPHA , A , 6 , B , 6)

ALPHA = (1.0, 0.0)

┌ ┐
| (-4.0, 1.0) (4.0, -3.0) (-1.0, 3.0) (0.0, 0.0) (-1.0, 0.0) |
| . (-2.0, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0) |

A = | . . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0) |
| . . . (4.0, -4.0) (2.0, 0.0) |
| (2.0, -1.0) |
| |
└ ┘

┌ ┐
| (-8.0, -19.0) |
| (8.0, 21.0) |

B = | (44.0, -8.0) |
| (13.0, -7.0) |
| (19.0, 2.0) |
| . |
└ ┘

Output:
┌ ┐
| (3.0, 4.0) |
| (-4.0, 2.0) |

B = | (-5.0, 0.0) |
| (1.0, 3.0) |
| (3.0, 1.0) |
| . |
└ ┘

STRSM, DTRSM, CTRSM, and ZTRSM

Chapter 10. Linear Algebraic Equations 525

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and
DTPTRI—Triangular Matrix Inverse

These subroutines find the inverse of triangular matrix A:
A←A−1

Matrix A can be either upper or lower triangular, where:
v For STRI/STRTRI and DTRI/DTRTRI, it is stored in upper- or lower-triangular

storage mode.
v For STPI/STPTRI and DTPI/DTPTRI, it is stored in upper- or

lower-triangular-packed storage mode.

Table 104. Data Types

A Subroutine

Short-precision real STRI, STPI, STRTRI, and STPTRI

Long-precision real DTRI, DTPI, DTRTRI, and DTPTRI

Syntax

Fortran CALL STRI | DTRI (uplo, diag, a, lda, n)

CALL STPI | DTPI (uplo, diag, ap, n)

CALL STRTRI | DTRTRI (uplo, diag, n, a, lda, info)

CALL STPTRI | DTPTRI (uplo, diag, n, ap, info)

C and C++ stri | dtri (uplo, diag, a, lda, n);

stpi | dtpi (uplo, diag, ap, n);

strtri | dtrtri (uplo, diag, n, a, lda, info);

stptri | dtptri (uplo, diag, n, ap, info);

PL/I CALL STRI | DTRI (uplo, diag, a, lda, n);

CALL STPI | DTPI (uplo, diag, ap, n);

CALL STRTRI | DTRTRI (uplo, diag, n, a, lda, info);

CALL STPTRI | DTPTRI (uplo, diag, n, ap, info);

On Entry:

uplo indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

diag indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

a is the upper or lower triangular matrix A of order n, stored in upper- or

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI

526 ESSL Version 3 Release 3 Guide and Reference

|
|

|
|

|

|

|

|

|

|

|

|

lower-triangular storage mode, respectively. Specified as: an lda by (at
least) n array, containing numbers of the data type indicated in Table 104
on page 526.

lda is the leading dimension of the arrays specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

ap is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular-packed storage mode, respectively. Specified as: a
one-dimensional array of (at least) length n(n+1)/2, containing numbers of
the data type indicated in Table 104 on page 526.

n is the order of matrix A. Specified as: a fullword integer; n ≥ 0, where:

info See “On Return”.

On Return:

a is the inverse of the upper or lower triangular matrix A of order n, stored
in upper- or lower-triangular storage mode, respectively. Returned as: an
lda by (at least) n array, containing numbers of the data type indicated in
Table 104 on page 526.

ap is the inverse of the upper or lower triangular matrix A of order n, stored
in upper- or lower-triangular-packed storage mode, respectively. Returned
as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 104 on page 526.

info has the following meaning:

If info = 0, the inverse completed successfully.

If info > 0, info is set equal to the first i, where Aii is zero. Matrix A is
singular and its inverse could not be computed.

Specified as: a fullword integer; info ≥ 0.

Notes
1. In C programs, the argument info must be passed by reference.
2. These subroutines accept lowercase letters for the uplo and diag arguments.
3. If matrix A is upper triangular (uplo = 'U'), these subroutines refer to only the

upper triangular portion of the matrix. If matrix A is lower triangular,
(uplo = 'L'), these subroutines refer to only the lower triangular portion of the
matrix. The unreferenced elements are assumed to be zero.

4. The elements of the diagonal of a unit triangular matrix are always one, so you
do not need to set these values.

5. The way _TRTRI and _TPTRI subroutines handle computational errors differs
from LAPACK. These subroutines use the info argument to provide information
about the computational error, like LAPACK, but also provide an error
message.

6. On both input and output, matrix A conforms to LAPACK format.
7. For a description of triangular matrices and how they are stored in upper- and

lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see “Triangular Matrix” on page 70.

Function
These subroutines find the inverse of triangular matrix A, where A is either upper
or lower triangular:

A←A−1

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI

Chapter 10. Linear Algebraic Equations 527

||

||

|

|
|

|

|

|
|
|
|

|

where:
A is the triangular matrix of order n.
A−1 the inverse of the triangular matrix of order n.

If n is 0, no computation is performed. See references [8] and [36].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix A is singular.

For STRI/STPI and DTRI/DTPI
v One or more of the diagonal elements of matrix A are zero. The first

column, i, of matrix A, in which a zero diagonal element is found, is
identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change
the number of allowable errors for error code 2145 in the ESSL error
option table; otherwise, the default value causes your program to
terminate when this error occurs. For details, see “What Can You Do
about ESSL Computational Errors?” on page 45.

For STRTRI/STPTRI and DTRTRI/DTPTRI:
v One or more of the diagonal elements of matrix A are zero. The first

column, i, of matrix A, in which a zero diagonal element is found, is
identified in the computational error message and returned in the
argument info.

v The computational error message may occur multiple times with
processing continuing after each error, because the default for the
number of allowable errors for error code 2146 is set to be unlimited in
the ESSL error option table.

Input-Argument Errors:
1. uplo ≠ 'U' or 'L'
2. diag ≠ 'U' or 'N'
3. n < 0
4. lda ≤ 0
5. lda < n

Example 1
This example shows how the inverse of matrix A is computed, where A is a 5 by 5
upper triangular matrix that is not unit triangular and is stored in upper-triangular
storage mode. Matrix A is:

┌ ┐
| 1.00 3.00 4.00 5.00 6.00 |
| 0.00 2.00 8.00 9.00 1.00 |
| 0.00 0.00 4.00 8.00 4.00 |
| 0.00 0.00 0.00 -2.00 6.00 |
| 0.00 0.00 0.00 0.00 -1.00 |
└ ┘

and where the following inverse matrix is computed. Matrix A-1 is:
┌ ┐
| 1.00 -1.50 2.00 3.75 35.00 |
| 0.00 0.50 -1.00 -1.75 -14.00 |
| 0.00 0.00 0.25 1.00 7.00 |

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI

528 ESSL Version 3 Release 3 Guide and Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

| 0.00 0.00 0.00 -0.50 -3.00 |
| 0.00 0.00 0.00 0.00 -1.00 |
└ ┘

Call Statement and Input:
UPLO DIAG A LDA N
| | | | |

CALL STRI('U' , 'N' , A , 5 , 5)

or
UPLO DIAG N A LDA INFO
| | | | | |

CALL STRTRI('U' , 'N' , 5 , A, 5, INFO)

┌ ┐
| 1.00 3.00 4.00 5.00 6.00 |
| . 2.00 8.00 9.00 1.00 |

A = | . . 4.00 8.00 4.00 |
| . . . -2.00 6.00 |
| -1.00 |
└ ┘

Output:
┌ ┐
| 1.00 -1.50 2.00 3.75 35.00 |
| . 0.50 -1.00 -1.75 -14.00 |

A = | . . 0.25 1.00 7.00 |
| . . . -0.50 -3.00 |
| -1.00 |
└ ┘

INFO = 0

Example 2
This example shows how the inverse of matrix A is computed, where A is a 5 by 5
lower triangular matrix that is unit triangular and is stored in lower-triangular
storage mode. Matrix A is:

┌ ┐
| 1.0 0.0 0.0 0.0 0.0 |
| 3.0 1.0 0.0 0.0 0.0 |
| 4.0 8.0 1.0 0.0 0.0 |
| 5.0 9.0 8.0 1.0 0.0 |
| 6.0 1.0 4.0 6.0 1.0 |
└ ┘

and where the following inverse matrix is computed. Matrix A-1 is:
┌ ┐
| 1.0 0.0 0.0 0.0 0.0 |
| -3.0 1.0 0.0 0.0 0.0 |
| 20.0 -8.0 1.0 0.0 0.0 |
| -138.0 55.0 -8.0 1.0 0.0 |
| 745.0 -299.0 44.0 -6.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO DIAG A LDA N
| | | | |

CALL STRI('L' , 'U' , A , 5 , 5)

or

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI

Chapter 10. Linear Algebraic Equations 529

|
|
|

|

|
|
|

|

|
|
|

|

|

UPLO DIAG N A LDA INFO
| | | | | |

CALL STRTRI('L' , 'U' , 5 , A, 5, INFO)

┌ ┐
| |
| 3.0 |

A = | 4.0 8.0 . . . |
| 5.0 9.0 8.0 . . |
| 6.0 1.0 4.0 6.0 . |
└ ┘

Output:
┌ ┐
| |
| -3.0 |

A = | 20.0 -8.0 . . . |
| -138.0 55.0 -8.0 . . |
| 745.0 -299.0 44.0 -6.0 . |
└ ┘

INFO = 0

Example 3
This example shows how the inverse of matrix A is computed, where A is the
same matrix shown in Example 1 and is stored in upper-triangular-packed storage
mode. The inverse matrix computed here is the same as the inverse matrix shown
in Example 1 and is stored in upper-triangular-packed storage mode.

Call Statement and Input:
UPLO DIAG AP N
| | | |

CALL STPI('U' , 'N' , AP , 5)

or
UPLO DIAG N A INFO
| | | | |

CALL STPTRI('U' , 'N' , 5 , AP, INFO)

AP = (1.00, 3.00, 2.00, 4.00, 8.00, 4.00, 5.00, 9.00, 8.00,
-2.00, 6.00, 1.00, 4.00, 6.00, -1.00)

Output:
AP = (1.00, -1.50, 0.50, 2.00, -1.00, 0.25, 3.75, -1.75, 1.00,

-0.50, 35.00, -14.00, 7.00, -3.00, -1.00)

INFO = 0

Example 4
This example shows how the inverse of matrix A is computed, where A is the
same matrix shown in Example 2 and is stored in lower-triangular-packed storage
mode. The inverse matrix computed here is the same as the inverse matrix shown
in Example 2 and is stored in lower-triangular-packed storage mode.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO DIAG AP N
| | | |

CALL STPI('L' , 'U' , AP , 5)

or

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI

530 ESSL Version 3 Release 3 Guide and Reference

|
|
|

|

|

|
|
|

|

|

UPLO DIAG N A INFO
| | | | |

CALL STPTRI('L' , 'U' , N , AP, INFO)

AP = (. , 3.0, 4.0, 5.0, 6.0, . , 8.0, 9.0, 1.0, . , 8.0, 4.0,
. , 6.0, .)

Output:
AP = (. , -3.0, 20.0, -138.0, 745.0, . , -8.0, 55.0, -299.0,

. , -8.0, 44.0, . , -6.0, .)

INFO = 0

STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI

Chapter 10. Linear Algebraic Equations 531

|
|
|

Banded Linear Algebraic Equation Subroutines
This section contains the banded linear algebraic equation subroutine descriptions.

SGBF and DGBF

532 ESSL Version 3 Release 3 Guide and Reference

SGBF and DGBF—General Band Matrix Factorization
These subroutines factor general band matrix A, stored in general-band storage
mode, using Gaussian elimination. To solve the system of equations with one or
more right-hand sides, follow the call to these subroutines with one or more calls
to SGBS or DGBS, respectively.

Table 105. Data Types

A Subroutine

Short-precision real SGBF

Long-precision real DGBF

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SGBS and DGBS, respectively.

Syntax

Fortran CALL SGBF | DGBF (agb, lda, n, ml, mu, ipvt)

C and C++ sgbf | dgbf (agb, lda, n, ml, mu, ipvt);

PL/I CALL SGBF | DGBF (agb, lda, n, ml, mu, ipvt);

On Entry:

agb is the general band matrix A of order n, stored in general-band storage
mode, to be factored. It has an upper band width mu and a lower band
width ml. Specified as: an lda by (at least) n array, containing numbers of
the data type indicated in Table 105, where lda ≥ 2ml+mu+16.

lda is the leading dimension of the array specified for agb. Specified as: a
fullword integer; lda > 0 and lda ≥ 2ml+mu+16.

n is the order of the matrix A. Specified as: a fullword integer; n > ml and
n > mu.

ml is the lower band width ml of the matrix A. Specified as: a fullword
integer; 0 ≤ ml < n.

mu is the upper band width mu of the matrix A. Specified as: a fullword
integer; 0 ≤ mu < n.

ipvt See “On Return”.

On Return:

agb is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 534. Returned as: an lda by (at least)
n array, containing numbers of the data type indicated in Table 105.

ipvt is the integer vector ipvt of length n, containing the pivot information
necessary to construct matrix L from the information contained in the
output array agb. Returned as: a one-dimensional array of (at least) length
n, containing fullword integers.

Notes
1. ipvt is not a permutation vector in the strict sense. It is used to record column

interchanges in L due to partial pivoting and to improve performance.

SGBF and DGBF

Chapter 10. Linear Algebraic Equations 533

2. The entire lda by n array specified for agb must remain unchanged between
calls to the factorization and solve subroutines.

3. This subroutine can be used for tridiagonal matrices (ml = mu = 1); however,
the tridiagonal subroutines SGTF/DGTF and SGTS/DGTS are faster.

4. For a description of how a general band matrix is stored in general-band
storage mode in an array, see “General Band Matrix” on page 73.

Function
The general band matrix A, stored in general-band storage mode, is factored using
Gaussian elimination with partial pivoting to compute the LU factorization of A,
where:

ipvt is a vector containing the pivoting information.
L is a unit lower triangular band matrix.
U is an upper triangular band matrix.

The transformed matrix A contains U in packed format, along with the multipliers
necessary to construct, with the help of ipvt, a matrix L, such that A = LU. This
factorization can then be used by SGBS or DGBS, respectively, to solve the system
of equations. See reference [38].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix A is singular.
v One or more columns of L and the corresponding diagonal of U contain all zeros

(all columns of L are checked). The last column, i, of L with a corresponding
U = 0 diagonal element is identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities. To

obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2103 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs. For
details, see “What Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. lda ≤ 0
2. ml < 0
3. ml ≥ n
4. mu < 0
5. mu ≥ n
6. lda < 2ml+mu+16

Example
This example shows a factorization of a general band matrix A of order 9, with a
lower band width of 2 and an upper band width of 3. On input matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
| 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

SGBF and DGBF

534 ESSL Version 3 Release 3 Guide and Reference

Matrix A is stored in general-band storage mode in the two-dimensional array AGB
of size LDA by N, where LDA = 2ml+mu+16 = 23. The array AGB is declared as
AGB(1:23,1:9).

Note: Matrix A is the same matrix used in the examples in subroutines SGEF and
DGEF (see “Example 1” on page 439) and SGEFCD and DGEFCD (see
“Example” on page 459).

Call Statement and Input:
AGB LDA N ML MU IPVT)
| | | | | |

CALL SGBF(AGB , 23 , 9 , 2 , 3 , IPVT)

┌ ┐
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 12.0000 |
| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.0000 0.0000 |
| 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |

AGB = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
└ ┘

SGBF and DGBF

Chapter 10. Linear Algebraic Equations 535

Output:

IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,
-327680, -327680)

┌ ┐
| 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 12.0000 |
| 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.0000 0.3111 |
| 0.2500 0.2000 0.1600 0.1400 0.1250 0.1100 0.1000 5.5380 -325.00 |
| 0.0000 0.1500 0.0000 0.0714 0.0000 -0.0556 -0.0306 0.9385 0.0000 |
| 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0694 -0.0194 0.0000 0.0000 |
| 0.2500 0.0000 0.1000 0.0000 0.0536 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |

AGB = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
└ ┘

SGBF and DGBF

536 ESSL Version 3 Release 3 Guide and Reference

SGBS and DGBS—General Band Matrix Solve
These subroutines solve the system Ax = b for x, where A is a general band
matrix, and x and b are vectors. They use the results of the factorization of matrix
A, produced by a preceding call to SGBF or DGBF, respectively.

Table 106. Data Types

A, b, x Subroutine

Short-precision real SGBS

Long-precision real DGBS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGBF and DGBF, respectively.

Syntax

Fortran CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx)

C and C++ sgbs | dgbs (agb, lda, n, ml, mu, ipvt, bx);

PL/I CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx);

On Entry:

agb is the factorization of general band matrix A, produced by a preceding call
to SGBF or DGBF. Specified as: an lda by (at least) n array, containing
numbers of the data type indicated in Table 106, where lda ≥ 2ml+mu+16.

lda is the leading dimension of the array specified for agb. Specified as: a
fullword integer; lda > 0 and lda ≥ 2ml+mu+16.

n is the order of the matrix A. Specified as: a fullword integer; n > ml and
n > mu.

ml is the lower band width ml of the matrix A. Specified as: a fullword
integer; 0 ≤ ml < n.

mu is the upper band width mu of the matrix A. Specified as: a fullword
integer; 0 ≤ mu < n.

ipvt is the integer vector ipvt of length n, produced by a preceding call to SGBF
or DGBF. It contains the pivot information necessary to construct matrix L
from the information contained in the array specified for agb.

Specified as: a one-dimensional array of (at least) length n, containing
fullword integers.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 106.

On Return:

bx is the solution vector x of length n, containing the results of the
computation. Returned as: a one-dimensional array, containing numbers of
the data type indicated in Table 106.

SGBS and DGBS

Chapter 10. Linear Algebraic Equations 537

Notes
1. The scalar data specified for input arguments lda, n, ml, and mu for these

subroutines must be the same as that specified for SGBF and DGBF,
respectively.

2. The array data specified for input arguments agb and ipvt for these subroutines
must be the same as the corresponding output arguments for SGBF and DGBF,
respectively.

3. The entire lda by n array specified for agb must remain unchanged between
calls to the factorization and solve subroutines.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. This subroutine can be used for tridiagonal matrices (ml = mu = 1); however,
the tridiagonal subroutines, SGTF/DGTF and SGTS/DGTS, are faster.

6. For a description of how a general band matrix is stored in general-band
storage mode in an array, see “General Band Matrix” on page 73.

Function
The real system Ax = b is solved for x, where A is a real general band matrix,
stored in general-band storage mode, and x and b are vectors. These subroutines
use the results of the factorization of matrix A, produced by a preceding call to
SGBF or DGBF, respectively. The transformed matrix A, used by this computation,
consists of the upper triangular matrix U and the multipliers necessary to construct
L using ipvt, as defined in “Function” on page 534. See reference [38].

Error Conditions

Computational Errors:

Note: If the factorization performed by SGBF or DGBF failed due to a singular
matrix argument, the results returned by this subroutine are unpredictable,
and there may be a divide-by-zero program exception message.

Input-Argument Errors:
1. lda ≤ 0
2. ml < 0
3. ml ≥ n
4. mu < 0
5. mu ≥ n
6. lda < 2ml+mu+16

Example
This example shows how to solve the system Ax = b, where general band matrix
A is the same matrix factored in “Example” on page 534 for SGBF and DGBF. The
input for AGB and IPVT in this example is the same as the output for that example.

Call Statement and Input:
AGB LDA N ML MU IPVT BX
| | | | | | |

CALL SGBS(AGB , 23 , 9 , 2 , 3 , IPVT , BX)

IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,
-327680, -327680)

BX = (4.0000, 5.0000, 9.0000, 10.0000, 11.0000, 12.0000,
12.0000, 12.0000, 33.0000)

AGB = (same as output AGB in
“Example” on page 534)

SGBS and DGBS

538 ESSL Version 3 Release 3 Guide and Reference

Output:
BX = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

0.9999, 1.0001)

SGBS and DGBS

Chapter 10. Linear Algebraic Equations 539

SPBF, DPBF, SPBCHF, and DPBCHF—Positive Definite Symmetric
Band Matrix Factorization

These subroutines factor positive definite symmetric band matrix A, stored in
lower-band-packed storage mode, using:
v Gaussian elimination for SPBF and DPBF
v Cholesky factorization for SPBCHF and DPBCHF

To solve the system of equations with one or more right-hand sides, follow the call
to these subroutines with one or more calls to SPBS, DPBS, SPBCHS, or DPBCHS,
respectively.

Table 107. Data Types

A Subroutine

Short-precision real SPBF and SPBCHF

Long-precision real DPBF and DPBCHF

Notes:

1. The output from these factorization subroutines should be used only as input
to the solve subroutines SPBS, DPBS, SPBCHS, and DPBCHS, respectively.

2. For optimal performance:
v For wide band widths, use _PBCHF.
v For narrow band widths, use either _PBF or _PBCHF.
v For very narrow band widths:

– Use either SPBF or SPBCHF.
– Use DPBF.

Syntax

Fortran CALL SPBF | DPBF | SPBCHF | DPBCHF (apb, lda, n, m)

C and C++ spbf | dpbf | spbchf | dpbchf (apb, lda, n, m);

PL/I CALL SPBF | DPBF | SPBCHF | DPBCHF (apb, lda, n, m);

On Entry:

apb is the positive definite symmetric band matrix A of order n, stored in
lower-band-packed storage mode, to be factored. It has a half band width
of m. Specified as: an lda by (at least) n array, containing numbers of the
data type indicated in Table 107. See “Notes” on page 541.

lda is the leading dimension of the array specified for apb. Specified as: a
fullword integer; lda > 0 and lda > m.

n is the order n of matrix A. Specified as: a fullword integer; n > m.

m is the half band width of the matrix A. Specified as: a fullword integer;
0 ≤ m < n.

On Return:

apb is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 541. Returned as: an lda by (at least)
n array, containing numbers of the data type indicated in Table 107. For
further details, see “Notes” on page 541.

SPBF, DPBF, SPBCHF, and DPBCHF

540 ESSL Version 3 Release 3 Guide and Reference

Notes
1. These subroutines can be used for tridiagonal matrices (m = 1); however, the

tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are faster.
2. For SPBF and DPBF when m > 0, location APB(2,n) is sometimes set to 0.
3. For a description of how a positive definite symmetric band matrix is stored in

lower-band-packed storage mode in an array, see “Positive Definite Symmetric
Band Matrix” on page 81.

Function
The positive definite symmetric band matrix A, stored in lower-band-packed
storage mode, is factored using Gaussian elimination in SPBF and DPBF and
Cholesky factorization in SPBCHF and DPBCHF. The transformed matrix A
contains the results of the factorization in packed format. This factorization can
then be used by SPBS, DPBS, SPBCHS, and DPBCHS, respectively, to solve the
system of equations.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DPBF works properly, when processing narrow band
widths; therefore, you may want to scale your problem.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors:

1. Matrix A is not positive definite (for SPBF and DPBF).
v One or more elements of D contain values less than or equal to 0; all

elements of D are checked. The index i of the last nonpositive element
encountered is identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2104 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs.
For details, see “Chapter 4. Coding Your Program” on page 105.

2. Matrix A is not positive definite (for SPBCHF and DPBCHF).
v The leading minor of order i has a nonpositive determinant. The order i is

identified in the computational error message.
v The return code is set to 1.
v i can be determined at run time by using the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2115 in the ESSL error option table; otherwise,
the default value causes your program to be terminate when this error
occurs. For details, see “Chapter 4. Coding Your Program” on page 105.

Input-Argument Errors:
1. lda ≤ 0
2. m < 0
3. m ≥ n
4. m ≥ lda

Example 1
This example shows a factorization of a real positive definite symmetric band
matrix A of order 9, using Gaussian elimination, where on input, matrix A is:

SPBF, DPBF, SPBCHF, and DPBCHF

Chapter 10. Linear Algebraic Equations 541

┌ ┐
| 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 2.0 1.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 2.0 3.0 2.0 1.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 2.0 3.0 2.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 2.0 3.0 2.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 2.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 2.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 |
└ ┘

and on output, matrix A is:
┌ ┐
| 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 |
└ ┘

where array location APB(2,9) is set to 0.0.

Call Statement and Input:
APB LDA N M
| | | |

CALL SPBF(APB , 3 , 9 , 2)

┌ ┐
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |

APB = | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

APB = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
└ ┘

Example 2
This example shows a Cholesky factorization of the same matrix used in Example
1.

Call Statement and Input:
APB LDA N M
| | | |

CALL SPBCHF(APB , 3 , 9 , 2)

APB = (same as input APB in Example 1)

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

APB = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
└ ┘

SPBF, DPBF, SPBCHF, and DPBCHF

542 ESSL Version 3 Release 3 Guide and Reference

SPBS, DPBS, SPBCHS, and DPBCHS—Positive Definite Symmetric
Band Matrix Solve

These subroutines solve the system Ax = b for x, where A is a positive definite
symmetric band matrix, and x and b are vectors. They use the results of the
factorization of matrix A, produced by a preceding call to SPBF, DPBF, SPBCHF,
and DPBCHF, respectively, where:
v Gaussian elimination was used by SPBF and DPBF.
v Cholesky factorization was used by SPBCHF and DPBCHF.

Table 108. Data Types

A, b, x Subroutine

Short-precision real SPBS and SPBCHS

Long-precision real DPBS and DPBCHS

Notes:

1. The input to these solve subroutines must be the output from the factorization
subroutines SPBF, DPBF, SPBCHF, and DPBCHF, respectively.

2. For performance tradeoffs, see “SPBF, DPBF, SPBCHF, and DPBCHF—Positive
Definite Symmetric Band Matrix Factorization” on page 540.

Syntax

Fortran CALL SPBS | DPBS | SPBCHS | DPBCHS (apb, lda, n, m, bx)

C and C++ spbs | dpbs | spbchs | dpbchs (apb, lda, n, m, bx);

PL/I CALL SPBS | DPBS | SPBCHS | DPBCHS (apb, lda, n, m, bx);

On Entry:

apb is the factorization of matrix A, produced by a preceding call to SPBF or
DPBF. Specified as: an lda by (at least) n array, containing numbers of the
data type indicated in Table 108. See “Notes”.

lda is the leading dimension of the array specified for apb. Specified as: a
fullword integer; lda > 0 and lda > m.

n is the order n of matrix A. Specified as: a fullword integer; n > m.

m is the half band width of the matrix A. Specified as: a fullword integer;
0 ≤ m < n.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 108.

On Return:

bx is the solution vector x of length n, containing the results of the
computation. Returned as: a one-dimensional array, containing numbers of
the data type indicated in Table 108.

Notes
1. The scalar data specified for input arguments lda, n, and m for these

subroutines must be the same as that specified for SPBF, DPBF, SPBCHF, and
DPBCHF, respectively.

SPBS, DPBS, SPBCHS, and DPBCHS

Chapter 10. Linear Algebraic Equations 543

2. The array data specified for input argument apb for these subroutines must be
the same as the corresponding output argument for SPBF, DPBF, SPBCHF, and
DPBCHF, respectively.

3. These subroutines can be used for tridiagonal matrices (m = 1); however, the
tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are faster.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. For a description of how a positive definite symmetric band matrix is stored in
lower-band-packed storage mode in an array, see “Positive Definite Symmetric
Band Matrix” on page 81.

Function
The system Ax = b is solved for x, where A is a positive definite symmetric band
matrix, stored in lower-band-packed storage mode, and x and b are vectors. These
subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPBF, DPBF, SPBCHF, or DPBCHF, respectively.

Error Conditions

Computational Errors: None

Note: If the factorization subroutine resulted in a nonpositive definite matrix, error
2104 for SPBF and DPBF or error 2115 for SPBCHF and DPBCHF, results of
these subroutines may be unpredictable.

Input-Argument Errors:
1. lda ≤ 0
2. m < 0
3. m ≥ n
4. m ≥ lda

Example 1
This example shows how to solve the system Ax = b, where matrix A is the same
matrix factored in the “Example 1” on page 541 for SPBF and DPBF, using
Gaussian elimination.

Call Statement and Input:
APB LDA N M BX
| | | | |

CALL SPBS(APB , 3 , 9 , 2 , BX)

APB = (same as output APB in
“Example 1” on page 541)
BX = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

This example shows how to solve the system Ax = b, where matrix A is the same
matrix factored in the “Example 2” on page 542 for SPBCHF and DPBCHF, using
Cholesky factorization.

Call Statement and Input:
APB LDA N M BX
| | | | |

CALL SPBCHS(APB , 3 , 9 , 2 , BX)

SPBS, DPBS, SPBCHS, and DPBCHS

544 ESSL Version 3 Release 3 Guide and Reference

APB = (same as output APB in
“Example 2” on page 542)
BX = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

SPBS, DPBS, SPBCHS, and DPBCHS

Chapter 10. Linear Algebraic Equations 545

SGTF and DGTF—General Tridiagonal Matrix Factorization
These subroutines compute the standard Gaussian factorization with partial
pivoting for tridiagonal matrix A, stored in tridiagonal storage mode. To solve a
tridiagonal system with one or more right-hand sides, follow the call to these
subroutines with one or more calls to SGTS or DGTS, respectively.

Table 109. Data Types

c, d, e, f Subroutine

Short-precision real SGTF

Long-precision real DGTF

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SGTS and DGTS, respectively.

Syntax

Fortran CALL SGTF | DGTF (n, c, d, e, f, ipvt)

C and C++ sgtf | dgtf (n, c, d, e, f, ipvt);

PL/I CALL SGTF | DGTF (n, c, d, e, f, ipvt);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing the lower subdiagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 109.

d is the vector d, containing the main diagonal of matrix A, in positions 1
through n in an array, referred to as D. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 109.

e is the vector e, containing the upper subdiagonal of matrix A, in positions
1 through n−1 in an array, referred to as E. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 109.

f See “On Return”.

ipvt See “On Return”.

On Return:

c is the vector c, containing part of the factorization of matrix A in positions
1 through n in an array, referred to as C. Returned as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 109.

d is the vector d, containing part of the factorization of matrix A in an array,
referred to as D. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 109.

e is the vector e, containing part of the factorization of the matrix A in

SGTF and DGTF

546 ESSL Version 3 Release 3 Guide and Reference

positions 1 through n in an array, referred to as E. Returned as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 109 on page 546.

f is the vector f, containing part of the factorization of matrix A in the first n
positions in an array, referred to as F. Returned as: a one-dimensional array
of (at least) length n, containing numbers of the data type indicated in
Table 109 on page 546.

ipvt is the integer vector ipvt of length n, containing the pivot information.
Returned as: a one-dimensional array of (at least) length n, containing
fullword integers.

Notes
1. For a description of how tridiagonal matrices are stored, see “General

Tridiagonal Matrix” on page 86.
2. ipvt is not a permutation vector in the strict sense. It is used to record column

interchanges in the tridiagonal matrix due to partial pivoting.
3. The factorization matrix A is stored in nonstandard format.

Function
The standard Gaussian elimination with partial pivoting of tridiagonal matrix A is
computed. The factorization is returned by overwriting input arrays C, D, and E,
and by writing into output array F, along with pivot information in vector ipvt.
This factorization can then be used by SGTS or DGTS, respectively, to solve
tridiagonal systems of linear equations. See references [43], [54], [55], and [90]. If n
is 0, no computation is performed.

Error Conditions

Computational Errors: Matrix A is singular or nearly singular.
v A pivot element has a value that cannot be reciprocated or is equal to 0. The

index i of the element is identified in the computational error message.
v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities. To

obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2105 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs. For
details, see “What Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors: n < 0

Example
This example shows how to factor the following tridiagonal matrix A of order 4:

┌ ┐
| 2.0 2.0 0.0 0.0 |
| 1.0 3.0 2.0 0.0 |
| 0.0 1.0 3.0 2.0 |
| 0.0 0.0 1.0 3.0 |
└ ┘

Call Statement and Input:
N C D E F IPVT
| | | | | |

CALL DGTF(4 , C , D , E , F , IPVT)

C = (. , 1.0, 1.0, 1.0)
D = (2.0, 3.0, 3.0, 3.0)
E = (2.0, 2.0, 2.0, .)

SGTF and DGTF

Chapter 10. Linear Algebraic Equations 547

Output:
C = (. , -0.5, -0.5, -0.5)
D = (-0.5, -0.5, -0.5, -0.5)
E = (2.0, 2.0, 2.0, .)
IPVT = (X'00', X'00', X'00', X'00')

Notes:

1. F is stored in an internal format and is passed unchanged to the solve
subroutine.

2. A “.” means you do not have to store a value in that position in the array.
However, these storage positions are required and may be overwritten during
the computation.

SGTF and DGTF

548 ESSL Version 3 Release 3 Guide and Reference

SGTS and DGTS—General Tridiagonal Matrix Solve
These subroutines solve a tridiagonal system of linear equations using the
factorization of tridiagonal matrix A, stored in tridiagonal storage mode, produced
by SGTF or DGTF, respectively.

Table 110. Data Types

c, d, e, f, b, x Subroutine

Short-precision real SGTS

Long-precision real DGTS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGTF and DGTF, respectively.

Syntax

Fortran CALL SGTS | DGTS (n, c, d, e, f, ipvt, bx)

C and C++ sgts | dgts (n, c, d, e, f, ipvt, bx);

PL/I CALL SGTS | DGTS (n, c, d, e, f, ipvt, bx);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing part of the factorization of matrix A from SGTF
or DGTF, respectively, in an array, referred to as C. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 110.

d is the vector d, containing part of the factorization of matrix A from SGTF
or DGTF, respectively, in an array, referred to as D. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 110.

e is the vector e, containing part of the factorization of matrix A from SGTF
or DGTF, respectively, in an array, referred to as E. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 110.

f is the vector f, containing part of the factorization of matrix A from SGTF
or DGTF, respectively, in an array, referred to as F. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 110.

ipvt is the integer vector ipvt of length n, containing the pivot information,
produced by a preceding call to SGTF and DGTF, respectively. Specified as:
a one-dimensional array of (at least) length n, containing fullword integers.

bx is the vector b of length n, containing the right-hand side of the system in
the first n positions in an array, referred to as BX. Specified as: a
one-dimensional array of (at least) length n+1, containing numbers of the
data type indicated in Table 110. For details on specifying the length, see
“Notes” on page 550.

On Return:

bx is the solution vector x (at least) of length n, containing the solution of the

SGTS and DGTS

Chapter 10. Linear Algebraic Equations 549

tridiagonal system in the first n positions in an array, referred to as BX.
Returned as: a one-dimensional array, of (at least) length (n+1), containing
numbers of the data type indicated in Table 110 on page 549. For details
about the length, see “Notes”.

Notes
1. For a description of how tridiagonal matrices are stored, see “General

Tridiagonal Matrix” on page 86.
2. Array BX can have a length of n if memory location BX(n+1) is

addressable—that is, not in read-protected storage. If it is in read-protected
storage, array BX must have a length of n+1. In both cases, the vector b (on
input) and vector x (on output) reside in positions 1 through n in array BX.
Array location BX(n+1) is not altered by these subroutines.

Function
Given the factorization produced by SGTF or DGTF, respectively, these subroutines
use the standard forward elimination and back substitution to solve the tridiagonal
system Ax = b, where A is a general tridiagonal matrix. See references [43], [54],
[55], and [90].

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example
This example solves the tridiagonal system Ax = b, where matrix A is the same
matrix factored in “Example” on page 547 for SGTF and DGTF, and where:

b = (4.0, 6.0, 6.0, 4.0)
x = (1.0, 1.0, 1.0, 1.0)

Call Statement and Input:
N C D E F IPVT BX
| | | | | | |

CALL DGTS(4 , C , D , E , F , IPVT , BX)

C = (same as output C in “Example” on page 547)
D = (same as output D in “Example” on page 547)
E = (same as output E in “Example” on page 547)
F = (same as output F in “Example” on page 547)
IPVT = (same as output IPVT in “Example” on page 547)
BX = (4.0, 6.0, 6.0, 4.0, .)

Output:
BX = (1.0, 1.0, 1.0, 1.0, .)

SGTS and DGTS

550 ESSL Version 3 Release 3 Guide and Reference

SGTNP, DGTNP, CGTNP, and ZGTNP—General Tridiagonal Matrix
Combined Factorization and Solve with No Pivoting

These subroutines solve the tridiagonal system Ax = b using Gaussian elimination,
where tridiagonal matrix A is stored in tridiagonal storage mode.

Table 111. Data Types

c, d, e, b, x Subroutine

Short-precision real SGTNP

Long-precision real DGTNP

Short-precision complex CGTNP

Long-precision complex ZGTNP

Note: In general, these subroutines provide better performance than the _GTNPF
and _GTNPS subroutines; however, in the following instances, you get better
performance by using _GTNPF and _GTNPS:
v For small n

v When performing a single factorization followed by multiple solves

Syntax

Fortran CALL SGTNP | DGTNP | CGTNP | ZGTNP (n, c, d, e, bx)

C and C++ sgtnp | dgtnp | cgtnp | zgtnp (n, c, d, e, bx);

PL/I CALL SGTNP | DGTNP | CGTNP | ZGTNP (n, c, d, e, bx);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing the lower subdiagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 111. On output, C is overwritten; that is, the original input is not
preserved.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array, referred to as D. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 111. On output, D is overwritten; that is, the original input is not
preserved.

e is the vector e, containing the upper subdiagonal of matrix A in positions 1
through n−1 in an array, referred to as E. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 111. On output, E is overwritten; that is, the original input is not
preserved.

bx is the vector b, containing the right-hand side of the system in the first n
positions in an array, referred to as BX. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 111.

On Return:

SGTNP, DGTNP CGTNP, and ZGTNP

Chapter 10. Linear Algebraic Equations 551

bx is the solution vector x of length n, containing the solution of the
tridiagonal system in the first n positions in an array, referred to as BX.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 111 on page 551.

Note
For a description of how tridiagonal matrices are stored, see “General Tridiagonal
Matrix” on page 86.

Function
The solution of the tridiagonal system Ax = b is computed by Gaussian
elimination.

No pivoting is done. Therefore, these subroutines should not be used when
pivoting is necessary to maintain the numerical accuracy of the solution. Overflow
may occur if small main diagonal elements are generated. Underflow or accuracy
loss may occur if large main diagonal elements are generated.

For performance reasons, complex divides are done without scaling. Computing
the inverse in this way restricts the range of numbers for which the ZGTNP
subroutine works properly.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DGTNP and ZGTNP work properly; therefore, you may
want to scale your problem, such that the diagonal elements are close to 1.0 for
DGTNP and (1.0, 0.0) for ZGTNP.

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows a factorization of the real tridiagonal matrix A, of order 4:

┌ ┐
| 7.0 4.0 0.0 0.0 |
| 1.0 8.0 5.0 0.0 |
| 0.0 2.0 9.0 6.0 |
| 0.0 0.0 3.0 10.0 |
└ ┘

It then finds the solution of the tridiagonal system Ax = b, where b is:
(11.0, 14.0, 17.0, 13.0)

and x is:
(1.0, 1.0, 1.0, 1.0)

On output, arrays C, D, and E are overwritten.

Call Statement and Input:
N C D E BX
| | | | |

CALL DGTNP(4 , C , D , E , BX)

C = (. , 1.0, 2.0, 3.0)
D = (7.0, 8.0, 9.0, 10.0)
E = (4.0, 5.0, 6.0, .)
BX = (11.0, 14.0, 17.0, 13.0)

SGTNP, DGTNP CGTNP, and ZGTNP

552 ESSL Version 3 Release 3 Guide and Reference

Output:
BX = (1.0, 1.0, 1.0, 1.0)

Example 2
This example shows a factorization of the complex tridiagonal matrix A, of order 4:

┌ ┐
| (7.0, 7.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (8.0, 8.0) (5.0, 5.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (9.0, 9.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 10.0) |
└ ┘

It then finds the solution of the tridiagonal system Ax = b, where b is:
((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))

and x is:
((1.0,-1.0), (2.0,-2.0), (3.0,-3.0), (4.0,-4.0))

On output, arrays C, D, and E are overwritten.

Call Statement and Input:
N C D E BX
| | | | |

CALL ZGTNP(4 , C , D , E , BX)

C = (. , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)
BX = ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 85.0))

Output:
BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))

SGTNP, DGTNP CGTNP, and ZGTNP

Chapter 10. Linear Algebraic Equations 553

SGTNPF, DGTNPF, CGTNPF, and ZGTNPF—General Tridiagonal Matrix
Factorization with No Pivoting

These subroutines factor tridiagonal matrix A, stored in tridiagonal storage mode,
using Gaussian elimination. To solve a tridiagonal system of linear equations with
one or more right-hand sides, follow the call to these subroutines with one or more
calls to SGTNPS, DGTNPS, CGTNPS, or ZGTNPS, respectively.

Table 112. Data Types

c, d, e Subroutine

Short-precision real SGTNPF

Long-precision real DGTNPF

Short-precision complex CGTNPF

Long-precision complex ZGTNPF

Notes:

1. The output from these factorization subroutines should be used only as input
to the solve subroutines SGTNPS, DGTNPS, CGTNPS, and ZGTNPS,
respectively.

2. In general, the _GTNP subroutines provide better performance than the
_GTNPF and _GTNPS subroutines; however, in the following instances, you get
better performance by using _GTNPF and _GTNPS:
v For small n

v When performing a single factorization followed by multiple solves

Syntax

Fortran CALL SGTNPF | DGTNPF | CGTNPF | ZGTNPF (n, c, d, e, iopt)

C and C++ sgtnpf | dgtnpf | cgtnpf | zgtnpf (n, c, d, e, iopt);

PL/I CALL SGTNPF | DGTNPF | CGTNPF | ZGTNPF (n, c, d, e, iopt);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing the lower subdiagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional
array, of (at least) length n, containing numbers of the data type indicated
in Table 112.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array, referred to as D. Specified as: a one-dimensional
array, of (at least) length n, containing numbers of the data type indicated
in Table 112.

e is the vector e, containing the upper subdiagonal of matrix A in positions 1
through n−1 in an array, referred to as E. Specified as: a one-dimensional
array, of (at least) length n, containing numbers of the data type indicated
in Table 112.

iopt indicates the type of computation to be performed, where:
If iopt = 0 or 1, Gaussian elimination is used to factor the matrix.

Specified as: a fullword integer; iopt = 0 or 1.

SGTNPF, DGTNPF CGTNPF, and ZGTNPF

554 ESSL Version 3 Release 3 Guide and Reference

On Return:

c is the vector c, containing part of the factorization of matrix A in positions
1 through n in an array, referred to as C. Returned as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 112 on page 554.

d is the vector d, containing part of the factorization of matrix A in an array,
referred to as D. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 112 on page 554.

e is the vector e, containing part of the factorization of matrix A in positions
1 through n in an array, referred to as E. Returned as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 112 on page 554. It has the same length as E on entry.

Note
For a description of how tridiagonal matrices are stored, see “General Tridiagonal
Matrix” on page 86.

Function
The factorization of a diagonally-dominant tridiagonal matrix A is computed using
Gaussian elimination, This factorization can then be used by SGTNPS, DGTNPS,
CGTNPS, or ZGTNPS respectively, to solve the tridiagonal systems of linear
equations. See reference [77].

No pivoting is done by these subroutines. Therefore, these subroutines should not
be used when pivoting is necessary to maintain the numerical accuracy of the
solution. Overflow may occur if small main diagonal elements are generated.
Underflow or accuracy loss may occur if large main diagonal elements are
generated.

For performance reasons, complex divides are done without scaling. Computing
the inverse in this way restricts the range of numbers for which ZGTNPF works
properly.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DGTNPF and ZGTNPF work properly; therefore, you
may want to scale your problem, such that the diagonal elements are close to 1.0
for DGTNPF and (1.0, 0.0) for ZGTNPF.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. iopt ≠ 0 or 1

Example 1
This example shows a factorization of the tridiagonal matrix A, of order 4:

┌ ┐
| 1.0 1.0 0.0 0.0 |
| 1.0 2.0 1.0 0.0 |
| 0.0 1.0 3.0 1.0 |
| 0.0 0.0 1.0 1.0 |
└ ┘

Call Statement and Input:

SGTNPF, DGTNPF CGTNPF, and ZGTNPF

Chapter 10. Linear Algebraic Equations 555

N C D E IOPT
| | | | |

CALL DGTNPF(4 , C , D , E , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)
E = (1.0, 1.0, 1.0, .)

Output:
C = (. , -1.0, -1.0, 1.0)
D = (-1.0, -1.0, -1.0, -1.0)
E = (1.0, 1.0, -1.0, .)

Example 2
This example shows a factorization of the tridiagonal matrix A, of order 4:

┌ ┐
| (7.0, 7.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (8.0, 8.0) (5.0, 5.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (9.0, 9.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 10.0) |
└ ┘

Call Statement and Input:
N C D E IOPT
| | | | |

CALL ZGTNPF(4 , C , D , E , 0)

C = (. , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)

Output:
C = (. , (-0.142, 0.0), (-0.269, 0.0), (3.0, 3.0))
D = ((-0.0714, 0.0714), (-0.0673, 0.0673), (-0.0854, 0.0854),

(-0.05, 0.05))
E = ((4.0, 4.0), (5.0, 5.0), (-0.6, 0.0), .)

Notes:

1. A “.” means you do not have to store a value in that position in the array.
However, these storage positions are required and may be overwritten during
the computation.

SGTNPF, DGTNPF CGTNPF, and ZGTNPF

556 ESSL Version 3 Release 3 Guide and Reference

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS—General Tridiagonal Matrix
Solve with No Pivoting

These subroutines solve a tridiagonal system of equations using the factorization of
matrix A, stored in tridiagonal storage mode, produced by SGTNPF, DGTNPF,
CGTNPF, or ZGTNPF, respectively.

Table 113. Data Types

c, d, e, b, x Subroutine

Short-precision real SGTNPS

Long-precision real DGTNPS

Short-precision complex CGTNPS

Long-precision complex ZGTNPS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGTNPF, DGTNPF, CGTNPF, and ZGTNPF,
respectively.

Syntax

Fortran CALL SGTNPS | DGTNPS | CGTNPS | ZGTNPS (n, c, d, e, bx)

C and C++ sgtnps | dgtnps | cgtnps | zgtnps (n, c, d, e, bx);

PL/I CALL SGTNPS | DGTNPS | CGTNPS | ZGTNPS (n, c, d, e, bx);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing part of the factorization of matrix A from
SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array,
referred to as C. Specified as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 113.

d is the vector d, containing part of the factorization of matrix A from
SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array,
referred to as D. Specified as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 113.

e is the vector e, containing part of the factorization of matrix A from
SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array,
referred to as E. Specified as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 113.

bx is the vector b, containing the right-hand side of the system in the first n
positions in an array, referred to as BX. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 113.

On Return:

bx is the solution vector x of length n, containing the solution of the
tridiagonal system in the first n positions in an array, referred to as BX.
Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 113.

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS

Chapter 10. Linear Algebraic Equations 557

Note
For a description of how tridiagonal matrices are stored, see “General Tridiagonal
Matrix” on page 86.

Function
The solution of tridiagonal system Ax = b is computed using the factorization
produced by SGTNPF, DGTNPF, CGTNPF, or ZGTNPF, respectively. The
factorization is based on Gaussian elimination. See reference [77].

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example finds the solution of tridiagonal system Ax = b, where matrix A is
the same matrix factored in “Example 1” on page 555 for SGTNPF and DGTNPF. b
is:

(2.0, 4.0, 5.0, 2.0)

and x is:
(1.0, 1.0, 1.0, 1.0)

Call Statement and Input:
N C D E BX
| | | | |

CALL DGTNPS(4 , C , D , E , BX)

C = (same as output C in “Example 1” on page 555)
D = (same as output D in “Example 1” on page 555)
E = (same as output E in “Example 1” on page 555)
BX = (2.0, 4.0, 5.0, 2.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0)

Example 2
This example finds the solution of tridiagonal system Ax = b, where matrix A is
the same matrix factored in “Example 2” on page 556 for CGTNPF and ZGTNPF. b
is:

((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))

and x is:
((0.0,1.0), (1.0,2.0), (2.0,3.0), (3.0,4.0))

Call Statement and Input:
N C D E BX
| | | | |

CALL ZGTNPS(4 , C , D , E , BX)

C = (same as output C in “Example 2” on page 556)
D = (same as output D in “Example 2” on page 556)
E = (same as output E in “Example 2” on page 556)
BX = ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 8))

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS

558 ESSL Version 3 Release 3 Guide and Reference

Output:
BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS

Chapter 10. Linear Algebraic Equations 559

SPTF and DPTF—Positive Definite Symmetric Tridiagonal Matrix
Factorization

These subroutines factor symmetric tridiagonal matrix A, stored in
symmetric-tridiagonal storage mode, using Gaussian elimination. To solve a
tridiagonal system of linear equations with one or more right-hand sides, follow
the call to these subroutines with one or more calls to SPTS or DPTS, respectively.

Table 114. Data Types

c, d Subroutine

Short-precision real SPTF

Long-precision real DPTF

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SPTS and DPTS, respectively.

Syntax

Fortran CALL SPTF | DPTF (n, c, d, iopt)

C and C++ sptf | dptf (n, c, d, iopt);

PL/I CALL SPTF | DPTF (n, c, d, iopt);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing the off-diagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional
array, of (at least) length n, containing numbers of the data type indicated
in Table 114.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array referred to as D. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 114.

iopt indicates the type of computation to be performed, where:
If iopt = 0 or 1, Gaussian elimination is used to factor the matrix.

Specified as: a fullword integer; iopt = 0 or 1.

On Return:

c is the vector c, containing part of the factorization of matrix A in an array,
referred to as C. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 114.

d is the vector d, containing part of the factorization of matrix A in positions
1 through n in an array, referred to as D. Returned as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 114. It has the same length as D on entry.

Note
For a description of how positive definite symmetric tridiagonal matrices are
stored, see “Positive Definite Symmetric Tridiagonal Matrix” on page 87.

SPTF and DPTF

560 ESSL Version 3 Release 3 Guide and Reference

Function
The factorization of positive definite symmetric tridiagonal matrix A is computed
using Gaussian elimination. This factorization can then be used by SPTS or DPTS,
respectively, to solve the tridiagonal systems of linear equations. See reference [77].

No pivoting is done. Therefore, these subroutines should not be used when
pivoting is necessary to maintain the numerical accuracy of the solution. Overflow
may occur if small pivots are generated.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DPTF works properly; therefore, you may want to scale
your problem, such that the diagonal elements are close to 1.0 for DPTF.

Error Conditions

Computational Errors: None

Note: There is no test for positive definiteness in these subroutines.

Input-Argument Errors:
1. n < 0
2. iopt ≠ 0 or 1

Example
This example shows a factorization of the tridiagonal matrix A, of order 4:

┌ ┐
| 1.0 1.0 0.0 0.0 |
| 1.0 2.0 1.0 0.0 |
| 0.0 1.0 3.0 1.0 |
| 0.0 0.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N C D IOPT
| | | |

CALL DPTF(4 , C , D , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)

Output:
C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)

Notes:

1. A “.” means you do not have to store a value in that position in the array.
However, these storage positions are required and may be overwritten during
the computation.

SPTF and DPTF

Chapter 10. Linear Algebraic Equations 561

SPTS and DPTS—Positive Definite Symmetric Tridiagonal Matrix Solve
These subroutines solve a positive definite symmetric tridiagonal system of
equations using the factorization of matrix A, stored in symmetric-tridiagonal
storage mode, produced by SPTF and DPTF, respectively.

Table 115. Data Types

c, d, b, x Subroutine

Short-precision real SPTS

Long-precision real DPTS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SPTF and DPTF, respectively.

Syntax

Fortran CALL SPTS | DPTS (n, c, d, bx)

C and C++ spts | dpts (n, c, d, bx);

PL/I CALL SPTS | DPTS (n, c, d, bx);

On Entry:

n is the order n of tridiagonal matrix A. Specified as: a fullword integer;
n ≥ 0.

c is the vector c, containing part of the factorization of matrix A from SPTF
or DPTF, respectively, in an array, referred to as C. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 115.

d is the vector d, containing part of the factorization of matrix A from SPTF
or DPTF, respectively, in an array, referred to as D. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 115.

bx is the vector b, containing the right-hand side of the system in the first n
positions in an array, referred to as BX. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 115.

On Return:

bx is the solution vector x of length n, containing the solution of the
tridiagonal system in the first n positions in an array, referred to as BX.
Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 115.

Note
For a description of how tridiagonal matrices are stored, see “Positive Definite or
Negative Definite Symmetric Matrix” on page 67.

Function
The solution of positive definite symmetric tridiagonal system Ax = b is computed
using the factorization produced by SPTF or DPTF, respectively. The factorization
is based on Gaussian elimination. See reference [77].

SPTS and DPTS

562 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 0

Example
This example finds the solution of tridiagonal system Ax = b, where matrix A is
the same matrix factored in “Example” on page 561 for SPTF and DPTF. b is:

(2.0, 4.0, 5.0, 2.0)

and x is:
(1.0, 1.0, 1.0, 1.0)

Call Statement and Input:
N C D BX
| | | |

CALL DPTS(4 , C , D , BX)

C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)
BX = (2.0, 4.0, 5.0, 2.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0)

SPTS and DPTS

Chapter 10. Linear Algebraic Equations 563

STBSV, DTBSV, CTBSV, and ZTBSV—Triangular Band Equation Solve
STBSV and DTBSV solve one of the following triangular banded systems of
equations with a single right-hand side, using the vector x and triangular band
matrix A or its transpose:

Solution Equation
1. x←A−1x Ax = b
2. x←A−Tx ATx = b

CTBSV and ZTBSV solve one of the following triangular banded systems of
equations with a single right-hand side, using the vector x and triangular band
matrix A, its transpose, or its conjugate transpose:

Solution Equation
1. x←A−1x Ax = b
2. x←A−Tx ATx = b
3. x←A−Hx AHx = b

Matrix A can be either upper or lower triangular and is stored in upper- or
lower-triangular-band-packed storage mode, respectively.

Table 116. Data Types

A, x Subprogram

Short-precision real STBSV

Long-precision real DTBSV

Short-precision complex CTBSV

Long-precision complex ZTBSV

Syntax

Fortran CALL STBSV | DTBSV | CTBSV | ZTBSV (uplo, trans, diag, n, k, a, lda, x, incx)

C and C++ stbsv | dtbsv | ctbsv | ztbsv (uplo, trans, diag, n, k, a, lda, x, incx);

PL/I CALL STBSV | DTBSV | CTBSV | ZTBSV (uplo, trans, diag, n, k, a, lda, x, incx);

On Entry:

uplo indicates whether matrix A is an upper or lower triangular band matrix,
where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

trans indicates the form of matrix A used in the system of equations, where:

If trans = 'N', A is used, resulting in solution 1.

If trans = 'T', AT is used, resulting in solution 2.

If trans = 'C', AH is used, resulting in solution 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:

STBSV, DTBSV, CTBSV, and ZTBSV

564 ESSL Version 3 Release 3 Guide and Reference

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

n is the order of triangular band matrix A. Specified as: a fullword integer;
n ≥ 0.

k is the upper or lower band width k of the matrix A. Specified as: a
fullword integer; k ≥ 0.

a is the upper or lower triangular band matrix A of order n, stored in upper-
or lower-triangular-band-packed storage mode, respectively. Specified as:
an lda by (at least) n array, containing numbers of the data type indicated
in Table 116 on page 564.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ k+1.

x is the vector x of length n, containing the right-hand side of the triangular
system to be solved. Specified as: a one-dimensional array of (at least)
length 1+(n−1)|incx|, containing numbers of the data type indicated in
Table 116 on page 564.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

On Return:

x is the solution vector x of length n, containing the results of the
computation. Returned as: a one-dimensional array, containing numbers of
the data type indicated in Table 116 on page 564.

Notes
1. These subroutines accept lowercase letters for the uplo, trans, and diag

arguments.
2. For STBSV and DTBSV, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0

for real matrices and (1.0, 0.0) for complex matrices, and you do not need to set
these values in the array.

5. For both upper and lower triangular band matrices, if you specify k ≥ n, ESSL
assumes, for purposes of the computation only, that the upper or lower band
width of matrix A is n−1; that is, it processes matrix A of order n, as though it
is a (nonbanded) triangular matrix. However, ESSL uses the original value for k
for the purposes of finding the locations of element a11 and all other elements
in the array specified for A, as described in “Triangular Band Matrix” on
page 82. For an illustration of this technique, see “Example 3” on page 567.

6. For a description of triangular band matrices and how they are stored in upper-
and lower-triangular-band-packed storage mode, see “Triangular Band Matrix”
on page 82.

7. If you are using a lower triangular band matrix, it may save your program
some time if you use this alternate approach instead of using
lower-triangular-band-packed storage mode. Leave matrix A in full-matrix
storage mode when you pass it to ESSL and specify the lda argument to be
lda+1, which is the leading dimension of matrix A plus 1. ESSL then processes

STBSV, DTBSV, CTBSV, and ZTBSV

Chapter 10. Linear Algebraic Equations 565

the matrix elements in the same way as though you had set them up in
lower-triangular-band-packed storage mode.

Function
These subroutines solve a triangular banded system of equations with a single
right-hand side. The solution, x, may be any of the following, where triangular
band matrix A, its transpose, or its conjugate transpose is used, and where A can
be either upper- or lower-triangular:

1. x←A−1x
2. x←A−Tx
3. x←A−Hx (for CTBSV and ZTBSV only)

where:
x is a vector of length n.
A is an upper or lower triangular band matrix of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively.

See references [34], [46], and [38]. If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. k < 0
3. lda ≤ 0
4. lda < k+1
5. incx = 0
6. uplo ≠ 'L' or 'U'
7. trans ≠ 'T', 'N', or 'C'
8. diag ≠ 'N' or 'U'

Example 1
This example shows the solution x←A−1x. Matrix A is a real 9 by 9 upper triangular
band matrix with an upper band width of 2 that is not unit triangular, stored in
upper-triangular-band-packed storage mode. Vector x is a vector of length 9, where
matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 4.0 2.0 3.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 4.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 4.0 2.0 2.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 3.0 1.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 3.0 2.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBSV('U' , 'N' , 'N' , 9 , 2 , A , 3 , X , 1)

┌ ┐
| . . 1.0 3.0 1.0 2.0 1.0 2.0 0.0 |

A = | . 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 |
| 1.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 1.0 |

STBSV, DTBSV, CTBSV, and ZTBSV

566 ESSL Version 3 Release 3 Guide and Reference

└ ┘

X = (2.0, 7.0, 1.0, 8.0, 2.0, 8.0, 1.0, 8.0, 3.0)

Output:
X = (1.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.0, 1.0, 3.0)

Example 2
This example shows the solution x←A−Tx, solving the same system as in Example 1.
Matrix A is a real 9 by 9 lower triangular band matrix with a lower band width of
2 that is not unit triangular, stored in lower-triangular-band-packed storage mode.
Vector x is a vector of length 9 where matrix A is:

┌ ┐
| 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 2.0 3.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 2.0 1.0 3.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 2.0 1.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBSV('L' , 'T' , 'N' , 9 , 2 , A , 3 , X , 1)

┌ ┐
| 1.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 1.0 |

A = | 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 . |
| 1.0 3.0 1.0 2.0 1.0 2.0 0.0 . . |
└ ┘

X = (same as input X in Example 1)

Output:

X = (same as output X in Example 1)

Example 3
This example shows the solution x←A−Tx, where k > n. Matrix A is a real 4 by 4
upper triangular band matrix with an upper band width of 3, even though k is
specified as 5. It is not unit triangular and is stored in upper-triangular-band-
packed storage mode. Vector x is a vector of length 4 where matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| 0.0 2.0 2.0 5.0 |
| 0.0 0.0 3.0 3.0 |
| 0.0 0.0 0.0 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBSV('U' , 'T' , 'N' , 4 , 5 , A , 6 , X , 1)

┌ ┐
| |
| |

A = | . . . 2.0 |
| . . 3.0 5.0 |

STBSV, DTBSV, CTBSV, and ZTBSV

Chapter 10. Linear Algebraic Equations 567

| . 2.0 2.0 3.0 |
| 1.0 2.0 3.0 1.0 |
└ ┘

X = (5.0, 18.0, 32.0, 41.0)

Output:
X = (5.0, 4.0, 3.0, 2.0)

Example 4
This example shows the solution x←A−Tx. Matrix A is a complex 7 by 7 lower
triangular band matrix with a lower band width of 3 that is not unit triangular,
stored in lower-triangular-band-packed storage mode. Vector x is a vector of length
7. Matrix A is:

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL CTBSV('L' , 'T' , 'N' , 7 , 3 , A , 4 , X , 1)

X = ((2.0, 2.0), (7.0, 1.0), (1.0, 1.0), (8.0, 1.0),
(2.0, 0.0), (8.0, 1.0), (1.0, 2.0))

Output:
X = ((-12.048, -13.136), (6.304, -1.472), (-1.880, 1.040),

(2.600, -1.800), (-2.160, 1.880), (0.800, -1.400),
(0.800, 0.600))

┌ ┐
| (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (1.0, 2.0) (2.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (1.0, 3.0) (2.0, 2.0) (3.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (1.0, 4.0) (2.0, 3.0) (3.0, 3.0) (4.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (0.0, 0.0) (2.0, 4.0) (3.0, 3.0) (4.0, 2.0) (2.0, 1.0) (0.0, 0.0) (0.0, 0.0) │
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (4.0, 3.0) (5.0, 1.0) (3.0, 1.0) (0.0, 0.0) │
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (5.0, 2.0) (6.0, 1.0) (2.0, 1.0) │
└ ┘

┌ ┐
| (1.0, 0.0) (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) (2.0, 1.0) (3.0, 1.0) (2.0, 1.0) │

A = | (1.0, 2.0) (2.0, 2.0) (3.0, 3.0) (4.0, 2.0) (5.0, 1.0) (6.0, 1.0) . |
| (1.0, 3.0) (2.0, 3.0) (3.0, 3.0) (4.0, 3.0) (5.0, 2.0) . . |
| (1.0, 4.0) (2.0, 4.0) (3.0, 3.0) (4.0, 4.0) . . . |
└ ┘

STBSV, DTBSV, CTBSV, and ZTBSV

568 ESSL Version 3 Release 3 Guide and Reference

Sparse Linear Algebraic Equation Subroutines
This section contains the sparse linear algebraic equation subroutine descriptions.

DGSF

Chapter 10. Linear Algebraic Equations 569

DGSF—General Sparse Matrix Factorization Using Storage by Indices,
Rows, or Columns

This subroutine factors sparse matrix A by Gaussian elimination, using a modified
Markowitz count with threshold pivoting. The sparse matrix can be stored by
indices, rows, or columns. To solve the system of equations, follow the call to this
subroutine with a call to DGSS.

Syntax

Fortran CALL DGSF (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux)

C and C++ dgsf (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux);

PL/I CALL DGSF (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux);

On Entry:

iopt indicates the storage technique used for sparse matrix A, where:

If iopt = 0, it is stored by indices.

If iopt = 1, it is stored by rows.

If iopt = 2, it is stored by columns.

Specified as: a fullword integer; iopt = 0, 1, or 2.

n is the order n of sparse matrix A. Specified as: a fullword integer; n ≥ 0.

nz is the number of elements in sparse matrix A, stored in an array, referred
to as A. Specified as: a fullword integer; nz > 0.

a is the sparse matrix A, to be factored, stored in an array, referred to as A.
Specified as: an array of length lna, containing long-precision real numbers.

ia is the array, referred to as IA, where:

If iopt = 0, it contains the row numbers that correspond to the elements in
array A.

If iopt = 1, it contains the row pointers.

If iopt = 2, it contains the row numbers that correspond to the elements in
array A.

Specified as: an array of length lna, containing fullword integers; IA(i) ≥ 1.
See “Sparse Matrix” on page 88 for more information on storage
techniques.

ja is the array, referred to as JA, where:

If iopt = 0, it contains the column numbers that correspond to the elements
in array A.

If iopt = 1, it contains the column numbers that correspond to the elements
in array A.

If iopt = 2, it contains the column pointers.

Specified as: an array of length lna, containing fullword integers; JA(i) ≥ 1.
See “Sparse Matrix” on page 88 for more information on storage
techniques.

lna is the length of the arrays specified for a, ia, and ja. Specified as: a fullword

DGSF

570 ESSL Version 3 Release 3 Guide and Reference

integer; lna > 2nz. If you do not specify a sufficient amount, it results in
an error. See “Error Conditions” on page 573.

The size of lna depends on the structure of the input matrix. The
requirement that lna > 2nz does not guarantee a successful run of the
program. If the input matrix is expected to have many fill-ins, lna should
be set larger. Larger lna may result in a performance improvement.

For details on how lna relates to storage compressions, see “Performance
and Accuracy Considerations” on page 433.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) determines whether the default values for iparm and rparm are

used by this subroutine.
If IPARM(1) = 0, the following default values are used:

IPARM(2) = 10
IPARM(3) = 1
IPARM(4) = 0
RPARM(1) = 10−12

RPARM(2) = 0.1

If IPARM(1) = 1, the default values are not used.
v IPARM(2) determines the number of minimal Markowitz counts that are

examined to determine a pivot. (See reference [101].)
v IPARM(3) has the following meaning, where:

If IPARM(3) = 0, this subroutine checks the values in arrays IA and JA.

If IPARM(3) = 1, this subroutine assumes that the input values are
correct in arrays IA and JA.

v IPARM(4) has the following meaning, where:
If IPARM(4) = 0, this computation is not performed.
If IPARM(4) = 1, this subroutine computes:

The absolute value of the smallest pivot element
The absolute value of the largest element in U.

These values are stored in OPARM(2) and OPARM(3), respectively.
v IPARM(5) is reserved.

Specified as: an array of (at least) length 5, containing fullword integers,
where the iparm values must be:

IPARM(1) = 0 or 1
IPARM(2) ≥ 1
IPARM(3) = 0 or 1
IPARM(4) = 0 or 1

rparm is an array of parameters, RPARM(i), where:
v RPARM(1) contains the lower bound of the absolute value of all elements

in the matrix. If a pivot element is less than this number, the matrix is
reported as singular. Any computed element whose absolute value is
less than this number is set to 0.

v RPARM(2) is the threshold pivot tolerance used to control the choice of
pivots.

v RPARM(3) is reserved.
v RPARM(4) is reserved.
v RPARM(5) is reserved.

DGSF

Chapter 10. Linear Algebraic Equations 571

Specified as: a one-dimensional array of (at least) length 5, containing
long-precision real numbers, where the rparm values must be:

RPARM(1) ≥ 0.0
0.0 ≤ RPARM(2) ≤ 1.0

For additional information about rparm, see “Performance and Accuracy
Considerations” on page 433.

oparm See “On Return”.

aux is the storage work area used by this subroutine. Its size is specified by
naux. Specified as: an area of storage, containing long-precision real
numbers.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer; naux ≥ 10n+100.

On Return:

a is the transformed array, referred to as A, containing the factored matrix A,
required as input to DGSS. Returned as: a one-dimensional array of length
lna, containing long-precision real numbers.

ia is the transformed array, referred to as IA, required as input to DGSS.
Returned as: a one-dimensional array of length lna, containing fullword
integers.

ja is the transformed array, referred to as JA, required as input to DGSS.
Returned as: a one-dimensional array of length lna, containing fullword
integers.

oparm is an array of parameters, OPARM(i), where:
v OPARM(1) is the amount of fill-ins for the sparse processing portion of the

algorithm.
v OPARM(2) contains the absolute value of the smallest pivot element of the

matrix. This value is computed and set only if IPARM(4) = 1.
v OPARM(3) contains the absolute value of the largest element encountered

in U after the factorization. This value is computed and set only if
IPARM(4) = 1.

v OPARM(4) is reserved.
v OPARM(5) is reserved.

Returned as: a one-dimensional array of length 5, containing long-precision
real numbers.

aux is the storage work area used by this subroutine. It contains the
information required as input for DGSS. Specified as: an area of storage,
containing long-precision real numbers.

Notes
1. For a description of the three storage techniques used by this subroutine for

sparse matrices, see “Sparse Matrix” on page 88.
2. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The matrix A is factored by Gaussian elimination, using a modified Markowitz
count with threshold pivoting to compute the sparse LU factorization of A:

DGSF

572 ESSL Version 3 Release 3 Guide and Reference

LU = PAQ

where:
A is a general sparse matrix of order n, stored by indices, columns, or rows in
arrays A, IA, and JA.
L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.
Q is a permutation matrix.

To solve the system of equations, follow the call to this subroutine with a call to
DGSS. If n is 0, no computation is performed. See references [10], [47], and [93].

Error Conditions

Computational Errors:
1. If this subroutine has to perform storage compressions, an attention message is

issued. When this occurs, the performance of this subroutine is affected. The
performance can be improved by increasing the value specified for lna.

2. The following errors with their corresponding return codes can occur in this
subroutine. Where a value of i is indicated, it can be determined at run time by
use of the ESSL error-handling facilities. To obtain this information, you must
use ERRSET to change the number of allowable errors for that particular error
code in the ESSL error option table; otherwise, the default value causes your
program to terminate when the error occurs. For details, see “What Can You
Do about ESSL Computational Errors?” on page 45.
v For error 2117, return code 2 indicates that the pivot element in a column, i,

is smaller than the value specified in RPARM(1).
v For error 2118, return code 3 indicates that pivot element in a row, i, is

smaller than the value specified in RPARM(1).
v For error 2120, return code 4 indicates that a row, i, is found empty on

factorization. The matrix is singular.
v For error 2121, return code 5 indicates that a column is found empty on

factorization. The matrix is singular.
v For error 2119, return code 6 indicates that the storage space indicated by lna

is insufficient.
v For error 2122, return code 7 indicates that no pivot element was found in

the active submatrix.

Input-Argument Errors:
1. iopt ≠ 0, 1, or 2
2. n < 0
3. nz ≤ 0
4. lna ≤ 2nz
5. IPARM(1) ≠ 0 or 1
6. IPARM(2) ≤ 0
7. IPARM(3) ≠ 0 or 1
8. IPARM(4) ≠ 0 or 1
9. RPARM(1) < 0.0

10. RPARM(2) < 0.0 or RPARM(2) > 1.0
11. iopt = 1 and ia(i) ≥ ia (i+1), i = 1, n
12. iopt = 2 and ja(i) ≥ ja(i+1), i = 1, n
13. iopt = 0 or 1 and ja(i) < 1 or ja(i) > n, i = 1, nz
14. iopt = 0 or 1 and ia(i) < 1 or ia(i) > n, i = 1, nz
15. There are duplicate indices in a row or column of the input matrix.
16. The matrix is singular if a row or column of the input matrix is empty.

DGSF

Chapter 10. Linear Algebraic Equations 573

17. naux is too small—that is, less than the minimum required value. Return code
1 is returned if error 2015 is recoverable.

Example
This example factors 5 by 5 sparse matrix A, which is stored by indices in arrays A,
IA, and JA. The three storage techniques are shown in this example, and the output
is the same regardless of the storage technique used. The matrix is factored using
Gaussian elimination with threshold pivoting. Matrix A is:

┌ ┐
| 2.0 0.0 4.0 0.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 |
| 0.0 0.0 3.0 4.0 0.0 |
| 2.0 2.0 0.0 1.0 5.0 |
| 0.0 0.0 1.0 1.0 0.0 |
└ ┘

Note: In this example, only nonzero elements are used as input to the matrix.

Call Statement and Input (Storage-By-Indices):
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
| | | | | | | | | | | |

CALL DGSF(0 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

A = (2.0, 1.0, 1.0, 3.0, 4.0, 1.0, 5.0, 2.0, 2.0, 1.0, 1.0,
4.0, 3.0, . , . , . , . , . , . , . , . , . , . , . , . ,
. , .)

IA = (1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 1, 2, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

JA = (1, 1, 2, 3, 4, 4, 5, 1, 2, 3, 4, 3, 5, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

IPARM = (1, 3, 1, 1)
RPARM = (1.D-12, 0.1D0)

Call Statement and Input (Storage-By-Rows):
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
| | | | | | | | | | | |

CALL DGSF(1 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

A = (2.0, 4.0, 1.0, 1.0, 3.0, 3.0, 4.0, 2.0, 2.0, 1.0, 5.0,
1.0, 1.0, . , . , . , . , . , . , . , . , . , . , . , . ,
. , .)

IA = (1, 3, 6, 8, 12, 14, . , . , . , . , . , . , . , . , . ,
. , . , . , . , .)

JA = (1, 3, 1, 2, 5, 3, 4, 1, 2, 4, 5, 3, 4, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

IPARM = (1, 3, 1, 1)
RPARM = (1.D-12, 0.1D0)

Call Statement and Input (Storage-By-Columns):
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
| | | | | | | | | | | |

CALL DGSF(2 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

A = (2.0, 1.0, 2.0, 1.0, 2.0, 4.0, 3.0, 1.0, 4.0, 1.0, 1.0,
3.0, 5.0, . , . , . , . , . , . , . , . , . , . , . , . ,
. , .)

IA = (1, 2, 4, 2, 4, 1, 3, 5, 3, 4, 5, 2, 4, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

JA = (1, 4, 6, 9, 12, 14, . , . , . , . , . , . , . , . , . ,
. , . , . , . , .)

IPARM = (1, 3, 0, 1)
RPARM = (1.D-12, 0.1D0)

Output:

DGSF

574 ESSL Version 3 Release 3 Guide and Reference

A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0,
1.0, . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0,
4.0, -3.0, -4.0)

IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
. , . , . , 2, 1, 1, 3, 3, 5, 5)

JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . ,
. , . , . , 4, 2, 4, 4, 1, 3, 1)

OPARM = (1.000000, 0.333333, 3.000000)

DGSF

Chapter 10. Linear Algebraic Equations 575

DGSS—General Sparse Matrix or Its Transpose Solve Using Storage
by Indices, Rows, or Columns

This subroutine solves either of the following systems:
Ax = b
ATx = b

where A is a sparse matrix, AT is the transpose of sparse matrix A, and x and b are
vectors. DGSS uses the results of the factorization of matrix A, produced by a
preceding call to DGSF.

Note: The input to this solve subroutine must be the output from the factorization
subroutine, DGSF.

Syntax

Fortran CALL DGSS (jopt, n, a, ia, ja, lna, bx, aux, naux)

C and C++ dgss (jopt, n, a, ia, ja, lna, bx, aux, naux);

PL/I CALL DGSS (jopt, n, a, ia, ja, lna, bx, aux, naux);

On Entry:

jopt indicates the type of computation to be performed, where:

If jopt = 0, Ax = b is solved, where the right-hand side is not sparse.

If jopt = 1, ATx = b is solved, where the right-hand side is not sparse.

If jopt = 10, Ax = b is solved, where the right-hand side is sparse.

If jopt = 11, ATx = b is solved, where the right-hand side is sparse.

Specified as: a fullword integer; jopt = 0, 1, 10, or 11.

n is the order n of sparse matrix A. Specified as: a fullword integer; n ≥ 0.

a is the factorization of sparse matrix A, stored in array A, produced by a
preceding call to DGSF. Specified as: an array of length lna, containing
long-precision real numbers.

ia is the array, referred to as IA, produced by a preceding call to DGSF.
Specified as: an array of length lna, containing fullword integers.

ja is the array, referred to as JA, produced by a preceding call to DGSF.
Specified as: an array of length lna, containing fullword integers.

lna is the length of the arrays A, IA, and JA. In DGSS, lna must be identical to
the value specified in DGSF; otherwise, results are unpredictable. Specified
as: a fullword integer; lna > 0.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing
long-precision real numbers.

aux is the storage work area passed to this subroutine by a preceding call to
DGSF. Its size is specified by naux. Specified as: an area of storage,
containing long-precision real numbers.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer; naux ≥ 10n+100.

On Return:

DGSS

576 ESSL Version 3 Release 3 Guide and Reference

ia is the transformed array, referred to as IA, which can be used as input in
subsequent calls to this subroutine. This may result in a performance
increase. Specified as: an array of length lna, containing fullword integers.

bx is the solution vector x of length n, containing the results of the
computation. Specified as: a one-dimensional array, containing
long-precision real numbers.

Notes
1. The input arguments n, lna, and naux, must be the same as those specified for

DGSF. Whereas, the input arguments a, ia, ja, and aux must be those produced
on output by DGSF. Otherwise, results are unpredictable.

2. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The system Ax = b is solved for x, where A is a sparse matrix and x and b are
vectors. Depending on the value specified for the jopt argument, DGSS can also
solve the system ATx = b, where AT is the transpose of sparse matrix A.

If the value specified for the jopt argument is 0 or 10, the following equation is
solved:

Ax = b

If the value specified for the jopt argument is 1 or 11, the following equation is
solved:

ATx = b

DGSS uses the results of the factorization of matrix A, produced by a preceding
call to DGSF. The transformed matrix A consists of the upper triangular matrix U
and the lower triangular matrix L.

See references [10], [47], and [93].

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. jopt ≠ 0, 1, 10, or 11
2. n < 0
3. lna ≤ 0
4. naux is too small—that is, less than the minimum required value. Return code 1

is returned if error 2015 is recoverable.

Example 1
This example shows how to solve the system Ax = b, where matrix A is a 5 by 5
sparse matrix. The right-hand side is not sparse.

Note: The input for this subroutine is the same as the output from DGSF, except
for BX.

Matrix A is:
┌ ┐
| 2.0 0.0 4.0 0.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 |
| 0.0 0.0 3.0 4.0 0.0 |

DGSS

Chapter 10. Linear Algebraic Equations 577

| 2.0 2.0 0.0 1.0 5.0 |
| 0.0 0.0 1.0 1.0 0.0 |
└ ┘

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(0 , 5 , A , IA , JA , 27 , BX , AUX , 150)

A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0,
1.0, . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0,
4.0, -3.0, -4.0)

IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
. , . , . , 2, 1, 1, 3, 3, 5, 5)

JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . ,
. , . , . , 4, 2, 4, 4, 1, 3, 1)

BX = (1.0, 1.0, 1.0, 1.0, 1.0)

Output:
IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,

. , . , . , 2, 1, 1, 3, 3, 5, 5)
BX = (-5.500000, 9.500000, 3.000000, -2.000000, -1.000000)

Example 2
This example shows how to solve the system ATx = b, using the same matrix A
used in Example 1. The input is also the same as in Example 1, except for the jopt
argument. The right-hand side is not sparse.

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(1 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (1.0, 1.0, 1.0, 1.0, 1.0)

Output:
IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,

. , . , . , 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, -3.000000, -2.000000, 2.000000, 7.000000)

Example 3
This example shows how to solve the system Ax = b, using the same matrix A as
in Examples 1 and 2. The input is also the same as in Examples 1 and 2, except for
the jopt and bx arguments. The right-hand side is sparse.

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(10 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (0.0, 0.0, 0.0, 1.0, 0.0)

Output:
IA = (1, 4, 2, 5, 3, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, 3.000000, 0.000000, 0.000000, -1.000000)

Example 4
This example shows how to solve the system ATx = b, using the same matrix A as
in Examples 1, 2, and 3. The input is also the same as in Examples 1, 2, and 3,
except for the jopt argument. The right-hand side is sparse.

DGSS

578 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(11 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (0.0, 0.0, 0.0, 1.0, 0.0)

Output:
IA = (1, 4, 2, 5, 3, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, 0.000000, 1.000000, 0.000000, -3.000000)

DGSS

Chapter 10. Linear Algebraic Equations 579

DGKFS—General Sparse Matrix or Its Transpose Factorization,
Determinant, and Solve Using Skyline Storage Mode

This subroutine can perform either or both of the following functions for general
sparse matrix A, stored in skyline storage mode, and for vectors x and b:
v Factor A and, optionally, compute the determinant of A.
v Solve the system Ax = b or ATx = b using the results of the factorization of

matrix A, produced on this call or a preceding call to this subroutine.

You also have the choice of using profile-in or diagonal-out skyline storage mode
for A on input or output.

Note: The input to the solve performed by this subroutine must be the output
from the factorization performed by this subroutine.

Syntax

Fortran CALL DGKFS (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx)

C and C++ dgkfs (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx);

PL/I CALL DGKFS (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx);

On Entry:

n is the order of general sparse matrix A. Specified as: a fullword integer;
n ≥ 0.

au is the array, referred to as AU, containing one of three forms of the upper
triangular part of general sparse matrix A, depending on the type of
computation performed, where:
v If you are doing a factor and solve or a factor only, and if

IPARM(3) = 0, then AU contains the unfactored upper triangle of general
sparse matrix A.

v If you are doing a factor only, and if IPARM(3) > 0, then AU contains the
partially factored upper triangle of general sparse matrix A. The first
IPARM(3) columns in the upper triangle of A are already factored. The
remaining columns are factored in this computation.

v If you are doing a solve only, then AU contains the factored upper
triangle of general sparse matrix A, produced by a preceding call to this
subroutine.

In each case:

If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

nu is the length of array AU. Specified as: a fullword integer; nu ≥ 0 and
nu ≥ (IDU(n+1)−1).

idu is the array, referred to as IDU, containing the relative positions of the
diagonal elements of matrix A (in one of its three forms) in array AU.
Specified as: a one-dimensional array of (at least) length n+1, containing
fullword integers.

DGKFS

580 ESSL Version 3 Release 3 Guide and Reference

al is the array, referred to as AL, containing one of three forms of the lower
triangular part of general sparse matrix A, depending on the type of
computation performed, where:
v If you are doing a factor and solve or a factor only, and if

IPARM(3) = 0, then AL contains the unfactored lower triangle of general
sparse matrix A.

v If you are doing a factor only, and if IPARM(3) > 0, then AL contains the
partially factored lower triangle of general sparse matrix A. The first
IPARM(3) rows in the lower triangle of A are already factored. The
remaining rows are factored in this computation.

v If you are doing a solve only, then AL contains the factored lower
triangle of general sparse matrix A, produced by a preceding call to this
subroutine.

Note: In all these cases, entries in AL for diagonal elements of A are not
assumed to have meaningful values.

In each case:

If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

nl is the length of array AL. Specified as: a fullword integer; nl ≥ 0 and
nl ≥ (IDL(n+1)−1).

idl is the array, referred to as IDL, containing the relative positions of the
diagonal elements of matrix A (in one of its three forms) in array AL.
Specified as: a one-dimensional array of (at least) length n+1, containing
fullword integers.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) indicates whether certain default values for iparm and rparm

are used by this subroutine, where:
If IPARM(1) = 0, the following default values are used. For restrictions,
see “Notes” on page 587.

IPARM(2) = 0
IPARM(3) = 0
IPARM(4) = 0
IPARM(5) = 0
IPARM(10) = 0
IPARM(11) = −1
IPARM(12) = −1
IPARM(13) = −1
IPARM(14) = −1
IPARM(15) = 0
RPARM(10) = 10−12

If IPARM(1) = 1, the default values are not used.
v IPARM(2) indicates the type of computation performed by this

subroutine. The following table gives the IPARM(2) values for each
variation:

DGKFS

Chapter 10. Linear Algebraic Equations 581

Type of Computation Ax = b Ax = b and
Determinant(A)

ATx = b ATx = b and
Determinant(A)

Factor and Solve 0 10 100 110

Factor Only 1 11 N/A N/A

Solve Only 2 N/A 102 N/A

v IPARM(3) indicates whether a full or partial factorization is performed on
matrix A, where:
If IPARM(3) = 0, and:

If you are doing a factor and solve or a factor only, then a full
factorization is performed for matrix A on rows and columns 1
through n.
If you are doing a solve only, this argument has no effect on the
computation, but must be set to 0.

If IPARM(3) > 0, and you are doing a factor only, then a partial
factorization is performed on matrix A. Rows 1 through IPARM(3) of
columns 1 through IPARM(3) in matrix A must be in factored form from
a preceding call to this subroutine. The factorization is performed on
rows IPARM(3)+1 through n and columns IPARM(3)+1 through n. For an
illustration, see “Notes” on page 587.

v IPARM(4) indicates the input storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on
input, where:
If IPARM(4) = 0, diagonal-out skyline storage mode is used.
If IPARM(4) = 1, profile-in skyline storage mode is used.

v IPARM(5) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on
output, where:
If IPARM(5) = 0, diagonal-out skyline storage mode is used.
If IPARM(5) = 1, profile-in skyline storage mode is used.

v IPARM(6) through IPARM(9) are reserved.
v IPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, then IPARM(10)
indicates whether certain default values for iparm and rparm are used by
this subroutine, where:

If IPARM(10) = 0, the following default values are used. For
restrictions, see “Notes” on page 587.

IPARM(11) = −1
IPARM(12) = −1
IPARM(13) = −1
IPARM(14) = −1
IPARM(15) = 0
RPARM(10) = 10−12

If IPARM(10) = 1, the default values are not used.

If you are doing a solve only, this argument is not used.
v IPARM(11) through IPARM(15) have the following meaning, where:

If you are doing a factor and solve or a factor only, then IPARM(11)
through IPARM(15) control the type of processing to apply to pivot
elements occurring in regions 1 through 5, respectively. The pivot
elements are ukk for k = 1, n when doing a full factorization, and they

DGKFS

582 ESSL Version 3 Release 3 Guide and Reference

are k = IPARM(3)+1, n when doing a partial factorization. The region in
which a pivot element falls depends on the sign and magnitude of the
pivot element. The regions are determined by RPARM(10). For a
description of the regions and associated pivot values, see “Notes” on
page 587. For each region i for i = 1,5, where the pivot occurs in region
i, the processing applied to the pivot element is determined by
IPARM(10+i), where:

If IPARM(10+i) = −1, the pivot element is trapped and computational
error 2126 is generated. See “Error Conditions” on page 588.
If IPARM(10+i) = 0, for i = 1, 2, 4, and 5, processing continues
normally.

Note: A value of 0 is not permitted for region 3, because if
processing continues, a divide-by-zero exception occurs.

If IPARM(10+i) = 1, the pivot element is replaced with the value in
RPARM(10+i), and processing continues normally.

If you are doing a solve only, these arguments are not used.
v IPARM(16) through IPARM(25), see “On Return” on page 584.

Specified as: a one-dimensional array of (at least) length 25, containing
fullword integers, where:

IPARM(1) = 0 or 1
IPARM(2) = 0, 1, 2, 10, 11, 100, 102, or 110
If IPARM(2) = 0, 2, 10, 100, 102, or 110, then IPARM(3) = 0
If IPARM(2) = 1 or 11, then 0 ≤ IPARM(3) ≤ n
IPARM(4), IPARM(5) = 0 or 1
If IPARM(2) = 0, 1, 10, 11, 100, or 110, then:

IPARM(10) = 0 or 1
IPARM(11), IPARM(12) = −1, 0, or 1
IPARM(13) = −1 or 1
IPARM(14), IPARM(15) = −1, 0, or 1

rparm is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(9) are reserved.
v RPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, RPARM(10) is the
tolerance value for small pivots. This sets the bounds for the pivot
regions, where pivots are processed according to the options you specify
for the five regions in IPARM(11) through IPARM(15), respectively. The
suggested value is 10−15 ≤ IPARM(10) ≤ 1.
If you are doing a solve only, this argument is not used.

v RPARM(11) through RPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, RPARM(11) through
RPARM(15) are the fix-up values to use for the pivots in regions 1 through
5, respectively. For each RPARM(10+i) for i = 1,5, where the pivot occurs
in region i:

If IPARM(10+i) = 1, the pivot is replaced with RPARM(10+i), where
|RPARM(10+i)| should be a sufficiently large nonzero value to avoid
overflow when calculating the reciprocal of the pivot. The suggested
value is 10−15 ≤ |RPARM(10+i)| ≤ 1.
If IPARM(10+i) ≠ 1, RPARM(10+i) is not used.

If you are doing a solve only, these arguments are not used.

DGKFS

Chapter 10. Linear Algebraic Equations 583

v RPARM(16) through RPARM(25), see “On Return”.

Specified as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers, where if IPARM(2) = 0, 1, 10, 11, 100, or 110,
then:

RPARM(10) ≥ 0.0
RPARM(11) through RPARM(15) ≠ 0.0

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, DGKFS dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise,

If you are doing a factor only, use naux ≥ 5n.

If you are doing a factor and solve or a solve only, use naux ≥ 5n+4mbx.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array,
containing the mbx right-hand side vectors b of the system Ax = b or
ATx = b. Each vector b is length n and is stored in the corresponding
column of the array.

If you are doing a factor only, this argument is not used in the
computation.

Specified as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

ldbx has the following meaning, where:

If you are doing a factor and solve or a solve only, ldbx is the leading
dimension of the array specified for bx.

If you are doing a factor only, this argument is not used in the
computation.

Specified as: a fullword integer; ldbx ≥ n and:

If mbx ≠ 0, then ldbx > 0.

If mbx = 0, then ldbx ≥ 0.

mbx has the following meaning, where:

If you are doing a factor and solve or a solve only, mbx is the number of
right-hand side vectors, b, in the array specified for bx.

If you are doing a factor only, this argument is not used in the
computation.

Specified as: a fullword integer; mbx ≥ 0.

On Return:

DGKFS

584 ESSL Version 3 Release 3 Guide and Reference

au is the array, referred to as AU, containing the upper triangular part of the
LU factored form of general sparse matrix A, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(5) = 1, profile-in skyline storage mode is used for A.

(If mbx = 0 and you are doing a solve only, then au is unchanged on
output.) Returned as: a one-dimensional array of (at least) length nu,
containing long-precision real numbers.

idu is the array, referred to as IDU, containing the relative positions of the
diagonal elements of the factored output matrix A in array AU. (If mbx = 0
and you are doing a solve only, then idu is unchanged on output.)
Returned as: a one-dimensional array of (at least) length n+1, containing
fullword integers.

al is the array, referred to as AL, containing the lower triangular part of the
LU factored form of general sparse matrix A, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(5) = 1, profile-in skyline storage mode is used for A.

Note: You should assume that entries in AL for diagonal elements of A do
not have meaningful values.

(If mbx = 0 and you are doing a solve only, then al is unchanged on
output.) Returned as: a one-dimensional array of (at least) length nl,
containing long-precision real numbers.

idl is the array, referred to as IDL, containing the relative positions of the
diagonal elements of the factored output matrix A in array AL. (If mbx = 0
and you are doing a solve only, then idl is unchanged on output.) Returned
as: a one-dimensional array of (at least) length n+1, containing fullword
integers.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) through IPARM(15) are unchanged.
v IPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If IPARM(16) = −1, your factorization did not complete successfully,
resulting in computational error 2126.
If IPARM(16) > 0, it is the row number k, in which the maximum
absolute value of the ratio akk/ukk occurred, where:

If IPARM(3) = 0, k can be any of the rows, 1 through n, in the full
factorization.
If IPARM(3) > 0, k can be any of the rows, IPARM(3)+1 through n,
in the partial factorization.

If you are doing a solve only, this argument is not used in the
computation and is unchanged.

v IPARM(17) through IPARM(20) are reserved.
v IPARM(21) through IPARM(25) have the following meaning, where:

If you are doing a factor and solve or a factor only, IPARM(21) through
IPARM(25) have the following meanings for each region i for i = 1,5,
respectively:

If IPARM(20+i) = −1, your factorization did not complete successfully,
resulting in computational error 2126.

DGKFS

Chapter 10. Linear Algebraic Equations 585

If IPARM(20+i) ≥ 0, it is the number of pivots in region i for the
columns that were factored in matrix A, where:

If IPARM(3) = 0, columns 1 through n were factored in the full
factorization.
If IPARM(3) > 0, columns IPARM(3)+1 through n were factored in
the partial factorization.

If you are doing a solve only, these arguments are not used in the
computation and are unchanged.

Returned as: a one-dimensional array of (at least) length 25, containing
fullword integers.

rparm is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(15) are unchanged.
v RPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If RPARM(16) = 0.0, your factorization did not complete successfully,
resulting in computational error 2126.
If |RPARM(16)| > 0.0, it is the ratio for row k, akk/ukk, having the
maximum absolute value. Row k is indicated in IPARM(16), and:

If IPARM(3) = 0, the ratio corresponds to one of the rows, 1
through n, in the full factorization.
If IPARM(3) > 0, the ratio corresponds to one of the rows,
IPARM(3)+1 through n, in the partial factorization.

If you are doing a solve only, this argument is not used in the
computation and is unchanged.

v RPARM(17) and RPARM(18) have the following meaning, where:
If you are computing the determinant of matrix A, then RPARM(17) is the
mantissa, detbas, and RPARM(18) is the power of 10, detpwr, used to
express the value of the determinant: detbas(10detpwr), where
1 ≤ detbas < 10. Also:

If IPARM(3) = 0, the determinant is computed for columns 1 through
n in the full factorization.
If IPARM(3) > 0, the determinant is computed for columns
IPARM(3)+1 through n in the partial factorization.

If you are not computing the determinant of matrix A, these arguments
are not used in the computation and are unchanged.

v RPARM(19) through RPARM(25) are reserved.

Returned as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array,
containing the mbx solution vectors x of the system Ax = b or ATx = b.
Each vector x is length n and is stored in the corresponding column of the
array. (If mbx = 0, then bx is unchanged on output.)

If you are doing a factor only, this argument is not used in the
computation and is unchanged.

Returned as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

DGKFS

586 ESSL Version 3 Release 3 Guide and Reference

Notes
1. If you set either IPARM(1) = 0 or IPARM(10) = 0, indicating you want to use

the default values for IPARM(11) through IPARM(15) and RPARM(10), then:
v Matrix A must be positive definite.
v No pivots are fixed, using RPARM(11) through RPARM(15) values.
v No small pivots are tolerated; that is, the value should be

|pivot| > RPARM(10).
2. Many of the input and output parameters for iparm and rparm are defined for

the five pivot regions handled by this subroutine. The limits of the regions are
based on RPARM(10), as shown in Figure 11. The pivot values in each region are:

Region 1: pivot < −RPARM(10)
Region 2: −RPARM(10) ≤ pivot < 0
Region 3: pivot = 0
Region 4: 0 < pivot ≤ RPARM(10)
Region 5: pivot > RPARM(10)

3. The IPARM(4) and IPARM(5) arguments allow you to specify the same or
different skyline storage modes for your input and output arrays for matrix A.
This allows you to change storage modes as needed. However, if you are
concerned with performance, you should use diagonal-out skyline storage
mode for both input and output, if possible, because there is less overhead.
For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 97 and “Diagonal-Out Skyline
Storage Mode” on page 95.

4. Following is an illustration of the portion of matrix A factored in the partial
factorization when IPARM(3) > 0. In this case, the subroutine assumes that rows
and columns 1 through IPARM(3) are already factored and that rows and
columns IPARM(3)+1 through n are to be factored in this computation.

RPARM(10)0

Pivot
Values:

Regions: ... 1) (2) (3) (4) (5 ...
RPARM(10)

Figure 11. Five Pivot Regions

DGKFS

Chapter 10. Linear Algebraic Equations 587

You use the partial factorization function when, for design or storage reasons,
you must factor the matrix A in stages. When doing a partial factorization, you
must use the same skyline storage mode for all parts of the matrix as it is
progressively factored.

5. Your various arrays must have no common elements; otherwise, results are
unpredictable.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
This subroutine can factor, compute the determinant of, and solve general sparse
matrix A, stored in skyline storage mode. For all computations, input matrix A can
be stored in either diagonal-out or profile-in skyline storage mode. Output matrix
A can also be stored in either of these modes and can be different from the mode
used for input.

Matrix A is factored into the following form using specified pivot processing:
A = LU

where:
U is an upper triangular matrix.
L is a lower triangular matrix.

The transformed matrix A, factored into its LU form, is stored in packed format in
arrays AU and AL. The inverse of the diagonal of matrix U is stored in the
corresponding elements of array AU. The off-diagonal elements of the upper
triangular matrix U are stored in the corresponding off-diagonal elements of array
AU. The off-diagonal elements of the lower triangular matrix L are stored in the
corresponding off-diagonal elements of array AL. (The diagonal elements stored in
array AL do not have meaningful values.)

The partial factorization of matrix A, which you can do when you specify the
factor-only option, assumes that the first IPARM(3) rows and columns are already
factored in the input matrix. It factors the remaining n−IPARM(3) rows and columns
in matrix A. (See “Notes” on page 587 for an illustration.) It updates only the
elements in arrays AU and AL corresponding to the part of matrix A that is factored.

The determinant can be computed with any of the factorization computations.
With a full factorization, you get the determinant for the whole matrix. With a
partial factorization, you get the determinant for only that part of the matrix
factored in this computation.

The system Ax = b or ATx = b, having multiple right-hand sides, is solved for x,
using the transformed matrix A produced by this call or a subsequent call to this
subroutine.

See references [9], [12], [25], [47], and [71]. If n is 0, no computation is performed.
If mbx is 0, no solve is performed.

Error Conditions

Resource Errors:
v Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.
v Unable to allocate internal work area.

DGKFS

588 ESSL Version 3 Release 3 Guide and Reference

Computational Errors:
1. If a pivot occurs in region i for i = 1,5 and IPARM(10+i) = 1, the pivot value is

replaced with RPARM(10+i), an attention message is issued, and processing
continues.

2. Unacceptable pivot values occurred in the factorization of matrix A.
v One or more diagonal elements of U contains unacceptable pivots and no

valid fixup is applicable. The row number i of the first unacceptable pivot
element is identified in the computational error message.

v The return code is set to 2.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2126 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

Input-Argument Errors:
1. n < 0
2. nu < 0
3. IDU(n+1) > nu+1
4. IDU(i+1) ≤ IDU(i) for i = 1, n
5. IDU(i+1) > IDU(i)+i and IPARM(4) = 0 for i = 1, n
6. IDU(i) > IDU(i−1)+i and IPARM(4) = 1 for i = 2, n
7. nl < 0
8. IDL(n+1) > nl+1
9. IDL(i+1) ≤ IDL(i) for i = 1, n

10. IDL(i+1) > IDL(i)+i and IPARM(4) = 0 for i = 1, n
11. IDL(i) > IDL(i−1)+i and IPARM(4) = 1 for i = 2, n
12. IPARM(1) ≠ 0 or 1
13. IPARM(2) ≠ 0, 1, 2, 10, 11, 100, 102, or 110
14. IPARM(3) < 0
15. IPARM(3) > n
16. IPARM(3) > 0 and IPARM(2) ≠ 1 or 11
17. IPARM(4), IPARM(5) ≠ 0 or 1
18. IPARM(2) = 0, 1, 10, 11, 100, or 110 and:

IPARM(10) ≠ 0 or 1
IPARM(11), IPARM(12) ≠ −1, 0, or 1
IPARM(13) ≠ −1 or 1
IPARM(14), IPARM(15) ≠ −1, 0, or 1
RPARM(10) < 0.0
RPARM(10+i) = 0.0 and IPARM(10+i) = 1 for i = 1,5

19. IPARM(2) = 0, 2, 10, 100, 102, or 110 and:
ldbx ≤ 0 and mbx ≠ 0 and n ≠ 0
ldbx < 0 and mbx = 0
ldbx < n and mbx ≠ 0
mbx < 0

20. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to factor a 9 by 9 general sparse matrix A and solve the
system Ax = b with three right-hand sides. The default values are used for IPARM
and RPARM. Input matrix A, shown here, is stored in diagonal-out skyline storage
mode. Matrix A is:

DGKFS

Chapter 10. Linear Algebraic Equations 589

┌ ┐
| 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 2.0 4.0 4.0 2.0 2.0 0.0 0.0 0.0 2.0 |
| 2.0 4.0 6.0 4.0 4.0 0.0 2.0 0.0 4.0 |
| 2.0 4.0 6.0 6.0 6.0 2.0 4.0 0.0 6.0 |
| 0.0 0.0 0.0 2.0 4.0 4.0 4.0 2.0 4.0 |
| 0.0 2.0 4.0 6.0 8.0 6.0 8.0 4.0 10.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 6.0 8.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 8.0 10.0 |
| 2.0 4.0 6.0 6.0 8.0 6.0 10.0 8.0 16.0 |
└ ┘

Output matrix A, shown here, is in LU factored form with U−1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Matrix B is:

┌ ┐
| 0.5 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.5 2.0 2.0 2.0 0.0 0.0 0.0 2.0 |
| 1.0 1.0 0.5 2.0 2.0 0.0 2.0 0.0 2.0 |
| 1.0 1.0 1.0 0.5 2.0 2.0 2.0 0.0 2.0 |
| 0.0 0.0 0.0 1.0 0.5 2.0 2.0 2.0 2.0 |
| 0.0 1.0 1.0 1.0 1.0 0.5 2.0 2.0 2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 0.5 2.0 2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.5 2.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 |
└ ┘

Call Statement and Input:

AU = (2.0, 4.0, 2.0, 6.0, 4.0, 2.0, 6.0, 4.0, 2.0, 4.0, 6.0,
4.0, 2.0, 6.0, 4.0, 2.0, 8.0, 8.0, 4.0, 4.0, 2.0, 8.0,
6.0, 4.0, 2.0, 16.0, 10.0, 8.0, 10.0, 4.0, 6.0, 4.0, 2.0)

IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (0.0, 0.0, 2.0, 0.0, 4.0, 2.0, 0.0, 6.0, 4.0, 2.0, 0.0,

2.0, 0.0, 8.0, 6.0, 4.0, 2.0, 0.0, 6.0, 4.0, 2.0, 0.0,
8.0, 6.0, 4.0, 2.0, 0.0, 8.0, 10.0, 6.0, 8.0, 6.0, 6.0,
4.0, 2.0)

IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 6.00 12.00 18.00 |
| 16.00 32.00 48.00 |
| 26.00 52.00 78.00 |
| 36.00 72.00 108.00 |
| 20.00 40.00 60.00 |

BX = | 48.00 96.00 144.00 |
| 34.00 68.00 102.00 |
| 38.00 76.00 114.00 |
| 66.00 132.00 198.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

AU = (0.5, 0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5,
2.0,

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9 , AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

DGKFS

590 ESSL Version 3 Release 3 Guide and Reference

2.0, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 0.5,
2.0, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0)

IDL =(same as input)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 9, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8.0, . , . , . , . , . , . , . , . , .)

┌ ┐
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |

BX = | 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Example 2
This example shows how to factor the 9 by 9 general sparse matrix A from
Example 1, solve the system ATx = b with three right-hand sides, and compute the
determinant of A. The default values for pivot processing are used for IPARM. Input
matrix A is stored in profile-in skyline storage mode. Output matrix A is in LU
factored form with U−1 on the diagonal, and is stored in diagonal-out skyline
storage mode. It is the same as output matrix A in Example 1.

Call Statement and Input:

AU = (2.0, 2.0, 4.0, 2.0, 4.0, 6.0, 2.0, 4.0, 6.0, 2.0, 4.0,
6.0, 4.0, 2.0, 4.0, 6.0, 2.0, 4.0, 4.0, 8.0, 8.0, 2.0,
4.0, 6.0, 8.0, 2.0, 4.0, 6.0, 4.0, 10.0, 8.0, 10.0, 16.0)

IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (0.0, 2.0, 0.0, 2.0, 4.0, 0.0, 2.0, 4.0, 6.0, 0.0, 2.0,

0.0, 2.0, 4.0, 6.0, 8.0, 0.0, 2.0, 4.0, 6.0, 0.0, 2.0,
4.0, 6.0, 8.0, 0.0, 2.0, 4.0, 6.0, 6.0, 8.0, 6.0, 10.0,
8.0, 0.0)

IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)
IPARM = (1, 110, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 10.00 20.00 30.00 |
| 20.00 40.00 60.00 |
| 28.00 56.00 84.00 |
| 30.00 60.00 90.00 |
| 40.00 80.00 120.00 |

BX = | 30.00 60.00 90.00 |
| 44.00 88.00 132.00 |

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

DGKFS

Chapter 10. Linear Algebraic Equations 591

| 28.00 56.00 84.00 |
| 60.00 120.00 180.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
IPARM = (1, 110, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

9, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8.0, 5.12, 2.0, . , . , . , . , . , . , .)
BX =(same as output BX in Example 1)

Example 3
This example shows how to factor a 9 by 9 negative-definite general sparse matrix
A, solve the system Ax = b with three right-hand sides, and compute the
determinant of A. (Default values for pivot processing are not used for IPARM
because A is negative-definite.) Input matrix A, shown here, is stored in
diagonal-out skyline storage mode:

┌ ┐
| -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| -2.0 -4.0 -4.0 -2.0 -2.0 0.0 0.0 0.0 -2.0 |
| -2.0 -4.0 -6.0 -4.0 -4.0 0.0 -2.0 0.0 -4.0 |
| -2.0 -4.0 -6.0 -6.0 -6.0 -2.0 -4.0 0.0 -6.0 |
| 0.0 0.0 0.0 -2.0 -4.0 -4.0 -4.0 -2.0 -4.0 |
| 0.0 -2.0 -4.0 -6.0 -8.0 -6.0 -8.0 -4.0 -10.0 |
| 0.0 0.0 0.0 -2.0 -4.0 -6.0 -8.0 -6.0 -8.0 |
| 0.0 0.0 0.0 -2.0 -4.0 -6.0 -8.0 -8.0 -10.0 |
| -2.0 -4.0 -6.0 -6.0 -8.0 -6.0 -10.0 -8.0 -16.0 |
└ ┘

Output matrix A, shown here, is in LU factored form with U−1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| -0.5 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 -0.5 -2.0 -2.0 -2.0 0.0 0.0 0.0 -2.0 |
| 1.0 1.0 -0.5 -2.0 -2.0 0.0 -2.0 0.0 -2.0 |
| 1.0 1.0 1.0 -0.5 -2.0 -2.0 -2.0 0.0 -2.0 |
| 0.0 0.0 0.0 1.0 -0.5 -2.0 -2.0 -2.0 -2.0 |
| 0.0 1.0 1.0 1.0 1.0 -0.5 -2.0 -2.0 -2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 -0.5 -2.0 -2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 1.0 -0.5 -2.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -0.5 |
└ ┘

Call Statement and Input:

AU = (-2.0, -4.0, -2.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0,
-4.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0, -8.0, -8.0,
-4.0, -4.0, -2.0, -8.0, -6.0, -4.0, -2.0, -16.0, -10.0,
-8.0, -10.0, -4.0, -6.0, -4.0, -2.0)

IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

DGKFS

592 ESSL Version 3 Release 3 Guide and Reference

AL = (0.0, 0.0, -2.0, 0.0, -4.0, -2.0, 0.0, -6.0, -4.0, -2.0,
0.0, -2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -6.0, -4.0,
-2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -8.0, -10.0,
-6.0, -8.0, -6.0, -6.0, -4.0, -2.0)

IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, . ,

. , . , . , . , . , . , . , . , .)

RPARM = (. , . , . , . , . , . , . , . , . , 10−15, . , . ,
. , . , . , . , . , . , . , . , . , . , . , . , .)

BX =(same as input BX in Example 1)

Output:

AU = (-0.5, -0.5, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0, -2.0,
-0.5, -2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0,
-2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -2.0, -0.5, -2.0,
-2.0, -2.0, -2.0, -2.0, -2.0, -2.0)

IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0)

IDL =(same as input)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, 9,

. , . , . , . , 9, 0, 0, 0, 0)
RPARM = (. , . , . , . , . , . , . , . , . , 10−15, . , . ,

. , . , . , 8.0, -5.12, 2.0, . , . , . , . , . , . , .)

┌ ┐
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |

BX = | -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Example 4
This example shows how to factor the first six rows and columns, referred to as
matrix A1, of the 9 by 9 general sparse matrix A from Example 1 and compute the
determinant of A1. Input matrix A1, shown here, is stored in diagonal-out skyline
storage mode. Input matrix A1 is:

┌ ┐
| 2.0 2.0 2.0 0.0 0.0 0.0 |
| 2.0 4.0 4.0 2.0 2.0 0.0 |
| 2.0 4.0 6.0 4.0 4.0 0.0 |
| 2.0 4.0 6.0 6.0 6.0 2.0 |
| 0.0 0.0 0.0 2.0 4.0 4.0 |
| 0.0 2.0 4.0 6.0 8.0 6.0 |
└ ┘

Output matrix A1, shown here, is in LU factored form with U−1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Output matrix A1 is:

DGKFS

Chapter 10. Linear Algebraic Equations 593

┌ ┐
| 0.5 2.0 2.0 0.0 0.0 0.0 |
| 1.0 0.5 2.0 2.0 2.0 0.0 |
| 1.0 1.0 0.5 2.0 2.0 0.0 |
| 1.0 1.0 1.0 0.5 2.0 2.0 |
| 0.0 0.0 0.0 1.0 0.5 2.0 |
| 0.0 1.0 1.0 1.0 1.0 0.5 |
└ ┘

Call Statement and Input:
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(6, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45 , BX , LDBX , MBX)

AU =(same as input AU in Example 1)
IDU = (1, 2, 4, 7, 10, 14, 17)
AL =(same as input AL in Example 1)
IDL = (1, 2, 4, 7, 11, 13, 18)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:

AU = (0.5, 0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5,
2.0,

2.0, 2.0, 0.5, 2.0, 2.0, 8.0, 8.0, 4.0, 4.0, 2.0, 8.0,
6.0, 4.0, 2.0, 16.0, 10.0, 8.0, 10.0, 4.0, 6.0, 4.0, 2.0)

IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 6.0, 4.0, 2.0, 0.0,
8.0, 6.0, 4.0, 2.0, 0.0, 8.0, 10.0, 6.0, 8.0, 6.0, 6.0,
4.0, 2.0)

IDL =(same as input)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . , 3,

. , . , . , . , 0, 0, 0, 0, 6)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 3.0, 6.4, 1.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

Example 5
This example shows how to do a partial factorization of the 9 by 9 general sparse
matrix A from Example 1, where the first six rows and columns were factored in
Example 4. It factors the remaining three rows and columns and computes the
determinant of that part of the matrix. The input matrix, referred to as A2, shown
here, is made up of the output factored matrix A1 plus the three remaining
unfactored rows and columns of matrix A. Matrix A2 is:

┌ ┐
| 0.5 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.5 2.0 2.0 2.0 0.0 0.0 0.0 2.0 |
| 1.0 1.0 0.5 2.0 2.0 0.0 2.0 0.0 4.0 |
| 1.0 1.0 1.0 0.5 2.0 2.0 4.0 0.0 6.0 |
| 0.0 0.0 0.0 1.0 0.5 2.0 4.0 2.0 4.0 |
| 0.0 1.0 1.0 1.0 1.0 0.5 8.0 4.0 10.0 |

DGKFS

594 ESSL Version 3 Release 3 Guide and Reference

| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 6.0 8.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 8.0 10.0 |
| 2.0 4.0 6.0 6.0 8.0 6.0 10.0 8.0 16.0 |
└ ┘

Both parts of input matrix A2 are stored in diagonal-out skyline storage mode.

Output matrix A2 is the same as output matrix A in Example 1 and is stored in
diagonal-out skyline storage mode.

Call Statement and Input:
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45 , BX , LDBX , MBX)

AU =(same as output AU in Example 4)
IDU =(same as input IDU in Example 1)
AL =(same as output AL in Example 4)
IDL =(same as input IDL in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:

AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . , 9,

. , . , . , . , 0, 0, 0, 0, 3)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8.0, 8.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

Example 6
This example shows how to solve the system Ax = b with one right-hand side for
a general sparse matrix A. Input matrix A, used here, is the same as factored
output matrix A from Example 1, stored in profile-in skyline storage mode. Here,
output matrix A is unchanged on output and is stored in profile-in skyline storage
mode.

Call Statement and Input:

AU = (0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0,
2.0,

2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 0.5, 2.0,
2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.5)

IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 49 , BX , 9 , 1)

DGKFS

Chapter 10. Linear Algebraic Equations 595

AL = (0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0,
0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0,
1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 0.0)

IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)
IPARM = (1, 2, 0, 1, 1, . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX = (12.0, 58.0, 114.0, 176.0, 132.0, 294.0, 240.0, 274.0,

406.0)

Output:

AU =(same as input)
IDU =(same as input)
AL =(same as input)
IDL =(same as input)
IPARM =(same as input)
RPARM =(not relevant)
BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

DGKFS

596 ESSL Version 3 Release 3 Guide and Reference

DSKFS—Symmetric Sparse Matrix Factorization, Determinant, and
Solve Using Skyline Storage Mode

This subroutine can perform either or both of the following functions for
symmetric sparse matrix A, stored in skyline storage mode, and for vectors x and
b:
v Factor A and, optionally, compute the determinant of A.
v Solve the system Ax = b using the results of the factorization of matrix A,

produced on this call or a preceding call to this subroutine.

You have the choice of using either Gaussian elimination or Cholesky
decomposition. You also have the choice of using profile-in or diagonal-out skyline
storage mode for A on input or output.

Note: The input to the solve performed by this subroutine must be the output
from the factorization performed by this subroutine.

Syntax

Fortran CALL DSKFS (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx)

C and C++ dskfs (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx);

PL/I CALL DSKFS (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx);

On Entry:

n is the order of symmetric sparse matrix A. Specified as: a fullword integer;
n ≥ 0.

a is the array, referred to as A, containing one of three forms of the upper
triangular part of symmetric sparse matrix A, depending on the type of
computation performed, where:
v If you are doing a factor and solve or a factor only, and if

IPARM(3) = 0, then A contains the unfactored upper triangle of
symmetric sparse matrix A.

v If you are doing a factor only, and if IPARM(3) > 0, then A contains the
partially factored upper triangle of symmetric sparse matrix A. The first
IPARM(3) columns in the upper triangle of A are already factored. The
remaining columns are factored in this computation.

v If you are doing a solve only, then A contains the factored upper triangle
of sparse matrix A, produced by a preceding call to this subroutine.

In each case:

If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

na is the length of array A. Specified as: a fullword integer; na ≥ 0 and
na ≥ (IDIAG(n+1)−1).

idiag is the array, referred to as IDIAG, containing the relative positions of the

DSKFS

Chapter 10. Linear Algebraic Equations 597

diagonal elements of matrix A (in one of its three forms) in array A.
Specified as: a one-dimensional array of (at least) length n+1, containing
fullword integers.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) indicates whether certain default values for iparm and rparm

are used by this subroutine, where:
If IPARM(1) = 0, the following default values are used. For restrictions,
see “Notes” on page 603.

IPARM(2) = 0
IPARM(3) = 0
IPARM(4) = 0
IPARM(5) = 0
IPARM(10) = 0
IPARM(11) = −1
IPARM(12) = −1
IPARM(13) = −1
IPARM(14) = −1
IPARM(15) = 0
RPARM(10) = 10−12

If IPARM(1) = 1, the default values are not used.
v IPARM(2) indicates the type of computation performed by this

subroutine. The following table gives the IPARM(2) values for each
variation:

Type of Computation Gaussian
Elimination Ax = b

Gaussian
Elimination Ax = b
and Determinant(A)

Cholesky
Decomposition
Ax = b

Cholesky
Decomposition
Ax = b and
Determinant(A)

Factor and Solve 0 10 100 110

Factor Only 1 11 101 111

Solve Only 2 N/A 102 N/A

v IPARM(3) indicates whether a full or partial factorization is performed on
matrix A, where:
If IPARM(3) = 0, and:

If you are doing a factor and solve or a factor only, then a full
factorization is performed for matrix A on rows and columns 1
through n.
If you are doing a solve only, this argument has no effect on the
computation, but must be set to 0.

If IPARM(3) > 0, and you are doing a factor only, then a partial
factorization is performed on matrix A. Rows 1 through IPARM(3) of
columns 1 through IPARM(3) in matrix A must be in factored form from
a preceding call to this subroutine. The factorization is performed on
rows IPARM(3)+1 through n and columns IPARM(3)+1 through n. For an
illustration, see “Notes” on page 603.

v IPARM(4) indicates the input storage mode used for matrix A. This
determines the arrangement of data in arrays A and IDIAG on input,
where:
If IPARM(4) = 0, diagonal-out skyline storage mode is used.
If IPARM(4) = 1, profile-in skyline storage mode is used.

DSKFS

598 ESSL Version 3 Release 3 Guide and Reference

v IPARM(5) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays A and IDAIG on output,
where:
If IPARM(5) = 0, diagonal-out skyline storage mode is used.
If IPARM(5) = 1, profile-in skyline storage mode is used.

v IPARM(6) through IPARM(9) are reserved.
v IPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, then IPARM(10)
indicates whether certain default values for iparm and rparm are used by
this subroutine, where:

If IPARM(10) = 0, the following default values are used. For
restrictions, see “Notes” on page 603.

IPARM(11) = −1
IPARM(12) = −1
IPARM(13) = −1
IPARM(14) = −1
IPARM(15) = 0
RPARM(10) = 10−12

If IPARM(10) = 1, the default values are not used.

If you are doing a solve only, this argument is not used.
v IPARM(11) through IPARM(15) have the following meaning, where:

If you are doing a factor and solve or a factor only, then IPARM(11)
through IPARM(15) control the type of processing to apply to pivot
elements occurring in regions 1 through 5, respectively. The pivot
elements are dkk for Gaussian elimination and rkk for Cholesky
decomposition for k = 1, n when doing a full factorization, and they are
k = IPARM(3)+1, n when doing a partial factorization. The region in
which a pivot element falls depends on the sign and magnitude of the
pivot element. The regions are determined by RPARM(10). For a
description of the regions and associated pivot values, see “Notes” on
page 603. For each region i for i = 1,5, where the pivot occurs in region
i, the processing applied to the pivot element is determined by
IPARM(10+i), where:

If IPARM(10+i) = −1, the pivot element is trapped and computational
error 2126 is generated. See “Error Conditions” on page 605.
If IPARM(10+i) = 0, processing continues normally.

Note: A value of 0 is not permitted for region 3, because if
processing continues, a divide-by-zero exception occurs. In
addition, if you are doing a Cholesky decomposition, a value
of 0 is not permitted in regions 1 and 2, because a square root
exception occurs.

If IPARM(10+i) = 1, the pivot element is replaced with the value in
RPARM(10+i), and processing continues normally.

If you are doing a solve only, these arguments are not used.
v IPARM(16) through IPARM(25), see “On Return” on page 601.

Specified as: a one-dimensional array of (at least) length 25, containing
fullword integers, where:

IPARM(1) = 0 or 1
IPARM(2) = 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111
If IPARM(2) = 0, 2, 10, 100, 102, or 110, then IPARM(3) = 0

DSKFS

Chapter 10. Linear Algebraic Equations 599

If IPARM(2) = 1, 11, 101, or 111, then 0 ≤ IPARM(3) ≤ n
IPARM(4), IPARM(5) = 0 or 1
If IPARM(2) = 0, 1, 10, or 11, then:

IPARM(10) = 0 or 1
IPARM(11), IPARM(12) = −1, 0, or 1
IPARM(13) = −1 or 1
IPARM(14), IPARM(15) = −1, 0, or 1

If IPARM(2) = 100, 101, 110, or 111, then:
IPARM(10) = 0 or 1
IPARM(11), IPARM(12), IPARM(13) = −1 or 1
IPARM(14), IPARM(15) = −1, 0, or 1

rparm is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(9) are reserved.
v RPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, RPARM(10) is the
tolerance value for small pivots. This sets the bounds for the pivot
regions, where pivots are processed according to the options you specify
for the five regions in IPARM(11) through IPARM(15), respectively. The
suggested value is 10−15 ≤ IPARM(10) ≤ 1.
If you are doing a solve only, this argument is not used.

v RPARM(11) through RPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, RPARM(11) through
RPARM(15) are the fix-up values to use for the pivots in regions 1 through
5, respectively. For each RPARM(10+i) for i = 1,5, where the pivot occurs
in region i:

If IPARM(10+i) = 1, the pivot is replaced with RPARM(10+i), where
|RPARM(10+i)| should be a sufficiently large nonzero value to avoid
overflow when calculating the reciprocal of the pivot. For Gaussian
elimination, the suggested value is 10−15 ≤ |RPARM(10+i)| ≤ 1. For
Cholesky decomposition, the value must be RPARM(10+i) > 0.
If IPARM(10+i) ≠ 1, RPARM(10+i) is not used.

If you are doing a solve only, these arguments are not used.
v RPARM(16) through RPARM(25), see “On Return” on page 601.

Specified as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers, where if IPARM(2) = 0, 1, 10, 11, 100, 101, 110,
or 111, then:

RPARM(10) ≥ 0.0
If IPARM(2) = 0, 1, 10, or 11, then RPARM(11) through RPARM(15) ≠ 0.0
If IPARM(2) = 100, 101, 110, or 111, then RPARM(11) through
RPARM(15) > 0.0

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

DSKFS

600 ESSL Version 3 Release 3 Guide and Reference

If naux = 0 and error 2015 is unrecoverable, DSKFS dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, If you are doing a factor only, you can use naux ≥ n; however,
for optimal performance, use naux ≥ 3n.

If you are doing a factor and solve or a solve only, use naux ≥ 3n+4mbx.

For further details on error handling and the special factor-only case, see
“Notes” on page 603.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array,
containing the mbx right-hand side vectors b of the system Ax = b. Each
vector b is length n and is stored in the corresponding column of the array.

If you are doing a factor only, this argument is not used in the
computation.

Specified as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

ldbx has the following meaning, where:

If you are doing a factor and solve or a solve only, ldbx is the leading
dimension of the array specified for bx.

If you are doing a factor only, this argument is not used in the
computation.

Specified as: a fullword integer; ldbx ≥ n and:

If mbx ≠ 0, then ldbx > 0.

If mbx = 0, then ldbx ≥ 0.

mbx has the following meaning, where:

If you are doing a factor and solve or a solve only, mbx is the number of
right-hand side vectors, b, in the array specified for bx.

If you are doing a factor only, this argument is not used in the
computation.

Specified as: a fullword integer; mbx ≥ 0.

On Return:

a is the array, referred to as A, containing the upper triangular part of
symmetric sparse matrix A in LDLT or RTR factored form, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(5) = 1, profile-in skyline storage mode is used for A.

(If mbx = 0 and you are doing a solve only, then a is unchanged on
output.) Returned as: a one-dimensional array of (at least) length na,
containing long-precision real numbers.

idiag is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of the factored output matrix A in array A. (If mbx = 0
and you are doing a solve only, then idiag is unchanged on output.)

Returned as: a one-dimensional array of (at least) length n+1, containing
fullword integers.

DSKFS

Chapter 10. Linear Algebraic Equations 601

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) through IPARM(15) are unchanged.
v IPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If IPARM(16) = −1, your factorization did not complete successfully,
resulting in computational error 2126.
If IPARM(16) > 0, it is the row number k, in which the maximum
absolute value of the ratio akk/dkk for Gaussian elimination and akk/rkk

for Cholesky decomposition occurred, where:
If IPARM(3) = 0, k can be any of the rows, 1 through n, in the full
factorization.
If IPARM(3) > 0, k can be any of the rows, IPARM(3)+1 through n,
in the partial factorization.

If you are doing a solve only, this argument is not used in the
computation and is unchanged.

v IPARM(17) through IPARM(20) are reserved.
v IPARM(21) through IPARM(25) have the following meaning, where:

If you are doing a factor and solve or a factor only, IPARM(21) through
IPARM(25) have the following meanings for each region i for i = 1,5,
respectively:

If IPARM(20+i) = −1, your factorization did not complete successfully,
resulting in computational error 2126.
If IPARM(20+i) ≥ 0, it is the number of pivots in region i for the
columns that were factored in matrix A, where:

If IPARM(3) = 0, columns 1 through n were factored in the full
factorization.
If IPARM(3) > 0, columns IPARM(3)+1 through n were factored in
the partial factorization.

If you are doing a solve only, these arguments are not used in the
computation and are unchanged.

Returned as: a one-dimensional array of (at least) length 25, containing
fullword integers.

rparm is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(15) are unchanged.
v RPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If RPARM(16) = 0.0, your factorization did not complete successfully,
resulting in computational error 2126.
If |RPARM(16)| > 0.0, it is the ratio for row k, akk/dkk for Gaussian
elimination and akk/rkk for Cholesky decomposition, having the
maximum absolute value. Row k is indicated in IPARM(16), and:

If IPARM(3) = 0, the ratio corresponds to one of the rows, 1
through n, in the full factorization.
If IPARM(3) > 0, the ratio corresponds to one of the rows,
IPARM(3)+1 through n, in the partial factorization.

If you are doing a solve only, this argument is not used in the
computation and is unchanged.

v RPARM(17) and RPARM(18) have the following meaning, where:

DSKFS

602 ESSL Version 3 Release 3 Guide and Reference

If you are computing the determinant of matrix A, then RPARM(17) is the
mantissa, detbas, and RPARM(18) is the power of 10, detpwr, used to
express the value of the determinant: detbas(10detpwr), where
1 ≤ detbas < 10. Also:

If IPARM(3) = 0, the determinant is computed for columns 1 through
n in the full factorization.
If IPARM(3) > 0, the determinant is computed for columns
IPARM(3)+1 through n in the partial factorization.

If you are not computing the determinant of matrix A, these arguments
are not used in the computation and are unchanged.

v RPARM(19) through RPARM(25) are reserved.

Returned as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array,
containing the mbx solution vectors x of the system Ax = b. Each vector x
is length n and is stored in the corresponding column of the array. (If
mbx = 0, then bx is unchanged on output.)

If you are doing a factor only, this argument is not used in the
computation and is unchanged.

Returned as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

Notes
1. When doing a solve only, you should specify the same factorization method in

IPARM(2), Gaussian elimination or Cholesky decomposition, that you specified
for your factorization on a previous call to this subroutine.

2. If you set either IPARM(1) = 0 or IPARM(10) = 0, indicating you want to use
the default values for IPARM(11) through IPARM(15) and RPARM(10), then:
v Matrix A must be positive definite.
v No pivots are fixed, using RPARM(11) through RPARM(15) values.
v No small pivots are tolerated; that is, the value should be

|pivot| > RPARM(10).
3. Many of the input and output parameters for iparm and rparm are defined for

the five pivot regions handled by this subroutine. The limits of the regions are
based on RPARM(10), as shown in Figure 12. The pivot values in each region are:

Region 1: pivot < −RPARM(10)
Region 2: −RPARM(10) ≤ pivot < 0
Region 3: pivot = 0
Region 4: 0 < pivot ≤ RPARM(10)
Region 5: pivot > RPARM(10)

4. The IPARM(4) and IPARM(5) arguments allow you to specify the same or
different skyline storage modes for your input and output arrays for matrix A.
This allows you to change storage modes as needed. However, if you are

RPARM(10)0

Pivot
Values:

Regions: ... 1) (2) (3) (4) (5 ...
RPARM(10)

Figure 12. Five Pivot Regions

DSKFS

Chapter 10. Linear Algebraic Equations 603

concerned with performance, you should use diagonal-out skyline storage
mode for both input and output, if possible, because there is less overhead.
For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 97 and “Diagonal-Out Skyline
Storage Mode” on page 95. Those descriptions use different array and variable
names from the ones used here. To relate the two sets, use the following table:

Name Here Name in the Storage Description

A AU

na nu

IDIAG IDU

5. Following is an illustration of the portion of matrix A factored in the partial
factorization when IPARM(3) > 0. In this case, the subroutine assumes that rows
and columns 1 through IPARM(3) are already factored and that rows and
columns IPARM(3)+1 through n are to be factored in this computation.

You use the partial factorization function when, for design or storage reasons,
you must factor the matrix A in stages. When doing a partial factorization, you
must use the same skyline storage mode for all parts of the matrix as it is
progressively factored.

6. Your various arrays must have no common elements; otherwise, results are
unpredictable.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
This subroutine can factor, compute the determinant of, and solve symmetric
sparse matrix A, stored in skyline storage mode. It can use either Gaussian
elimination or Cholesky decomposition. For all computations, input matrix A can
be stored in either diagonal-out or profile-in skyline storage mode. Output matrix
A can also be stored in either of these modes and can be different from the mode
used for input.

For Gaussian elimination, matrix A is factored into the following form using
specified pivot processing:

A = LDLT

DSKFS

604 ESSL Version 3 Release 3 Guide and Reference

where:
D is a diagonal matrix.
L is a lower triangular matrix.

The transformed matrix A, factored into its LDLT form, is stored in packed format
in array A, such that the inverse of the diagonal matrix D is stored in the
corresponding elements of array A. The off-diagonal elements of the unit upper
triangular matrix LT are stored in the corresponding off-diagonal elements of array
A.

For Cholesky decomposition, matrix A is factored into the following form using
specified pivot processing:

A = RTR

where R is an upper triangular matrix

The transformed matrix A, factored into its RTR form, is stored in packed format in
array A, such that the inverse of the diagonal elements of the upper triangular
matrix R is stored in the corresponding elements of array A. The off-diagonal
elements of matrix R are stored in the corresponding off-diagonal elements of
array A.

The partial factorization of matrix A, which you can do when you specify the
factor-only option, assumes that the first IPARM(3) rows and columns are already
factored in the input matrix. It factors the remaining n−IPARM(3) rows and columns
in matrix A. (See “Notes” on page 603 for an illustration.) It updates only the
elements in array A corresponding to the part of matrix A that is factored.

The determinant can be computed with any of the factorization computations.
With a full factorization, you get the determinant for the whole matrix. With a
partial factorization, you get the determinant for only that part of the matrix
factored in this computation.

The system Ax = b, having multiple right-hand sides, is solved for x using the
transformed matrix A produced by this call or a subsequent call to this subroutine.

See references [9], [12], [25], [47], [71]. If n is 0, no computation is performed. If
mbx is 0, no solve is performed.

Error Conditions

Resource Errors:
v Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.
v Unable to allocate internal work area.

Computational Errors:
1. If a pivot occurs in region i for i = 1,5 and IPARM(10+i) = 1, the pivot value is

replaced with RPARM(10+i), an attention message is issued, and processing
continues.

2. Unacceptable pivot values occurred in the factorization of matrix A.
v One or more diagonal elements of D or R contains unacceptable pivots and

no valid fixup is applicable. The row number i of the first unacceptable pivot
element is identified in the computational error message.

v The return code is set to 2.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of

DSKFS

Chapter 10. Linear Algebraic Equations 605

allowable errors for error code 2126 in the ESSL error option table; otherwise,
the default value causes your program to terminate when this error occurs.
For details, see “What Can You Do about ESSL Computational Errors?” on
page 45.

Input-Argument Errors:
1. n < 0
2. na < 0
3. IDIAG(n+1) > na+1
4. IDIAG(i+1) ≤ IDIAG(i) for i = 1, n
5. IDIAG(i+1) > IDIAG(i)+i and IPARM(4) = 0 for i = 1, n
6. IDIAG(i) > IDIAG(i−1)+i and IPARM(4) = 1 for i = 2, n
7. IPARM(1) ≠ 0 or 1
8. IPARM(2) ≠ 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111
9. IPARM(3) < 0

10. IPARM(3) > n
11. IPARM(3) > 0 and IPARM(2) ≠ 1, 11, 101, or 111
12. IPARM(4), IPARM(5) ≠ 0 or 1
13. IPARM(2) = 0, 1, 10, or 11 and:

IPARM(10) ≠ 0 or 1
IPARM(11), IPARM(12) ≠ −1, 0, or 1
IPARM(13) ≠ −1 or 1
IPARM(14), IPARM(15) ≠ −1, 0, or 1
RPARM(10) < 0.0
RPARM(10+i) = 0.0 and IPARM(10+i) = 1 for i = 1,5

14. IPARM(2) = 100, 101, 110, or 111 and:
IPARM(10) ≠ 0 or 1
IPARM(11), IPARM(12), IPARM(13) ≠ −1 or 1
IPARM(14), IPARM(15) ≠ −1, 0, or 1
RPARM(10) < 0.0
RPARM(10+i) ≤ 0.0 and IPARM(10+i) = 1 for i = 1,5

15. IPARM(2) = 0, 2, 10, 100, 102, or 110 and:
ldbx ≤ 0 and mbx ≠ 0 and n ≠ 0
ldbx < 0 and mbx = 0
ldbx < n and mbx ≠ 0
mbx < 0

16. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to factor a 9 by 9 symmetric sparse matrix A and solve
the system Ax = b with three right-hand sides. It uses Gaussian elimination. The
default values are used for IPARM and RPARM. Input matrix A, shown here, is stored
in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 2.0 3.0 3.0 2.0 2.0 0.0 2.0 0.0 |
| 1.0 2.0 3.0 4.0 3.0 3.0 0.0 3.0 0.0 |
| 0.0 1.0 2.0 3.0 4.0 4.0 1.0 4.0 0.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 2.0 5.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 2.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 3.0 7.0 3.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
└ ┘

DSKFS

606 ESSL Version 3 Release 3 Guide and Reference

Output matrix A, shown here, is in LDLT factored form with D−1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

A = (1.0, 2.0, 1.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0, 4.0,
3.0, 2.0, 1.0, 5.0, 4.0, 3.0, 2.0, 1.0, 3.0, 2.0, 1.0,
7.0, 3.0, 5.0, 4.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0)

IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 4.00 8.00 12.00 |
| 10.00 20.00 30.00 |
| 15.00 30.00 45.00 |
| 19.00 38.00 57.00 |
| 19.00 38.00 57.00 |

BX = | 23.00 46.00 69.00 |
| 11.00 22.00 33.00 |
| 28.00 56.00 84.00 |
| 10.00 20.00 30.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

IDIAG =(same as input)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 7.0, . , . , . , . , . , . , . , . , .)

┌ ┐
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |

BX = | 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |

DSKFS

Chapter 10. Linear Algebraic Equations 607

| . . . |
| . . . |
| . . . |
└ ┘

Example 2
This example shows how to factor the 9 by 9 symmetric sparse matrix A from
Example 1, solve the system Ax = b with three right-hand sides, and compute the
determinant of A. It uses Gaussian elimination. The default values for pivot
processing are used for IPARM. Input matrix A is stored in profile-in skyline storage
mode. Output matrix A is in LDLT factored form with D−1 on the diagonal, and is
stored in diagonal-out skyline storage mode. It is the same as output matrix A in
Example 1.

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

A = (1.0, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 4.0, 1.0,
2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 3.0,
1.0, 2.0, 3.0, 4.0, 5.0, 3.0, 7.0, 1.0, 2.0, 3.0, 4.0)

IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)
IPARM = (1, 10, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 4.00 8.00 12.00 |
| 10.00 20.00 30.00 |
| 15.00 30.00 45.00 |
| 19.00 38.00 57.00 |
| 19.00 38.00 57.00 |

BX = | 23.00 46.00 69.00 |
| 11.00 22.00 33.00 |
| 28.00 56.00 84.00 |
| 10.00 20.00 30.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

A =(same as output A in Example 1)
IDIAG =(same as input IDIAG in Example 1)
IPARM = (1, 10, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . , 8,

. , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 7.0, 1.0, 0.0, . , . , . , . , . , . , .)
BX =(same as output BX in Example 1)

Example 3
This example shows how to factor a 9 by 9 negative-definite symmetric sparse
matrix A, solve the system Ax = b with three right-hand sides, and compute the
determinant of A. It uses Gaussian elimination. (Default values for pivot processing
are not used for IPARM because A is negative-definite.) Input matrix A, shown here,
is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 -1.0 0.0 |

DSKFS

608 ESSL Version 3 Release 3 Guide and Reference

| -1.0 -2.0 -3.0 -3.0 -2.0 -2.0 0.0 -2.0 0.0 |
| -1.0 -2.0 -3.0 -4.0 -3.0 -3.0 0.0 -3.0 0.0 |
| 0.0 -1.0 -2.0 -3.0 -4.0 -4.0 -1.0 -4.0 0.0 |
| 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -2.0 -5.0 -1.0 |
| 0.0 0.0 0.0 0.0 -1.0 -2.0 -3.0 -3.0 -2.0 |
| 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -3.0 -7.0 -3.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 -2.0 -3.0 -4.0 |
└ ┘

Output matrix A, shown here, is in LDLT factored form with D−1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 -1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 -1.0 1.0 1.0 0.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 1.0 -1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 -1.0 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

A = (-1.0, -2.0, -1.0, -3.0, -2.0, -1.0, -4.0, -3.0, -2.0,
-1.0, -4.0, -3.0, -2.0, -1.0, -5.0, -4.0, -3.0, -2.0,
-1.0, -3.0, -2.0, -1.0, -7.0, -3.0, -5.0, -4.0, -3.0,
-2.0, -1.0, -4.0, -3.0, -2.0, -1.0)

IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, . ,

. , . , . , . , . , . , . , . , .)

RPARM = (. , . , . , . , . , . , . , . , . , 10−15, . , . ,
. , . , . , . , . , . , . , . , . , . , . , . , .)

BX =(same as input BX in Example 1)

Output:

A = (-1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0,
1.0, 1.0,

-1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0,
1.0, -1.0 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0,
1.0)

IDIAG =(same as input)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, 8,

. , . , . , . , 9, 0, 0, 0, 0)
RPARM = (. , . , . , . , . , . , . , . , . ,10−15, . , . ,

. , . , . , 7.0, -1.0, 0.0, . , . , . , . , . , . , .)

┌ ┐
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |

BX = | -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |

DSKFS

Chapter 10. Linear Algebraic Equations 609

| . . . |
| . . . |
| . . . |
└ ┘

Example 4
This example shows how to factor the first six rows and columns, referred to as
matrix A1, of the 9 by 9 symmetric sparse matrix A from Example 1 and compute
the determinant of A1. It uses Gaussian elimination. Input matrix A1, shown here,
is stored in diagonal-out skyline storage mode. Input matrix A1 is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 1.0 1.0 |
| 1.0 2.0 3.0 3.0 2.0 2.0 |
| 1.0 2.0 3.0 4.0 3.0 3.0 |
| 0.0 1.0 2.0 3.0 4.0 4.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 |
└ ┘

Output matrix A1, shown here, is in LDLT factored form with D−1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Output matrix A1 is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS (6 , A , 33 , IDIAG , IPARM , RPARM , AUX , 27 , BX , LDBX , MBX)

A =(same as input A in Example 1)
IDIAG = (1, 2, 4, 7, 11, 15, 20)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:

A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 2.0, 1.0,
7.0, 3.0, 5.0, 4.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0)

IDIAG =(same as input)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . , 6,

. , . , . , . , 0, 0, 0, 0, 6)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 5.0, 1.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

DSKFS

610 ESSL Version 3 Release 3 Guide and Reference

Example 5
This example shows how to do a partial factorization of the 9 by 9 symmetric
sparse matrix A from Example 1, where the first six rows and columns were
factored in Example 4. It factors the remaining three rows and columns and
computes the determinant of that part of the matrix. It uses Gaussian elimination.
The input matrix, referred to as A2, shown here, is made up of the output factored
matrix A1 plus the three remaining unfactored rows and columns of matrix A
Matrix A2 is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 3.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 2.0 5.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 2.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 3.0 7.0 3.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
└ ┘

Both parts of input matrix A2 are stored in diagonal-out skyline storage mode.

Output matrix A2 is the same as output matrix A in Example 1 and is stored in
diagonal-out skyline storage mode.

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS (9 , A , 33 , IDIAG , IPARM , RPARM , AUX , 27 , BX , LDBX , MBX)

A =(same as output A in Example 4)
IDIAG =(same as input IDIAG in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:

A =(same as output A in Example 1)

IDIAG =(same as output IDIAG in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . , 8,

. , . , . , . , 0, 0, 0, 0, 3)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 7.0, 1.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

Example 6
This example shows how to solve the system Ax = b with one right-hand side for
a symmetric sparse matrix A. Input matrix A, used here, is the same as factored
output matrix A from Example 1, stored in profile-in skyline storage mode. It
specifies Gaussian elimination, as used in Example 1. Here, output matrix A is
unchanged on output and is stored in profile-in skyline storage mode.

DSKFS

Chapter 10. Linear Algebraic Equations 611

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS (9, A, 33, IDIAG, IPARM, RPARM, AUX, 31 , BX , 9 , 1)

A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)
IPARM = (1, 2, 0, 1, 1, . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX = (10.0, 38.0, 64.0, 87.0, 103.0, 133.0, 80.0, 174.0, 80.0)

Output:

A =(same as input)
IDIAG =(same as input)
IPARM =(same as input)
APARM =(same as input)
BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

Example 7
This example shows how to factor a 9 by 9 symmetric sparse matrix A and solve
the system Ax = b with four right-hand sides. It uses Cholesky decomposition.
Input matrix A, shown here, is stored in profile-in skyline storage mode Matrix A
is:

┌ ┐
| 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
| 1.0 5.0 3.0 0.0 3.0 0.0 0.0 0.0 3.0 |
| 1.0 3.0 11.0 3.0 5.0 3.0 3.0 0.0 5.0 |
| 0.0 0.0 3.0 17.0 5.0 5.0 5.0 0.0 5.0 |
| 1.0 3.0 5.0 5.0 29.0 7.0 7.0 0.0 9.0 |
| 0.0 0.0 3.0 5.0 7.0 39.0 9.0 6.0 9.0 |
| 0.0 0.0 3.0 5.0 7.0 9.0 53.0 8.0 11.0 |
| 0.0 0.0 0.0 0.0 0.0 6.0 8.0 66.0 10.0 |
| 1.0 3.0 5.0 5.0 9.0 9.0 11.0 10.0 89.0 |
└ ┘

Output matrix A, shown here, is in RTR factored form with the inverse of the
diagonal of R on the diagonal, and is stored in profile-in skyline storage mode.
Matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
| 1.0 .5 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
| 1.0 1.0 .333 1.0 1.0 1.0 1.0 0.0 1.0 |
| 0.0 0.0 1.0 .25 1.0 1.0 1.0 0.0 1.0 |
| 1.0 1.0 1.0 1.0 .2 1.0 1.0 0.0 1.0 |
| 0.0 0.0 1.0 1.0 1.0 .167 1.0 1.0 1.0 |
| 0.0 0.0 1.0 1.0 1.0 1.0 .143 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 .125 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .111 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 34, IDIAG, IPARM, RPARM, AUX, 43 , BX , 10 , 4)

DSKFS

612 ESSL Version 3 Release 3 Guide and Reference

A = (1.0, 1.0, 5.0, 1.0, 3.0, 11.0, 3.0, 17.0, 1.0, 3.0, 5.0,
5.0, 29.0, 3.0, 5.0, 7.0, 39.0, 3.0, 5.0, 7.0, 9.0, 53.0,
6.0, 8.0, 66.0, 1.0, 3.0, 5.0, 5.0, 9.0, 9.0, 11.0, 10.0,
89.0)

IDIAG = (1, 3, 6, 8, 13, 17, 22, 25, 34, 35)
IPARM = (1, 110, 0, 1, 1, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 5.00 10.00 15.00 20.00 |
| 15.00 30.00 45.00 60.00 |
| 34.00 68.00 102.00 136.00 |
| 40.00 80.00 120.00 160.00 |

BX = | 66.00 132.00 198.00 264.00 |
| 78.00 156.00 234.00 312.00 |
| 96.00 192.00 288.00 384.00 |
| 90.00 180.00 270.00 360.00 |
| 142.00 284.00 426.00 568.00 |
| |
└ ┘

Output:

A = (1.0, 1.0, .5, 1.0, 1.0, .333, 1.0, .25, 1.0, 1.0,
1.0,

1.0, .2, 1.0, 1.0, 1.0, .167, 1.0, 1.0, 1.0, 1.0, .143,
1.0, 1.0, .125, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
.111)

IDIAG =(same as input)
IPARM = (1, 110, 0, 1, 1, . , . , . , . , 0, . , . , . , . , . ,

9, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 9.89, 1.32, 11.0, . , . , . , . , . , . , .)

┌ ┐
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |

BX = | 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| |
└ ┘

DSKFS

Chapter 10. Linear Algebraic Equations 613

DSRIS—Iterative Linear System Solver for a General or Symmetric
Sparse Matrix Stored by Rows

This subroutine solves a general or symmetric sparse linear system of equations,
using an iterative algorithm, with or without preconditioning. The methods include
conjugate gradient (CG), conjugate gradient squared (CGS), generalized minimum
residual (GMRES), more smoothly converging variant of the CGS method
(Bi-CGSTAB), or transpose-free quasi-minimal residual method (TFQMR). The
preconditioners include an incomplete LU factorization, an incomplete Cholesky
factorization (for positive definite symmetric matrices), diagonal scaling, or
symmetric successive over-relaxation (SSOR) with two possible choices for the
diagonal matrix: one uses the absolute values sum of the input matrix, and the
other uses the diagonal obtained from the LU factorization. The sparse matrix is
stored using storage-by-rows for general matrices and upper- or
lower-storage-by-rows for symmetric matrices. Matrix A and vectors x and b are
used:

Ax = b

where A, x, and b contain long-precision real numbers.

Syntax

Fortran CALL DSRIS (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsris (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

PL/I CALL DSRIS (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry:

stor indicates the form of sparse matrix A and the storage mode used, where:

If stor = 'G', A is a general sparse matrix, stored using storage-by-rows.

If stor = 'U', A is a symmetric sparse matrix, stored using
upper-storage-by-rows.

If stor = 'L', A is a symmetric sparse matrix, stored using
lower-storage-by-rows.

Specified as: a single character. It must be 'G', 'U', or 'L'.

init indicates the type of computation to be performed, where:

If init = 'I', the preconditioning matrix is computed, the internal
representation of the sparse matrix is generated, and the iteration
procedure is performed. The coefficient matrix and preconditioner in
internal format are saved in aux1.

If init = 'S', the iteration procedure is performed using the coefficient
matrix and the preconditioner in internal format, stored in aux1, created in
a preceding call to this subroutine with init = 'I'. You use this option to
solve the same matrix for different right-hand sides, b, optimizing your
performance. As long as you do not change the coefficient matrix and
preconditioner in aux1, any number of calls can be made with init = 'S'.

Specified as: a single character. It must be 'I' or 'S'.

n is the order of the linear system Ax = b and the number of rows and
columns in sparse matrix A. Specified as: a fullword integer; n ≥ 0.

ar is the sparse matrix A of order n, stored by rows in an array, referred to as

DSRIS

614 ESSL Version 3 Release 3 Guide and Reference

AR. The stor argument indicates the storage variation used for storing
matrix A. Specified as: a one-dimensional array, containing long-precision
real numbers. The number of elements in this array can be determined by
subtracting 1 from the value in IA(n+1).

ja is the array, referred to as JA, containing the column numbers of each
nonzero element in sparse matrix A. Specified as: a one-dimensional array,
containing fullword integers; 1 ≤ (JA elements) ≤ n. The number of
elements in this array can be determined by subtracting 1 from the value
in IA(n+1).

ia is the row pointer array, referred to as IA, containing the starting positions
of each row of matrix A in array AR and one position past the end of array
AR. Specified as: a one-dimensional array of (at least) length n+1,
containing fullword integers; IA(i+1) ≥ IA(i) for i = 1, n+1.

b is the vector b of length n, containing the right-hand side of the matrix
problem. Specified as: a one-dimensional array of (at least) length n,
containing long-precision real numbers.

x is the vector x of length n, containing your initial guess of the solution of
the linear system. Specified as: a one-dimensional array of (at least) length
n, containing long-precision real numbers. The elements can have any
value, and if no guess is available, the value can be zero.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 4
IPARM(4) = 4
IPARM(5) = 1
RPARM(1) = 10−6

RPARM(2) = 1
v IPARM(2) is the flag used to select the iterative procedure used in this

subroutine.
If IPARM(2) = 1, the conjugate gradient (CG) method is used. Note that
this algorithm should only be used with positive definite symmetric
matrices.
If IPARM(2) = 2, the conjugate gradient squared (CGS) method is used.
If IPARM(2) = 3, the generalized minimum residual (GMRES) method,
restarted after k steps, is used.
If IPARM(2) = 4, the more smoothly converging variant of the CGS
method (Bi-CGSTAB) is used.
If IPARM(2) = 5, the transpose-free quasi-minimal residual method
(TFQMR) is used.

v IPARM(3) has the following meaning, where:
If IPARM(2) ≠ 3, then IPARM(3) is not used.
If IPARM(2) = 3, then IPARM(3) = k, where k is the number of steps after
which the generalized minimum residual method is restarted. A value
for k in the range of 5 to 10 is suitable for most problems.

v IPARM(4) is the flag that determines the type of preconditioning.
If IPARM(4) = 1, the system is not preconditioned.
If IPARM(4) = 2, the system is preconditioned by a diagonal matrix.

DSRIS

Chapter 10. Linear Algebraic Equations 615

If IPARM(4) = 3, the system is preconditioned by SSOR splitting with the
diagonal given by the absolute values sum of the input matrix.
If IPARM(4) = 4, the system is preconditioned by an incomplete LU
factorization.
If IPARM(4) = 5, the system is preconditioned by SSOR splitting with the
diagonal given by the incomplete LU factorization.

Note: The multithreaded version of DSRIS only runs on multiple
threads when IPARM(4) = 1 or 2.

v IPARM(5) is the flag used to select the stopping criterion used in the
computation, where the following items are used in the definitions of
the stopping criteria below:
– ε is the desired relative accuracy and is stored in RPARM(1).
– xj is the solution found at the j-th iteration.
– rj and r0 are the preconditioned residuals obtained at iterations j and

0, respectively. (The residual at iteration j is given by b−Axj.)

If IPARM(5) = 1, the iterative method is stopped when:
\rj\2 / \xj\2 < ε

Note: IPARM(5) = 1 is the default value assumed by ESSL if you do not
specify one of the values described here; therefore, if you do not
update your program to set an IPARM(5) value, you, by default,
use the above stopping criterion.

If IPARM(5) = 2, the iterative method is stopped when:
\rj\2 / \r0\2 < ε

If IPARM(5) = 3, the iterative method is stopped when:
\xj −xj−1\2 / \xj\2 < ε

Note: Stopping criterion 3 performs poorly with the TFQMR method;
therefore, if you specify TFQMR (IPARM(2) = 5), you should not
specify stopping criterion 3.

v IPARM(6), see “On Return” on page 617.

Specified as: an array of (at least) length 6, containing fullword integers,
where:

IPARM(1) ≥ 0
IPARM(2) = 1, 2, 3, 4, or 5
If IPARM(2) = 3, then IPARM(3) > 0
IPARM(4) = 1, 2, 3, 4, or 5
IPARM(5) = 1, 2, or 3 (Other values default to stopping criterion 1.)

rparm is an array of parameters, RPARM(i), where:

RPARM(1) is the relative accuracy ε used in the stopping criterion. See
“Notes” on page 618.

RPARM(2), see “On Return” on page 617.

RPARM(3) has the following meaning, where:
v If IPARM(4) ≠ 3, then RPARM(3) is not used.
v If IPARM(4) = 3, then RPARM(3) is the acceleration parameter used in

SSOR. (A value in the range 0.5 to 2.0 is suitable for most problems.)

DSRIS

616 ESSL Version 3 Release 3 Guide and Reference

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers, where:

RPARM(1) ≥ 0
If IPARM(4) = 3, RPARM(3) > 0

aux1 is working storage for this subroutine, where:

If init = 'I', the working storage is computed. It can contain any values.

If init = 'S', the working storage is used in solving the linear system. It
contains the coefficient matrix and preconditioner in internal format,
computed in an earlier call to this subroutine.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.

Specified as: a fullword integer, where:

In these formulas nw has the following value:
If stor = 'G', then nw = IA(n+1)−1+n.
If stor = 'U' or 'L', then nw = 2(IA(n+1)−1).
If IPARM(4) = 1, use naux1 = (3/2)nw+(7/2)n+40.
If IPARM(4) = 2, use naux1 = (3/2)nw+(9/2)n+40.
If IPARM(4) = 3, 4, or 5, then:

If IPARM(2) ≠ 1, use naux1 = 3nw+10n+60.
If IPARM(2) = 1, use naux1 = 3nw+(21/2)n+60.

Note: If you receive an attention message, you have not specified sufficient
auxiliary storage to achieve optimal performance, but it is enough to
perform the computation. To obtain optimal performance, you need
to use the amount given by the attention message.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is working storage used by this subroutine that is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, DSRIS dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise,
If IPARM(2) = 1, use naux2 ≥ 4n.
If IPARM(2) = 2, use naux2 ≥ 7n.
If IPARM(2) = 3, use naux2 ≥ (k+2)n+k(k+4)+1, where k = IPARM(3).
If IPARM(2) = 4, use naux2 ≥ 7n.
If IPARM(2) = 5, use naux2 ≥ 9n.

On Return:

ar is the sparse matrix A of order n, stored by rows in an array, referred to as
AR. The stor argument indicates the storage variation used for storing
matrix A. The order of the elements in each row of A in AR may be
changed on output.

DSRIS

Chapter 10. Linear Algebraic Equations 617

Returned as: a one-dimensional array, containing long-precision real
numbers. The number of elements in this array can be determined by
subtracting 1 from the value in IA(n+1).

ja is the array, referred to as JA, containing the column numbers of each
nonzero element in sparse matrix A. These elements correspond to the
arrangement of the contents of AR on output.

Returned as: a one-dimensional array, containing fullword integers; 1 ≤ (JA
elements) ≤ n. The number of elements in this array can be determined by
subtracting 1 from the value in IA(n+1).

x is the vector x of length n, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length n, containing
long-precision real numbers.

iparm is an array of parameters, IPARM(i), where:

IPARM(1) through IPARM(5) are unchanged.

IPARM(6) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 6, containing fullword
integers.

rparm is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) contains the estimate of the error of the solution. If the process
converged, RPARM(2) ≤ ε.

RPARM(3) is unchanged.

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers.

aux1 is working storage for this subroutine, containing the coefficient matrix and
preconditioner in internal format, ready to be passed in a subsequent
invocation of this subroutine. Returned as: an area of storage, containing
naux1 long-precision real numbers.

Notes
1. If you want to solve the same sparse linear system of equations multiple times

using a different algorithm with the same preconditioner and using a different
right-hand side each time, you get the best performance by using the following
technique. Call DSRIS the first time with init = 'I'. This solves the system, and
then stores the coefficient matrix and preconditioner in internal format in aux1.
On the subsequent invocations of DSRIS with different right-hand sides, specify
init = 'S'. This indicates to DSRIS to use the contents of aux1, saving the time to
convert your coefficient matrix and preconditioner to internal format. If you use
this technique, you should not modify the contents of aux1 between calls to
DSRIS.
In some cases, you can specify a different algorithm in IPARM(2) when making
calls with init = 'S'. (See “Example 2” on page 621.) However, DSRIS sometimes
needs different information in aux1 for different algorithms. When this occurs,
DSRIS issues an attention message, continues processing the computation, and
then resets the contents of aux1. Your performance is not improved in this case,
which is functionally equivalent to calling DSRIS with init = 'I'.

2. If you use the CG method with init = 'I', you must use the CG method when
you specify init = 'S'. However, if you use a different method with init = 'I',
you can use any other method, except CG, when you specify init = 'S'.

DSRIS

618 ESSL Version 3 Release 3 Guide and Reference

3. These subroutines accept lowercase letters for the stor and init arguments.
4. Matrix A, vector x, and vector b must have no common elements; otherwise,

results are unpredictable.
5. In this subroutine, a value of RPARM(1) = 0 is permitted to force the solver to

evaluate exactly IPARM(1) iterations. The algorithm computes a sequence of
approximate solution vectors x that converge to the solution. The iterative
procedure is stopped when the selected stopping criterion is satisfied or when
more than the maximum number of iterations (in IPARM(1)) is reached.
For the stopping criteria specified in IPARM(5), the relative accuracy ε (in
RPARM(1)) must be specified reasonably (10−4 to 10−8). If you specify a larger ε,
the algorithm takes fewer iterations to converge to a solution. If you specify a
smaller ε, the algorithm requires more iterations and computer time, but
converges to a more precise solution. If the value you specify is unreasonably
small, the algorithm may fail to converge within the number of iterations it is
allowed to perform.

6. For a description of how sparse matrices are stored by rows, see
“Storage-by-Rows” on page 93.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The linear system:

Ax = b

is solved using one of the following methods: conjugate gradient (CG), conjugate
gradient squared (CGS), generalized minimum residual (GMRES), more smoothly
converging variant of the CGS method (Bi-CGSTAB), or transpose-free
quasi-minimal residual method (TFQMR), where:

A is a sparse matrix of order n. The matrix is stored in arrays AR, IA, and JA. If
it is general, it is stored by rows. If it is symmetric, it can be stored using
upper- or lower-storage-by-rows.
x is a vector of length n.
b is a vector of length n.

One of the following preconditioners is used:
v an incomplete LU factorization
v an incomplete Cholesky factorization (for positive definite symmetric matrices)
v diagonal scaling
v symmetric successive over-relaxation (SSOR) with two possible choices for the

diagonal matrix:
– the absolute values sum of the input matrix
– the diagonal obtained from the LU factorization

See references [36], [56], [82], [86], [89], and [95].

When you call this subroutine to solve a system for the first time, you specify
init = 'I'. After that, you can solve the same system any number of times by calling
this subroutine each time with init = 'S'. These subsequent calls use the coefficient
matrix and preconditioner, stored in internal format in aux1. You optimize
performance by doing this, because certain portions of the computation have
already been performed.

DSRIS

Chapter 10. Linear Algebraic Equations 619

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: The following errors, with their corresponding return
codes, can occur in this subroutine. For details on error handling, see “What Can
You Do about ESSL Computational Errors?” on page 45.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2130, return code 2 indicates that the incomplete LU factorization of A
could not be completed, because one pivot was 0.

v For error 2124, the subroutine has been called with init = 'S', but the data
contained in aux1 was computed for a different algorithm. An attention message
is issued. Processing continues, and the contents of aux1 are reset correctly.

v For error 2134, return code 3 indicates that the data contained in aux1 is not
consistent with the input sparse matrix. The subroutine has been called with
init = 'S', and aux1 contains an incomplete factorization and internal data
storage for the input matrix A that was computed by a previous call to the
subroutine when init = 'I'. This error indicates that aux1 has been modified since
the last call to the subroutine, or that the input matrix is not the same as the one
that was factored. If the default action has been overridden, the subroutine can
be called again with the same parameters, with the exception of IPARM(4) = 1 or
4.

v For error 2131, return code 4 indicates that the matrix is singular, because all
elements in one row of the matrix contain zero.

v For error 2129, return code 5 indicates that the matrix is not positive definite.
v For error 2128, return code 8 indicates an internal ESSL error. Please contact

your IBM Representative.

Input-Argument Errors:
1. n < 0
2. stor ≠ 'G', 'U', or 'L'
3. init ≠ 'I' or 'S'
4. IA(n+1) < 1
5. IA(i+1)−IA(i) < 0, for any i = 1, n
6. IPARM(1) < 0
7. IPARM(2) ≠ 1, 2, 3, 4, or 5
8. IPARM(3) ≤ 0 and IPARM(2) = 3
9. IPARM(4) ≠ 1, 2, 3, 4, or 5

10. RPARM(1) < 0
11. RPARM(3) ≤ 0 and IPARM(4) = 3
12. naux1 is too small—that is, less than the minimum required value. Return

code 6 is returned if error 2015 is recoverable.
13. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than

the minimum required value. Return code 7 is returned for naux2 if error 2015
is recoverable.

Example 1
This example finds the solution of the linear system Ax = b for the sparse matrix
A, which is stored by rows in arrays AR, IA, and JA. The system is solved using the
Bi-CGSTAB algorithm. The iteration is stopped when the norm of the residual is
less than the given threshold specified in RPARM(1). The algorithm is allowed to
perform 20 iterations. The process converges after 9 iterations. Matrix A is:

DSRIS

620 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 |
└ ┘

Call Statement and Input:

AR = (2.0, 2.0, -1.0, 1.0, 2.0, 1.0, 2.0, -1.0, 1.0, 2.0, -1.0,
1.0, 2.0, -1.0, 1.0, 2.0, -1.0, 1.0, 2.0, -1.0, 1.0, 2.0)

JA = (1, 2, 3, 2, 3, 1, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8,
9, 8, 9)

IA = (1, 2, 4, 6, 9, 12, 15, 18, 21, 23)
B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 4
IPARM(3) = 0
IPARM(4) = 1
IPARM(5) = 10
RPARM(1) = 1.D-7
RPARM(3) = 1.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 9
RPARM(2) = 0.29D-16

Example 2
This example finds the solution of the linear system Ax = b for the same sparse
matrix A used in Example 1. It also uses the same right-hand side in b and the
same initial guesses in x. However, the system is solved using a different
algorithm, conjugate gradient squared (CGS). Because INIT is 'S', the best
performance is achieved. The iteration is stopped when the norm of the residual is
less than the given threshold specified in RPARM(1). The algorithm is allowed to
perform 20 iterations. The process converges after 9 iterations.

Call Statement and Input:

AR =(same as input AR in Example 1)
JA =(same as input JA in Example 1)
IA =(same as input IA in Example 1)
B =(same as input B in Example 1)
X =(same as input X in Example 1)
IPARM(1) = 20
IPARM(2) = 2
IPARM(3) = 0
IPARM(4) = 1

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS('G' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63)

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS('G' , 'S' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63)

DSRIS

Chapter 10. Linear Algebraic Equations 621

IPARM(5) = 10
RPARM(1) = 1.D-7
RPARM(3) = 1.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 9
RPARM(2) = 0.42D-19

Example 3
This example finds the solution of the linear system Ax = b for the sparse matrix
A, which is stored by rows in arrays AR, IA, and JA. The system is solved using the
two-term conjugate gradient method (CG), preconditioned by incomplete LU
factorization. The iteration is stopped when the norm of the residual is less than
the given threshold specified in RPARM(1). The algorithm is allowed to perform 20
iterations. The process converges after 1 iteration. Matrix A is:

┌ ┐
| 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 |
└ ┘

Call Statement Input:

AR = (2.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0,
-1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0,
2.0, -1.0, 2.0)

JA = (1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 9,
6, 8, 7, 9)

IA = (1, 3, 5, 8, 11, 14, 17, 20, 22, 24)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 1
IPARM(3) = 0
IPARM(4) = 4
IPARM(5) = 1
RPARM(1) = 1.D-7
RPARM(3) = 1.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 1
RPARM(2) = 0.16D-15

Example 4
This example finds the solution of the linear system Ax = b for the same sparse
matrix A used in Example 3. However, matrix A is stored using
upper-storage-by-rows in arrays AR, IA, and JA. The system is solved using the
generalized minimum residual (GMRES), restarted after 5 steps and preconditioned
with SSOR splitting. The iteration is stopped when the norm of the residual is less

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS('G' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 223 , AUX2 , 36)

DSRIS

622 ESSL Version 3 Release 3 Guide and Reference

than the given threshold specified in RPARM(1). The algorithm is allowed to perform
20 iterations. The process converges after 12 iterations.

Call Statement Input:

AR = (2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0,
2.0, -1.0, 2.0, -1.0, 2.0, 2.0)

JA = (1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 9)
IA = (1, 3, 5, 7, 9, 11, 13, 15, 16, 17)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 3
IPARM(3) = 5
IPARM(4) = 3
IPARM(5) = 1
RPARM(1) = 1.D-7
RPARM(3) = 2.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 12
RPARM(2) = 0.33D-7

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS('U' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 219 , AUX2 , 109)

DSRIS

Chapter 10. Linear Algebraic Equations 623

DSMCG—Sparse Positive Definite or Negative Definite Symmetric
Matrix Iterative Solve Using Compressed-Matrix Storage Mode

This subroutine solves a symmetric, positive definite or negative definite linear
system, using the conjugate gradient method, with or without preconditioning by
an incomplete Cholesky factorization, for a sparse matrix stored in
compressed-matrix storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Notes:

1. These subroutines are provided only for migration purposes. You get better
performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 93, you should first use the utility subroutine DSRSM to convert your
sparse matrix to compressed-matrix storage mode. See “DSRSM—Convert a
Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on
page 944

Syntax

Fortran CALL DSMCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsmcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

PL/I CALL DSMCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry:

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A. Specified as: a fullword integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix
A. Specified as: a fullword integer; nz ≥ 0.

ac is the array, referred to as AC, containing the values of the nonzero
elements of the sparse matrix, stored in compressed-matrix storage mode.
Specified as: an lda by (at least) nz array, containing long-precision real
numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix
A elements stored in the corresponding positions in array AC. Specified as:
an lda by (at least) nz array, containing fullword integers, where
1 ≤ (elements of KA) ≤ m.

lda is the leading dimension of the arrays specified for ac and ka. Specified as:
a fullword integer; lda > 0 and lda ≥ m.

b is the vector b of length m, containing the right-hand side of the matrix
problem. Specified as: a one-dimensional array of (at least) length m,
containing long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of
the linear system. Specified as: a one-dimensional array of (at least) length
m, containing long-precision real numbers. The elements can have any
value, and if no guess is available, the value can be zero.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.

DSMCG

624 ESSL Version 3 Release 3 Guide and Reference

If IPARM(1) = 0, the following default values are used:
IPARM(1) = 300
IPARM(2) = 1
IPARM(3) = 0
RPARM(1) = 10−6

v IPARM(2) is the flag used to select the stopping criterion.
If IPARM(2) = 0, the conjugate gradient iterative procedure is stopped
when:
\r\2 / \x\2 < ε

where r = b−Ax is the residual, and ε is the desired relative accuracy. ε
is stored in RPARM(1).

If IPARM(2) = 1, the conjugate gradient iterative procedure is stopped
when:
\r\2 / λ\x\2 < ε

where λ is an estimate to the minimum eigenvalue of the iteration
matrix. λ is computed adaptively by this program and, on output, is
stored in RPARM(2).

If IPARM(2) = 2, the conjugate gradient iterative procedure is stopped
when:
\r\2 / λ\x\2 < ε

where λ is a predetermined estimate to the minimum eigenvalue of the
iteration matrix. This eigenvalue estimate, on input, is stored in RPARM(2)
and may be obtained by an earlier call to this subroutine with the same
matrix.

v IPARM(3) is the flag that determines whether the system is to be solved
using the conjugate gradient method, preconditioned by an incomplete
Cholesky factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete
Cholesky factorization.
If IPARM(3) = −10, the system is preconditioned by an incomplete
Cholesky factorization, where the factorization matrix was computed in
an earlier call to this subroutine and is stored in aux2.

v IPARM(4), see “On Return” on page 626.

Specified as: an array of (at least) length 4, containing fullword integers,
where:

IPARM(1) ≥ 0
IPARM(2) = 0, 1, or 2
IPARM(3) = 0, 10, or −10

rparm is an array of parameters, RPARM(i), where ε is stored in RPARM(1), and λ is
stored in RPARM(2).

RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion.

RPARM(2) > 0, is the estimate of the smallest eigenvalue, λ, of the iteration
matrix. It is only used when IPARM(2) = 2.

RPARM(3), see “On Return” on page 626.

DSMCG

Chapter 10. Linear Algebraic Equations 625

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1 has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is
available for use by the calling program between calls to this subroutine.
Its size is specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1 is the size of the work area specified by aux1—that is, the number of
elements in aux1. Specified as: a fullword integer, where:

If naux1 = 0 and error 2015 is unrecoverable, DSMCG dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux1 must have at least the following value, where:

If IPARM(2) = 0 or 2, use naux1 ≥ 3m.

If IPARM(2) = 1 and IPARM(1) ≠ 0, use naux1 ≥ 3m+2(IPARM(1)).

If IPARM(2) = 1 and IPARM(1) = 0, use naux1 ≥ 3m+600.

aux2 is a storage work area used by this subroutine. If IPARM(3) = −10, aux2
must contain the incomplete Cholesky factorization of matrix A, computed
in an earlier call to DSMCG. The size of aux2 is specified by naux2.
Specified as: an area of storage, containing long-precision real numbers.

naux2 is the size of the work area specified by aux2—that is, the number of
elements in aux2. Specified as: a fullword integer. When IPARM(3) = 10 or
−10, naux2 must have at least the following value:
naux2 ≥ m(nz−1)1.5+2(m+6).

On Return:

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

iparm is an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword
integers.

rparm is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2)
contains λ, an estimate of the smallest eigenvalue of the iteration matrix.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ ε.

DSMCG

626 ESSL Version 3 Release 3 Guide and Reference

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers; λ > 0.

aux2 is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete Cholesky factorization of
matrix A.

If IPARM(3) = −10, aux2 is unchanged.

See “Notes” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = −10, this subroutine uses the incomplete Cholesky

factorization in aux2, computed in an earlier call to this subroutine. When
IPARM(3) = 10, this subroutine computes the incomplete Cholesky factorization
and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides using the preconditioned algorithm, specify
IPARM(3) = 10 on the first invocation. The incomplete factorization is stored in
aux2. You may save computing time on subsequent calls by setting
IPARM(3) = −10. In this way, the algorithm reutilizes the incomplete
factorization that was computed the first time. Therefore, you should not
modify the contents of aux2 between calls.

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10−4 to 10−8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:
\b−Ax\2 / λ\x\2 < ε

where λ is an estimate of the minimum eigenvalue of the iteration matrix,
which is either estimated adaptively or given by the user. As a result, if you
specify a larger ε, the algorithm takes fewer iterations to converge to a solution.
If you specify a smaller ε, the algorithm requires more iterations and computer
time, but converges to a more precise solution. If the value you specify is
unreasonably small, the algorithm may fail to converge within the number of
iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 88.

6. On output, array AC and vector b are not bitwise identical to what they were on
input, because the matrix A and the right-hand side are scaled before starting
the iterative process and are unscaled before returning control to the user. In
addition, arrays AC and KA may be rearranged on output, but still contain a
mathematically equivalent mapping of the elements in matrix A.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The sparse positive definite or negative definite linear system:

Ax = b

is solved, where:

DSMCG

Chapter 10. Linear Algebraic Equations 627

A is a symmetric, positive definite or negative definite sparse matrix of order m,
stored in compressed-matrix storage mode in AC and KA.
x is a vector of length m.
b is a vector of length m.

The system is solved using the two-term conjugate gradient method, with or
without preconditioning by an incomplete Cholesky factorization. In both cases,
the matrix is scaled by the square root of the diagonal.

See references [62] and [68]. [36].

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, first convert your sparse matrix to compressed-matrix storage mode by
using the subroutine DSRSM described on page 944.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux1 = 0, and unable to allocate
work area.

Computational Errors: The following errors, with their corresponding return
codes, can occur in this subroutine. Where a value of i is indicated, it can be
determined at run time by use of the ESSL error-handling facilities. To obtain this
information, you must use ERRSET to change the number of allowable errors for
that particular error code in the ESSL error option table; otherwise, the default
value causes your program to terminate when the error occurs. For details, see
“What Can You Do about ESSL Computational Errors?” on page 45.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = −10, and aux2
contains an incomplete factorization of the input matrix A that was computed by
a previous call to the subroutine when IPARM(3) = 10. This error indicates that
aux2 has been modified since the last call to the subroutine, or that the input
matrix is not the same as the one that was factored. If the default action has
been overridden, the subroutine can be called again with the same parameters,
with the exception of IPARM(3) = 0 or 10.

v For error 2109, return code 3 indicates that the inner product (y,Ay) is negative
in the iterative procedure after iteration i. This should not occur, because the
input matrix is assumed to be positive or negative definite. Vector x contains the
results of the last iteration. The value i is identified in the computational error
message.

v For error 2108, return code 4 indicates that the matrix is not positive definite. AC
is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors:
1. m < 0
2. lda < 1
3. lda < m
4. nz < 0
5. nz = 0 and m > 0
6. IPARM(1) < 0
7. IPARM(2) ≠ 0, 1, or 2
8. IPARM(3) ≠ 0, 10, or −10
9. RPARM(1) < 0

DSMCG

628 ESSL Version 3 Release 3 Guide and Reference

10. RPARM(2) < 0
11. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less than

the minimum required value. Return code 5 is returned if error 2015 is
recoverable.

12. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Example 1
This example finds the solution of the linear system Ax = b for the sparse matrix
A, which is stored in compressed-matrix storage mode in arrays AC and KA. The
system is solved using the conjugate gradient method. Matrix A is:

┌ ┐
| 2.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 -1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 |
└ ┘

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 27 , AUX2, 0)

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
| -1.0 2.0 0.0 |
| -1.0 2.0 -1.0 |

AC = | -1.0 2.0 -1.0 |
| -1.0 2.0 -1.0 |
| -1.0 2.0 -1.0 |
| -1.0 2.0 -1.0 |
| -1.0 2.0 0.0 |
└ ┘

┌ ┐
| 1 4 . |
| 2 3 . |
| 2 3 . |
| 1 4 5 |

KA = | 4 5 6 |
| 5 6 7 |
| 6 7 8 |
| 7 8 9 |
| 8 9 . |
└ ┘

B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:

DSMCG

Chapter 10. Linear Algebraic Equations 629

X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.351D-15

Example 2
This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-matrix storage mode in
arrays AC and KA. The system is solved using the conjugate gradient method,
preconditioned with an incomplete Cholesky factorization. The smallest eigenvalue
of the iteration matrix is computed and used in stopping the computation.

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 67 , AUX2, 74)

IPARM(1) = 20
IPARM(2) = 1
IPARM(3) = 10
RPARM(1) = 1.D-7
AC =(same as input AC in Example 1)
KA =(same as input KA in Example 1)
B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 1
RPARM(3) = 0.100D-15

DSMCG

630 ESSL Version 3 Release 3 Guide and Reference

DSDCG—Sparse Positive Definite or Negative Definite Symmetric
Matrix Iterative Solve Using Compressed-Diagonal Storage Mode

This subroutine solves a symmetric, positive definite or negative definite linear
system, using the two-term conjugate gradient method, with or without
preconditioning by an incomplete Cholesky factorization, for a sparse matrix stored
in compressed-diagonal storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Syntax

Fortran CALL DSDCG (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsdcg (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

PL/I CALL DSDCG (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry:

iopt indicates the type of storage used, where:

If iopt = 0, all the nonzero diagonals of the sparse matrix are stored in
compressed-diagonal storage mode.

If iopt = 1, the sparse matrix, stored in compressed-diagonal storage mode,
is symmetric. Only the main diagonal and one of each pair of identical
diagonals are stored in array AD.

Specified as: a fullword integer; iopt = 0 or 1.

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A. Specified as: a fullword integer; m ≥ 0.

nd is the number of nonzero diagonals stored in the columns of array AD, the
number of columns in the array AD, and the number of elements in array
LA. Specified as: a fullword integer; it must have the following value,
where:

If m > 0, then nd > 0.

If m = 0, then nd ≥ 0.

ad is the array, referred to as AD, containing the values of the nonzero
elements of the sparse matrix stored in compressed-diagonal storage mode.
If iopt = 1, the main diagonal and one of each pair of identical diagonals is
stored in this array.

Specified as: an lda by (at least) nd array, containing long-precision real
numbers.

lda is the leading dimension of the array specified for ad. Specified as: a
fullword integer; lda > 0 and lda ≥ m.

la is the array, referred to as LA, containing the diagonal numbers k for the
diagonals stored in each corresponding column in array AD. For an
explanation of how diagonal numbers are assigned, see
“Compressed-Diagonal Storage Mode” on page 89.

Specified as: a one-dimensional array of (at least) length nd, containing
fullword integers, where 1−m ≤ (elements of LA) ≤ m−1.

b is the vector b of length m, containing the right-hand side of the matrix

DSDCG

Chapter 10. Linear Algebraic Equations 631

problem. Specified as: a one-dimensional array of (at least) length m,
containing long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of
the linear system. Specified as: a one-dimensional array of (at least) length
m, containing long-precision real numbers. The elements can have any
value, and if no guess is available, the value can be zero.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 1
IPARM(3) = 0
RPARM(1) = 10−6

v IPARM(2) is the flag used to select the stopping criterion.
If IPARM(2) = 0, the conjugate gradient iterative procedure is stopped
when:
\r\2 / \x\2 < ε

where r = b−Ax is the residual and ε is the desired relative accuracy. ε
is stored in RPARM(1).

If IPARM(2) = 1, the conjugate gradient iterative procedure is stopped
when:
\r\2 / λ\x\2 < ε

where λ is an estimate to the minimum eigenvalue of the iteration
matrix. λ is computed adaptively by this program and, on output, is
stored in RPARM(2).

If IPARM(2) = 2, the conjugate gradient iterative procedure is stopped
when:
\r\2 / λ\x\2 < ε

where λ is a predetermined estimate to the minimum eigenvalue of the
iteration matrix. This eigenvalue estimate, on input, is stored in RPARM(2)
and may be obtained by an earlier call to this subroutine with the same
matrix.

v IPARM(3) is the flag that determines whether the system is to be solved
using the conjugate gradient method, preconditioned by an incomplete
Cholesky factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete
Cholesky factorization.
If IPARM(3) = −10, the system is preconditioned by an incomplete
Cholesky factorization, where the factorization matrix was computed in
an earlier call to this subroutine and is stored in aux2.

v IPARM(4), see “On Return” on page 633.

Specified as: an array of (at least) length 4, containing fullword integers,
where:

IPARM(1) = 0

DSDCG

632 ESSL Version 3 Release 3 Guide and Reference

IPARM(2) = 0, 1, or 2
IPARM(3) = 0, 10, or −10

rparm is an array of parameters, RPARM(i), where ε is stored in RPARM(1), and λ is
stored in RPARM(2).

RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion.

RPARM(2) > 0, is the estimate of the smallest eigenvalue, λ, of the iteration
matrix. It is only used when IPARM(2) = 2.

RPARM(3), see “On Return”.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1 has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is
available for use by the calling program between calls to this subroutine.
Its size is specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1 is the size of the work area specified by aux1—that is, the number of
elements in aux1.

Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, DSDCG dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, it must have at least the following value, where:

If IPARM(2) = 0 or 2, use naux1 ≥ 3m.

If IPARM(2) = 1 and IPARM(1) ≠ 0, use naux1 ≥ 3m+2(IPARM(1)).

If IPARM(2) = 1 and IPARM(1) = 0, use naux1 ≥ 3m+600.

aux2 is the storage work area used by this subroutine. If IPARM(3) = −10, aux2
must contain the incomplete Cholesky factorization of matrix A, computed
in an earlier call to DSDCG. Its size is specified by naux2. Specified as: an
area of storage, containing long-precision real numbers.

naux2 is the size of the work area specified by aux2—that is, the number of
elements in aux2. Specified as: a fullword integer. When IPARM(3) = 10 or
−10, naux2 must have at least the following value, where:

If iopt = 0, use naux2 ≥ m(1.5nd+2)1.5+2(m+6).

If iopt = 1, use naux2 ≥ m(3nd+2)+8.

On Return:

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array, containing long-precision real
numbers.

iparm As an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

DSDCG

Chapter 10. Linear Algebraic Equations 633

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword
integers.

rparm is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2)
contains λ, an estimate of the smallest eigenvalue of the iteration matrix.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ ε.

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers; λ > 0.

aux2 is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete Cholesky factorization of
matrix A.

If IPARM(3) = −10, aux2 is unchanged.

See “Notes” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = −10, this subroutine uses the incomplete Cholesky

factorization in aux2, computed in an earlier call to this subroutine. When
IPARM(3) = 10, this subroutine computes the incomplete Cholesky factorization
and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides using the preconditioned algorithm, specify
IPARM(3) = 10 on the first invocation. The incomplete factorization is stored in
aux2. You may save computing time on subsequent calls by setting
IPARM(3) = −10. In this way, the algorithm reutilizes the incomplete
factorization that was computed the first time. Therefore, you should not
modify the contents of aux2 between calls.

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10−4 to 10−8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:
\b−Ax\2 / λ\x\2 < ε

where λ is an estimate of the minimum eigenvalue of the iteration matrix,
which is either estimated adaptively or given by the user. As a result, if you
specify a larger ε, the algorithm takes fewer iterations to converge to a solution.
If you specify a smaller ε, the algorithm requires more iterations and computer
time, but converges to a more precise solution. If the value you specify is
unreasonably small, the algorithm may fail to converge within the number of
iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 88.

6. On output, array AD and vector b are not bitwise identical to what they were on
input, because the matrix A and the right-hand side are scaled before starting

DSDCG

634 ESSL Version 3 Release 3 Guide and Reference

the iterative process and are unscaled before returning control to the user. In
addition, arrays AD and LA may be rearranged on output, but still contain a
mathematically equivalent mapping of the elements in matrix A.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The sparse positive definite or negative definite linear system:

Ax = b

is solved, where:
A is a symmetric, positive definite or negative definite sparse matrix of order m,
stored in compressed-diagonal storage mode in arrays AD and LA.
x is a vector of length m.
b is a vector of length m.

The system is solved using the two-term conjugate gradient method, with or
without preconditioning by an incomplete Cholesky factorization. In both cases,
the matrix is scaled by the square root of the diagonal.

See references [62] and [68]. [36].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux1 = 0, and unable to allocate
work area.

Computational Errors: The following errors, with their corresponding return
codes, can occur in this subroutine. Where a value of i is indicated, it can be
determined at run time by use of the ESSL error-handling facilities. To obtain this
information, you must use ERRSET to change the number of allowable errors for
that particular error code in the ESSL error option table; otherwise, the default
value causes your program to terminate when the error occurs. For details, see
“What Can You Do about ESSL Computational Errors?” on page 45.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = −10, and aux2
contains an incomplete factorization of the input matrix A that was computed by
a previous call to the subroutine when IPARM(3) = 10. This error indicates that
aux2 has been modified since the last call to the subroutine, or that the input
matrix is not the same as the one that was factored. If the default action has
been overridden, the subroutine can be called again with the same parameters,
with the exception of IPARM(3) = 0 or 10.

v For error 2109, return code 3 indicates that the inner product (y,Ay) is negative
in the iterative procedure after iteration i. This should not occur, because the
input matrix is assumed to be positive or negative definite. Vector x contains the
results of the last iteration. The value i is identified in the computational error
message.

v For error 2108, return code 4 indicates that the matrix is not positive definite. AC
is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors:
1. iopt ≠ 0 or 1

DSDCG

Chapter 10. Linear Algebraic Equations 635

2. m < 0
3. lda < 1
4. lda < m
5. nd < 0
6. nd = 0 and m > 0
7. |λ(i)| > m−1 for i = 1, nd
8. IPARM(1) < 0
9. IPARM(2) ≠ 0, 1, or 2

10. IPARM(3) ≠ 0, 10, or −10
11. RPARM(1) < 0
12. RPARM(2) < 0
13. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less than

the minimum required value. Return code 5 is returned if error 2015 is
recoverable.

14. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Example 1
This example finds the solution of the linear system Ax = b for sparse matrix A,
which is stored in compressed-diagonal storage mode in arrays AD and LA. The
system is solved using the two-term conjugate gradient method. In this example,
IOPT = 0.. Matrix A is:

┌ ┐
| 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 |
└ ┘

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 0.0 -1.0 |
| 2.0 0.0 -1.0 |
| 2.0 -1.0 -1.0 |
| 2.0 -1.0 -1.0 |

AD = | 2.0 -1.0 -1.0 |
| 2.0 -1.0 -1.0 |
| 2.0 -1.0 -1.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
└ ┘

LA = (0, -2, 2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:

IOPT M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSDCG(0 , 9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 0)

DSDCG

636 ESSL Version 3 Release 3 Guide and Reference

X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.46D-16

Example 2
This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-diagonal storage mode in
arrays AD and LA. The system is solved using the two-term conjugate gradient
method. In this example, IOPT = 1, indicating that the matrix is symmetric, and
only the main diagonal and one of each pair of identical diagonals are stored in
array AD.

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 1.D-7

┌ ┐
| 2.0 0.0 |
| 2.0 0.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |

AD = | 2.0 -1.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |
└ ┘

LA = (0, -2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 0
RPARM(3) = 0.89D-16

IOPT M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSDCG(1 , 9 , 2 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 80)

DSDCG

Chapter 10. Linear Algebraic Equations 637

DSMGCG—General Sparse Matrix Iterative Solve Using
Compressed-Matrix Storage Mode

This subroutine solves a general sparse linear system of equations using an
iterative algorithm, conjugate gradient squared or generalized minimum residual,
with or without preconditioning by an incomplete LU factorization. The subroutine
is suitable for positive real matrices—that is, when the symmetric part of the
matrix, (A+AT)/2, is positive definite. The sparse matrix is stored in
compressed-matrix storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Notes:

1. These subroutines are provided only for migration purposes. You get better
performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 93, you should first use the utility subroutine DSRSM to convert your
sparse matrix to compressed-matrix storage mode. See “DSRSM—Convert a
Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on
page 944.

Syntax

Fortran CALL DSMGCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsmgcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

PL/I CALL DSMGCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry:

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A. Specified as: a fullword integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix
A. Specified as: a fullword integer; nz ≥ 0.

ac is the array, referred to as AC, containing the values of the nonzero
elements of the sparse matrix, stored in compressed-matrix storage mode.
Specified as: an lda by (at least) nz array, containing long-precision real
numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix
A elements stored in the corresponding positions in array AC. Specified as:
an lda by (at least) nz array, containing fullword integers, where
1 ≤ (elements of KA) ≤ m.

lda is the leading dimension of the arrays specified for ac and ka. Specified as:
a fullword integer; lda > 0 and lda ≥ m.

b is the vector b of length m, containing the right-hand side of the matrix
problem. Specified as: a one-dimensional array of (at least) length m,
containing long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of
the linear system. Specified as: a one-dimensional array of (at least) length
m, containing long-precision real numbers. The elements can have any
value, and if no guess is available, the value can be zero.

iparm is an array of parameters, IPARM(i), where:

DSMGCG

638 ESSL Version 3 Release 3 Guide and Reference

v IPARM(1) controls the number of iterations.
If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 10−6

v IPARM(2) is the flag used to select the iterative procedure used in this
subroutine.
If IPARM(2) = 0, the conjugate gradient squared method is used.
If IPARM(2) = k, the generalized minimum residual method, restarted
after k steps, is used. Note that the size of the work area aux1 becomes
larger as k increases. A value for k in the range of 5 to 10 is suitable for
most problems.

v IPARM(3) is the flag that determines whether the system is to be
preconditioned by an incomplete LU factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete LU
factorization.
If IPARM(3) = −10, the system is preconditioned by an incomplete LU
factorization, where the factorization matrix was computed in an earlier
call to this subroutine and is stored in aux2.

v IPARM(4), see “On Return” on page 640.

Specified as: an array of (at least) length 4, containing fullword integers,
where:

IPARM(1) ≥ 0
IPARM(2) ≥ 0
IPARM(3) = 0, 10, or −10

rparm is an array of parameters, RPARM(i), where:

RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion. The
iterative procedure is stopped when:
\b−Ax\2 / \x\2 < ε

RPARM(2) is reserved.

RPARM(3), see “On Return” on page 640.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1 has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is
available for use by the calling program between calls to this subroutine.
Its size is specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1 is the size of the work area specified by aux1—that is, the number of
elements in aux1. Specified as: a fullword integer, where:

DSMGCG

Chapter 10. Linear Algebraic Equations 639

If naux1 = 0 and error 2015 is unrecoverable, DSMGCG dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, it must have at least the following value, where:

If IPARM(2) = 0, use naux1 ≥ 7m.

If IPARM(2) > 0, use naux1 ≥ (k+2)m+k(k+4)+1, where k = IPARM(2).

aux2 is the storage work area used by this subroutine. If IPARM(3) = −10, aux2
must contain the incomplete LU factorization of matrix A, computed in an
earlier call to DSMGCG. The size of aux2 is specified by naux2.

Specified as: an area of storage, containing long-precision real numbers.

naux2 is the size of the work area specified by aux2—that is, the number of
elements in aux2. Specified as: a fullword integer. When IPARM(3) = 10,
naux2 must have at least the following value: naux2 ≥ 3+2m+1.5nz(m).

On Return:

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

iparm is an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword
integers.

rparm is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is reserved.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ RPARM(1)

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers.

aux2 is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete LU factorization of matrix
A.

If IPARM(3) = −10, aux2 is unchanged.

See “Notes” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = −10, this subroutine uses the incomplete LU factorization in

aux2, computed in an earlier call to this subroutine. When IPARM(3) = 10, this
subroutine computes the incomplete LU factorization and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides using the preconditioned algorithm, specify

DSMGCG

640 ESSL Version 3 Release 3 Guide and Reference

IPARM(2) = 10 on the first invocation. The incomplete factorization is stored in
aux2. You may save computing time on subsequent calls by setting IPARM(3)
equal to −10. In this way, the algorithm reutilizes the incomplete factorization
that was computed the first time. Therefore, you should not modify the
contents of aux2 between calls.

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10−4 to 10−8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:
\b−Ax\2 / \x\2 < ε

As a result, if you specify a larger ε, the algorithm takes fewer iterations to
converge to a solution. If you specify a smaller ε, the algorithm requires more
iterations and computer time, but converges to a more precise solution. If the
value you specify is unreasonably small, the algorithm may fail to converge
within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 88.

6. On output, array AC is not bitwise identical to what it was on input because the
matrix A is scaled before starting the iterative process and is unscaled before
returning control to the user.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The linear system:

Ax = b

is solved using either the conjugate gradient squared method or the generalized
minimum residual method, with or without preconditioning by an incomplete LU
factorization, where:

A is a sparse matrix of order m, stored in compressed-matrix storage mode in
arrays AC and KA.
x is a vector of length m.
b is a vector of length m.

See references [86] and [88]. [36].

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, first convert your sparse matrix to compressed-matrix storage mode by
using the subroutine DSRSM described on page 944.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux1 = 0, and unable to allocate
work area.

Computational Errors: The following errors, with their corresponding return
codes, can occur in this subroutine. For details on error handling, see “What Can
You Do about ESSL Computational Errors?” on page 45.

DSMGCG

Chapter 10. Linear Algebraic Equations 641

v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)
iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = −10, and aux2
contains an incomplete factorization of the input matrix A that was computed by
a previous call to the subroutine when IPARM(3) = 10. This error indicates that
aux2 has been modified since the last call to the subroutine, or that the input
matrix is not the same as the one that was factored. If the default action has
been overridden, the subroutine can be called again with the same parameters,
with the exception of IPARM(3) = 0 or 10.

v For error 2112, return code 3 indicates that the incomplete LU factorization of A
could not be completed, because one pivot was 0.

v For error 2116, return code 4 indicates that the matrix is singular, because all
elements in one row of the matrix contain 0. Array AC is partially modified and
does not represent the same matrix as on entry.

Input-Argument Errors:
1. m < 0
2. lda < 1
3. lda < m
4. nz < 0
5. nz = 0 and m > 0
6. IPARM(1) < 0
7. IPARM(2) < 0
8. IPARM(3) ≠ 0, 10, or −10
9. RPARM(1) < 0

10. RPARM(2) < 0
11. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less than

the minimum required value. Return code 5 is returned if error 2015 is
recoverable.

12. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Example 1
This example finds the solution of the linear system Ax = b for the sparse matrix
A, which is stored in compressed-matrix storage mode in arrays AC and KA. The
system is solved using the conjugate gradient squared method. Matrix A is:

┌ ┐
| 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 |
└ ┘

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:

M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)

DSMGCG

642 ESSL Version 3 Release 3 Guide and Reference

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 0.0 0.0 |
| 2.0 -1.0 0.0 |
| 1.0 2.0 0.0 |
| 1.0 2.0 -1.0 |

AC = | 1.0 2.0 -1.0 |
| 1.0 2.0 -1.0 |
| 1.0 2.0 -1.0 |
| 1.0 2.0 -1.0 |
| 1.0 2.0 0.0 |
└ ┘

┌ ┐
| 1 . . |
| 2 3 . |
| 2 3 . |
| 1 4 5 |

KA = | 4 5 6 |
| 5 6 7 |
| 6 7 8 |
| 7 8 9 |
| 8 9 . |
└ ┘

B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 9
RPARM(3) = 0.150D-19

Example 2
This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-matrix storage mode in
arrays AC and KA. The system is solved using the generalized minimum residual
method, restarted after 5 steps and preconditioned with an incomplete LU
factorization. Most of the input is the same as in Example 1.

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 5
IPARM(3) = 10
RPARM(1) = 1.D-7
AC =(same as input AC in Example 1)
KA =(same as input KA in Example 1)
B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:

M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)

DSMGCG

Chapter 10. Linear Algebraic Equations 643

X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 2
RPARM(3) = 0.290D-15

DSMGCG

644 ESSL Version 3 Release 3 Guide and Reference

DSDGCG—General Sparse Matrix Iterative Solve Using
Compressed-Diagonal Storage Mode

This subroutine solves a general sparse linear system of equations using an
iterative algorithm, conjugate gradient squared or generalized minimum residual,
with or without preconditioning by an incomplete LU factorization. The subroutine
is suitable for positive real matrices—that is, when the symmetric part of the
matrix, (A+AT)/2, is positive definite. The sparse matrix is stored in
compressed-diagonal storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Syntax

Fortran CALL DSDGCG (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsdgcg (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

PL/I CALL DSDGCG (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry:

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A. Specified as: a fullword integer; m ≥ 0.

nd is the number of nonzero diagonals stored in the columns of array AD, the
number of columns in array AD, and the number of elements in array LA.
Specified as: a fullword integer; it must have the following value, where:

If m > 0, then nd > 0.

If m = 0, then nd ≥ 0.

ad is the array, referred to as AD, containing the values of the nonzero
elements of the sparse matrix, stored in compressed-matrix storage mode.
Specified as: an lda by (at least) nd array, containing long-precision real
numbers.

lda is the leading dimension of the arrays specified for ad. Specified as: a
fullword integer; lda > 0 and lda ≥ m.

la is the array, referred to as LA, containing the diagonal numbers k for the
diagonals stored in each corresponding column in array AD. For an
explanation of how diagonal numbers are stored, see “Compressed-
Diagonal Storage Mode” on page 89.

Specified as: a one-dimensional array of (at least) length nd, containing
fullword integers, where 1−m ≤ (elements of LA) ≤ (m−1).

b is the vector b of length m, containing the right-hand side of the matrix
problem. Specified as: a one-dimensional array of (at least) length m,
containing long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of
the linear system. Specified as: a one-dimensional array of (at least) length
m, containing long-precision real numbers. The elements can have any
value, and if no guess is available, the value can be zero.

iparm is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.

DSDGCG

Chapter 10. Linear Algebraic Equations 645

If IPARM(1) = 0, the following default values are used:
IPARM(1) = 300
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 10−6

v IPARM(2) is the flag used to select the iterative procedure used in this
subroutine.
If IPARM(2) = 0, the conjugate gradient squared method is used.
If IPARM(2) = k, the generalized minimum residual method, restarted
after k steps, is used. Note that the size of the work area aux1 becomes
larger as k increases. A value for k in the range of 5 to 10 is suitable for
most problems.

v IPARM(3) is the flag that determines whether the system is to be
preconditioned by an incomplete LU factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete LU
factorization.
If IPARM(3) = −10, the system is preconditioned by an incomplete LU
factorization, where the factorization matrix was computed in an earlier
call to this subroutine and is stored in aux2.

v IPARM(4), see “On Return” on page 647.

Specified as: an array of (at least) length 4, containing fullword integers,
where:

IPARM(1) ≥ 0
IPARM(2) ≥ 0
IPARM(3) = 0, 10, or −10

rparm is an array of parameters, RPARM(i), where:

If RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion.
The iterative procedure is stopped when:
\b−Ax\2 / \x\2 < ε

RPARM(2) is reserved.

RPARM(3), see “On Return” on page 647.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1 has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is
available for use by the calling program between calls to this subroutine.
Its size is specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1 is the size of the work area specified by aux1—that is, the number of
elements in aux1. Specified as: a fullword integer, where:

If naux1 = 0 and error 2015 is unrecoverable, DSDGCG dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux1 > 0 and must have at least the following value, where:

DSDGCG

646 ESSL Version 3 Release 3 Guide and Reference

If IPARM(2) = 0, use naux1 ≥ 7m.

If IPARM(2) > 0, use naux1 ≥ (k+2)m+k(k+4)+1, where k = PARM(2).

aux2 is a storage work area used by this subroutine. If IPARM(3) = −10, aux2
must contain the incomplete LU factorization of matrix A, computed in an
earlier call to DSDGCG. The size of aux2 is specified by naux2.

Specified as: an area of storage, containing long-precision real numbers.

naux2 is the size of the work area specified by aux2—that is, the number of
elements in aux2. Specified as: a fullword integer. When IPARM(3) = 10 or
−10, naux2 must have at least the following value: naux2 ≥ 3+2m+1.5nd(m).

On Return:

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

iparm is an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword
integers.

rparm is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is reserved.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ RPARM(1).

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers.

aux2 is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete LU factorization of matrix
A.

If IPARM(3) = −10, aux2 is unchanged.

See “Notes” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = −10, this subroutine uses the incomplete LU factorization in

aux2, computed in an earlier call to this subroutine. When IPARM(3) = 10, this
subroutine computes the incomplete LU factorization and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides, using the preconditioned algorithm, specify
IPARM(3) = 10 on the first invocation. The incomplete factorization is stored in
aux2. You may save computing time on subsequent calls by setting
IPARM(3) = −10. In this way, the algorithm reutilizes the incomplete
factorization that was computed the first time. Therefore, you should not
modify the contents of aux2 between calls.

DSDGCG

Chapter 10. Linear Algebraic Equations 647

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10−4 to 10−8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:
\b−Ax\2 / \x\2 < ε

As a result, if you specify a larger ε, the algorithm takes fewer iterations to
converge to a solution. If you specify a smaller ε, the algorithm requires more
iterations and computer time, but converges to a more precise solution. If the
value you specify is unreasonably small, the algorithm may fail to converge
within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-diagonal
storage mode, see “Compressed-Diagonal Storage Mode” on page 89.

6. On output, array AD is not bitwise identical to what it was on input, because
matrix A is scaled before starting the iterative process and is unscaled before
returning control to the user.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The linear system:

Ax = b

is solved using either the conjugate gradient squared method or the generalized
minimum residual method, with or without preconditioning by an incomplete LU
factorization, where:

A is a sparse matrix of order m, stored in compressed-diagonal storage mode in
arrays AD and LA.
x is a vector of length m.
b is a vector of length m.

See references [86] and [88]. [36].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux1 = 0, and unable to allocate
work area.

Computational Errors: The following errors, with their corresponding return
codes, can occur in this subroutine. For details on error handling, see “What Can
You Do about ESSL Computational Errors?” on page 45.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = −10, and aux2
contains an incomplete factorization of the input matrix A that was computed by
a previous call to the subroutine when IPARM(3) = 10. This error indicates that
aux2 has been modified since the last call to the subroutine, or that the input
matrix is not the same as the one that was factored. If the default action has
been overridden, the subroutine can be called again with the same parameters,
with the exception of IPARM(3) = 0 or 10.

DSDGCG

648 ESSL Version 3 Release 3 Guide and Reference

v For error 2112, return code 3 indicates that the incomplete LU factorization of A
could not be completed, because one pivot was 0.

v For error 2116, return code 4 indicates that the matrix is singular, because all
elements in one row of the matrix contain 0. Array AC is partially modified and
does not represent the same matrix as on entry.

Input-Argument Errors:
1. m < 0
2. lda < 1
3. lda < m
4. nd < 0
5. nd = 0 and m > 0
6. IPARM(1) < 0
7. IPARM(2) < 0
8. IPARM(3) ≠ 0, 10, or −10
9. RPARM(1) < 1.D0

10. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less than
the minimum required value. Return code 5 is returned if error 2015 is
recoverable.

11. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Example 1
This example finds the solution of the linear system Ax = b for the sparse matrix
A, which is stored in compressed-diagonal storage mode in arrays AD and LA. The
system is solved using the conjugate gradient squared method. Matrix A is:

┌ ┐
| 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
| 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
| 0.0 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 |
| 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 |
| 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 |
└ ┘

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |

AD = | 2.0 -1.0 1.0 |
| 2.0 -1.0 1.0 |
| 2.0 -1.0 1.0 |
| 2.0 0.0 1.0 |
| 2.0 0.0 1.0 |
└ ┘

M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSDGCG(9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)

DSDGCG

Chapter 10. Linear Algebraic Equations 649

LA = (0, 2, -4)
B = (1, 1, 1, 1, 2, 2, 2, 3, 3)
X = (0, 0, 0, 0, 0, 0, 0, 0, 0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 8
RPARM(3) = 0.308D-17

Example 2
This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-diagonal storage mode in
arrays AD and LA. The system is solved using the generalized minimum residual
method, restarted after 5 steps and preconditioned with an incomplete LU
factorization. Most of the input is the same as in Example 1.

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 5
IPARM(3) = 10
RPARM(1) = 1.D-7
AD =(same as input AD in Example 1)
LA =(same as input LA in Example 1)
B = (1, 1, 1, 1, 2, 2, 2, 3, 3)
X = (0, 0, 0, 0, 0, 0, 0, 0, 0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 6
RPARM(3) = 0.250D-15

M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSDGCG(9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)

DSDGCG

650 ESSL Version 3 Release 3 Guide and Reference

Linear Least Squares Subroutines
This section contains the linear least squares subroutine descriptions.

SGESVF and DGESVF

Chapter 10. Linear Algebraic Equations 651

SGESVF and DGESVF—Singular Value Decomposition for a General
Matrix

These subroutines compute the singular value decomposition of general matrix A
in preparation for solving linear least squares problems. To compute the minimal
norm linear least squares solution of AXïB, follow the call to these subroutines
with a call to SGESVS or DGESVS, respectively.

Table 117. Data Types

A, B, s, aux Subroutine

Short-precision real SGESVF

Long-precision real DGESVF

Syntax

Fortran CALL SGESVF | DGESVF (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux)

C and C++ sgesvf | dgesvf (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux);

PL/I CALL SGESVF | DGESVF (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0 or 10, singular values are computed.

If iopt = 1 or 11, singular values and V are computed.

If iopt = 2 or 12, singular values, V, and UTB are computed.

Specified as: a fullword integer; iopt = 0, 1, 2, 10, 11, or 12.

If iopt < 10, singular values are unordered.

If iopt ≥ 10, singular values are sorted in descending order and, if
applicable, the columns of V and the rows of UTB are swapped to
correspond to the sorted singular values.

a is the m by n general matrix A, whose singular value decomposition is to
be computed. Specified as: an lda by (at least) n array, containing numbers
of the data type indicated in Table 117.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ max(m, n).

b has the following meaning, where:

If iopt = 0, 1, 10, or 11, this argument is not used in the computation.

If iopt = 2 or 12, it is the m by nb matrix B.

Specified as: an ldb by (at least) nb array, containing numbers of the data
type indicated in Table 117.

If this subroutine is followed by a call to SGESVS or DGESVS, B should
contain the right-hand side of the linear least squares problem, AXïB. (The
nb column vectors of B contain right-hand sides for nb distinct linear least
squares problems.) However, if the matrix UT is desired on output, B
should be equal to the identity matrix of order m.

ldb has the following meaning, where:

SGESVF and DGESVF

652 ESSL Version 3 Release 3 Guide and Reference

If iopt = 0, 1, 10, or 11, this argument is not used in the computation.

If iopt = 2 or 12, it is the leading dimension of the array specified for b.

Specified as: a fullword integer. It must have the following values, where:

If iopt = 0, 1, 10, or 11, ldb > 0.

If iopt = 2 or 12, ldb > 0 and ldb ≥ max(m, n).

nb has the following meaning, where:

If iopt = 0, 1, 10, or 11, this argument is not used in the computation.

If iopt = 2 or 12, it is the number of columns in matrix B.

Specified as: a fullword integer; if iopt = 2 or 12, nb > 0.

s See “On Return”.

m is the number of rows in matrices A and B. Specified as: a fullword
integer; m ≥ 0.

n is the number of columns in matrix A and the number of elements in
vector s. Specified as: a fullword integer; n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 117 on page 652.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGESVF and DGESVF
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, It must have the following value, where:

If iopt = 0 or 10, naux ≥ n+max(m, n).

If iopt = 1 or 11, naux ≥ 2n+max(m, n).

If iopt = 2 or 12, naux ≥ 2n+max(m, n, nb).

On Return:

a has the following meaning, where:

If iopt = 0, or 10, A is overwritten; that is, the original input is not
preserved.

If iopt = 1, 2, 11, or 12, A contains the real orthogonal matrix V, of order n,
in its first n rows and n columns. If iopt = 11 or 12, the columns of V are
swapped to correspond to the sorted singular values. If m > n, rows n+1,
n+2, ..., m of array A are overwritten; that is, the original input is not
preserved.

Returned as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 117 on page 652.

b has the following meaning, where:

If iopt = 0, 1, 10, or 11, B is not used in the computation.

SGESVF and DGESVF

Chapter 10. Linear Algebraic Equations 653

If iopt = 2 or 12, B is overwritten by the n by nb matrix UTB.

If iopt = 12, the rows of UTB are swapped to correspond to the sorted
singular values. If m > n, rows n+1, n+2, ..., m of array B are overwritten;
that is, the original input is not preserved.

Returned as: an ldb by (at least) nb array, containing numbers of the data
type indicated in Table 117 on page 652.

s is a the vector s of length n, containing the singular values of matrix A.
Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 117 on page 652; si ≥ 0, where:

If iopt < 10, the singular values are unordered in s.

If iopt ≥ 10, the singular values are sorted in descending order in s; that is,
s1 ≥ s2 ≥ ... ≥ sn ≥ 0. If applicable, the columns of V and the rows of UTB
are swapped to correspond to the sorted singular values.

Notes
1. The following items must have no common elements; otherwise, results are

unpredictable: matrices A and B, vector s, and the data area specified for aux.
2. When you specify iopt = 0, 1, 10, or 11, you must also specify:
v A dummy argument for b
v A positive value for ldb

See “Example” on page 547.
3. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The singular value decomposition of a real general matrix is computed as follows:

A = UΣVT

where:
UTU = VTV = VVT = I
A is an m by n real general matrix.
V is a real general orthogonal matrix of order n. On output, V overwrites the
first n rows and n columns of A.
UTB is an n by nb real general matrix. On output, UTB overwrites the first n
rows and nb columns of B.
Σ is an n by n real diagonal matrix. The diagonal elements of Σ are the singular
values of A, returned in the vector s.

If m or n is equal to 0, no computation is performed.

One of the following algorithms is used:
1. Golub-Reinsch Algorithm (See pages 134 to 151 in reference [99].)

a. Reduce the real general matrix A to bidiagonal form using Householder
transformations.

b. Iteratively reduce the bidiagonal form to diagonal form using a variant of
the QR algorithm.

2. Chan Algorithm (See reference [13].)
a. Compute the QR decomposition of matrix A using Householder

transformations; that is, A = QR.
b. Apply the Golub-Reinsch Algorithm to the matrix R.

SGESVF and DGESVF

654 ESSL Version 3 Release 3 Guide and Reference

If R = XWYT is the singular value decomposition of R, the singular value
decomposition of matrix A is given by:

where:

Also, see references [13], [58], [78], and pages 134 to 151 in reference [99]. These
algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: Singular value (i) failed to converge after (x) iterations.
v The singular values (sj, j = n, n−1, ..., i+1) are correct. If iopt < 10, they are

unordered. Otherwise, they are ordered.
v a has been modified.
v If iopt = 2 or 12, then b has been modified.
v The return code is set to 1.
v i and x can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2107 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this error
occurs. See “What Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. iopt ≠ 0, 1, 2, 10, 11, or 12
2. lda ≤ 0
3. max(m, n) > lda
4. ldb ≤ 0 and iopt = 2, 12
5. max(m, n) > ldb and iopt = 2, 12
6. nb ≤ 0 and iopt = 2, 12
7. m < 0
8. n < 0
9. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 2 is returned if error 2015 is recoverable.

Example 1
This example shows how to find only the singular values, s, of a real
long-precision general matrix A, where:

SGESVF and DGESVF

Chapter 10. Linear Algebraic Equations 655

v M is greater than N.
v NAUX is greater than or equal to N+max(M, N) = 7.
v LDB has been set to 1 to avoid a Fortran error message.
v DUMMY is a placeholder for argument b, which is not used in the computation.
v The singular values are returned in S.
v On output, matrix A is overwritten; that is, the original input is not preserved.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(0 , A , 4 , DUMMY , 1 , 0 , S , 4 , 3 , AUX , 7)

┌ ┐
| 1.0 2.0 3.0 |

A = | 4.0 5.0 6.0 |
| 7.0 8.0 9.0 |
| 10.0 11.0 12.0 |
└ ┘

Output:
S = (25.462, 1.291, 0.000)

Example 2
This example computes the singular values, s, of a real long-precision general
matrix A and the matrix V, where:
v M is equal to N.
v NAUX is greater than or equal to 2N+max(M, N) = 9.
v LDB has been set to 1 to avoid a Fortran error message.
v DUMMY is a placeholder for argument b, which is not used in the computation.
v The singular values are returned in S.
v The matrix V is returned in A.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(1 , A , 3 , DUMMY , 1 , 0 , S , 3 , 3 , AUX , 9)

┌ ┐
| 2.0 1.0 1.0 |

A = | 4.0 1.0 0.0 |
| -2.0 2.0 1.0 |
└ ┘

Output:
┌ ┐
| -0.994 0.105 -0.041 |

A = | -0.112 -0.870 0.480 |
| -0.015 -0.482 -0.876 |
└ ┘

S = (4.922, 2.724, 0.597)

Example 3
This example computes the singular values, s, and computes matrices V and UTB
in preparation for solving the underdetermined system AXïB, where:
v M is less than N.
v NAUX is greater than or equal to 2N+max(M, N, NB) = 9.
v The singular values are returned in S.
v The matrix V is returned in A.
v The matrix UTB is returned in B.

SGESVF and DGESVF

656 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(2 , A , 3 , B , 3 , 1 , S , 2 , 3 , AUX , 9)

┌ ┐
| 1.0 2.0 2.0 |

A = | 2.0 4.0 5.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 |

B = | 4.0 |
| . |
└ ┘

Output:
┌ ┐
| -0.304 -0.894 0.328 |

A = | -0.608 0.447 0.656 |
| -0.733 0.000 -0.680 |
└ ┘

┌ ┐
| -4.061 |

B = | 0.000 |
| -0.714 |
└ ┘

S = (7.342, 0.000, 0.305)

Example 4
This example computes the singular values, s, and matrices V and UTB in
preparation for solving the overdetermined system AXïB, where:
v M is greater than N.
v NAUX is greater than or equal to 2N+max(M, N, NB) = 7.
v The singular values are returned in S.
v The matrix V is returned in A.
v The matrix UTB is returned in B.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(2 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)

┌ ┐
| 1.0 4.0 |

A = | 2.0 5.0 |
| 3.0 6.0 |
└ ┘

┌ ┐
| 7.0 10.0 |

B = | 8.0 11.0 |
| 9.0 12.0 |
└ ┘

Output:
┌ ┐
| 0.922 -0.386 |

A = | -0.386 -0.922 |
| . . |
└ ┘

SGESVF and DGESVF

Chapter 10. Linear Algebraic Equations 657

┌ ┐
| -1.310 -2.321 |

B = | -13.867 -18.963 |
| . . |
└ ┘

X = (0.773, 9.508)

Example 5
This example computes the singular values, s, and matrices V and UTB in
preparation for solving the overdetermined system AXïB. The singular values are
sorted in descending order, and the columns of V and the rows of UTB are
swapped to correspond to the sorted singular values.
v M is greater than N.
v NAUX is greater than or equal to 2N+max(M, N, NB) = 7.
v The singular values are returned in S.
v The matrix V is returned in A.
v The matrix UTB is returned in B.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(12 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)

┌ ┐
| 1.0 4.0 |

A = | 2.0 5.0 |
| 3.0 6.0 |
└ ┘

┌ ┐
| 7.0 10.0 |

B = | 8.0 11.0 |
| 9.0 12.0 |
└ ┘

Output:
┌ ┐
| -0.386 0.922 |

A = | -0.922 -0.386 |
| . . |
└ ┘

┌ ┐
| -13.867 -18.963 |

B = | -1.310 -2.321 |
| . . |
└ ┘

S = (9.508, 0.773)

SGESVF and DGESVF

658 ESSL Version 3 Release 3 Guide and Reference

SGESVS and DGESVS—Linear Least Squares Solution for a General
Matrix Using the Singular Value Decomposition

These subroutines compute the minimal norm linear least squares solution of
AXïB, where A is a general matrix, using the singular value decomposition
computed by SGESVF or DGESVF.

Table 118. Data Types

V, UB, X, s, τ Subroutine

Short-precision real SGESVS

Long-precision real DGESVS

Syntax

Fortran CALL SGESVS | DGESVS (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau)

C and C++ sgesvs | dgesvs (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau);

PL/I CALL SGESVS | DGESVS (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau);

On Entry:

v is the orthogonal matrix V of order n in the singular value decomposition
of matrix A. It is produced by a preceding call to SGESVF or DGESVF,
where it corresponds to output argument a.

Specified as: an ldv by (at least) n array, containing numbers of the data
type indicated in Table 118.

ldv is the leading dimension of the array specified for v. Specified as: a
fullword integer; ldv > 0 and ldv ≥ n.

ub is an n by nb matrix, containing UTB. It is produced by a preceding call to
SGESVF or DGESVF, where it corresponds to output argument b. On
output, UTB is overwritten; that is, the original input is not preserved.

Specified as: an ldub by (at least) nb array, containing numbers of the data
type indicated in Table 118.

ldub is the leading dimension of the array specified for ub. Specified as: a
fullword integer; ldub > 0 and ldub ≥ n.

nb is the number of columns in matrices X and UTB. Specified as: a fullword
integer; nb > 0.

s is the vector s of length n, containing the singular values of matrix A. It is
produced by a preceding call to SGESVF or DGESVF, where it corresponds
to output argument s.

Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 118; si ≥ 0.

x See “On Return” on page 660.

ldx is the leading dimension of the array specified for x. Specified as: a
fullword integer; ldx > 0 and ldx ≥ n.

m is the number of rows in matrix A. Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix A, the order of matrix V, the number
of elements in vector s, the number of rows in matrix UB, and the number
of rows in matrix X. Specified as: a fullword integer; n ≥ 0.

SGESVS and DGESVS

Chapter 10. Linear Algebraic Equations 659

tau is the error tolerance τ. Any singular values in vector s that are less than τ
are treated as zeros when computing matrix X. Specified as: a number of
the data type indicated in Table 118 on page 659; τ ≥ 0. For more
information on the values for τ, see “Notes”.

On Return:

x is an n by nb matrix, containing the minimal norm linear least solutions of
AXïB. The nb column vectors of X contain minimal norm solution vectors
for nb distinct linear least squares problems.

Returned as: an ldx by (at least) nb array, containing numbers of the data
type indicated in Table 118 on page 659.

Notes
1. V, X, s, and UTB can have no common elements; otherwise the results are

unpredictable.
2. In problems involving experimental data, τ should reflect the absolute accuracy

of the matrix elements:
τ ≥ max(|∆ij|)

where ∆ij are the errors in aij. In problems where the matrix elements are
known exactly or are only affected by roundoff errors:

where:
ε is equal to 0.11920E−06 for SGESVS and 0.22204D−15 for DGESVS.
s is a vector containing the singular values of matrix A.

For more information, see references [13], [58], [78], and pages 134 to 151 in
reference [99].

Function
The minimal norm linear least squares solution of AXïB, where A is a real general
matrix, is computed using the singular value decomposition, produced by a
preceding call to SGESVF or DGESVF. From SGESVF or DGESVF, the singular
value decomposition of A is given by the following:

A = UΣVT

The linear least squares of solution X, for AXïB, is given by the following formula:
X = VΣ+UTB

where:

If m or n is equal to 0, no computation is performed. See references [13], [58], [78],
and pages 134 to 151 in reference [99]. These algorithms have a tendency to

SGESVS and DGESVS

660 ESSL Version 3 Release 3 Guide and Reference

generate underflows that may hurt overall performance. The system default is to
mask underflow, which improves the performance of these subroutines.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. ldv ≤ 0
2. n > ldv
3. ldub ≤ 0
4. n > ldub
5. ldx ≤ 0
6. n > ldx
7. nb ≤ 0
8. m < 0
9. n < 0

10. τ < 0

Example 1
This example finds the linear least squares solution for the underdetermined
system AXïB, using the singular value decomposition computed by DGESVF.
Matrix A is:

┌ ┐
| 1.0 2.0 2.0 |
| 2.0 4.0 5.0 |
└ ┘

and matrix B is:
┌ ┐
| 1.0 |
| 4.0 |
└ ┘

On output, matrix UTB is overwritten.

Note: This example corresponds to Example 3 of DGESVF on page 656.

Call Statement and Input:
V LDV UB LDUB NB S X LDX M N TAU
| | | | | | | | | | |

CALL DGESVS(V , 3 , UB , 3 , 1 , S , X , 3 , 2 , 3 , TAU)

┌ ┐
| -0.304 -0.894 0.328 |

V = | -0.608 0.447 0.656 |
| -0.733 0.000 -0.680 |
└ ┘

┌ ┐
| -4.061 |

UB = | 0.000 |
| -0.714 |
└ ┘

S = (7.342, 0.000, 0.305)
TAU = 0.3993D-14

Output:

SGESVS and DGESVS

Chapter 10. Linear Algebraic Equations 661

┌ ┐
| -0.600 |

X = | -1.200 |
| 2.000 |
└ ┘

Example 2
This example finds the linear least squares solution for the overdetermined system
AXïB, using the singular value decomposition computed by DGESVF. Matrix A is:

┌ ┐
| 1.0 4.0 |
| 2.0 5.0 |
| 3.0 6.0 |
└ ┘

and where B is:
┌ ┐
| 7.0 10.0 |
| 8.0 11.0 |
| 9.0 12.0 |
└ ┘

On output, matrix UTB is overwritten.

Note: This example corresponds to Example 4 of DGESVF on page 657.

Call Statement:
V LDV UB LDUB NB S X LDX M N TAU
| | | | | | | | | | |

CALL DGESVS(V , 3 , UB , 3 , 2 , S , X , 2 , 3 , 2 , TAU)

Input:
┌ ┐
| 0.922 -0.386 |

V = | -0.386 -0.922 |
| . . |
└ ┘

┌ ┐
| -1.310 -2.321 |

UB = | -13.867 -18.963 |
| . . |
└ ┘

S = (0.773, 9.508)
TAU = 0.5171D-14

Output:
┌ ┐

X = | -1.000 -2.000 |
| 2.000 3.000 |
└ ┘

SGESVS and DGESVS

662 ESSL Version 3 Release 3 Guide and Reference

DGEQRF—General Matrix QR Factorization
This subroutine computes the QR factorization of a real general matrix

A = QR

where:
Q is an orthogonal matrix.
For m ≥ n, R is an upper triangular matrix.
For m < n, R is an upper trapezoidal matrix.

Table 119. Data Types

A, τ, work Subroutine

Long-precision real DGEQRF

Syntax

Fortran CALL DGEQRF(m, n, a, lda, tau, work, lwork, info)

C and C++ dgeqrf (m, n, a, lda, tau, work, lwork, info);

PL/I CALL DGEQRF (m, n, a, lda, tau, work, lwork, info);

On Entry:

m is the number of rows in matrix A used in the computation.

Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix A used in the computation.

Specified as: a fullword integer; n ≥ 0.

a is the m by n general matrix A whose QR factorization is to be computed.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 119.

lda is the leading dimension of the array specified for a.

Specified as: a fullword integer; lda > 0 and lda ≥ m.

tau See On Return.

work has the following meaning:

If lwork = 0, work is ignored.

If lwork ≠ 0, work is the work area used by this subroutine, where:
v If lwork ≠ −1, its size is (at least) of length lwork.
v If lwork = −1, its size is (at least) of length 1.

Specified as: an area of storage containing numbers of data type indicated
in Table 119.

lwork is the number of elements in array WORK.

Specified as: a fullword integer; where:
v If lwork = 0, DGEQRF dynamically allocates the work area used by this

subroutine. The work area is deallocated before control is returned to the
calling program. This option is an extension to the LAPACK standard.

DGEQRF

Chapter 10. Linear Algebraic Equations 663

v If lwork = −1, DGEQRF performs a work area query and returns the
optimal size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise, it must be:
lwork ≥ max(1, n)

info See On Return.

On Return:

a is the updated general matrix A, containing the results of the computation.

The elements on and above the diagonal of the array contain the min(m,
n) × n upper trapezoidal matrix R (R is upper triangular if m ≥ n). The
elements below the diagonal with τ represent the orthogonal matrix Q as a
product of min(m, n) elementary reflectors.

Returned as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 119 on page 663.

tau is the vector τ, of length min(m, n), containing the scalar factors of the
elementary reflectors.

Returned as: a one-dimensional array of (at least) length min(m, n),
containing numbers of the data type indicated in Table 119 on page 663.

work is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ −1, its size is (at least) of length lwork.

If lwork = −1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = −1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 119 on page 663.
Except for work1, the contents of work are overwritten on return.

info indicates that a successful computation occurred.

Returned as: a fullword integer; info = 0.

Notes and Coding Rules
1. In your C program, argument info must be passed by reference.
2. The vectors and matrices used in the computation must have no common

elements; otherwise, results are unpredictable.
3. For best perfomance specify lwork = 0.

Function
Compute the QR factorization of a real general matrix A

A = QR

where:
The orthogonal matrix Q is represented as a product of elementary reflectors:

Q = H1 H2 ... Hk

where:
k = min(m, n)
For each i: Hi = I−τvvT

τ is a real scalar, stored on return in τi

v is a real vector with v1:i−1 = 0, vi = 1.

DGEQRF

664 ESSL Version 3 Release 3 Guide and Reference

vi+1:m is stored on return in Ai+1:m, i

I is the identity matrix
For m ≥ n, R is an upper triangular matrix.
For m < n, R is an upper trapezoidal matrix.

If m = 0 or n = 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See references [52,8,65,50,51].

Error Conditions

Resource Errors: lwork = 0 and unable to allocate work space.

Computational Errors: None.

Input-Argument Errors:
1. m < 0
2. n < 0
3. lda ≤ 0
4. lda < m
5. lwork ≠ 0, lwork ≠ −1, and lwork < max(1, n)

Example 1
This example shows the QR factorization of a general matrix A of size 6 × 2.

Note: Because lwork = 0, DGEQRF dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
M N A LDA TAU WORK LWORK INFO
| | | | | | | |

CALL DGEQRF (6 , 2 , A , 6 , TAU , WORK , 0 , INFO)

General matrix A of size 6 × 2:
┌ ┐
| .000000 2.000000 |
| 2.000000 -1.000000 |

A = | 2.000000 -1.000000 |
| .000000 1.500000 |
| 2.000000 -1.000000 |
| 2.000000 -1.000000 |
└ ┘

Output:

General matrix A of size 6 × 2.
┌ ┐
| -4.000000 2.000000 |
| .500000 2.500000 |

A = | .500000 .285714 |
| .000000 -.428571 |
| .500000 .285714 |
| .500000 .285714 |
└ ┘

Vector τ of length 2:

DGEQRF

Chapter 10. Linear Algebraic Equations 665

┌ ┐
TAU = | 1.000000 1.400000 |

└ ┘
INFO = 0

Example 2
This example shows the QR factorization of a general matrix A of size 4x5.

Note: Because lwork = 0, DGEQRF dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
M N A LDA TAU WORK LWORK INFO
| | | | | | | |

CALL DGEQRF (4 , 5 , A , 4 , TAU , WORK , 0 , INFO)

General matrix A of size 4 × 5:
┌ ┐
| .500000 .500000 1.207107 .000000 1.707107 |

A = | .500000 -1.500000 -.500000 2.414214 .707107 |
| .500000 .500000 .207107 .000000 .292893 |
| .500000 -1.500000 -.500000 -.414214 -.707107 |
└ ┘

Output:

General matrix A of size 4 × 5:
┌ ┐
| -1.000000 1.000000 -.207107 -1.000000 -1.000000 |

A = | .333333 2.000000 1.207107 -1.000000 1.000000 |
| .333333 -.200000 .707107 .000000 1.000000 |
| .333333 .400000 .071068 -2.000000 -1.000000 |
└ ┘

Vector τ of length 4:
┌ ┐

TAU = | 1.500000 1.666667 1.989949 .000000 |
└ ┘

INFO = 0

DGEQRF

666 ESSL Version 3 Release 3 Guide and Reference

DGELS—Linear Least Squares Solution for a General Matrix
This subroutine computes the linear least squares solution for a general matrix A
or its transpose using a QR factorization without column pivoting, where A is
assumed to have full rank.

The following options are provided:
v If transa = 'N' and m ≥ n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize \B − AX\

v If transa = 'N' and m < n: find the minimum norm solution of an
underdetermined system; that is, the problem is: AX = B

v If transa = 'T' and m ≥ n: find the minimum norm solution of an
underdetermined system; that is, the problem is ATX = B

v If transa = 'T' and m < n: find the least squares solution of an overdetermined
system; that is, solve the least squares problem: minimize \B − ATX\

Table 120. Data Types

A, B, work Subroutine

Long-precision real DGELS

Syntax

Fortran CALL DGELS (transa, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

C and C++ dgels (transa,m, n, nrhs, a, lda, b ,ldb, work, lwork, info);

PL/I CALL DGELS (transa,m, n, nrhs, a, lda, b ,ldb, work, lwork, info);

On Entry:

transa indicate the form of matrix A to use in the computation, where:

If transa = ’N’, matrix A is used.

If transa = ’T’, matrix AT is used.

Specified as: a single character; transa = ’N’ or ’T’.

m is the number of rows in matrix A used in the computation.

Specified as: a fullword integer; m ≥ 0.

n is the number of columns in matrix A used in the computation.

Specified as: a fullword integer; n ≥ 0.

nrhs is the number of right-hand sides; that is, the number of columns in matrix
B used in the computation.

Specified as: a fullword integer; nrhs ≥ 0.

a is the m by n coefficient matrix A.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: an lda by (at least) n array, containing numbers of the data
type indicated in Table 120.

lda is the leading dimension of the array specified for a.

DGELS

Chapter 10. Linear Algebraic Equations 667

|
|

|
|
|

|

|
|

|
|

|
|

|
|

||

||

||
|

|

|||

||

||
|

|

||

|

|

|

||

|

||

|

||
|

|

||

|
|

|
|

||

Specified as: a fullword integer; lda > 0 and lda ≥ m.

b is the matrix B of right-hand side vectors.

If transa = ’N’, matrix B has m rows and nrhs columns.

If transa = ’T’, matrix B has n rows and nrhs columns.

Specified as: the ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 120 on page 667.

ldb is the leading dimension of the array specified for b.

Specified as: a fullword integer; ldb > 0 and ldb ≥ max(m,n).

work has the following meaning:

If lwork = 0, work is ignored.

If lwork ≠ 0, work is the work area used by this subroutine, where:
v If lwork ≠ −1, its size is (at least) of length lwork.
v If lwork = −1, its size is (at least) of length 1.

Specified as: an area of storage containing numbers of data type indicated
in Table 120 on page 667.

lwork is the number of elements in array work.

Specified as: a fullword integer; where:
v If lwork = 0, DGELS dynamically allocates the work area used by this

subroutine. The work area is deallocated before control is returned to the
calling program. This option is an extension to the LAPACK standard.

v If lwork = −1, DGELS performs a work area query and returns the
optimal size of work in work1. No computation is performed, and the
subroutine returns after error checking is complete.

v Otherwise, it must be:
lwork ≥ max(1, mn + max(mn, nrhs))
where mn = min(m, n).

info See “On Return”.

On Return:

a is the updated general matrix A. The matrix A is overwritten; that is, the
original input is not preserved.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 120 on page 667.

b is the updated general matrix B, containing the results of the computation. B is
overwritten by the solution vectors, stored columnwise:
v If transa = ’N’ and m ≥ n, rows 1 to n of B contain the least squares

solution vectors;the residual sum of squares for the solution in each column
is given by the sum of squares of elements n+1 to m in that column.

v If transa = ’N’ and m < n, rows 1 to n of B contain the minimum norm
solution vectors.

v If transa = ’T’ and m ≥ n, rows 1 to m of B contain the minimum norm
solution vectors.

v If transa = ’T’ and m < n, rows 1 to m of B contain the least squares
solution vectors; the residual sum of squares for the solution in each column
is given by the sum of squares of elements m+1 to n in that column.

DGELS

668 ESSL Version 3 Release 3 Guide and Reference

|

||

|

|

|
|

||

|

||

|

|

|

|

|
|

||

|

|
|
|

|
|
|

|

|

|

||

|

||
|

|
|

||
|

|
|
|

|
|

|
|

|
|
|

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 120 on page 667.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ −1, its size is (at least) of length lwork.

If lwork = −1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = −1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 120 on page 667. Except
for work1, the contents of work are overwritten on return.

info
indicates that a successful computation occurred.

Returned as: a fullword integer; info = 0.

Notes and Coding Rules
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the transa argument.
3. The vectors and matrices used in the computation must have no common

elements; otherwise, results are unpredictable.
4. For best perfomance specify lwork = 0.

Function
This subroutine computes the linear least squares solution for a general matrix A
or its transpose using a QR factorization without column pivoting, where A is
assumed to have full rank.

The following options are provided:
v If transa = 'N' and m ≥ n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize \B − AX\

v If transa = 'N' and m < n: find the minimum norm solution of an
underdetermined system; that is, the problem is: AX = B

v If transa = 'T' and m ≥ n: find the minimum norm solution of an
underdetermined system; that is, the problem is ATX = B

v If transa = 'T' and m < n: find the least squares solution of an overdetermined
system; that is, solve the least squares problem: minimize \B − ATX\

If (m = 0 and n = 0) or nrhs = 0, then no computation is performed and the
subroutine returns after doing some parameter checking.

See reference [62].

Error Conditions

Resource Errors: lwork = 0 and unable to allocate work space.

Computational Errors: None.

Input-Argument Errors:

1. transa ≠ ’N’ or ’T’
2. m < 0
3. n < 0

DGELS

Chapter 10. Linear Algebraic Equations 669

|
|

|
|

|

|

|

|
|
|

|
|

|

|
|

|

|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

4. nrhs < 0
5. lda < m

6. lda ≤ 0
7. ldb < max(m, n)
8. ldb ≤ 0
9. lwork ≠ 0, lwork ≠ −1, and lwork < max(1, mn + max(mn, nrhs)) where

mn = min(m, n)

Example 1
This example finds the least squares solution of an overdetermined system; that is,
it solves the least squares problem: minimize \B−AX\. Matrix A is size 6 × 2 and
matrix B is size 6 × 3.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by this
subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS ('N' , 6 , 2 , 3 , A , 6 , B, 6, WORK, 0, INFO)

General matrix A of size 6 × 2:
┌ ┐
| .000000000 2.000000000 |
| 2.000000000 -1.000000000 |

A = | 2.000000000 -1.000000000 |
| .000000000 1.500000000 |
| 2.000000000 -1.000000000 |
| 2.000000000 -1.000000000 |
└ ┘

General matrix B of size 6 × 3:
┌ ┐
| 1.000000000 4.000000000 1.000000000 |
| 1.000000000 1.000000000 2.000000000 |

B = | 1.000000000 -1.000000000 1.000000000 |
| 1.000000000 3.000000000 2.000000000 |
| 1.000000000 1.000000000 1.000000000 |
| 1.000000000 -1.000000000 1.000000000 |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| .780000000 1.000000000 1.025000000 |
| .560000000 2.000000000 .800000000 |

B = | .042857143 -1.285714286 -.250000000 |
| .185714286 .428571429 1.250000000 |
| .042857143 .714285714 -.250000000 |
| .042857143 -1.285714286 -.250000000 |
└ ┘

INFO = 0

DGELS

670 ESSL Version 3 Release 3 Guide and Reference

|

|

|

|

|

|
|

|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

|

Example 2
This example finds the minimum norm solution of an underdetermined system
ATX = B. Matrix A is size 6 × 2. On input, matrix B is size 2 × 1, stored in array
b with leading dimension 6.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by this
subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS ('T' , 6 , 2 , 1 , A , 6 , B, 6, WORK, 0, INFO)

General matrix A of size 6 × 2:
┌ ┐
| .000000000 2.000000000 |
| 2.000000000 -1.000000000 |

A = | 2.000000000 -1.000000000 |
| .000000000 1.500000000 |
| 2.000000000 -1.000000000 |
| 2.000000000 -1.000000000 |
└ ┘

General matrix B of size 2 × 1:
┌ ┐

B = | 1.000000000 |
| 1.000000000 |
| . |
| . |
| . |
| . |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| .480000000 |
| .125000000 |

B = | .125000000 |
| .360000000 |
| .125000000 |
| .125000000 |
└ ┘

INFO = 0

Example 3
This example finds the minimum norm solution of an underdetermined system
AX = B. Matrix A is size 3 × 4. On input, matrix B is size 3 × 4, stored in array b
with leading dimension 4.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by this
subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS ('N' , 3 , 4 , 4 , A , 3 , B, 4, WORK, 0, INFO)

DGELS

Chapter 10. Linear Algebraic Equations 671

|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

General matrix A of size 3 × 4:
┌ ┐
| .500000000 .500000000 .500000000 .500000000 |

A = | .500000000 -1.500000000 .500000000 -1.500000000 |
| 1.000000000 1.000000000 .000000000 1.000000000 |
└ ┘

General matrix B of size 3 × 4:
┌ ┐
| 1.000000000 1.000000000 1.000000000 .000000000 |

B = | 1.000000000 -1.000000000 2.500000000 1.000000000 |
| 1.000000000 1.000000000 3.000000000 .000000000 |
| |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| 1.000000000 .000000000 3.500000000 .500000000 |

B = | .000000000 .500000000 -.250000000 -.250000000 |
| 1.000000000 1.000000000 -1.000000000 .000000000 |
| .000000000 .500000000 -.250000000 -.250000000 |
└ ┘

INFO = 0

Example 4
This example finds the least squares solution of an overdetermined system; that is,
it solves the least squares problem: minimize \B−ATX\. Matrix A is size 3 × 4. On
input, matrix B is size 4 × 4.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by this
subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS ('T' , 3 , 4 , 4 , A , 3 , B , 4 , WORK , 0 , INFO)

General matrix A of size 3 × 4:
┌ ┐
| .500000000 .500000000 .500000000 .500000000 |

A = | .500000000 -1.500000000 .500000000 -1.500000000 |
| 1.207106781 -.500000000 .207106781 -.500000000 |
└ ┘

General matrix B of size 4 × 4:
┌ ┐
| 1.000000000 1.000000000 1.000000000 .000000000 |

B = | 1.000000000 -1.000000000 2.000000000 2.414213562 |
| 1.000000000 1.000000000 3.000000000 .000000000 |
| 1.000000000 -1.000000000 4.000000000 -.414213562 |
└ ┘

Output:

General matrix A is overwritten.

DGELS

672 ESSL Version 3 Release 3 Guide and Reference

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|

Solution matrix X overwrites B:
┌ ┐
| 2.000000000 1.000000000 6.121320344 .500000000 |

B = | .000000000 1.000000000 .707106781 -.500000000 |
| .000000000 .000000000 -2.000000000 .000000000 |
| .000000000 .000000000 1.414213562 -2.000000000 |
└ ┘

INFO = 0

DGELS

Chapter 10. Linear Algebraic Equations 673

|

|
|
|
|
|
|

|

|

SGELLS and DGELLS—Linear Least Squares Solution for a General
Matrix with Column Pivoting

These subroutines compute the minimal norm linear least squares solution of
AXïB, using a QR decomposition with column pivoting.

Table 121. Data Types

A, B, X, rn, τ, aux Subroutine

Short-precision real SGELLS

Long-precision real DGELLS

Syntax

Fortran CALL SGELLS | DGELLS (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux)

C and C++ sgells | dgells (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux);

PL/I CALL SGELLS | DGELLS (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0, X is computed.

If iopt = 1, X and the Euclidean Norm of the residual vectors are
computed.

Specified as: a fullword integer; iopt = 0 or 1.

a is the m by n coefficient matrix A. On output, A is overwritten; that is, the
original input is not preserved. Specified as: an lda by (at least) n array,
containing numbers of the data type indicated in Table 121.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ m.

b is the m by nb matrix B, containing the right-hand sides of the linear
systems. The nb column vectors of B contain right-hand sides for nb
distinct linear least squares problems. On output, B is overwritten; that is,
the original input is not preserved.

Specified as: an ldb by (at least) nb array, containing numbers of the data
type indicated in Table 121.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ m.

x See “On Return” on page 675.

ldx is the leading dimension of the array specified for x. Specified as: a
fullword integer; ldx > 0 and ldx ≥ n.

rn See “On Return” on page 675.

tau is the tolerance τ, used to determine the subset of the columns of A used
in the solution. Specified as: a number of the data type indicated in
Table 121; τ ≥ 0. For more information on how to select a value for τ, see
“Notes” on page 675.

m is the number of rows in matrices A and B. Specified as: a fullword
integer; m ≥ 0.

SGELLS and DGELLS

674 ESSL Version 3 Release 3 Guide and Reference

n is the number of columns in matrix A and the number of rows in matrix X.
Specified as: a fullword integer; n ≥ 0.

nb is the number of columns in matrices B and X and the number of elements
in vector rn. Specified as: a fullword integer; nb > 0.

k See “On Return”.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 121 on page 674. On output, the contents of aux are
overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGELLS and DGELLS
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, It must have the following values:

naux ≥ 3n+max(n, nb) for SGELLS

naux ≥ [ceiling(2.5n)+max(n, nb)] for DGELLS

On Return:

x is the solution matrix X, with n rows and nb columns, where:

If k ≠ 0, the nb column vectors of X contain minimal norm least squares
solutions for nb distinct linear least squares problems. The elements in each
solution vector correspond to the original columns of A.

If k = 0, the nb column vectors of X are set to 0.

Returned as: an ldx by (at least) nb array, containing numbers of the data
type indicated in Table 121 on page 674.

rn is the vector rn of length nb, where:

If iopt = 0 or k = 0, rn is not used in the computation.

If iopt = 1, rni is the Euclidean Norm of the residual vector for the linear
least squares problem defined by the i-th column vector of B.

Returned as: a one-dimensional array of (at least) nb, containing numbers
of the data type indicated in Table 121 on page 674.

k is the number of columns of matrix A used in the solution. Returned as: a
fullword integer; k = (the number of diagonal elements of matrix R
exceeding τ in magnitude).

Notes
1. In your C program, argument k must be passed by reference.
2. If ldb ≥ max(m, n), matrix X and matrix B can be the same; otherwise, matrix X

and matrix B can have no common elements, or the results are unpredictable.
3. The following items must have no common elements; otherwise, results are

unpredictable:
v Matrices A and X, vector rn, and the data area specified for aux

SGELLS and DGELLS

Chapter 10. Linear Algebraic Equations 675

v Matrices A and B, vector rn, and the data area specified for aux.
4. If the relative uncertainty in the matrix B is ρ, then:

τ ≥ ρ\A\F

See references [44], [62], and [78] for additional guidance on determining
suitable values for τ.

5. When you specify iopt = 0, you must also specify a dummy argument for rn.
For more details, see “Example 1” on page 677.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The minimal norm linear least squares solution of AXïB is computed using a QR
decomposition with column pivoting, where:

A is an m by n real general matrix.
B is an m by nb real general matrix.
X is an n by nb real general matrix.

Optionally, the Euclidean Norms of the residual vectors can be computed.
Following are the steps involved in finding the minimal norm linear least squares
solution of AXïB. A is decomposed, using Householder transformations and
column pivoting, into the following form:

AP = QR

where:
P is a permutation matrix.
Q is an orthogonal matrix.
R is an upper triangular matrix.

k is the first index, where:
|rk+1,k+1| ≤ τ

If k = n, the minimal norm linear least squares solution is obtained by solving
RX = QTB and reordering X to correspond to the original columns of A.

If k < n, R has the following form:

To find the minimal norm linear least squares solution, it is necessary to zero the
submatrix R12 using Householder transformations. See references [44], [62], and
[78]. If m or n is equal to 0, no computation is performed. These algorithms have a
tendency to generate underflows that may hurt overall performance. The system
default is to mask underflow, which improves the performance of these
subroutines.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

SGELLS and DGELLS

676 ESSL Version 3 Release 3 Guide and Reference

Input-Argument Errors:
1. iopt ≠ 0 or 1
2. lda ≤ 0
3. m > lda
4. ldb ≤ 0
5. m > ldb
6. ldx ≤ 0
7. n > ldx
8. m < 0
9. n < 0

10. nb ≤ 0
11. τ < 0
12. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example solves the underdetermined system AXïB. On output, A and B are
overwritten. DUMMY is used as a placeholder for argument rn, which is not used in
the computation.

Call Statement and Input:

Output:
┌ ┐
| -0.600 |

X = | -1.200 |
| 2.000 |
└ ┘

K = 2

Example 2
This example solves the overdetermined system AXïB. On output, A and B are
overwritten. DUMMY is used as a placeholder for argument rn, which is not used in
the computation.

IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
| | | | | | | | | | | | | | |

CALL DGELLS(0 , A , 2 , B , 2 , X , 3 , DUMMY , TAU , 2 , 3 , 1 , K , AUX , 11)

┌ ┐
A = | 1.0 2.0 2.0 |

| 2.0 4.0 5.0 |
└ ┘

┌ ┐
B = | 1.0 |

| 4.0 |
└ ┘

TAU = 0.0

SGELLS and DGELLS

Chapter 10. Linear Algebraic Equations 677

Call Statement and Input:

Output:
┌ ┐

X = | -1.000 -2.000 |
| 2.000 3.000 |
└ ┘

K = 2

Example 3
This example solves the overdetermined system AXïB and computes the Euclidean
Norms of the residual vectors. On output, A and B are overwritten.

Call Statement and Input:

Output:
┌ ┐

X = | 0.543 -1.360 |
| 1.785 -2.699 |
└ ┘

┌ ┐
RN = | 0.196 |

| 0.275 |
└ ┘

K = 2

IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
| | | | | | | | | | | | | | |

CALL DGELLS(0 , A , 3 , B , 3 , X , 2 , DUMMY , TAU , 3 , 2 , 2 , K , AUX , 7)

┌ ┐
| 1.0 4.0 |

A = | 2.0 5.0 |
| 3.0 6.0 |
└ ┘

┌ ┐
| 7.0 10.0 |

B = | 8.0 11.0 |
| 9.0 12.0 |
└ ┘

TAU = 0.0

IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
| | | | | | | | | | | | | | |

CALL DGELLS(1 , A , 3 , B , 3 , X , 2 , RN , TAU , 3 , 2 , 2 , K , AUX , 7)

┌ ┐
| 1.1 -4.3 |

A = | 2.0 -5.0 |
| 3.0 -6.0 |
└ ┘

┌ ┐
| -7.0 10.0 |

B = | -8.0 11.0 |
| -9.0 12.0 |
└ ┘

TAU = 0.0

SGELLS and DGELLS

678 ESSL Version 3 Release 3 Guide and Reference

Chapter 11. Eigensystem Analysis

The eigensystem analysis subroutines are described in this chapter.

Overview of the Eigensystem Analysis Subroutines
The eigensystem analysis subroutines provide solutions to the algebraic
eigensystem analysis problem Az = wz and the generalized eigensystem analysis
problem Az = wBz (Table 122). Many of the eigensystem analysis subroutines use
the algorithms presented in Linear Algebra by Wilkinson and Reinsch [99] or use
adaptations of EISPACK routines, as described in the EISPACK Guide Lecture Notes
in Computer Science in reference [87] or in the EISPACK Guide Extension Lecture
Notes in Computer Science in reference [58]. (EISPACK is available from the sources
listed in reference [49].)

Table 122. List of Eigensystem Analysis Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Eigenvalues and, Optionally, All or Selected Eigenvectors of a
General Matrix

SGEEV
CGEEV

DGEEV
ZGEEV

681

Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric
Matrix or a Complex Hermitian Matrix

SSPEV
CHPEV

DSPEV
ZHPEV

691

Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real
Symmetric Matrix or a Complex Hermitian Matrix

SSPSV
CHPSV

DSPSV
ZHPSV

699

Eigenvalues and, Optionally, the Eigenvectors of a Generalized
Real Eigensystem, Az=wBz, where A and B Are Real General
Matrices

SGEGV DGEGV 706

Eigenvalues and, Optionally, the Eigenvectors of a Generalized
Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric
and B Is Real Symmetric Positive Definite

SSYGV DSYGV 711

Performance and Accuracy Considerations
1. The accuracy of the resulting eigenvalues and eigenvectors varies between the

short- and long-precision versions of each subroutine. The degree of difference
depends on the size and conditioning of the matrix computation. Some of the
subroutines have examples illustrating this difference.

2. The short precision subroutines provide increased accuracy by accumulating
intermediate results in long precision. Occasionally, for performance reasons,
these intermediate results are stored.

3. If you want to compute 10% or fewer eigenvalues only, or you want to
compute 30% or fewer eigenvalues and eigenvectors, you get better
performance if you use _SPSV and _HPSV instead of _SPEV and _HPEV,
respectively. For all other uses, you should use _SPEV and _HPEV.

4. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 42.

© Copyright IBM Corp. 1997, 2001 679

Eigensystem Analysis Subroutines
This section contains the eigensystem analysis subroutine descriptions.

SGEEV, DGEEV, CGEEV, and ZGEEV

680 ESSL Version 3 Release 3 Guide and Reference

SGEEV, DGEEV, CGEEV, and ZGEEV—Eigenvalues and, Optionally, All
or Selected Eigenvectors of a General Matrix

SGEEV and DGEEV compute the eigenvalues and, optionally, all or selected
eigenvectors of real general matrix A. CGEEV and ZGEEV compute the
eigenvalues and, optionally, all or selected eigenvectors of complex general matrix
A. Eigenvalues are returned in complex vector w, and eigenvectors are returned in
complex matrix Z:

Az = wz

Table 123. Data Types

A w, Z aux Subroutine

Short-precision real Short-precision complex Short-precision real SGEEV

Long-precision real Long-precision complex Long-precision real DGEEV

Short-precision complex Short-precision complex Short-precision real CGEEV

Long-precision complex Long-precision complex Long-precision real ZGEEV

Syntax

Fortran CALL SGEEV | DGEEV | CGEEV | ZGEEV (iopt, a, lda, w, z, ldz, select, n, aux, naux)

C and C++ sgeev | dgeev | cgeev | zgeev (iopt, a, lda, w, z, ldz, select, n, aux, naux);

PL/I CALL SGEEV | DGEEV | CGEEV | ZGEEV (iopt, a, lda, w, z, ldz, select, n, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0, eigenvalues only are computed.

If iopt = 1, eigenvalues and eigenvectors are computed.

If iopt = 2, eigenvalues and eigenvectors corresponding to selected
eigenvalues are computed.

Specified as: a fullword integer; iopt = 0, 1, or 2.

a is the real or complex general matrix A of order n, whose eigenvalues and,
optionally, eigenvectors are computed. Specified as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 123. On
output, A is overwritten; that is, the original input is not preserved.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

w See “On Return” on page 682.

z See “On Return” on page 682.

ldz has the following meaning, where:

If iopt = 0, it is not used in the computation.

If iopt = 1 or 2, it is the leading dimension of the output array specified
for z.

Specified as: a fullword integer. It must have the following values, where:

If iopt = 0, ldz > 0.

If iopt = 1 or 2, ldz > 0 and ldz ≥ n.

SGEEV, DGEEV, CGEEV, and ZGEEV

Chapter 11. Eigensystem Analysis 681

select has the following meaning, where:

If iopt = 0 or 1, it is not used in the computation.

If iopt = 2, it is the logical vector select of length n whose true elements
indicate those eigenvalues whose corresponding eigenvectors are to be
computed.

Specified as: a one-dimensional array of (at least) length n, containing
logical data items. Element values can be true (.TRUE.) or false (.FALSE.).

n is the order of matrix A. Specified as: a fullword integer; n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 123 on page 681. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEEV, DGEEV, CGEEV, and
ZGEEV dynamically allocate the work area used by the subroutine. The
work area is deallocated before control is returned to the calling program.

Otherwise, it must have the following value, where:

For SGEEV and DGEEV:
If iopt = 0, naux ≥ n.
If iopt = 1, naux ≥ 2n.
If iopt = 2,

naux ≥ n2+4n.

For CGEEV and ZGEEV:
If iopt = 0, naux ≥ 2n.
If iopt = 1, naux ≥ 3n.
If iopt = 2, naux ≥ 2n2+5n.

On Return:

w is the vector w of length n, containing the eigenvalues of A. The
eigenvalues are unordered. For SGEEV and DGEEV, complex conjugate
pairs appear consecutively with the eigenvalue having the positive
imaginary part first.

Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 123 on page 681.

z has the following meaning, where:

If iopt = 0, it is not used in the computation.

If iopt = 1, it is the matrix Z of order n, containing the eigenvectors of
matrix A. The eigenvector in column i of matrix Z corresponds to the
eigenvalue wi.

If iopt = 2, it is the n by m matrix Z, containing the m eigenvectors of
matrix A, which correspond to the m selected eigenvalues in wi,

SGEEV, DGEEV, CGEEV, and ZGEEV

682 ESSL Version 3 Release 3 Guide and Reference

where m is the number of true elements in the logical vector select. The
eigenvector in column i of matrix Z corresponds to the i-th selected
eigenvalue. Any eigenvector that does not converge is set to 0.

Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 123 on page 681, where:

If iopt = 1, the array must be ldz by (at least) n.

If iopt = 2, the array must be ldz by (at least) m.

Notes
1. When you specify iopt = 0, you must also specify:
v A positive value for ldz
v A dummy argument for z (see “Example 1” on page 685)
v A dummy argument for select.

2. When you specify iopt = 1, you must also specify a dummy argument for
select.

3. The following items must have no common elements: matrix A, matrix Z,
vector w, vector select, and the data area specified for aux; otherwise, results
are unpredictable. See “Concepts” on page 53.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The next two sections describe the methods used to compute the eigenvectors and
eigenvalues for either a real general matrix or a complex general matrix. For more
information on these methods, see references [39], [43], [45], [63], [87], [97], and
[99]. If n is 0, no computation is performed. The results of the computations using
short- and long-precision data can vary in accuracy. See the examples for an
illustration of the difference in the results.

These algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Real General Matrix: The eigenvalues and, optionally, all or selected eigenvectors
of a real general matrix A are computed as follows.
v For iopt = 0, the eigenvalues are computed as follows:

1. Balance the real general matrix A.
2. Reduce the balanced matrix to a real upper Hessenberg matrix using

orthogonal similarity transformations.
3. Compute the eigenvalues of the real upper Hessenberg matrix using the QR

algorithm.
4. The eigenvalues are returned in vector w.

v For iopt = 1, the eigenvalues and eigenvectors are computed as follows:
1. Balance the real general matrix A.
2. Reduce the balanced matrix to a real upper Hessenberg matrix using

orthogonal similarity transformations.
3. Accumulate the orthogonal similarity transformations used in the reduction

of the real balanced matrix to upper Hessenberg form.
4. Compute the eigenvalues of the real upper Hessenberg matrix and the

eigenvectors of the corresponding real balanced matrix using the QR
algorithm.

5. Back transform the eigenvectors of the balanced matrix to the eigenvectors of
the original matrix.

SGEEV, DGEEV, CGEEV, and ZGEEV

Chapter 11. Eigensystem Analysis 683

6. The eigenvalues are returned in vector w, and the eigenvectors are returned
in matrix Z.

v For iopt = 2, the eigenvalues and selected eigenvectors are computed as follows:
1. Balance the real general matrix A.
2. Reduce the balanced matrix to a real upper Hessenberg matrix using

orthogonal similarity transformations.
3. Compute the eigenvalues of the real upper Hessenberg matrix using the QR

algorithm.
4. Compute the eigenvectors of the real upper Hessenberg matrix

corresponding to selected eigenvalues, indicated in the logical vector select,
using inverse iteration.

5. Back transform the eigenvectors of the real upper Hessenberg matrix to the
eigenvectors of the balanced matrix.

6. Back transform the eigenvectors of the balanced matrix to the eigenvectors of
the original matrix.

7. The eigenvalues are returned in vector w, and the eigenvectors are returned
in matrix Z.

Complex General Matrix: The eigenvalues and, optionally, all or selected
eigenvectors of a complex general matrix A are computed as follows.
v For iopt = 0, the eigenvalues are computed as follows:

1. Balance the complex general matrix A.
2. Reduce the complex balanced matrix to a complex upper Hessenberg matrix

using unitary similarity transformations.
3. Compute the eigenvalues of the complex upper Hessenberg matrix using a

QR algorithm with implicit shift.
4. The eigenvalues are returned in vector w.

v For iopt = 1, the eigenvalues and eigenvectors are computed as follows:
1. Balance the complex general matrix A.
2. Reduce the complex balanced matrix to a complex upper Hessenberg matrix

using unitary similarity transformations.
3. Accumulate the unitary similarity transformations used in the reduction of

the complex balanced matrix to complex upper Hessenberg form.
4. Compute the eigenvalues of the complex upper Hessenberg matrix and the

eigenvectors of the complex balanced matrix using a QR algorithm with
implicit shift.

5. Back transform the eigenvectors of the complex balanced matrix to the
eigenvectors of the original matrix.

6. The eigenvalues are returned in vector w, and the eigenvectors are returned
in matrix Z.

v For iopt = 2, the eigenvalues and selected eigenvectors are computed as follows:
1. Balance the complex general matrix A.
2. Reduce the complex balanced matrix to a complex upper Hessenberg matrix

using unitary similarity transformations.
3. Compute the eigenvalues of the complex upper Hessenberg matrix using a

QR algorithm with implicit shift.
4. Compute the eigenvectors of the complex upper Hessenberg matrix

corresponding to selected eigenvalues, indicated in the logical vector select,
using inverse iteration.

5. Back transform the eigenvectors of the complex upper Hessenberg matrix to
the eigenvectors of the complex balanced matrix.

6. Back transform the eigenvectors of the complex balanced matrix to the
eigenvectors of the original matrix.

7. The eigenvalues are returned in vector w, and the eigenvectors are returned
in matrix Z.

SGEEV, DGEEV, CGEEV, and ZGEEV

684 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors:
1. Eigenvalue (i) failed to converge after (xxx) iterations.
v The eigenvalues (wj, j = n, n−1, ..., i+1) are correct.
v If iopt = 1, then z is modified, but no eigenvectors are correct.
v a is modified.
v The return code is set to 1.
v i and xxx can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2101 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this
error occurs. See “What Can You Do about ESSL Computational Errors?” on
page 45.

2. Eigenvector (yyy) failed to converge after (zzz) iterations. (The computational
error message may occur multiple times with processing continuing after each
error, because the number of allowable errors for error code 2102 is set to be
unlimited in the ESSL error option table.)
v All eigenvalues are correct.
v The eigenvector that failed to converge is set to 0.
v Any selected eigenvectors for which this message has not been issued are

correct.
v a is modified.
v The return code is set to 2.
v yyy and zzz for the last eigenvector that failed to converge can be determined

at run time by use of the ESSL error-handling facilities. To obtain this
information, you must use ERRSET to change the number of allowable errors
for error 2199 in the ESSL error option table. See “What Can You Do about
ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. iopt ≠ 0, 1, or 2
2. n < 0
3. lda ≤ 0
4. n > lda
5. ldz ≤ 0 and iopt ≠ 0
6. n > ldz and iopt ≠ 0
7. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 3 is returned if error 2015 is recoverable.

Example 1
This example shows how to find the eigenvalues only of a real short-precision
general matrix A of order 4, where:
v NAUX is equal to N.
v AUX contains N elements.
v LDZ is set to avoid an error condition.
v DUMMY1 and DUMMY2 are used as placeholders for arguments z and select, which

are not used in the computation.
v On output, A has been overwritten.

Note: This matrix is used in Example 5.5 in referenced text [63].

Call Statement and Input:

SGEEV, DGEEV, CGEEV, and ZGEEV

Chapter 11. Eigensystem Analysis 685

IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL SGEEV(0 , A , 4 , W , DUMMY1 , 1 , DUMMY2 , 4 , AUX , 4)

┌ ┐
| -2.0 2.0 2.0 2.0 |

A = | -3.0 3.0 2.0 2.0 |
| -2.0 0.0 4.0 2.0 |
| -1.0 0.0 0.0 5.0 |
└ ┘

Output:
┌ ┐
| (0.999999, 0.000000) |

W = | (2.000001, 0.000000) |
| (2.999996, 0.000000) |
| (3.999999, 0.000000) |
└ ┘

Example 2
This example shows how to find the eigenvalues and eigenvectors of a real
short-precision general matrix A of order 3, where:
v NAUX is equal to 2N.
v AUX contains 2N elements.
v DUMMY is used as a placeholder for argument select, which is not used in the

computation.
v On output, A has been overwritten.

Note: This matrix is used in Example 5.1 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL SGEEV(1 , A , 3 , W , Z , 3 , DUMMY , 3 , AUX , 6)

┌ ┐
| 33.0 16.0 72.0 |

A = | -24.0 -10.0 -57.0 |
| -8.0 -4.0 -17.0 |
└ ┘

Output:
┌ ┐
| (3.000022, 0.000000) |

W = | (1.000019, 0.000000) |
| (1.999961, 0.000000) |
└ ┘

┌ ┐
| (2.498781, 0.000000) (76.837608, 0.000000) (79.999451, 0.000000) |

Z = | (-1.874081, 0.000000) (-61.470169, 0.000000) (-64.999649, 0.000000) |
| (-0.624695, 0.000000) (-20.489990, 0.000000) (-19.999886, 0.000000) |
└ ┘

Example 3
This example shows how to find the eigenvalues and eigenvectors of a real
short-precision general matrix A of order 3, where:
v NAUX is equal to 2N.
v AUX contains 2N elements.
v DUMMY is used as a placeholder for argument select, which is not used in the

computation.
v On output, A has been overwritten.

SGEEV, DGEEV, CGEEV, and ZGEEV

686 ESSL Version 3 Release 3 Guide and Reference

Note: This matrix is used in Example 5.4 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL SGEEV(1 , A , 3 , W , Z , 3 , DUMMY , 3 , AUX , 6)

┌ ┐
| 8.0 -1.0 -5.0 |

A = | -4.0 4.0 -2.0 |
| 18.0 -5.0 -7.0 |
└ ┘

Output:
┌ ┐
| (1.999999, 3.999998) |

W = | (1.999999, -3.999998) |
| (0.999997, 0.000000) |
└ ┘

┌ ┐
| (0.044710, 0.410578) (0.044710, -0.410578) (1.732048, 0.000000) |

Z = | (-0.365868, 0.455287) (-0.365868, -0.455287) (3.464096, 0.000000) |
| (0.455287, 0.365868) (0.455287, -0.365868) (1.732049, 0.000000) |
└ ┘

Example 4
This example shows how to find the eigenvalues and selected eigenvectors of a
real short-precision general matrix A of order 4, where:
v NAUX is equal to N2+4N.
v AUX contains NAUX elements.
v The first, third, and fourth eigenvectors are selected and appear in the first,

second, and third columns of matrix Z, respectively.
v On output, A has been overwritten.

Note: This matrix is used in Example 5.5 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL SGEEV(2 , A , 4 , W , Z , 4 , SELECT , 4 , AUX , 32)

┌ ┐
| -2.0 2.0 2.0 2.0 |

A = | -3.0 3.0 2.0 2.0 |
| -2.0 0.0 4.0 2.0 |
| -1.0 0.0 0.0 5.0 |
└ ┘

┌ ┐
| .TRUE. |

SELECT = | .FALSE. |
| .TRUE. |
| .TRUE. |
└ ┘

Output:
┌ ┐
| (0.999999, 0.000000) |

W = | (2.000001, 0.000000) |
| (2.999996, 0.000000) |
| (3.999999, 0.000000) |
└ ┘

SGEEV, DGEEV, CGEEV, and ZGEEV

Chapter 11. Eigensystem Analysis 687

Example 5
This example shows how to find the eigenvalues and selected eigenvectors of a
real short-precision general matrix A of order 3, where:
v NAUX is equal to N2+4N.
v AUX contains NAUX elements.
v The first and second eigenvectors are selected and appear in the first and second

columns of matrix Z, respectively.
v On output, A has been overwritten.

Note: This matrix is used in Example 5.4 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL SGEEV(2 , A , 3 , W , Z , 3 , SELECT , 3 , AUX , 21)

┌ ┐
| 8.0 -1.0 -5.0 |

A = | -4.0 4.0 -2.0 |
| 18.0 -5.0 -7.0 |
└ ┘

┌ ┐
| .TRUE. |

SELECT = | .TRUE. |
| .FALSE. |
└ ┘

Output:
┌ ┐
| (1.999999, 3.999998) |

W = | (1.999999, -3.999998) |
| (0.999997, 0.000000) |
└ ┘

┌ ┐
| (0.500000, 0.000000) (0.500000, 0.000000) |

Z = | (0.500000, 0.500000) (0.500000, -0.500000) |
| (0.500000, -0.500000) (0.500000, 0.500000) |
└ ┘

Example 6
This example shows how the results of Example 5 would differ if matrix A was a
real long-precision general matrix. On output, A has been overwritten.

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL DGEEV(2 , A , 3 , W , Z , 3 , SELECT , 3 , AUX , 21)

Output:

┌ ┐
| (1.000000, 0.000000) (-0.674014, 0.000000) (-0.474306, 0.000000) |

Z = | (0.750000, 0.000000) (-0.674014, 0.000000) (-0.474306, 0.000000) |
| (0.500000, 0.000000) (-0.674013, 0.000000) (-0.474306, 0.000000) |
| (0.250000, 0.000000) (-0.337006, 0.000000) (-0.474305, 0.000000) |
└ ┘

SGEEV, DGEEV, CGEEV, and ZGEEV

688 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| (2.000000, 4.000000) |

W = | (2.000000, -4.000000) |
| (1.000000, 0.000000) |
└ ┘

┌ ┐
| (0.500000, 0.000000) (0.500000, 0.000000) |

Z = | (0.500000, 0.500000) (0.500000, -0.500000) |
| (0.500000, -0.500000) (0.500000, 0.500000) |
└ ┘

Example 7
This example shows how to find the eigenvalues only of a complex long-precision
general matrix A of order 3, where:
v NAUX is equal to 2N.
v AUX contains 2N elements.
v LDZ is set to avoid an error condition.
v DUMMY1 and DUMMY2 are used as placeholders for arguments z and select, which

are not used in the computation.
v On output, A has been overwritten.

Note: This matrix is used in Example 6.4 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL ZGEEV(0 , A , 3 , W , DUMMY1 , 1 , DUMMY2 , 3 , AUX , 6)

┌ ┐
| (1.0, 2.0) (3.0, 4.0) (21.0, 22.0) |

A = | (43.0, 44.0) (13.0, 14.0) (15.0, 16.0) |
| (5.0, 6.0) (7.0, 8.0) (25.0, 26.0) |
└ ┘

Output:
┌ ┐
| (39.776655, 42.995668) |

W = | (-7.477530, 6.880321) |
| (6.700876, -7.875989) |
└ ┘

Example 8
This example shows how to find the eigenvalues and eigenvectors of a complex
long-precision general matrix A of order 4, where:
v NAUX is equal to 3N.
v AUX contains 3N elements.
v DUMMY is used as a placeholder for argument select, which is not used in the

computation.
v On output, A has been overwritten.

Note: This matrix is used in Example 6.5 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL ZGEEV(1 , A , 4 , W , Z , 4 , DUMMY , 4 , AUX , 12)

┌ ┐
| (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |

A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |

SGEEV, DGEEV, CGEEV, and ZGEEV

Chapter 11. Eigensystem Analysis 689

| (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
| (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
└ ┘

Output:
┌ ┐
| (4.000000, 8.000000) |

W = | (2.000000, 6.000000) |
| (3.000000, 7.000000) |
| (1.000000, 5.000000) |
└ ┘

Example 9
This example shows how to find the eigenvalues and selected eigenvectors of a
complex long-precision general matrix A of order 4, where:
v NAUX is equal to 2N2+5N.
v AUX contains NAUX elements.
v The first, third, and fourth eigenvectors are selected and appear in the first,

second, and third columns of matrix Z, respectively.
v On output, A has been overwritten.

Note: This matrix is used in Example 6.5 in referenced text [63].

Call Statement and Input:
IOPT A LDA W Z LDZ SELECT N AUX NAUX
| | | | | | | | | |

CALL ZGEEV(2 , A , 4 , W , Z , 4 , SELECT , 4 , AUX , 52)

┌ ┐
| (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |

A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
| (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
| (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
└ ┘

┌ ┐
| .TRUE. |

SELECT = | .FALSE. |
| .TRUE. |
| .TRUE. |
└ ┘

Output:
┌ ┐
| (4.000000, 8.000000) |

W = | (2.000000, 6.000000) |
| (3.000000, 7.000000) |
| (1.000000, 5.000000) |
└ ┘

┌ ┐
| (-0.748331, 0.000000) (-0.935414, 0.000000) (-1.247219, 0.000000) |

Z = | (-0.748331, 0.000000) (-0.935414, 0.000000) (-0.623610, 0.000000) |
| (-0.748331, 0.000000) (0.000000, 0.000000) (-0.623610, 0.000000) |
| (0.000000, 0.000000) (-0.935414, 0.000000) (-0.623610, 0.000000) |
└ ┘

┌ ┐
| (0.625817, 0.229776) (0.333009, -0.729358) (-1.535458, 1.519551) (0.000000, 3.464102) |

Z = | (0.625817, 0.229776) (0.666017, -1.458715) (-1.535458, 1.519551) (0.000000, 1.732051) |
| (0.625817, 0.229776) (0.333009, -0.729358) (0.000000, 0.000000) (0.000000, 1.732051) |
| (0.000000, 0.000000) (0.333009, -0.729358) (-1.535458, 1.519551) (0.000000, 1.732051) |
└ ┘

SGEEV, DGEEV, CGEEV, and ZGEEV

690 ESSL Version 3 Release 3 Guide and Reference

SSPEV, DSPEV, CHPEV, and ZHPEV—Eigenvalues and, Optionally, the
Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian
Matrix

SSPEV and DSPEV compute the eigenvalues and, optionally, the eigenvectors of
real symmetric matrix A, stored in lower- or upper-packed storage mode. CHPEV
and ZHPEV compute the eigenvalues and, optionally, the eigenvectors of complex
Hermitian matrix A, stored in lower- or upper-packed storage mode. Eigenvalues
are returned in vector w, and eigenvectors are returned in matrix Z:

Az = wz

where A = AT or A = AH.

Table 124. Data Types

A, z w, aux Subroutine

Short-precision real Short-precision real SSPEV

Long-precision real Long-precision real DSPEV

Short-precision complex Short-precision real CHPEV

Long-precision complex Long-precision real ZHPEV

Note: For compatibility with earlier releases of ESSL, you can use the names
SSLEV, DSLEV, CHLEV, and ZHLEV for SSPEV, DSPEV, CHPEV, and
ZHPEV, respectively.

Syntax

Fortran CALL SSPEV | DSPEV | CHPEV | ZHPEV (iopt, ap, w, z, ldz, n, aux, naux)

C and C++ sspev | dspev | chpev | zhpev (iopt, ap, w, z, ldz, n, aux, naux);

PL/I CALL SSPEV | DSPEV | CHPEV | ZHPEV (iopt, ap, w, z, ldz, n, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0 or 20, eigenvalues only are computed.

If iopt = 1 or 21, eigenvalues and eigenvectors are computed.

Specified as: a fullword integer; iopt = 0, 1, 20, or 21.

ap is the real symmetric or complex Hermitian matrix A of order n, whose
eigenvalues and, optionally, eigenvectors are computed. It is stored in an
array, referred to as AP, where:

If iopt = 0 or 1, it is stored in lower-packed storage mode.

If iopt = 20 or 21, it is stored in upper-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in Table 124. On output, for
SSPEV and DSPEV if iopt = 0 or 20, and for CHPEV and ZHPEV, AP is
overwritten; that is, the original input is not preserved.

w See “On Return” on page 692.

z See “On Return” on page 692.

ldz has the following meaning, where:

SSPEV, DSPEV, CHPEV, and ZHPEV

Chapter 11. Eigensystem Analysis 691

If iopt = 0 or 20, it is not used in the computation.

If iopt = 1 or 21, it is the leading dimension of the output array specified
for z.

Specified as: a fullword integer. It must have the following value, where:

If iopt = 0 or 20, ldz > 0.

If iopt = 1 or 21, ldz > 0 and ldz ≥ n.

n is the order of matrix A. Specified as: a fullword integer; n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 124 on page 691. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SSPEV, DSPEV, CHPEV, and
ZHPEV dynamically allocate the work area used by the subroutine. The
work area is deallocated before control is returned to the calling program.

Otherwise, It must have the following value, where:

For SSPEV and DSPEV:
If iopt = 0 or 20, naux ≥ n.
If iopt = 1 or 21, naux ≥ 2n.

For CHPEV and ZHPEV:
If iopt = 0 or 20, naux ≥ 3n.
If iopt = 1 or 21, naux ≥ 4n.

On Return:

w is the vector w of length n, containing the eigenvalues of A in ascending
order. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 124 on page 691.

z has the following meaning, where:

If iopt = 0 or 20, it is not used in the computation.

If iopt = 1 or 21, it is the matrix Z of order n, containing the orthonormal
eigenvectors of matrix A. The eigenvector in column i of matrix Z
corresponds to the eigenvalue wi.

Returned as: an ldz by (at least) n array, containing numbers of the data
type indicated in Table 124 on page 691.

Notes
1. When you specify iopt = 0 or 20, you must specify:
v A positive value for ldz
v A dummy argument for z (see “Example 1” on page 694)

2. The following items must have no common elements: matrix A, matrix Z,
vector w, and the data area specified for aux; otherwise, results are
unpredictable. See “Concepts” on page 53.

SSPEV, DSPEV, CHPEV, and ZHPEV

692 ESSL Version 3 Release 3 Guide and Reference

3. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. For a description of how real symmetric matrices are stored in lower- or
upper-packed storage mode, see “Lower-Packed Storage Mode” on page 63 or
“Upper-Packed Storage Mode” on page 64, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 67.

5. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The next two sections describe the methods used to compute the eigenvalues and,
optionally, the eigenvectors for either a real symmetric matrix or a complex
Hermitian matrix. For more information on these methods, see references [39], [43],
[63], [87], [97], and [99]. If n is 0, no computation is performed. The results of the
computations using short- and long-precision data can vary in accuracy. See
“Example 3” on page 695 and “Example 4” on page 696 for an illustration of the
difference in results. Eigenvalues computed using equivalent iopt values are
mathematically equivalent, but are not guaranteed to be bitwise identical. For
example, the results computed using iopt = 0 and iopt = 20 are mathematically
equivalent, but are not necessarily bitwise identical.

These algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Real Symmetric Matrix: The eigenvalues and, optionally, the eigenvectors of a
real symmetric matrix A are computed as follows:
v For iopt = 0 or 20, the eigenvalues are computed as follows:

1. Reduce the real symmetric matrix A to a real symmetric tridiagonal matrix
using orthogonal similarity transformations.

2. Compute the eigenvalues of the real symmetric tridiagonal matrix using the
implicit QL algorithm.

3. The eigenvalues are ordered and returned in vector w.
v For iopt = 1 or 21, the eigenvalues and eigenvectors are computed as follows:

1. Reduce the real symmetric matrix A to a real symmetric tridiagonal matrix
using and accumulating orthogonal similarity transformations.

2. Compute the eigenvalues of the real symmetric tridiagonal matrix and the
eigenvectors of the real symmetric matrix using the implicit QL algorithm.

3. The eigenvalues are ordered and returned in vector w, and the
corresponding eigenvectors are returned in matrix Z.

Complex Hermitian Matrix: The eigenvalues and, optionally, the eigenvectors of
a complex Hermitian matrix A are computed as follows:
v For iopt = 0 or 20, the eigenvalues are computed as follows:

1. Reduce the complex Hermitian matrix A to a real symmetric tridiagonal
matrix using unitary similarity transformations.

2. Compute the eigenvalues of the real symmetric tridiagonal matrix using the
implicit QL algorithm.

3. The eigenvalues are ordered and returned in vector w.
v For iopt = 1 or 21, the eigenvalues and eigenvectors are computed as follows:

1. Reduce the complex Hermitian matrix A to a real symmetric tridiagonal
matrix using unitary similarity transformations.

SSPEV, DSPEV, CHPEV, and ZHPEV

Chapter 11. Eigensystem Analysis 693

2. Compute the eigenvalues and eigenvectors of the real symmetric tridiagonal
matrix using the implicit QL algorithm.

3. Back transform the eigenvectors of the real symmetric tridiagonal matrix to
those of the original complex Hermitian matrix.

4. The eigenvalues are ordered and returned in vector w, and the
corresponding eigenvectors are returned in matrix Z.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: Eigenvalue (i) failed to converge after (xxx) iterations:
v The eigenvalues (wj, j = 1, 2, ..., i−1) are correct, but are unordered.
v If iopt = 1 or 21, then z is modified, but no eigenvectors are correct.
v If iopt = 0 or 20 for SSPEV and DSPEV, ap is modified.
v For CHPEV and ZHPEV, ap is modified.
v The return code is set to 1.
v i and xxx can be determined at run time by use of the ESSL

error-handling-facilities. To obtain this information, you must use ERRSET to
change the number of allowable errors for error code 2101 in the ESSL error
option table; otherwise, the default value causes your program to terminate
when this error occurs. See “What Can You Do about ESSL Computational
Errors?” on page 45.

Input-Argument Errors:
1. iopt ≠ 0, 1, 20, or 21
2. n < 0
3. ldz ≤ 0 and iopt = 1 or 21
4. n > ldz and iopt = 1 or 21
5. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 2 is returned if error 2015 is recoverable.

Example 1
This example shows how to find the eigenvalues only of a real short-precision
symmetric matrix A of order 3, stored in lower-packed storage mode Matrix A is:

┌ ┐
| 1.0 -1.0 0.0 |
| -1.0 2.0 -1.0 |
| 0.0 -1.0 1.0 |
└ ┘

where:
v NAUX is equal to N.
v AUX contains N elements.
v LDZ is set to 1 to avoid an error condition.
v DUMMY is used as a placeholder for argument z, which is not used in the

computation.
v On output, AP has been overwritten.

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL SSPEV(0 , AP , W , DUMMY , 1 , 3 , AUX , 3)

AP = (1.0, -1.0, 0.0, 2.0, -1.0, 1.0)

Output:

SSPEV, DSPEV, CHPEV, and ZHPEV

694 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 0.000000 |

W = | 1.000000 |
| 3.000000 |
└ ┘

Example 2
This example shows how to find the eigenvalues and eigenvectors of a real
short-precision symmetric matrix A of order 4, stored in upper-packed storage
mode. Matrix A is:

┌ ┐
| 5.0 4.0 1.0 1.0 |
| 4.0 5.0 1.0 1.0 |
| 1.0 1.0 4.0 2.0 |
| 1.0 1.0 2.0 4.0 |
└ ┘

where:
v NAUX is equal to 2N.
v AUX contains 2N elements.

Note: This matrix is used in Example 4.1 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL SSPEV(21 , AP , W , Z , 4 , 4 , AUX , 8)

AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)

Output:
┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 9.999999 |
└ ┘

┌ ┐
| 0.707107 0.000000 0.316227 0.632455 |

Z = | -0.707107 0.000000 0.316228 0.632455 |
| 0.000000 -0.707106 -0.632455 0.316227 |
| 0.000000 0.707107 -0.632455 0.316228 |
└ ┘

Example 3
This example shows how to find the eigenvalues and eigenvectors of a real
short-precision symmetric matrix A, stored in lower-packed storage mode, which
has an eigenvalue of multiplicity 2. Matrix A is:

┌ ┐
| 6.0 4.0 4.0 1.0 |
| 4.0 6.0 1.0 4.0 |
| 4.0 1.0 6.0 4.0 |
| 1.0 4.0 4.0 6.0 |
└ ┘

where:
v NAUX is equal to 2N.
v AUX contains 2N elements.

Note: This matrix is used in Example 4.2 in referenced text [63].

SSPEV, DSPEV, CHPEV, and ZHPEV

Chapter 11. Eigensystem Analysis 695

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL SSPEV(1 , AP , W , Z , 7 , 4 , AUX , 8)

AP = (6.0, 4.0, 4.0, 1.0, 6.0, 1.0, 4.0, 6.0, 4.0, 6.0)

Output:
┌ ┐
| -1.000000 |

W = | 4.999999 |
| 5.000000 |
| 15.000000 |
└ ┘

┌ ┐
| -0.500000 0.000000 0.707107 0.500000 |
| 0.500000 0.707107 0.000000 0.500000 |
| 0.500000 -0.707107 0.000000 0.500000 |

Z = | -0.500000 0.000000 -0.707107 0.500000 |
| |
| |
| |
└ ┘

Example 4
This example shows how the results of Example 3 differ if matrix A is a real
long-precision symmetric matrix.

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL DSPEV(1 , AP , W , Z , 7 , 4 , AUX , 8)

Output:
┌ ┐
| -1.000000 |

W = | 5.000000 |
| 5.000000 |
| 15.000000 |
└ ┘

┌ ┐
| -0.500000 -0.216773 -0.673060 0.500000 |
| 0.500000 0.673060 -0.216773 0.500000 |
| 0.500000 -0.673060 0.216773 0.500000 |

Z = | -0.500000 0.216773 0.673060 0.500000 |
| |
| |
| |
└ ┘

Example 5
This example shows how to find the eigenvalues and eigenvectors of a complex
Hermitian matrix A of order 2, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (0.0, -1.0) |
| (0.0, 1.0) (1.0, 0.0) |
└ ┘

where:
v NAUX is equal to 4N.
v AUX contains 4N elements.

SSPEV, DSPEV, CHPEV, and ZHPEV

696 ESSL Version 3 Release 3 Guide and Reference

v On output, AP has been overwritten.

Note: This matrix is used in Example 6.1 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL ZHPEV(1 , AP , W , Z , 2 , 2 , AUX , 8)

AP = ((1.0, .), (0.0, 1.0), (1.0, .))

Output:
┌ ┐

W = | 0.000000 |
| 2.000000 |
└ ┘

┌ ┐
Z = | (0.000000, -0.707107) (0.000000, -0.707107) |

| (-0.707107, 0.000000) (0.707107, 0.000000) |
└ ┘

Example 6
This example shows how to find the eigenvalues only of a complex Hermitian
matrix A of order 4, stored in upper-packed storage mode. Matrix A is:

┌ ┐
| (3.0, 0.0) (1.0, 0.0) (0.0, 0.0) (0.0, 2.0) |
| (1.0, 0.0) (3.0, 0.0) (0.0, -2.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 2.0) (1.0, 0.0) (1.0, 0.0) |
| (0.0, -2.0) (0.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
└ ┘

where:
v NAUX is equal to 3N.
v AUX contains 3N elements.
v LDZ is set to 1 to avoid an error condition.
v DUMMY is used as a placeholder for argument z, which is not used in the

computation.
v On output, AP has been overwritten.

Note: This matrix is used in Example 6.6 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL ZHPEV(20 , AP , W , DUMMY , 1 , 4 , AUX , 12)

AP = ((3.0, .), (1.0, 0.0), (3.0, .), (0.0, 0.0),
(0.0, -2.0), (1.0, .), (0.0, 2.0), (0.0, 0.0),
(1.0, 0.0), (1.0, .))

Output:
┌ ┐
| -0.828427 |

W = | 0.000000 |
| 4.000000 |
| 4.828427 |
└ ┘

SSPEV, DSPEV, CHPEV, and ZHPEV

Chapter 11. Eigensystem Analysis 697

Example 7
This example shows how to find the eigenvalues and eigenvectors of a complex
Hermitian matrix A of order 2, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (1.0, -1.0) |
| (1.0, 1.0) (1.0, 0.0) |
└ ┘

where:
v NAUX is equal to 4N.
v AUX contains 4N elements.
v On output, AP has been overwritten.

Note: This matrix is used in Example 6.2 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N AUZ NAUX
| | | | | | | |

CALL ZHPEV(1 , AP , W , Z , 2 , 2 , AUX , 8)

AP = ((1.0, .), (1.0, 1.0), (1.0, .))

Output:
┌ ┐

W = | -0.414214 |
| 2.414214 |
└ ┘

┌ ┐
Z = | (0.500000, -0.500000) (0.500000, -0.500000) |

| (-0.707107, 0.000000) (0.707107, 0.000000) |
└ ┘

SSPEV, DSPEV, CHPEV, and ZHPEV

698 ESSL Version 3 Release 3 Guide and Reference

SSPSV, DSPSV, CHPSV, and ZHPSV—Extreme Eigenvalues and,
Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex
Hermitian Matrix

SSPSV and DSPSV compute the extreme eigenvalues and, optionally, the
eigenvectors of real symmetric matrix A, stored in lower- or upper-packed storage
mode. CHPSV and ZHPSV compute the extreme eigenvalues and, optionally, the
eigenvectors of complex Hermitian matrix A, stored in lower- or upper-packed
storage mode. The extreme eigenvalues are returned in vector w, and the
corresponding eigenvectors are returned in matrix Z:

Az = wz

where A = AT or A = AH.

Table 125. Data Types

A, z w, aux Subroutine

Short-precision real Short-precision real SSPSV

Long-precision real Long-precision real DSPSV

Short-precision complex Short-precision real CHPSV

Long-precision complex Long-precision real ZHPSV

Note: If you want to compute 10% or fewer eigenvalues only, or you want to
compute 30% or fewer eigenvalues and eigenvectors, you get better
performance if you use _SPSV and _HPSV instead of _SPEV and _HPEV,
respectively. For all other uses, you should use _SPEV and _HPEV.

Syntax

Fortran CALL SSPSV | DSPSV | CHPSV | ZHPSV (iopt, ap, w, z, ldz, n, m, aux, naux)

C and C++ sspsv | dspsv | chpsv | zhpsv (iopt, ap, w, z, ldz, n, m, aux, naux);

PL/I CALL SSPSV | DSPSV | CHPSV | ZHPSV (iopt, ap, w, z, ldz, n, m, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0 or 20, the m smallest eigenvalues only are computed.

If iopt = 1 or 21, the m smallest eigenvalues and the eigenvectors are
computed.

If iopt = 10 or 30, the m largest eigenvalues only are computed.

If iopt = 11 or 31, the m largest eigenvalues and the eigenvectors are
computed.

Specified as: a fullword integer; iopt = 0, 1, 10, 11, 20, 21, 30, or 31.

ap is the real symmetric or complex Hermitian matrix A of order n, whose m
smallest or largest eigenvalues and, optionally, the corresponding
eigenvectors are computed. It is stored in an array, referred to as AP, where:

If iopt = 0, 1, 10, or 11, it is stored in lower-packed storage mode.

If iopt = 20, 21, 30, or 31, it is stored in upper-packed storage mode.

SSPSV, DSPSV, CHPSV, and ZHPSV

Chapter 11. Eigensystem Analysis 699

Specified as: a one-dimensional array of (at least) length n(n+1)/2,
containing numbers of the data type indicated in Table 125 on page 699. On
output, AP is overwritten; that is, the original input is not preserved.

w See “On Return”.

z See “On Return”.

ldz has the following meaning, where:

If iopt = 0, 10, 20, or 30, it is not used in the computation.

If iopt = 1, 11, 21, or 31, it is the leading dimension of the output array
specified for z.

Specified as: a fullword integer. It must have the following value, where:

If iopt = 0, 10, 20, or 30, ldz > 0.

If iopt = 1, 11, 21, or 31, ldz > 0 and ldz ≥ n.

n is the order of matrix A. Specified as: a fullword integer; n ≥ 0.

m is the number of eigenvalues and, optionally, eigenvectors to be computed.
Specified as: a fullword integer; 0 ≤ m ≤ n.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 125 on page 699. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SSPSV, DSPSV, CHPSV, and
ZHPSV dynamically allocate the work area used by the subroutine. The
work area is deallocated before control is returned to the calling program.

Otherwise, It must have the following value, where:

For SSPSV and DSPSV:
If iopt = 0, 10, 20, or 30, naux ≥ 3n.
If iopt = 1, 11, 21, or 31, naux ≥ 9n.

For CHPSV and ZHPSV:
If iopt = 0, 10, 20, or 30, naux ≥ 5n.
If iopt = 1, 11, 21, or 31, naux ≥ 11n.

On Return:

w is the vector w of length n, containing in the first m positions of either the
m smallest eigenvalues of A in ascending order or the m largest
eigenvalues of A in descending order.

Returned as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 125 on page 699.

z has the following meaning, where:

If iopt = 0, 10, 20, or 30, it is not used in the computation.

SSPSV, DSPSV, CHPSV, and ZHPSV

700 ESSL Version 3 Release 3 Guide and Reference

If iopt = 1, 11, 21, or 31, it is the n by m matrix Z, containing m
orthonormal eigenvectors of matrix A. The eigenvector in column i of
matrix Z corresponds to the eigenvalue wi.

Returned as: an ldz by (at least) m array, containing numbers of the data
type indicated in Table 125 on page 699.

Notes
1. When you specify iopt = 0, 10, 20, or 30, you must specify:
v A positive value for ldz
v A dummy argument for z (see “Example 4” on page 704)

2. The following items must have no common elements: matrix A, matrix Z,
vector w, and the data area specified for aux; otherwise, results are
unpredictable. See “Concepts” on page 53.

3. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. For a description of how real symmetric matrices are stored in lower- or
upper-packed storage mode, see “Lower-Packed Storage Mode” on page 63 or
“Upper-Packed Storage Mode” on page 64, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 67.

5. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The methods used to compute the extreme eigenvalues and, optionally, the
eigenvectors for either a real symmetric matrix or a complex Hermitian matrix are
described in the steps below. For more information on these methods, see
references [39], [43], [63], [87], [97], and [99]. If n or m is 0, no computation is
performed. The results of the computations using short- and long-precision data
can vary in accuracy. Eigenvalues computed using equivalent iopt values are
mathematically equivalent, but are not guaranteed to be bitwise identical. For
example, the results computed using iopt = 0 and iopt = 20 are mathematically
equivalent, but are not necessarily bitwise identical.

These algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

The extreme eigenvalues and, optionally, the eigenvectors of a real symmetric
matrix A or complex Hermitian matrix A are computed as follows:
v For iopt = 0, 10, 20, or 30, the eigenvalues are computed as follows:

1. Reduce the real symmetric matrix A (for SSPSV and DSPSV) or complex
Hermitian matrix A (for CHPSV and ZHPSV) to a real symmetric tridiagonal
matrix using orthogonal similarity transformations (for SSPSV and DSPSV)
or unitary similarity transforms (for CHPSV and ZHPSV).

2. Compute the m smallest eigenvalues or m largest eigenvalues of the real
symmetric tridiagonal matrix using a rational variant of the QR method with
Newton corrections.

3. The eigenvalues are returned in vector w in the first m positions, where the
m smallest are placed in ascending order, or the m largest are placed in
descending order.

SSPSV, DSPSV, CHPSV, and ZHPSV

Chapter 11. Eigensystem Analysis 701

v For iopt = 1, 11, 21, or 31, the eigenvalues and eigenvectors are computed as
follows:
1. Reduce the real symmetric matrix A (for SSPSV and DSPSV) or complex

Hermitian matrix A (for CHPSV and ZHPSV) to a real symmetric tridiagonal
matrix using orthogonal similarity transformations (for SSPSV and DSPSV)
or unitary similarity transforms (for CHPSV and ZHPSV).

2. Compute the m smallest eigenvalues or m largest eigenvalues of the real
symmetric tridiagonal matrix using a rational variant of the QR method with
Newton corrections.

3. Compute the corresponding eigenvectors of the real symmetric tridiagonal
matrix using inverse iteration.

4. Back transform the eigenvectors of the real symmetric tridiagonal matrix to
those of the original matrix.

5. The eigenvalues are returned in vector w in the first m positions, where the
m smallest are placed in ascending order, or the m largest are placed in
descending order. The corresponding eigenvectors are returned in matrix Z.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors:
1. Eigenvalue (i) failed to converge after (xxx) iterations. (The computational error

message may occur multiple times with processing continuing after each error,
because the number of allowable errors for error code 2114 is set to be
unlimited in the ESSL error option table.)
v The eigenvalue, wi, is the best estimate obtained. Any eigenvalues for which

this message has not been issued are correct.
v ap is modified.
v The return code is set to 1.
v i and xxx can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error 2199 in the ESSL error option table. See
“What Can You Do about ESSL Computational Errors?” on page 45.

2. Eigenvector (i) failed to converge after (xxx) iterations. (The computational error
message may occur multiple times with processing continuing after each error,
because the number of allowable errors for error code 2102 is set to be
unlimited in the ESSL error option table.)
v All eigenvalues are correct.
v The eigenvector that failed to converge is set to zero; however, any selected

eigenvectors for which this message is not issued are correct.
v ap is modified.
v The return code is set to 2.
v i and xxx can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error 2199 in the ESSL error option table. See
“What Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:
1. iopt ≠ 0, 1, 10, 11, 20, 21, 30, or 31
2. n < 0
3. m < 0
4. m > n
5. ldz ≤ 0 and iopt = 1, 11, 21, or 31
6. n > ldz and iopt = 1, 11, 21, or 31

SSPSV, DSPSV, CHPSV, and ZHPSV

702 ESSL Version 3 Release 3 Guide and Reference

7. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the
minimum required value. Return code 3 is returned if error 2015 is recoverable.

Example 1
This example shows how to find the two smallest eigenvalues and corresponding
eigenvectors of a real long-precision symmetric matrix A of order 4, stored in
upper-packed storage mode. Matrix A is:

┌ ┐
| 5.0 4.0 1.0 1.0 |
| 4.0 5.0 1.0 1.0 |
| 1.0 1.0 4.0 2.0 |
| 1.0 1.0 2.0 4.0 |
└ ┘

where:
v NAUX is equal to 9N.
v AUX contains 9N elements.
v On output, AP has been overwritten.

Note: This matrix is used in Example 4.1 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N M AUX NAUX
| | | | | | | | |

CALL DSPSV(21 , AP , W , Z , 4 , 4 , 2 , AUX , 36)

AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)

Output:
┌ ┐
| 1.000000 |

W = | 2.000000 |
| . |
| . |
└ ┘

┌ ┐
| -0.707107 0.000000 |

Z = | 0.707107 0.000000 |
| 0.000000 -0.707107 |
| 0.000000 0.707107 |
└ ┘

Example 2
This example shows how to find the three largest eigenvalues and corresponding
eigenvectors of a real long-precision symmetric matrix A of order 4, stored in
lower-packed storage mode, having an eigenvalue of multiplicity two. Matrix A is:

┌ ┐
| 6.0 4.0 4.0 1.0 |
| 4.0 6.0 1.0 4.0 |
| 4.0 1.0 6.0 4.0 |
| 1.0 4.0 4.0 6.0 |
└ ┘

where:
v NAUX is equal to 9N.
v AUX contains 9N elements.
v On output, AP has been overwritten.

Note: This matrix is used in Example 4.2 in referenced text [63].

SSPSV, DSPSV, CHPSV, and ZHPSV

Chapter 11. Eigensystem Analysis 703

Call Statement and Input:
IOPT AP W Z LDZ N M AUX NAUX
| | | | | | | | |

CALL DSPSV(11 , AP , W , Z , 8 , 4 , 3 , AUX , 36)

AP = (6.0, 4.0, 4.0, 1.0, 6.0, 1.0, 4.0, 6.0, 4.0, 6.0)

Output:
┌ ┐
| 15.000000 |

W = | 5.000000 |
| 5.000000 |
| . |
└ ┘

┌ ┐
| 0.500000 0.707107 0.000000 |
| 0.500000 0.000000 -0.707107 |
| 0.500000 0.000000 0.707107 |

Z = | 0.500000 -0.707107 0.000000 |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Example 3
This example shows how to find the largest eigenvalue and the corresponding
eigenvector of a complex Hermitian matrix A of order 2, stored in lower-packed
storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (0.0, -1.0) |
| (0.0, 1.0) (1.0, 0.0) |
└ ┘

where:
v NAUX is equal to 11N.
v AUX contains 11N elements.
v On output, AP has been overwritten.

Note: This matrix is used in Example 6.1 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N M AUX NAUX
| | | | | | | | |

CALL ZHPSV(11 , AP , W , Z , 2 , 2 , 1 , AUX , 22)

AP = ((1.0, .), (0.0, 1.0), (1.0, .))

Output:
┌ ┐

W = | 2.000000 |
| . |
└ ┘

┌ ┐
Z = | (0.000000, -0.707107) |

| (0.707107, 0.000000) |
└ ┘

Example 4
This example shows how to find the two smallest eigenvalues only of a complex
Hermitian matrix A of order 4, stored in upper-packed storage mode. Matrix A is:

SSPSV, DSPSV, CHPSV, and ZHPSV

704 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| (3.0, 0.0) (1.0, 0.0) (0.0, 0.0) (0.0, 2.0) |
| (1.0, 0.0) (3.0, 0.0) (0.0, -2.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 2.0) (1.0, 0.0) (1.0, 0.0) |
| (0.0, -2.0) (0.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
└ ┘

where:
v NAUX is equal to 5N.
v AUX contains 5N elements.
v LDZ is set to 1 to avoid an error condition.
v DUMMY is used as a placeholder for argument z, which is not used in the

computation.
v On output, AP has been overwritten.

Note: This matrix is used in Example 6.6 in referenced text [63].

Call Statement and Input:
IOPT AP W Z LDZ N M AUX NAUX
| | | | | | | | |

CALL ZHPSV(20 , AP , W , DUMMY , 1 , 4 , 2 , AUX , 20)

AP = ((3.0, .), (1.0, 0.0), (3.0, .), (0.0, 0.0),
(0.0, -2.0), (1.0, .), (0.0, 2.0), (0.0, 0.0),
(1.0, 0.0), (1.0, .))

Output:
┌ ┐
| -0.828427 |

W = | 0.000000 |
| . |
| . |
└ ┘

SSPSV, DSPSV, CHPSV, and ZHPSV

Chapter 11. Eigensystem Analysis 705

SGEGV and DGEGV—Eigenvalues and, Optionally, the Eigenvectors of
a Generalized Real Eigensystem, Az=wBz, where A and B Are Real
General Matrices

These subroutines compute the eigenvalues and, optionally, the eigenvectors of a
generalized real eigensystem, where A and B are real general matrices. Eigenvalues
w are based on the two parts returned in vectors α and β, such that wi = αi / βi for
βi ≠ 0, and wi = ∞ for βi = 0. Eigenvectors are returned in matrix Z:

Az = wBz

Table 126. Data Types

A, B, β, aux α, Z Subroutine

Short-precision real Short-precision complex SGEGV

Long-precision real Long-precision complex DGEGV

Syntax

Fortran CALL SGEGV | DGEGV (iopt, a, lda, b, ldb, alpha, beta, z, ldz, n, aux, naux)

C and C++ sgegv | dgegv (iopt, a, lda, b, ldb, alpha, beta, z, ldz, n, aux, naux);

PL/I CALL SGEGV | DGEGV (iopt, a, lda, b, ldb, alpha, beta, z, ldz, n, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0, eigenvalues only are computed.

If iopt = 1, eigenvalues and eigenvectors are computed.

Specified as: a fullword integer; iopt = 0 or 1.

a is the real general matrix A of order n. Specified as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 126. On
output, A is overwritten; that is, the original input is not preserved.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

b is the real general matrix B of order n. Specified as: an ldb by (at least) n
array, containing numbers of the data type indicated in Table 126. On
output, B is overwritten; that is, the original input is not preserved.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ n.

alpha See “On Return” on page 707.

beta See “On Return” on page 707.

z See “On Return” on page 707.

ldz has the following meaning, where:

If iopt = 0, it is not used in the computation.

If iopt = 1, it is the leading dimension of the output array specified for z.

Specified as: a fullword integer. It must have the following value, where:

If iopt = 0, ldz > 0.

SGEGV and DGEGV

706 ESSL Version 3 Release 3 Guide and Reference

If iopt = 1, ldz > 0 and ldz ≥ n.

n is the order of matrices A and B. Specified as: a fullword integer; n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 126 on page 706. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEGV and DGEGV
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ 3n.

On Return:

alpha is the vector α of length n, containing the numerators of the eigenvalues of
the generalized real eigensystem Az = wBz. Returned as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 126 on page 706.

beta is the vector β of length n, containing the denominators of the eigenvalues
of the generalized real eigensystem Az = wBz. Returned as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 126 on page 706.

z has the following meaning, where:

If iopt = 0, it is not used in the computation.

If iopt = 1, it is the matrix Z of order n, containing the eigenvectors of the
generalized real eigensystem, Az = wBz. The eigenvector in column i of
matrix Z corresponds to the eigenvalue wi, computed using the αi and βi

values. Each eigenvector is normalized so that the modulus of its largest
element is 1.

Returned as: an ldz by (at least) n array, containing numbers of the data
type indicated in Table 126 on page 706.

Notes
1. When you specify iopt = 0, you must specify:
v A positive value for ldz
v A dummy argument for z (see “Example 1” on page 709)

2. Matrices A, B, and Z, vectors α and β, and the work area specified for aux must
have no common elements; otherwise, results are unpredictable. See “Concepts”
on page 53.

3. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The following steps describe the methods used to compute the eigenvalues and,
optionally, the eigenvectors of a generalized real eigensystem, Az = wBz, where A
and B are real general matrices. The methods are based upon Moler and Stewart’s

SGEGV and DGEGV

Chapter 11. Eigensystem Analysis 707

QZ algorithm. You must calculate the resulting eigenvalues w based on the two
parts returned in vectors α and β. Each eigenvalue is calculated as follows:
wi = αi/βi for βi ≠ 0 and wi = ∞ for βi = 0. Eigenvalues are unordered, except that
complex conjugate pairs appear consecutively with the eigenvalue having the
positive imaginary part first.
v For iopt = 0, the eigenvalues are computed as follows:

1. Simultaneously reduce A to upper Hessenberg form and B to upper
triangular form using orthogonal transformations.

2. Reduce A from upper Hessenberg form to quasi-upper triangular form while
maintaining the upper triangular form of B using orthogonal
transformations.

3. Compute the eigenvalues of the generalized real eigensystem with A in
quasi-upper triangular form and B in upper triangular form using
orthogonal transformations.

4. The numerators and denominators of the eigenvalues are returned in vectors
α and β, respectively.

v For iopt = 1, the eigenvalues and eigenvectors are computed as follows:
1. Simultaneously reduce A to upper Hessenberg form and B to upper

triangular form using and accumulating orthogonal transformations.
2. Reduce A from upper Hessenberg form to quasi-upper triangular form while

maintaining the upper triangular form of B using and accumulating
orthogonal transformations.

3. Compute the eigenvalues of the generalized real eigensystem with A in
quasi-upper triangular form and B in upper triangular form using and
accumulating orthogonal transformations.

4. Compute the eigenvectors of the generalized real eigensystem with A in
quasi-upper triangular form and B in upper triangular form using back
substitution.

5. The numerators and denominators of the eigenvalues are returned in vectors
α and β, respectively, and the eigenvectors are returned in matrix Z.

For more information on these methods, see references [39], [43], [58], [83], [63],
[62], [87], [97], and [99]. If n is 0, no computation is performed. The results of the
computations using short- and long-precision data can vary in accuracy.

These algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: Eigenvalue (i) failed to converge after (xxx) iterations:
v The eigenvalues (wj, j = i+1, i+2, ..., n) are correct.
v If iopt = 1, then Z is modified, but no eigenvectors are correct.
v A and B have been modified.
v The return code is set to 1.
v i and xxx can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2101 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this error
occurs. See “What Can You Do about ESSL Computational Errors?” on page 45.

Input-Argument Errors:

SGEGV and DGEGV

708 ESSL Version 3 Release 3 Guide and Reference

1. iopt ≠ 0 or 1
2. n < 0
3. lda ≤ 0
4. n > lda
5. ldb ≤ 0
6. n > ldb
7. ldz ≤ 0 and iopt = 1
8. n > ldz and iopt = 1
9. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 2 is returned if error 2015 is recoverable.

Example 1
This example shows how to find the eigenvalues only of a real generalized
eigensystem problem, AZ = wBZ, where:
v NAUX is equal to 3N.
v AUX contains 3N elements.
v LDZ is set to 1 to avoid an error condition.
v DUMMY is used as a placeholder for argument z, which is not used in the

computation.
v On output, matrices A and B are overwritten.

Note: These matrices are from page 257 in referenced text [62].

Call Statement and Input:
IOPT A LDA B LDB ALPHA BETA Z LDZ N AUX NAUX
| | | | | | | | | | | |

CALL DGEGV(0 , A , 3 , B , 3 , ALPHA , BETA , DUMMY , 1 , 3 , AUX , 9)

┌ ┐
| 10.0 1.0 2.0 |

A = | 1.0 3.0 -1.0 |
| 1.0 1.0 2.0 |
└ ┘

┌ ┐
| 1.0 2.0 3.0 |

B = | 4.0 5.0 6.0 |
| 7.0 8.0 9.0 |
└ ┘

Output:
┌ ┐
| (4.778424, 0.000000) |

ALPHA = | (-4.760580, 0.000000) |
| (2.769466, 0.000000) |
└ ┘

┌ ┐
| 0.000000 |

BETA = | 0.934851 |
| 15.446215 |
└ ┘

Example 2
This example shows how to find the eigenvalues and eigenvectors of a real
generalized eigensystem problem, AZ = wBZ, where:
v NAUX is equal to 3N.
v AUX contains 3N elements.
v On output, matrices A and B are overwritten.

Note: These matrices are from page 263 in referenced text [62].

SGEGV and DGEGV

Chapter 11. Eigensystem Analysis 709

Call Statement and Input:
IOPT A LDA B LDB ALPHA BETA Z LDZ N AUX NAUX
| | | | | | | | | | | |

CALL DGEGV(1 , A , 5 , B , 5 , ALPHA , BETA , Z , 5 , 5 , AUX , 15)

┌ ┐
| 2.0 3.0 4.0 5.0 6.0 |
| 4.0 4.0 5.0 6.0 7.0 |

A = | 0.0 3.0 6.0 7.0 8.0 |
| 0.0 0.0 2.0 8.0 9.0 |
| 0.0 0.0 0.0 1.0 10.0 |
└ ┘

┌ ┐
| 1.0 -1.0 -1.0 -1.0 -1.0 |
| 0.0 1.0 -1.0 -1.0 -1.0 |

B = | 0.0 0.0 1.0 -1.0 -1.0 |
| 0.0 0.0 0.0 1.0 -1.0 |
| 0.0 0.0 0.0 0.0 1.0 |
└ ┘

Output:
┌ ┐
| (7.950050, 0.000000) |
| (-0.277338, 0.000000) |

ALPHA = | (2.149669, 0.000000) |
| (6.720718, 0.000000) |
| (10.987556, 0.000000) |
└ ┘

┌ ┐
| 0.374183 |
| 1.480299 |

BETA = | 1.636872 |
| 1.213574 |
| 0.908837 |
└ ┘

┌
| (1.000000, 0.000000) (-0.483408, 0.000000) (0.540696, 0.000000)
| (0.565497, 0.000000) (1.000000, 0.000000) (0.684441, 0.000000)

Z = | (0.180429, 0.000000) (-0.661372, 0.000000) (-1.000000, 0.000000)
| (0.034182, 0.000000) (0.180646, 0.000000) (0.363671, 0.000000)
| (0.003039, 0.000000) (-0.017732, 0.000000) (-0.041865, 0.000000)
└

┐
(1.000000, 0.000000) (-1.000000, 0.000000) |
(0.722065, 0.000000) (-0.610415, 0.000000) |
(-0.089003, 0.000000) (-0.116987, 0.000000) |
(-0.223599, 0.000000) (0.038979, 0.000000) |
(0.050111, 0.000000) (0.018653, 0.000000) |

┘

SGEGV and DGEGV

710 ESSL Version 3 Release 3 Guide and Reference

SSYGV and DSYGV—Eigenvalues and, Optionally, the Eigenvectors of
a Generalized Real Symmetric Eigensystem, Az=wBz, where A Is Real
Symmetric and B Is Real Symmetric Positive Definite

These subroutines compute the eigenvalues and, optionally, the eigenvectors of a
generalized real symmetric eigensystem, where A is a real symmetric matrix, and B
is a real positive definite symmetric matrix. Both A and B are stored in lower
storage mode in two-dimensional arrays. Eigenvalues are returned in vector w,
and eigenvectors are returned in matrix Z:

Az = wBz

where A = AT, B = BT, and xTBx > 0.

Table 127. Data Types

A, B, w, Z, aux Subroutine

Short-precision real SSYGV

Long-precision real DSYGV

Syntax

Fortran CALL SSYGV | DSYGV (iopt, a, lda, b, ldb, w, z, ldz, n, aux, naux)

C and C++ ssygv | dsygv (iopt, a, lda, b, ldb, w, z, ldz, n, aux, naux);

PL/I CALL SSYGV | DSYGV (iopt, a, lda, b, ldb, w, z, ldz, n, aux, naux);

On Entry:

iopt indicates the type of computation to be performed, where:

If iopt = 0, eigenvalues only are computed.

If iopt = 1, eigenvalues and eigenvectors are computed.

Specified as: a fullword integer; iopt = 0 or 1.

a is the real symmetric matrix A of order n. It is stored in lower storage
mode. Specified as: an lda by (at least) n array, containing numbers of the
data type indicated in Table 127. On output, the data in the lower triangle
of A is overwritten; that is, the original input is not preserved.

lda is the leading dimension of the array specified for a. Specified as: a
fullword integer; lda > 0 and lda ≥ n.

b is the real positive definite symmetric matrix B of order n. It is stored in
lower storage mode. Specified as: an ldb by (at least) n array, containing
numbers of the data type indicated in Table 127. On output, the data in the
lower triangle of B is overwritten; that is, the original input is not
preserved.

ldb is the leading dimension of the array specified for b. Specified as: a
fullword integer; ldb > 0 and ldb ≥ n.

w See “On Return” on page 712.

z See “On Return” on page 712.

ldz has the following meaning, where:

If iopt = 0, it is not used in the computation.

SSYGV and DSYGV

Chapter 11. Eigensystem Analysis 711

If iopt = 1, it is the leading dimension of the output array specified for z.

Specified as: a fullword integer. It must have the following value, where:

If iopt = 0, ldz > 0.

If iopt = 1, ldz > 0 and ldz ≥ n.

n is the order of matrices A and B. Specified as: a fullword integer; n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 127 on page 711. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SSYGV and DSYGV
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, It must have the following value, where:

If iopt = 0, naux ≥ n.

If iopt = 1, naux ≥ 2n.

On Return:

w is the vector w of length n, containing the eigenvalues of the generalized
real symmetric eigensystem Az = wBz in ascending order. Returned as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 127 on page 711.

z has the following meaning, where:

If iopt = 0, it is not used in the computation.

If iopt = 1, it is the matrix Z of order n, containing the eigenvectors of the
generalized real symmetric eigensystem, Az = wBz. The eigenvectors are
normalized so that ZTBZ = I. The eigenvector in column i of matrix Z
corresponds to the eigenvalue wi.

Returned as: an ldz by (at least) n array, containing numbers of the data
type indicated in Table 127 on page 711.

Notes
1. When you specify iopt = 0, you must specify:
v A positive value for ldz
v A dummy argument for z (see “Example 1” on page 714)

2. Matrices A and Z may coincide. Matrices A and B, vector w, and the data area
specified for aux must have no common elements; otherwise, results are
unpredictable. Matrices Z and B, vector w, and the data area specified for aux
must also have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 53.

3. For a description of how real symmetric matrices are stored in lower storage
mode, see “Lower Storage Mode” on page 65.

SSYGV and DSYGV

712 ESSL Version 3 Release 3 Guide and Reference

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The following steps describe the methods used to compute the eigenvalues and,
optionally, the eigenvectors of a generalized real symmetric eigensystem,
Az = wBz, where A is a real symmetric matrix, and B is a real positive definite
symmetric matrix. Both A and B are stored in lower storage mode in
two-dimensional arrays.
1. Compute the Cholesky Decomposition of B:

B = LLT

For a description of methods used in this computation, see “SPPF, DPPF, SPOF,
DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF—Positive
Definite Real Symmetric or Complex Hermitian Matrix Factorization” on
page 461.

2. Compute C:
C = L−1AL−T

In this computation, C overwrites A.
3. Solve the real symmetric eigensystems analysis problem, computing the

eigenvalues w and, optionally, the eigenvectors Y:
CY = wY

where:
Y = LTZ

For a description of the methods used for this computation, see “Real
Symmetric Matrix” on page 693. In this computation, Y overwrites Z.

4. If eigenvectors are requested (with iopt = 1), transform the eigenvectors Y into
the eigenvectors Z of the original system, Az = wBz, by solving LTZ = Y for Z:

Z = L−TY

For more information on these methods, see references [39], [43], [58], [63], [62],
[87], [97], and [99]. If n is 0, no computation is performed. The results of the
computations using short- and long-precision data can vary in accuracy.

These algorithms have a tendency to generate underflows that may hurt overall
performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors:
1. The B matrix is not positive definite. The leading minor of order i has a

nonpositive determinant.
v B is modified, but no eigenvalues or eigenvectors are correct.
v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2115 in the ESSL error option table; otherwise,

SSYGV and DSYGV

Chapter 11. Eigensystem Analysis 713

the default value causes your program to terminate when this error occurs.
See “What Can You Do about ESSL Computational Errors?” on page 45.

2. Eigenvalue (i) failed to converge after (xxx) iterations:
v The eigenvalues (wj, j = 1, 2, ..., i−1) are correct, but are unordered.
v If iopt = 1, then z is modified, but no eigenvectors are correct.
v A and B have been modified.
v The return code is set to 2.
v i and xxx can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2101 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this
error occurs. See “What Can You Do about ESSL Computational Errors?” on
page 45.

Input-Argument Errors:
1. iopt ≠ 0 or 1
2. n < 0
3. lda ≤ 0
4. n > lda
5. ldb ≤ 0
6. n > ldb
7. ldz ≤ 0 and iopt = 1
8. n > ldz and iopt = 1
9. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 3 is returned if error 2015 is recoverable.

Example 1
This example shows how to find the eigenvalues only of a real symmetric
generalized eigensystem problem, AZ = wBZ, where:
v NAUX is equal to N.
v AUX contains N elements.
v LDZ is set to 1 to avoid an error condition.
v DUMMY is used as a placeholder for argument z, which is not used in the

computation.
v On output, the lower triangle of A and B is overwritten.

Note: These matrices are used in Example 8.6.2 in referenced text [62].

Call Statement and Input:
IOPT A LDA B LDB W Z LDZ N AUX NAUX
| | | | | | | | | | |

CALL DSYGV(0 , A , 2 , B , 2 , W , DUMMY , 1 , 2 , AUX , 2)

┌ ┐
A = | 229.0 . |

| 163.0 116.0 |
└ ┘

┌ ┐
B = | 81.0 . |

| 59.0 43.0 |
└ ┘

Output:
┌ ┐

W = | -0.500000 |
| 5.000000 |
└ ┘

SSYGV and DSYGV

714 ESSL Version 3 Release 3 Guide and Reference

Example 2
This example shows how to find the eigenvalues and eigenvectors of a real
symmetric generalized eigensystem problem, AZ = wBZ, where:
v NAUX is equal to 2N.
v AUX contains 2N elements.
v On output, the lower triangle of A and B is overwritten.

Note: These matrices are from page 67 in referenced text [58].

Call Statement and Input:
IOPT A LDA B LDB W Z LDZ N AUX NAUX
| | | | | | | | | | |

CALL DSYGV(1 , A , 3 , B , 3 , W , Z , 3 , N , AUX , 6)

┌ ┐
| -1.0 . . |

A = | 1.0 1.0 . |
| -1.0 -1.0 1.0 |
└ ┘

┌ ┐
| 2.0 . . |

B = | 1.0 2.0 . |
| 0.0 1.0 2.0 |
└ ┘

Output:
┌ ┐
| -1.500000 |

W = | 0.000000 |
| 2.000000 |
└ ┘

┌ ┐
| 0.866025 0.000000 0.000000 |

Z = | -0.577350 -0.408248 -0.707107 |
| 0.288675 -0.408248 0.707107 |
└ ┘

SSYGV and DSYGV

Chapter 11. Eigensystem Analysis 715

SSYGV and DSYGV

716 ESSL Version 3 Release 3 Guide and Reference

Chapter 12. Fourier Transforms, Convolutions and
Correlations, and Related Computations

The signal processing subroutines, provided in three areas, are described in this
chapter.

Overview of the Signal Processing Subroutines
This section describes the subroutines in each of the three signal processing areas:
v Fourier transform subroutines (Table 128)
v Convolution and correlation subroutines (Table 129)
v Related-computation subroutines (Table 130)

Fourier Transforms Subroutines
The Fourier transform subroutines perform mixed-radix transforms in one, two,
and three dimensions.

Table 128. List of Fourier Transform Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Complex Fourier Transform SCFT
SCFTP§

DCFT 727

Real-to-Complex Fourier Transform SRCFT DRCFT 735

Complex-to-Real Fourier Transform SCRFT DCRFT 742

Cosine Transform SCOSF
SCOSFT§

DCOSF 749

Sine Transform SSINF DSINF 756

Complex Fourier Transform in Two Dimensions SCFT2
SCFT2P§

DCFT2 763

Real-to-Complex Fourier Transform in Two Dimensions SRCFT2 DRCFT2 769

Complex-to-Real Fourier Transform in Two Dimensions SCRFT2 DCRFT2 776

Complex Fourier Transform in Three Dimensions SCFT3
SCFT3P§

DCFT3 783

Real-to-Complex Fourier Transform in Three Dimensions SRCFT3 DRCFT3 788

Complex-to-Real Fourier Transform in Three Dimensions SCRFT3 DCRFT3 793
§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Convolution and Correlation Subroutines
The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a
high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

© Copyright IBM Corp. 1997, 2001 717

Table 129. List of Convolution and Correlation Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Convolution or Correlation of One Sequence with One or More
Sequences

SCON§

SCOR§
799

Convolution or Correlation of One Sequence with Another
Sequence Using a Direct Method

SCOND
SCORD

805

Convolution or Correlation of One Sequence with One or More
Sequences Using the Mixed-Radix Fourier Method

SCONF
SCORF

810

Convolution or Correlation with Decimated Output Using a Direct
Method

SDCON
SDCOR

DDCON
DDCOR

818

Autocorrelation of One or More Sequences SACOR§ 822

Autocorrelation of One or More Sequences Using the Mixed-Radix
Fourier Method

SACORF 826

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Related-Computation Subroutines
The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those
provided on the IBM 3838 Array Processor; however, the ESSL subroutines
generally solve a wider range of problems.

Table 130. List of Related-Computation Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Polynomial Evaluation SPOLY DPOLY 832

I-th Zero Crossing SIZC DIZC 835

Time-Varying Recursive Filter STREC DTREC 838

Quadratic Interpolation SQINT DQINT 841

Wiener-Levinson Filter Coefficients SWLEV
CWLEV

DWLEV
ZWLEV

844

Fourier Transforms, Convolutions, and Correlations Considerations
This section describes some global information applying to the Fourier transform,
convolution, and correlation subroutines.

Use Considerations
This section provides some key points about using the Fourier transform,
convolution, and correlation subroutines.

Understanding the Terminology and Conventions Used for Your
Array Data
These subroutines use the term “sequences,” rather than vectors and matrices, to
describe the data that is stored in the arrays. The conventions used for representing
sequences are defined in “Sequences” on page xv.

Some of the sequences used in these computations use a zero origin rather than a
one-origin. For example, xj can be expressed with j = 0, 1, ..., n−1 rather than

718 ESSL Version 3 Release 3 Guide and Reference

j = 1, 2, ..., n. When using the formulas provided in this book to calculate array
sizes or offsets into arrays, you need to be careful that you substitute the correct
values. For example, the number of xj elements in the sequence is n, not n−1.

Concerns about Lengths of Transforms
The length of the transform you can use in your program depends on the limits of
the addressability of your processor.

Determining an Acceptable Length of a Transform
To determine acceptable lengths of the transforms in the Fourier transform
subroutines, you have several choices. First, you can use the formula or table of
values in “Acceptable Lengths for the Transforms” to choose a value. Second,
ESSL’s input-argument error recovery provides a means of determining an
acceptable length of the transform. It uses the optionally-recoverable error 2030.
For details, see “Providing a Correct Transform Length to ESSL” on page 36.

Acceptable Lengths for the Transforms
Use the following formula to determine acceptable transform lengths:

n = (2h) (3i) (5j) (7k) (11m) for n ≤ 37748736

where:
h = 1, 2, ..., 25
i = 0, 1, 2
j, k, m = 0, 1

Figure 13 on page 720 lists all the acceptable values for transform lengths in the
Fourier transform subroutines.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 719

Understanding Auxiliary Working Storage Requirements
Auxiliary working storage is required by the Fourier transform subroutines and by
the SCONF, SCORF, and SACORF subroutines. This storage is provided through
the calling sequence arguments aux, aux1, and aux2. The sizes of these storage
areas are specified by the calling sequence arguments naux, naux1, and naux2,
respectively.

2 4 6 8 10 12 14 16 18
20 22 24 28 30 32 36 40 42
44 48 56 60 64 66 70 72 80
84 88 90 96 110 112 120 126 128
132 140 144 154 160 168 176 180 192
198 210 220 224 240 252 256 264 280
288 308 320 330 336 352 360 384 396
420 440 448 462 480 504 512 528 560
576 616 630 640 660 672 704 720 768
770 792 840 880 896 924 960 990 1008
1024 1056 1120 1152 1232 1260 1280 1320 1344
1386 1408 1440 1536 1540 1584 1680 1760 1792
1848 1920 1980 2016 2048 2112 2240 2304 2310
2464 2520 2560 2640 2688 2772 2816 2880 3072
3080 3168 3360 3520 3584 3696 3840 3960 4032
4096 4224 4480 4608 4620 4928 5040 5120 5280
5376 5544 5632 5760 6144 6160 6336 6720 6930
7040 7168 7392 7680 7920 8064 8192 8448 8960
9216 9240 9856 10080 10240 10560 10752 11088 11264
11520 12288 12320 12672 13440 13860 14080 14336 14784
15360 15840 16128 16384 16896 17920 18432 18480 19712
20160 20480 21120 21504 22176 22528 23040 24576 24640
25344 26880 27720 28160 28672 29568 30720 31680 32256
32768 33792 35840 36864 36960 39424 40320 40960 42240
43008 44352 45056 46080 49152 49280 50688 53760 55440
56320 57344 59136 61440 63360 64512 65536 67584 71680
73728 73920 78848 80640 81920 84480 86016 88704 90112
92160 98304 98560 101376 107520 110880 112640 114688 118272
122880 126720 129024 131072 135168 143360 147456 147840 157696
161280 163840 168960 172032 177408 180224 184320 196608 197120
202752 215040 221760 225280 229376 236544 245760 253440 258048
262144 270336 286720 294912 295680 315392 322560 327680 337920
344064 354816 360448 368640 393216 394240 405504 430080 443520
450560 458752 473088 491520 506880 516096 524288 540672 573440
589824 591360 630784 645120 655360 675840 688128 709632 720896
737280 786432 788480 811008 860160 887040 901120 917504 946176
983040 1013760 1032192 1048576 1081344 1146880 1179648 1182720 1261568
1290240 1310720 1351680 1376256 1419264 1441792 1474560 1572864 1576960
1622016 1720320 1774080 1802240 1835008 1892352 1966080 2027520 2064384
2097152 2162688 2293760 2359296 2365440 2523136 2580480 2621440 2703360
2752512 2838528 2883584 2949120 3145728 3153920 3244032 3440640 3548160
3604480 3670016 3784704 3932160 4055040 4128768 4194304 4325376 4587520
4718592 4730880 5046272 5160960 5242880 5406720 5505024 5677056 5767168
5898240 6291456 6307840 6488064 6881280 7096320 7208960 7340032 7569408
7864320 8110080 8257536 8388608 8650752 9175040 9437184 9461760 10092544
10321920 10485760 10813440 11010048 11354112 11534336 11796480 12582912 12615680
12976128 13762560 14192640 14417920 14680064 15138816 15728640 16220160 16515072
16777216 17301504 18350080 18874368 18923520 20185088 20643840 20971520 21626880
22020096 22708224 23068672 23592960 25165824 25231360 25952256 27525120 28385280
28835840 29360128 30277632 31457280 32440320 33030144 33554432 34603008 36700160
37748736

Figure 13. Table of Acceptable Lengths for the Transforms

720 ESSL Version 3 Release 3 Guide and Reference

AUX1: The aux1 array is used for storing tables and other parameters when you
call a Fourier transform, convolution, or correlation subroutine for initialization
with init = 1. The initialized aux1 array is then used on succeeding calls with
init = 0, when the computation is actually done. You should not use this array
between the initialization and the computation.

AUX and AUX2: The aux and aux2 arrays are used for temporary storage during
the running of the subroutine and are available for use by your program between
calls to the subroutine.

AUX3: The aux3 argument is provided for migration purposes only and is
ignored.

Initializing Auxiliary Working Storage
In many of those subroutines requiring aux1 auxiliary working storage, two
invocations of the subroutines are necessary. The first invocation initializes the
working storage in aux1 for the subroutine, and the second performs the
computations. (For an explanation of auxiliary working storage, see Understanding
Auxiliary Working Storage Requirements.) As a result, the working storage in aux1
should not be used by the calling program between the two calls to the subroutine.
However, it can be reused after intervening calls to the subroutine with different
arguments.

If you plan to repeat a computation many times using the same set of arguments,
you only need to do one initialization of the aux1 array; that is, the initialized aux1
array can be saved and reused as many times as needed for the computation.

If you plan to perform different computations, with different sets of arguments
(except for input argument x), you need to do an initialization for each different
computation; that is, you initialize the various aux1 arrays for use with the
different computations, saving and reusing them until they are not needed any
more.

Determining the Amount of Auxiliary Working Storage That
You Need

To determine the size of auxiliary storage, you have several choices. First, you can
use the formulas provided in each subroutine description. Second, ESSL’s
input-argument error recovery provides a means of determining the minimum size
you need for auxiliary storage. It uses the optionally-recoverable error 2015. For
details, see “Using Auxiliary Storage in ESSL” on page 29. Third, you can have
ESSL dynamically allocate aux and aux2. For details, see “Dynamic Allocation of
Auxiliary Storage” on page 30.

Performance and Accuracy Considerations
The following sections explain the performance and accuracy considerations for the
Fourier transforms, convolution, and correlation subroutines. For further details
about performance and accuracy, see “Chapter 2. Planning Your Program” on
page 23.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 721

When Running on the Workstation Processors
There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You Know
About?” on page 42.

Defining Arrays
The stride arguments, inc1h, inc1x, inc1y, inc2x, inc2y, inc3x, and inc3y, provide
great flexibility in defining the input and output data arrays. The arrangement of
data in storage, however, can have an effect upon cache performance. By using
strides, you can have data scattered in storage. Best performance is obtained with
data closely spaced in storage and with elements of the sequence in contiguous
locations. The optimum values for inc1h, inc1x, and inc1y are 1.

In writing the calling program, you may find it convenient to declare X or Y as a
two-dimensional array. For example, you can declare X in a DIMENSION statement
as X(INC2X,M).

Fourier Transform Considerations
This section describes some ways to optimize performance in the Fourier transform
subroutines.

Setting Up Your Data
Many of the Fourier transform, convolution, and correlation subroutines provide
the facility for processing many sequences in one call. For short sequences, for
example 1024 elements or less, this facility should be used as much as possible.
This provides improved performance compared to processing only one sequence at
a time.

If possible, you should use the same array for input and output. In addition, the
requirements for the strides of the input and output arrays are explained in the
Notes for each subroutine.

For improved performance, small values of inc1x and inc1y should be used, where
applicable, preferably inc1x = 1 and inc1y = 1. A stride of 1 means the sequence
elements are stored contiguously. Also, if possible, the sequences should be stored
close to each other. For all the Fourier transform subroutines except _RCFT and
_CRFT, you should use the STRIDE subroutine to determine the optimal stride(s)
for your input or output data. Complete instructions on how to use STRIDE for
each of these subroutines is included in “STRIDE—Determine the Stride Value for
Optimal Performance in Specified Fourier Transform Subroutines” on page 935.

To obtain the best performance in the three-dimensional Fourier transform
subroutines, you should use strides, inc2 and inc3, provided by the STRIDE
subroutine and declare your three-dimensional data structure as a one-dimensional
array. The three-dimensional Fourier transform subroutines assume that inc1 for
the array is 1. Therefore, each element xijk for i = 0, 1, ..., n1−1, j = 0, 1, ..., n2−1,
and k = 0, 1, ..., n3−1 of the three-dimensional data structure of dimensions n1 by
n2 by n3 is stored in a one-dimensional array X(0:L) at location X(l), where
l = i+inc2(j)+inc3(k). The minimum required value of L is calculated by inserting
the maximum values for i, j, and k in the above equation, giving
L = (n1−1)+inc2(n2−1)+inc3(n3−1). The minimum total size of array X is L+1. To
ensure that this mapping is unique so no two elements xijk occupy the same array
element, X(l), the subroutines have the following restriction: inc2 ≥ n1 and
inc3 ≥ (inc2)(n2). This arrangement of array data in storage leaves some blank

722 ESSL Version 3 Release 3 Guide and Reference

space between successive planes of the array X. By determining the best size for
this space, specifying an optimum inc3 stride, the third dimension of the array
does not create conflicts in the 3090 storage hierarchy.

If the inc3 stride value returned by the STRIDE subroutine turns out to be a
multiple of inc2, the array X can be declared as a three-dimensional array as
X(inc2,inc3/inc2,n3); otherwise, it can be declared as either a one-dimensional array,
X(0:L), as described above, or a two-dimensional array X(0:inc3−1,0:n3−1), where
xijk is stored in X(l,k) where l = i+(inc2)(j).

Using the Scale Argument
If you must multiply either the input or the output sequences by a common factor,
you can avoid the multiplication by letting the scale argument contain the factor.
The subroutines multiply the sine and cosine values by the scale factor during the
initialization. Thus, scaling takes no time after the initialization of the Fourier
transform calculations.

How the Fourier Transform Subroutines Achieve High
Performance

There are two levels of optimization for the fast Fourier transforms (FFTs) in the
ESSL library. For sequences with a large power of 2 length, we provide efficient
radix-2 and radix-8 transform implementations where cache use is optimized. The
cache optimization includes ordering of operations to maximize stride-1 data
access and prefetching cache lines.

Similar optimization techniques are used for sequence lengths which are not a
power of 2 and mixed-radix FFT’s are performed. Many short sequence FFT’s have
sequence size specific optimizations. Some of these optimizations were originally
developed for a vector machine and have been adapted for cache based RISC
machines (see references [1], [5], and [7])

The other optimization in the FFT routine is to treat multiple sequences as
efficiently as possible. Techniques here include blocking sequences to fit into
available CPU cache and transposing sequences to ensure stride-1 access.
Whenever possible, the highest performance can be obtained when multiple
sequences are transformed in a single call.

Convolution and Correlation Considerations
This section describes some ways to optimize performance in the convolution and
correlation subroutines.

Performance Tradeoffs between Subroutines
The subroutines SCON, SCOR, SACOR, SCOND, SCORD, SDCON, SDCOR,
DDCON, and DDCOR compute convolutions, correlations, and autocorrelations
using essentially the same methods. They make a decision, based on estimated
timings, to use one of two methods:
v A direct method that is most efficient when one or both of the input sequences

are short
v A direct method that is most efficient when the output sequence is short

Using this approach has the following advantages:
v In most cases, improved performance can be achieved for direct methods

because:
– No initialization is required.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 723

– No working storage or padding of sequences is necessary.
v In some cases, greater accuracy may be available.
v Negative strides can be used.

In general, using SCONF, SCORF, and SACORF provides the best performance,
because the mixed-radix Fourier transform subroutines are used. However, if you
can determine from your arguments that a direct method is preferred, you should
use SCOND and SCORD instead. These give you better performance for the direct
methods, and also give you additional capabilities.

In cases where there is doubt as to the best choice of a subroutine, perform timing
experiments.

Special Uses of SCORD
The subroutine SCORD can perform the functions of SCON and SACOR; that is, it
can compute convolutions and autocorrelations. To compute a convolution, you
must specify a negative stride for h (see Example 4 in SCORD). To compute the
autocorrelation, you must specify the two input sequences to be the same (see
Example 5 in SCORD).

Special Uses of _DCON and _DCOR
The _DCON and _DCOR subroutines compute convolutions and correlations,
respectively, by the direct method with decimated output. Setting the decimation
interval id = 1 in SDCON and SDCOR provides the same function as SCOND and
SCORD, respectively. Doing the same in DDCON and DDCOR provides
long-precision versions of SCOND and SCORD, respectively, which are not
otherwise available.

Accuracy When Direct Methods Are Used
The direct methods used by the convolution and correlation subroutines use vector
operations to accumulate sums of products. The products are computed and
accumulated in long precision. As a result, higher accuracy can be obtained in the
final results for some types of data. For example, if input data consists only of
integers, and if no intermediate and final numbers become too large (larger than
224−1 for short-precision computations and larger than 256−1 for long-precision
computations), the results are exact.

Accuracy When Fourier Methods Are Used
The Fourier methods used by the convolution and correlation subroutines compute
Fourier transforms of input data that is multiplied element-by-element in
short-precision arithmetic. The inverse Fourier transform is then computed. There
are internally generated rounding errors in the Fourier transforms. It has been
shown in references [96] and [85] that, in the case of white noise data, the relative
root mean square (RMS) error of the Fourier transform is proportional to log2n with
a very small proportionality factor. In general, with random, evenly distributed
data, this is better than the RMS error of the direct method. However, one must
keep in mind the fact that, while the Fourier method may yield a smaller root
mean square error, there can be points with large relative errors. Thus, it can
happen that some points, usually at the ends of the output sequence, can be
obtained with greater relative accuracy with direct methods.

Convolutions and Correlations by Fourier Methods
The convolution and correlation subroutines that use the Fourier methods
determine a sequence length n, whose Fourier transform is computed using ESSL
subroutines. In the simple case where iy0 = 0 for convolution or iy0 = −nh+1 for
correlation, n is chosen as a value greater than or equal to the following, which is
also acceptable to the Fourier tranform subroutines:

724 ESSL Version 3 Release 3 Guide and Reference

nt = min(nh+nx−1, ny) for convolution and correlation
nt = min(nx+nx−1, ny) for autocorrelation

which is also acceptable to the Fourier subroutines.

Related Computation Considerations
This section describes some key points about using the related-computation
subroutines.

Accuracy Considerations
v Many of the subroutines performing short-precision computations provide

increased accuracy by accumulating results in long precision. This is noted in the
functional description for each subroutine.

v There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You Know
About?” on page 42.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 725

Fourier Transform Subroutines
This section contains the Fourier transform subroutine descriptions.

SCFT and DCFT

726 ESSL Version 3 Release 3 Guide and Reference

SCFT and DCFT—Complex Fourier Transform
These subroutines compute a set of m complex discrete n-point Fourier transforms
of complex data.

Table 131. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFT

Long-precision complex Long-precision real DCFT

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SCFT | DCFT (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

C and C++ scft | dcft (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

PL/I CALL SCFT | DCFT (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are
computed. The only arguments that may change after initialization are x, y,
and aux2. All scalar arguments must be the same as when the subroutine
was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m sequences of length n. Specified as: an array
of (at least) length 1+(n−1)inc1x+(m−1)inc2x, containing numbers of the
data type indicated in Table 131.

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2x > 0.

y See “On Return” on page 728.

inc1y is the stride between the elements within each sequence in array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of each sequence in array Y. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2y > 0.

n is the length of each sequence to be transformed. Specified as: a fullword
integer; n ≤ 37748736 and must be one of the values listed in “Acceptable
Lengths for the Transforms” on page 719. For all other values specified less
than 37748736, you have the option of having the next larger acceptable

SCFT and DCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 727

value returned in this argument, as well as in the optionally-recoverable
error 2030. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

m is the number of sequences to be transformed. Specified as: a fullword
integer; m > 0.

isign controls the direction of the transform, determining the sign Isign of the
exponent of Wn, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 730 for its usage.
Specified as: a number of the data type indicated in Table 131 on page 727,
where scale > 0.0 or scale < 0.0

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 > 7 and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas. For values between 7 and the minimum
value, you have the option of having the minimum value returned in this
argument. For details, see “Using Auxiliary Storage in ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCFT and DCFT dynamically
allocate the work area used by the subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

SCFT and DCFT

728 ESSL Version 3 Release 3 Guide and Reference

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms, each of length n.

Returned as: an array of (at least) length 1+(n−1)inc1y+(m−1)inc2y,
containing numbers of the data type indicated in Table 131 on page 727.
This array must be aligned on a doubleword boundary.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. For optimal performance, the preferred value for inc1x and inc1y is 1. This
implies that the sequences are stored with stride 1. The preferred value for
inc2x and inc2y is n. This implies that sequences are stored one after another
without any gap.
It is possible to specify sequences in the transposed form—that is, as rows of a
two-dimensional array. In this case, inc2x (or inc2y) = 1 and inc1x (or inc1y) is
equal to the leading dimension of the array. One can specify either input,
output, or both in the transposed form by specifying appropriate values for the
stride parameters. For selecting optimal values of inc1x and inc1y for _CFT, you
should use “STRIDE—Determine the Stride Value for Optimal Performance in
Specified Fourier Transform Subroutines” on page 935. Example 1 in the
STRIDE subroutine description explains how it is used for _CFT.
If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input. If
m = 1, the inc2x and inc2y values are not used by the subroutine. If you specify
different arrays for X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 53.

Processor-Independent Formulas for SCFT for NAUX1 and
NAUX2

NAUX1 Formulas::
If n ≤ 8192, use naux1 = 20000.
If n > 8192, use naux1 = 20000+1.14n.

NAUX2 Formulas::
If n ≤ 8192, use naux2 = 20000.
If n > 8192, use naux2 = 20000+1.14n.
For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n+256)(min(64, m)).

SCFT and DCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 729

Processor-Independent Formulas for DCFT for NAUX1 and
NAUX2

NAUX1 Formulas::
If n ≤ 2048, use naux1 = 20000.
If n > 2048, use naux1 = 20000+2.28n.

NAUX2 Formulas::
If n ≤ 2048, use naux2 = 20000.
If n > 2048, use naux2 = 20000+2.28n.
For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(2n+256)(min(64, m)).

Function
The set of m complex discrete n-point Fourier transforms of complex data in array
X, with results going into array Y, is expressed as follows:

for:
k = 0, 1, ..., n−1
i = 1, 2, ..., m

where:

and where:
xji are elements of the sequences in array X.
yki are elements of the sequences in array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

For scale = 1.0 and isign being positive, you obtain the discrete Fourier transform,
a function of frequency. The inverse Fourier transform is obtained with
scale = 1.0/n and isign being negative. See references [1], [3], [4], [19], and [20].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transforms.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

SCFT and DCFT

730 ESSL Version 3 Release 3 Guide and Reference

Input-Argument Errors:
1. n > 37748736
2. inc1x, inc2x, inc1y, or inc2y ≤ 0
3. m ≤ 0
4. isign = 0
5. scale = 0.0
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.
8. naux1 ≤ 7
9. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows an input array X with a set of four short-precision complex
sequences:

for j = 0, 1, ..., n−1 with n = 8, and the single frequencies k = 0, 1, 2, and 3. The
arrays are declared as follows:

COMPLEX*8 X(0:1023),Y(0:1023)
REAL*8 AUX1(1693),AUX2(4096)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following four sequences:
(1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.7071, 0.7071) (0.0000, 1.0000) (-0.7071, 0.7071)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.7071, 0.7071) (0.0000, -1.0000) (0.7071, 0.7071)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.7071, -0.7071) (0.0000, 1.0000) (0.7071, -0.7071)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.7071, -0.7071) (0.0000, -1.0000) (-0.7071, -0.7071)

Output: Y contains the following four sequences:
(8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , 1 , SCALE, AUX1 , 1693 , AUX2 , 4096)

SCFT and DCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 731

(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2
This example shows an input array X with a set of four input spike sequences
equal to the output of Example 1. This shows how you can compute the inverse of
the transform in Example 1 by using a negative isign, giving as output the four
sequences listed in the input for Example 1. First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 0.125
X =(same as output Y in Example 1)

Output:

Y =(same as input X in Example 1)

Example 3
This example shows an input array X with a set of four short-precision complex
sequences

for j = 0, 1, ..., n−1 with n = 12, and the single frequencies k = 0, 1, 2, and 3.
Also, inc1x = inc1y = m and inc2x = inc2y = 1 to show how the input and output
arrays can be stored in the transposed form. The arrays are declared as follows:

COMPLEX*8 X (4,0:11),Y(4,0:11)
REAL*8 AUX1(10000),AUX2(10000)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following four sequences:
(1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.8660, 0.5000) (0.5000, 0.8660) (0.0000, 1.0000)
(1.0000, 0.0000) (0.5000, 0.8660) (-0.5000, 0.8660) (-1.0000, 0.0000)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , -1 , SCALE , AUX1 , 1693 , AUX2 , 4096)

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 4 , 1 , Y , 4 , 1 , 12 , 4 , 1 , SCALE, AUX1 , 10000 , AUX2 , 10000)

SCFT and DCFT

732 ESSL Version 3 Release 3 Guide and Reference

(1.0000, 0.0000) (-0.5000, 0.8660) (-0.5000, -0.8660) (1.0000, 0.0000)
(1.0000, 0.0000) (-0.8660, 0.5000) (0.5000, -0.8660) (0.0000, 1.0000)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.8660, -0.5000) (0.5000, 0.8660) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.5000, -0.8660) (-0.5000, 0.8660) (1.0000, 0.0000)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.5000, -0.8660) (-0.5000, -0.8660) (-1.0000, 0.0000)
(1.0000, 0.0000) (0.8660, -0.5000) (0.5000, -0.8660) (0.0000, -1.0000)

Output: Y contains the following four sequences:
(12.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (12.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (12.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (12.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 4
This example shows an input array X with a set of four input spike sequences
exactly equal to the output of Example 3. This shows how you can compute the
inverse of the transform in Example 3 by using a negative isign, giving as output
the four sequences listed in the input for Example 3. First, initialize AUX1 using the
calling sequence shown below with INIT ≠ 0. Then use the same calling sequence
with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0/12.0
X =(same as output Y in Example 3)

Output:

Y =(same as input X in Example 3)

Example 5
This example shows how to compute a transform of a single long-precision
complex sequence. It uses isign = 1 and scale = 1.0. The arrays are declared as
follows:

COMPLEX*16 X(0:7),Y(0:7)
REAL*8 AUX1(26),AUX2(12)

The input in X is an impulse at zero, and the output in Y is constant for all
frequencies. First, initialize AUX1 using the calling sequence shown below with
INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 4 , 1 , Y , 4 , 1 , 12 , 4 , -1 , SCALE , AUX1, 10000, AUX2, 10000)

SCFT and DCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 733

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following sequence:
(1.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)

Output:
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL DCFT(INIT, X , 1 , 0 , Y , 1 , 0 , 8 , 1 , 1 , SCALE , AUX1 , 26 , AUX2 , 12)

SCFT and DCFT

734 ESSL Version 3 Release 3 Guide and Reference

SRCFT and DRCFT—Real-to-Complex Fourier Transform
These subroutines compute a set of m complex discrete n-point Fourier transforms
of real data.

Table 132. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFT

Long-precision real Long-precision complex DRCFT

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

CALL DRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

C and C++ srcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

drcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

PL/I CALL SRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

CALL DRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are
computed. The only arguments that may change after initialization are x, y,
and aux2. All scalar arguments must be the same as when the subroutine
was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m sequences of length n, which are to be
transformed. The sequences are assumed to be stored with stride 1.
Specified as: an array of (at least) length n+(m−1)inc2x, containing numbers
of the data type indicated in Table 132. See “Notes” on page 737 for more
details. (It can be declared as X(inc2x,m).)

inc2x is the stride between the first elements of the sequences in array X. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2x ≥ n.

y See “On Return” on page 737.

inc2y is the stride between the first elements of the sequences in array Y. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2y ≥ (n/2)+1.

n is the length of each sequence to be transformed. Specified as: a fullword
integer; n ≤ 37748736 and must be one of the values listed in “Acceptable

SRCFT and DRCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 735

Lengths for the Transforms” on page 719. For all other values specified less
than 37748736, you have the option of having the next larger acceptable
value returned in this argument. For details, see “Providing a Correct
Transform Length to ESSL” on page 36.

m is the number of sequences to be transformed. Specified as: a fullword
integer; m > 0.

isign controls the direction of the transform, determining the sign Isign of the
exponent of Wn, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 738 for its usage.
Specified as: a number of the data type indicated in Table 132 on page 735,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 > 14 and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas. For values between 14 and the minimum
value, you have the option of having the minimum value returned in this
argument. For details, see “Using Auxiliary Storage in ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SRCFT and DRCFT
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

aux3 this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing naux3 long-precision real
numbers.

SRCFT and DRCFT

736 ESSL Version 3 Release 3 Guide and Reference

naux3 this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m complex
discrete Fourier transforms, each of length n. The sequences are stored
with the stride 1. Due to complex conjugate symmetry, only the first (n/2)
+ 1 elements of each sequence are given in the output—that is, yki, k = 0,
1, ..., n/2, i = 1, 2, ..., m.

Returned as: an array of (at least) length n/2+1+(m−1)inc2y, containing
numbers of the data type indicated in Table 132 on page 735. This array
must be aligned on a doubleword boundary. (It can be declared as
Y(inc2y,m).)

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. In these subroutines, the elements in each sequence in x and y are assumed to
be stored in contiguous storage locations, using a stride of 1; therefore, inc1x
and inc1y values are not a part of the argument list. For optimal performance,
the inc2x and inc2y values should be close to their respective minimum values,
which are given below:

min(inc2x) = n
min(inc2y) = n/2+1

If you specify the same array for X and Y, then inc2x must equal 2(inc2y). In this
case, output overwrites input. If m = 1, the inc2x and inc2y values are not used
by the subroutine. If you specify different arrays for X and Y, they must have
no common elements; otherwise, results are unpredictable. See “Concepts” on
page 53.

4. Be sure to align array X on a doubleword boundary, and specify an even
number for inc2x, if possible.

Processor-Independent Formulas for SRCFT for NAUX1 and
NAUX2

NAUX1 Formulas:
If n ≤ 16384, use naux1 = 25000.
If n > 16384, use naux1 = 20000+0.82n.

NAUX2 Formulas:

SRCFT and DRCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 737

If n ≤ 16384, use naux2 = 20000.
If n > 16384, use naux2 = 20000+0.57n.

Processor-Independent Formulas for DRCFT for NAUX1 and
NAUX2

NAUX1 Formulas:
If n ≤ 4096, use naux1 = 22000.
If n > 4096, use naux1 = 20000+1.64n.

NAUX2 Formulas:
If n ≤ 4096, use naux2 = 20000.
If n > 4096, use naux2 = 20000+1.14n.

Function
The set of m complex conjugate even discrete n-point Fourier transforms of real
data in array X, with results going into array Y, is expressed as follows:

for:
k = 0, 1, ..., n−1
i = 1, 2, ..., m

where:

and where:
xji are elements of the sequences in array X.
yki are elements of the sequences in array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

The output in array Y is complex. For scale = 1.0 and isign being positive, you
obtain the discrete Fourier transform, a function of frequency. The inverse Fourier
transform is obtained with scale = 1.0/n and isign being negative. See references
[1], [4], [19], and [20].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transforms.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

SRCFT and DRCFT

738 ESSL Version 3 Release 3 Guide and Reference

Input-Argument Errors:
1. n > 37748736
2. m ≤ 0
3. inc2x < n
4. inc2y < n/2+1
5. isign = 0
6. scale = 0.0
7. The subroutine has not been initialized with the present arguments.
8. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.
9. naux1 ≤ 14

10. naux1 is too small—that is, less than the minimum required value. Return
code 1 is returned if error 2015 is recoverable.

11. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows an input array X with a set of m cosine sequences cos(2πjk/n),
j = 0, 1, ..., 15 with the single frequencies k = 0, 1, 2, 3. The Fourier transform of
the cosine sequence with frequency k = 0 or n/2 has 1.0 in the 0 or n/2 position,
respectively, and zeros elsewhere. For all other k, the Fourier transform has 0.5 in
the k position and zeros elsewhere. The arrays are declared as follows:

REAL*4 X(0:65535)
COMPLEX*8 Y(0:32768)
REAL*8 AUX1(41928), AUX2(35344), AUX3(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0/16

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000
1.0000 0.9239 0.7071 0.3827
1.0000 0.7071 0.0000 -0.7071
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.9239 0.7071 -0.3827
1.0000 -1.0000 1.0000 -1.0000
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.3827 -0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.7071 0.0000 -0.7071
1.0000 0.9239 0.7071 0.3827

Output: Y contains the following four sequences:

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SRCFT(INIT, X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 35344 , AUX3 , 0)

SRCFT and DRCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 739

(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2
This example shows another transform computation with different data using the
same initialized array AUX1 as in Example 1. The input is also a set of four cosine
sequences cos(2πjk/n), j = 0, 1, ..., 15 with the single frequencies k = 8, 9, 10, 11,
thus including the middle frequency k = 8. The middle frequency has the value
1.0. For other frequencies, the transform has zeros, except for frequencies k and
n−k. Only the values for j = n−k are given in the output.

Call Statement and Input:

SCALE = 1.0/16

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000

-1.0000 -0.9239 -0.7071 -0.3827
1.0000 0.7071 0.0000 -0.7071

-1.0000 -0.3827 0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000

-1.0000 0.3827 0.7071 -0.9239
1.0000 -0.7071 0.0000 0.7071

-1.0000 0.9239 -0.7071 0.3827
1.0000 -1.0000 1.0000 -1.0000

-1.0000 0.9239 -0.7071 0.3827
1.0000 -0.7071 0.0000 0.7071

-1.0000 0.3827 0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000

-1.0000 -0.3827 0.7071 0.9239
1.0000 0.7071 0.0000 -0.7071

-1.0000 -0.9239 -0.7071 -0.3827

Output: Y contains the following four sequences:
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 3
This example uses the mixed-radix capability. The arrays are declared as follows:

REAL*8 X(0:11)
COMPLEX*16 Y(0:6)
REAL*8 AUX1(50),AUX2(50)

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | |

CALL SRCFT(0 , X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 35344 , AUX3 , 0)

SRCFT and DRCFT

740 ESSL Version 3 Release 3 Guide and Reference

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0
X = (1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 ,

1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000)

Output: Y contains the following sequence:
(12.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DRCFT(INIT, X , 0 , Y , 0 , 12 , 1 , 1 , SCALE , AUX1 , 50 , AUX2 , 50)

SRCFT and DRCFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 741

SCRFT and DCRFT—Complex-to-Real Fourier Transform
These subroutines compute a set of m real discrete n-point Fourier transforms of
complex conjugate even data.

Table 133. Data Types

X Y, scale Subroutine

Short-precision complex Short-precision real SCRFT

Long-precision complex Long-precision real DCRFT

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

CALL DCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

C and C++ scrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

dcrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

PL/I CALL SCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

CALL DCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are
computed. The only arguments that may change after initialization are x, y,
and aux2. All scalar arguments must be the same as when the subroutine
was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m sequences. Due to complex conjugate
symmetry, the input consists of only the first (n/2)+1 elements of each
sequence; that is, xji, j = 0, 1, ..., n/2, i = 1, 2, ..., m. The sequences are
assumed to be stored with stride 1.

Specified as: an array of (at least) length n/2+1+(m−1)inc2x, containing
numbers of the data type indicated in Table 133. This array must be
aligned on a doubleword boundary. (It can be declared as X(inc2x,m).)

inc2x is the stride between the first elements of the sequences in array X. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2x ≥ (n/2)+1.

y See “On Return” on page 744.

inc2y is the stride between the first elements of the sequences in array Y. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2y ≥ n.

SCRFT and DCRFT

742 ESSL Version 3 Release 3 Guide and Reference

n is the length of each sequence to be transformed. Specified as: a fullword
integer; n ≤ 37748736 and must be one of the values listed in “Acceptable
Lengths for the Transforms” on page 719. For all other values specified less
than 37748736, you have the option of having the next larger acceptable
value returned in this argument. For details, see “Providing a Correct
Transform Length to ESSL” on page 36.

m is the number of sequences to be transformed. Specified as: a fullword
integer; m > 0.

isign controls the direction of the transform, determining the sign Isign of the
exponent of Wn, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 745 for its usage.
Specified as: a number of the data type indicated in Table 133 on page 742,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 > 13 and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas. For values between 13 and the minimum
value, you have the option of having the minimum value returned in this
argument. For details, see “Using Auxiliary Storage in ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine that is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCRFT and DCRFT
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

aux3 this argument is provided for migration purposes only and is ignored.

SCRFT and DCRFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 743

Specified as: an area of storage, containing naux3 long-precision real
numbers.

naux3 this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms of the complex conjugate even data, each of length n. The
sequences are stored with stride 1.

Returned as: an array of (at least) length n+(m−1)inc2y, containing numbers
of the data type indicated in Table 133 on page 742. See “Notes” for more
details. (It can be declared as Y(inc2y,m).)

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. The elements in each sequence in x and y are assumed to be stored in
contiguous storage locations—that is, with a stride of 1. Therefore, inc1x and
inc1y values are not a part of the argument list. For optimal performance, the
inc2x and inc2y values should be close to their respective minimum values,
which are given below:

min(inc2y) = n
min(inc2x) = n/2+1

If you specify the same array for X and Y, then inc2y must equal 2(inc2x). In this
case, output overwrites input. If m = 1, the inc2x and inc2y values are not used
by the subroutine. If you specify different arrays for X and Y, they must have
no common elements; otherwise, results are unpredictable. See “Concepts” on
page 53.

4. Be sure to align array Y on a doubleword boundary, and specify an even
number for inc2y, if possible.

Processor-Independent Formulas for SCRFT for NAUX1 and
NAUX2

NAUX1 Formulas:
If n ≤ 16384, use naux1 = 25000.
If n > 16384, use naux1 = 20000+0.82n.

NAUX2 Formulas:
If n ≤ 16384, use naux2 = 20000.

SCRFT and DCRFT

744 ESSL Version 3 Release 3 Guide and Reference

If n > 16384, use naux2 = 20000+0.57n.

Processor-Independent Formulas for DCRFT for NAUX1 and
NAUX2

NAUX1 Formulas:
If n ≤ 4096, use naux1 = 22000.
If n > 4096, use naux1 = 20000+1.64n.

NAUX2 Formulas:
If n ≤ 4096, use naux2 = 20000.
If n > 4096, use naux2 = 20000+1.14n.

Function
The set of m real discrete n-point Fourier transforms of complex conjugate even
data in array X, with results going into array Y, is expressed as follows:

for:
k = 0, 1, ..., n−1
i = 1, 2, ..., m

where:

and where:
xji are elements of the sequences in array X.
yki are elements of the sequences in array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

Because of the symmetry, Y has real data. For scale = 1.0 and isign being positive,
you obtain the discrete Fourier transform, a function of frequency. The inverse
Fourier transform is obtained with scale = 1.0/n and isign being negative. See
references [1], [4], [19], and [20].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transforms.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

SCRFT and DCRFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 745

Input-Argument Errors:
1. n > 37748736
2. m ≤ 0
3. inc2x < n/2+1
4. inc2y < n
5. scale = 0.0
6. isign = 0
7. The subroutine has not been initialized with the present arguments.
8. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.
9. naux1 ≤ 13

10. naux1 is too small—that is, less than the minimum required value. Return
code 1 is returned if error 2015 is recoverable.

11. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example uses the mixed-radix capability and shows how to compute a single
transform. The arrays are declared as follows:

COMPLEX*8 X(0:6)
REAL*8 AUX1(50), AUX2(50), AUX3(1)
REAL*4 Y(0:11)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Note: X shows the n/2+1 = 7 elements used in the computation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following sequence:
(1.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)

Output:
Y = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2
This example shows another transform computation with different data using the
same initialized array AUX1 as in Example 1.

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT(INIT, X , 0 , Y , 0 , 12 , 1 , 1 , SCALE, AUX1 , 50 , AUX2 , 50 , AUX3 , 0)

SCRFT and DCRFT

746 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:

SCALE = 1.0

X contains the following sequence:
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)

Output:
Y = (12.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ,

0.0 , 0.0 , 0.0 , 0.0)

Example 3
This example shows how to compute many transforms simultaneously. The arrays
are declared as follows:

COMPLEX*8 X(0:8,2)
REAL*8 AUX1(50), AUX2(16), AUX3(1)
REAL*4 Y(0:15,2)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following two sequences:
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (1.0, 0.0)

Output: Y contains the following two sequences:
16.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT(0 , X , 0 , Y , 0 , 12 , 1 , 1 , SCALE, AUX1 , 50 , AUX2 , 50 , AUX3 , 0)

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT(INIT, X , 9 , Y , 16 , 16 , 2 , 1 , SCALE, AUX1 , 50 , AUX2 , 16 , AUX3 , 0)

SCRFT and DCRFT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 747

0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0

Example 4
This example shows the same array being used for input and output. The arrays
are declared as follows:

COMPLEX*16 X(0:8,2)
REAL*8 AUX1(50), AUX2(16)
REAL*8 Y(0:17,2)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

This requires INC2Y = 2(INC2X). First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to
do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 0.0625

X contains the following two sequences:
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)

(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)

(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0,0.0)

Output: Y contains the following two sequences:
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DCRFT(INIT, X , 9 , Y , 18 , 16 , 2 , -1 , SCALE, AUX1 , 50 , AUX2 , 16)

SCRFT and DCRFT

748 ESSL Version 3 Release 3 Guide and Reference

SCOSF and DCOSF—Cosine Transform
These subroutines compute a set of m real even discrete n-point Fourier transforms
of cosine sequences of real even data.

Table 134. Data Types

X, Y, scale Subroutine

Short-precision real SCOSF

Long-precision real DCOSF

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SCOSF | DCOSF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2)

C and C++ scosf | dcosf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

PL/I CALL SCOSF | DCOSF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are
computed. The only arguments that may change after initialization are x, y,
and aux2. All scalar arguments must be the same as when the subroutine
was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m sequences of length n/2+1. Specified as: an
array of (at least) length 1+(n/2)inc1x+(m−1)inc2x, containing numbers of
the data type indicated in Table 134.

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2x > 0.

y See “On Return” on page 750.

inc1y is the stride between the elements within each sequence in array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of the sequences in array Y. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2y > 0.

n is the transform length. However, due to symmetry, only the first n/2+1
values are given in the input and output. Specified as: a fullword integer;
n ≤ 37748736 and must be one of the values listed in “Acceptable Lengths
for the Transforms” on page 719. For all other values specified less than

SCOSF and DCOSF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 749

37748736, you have the option of having the next larger acceptable value
returned in this argument. For details, see “Providing a Correct Transform
Length to ESSL” on page 36.

m is the number of sequences to be transformed. Specified as: a fullword
integer; m > 0.

scale is the scaling constant scale. See “Function” on page 752 for its usage.
Specified as: a number of the data type indicated in Table 134 on page 749,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 ≥ (minimum value required for
successful processing). To determine a sufficient value, use the
processor-independent formulas. For all other values specified less than the
minimum value, you have the option of having the minimum value
returned in this argument. For details, see “Using Auxiliary Storage in
ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCOSF and DCOSF
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms, where each Fourier transform is real and of length n. However,
due to symmetry, only the first n/2+1 values are given in the output—that
is, yki, k = 0, 1, ..., n/2 for each i = 1, 2, ..., m.

Returned as: an array of (at least) length 1+(n/2)inc1y+(m−1)inc2y,
containing numbers of the data type indicated in Table 134 on page 749.

SCOSF and DCOSF

750 ESSL Version 3 Release 3 Guide and Reference

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. For optimal performance, the preferred value for inc1x and inc1y is 1. This
implies that the sequences are stored with stride 1. In addition, inc2x and inc2y
should be close to n/2+1.
It is possible to specify sequences in the transposed form—that is, as rows of a
two-dimensional array. In this case, inc2x (or inc2y) = 1 and inc1x (or inc1y) is
equal to the leading dimension of the array. One can specify either input,
output, or both in the transposed form by specifying appropriate values for the
stride parameters. For selecting optimal values of inc1x and inc1y for _COSF,
you should use “STRIDE—Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines” on page 935. Example 2 in the
STRIDE subroutine description explains how it is used for _COSF.
If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input. If
m = 1, the inc2x and inc2y values are not used by the subroutine. If you specify
different arrays for X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 53.

Processor-Independent Formulas for SCOSF for NAUX1 and
NAUX2

NAUX1 Formulas::
If n ≤ 16384, use naux1 = 40000.
If n > 16384, use naux1 = 20000+.30n.

NAUX2 Formulas::
If n ≤ 16384, use naux2 = 25000.
If n > 16384, use naux2 = 20000+.32n.
For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/4+257)(min(128, m)).

Processor-Independent Formulas for DCOSF for NAUX1 and
NAUX2

NAUX1 Formulas::
If n ≤ 16384, use naux1 = 35000.
If n > 16384, use naux1 = 20000+.60n.

NAUX2 Formulas::
If n ≤ 16384, use naux2 = 20000.
If n > 16384, use naux2 = 20000+.64n.

SCOSF and DCOSF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 751

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/2+257)(min(128, m)).

Function
The set of m real even discrete n-point Fourier transforms of the cosine sequences
of real data in array X, with results going into array Y, is expressed as follows:

for:
k = 0, 1, ..., n/2
i = 1, 2, ..., m

where:
xji are elements of the sequences in array X, where each sequence contains the
n/2+1 real nonredundant data xji, j = 0, 1, ..., n/2.
yki are elements of the sequences in array Y, where each sequence contains the
n/2+1 real nonredundant data yki, k = 0, 1, ..., n/2.
scale is a scalar value.

You can obtain the inverse cosine transform by specifying scale = 4.0/n. Thus, if
an X input is used with scale = 1.0, and its output is used as input on a subsequent
call with scale = 4.0/n, the original X is obtained. See references [1], [4], [19], and
[20].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transforms.

These subroutines use a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n > 37748736
2. inc1x or inc1y ≤ 0
3. inc2x or inc2y ≤ 0
4. m ≤ 0
5. scale = 0.0
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.

SCOSF and DCOSF

752 ESSL Version 3 Release 3 Guide and Reference

8. naux1 is too small—that is, less than the minimum required value. Return code
1 is returned if error 2015 is recoverable.

9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows an input array X with a set of m cosine sequences of length
n/2+1, cos(jk(2π/n)), j = 0, 1, ..., n/2, with the single frequencies k = 0, 1, 2, 3. The
Fourier transform of the cosine sequence with frequency k = 0 or n/2 has n/2 in
the 0-th or n/2-th position, respectively, and zeros elsewhere. For all other k, the
Fourier transform has n/4 in position k and zeros elsewhere. The arrays are
declared as follows:

REAL*4 X(0:71),Y(0:71)
REAL*8 AUX1(414),AUX2(8960)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000
1.0000 0.9808 0.9239 0.8315
1.0000 0.9239 0.7071 0.3827
1.0000 0.8315 0.3827 -0.1951
1.0000 0.7071 0.0000 -0.7071
1.0000 0.5556 -0.3827 -0.9808
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.1951 -0.9239 -0.5556
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.1951 -0.9239 0.5556
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.5556 -0.3827 0.9808
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.8315 0.3827 0.1951
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.9808 0.9239 -0.8315
1.0000 -1.0000 1.0000 -1.0000
. . . .

Output: Y contains the following four sequences:
16.0000 0.0000 0.0000 0.0000
0.0000 8.0000 0.0000 0.0000
0.0000 0.0000 8.0000 0.0000
0.0000 0.0000 0.0000 8.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 8960)

SCOSF and DCOSF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 753

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
. . . .

Example 2
This example shows an input array X with a set of four input spike sequences
equal to the output of Example 1. This shows how you can compute the inverse of
the transform in Example 1 by using scale = 4.0/n, giving as output the four
sequences listed in the input for Example 1. First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 4.0/32
X =(same sequences as in output Y in Example 1)

Output:

Y =(same sequences as in output X in Example 1)

Example 3
This example shows another computation using the same arguments initialized in
Example 1 and using different input sequence data. The data for this example has
frequencies k = 14, 15, 16, 17. Because only the sequence data has changed,
initialization does not have to be done again.

Call Statement and Input:

SCALE = 1.0

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000

-0.9239 -0.9808 -1.0000 -0.9808
0.7071 0.9239 1.0000 0.9239

-0.3827 -0.8315 -1.0000 -0.8315
0.0000 0.7071 1.0000 0.7071
0.3827 -0.5556 -1.0000 -0.5556

-0.7071 0.3827 1.0000 0.3827
0.9239 -0.1951 -1.0000 -0.1951

-1.0000 0.0000 1.0000 0.0000
0.9239 0.1951 -1.0000 0.1951

-0.7071 -0.3827 1.0000 -0.3827
0.3827 0.5556 -1.0000 0.5556
0.0000 -0.7071 1.0000 -0.7071

-0.3827 0.8315 -1.0000 0.8315

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 8960)

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SCOSF(0 , X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 8960)

SCOSF and DCOSF

754 ESSL Version 3 Release 3 Guide and Reference

0.7071 -0.9239 1.0000 -0.9239
-0.9239 0.9808 -1.0000 0.9808
1.0000 -1.0000 1.0000 -1.0000
. . . .

Output: Y contains the following four sequences:
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
8.0000 0.0000 0.0000 0.0000
0.0000 8.0000 0.0000 8.0000
0.0000 0.0000 16.0000 0.0000
. . . .

SCOSF and DCOSF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 755

SSINF and DSINF—Sine Transform
These subroutines compute a set of m real even discrete n-point Fourier transforms
of sine sequences of real even data.

Table 135. Data Types

X, Y, scale Subroutine

Short-precision real SSINF

Long-precision real DSINF

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SSINF | DSINF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2)

C and C++ ssinf | dsinf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

PL/I CALL SSINF | DSINF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are
computed. The only arguments that may change after initialization are x, y,
and aux2. All scalar arguments must be the same as when the subroutine
was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m sequences of length n/2. Specified as: an
array of (at least) length 1+(n / 2−1)inc1x+(m−1)inc2x, containing numbers
of the data type indicated in Table 135. The first element in X must have a
value of 0.0 (otherwise, incorrect results may occur).

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2x > 0.

y See “On Return” on page 757.

inc1y is the stride between the elements within each sequence in array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of the sequences in array Y. (If
m = 1, this argument is ignored.) Specified as: a fullword integer;
inc2y > 0.

n is the transform length. However, due to symmetry, only the first n/2
values are given in the input and output. Specified as: a fullword integer;
n ≤ 37748736 and must be one of the values listed in “Acceptable Lengths

SSINF and DSINF

756 ESSL Version 3 Release 3 Guide and Reference

for the Transforms” on page 719. For all other values specified less than
37748736, you have the option of having the next larger acceptable value
returned in this argument. For details, see “Providing a Correct Transform
Length to ESSL” on page 36.

m is the number of sequences to be transformed. Specified as: a fullword
integer; m > 0.

scale is the scaling constant scale. See “Function” on page 759 for its usage.
Specified as: a number of the data type indicated in Table 135 on page 756,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 ≥ (minimum value required for
successful processing). To determine a sufficient value, use the
processor-independent formulas. For all other values specified less than the
minimum value, you have the option of having the minimum value
returned in this argument. For details, see “Using Auxiliary Storage in
ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SSINF and DSINF
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms, where each Fourier transform is real and of length n. However,
due to symmetry, only the first n/2 values are given in the output—that is,
yki, k = 0, 1, ..., n/2−1 for each i = 1, 2, ..., m.

SSINF and DSINF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 757

Returned as: an array of (at least) length 1+(n / 2−1)inc1y+(m−1)inc2y,
containing numbers of the data type indicated in Table 135 on page 756.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. For optimal performance, the preferred value for inc1x and inc1y is 1. This
implies that the sequences are stored with stride 1. In addition, inc2x and inc2y
should be close to n/2.
It is possible to specify sequences in the transposed form—that is, as rows of a
two-dimensional array. In this case, inc2x (or inc2y) = 1 and inc1x (or inc1y) is
equal to the leading dimension of the array. One can specify either input,
output, or both in the transposed form by specifying appropriate values for the
stride parameters. For selecting optimal values of inc1x and inc1y for _SINF,
you should use “STRIDE—Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines” on page 935. Example 3 in the
STRIDE subroutine description explains how it is used for _SINF.
If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input. If
m = 1, the inc2x and inc2y values are not used by the subroutine. If you specify
different arrays for X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 53.

Processor-Independent Formulas for SSINF for NAUX1 and
NAUX2

NAUX1 Formulas::
If n ≤ 16384, use naux1 = 60000.
If n > 16384, use naux1 = 20000+.30n.

NAUX2 Formulas::
If n ≤ 16384, use naux2 = 25000.
If n > 16384, use naux2 = 20000+.32n.
For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/4+257)(min(128, m)).

Processor-Independent Formulas for DSINF for NAUX1 and
NAUX2

NAUX1 Formulas::
If n ≤ 16384, use naux1 = 50000.
If n > 16384, use naux1 = 20000+.60n.

NAUX2 Formulas::
If n ≤ 16384, use naux2 = 20000.

SSINF and DSINF

758 ESSL Version 3 Release 3 Guide and Reference

If n > 16384, use naux2 = 20000+.64n.
For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/2+257)(min(128, m)).

Function
The set of m real even discrete n-point Fourier transforms of the sine sequences of
real data in array X, with results going into array Y, is expressed as follows:

for:
k = 0, 1, ..., n/2−1
i = 1, 2, ..., m

where:
x0i = 0.0
xji are elements of the sequences in array X, where each sequence contains the
n/2 real nonredundant data xji, j = 0, 1, ..., n/2−1.
yki are elements of the sequences in array Y, where each sequence contains the
n/2 real nonredundant data yki, k = 0, 1, ..., n/2−1.
scale is a scalar value.

You can obtain the inverse sine transform by specifying scale = 4.0/n. Thus, if an X
input is used with scale = 1.0, and its output is used as input on a subsequent call
with scale = 4.0/n, the original X is obtained. See references [1], [4], [19], and [20].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transforms.

These subroutines use a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n > 37748736
2. inc1x or inc1y ≤ 0
3. inc2x or inc2y ≤ 0
4. m ≤ 0
5. scale = 0.0
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.

SSINF and DSINF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 759

8. naux1 is too small—that is, less than the minimum required value. Return code
1 is returned if error 2015 is recoverable.

9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows an input array X with a set of m sine sequences of length n/2,
sin(jk(2π/n)), j = 0, 1, ..., n/2−1, with the single frequencies k = 1, 2, 3. The
Fourier transform of the sine sequence has n/4 in position k and zeros elsewhere.
The arrays are declared as follows:

REAL*4 X(0:53),Y(0:53)
REAL*8 AUX1(414),AUX2(8960)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X contains the following three sequences:
0.0000 0.0000 0.0000
0.1951 0.3827 0.5556
0.3827 0.7071 0.9239
0.5556 0.9239 0.9808
0.7071 1.0000 0.7071
0.8315 0.9239 0.1951
0.9239 0.7071 -0.3827
0.9808 0.3827 -0.8315
1.0000 0.0000 -1.0000
0.9808 -0.3827 -0.8315
0.9239 -0.7071 -0.3827
0.8315 -0.9239 0.1951
0.7071 -1.0000 0.7071
0.5556 -0.9239 0.9808
0.3827 -0.7071 0.9239
0.1951 -0.3827 0.5556
. . .
. . .

Output: Y contains the following three sequences:
0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 0.0000
0.0000 0.0000 8.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 8960)

SSINF and DSINF

760 ESSL Version 3 Release 3 Guide and Reference

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
. . .
. . .

Example 2
This example shows an input array X with a set of three input spike sequences
equal to the output of Example 1. This shows how you can compute the inverse of
the transform in Example 1 by using scale = 4.0/n, giving as output the three
sequences listed in the input for Example 1. First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 4.0/32
X =(same sequences as in output Y in Example 1)

Output:

Y =(same sequences as in output X in Example 1)

Example 3
This example shows another computation using the same arguments initialized in
Example 1 and using different input sequence data. The data for this example has
frequencies k = 14, 15, 17. Because only the sequence data has changed,
initialization does not have to be done again.

Call Statement and Input:

SCALE = 1.0

X contains the following three sequences:
0.0000 0.0000 0.0000
0.3827 0.1951 -0.1951

-0.7071 -0.3827 0.3827
0.9239 0.5556 -0.5556

-1.0000 -0.7071 0.7071
0.9239 0.8315 -0.8315

-0.7071 -0.9239 0.9239
0.3827 0.9808 -0.9808
0.8573 -1.0000 1.0000

-0.3827 0.9808 -0.9808
0.7071 -0.9239 0.9239

-0.9239 0.8315 -0.8315
1.0000 -0.7071 0.7071

-0.9239 0.5556 -0.5556
0.7071 -0.3827 0.3827

-0.3827 0.1951 -0.1951
. . .
. . .

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 8960)

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SSINF(0 , X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 8960)

SSINF and DSINF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 761

Output: Y contains the following three sequences:
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 -8.0000
0.0000 0.0000 0.0000
. . .
. . .

SSINF and DSINF

762 ESSL Version 3 Release 3 Guide and Reference

SCFT2 and DCFT2—Complex Fourier Transform in Two Dimensions
These subroutines compute the two-dimensional discrete Fourier transform of
complex data.

Table 136. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFT2

Long-precision complex Long-precision real DCFT2

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SCFT2 | DCFT2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2,
naux2)

C and C++ scft2 | dcft2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

PL/I CALL SCFT2 | DCFT2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2,
naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed.
The only arguments that may change after initialization are x, y, and aux2.
All scalar arguments must be the same as when the subroutine was called
for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, containing the two-dimensional data to be transformed,
where each element xj1,j2, using zero-based indexing, is stored in
X(j1(inc1x)+j2(inc2x)) for j1 = 0, 1, ..., n1−1 and j2 = 0, 1, ..., n2−1.

Specified as: an array of (at least) length 1+(n1−1)inc1x+(n2−1)inc2x,
containing numbers of the data type indicated in Table 136. This array
must be aligned on a doubleword boundary, and:

If inc1x = 1, the input array is stored in normal form, and inc2x ≥ n1.

If inc2x = 1, the input array is stored in transposed form, and inc1x ≥ n2.

See “Notes” on page 765 for more details.

inc1x is the stride between the elements in array X for the first dimension.

If the array is stored in the normal form, inc1x = 1.

If the array is stored in the transposed form, inc1x is the leading dimension
of the array and inc1x ≥ n2.

Specified as: a fullword integer; inc1x > 0. If inc2x = 1, then inc1x ≥ n2.

inc2x is the stride between the elements in array X for the second dimension.

SCFT2 and DCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 763

If the array is stored in the transposed form, inc2x = 1.

If the array is stored in the normal form, inc2x is the leading dimension of
the array and inc2x ≥ n1.

Specified as: a fullword integer; inc2x > 0. If inc1x = 1, then inc2x ≥ n1.

y See “On Return” on page 765.

inc1y is the stride between the elements in array Y for the first dimension.

If the array is stored in the normal form, inc1y = 1.

If the array is stored in the transposed form, inc1y is the leading dimension
of the array and inc1y ≥ n2.

Specified as: a fullword integer; inc1y > 0. If inc2y = 1, then inc1y ≥ n2.

inc2y is the stride between the elements in array Y for the second dimension.

If the array is stored in the transposed form, inc2y = 1.

If the array is stored in the normal form, inc2y is the leading dimension of
the array and inc2y ≥ n1.

Specified as: a fullword integer; inc2y > 0. If inc1y = 1, then inc2y ≥ n1.

n1 is the length of the first dimension of the two-dimensional data in the
array to be transformed. Specified as: a fullword integer; n1 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

n2 is the length of the second dimension of the two-dimensional data in the
array to be transformed. Specified as: a fullword integer; n2 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

isign controls the direction of the transform, determining the sign Isign of the
exponents of Wn1 and Wn2, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 767 for its usage.
Specified as: a number of the data type indicated in Table 136 on page 763,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.

SCFT2 and DCFT2

764 ESSL Version 3 Release 3 Guide and Reference

Specified as: a fullword integer; naux1 ≥ (minimum value required for
successful processing). To determine a sufficient value, use the
processor-independent formulas. For all other values specified less than the
minimum value, you have the option of having the minimum value
returned in this argument. For details, see “Using Auxiliary Storage in
ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCFT2 and DCFT2
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, containing the elements resulting from the
two-dimensional discrete Fourier transform of the data in X. Each element
yk1,k2, using zero-based indexing, is stored in Y(k1(inc1y)+k2(inc2y)) for
k1 = 0, 1, ..., n1−1 and k2 = 0, 1, ..., n2−1.

Returned as: an array of (at least) length 1+(n1−1)inc1y+(n2−1)inc2y,
containing numbers of the data type indicated in Table 136 on page 763.
This array must be aligned on a doubleword boundary, and:

If inc1y = 1, the output array is stored in normal form, and inc2y ≥ n1.

If inc2y = 1, the output array is stored in transposed form, and inc1y ≥ n2.

See “Notes” for more details.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between program calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

SCFT2 and DCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 765

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc1x must equal inc1y, and
inc2x must equal inc2y. In this case, output overwrites input. If you specify
different arrays X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 53.

4. By appropriately specifying the inc arguments, this subroutine allows you to
specify that it should use one of two forms of its arrays, the normal
untransposed form or the transposed form. As a result, you do not have to
move any data. Instead, the subroutine performs the adjustments for you. Also,
either the input array or the output array can be in transposed form. The FFT
computation is symmetrical with respect to n1 and n2. They can be
interchanged without the loss of generality. If they are interchanged, an array
that is stored in the normal form appears as an array stored in the transposed
form and vise versa. If, for performance reasons, the forms of the input and
output arrays are different, then the input array should be specified in the
normal form, and the output array should be specified in the transposed form.
This can always be done by interchanging n1 and n2.

5. Although the inc arguments for each array can be arbitrary, in most cases, one
of the inc arguments is 1 for each array. If inc1 = 1, the array is stored in
normal form; that is, the first dimension of the array is along the columns. In
this case, inc2 is the leading dimension of the array and must be at least n1.
Conversely, if inc2 = 1, the array is stored in the transposed form; that is, the
first dimension of the array is along the rows. In this case, inc1 is the leading
dimension of the array and must be at least n2. The rows of the arrays are
accessed with a stride that equals the leading dimension of the array. To
minimize cache interference in accessing a row, an optimal value should be
used for the leading dimension of the array. You should use
“STRIDE—Determine the Stride Value for Optimal Performance in Specified
Fourier Transform Subroutines” on page 935 to determine this optimal value.
Example 4 in the STRIDE subroutine description explains how it is used to find
either inc1 or inc2.

Processor-Independent Formulas for SCFT2 for NAUX1 and
NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas:
If max(n1, n2) ≤ 8192, use naux1 = 40000.
If max(n1, n2) > 8192, use naux1 = 40000+1.14(n1+n2).

NAUX2 Formulas:
If max(n1, n2) < 252, use naux2 = 20000.
If max(n1, n2) ≥ 252, use naux2 = 20000+(r+256)(s+1.14), where r = max(n1,
n2) and s = min(64, n1, n2).

Processor-Independent Formulas for DCFT2 for NAUX1 and
NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas:
If max(n1, n2) ≤ 2048, use naux1 = 40000.
If max(n1, n2) > 2048, use naux1 = 40000+2.28(n1+n2).

NAUX2 Formulas:
If max(n1, n2) < 252, use naux2 = 20000.

SCFT2 and DCFT2

766 ESSL Version 3 Release 3 Guide and Reference

If max(n1, n2) ≥ 252, use naux2 = 20000+(2r+256)(s+2.28), where r = max(n1,
n2) and s = min(64, n1, n2).

Function
The two-dimensional discrete Fourier transform of complex data in array X, with
results going into array Y, is expressed as follows:

for:
k1 = 0, 1, ..., n1−1
k2 = 0, 1, ..., n2−1

where:

and where:
xj1,j2 are elements of array X.
yk1,k2 are elements of array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

For scale = 1.0 and isign being positive, you obtain the discrete Fourier transform,
a function of frequency. The inverse Fourier transform is obtained with
scale = 1.0/((n1)(n2)) and isign being negative. See references [1], [4], and [20].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transform.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 > 37748736
2. n2 > 37748736
3. inc1x|inc2x|inc1y|inc2y ≤ 0
4. scale = 0.0
5. isign = 0
6. The subroutine has not been initialized with the present arguments.

SCFT2 and DCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 767

7. The length of one of the transforms in n1 or n2 is not an allowable value.
Return code 1 is returned if error 2030 is recoverable.

8. naux1 is too small—that is, less than the minimum required value. Return code
1 is returned if error 2015 is recoverable.

9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to compute a two-dimensional transform where both
input and output are stored in normal form (inc1x = inc1y = 1). Also,
inc2x = inc2y so the same array can be used for both input and output. The arrays
are declared as follows:

COMPLEX*8 X(6,8),Y(6,8)
REAL*8 AUX1(20000), AUX2(10000)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage: EQUIVALENCE (X,Y). First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0
X is an array with 6 rows and 8 columns with (1.0, 0.0) in all locations.

Output: Y is an array with 6 rows and 8 columns having (48.0, 0.0) in location
Y(1,1) and (0.0, 0.0) in all others.

Example 2
This example shows how to compute a two-dimensional inverse Fourier transform.
For this example, X is stored in normal untransposed form (inc1x = 1), and Y is
stored in transposed form (inc2y = 1). The arrays are declared as follows:

COMPLEX*16 X(6,8),Y(8,6)
REAL*8 AUX1(20000), AUX2(10000)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0/48.0
X =(same as output Y in Example 1)

Output: Y is an array with 8 rows and 6 columns with (1.0, 0.0) in all locations.

INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT2(INIT, X , 1 , 6 , Y , 1 , 6 , 6 , 8 , 1 , SCALE, AUX1, 20000 , AUX2, 10000)

INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL DCFT2(INIT, X , 1 , 6 , Y , 8 , 1 , 6 , 8 , -1 , SCALE, AUX1 , 20000 , AUX2 , 10000)

SCFT2 and DCFT2

768 ESSL Version 3 Release 3 Guide and Reference

SRCFT2 and DRCFT2—Real-to-Complex Fourier Transform in Two
Dimensions

These subroutines compute the two-dimensional discrete Fourier transform of real
data in a two-dimensional array.

Table 137. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFT2

Long-precision real Long-precision complex DRCFT2

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

CALL DRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

C and C++ srcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

drcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

PL/I CALL SRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

CALL DRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed.
The only arguments that may change after initialization are x, y, and aux2.
All scalar arguments must be the same as when the subroutine was called
for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, containing n1 rows and n2 columns of data to be
transformed. The data in each column is stored with stride 1. Specified as:
an inc2x by (at least) n2 array, containing numbers of the data type
indicated in Table 137. See “Notes” on page 771 for more details.

inc2x is the leading dimension (stride between columns) of array X. Specified as:
a fullword integer; inc2x ≥ n1.

y See “On Return” on page 771.

inc2y is the leading dimension (stride between columns) of array Y. Specified as:
a fullword integer; inc2y ≥ ((n1)/2)+1.

n1 is the number of rows of data—that is, the length of the columns in array X
involved in the computation. The length of the columns in array Y are
(n1)/2+1. Specified as: a fullword integer; n1 ≤ 37748736 and must be one
of the values listed in “Acceptable Lengths for the Transforms” on page 719

SRCFT2 and DRCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 769

page 719. For all other values specified less than 37748736, you have the
option of having the next larger acceptable value returned in this
argument. For details, see “Providing a Correct Transform Length to ESSL”
on page 36.

n2 is the number of columns of data—that is, the length of the rows in arrays
X and Y involved in the computation. Specified as: a fullword integer;
n2 ≤ 37748736 and must be one of the values listed in “Acceptable Lengths
for the Transforms” on page 719. For all other values specified less than
37748736, you have the option of having the next larger acceptable value
returned in this argument. For details, see “Providing a Correct Transform
Length to ESSL” on page 36.

isign controls the direction of the transform, determining the sign Isign of the
exponents of Wn1 and Wn2, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 772 for its usage.
Specified as: a number of the data type indicated in Table 137 on page 769,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 ≥ (minimum value required for
successful processing). To determine a sufficient value, use the
processor-independent formulas. For all other values specified less than the
minimum value, you have the option of having the minimum value
returned in this argument. For details, see “Using Auxiliary Storage in
ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SRCFT2 and DRCFT2
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the

SRCFT2 and DRCFT2

770 ESSL Version 3 Release 3 Guide and Reference

option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

aux3 this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage containing naux3 long-precision real
numbers.

naux3 this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, containing the results of the complex discrete
Fourier transform of X. The output consists of n2 columns of data. The data
in each column is stored with stride 1. Due to complex conjugate
symmetry, the output consists of only the first ((n1)/2)+1 rows of the
array—that is, yk1,k2, where k1 = 0, 1, ..., (n1)/2 and k2 = 0, 1, ..., n2−1.

Returned as: an inc2y by (at least) n2 array, containing numbers of the data
type indicated in Table 137 on page 769. This array must be aligned on a
doubleword boundary.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc2x must equal (2)(inc2y). In
this case, output overwrites input. If you specify different arrays X and Y, they
must have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 53.

4. For selecting optimal strides (or leading dimensions inc2x and inc2y) for your
input and output arrays, you should use “STRIDE—Determine the Stride Value
for Optimal Performance in Specified Fourier Transform Subroutines” on
page 935. Example 5 in the STRIDE subroutine description explains how it is
used for these subroutines.

5. Be sure to align array X on a doubleword boundary, and specify an even
number for inc2x, if possible.

Processor-Independent Formulas for SRCFT2 for NAUX1 and
NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas:
If max(n1/2, n2) ≤ 8192, use naux1 = 45000.

SRCFT2 and DRCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 771

If max(n1/2, n2) > 8192, use naux1 = 40000+0.82n1+1.14n2.

NAUX2 Formulas:
If n1 ≤ 16384 and n2 < 252, use naux2 = 20000.
If n1 > 16384 and n2 < 252, use naux2 = 20000+0.57n1.
If n2 ≥ 252, add the following to the above storage requirements:

(n2+256)(1.14+s)
where s = min(64, 1+n1/2).

Processor-Independent Formulas for DRCFT2 for NAUX1 and
NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas:
If n ≤ 2048, use naux1 = 42000.
If n > 2048, use naux1 = 40000+1.64n1+2.28n2,
where n = max(n1/2, n2).

NAUX2 Formulas:
If n1 ≤ 4096 and n2 < 252, use naux2 = 20000.
If n1 > 4096 and n2 < 252, use naux2 = 20000+1.14n1.
If n2 ≥ 252, add the following to the above storage requirements:

((2)n2+256) (2.28+s)
where s = min(64, 1+n1/2).

Function
The two-dimensional complex conjugate even discrete Fourier transform of real
data in array X, with results going into array Y, is expressed as follows:

for:
k1 = 0, 1, ..., n1−1
k2 = 0, 1, ..., n2−1

where:

and where:
xj1,j2 are elements of array X.
yk1,k2 are elements of array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

The output in array Y is complex. For scale = 1.0 and isign being positive, you
obtain the discrete Fourier transform, a function of frequency. The inverse Fourier
transform is obtained with scale = 1.0/((n1)(n2)) and isign being negative. See
references [1], [4], [19], and [20].

SRCFT2 and DRCFT2

772 ESSL Version 3 Release 3 Guide and Reference

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transform.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 > 37748736
2. n2 > 37748736
3. inc2x < n1
4. inc2y < (n1)/2+1
5. scale = 0.0
6. isign = 0
7. The subroutine has not been initialized with the present arguments.
8. The length of one of the transforms in n1 or n2 is not an allowable value.

Return code 1 is returned if error 2030 is recoverable.
9. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to compute a two-dimensional transform. The arrays are
declared as follows:

COMPLEX*8 Y(0:6,0:7)
REAL*4 X(0:11,0:7)
REAL*8 AUX1(1000), AUX2(1000), AUX3(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X is an array with 12 rows and 8 columns having 1.0 in location X(0,0) and 0.0 in
all others.

Output: Y is an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SRCFT2(INIT, X , 12 , Y , 7 , 12 , 8 , 1 , SCALE, AUX1 , 1000 , AUX2 , 1000 , AUX3 , 0)

SRCFT2 and DRCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 773

Example 2
This example shows another transform computation with different data using the
same initialized array AUX1 in Example 1.

Call Statement and Input:

SCALE = 1.0
X is an array with 12 rows and 8 columns with 1.0 in all locations.

Output: Y is an array with 7 rows and 8 columns having (96.0, 0.0) in location
Y(0,0) and (0.0, 0.0) in all others.

Example 3
This example shows the same array being used for input and output, where
isign = −1 and scale = 1/((N1)(N2)). The arrays are declared as follows:

COMPLEX*16 Y(0:8,0:7)
REAL*8 X(0:19,0:7)
REAL*8 AUX1(1000), AUX2(1000), AUX3(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage.

EQUIVALENCE (X,Y)

This requires inc2x ≥ 2(inc2y). First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to
do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0/128.0

┌ ┐
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |

X = | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| |
| |

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SRCFT2(0 , X , 12 , Y , 7 , 12 , 8 , 1 , SCALE, AUX1, 1000 , AUX2, 1000 , AUX3 , 0)

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL DRCFT2(INIT, X , 20 , Y , 9 , 16 , 8 , -1 , SCALE, AUX1 , 1000 , AUX2 , 1000 , AUX3 , 0)

SRCFT2 and DRCFT2

774 ESSL Version 3 Release 3 Guide and Reference

| |
| |
└ ┘

Output: Y is an array with 9 rows and 8 columns having (1.0, 1.0) in location
Y(4,2) and (0.0, 0.0) in all others.

SRCFT2 and DRCFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 775

SCRFT2 and DCRFT2—Complex-to-Real Fourier Transform in Two
Dimensions

These subroutines compute the two-dimensional discrete Fourier transform of
complex conjugate even data in a two-dimensional array.

Table 138. Data Types

X Y, scale Subroutine

Short-precision complex Short-precision real SCRFT2

Long-precision complex Long-precision real DCRFT2

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

CALL DCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

C and C++ scrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

dcrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

PL/I CALL SCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

CALL DCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed.
The only arguments that may change after initialization are x, y, and aux2.
All scalar arguments must be the same as when the subroutine was called
for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, containing n2 columns of data to be transformed. Due to
complex conjugate symmetry, the input consists of only the first ((n1)/2)+1
rows of the array—that is, xj1,j2, j1 = 0, 1, ..., (n1)/2, j2 = 0, 1, ..., n2−1. The
data in each column is stored with stride 1.

Specified as: an inc2x by (at least) n2 array, containing numbers of the data
type indicated in Table 138. This array must be aligned on a doubleword
boundary.

inc2x is the leading dimension (stride between columns) of array X. Specified as:
a fullword integer; inc2x ≥ ((n1)/2)+1.

y See “On Return” on page 778.

inc2y is the leading dimension (stride between the columns) of array Y. Specified
as: a fullword integer; inc2y ≥ n1+2.

SCRFT2 and DCRFT2

776 ESSL Version 3 Release 3 Guide and Reference

n1 is the number of rows of data—that is, the length of the columns in array Y
involved in the computation. The length of the columns in array X are
(n1)/2+1. Specified as: a fullword integer; n1 ≤ 37748736 and must be one
of the values listed in “Acceptable Lengths for the Transforms” on
page 719. For all other values specified less than 37748736, you have the
option of having the next larger acceptable value returned in this
argument. For details, see “Providing a Correct Transform Length to ESSL”
on page 36.

n2 is the number of columns of data—that is, the length of the rows in arrays
X and Y involved in the computation. Specified as: a fullword integer;
n2 ≤ 37748736 and must be one of the values listed in “Acceptable Lengths
for the Transforms” on page 719. For all other values specified less than
37748736, you have the option of having the next larger acceptable value
returned in this argument. For details, see “Providing a Correct Transform
Length to ESSL” on page 36.

isign controls the direction of the transform, determining the sign Isign of the
exponents of Wn1 and Wn2, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 779 for its usage.
Specified as: a number of the data type indicated in Table 138 on page 776,
where scale > 0.0 or scale < 0.0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux.
Specified as: a fullword integer; naux1 ≥ (minimum value required for
successful processing). To determine a sufficient value, use the
processor-independent formulas. For all other values specified less than the
minimum value, you have the option of having the minimum value
returned in this argument. For details, see “Using Auxiliary Storage in
ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCRFT2 and DCRFT2
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

SCRFT2 and DCRFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 777

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

aux3 this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing naux3 long-precision real
numbers.

naux3 this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is the array Y, containing n1 rows and n2 columns of
results of the real discrete Fourier transform of X. The data in each column
of Y is stored with stride 1.

Returned as: an inc2y by (at least) n2 array, containing numbers of the data
type indicated in Table 138 on page 776. See “Notes” for more details.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between program calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then (2)(inc2x) must equal inc2y. In
this case, output overwrites input. If you specify different arrays X and Y, they
must have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 53.

4. For selecting optimal strides (or leading dimensions inc2x and inc2y) for your
input and output arrays, you should use “STRIDE—Determine the Stride Value
for Optimal Performance in Specified Fourier Transform Subroutines” on
page 935. Example 6 in the STRIDE subroutine description explains how it is
used for these subroutines.

5. Be sure to align array Y on a doubleword boundary, and specify an even
number for inc2y, if possible.

Processor-Independent Formulas for SCRFT2 for NAUX1 and
NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas:
If max(n1/2, n2) ≤ 8192, use naux1 = 45000.

SCRFT2 and DCRFT2

778 ESSL Version 3 Release 3 Guide and Reference

If max(n1/2, n2) > 8192, use naux1 = 40000+0.82n1+1.14n2.

NAUX2 Formulas:
If n1 ≤ 16384 and n2 < 252, use naux2 = 20000.
If n1 > 16384 and n2 < 252, use naux2 = 20000+0.57n1.
If n2 ≥ 252, add the following to the above storage requirements:

(n2+256)(1.14+s)
where s = min(64, 1+n1/2).

Processor-Independent Formulas for DCRFT2 for NAUX1 and
NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas:
If n ≤ 2048, use naux1 = 42000.
If n > 2048, use naux1 = 40000+1.64n1+2.28n2,
where n = max(n1/2, n2).

NAUX2 Formulas:
If n1 ≤ 4096 and n2 < 252, use naux2 = 20000.
If n1 > 4096 and n2 < 252, use naux2 = 20000+1.14n1.
If n2 ≥ 252, add the following to the above storage requirements:

((2)n2+256) (2.28+s)
where s = min(64, 1+n1/2).

Function
The two-dimensional discrete Fourier transform of complex conjugate even data in
array X, with results going into array Y, is expressed as follows:

for:
k1 = 0, 1, ..., n1−1
k2 = 0, 1, ..., n2−1

where:

and where:
xj1,j2 are elements of array X.
yk1,k2 are elements of array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

Because of the complex conjugate symmetry, the output in array Y is real. For
scale = 1.0 and isign being positive, you obtain the discrete Fourier transform, a
function of frequency. The inverse Fourier transform is obtained with
scale = 1.0/((n1)(n2)) and isign being negative. See references [1], [4], and [20].

SCRFT2 and DCRFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 779

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the Fourier transform.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 > 37748736
2. n2 > 37748736
3. inc2x < (n1)/2+1
4. inc2y < n1+2
5. scale = 0.0
6. isign = 0
7. The subroutine has not been initialized with the present arguments.
8. The length of one of the transforms in n1 or n2 is not an allowable value.

Return code 1 is returned if error 2030 is recoverable.
9. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to compute a two-dimensional transform. The arrays are
declared as follows:

REAL*4 Y(0:13,0:7)
COMPLEX*8 X(0:6,0:7)
REAL*8 AUX1(1000), AUX2(1000), AUX3(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0/96.0
X is an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

Output:
┌ ┐
| 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT2(INIT, X , 7 , Y , 14 , 12 , 8 , -1 , SCALE , AUX1 , 1000 , AUX2 , 1000 , AUX3 , 0)

SCRFT2 and DCRFT2

780 ESSL Version 3 Release 3 Guide and Reference

| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
Y = | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |

| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| |
| |
└ ┘

Example 2
This example shows another transform computation with different data using the
same initialized array AUX1 in Example 1.

Call Statement and Input:

SCALE = 1.0/96.0

X is an array with 7 rows and 8 columns having (96.0, 0.0) in location X(0,0) and
(0.0, 0.0) in all others.

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

Y = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| |
| |
└ ┘

Example 3
This example shows the same array being used for input and output. The arrays
are declared as follows:

REAL*8 Y(0:17,0:7)
COMPLEX*16 X(0:8,0:7)
REAL*8 AUX1(1000), AUX2(1000), AUX3(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage.

EQUIVALENCE (X,Y)

This requires inc2y = 2(inc2x). First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to
do the calculation.

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT2(0 , X , 7 , Y , 14 , 12 , 8 , -1 , SCALE , AUX1 , 1000 , AUX2 , 1000 , AUX3 , 0)

SCRFT2 and DCRFT2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 781

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 1.0

X is an array with 9 rows and 8 columns having (1.0, 1.0) in location X(4,2) and
(0.0, 0.0) in all others.

Output:
┌ ┐
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |

Y = | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| |
| |
└ ┘

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL DCRFT2(INIT, X , 9 , Y , 18 , 16 , 8 , 1 , SCALE , AUX1 , 1000 , AUX2 , 1000 , AUX3 , 0)

SCRFT2 and DCRFT2

782 ESSL Version 3 Release 3 Guide and Reference

SCFT3 and DCFT3—Complex Fourier Transform in Three Dimensions
These subroutines compute the three-dimensional discrete Fourier transform of
complex data.

Table 139. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFT3

Long-precision complex Long-precision real DCFT3

Note: For each use, only one invocation of this subroutine is necessary. The
initialization phase, preparing the working storage, is a relatively small part
of the total computation, so it is performed on each invocation.

Syntax

Fortran CALL SCFT3 | DCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++ scft3 | dcft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

PL/I CALL SCFT3 | DCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry:

x is the array X, containing the three-dimensional data to be transformed,
where each element xj1,j2,j3, using zero-based indexing, is stored in
X(j1+j2(inc2x)+j3(inc3x)) for j1 = 0, 1, ..., n1−1, j2 = 0, 1, ..., n2−1, and
j3 = 0, 1, ..., n3−1. The strides for the elements in the first, second, and
third dimensions are assumed to be 1, inc2x(≥ n1), and
inc3x(≥ (n2)(inc2x)), respectively.

Specified as: an array, containing numbers of the data type indicated in
Table 139. This array must be aligned on a doubleword boundary. If the
array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
(LDA1)(LDA2) = inc3x, and LDA3 ≥ n3. For information on how to set up this
array, see “Setting Up Your Data” on page 722. For more details, see
“Notes” on page 785.

inc2x is the stride between the elements in array X for the second dimension.
Specified as: a fullword integer; inc2x ≥ n1.

inc3x is the stride between the elements in array X for the third dimension.
Specified as: a fullword integer; inc3x ≥ (n2)(inc2x).

y See “On Return” on page 784.

inc2y is the stride between the elements in array Y for the second dimension.
Specified as: a fullword integer; inc2y ≥ n1.

inc3y is the stride between the elements in array Y for the third dimension.
Specified as: a fullword integer; inc3y ≥ (n2)(inc2y).

n1 is the length of the first dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n1 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

SCFT3 and DCFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 783

n2 is the length of the second dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n2 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

n3 is the length of the third dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n3 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

isign controls the direction of the transform, determining the sign Isign of the
exponents of Wn1, Wn2, and Wn3, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 786 for its usage.
Specified as: a number of the data type indicated in Table 139 on page 783,
where scale > 0.0 or scale < 0.0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing naux long-precision real
numbers. On output, the contents are overwritten.

naux is the number of doublewords in the working storage specified in aux.
Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SCFT3 and DCFT3
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For
all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y is the array Y, containing the elements resulting from the three-dimensional
discrete Fourier transform of the data in X. Each element yk1,k2,k3, using
zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y)) for k1 = 0, 1, ...,
n1−1, k2 = 0, 1, ..., n2−1, and k3 = 0, 1, ..., n3−1. The strides for the
elements in the first, second, and third dimensions are assumed to be 1,
inc2y(≥ n1), and inc3y(≥ (n2)(inc2y)), respectively.

Returned as: an array, containing numbers of the data type indicated in
Table 139 on page 783. This array must be aligned on a doubleword
boundary. If the array is dimensioned Y(LDA1,LDA2,LDA3), then

SCFT3 and DCFT3

784 ESSL Version 3 Release 3 Guide and Reference

LDA1 = inc2y, (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3. For information on
how to set up this array, see “Setting Up Your Data” on page 722. For more
details, see “Notes”.

Notes
1. If you specify the same array for X and Y, then inc2x must be greater than or

equal to inc2y, and inc3x must be greater than or equal to inc3y. In this case,
output overwrites input. When using the ESSL SMP library in a multithreaded
environment, if inc2x > inc2y or inc3x > inc3y, these subroutines run on a
single thread and issue an attention message.
If you specify different arrays X and Y, they must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 53.

2. You should use “STRIDE—Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines” on page 935 to determine the
optimal values for the strides inc2y and inc3y for your output array. The strides
for your input array do not affect performance. Example 7 in the STRIDE
subroutine description explains how it is used for these subroutines. For
additional information on how to set up your data, see “Setting Up Your Data”
on page 722.

Processor-Independent Formulas for SCFT3 for NAUX
Use the following formulas for calculating naux:
1. If max(n2, n3) < 252 and:

If n1 ≤ 8192, use naux = 60000.
If n1 > 8192, use naux = 60000+2.28n1.

2. If n2 ≥ 252, n3 < 252, and:
If n1 ≤ 8192, use naux = 60000+λ.
If n1 > 8192, use naux = 60000+2.28n1+λ,

where λ = (n2+256)(s+2.28)
and s = min(64, n1).

3. If n2 < 252, n3 ≥ 252, and:
If n1 ≤ 8192, use naux = 60000+ψ.
If n1 > 8192, use naux = 60000+2.28n1+ψ,

where ψ = (n3+256)(s+2.28)
and s = min(64, (n1)(n2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

Processor-Independent Formulas for DCFT3 for NAUX
Use the following formulas for calculating naux:
1. If max(n2, n3) < 252 and:

If n1 ≤ 2048, use naux = 60000.
If n1 > 2048, use naux = 60000+4.56n1.

2. If n2 ≥ 252, n3 < 252, and:
If n1 ≤ 2048, use naux = 60000+λ.
If n1 > 2048, use naux = 60000+4.56n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1).

3. If n2 < 252, n3 ≥ 252, and:
If n1 ≤ 2048, use naux = 60000+ψ.
If n1 > 2048, use naux = 60000+4.56n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, (n1)(n2)).

SCFT3 and DCFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 785

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

Function
The three-dimensional discrete Fourier transform of complex data in array X, with
results going into array Y, is expressed as follows:

for:
k1 = 0, 1, ..., n1−1
k2 = 0, 1, ..., n2−1
k3 = 0, 1, ..., n3−1

where:

and where:
xj1,j2,j3 are elements of array X.
yk1,k2,k3 are elements of array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

For scale = 1.0 and isign being positive, you obtain the discrete Fourier transform,
a function of frequency. The inverse Fourier transform is obtained with
scale = 1.0/((n1)(n2)(n3)) and isign being negative. See references [1], [4], [5], [19],
and [20].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 > 37748736
2. n2 > 37748736
3. n3 > 37748736
4. inc2x < n1
5. inc3x < (n2)(inc2x)
6. inc2y < n1
7. inc3y < (n2)(inc2y)
8. scale = 0.0
9. isign = 0

10. The length of one of the transforms in n1, n2, or n3 is not an allowable value.
Return code 1 is returned if error 2030 is recoverable.

SCFT3 and DCFT3

786 ESSL Version 3 Release 3 Guide and Reference

11. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example
This example shows how to compute a three-dimensional transform. In this
example, INC2X ≥ INC2Y and INC3X ≥ INC3Y, so that the same array can be used for
both input and output. The STRIDE subroutine is called to select good values for
the INC2Y and INC3Y strides. (As explained below, STRIDE is not called for INC2X
and INC3X.) Using the transform lengths (N1 = 32, N2 = 64, and N3 = 40) along
with the output data type (short-precision complex: 'C'), STRIDE is called once for
each stride needed. First, it is called for INC2Y:

CALL STRIDE (N2,N1,INC2Y,'C',0)

The output value returned for INC2Y is 32. Then STRIDE is called again for INC3Y:
CALL STRIDE (N3,N2*INC2Y,INC3Y,'C',0)

The output value returned for INC3Y is 2056. Because INC3Y is not a multiple of
INC2Y, Y is not declared as a three-dimensional array. It is declared as a
two-dimensional array, Y(INC3Y,N3).

To equivalence the X and Y arrays requires INC2X ≥ INC2Y and INC3X ≥ INC3Y.
Therefore, INC2X is set equal to INC2Y(= 32). Also, to declare the X array as a
three-dimensional array, INC3X must be a multiple of INC2X. Therefore, its value is
set as INC3X = (65)(INC2X) = 2080.

The arrays are declared as follows:
COMPLEX*8 X(32,65,40),Y(2056,40)
REAL*8 AUX(30000)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Call Statement and Input:

SCALE = 1.0
X has (1.0,2.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output: Y has (1.0,2.0) in locations Y(ij,k), where ij = 1, 2048 and j = 1, 40. It
remains unchanged elsewhere.

X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
| | | | | | | | | | | | |

CALL SCFT3(X , 32 , 2080 , Y , 32 , 2056 , 32 , 64 , 40 , 1 , SCALE , AUX , 30000)

SCFT3 and DCFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 787

SRCFT3 and DRCFT3—Real-to-Complex Fourier Transform in Three
Dimensions

These subroutines compute the three-dimensional discrete Fourier transform of real
data in a three-dimensional array.

Table 140. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFT3

Long-precision real Long-precision complex DRCFT3

Note: For each use, only one invocation of this subroutine is necessary. The
initialization phase, preparing the working storage, is a relatively small part
of the total computation, so it is performed on each invocation.

Syntax

Fortran CALL SRCFT3 | DRCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++ srcft3 | drcft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

PL/I CALL SRCFT3 | DRCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry:

x is the array X, containing the three-dimensional data to be transformed,
where each element xj1,j2,j3, using zero-based indexing, is stored in
X(j1+j2(inc2x)+j3(inc3x)) for j1 = 0, 1, ..., n1−1, j2 = 0, 1, ..., n2−1, and
j3 = 0, 1, ..., n3−1. The strides for the elements in the first, second, and
third dimensions are assumed to be 1, inc2x(≥ n1), and
inc3x(≥ (n2)(inc2x)), respectively.

Specified as: an array, containing numbers of the data type indicated in
Table 140. If the array is dimensioned X(LDA1,LDA2,LDA3), then
LDA1 = inc2x, (LDA1)(LDA2) = inc3x, and LDA3 ≥ n3. For information on
how to set up this array, see “Setting Up Your Data” on page 722. For more
details, see “Notes” on page 790.

inc2x is the stride between the elements in array X for the second dimension.
Specified as: a fullword integer; inc2x ≥ n1.

inc3x is the stride between the elements in array X for the third dimension.
Specified as: a fullword integer; inc3x ≥ (n2)(inc2x).

y See “On Return” on page 789.

inc2y is the stride between the elements in array Y for the second dimension.
Specified as: a fullword integer; inc2y ≥ n1/2+1.

inc3y is the stride between the elements in array Y for the third dimension.
Specified as: a fullword integer; inc3y ≥ (n2)(inc2y).

n1 is the length of the first dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n1 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

SRCFT3 and DRCFT3

788 ESSL Version 3 Release 3 Guide and Reference

n2 is the length of the second dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n2 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

n3 is the length of the third dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n3 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

isign controls the direction of the transform, determining the sign Isign of the
exponents of Wn1, Wn2, and Wn3, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 791 for its usage.
Specified as: a number of the data type indicated in Table 140 on page 788,
where scale > 0.0 or scale < 0.0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing naux long-precision real
numbers. On output, the contents are overwritten.

naux is the number of doublewords in the working storage specified in aux.
Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SRCFT3 and DRCFT3
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For
all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y is the array Y, containing the elements resulting from the three-dimensional
discrete Fourier transform of the data in X. Each element yk1,k2,k3, using
zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y)) for k1 = 0, 1, ...,
n1/2, k2 = 0, 1, ..., n2−1, and k3 = 0, 1, ..., n3−1. Due to complex conjugate
symmetry, the output consists of only the first n1/2+1 values along the
first dimension of the array, for k1 = 0, 1, ..., n1/2. The strides for the
elements in the first, second, and third dimensions are assumed to be 1,
inc2y(≥ n1/2+1), and inc3y(≥ (n2)(inc2y)), respectively.

Returned as: an array, containing numbers of the data type indicated in
Table 140 on page 788. This array must be aligned on a doubleword

SRCFT3 and DRCFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 789

boundary. If the array is dimensioned Y(LDA1,LDA2,LDA3), then
LDA1 = inc2y, (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3. For information on
how to set up this array, see “Setting Up Your Data” on page 722. For more
details, see “Notes”.

Notes
1. If you specify the same array for X and Y, then inc2x must be greater than or

equal to (2)(inc2y), and inc3x must be greater than or equal to (2)(inc3y). In this
case, output overwrites input. When using the ESSL SMP library in a
multithreaded environment, if inc2x > (2)(inc2y) or inc3x > (2)(inc3y), these
subroutines run on a single thread and issue an attention message.
If you specify different arrays X and Y, they must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 53.

2. To achieve the best performance, you should align array X on a doubleword
boundary, and inc2x and inc3x should be even numbers. The strides for your
input array do not affect performance as long as they are even numbers. In
addition, you should use “STRIDE—Determine the Stride Value for Optimal
Performance in Specified Fourier Transform Subroutines” on page 935 to
determine the optimal values for the strides inc2y and inc3y for your output
array. Example 8 in the STRIDE subroutine description explains how it is used
for these subroutines. For additional information on how to set up your data,
see “Setting Up Your Data” on page 722.

Processor-Independent Formulas for SRCFT3 for NAUX
Use the following formulas for calculating naux:
1. If max(n2, n3) < 252 and:

If n1 ≤ 16384, use naux = 65000.
If n1 > 16384, use naux = 60000+1.39n1.

2. If n2 ≥ 252, n3 < 252, and:
If n1 ≤ 16384, use naux = 65000+λ.
If n1 > 16384, use naux = 60000+1.39n1+λ,

where λ = (n2+256)(s+2.28) and s = min(64, 1+n1/2).
3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 16384, use naux = 65000+ψ.
If n1 > 16384, use naux = 60000+1.39n1+ψ,

where ψ = (n3+256)(s+2.28) and s = min(64, (n2)(1+n1/2)).
4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2

and 3 above.

If inc2x or inc3x is an odd number, or if array X is not aligned on a doubleword
boundary, you should add the following amount to all the formulas given above:

n2(1+n1/2)

Processor-Independent Formulas for DRCFT3 for NAUX
Use the following formulas for calculating naux:
1. If max(n2, n3) < 252 and:

If n1 ≤ 4096, use naux = 62000.
If n1 > 4096, use naux = 60000+2.78n1.

2. If n2 ≥ 252, n3 < 252, and:
If n1 ≤ 4096, use naux = 62000+λ.
If n1 > 4096, use naux = 60000+2.78n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1/2).

3. If n2 < 252, n3 ≥ 252, and:

SRCFT3 and DRCFT3

790 ESSL Version 3 Release 3 Guide and Reference

If n1 ≤ 4096, use naux = 62000+ψ.
If n1 > 4096, use naux = 60000+2.78n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, n2(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

Function
The three-dimensional complex conjugate even discrete Fourier transform of real
data in array X, with results going into array Y, is expressed as follows:

for:
k1 = 0, 1, ..., n1−1
k2 = 0, 1, ..., n2−1
k3 = 0, 1, ..., n3−1

where:

and where:
xj1,j2,j3 are elements of array X.
yk1,k2,k3 are elements of array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

The output in array Y is complex. For scale = 1.0 and isign being positive, you
obtain the discrete Fourier transform, a function of frequency. The inverse Fourier
transform is obtained with scale = 1.0/((n1)(n2)(n3)) and isign being negative. See
references [1], [4], [5], [19], and [20].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 > 37748736
2. n2 > 37748736
3. n3 > 37748736
4. inc2x < n1
5. inc3x < (n2)(inc2x)
6. inc2y < n1/2+1
7. inc3y < (n2)(inc2y)

SRCFT3 and DRCFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 791

8. scale = 0.0
9. isign = 0

10. The length of one of the transforms in n1, n2, or n3 is not an allowable value.
Return code 1 is returned if error 2030 is recoverable.

11. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example
This example shows how to compute a three-dimensional transform. In this
example, INC2X ≥ (2)(INC2Y) and INC3X ≥ (2)(INC3Y), so that the same array can be
used for both input and output. The STRIDE subroutine is called to select good
values for the INC2Y and INC3Y strides. Using the transform lengths (N1 = 32,
N2 = 64, and N2 = 40) along with the output data type (short-precision complex:
'C'), STRIDE is called once for each stride needed. First, it is called for INC2Y:

CALL STRIDE (N2,N1/2+1,INC2Y,'C',0)

The output value returned for INC2Y is 17. (This value is equal to N1/2+1.) Then
STRIDE is called again for INC3Y:

CALL STRIDE (N3,N2*INC2Y,INC3Y,'C',0)

The output value returned for INC3Y is 1088. Because INC3Y is a multiple of
INC2Y—that is, INC3Y = (N2)(INC2Y)—Y is declared as a three-dimensional array,
Y(17,64,40). (In general, for larger arrays, these types of values for INC2Y and
INC3Y are not returned by STRIDE, and you are probably not able to declare Y as a
three-dimensional array.)

To equivalence the X and Y arrays requires INC2X ≥ (2)(INC2Y) and
INC3X ≥ (2)(INC3Y). Therefore, the values INC2X = (2)(INC2Y) = 34 and
INC3X = (2)(INC3Y) = 2176 are set, and X is declared as a three-dimensional array,
X(34,64,40).

The arrays are declared as follows:
REAL*4 X(34,64,40)
COMPLEX*8 Y(17,64,40)
REAL*8 AUX(32000)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Call Statement and Input:

SCALE = 1.0
X has 1.0 in location X(1,1,1) and 0.0 in all other locations.

Output: Y has (1.0,0.0) in all locations.

X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
| | | | | | | | | | | | |

CALL SRCFT3(X , 34 , 2176 , Y , 17 , 1088 , 32 , 64 , 40 , 1 , SCALE , AUX , 32000)

SRCFT3 and DRCFT3

792 ESSL Version 3 Release 3 Guide and Reference

SCRFT3 and DCRFT3—Complex-to-Real Fourier Transform in Three
Dimensions

These subroutines compute the three-dimensional discrete Fourier transform of
complex conjugate even data in a three-dimensional array.

Table 141. Data Types

X Y, scale Subroutine

Short-precision complex Short-precision real SCRFT2

Long-precision complex Long-precision real DCRFT2

Note: For each use, only one invocation of this subroutine is necessary. The
initialization phase, preparing the working storage, is a relatively small part
of the total computation, so it is performed on each invocation.

Syntax

Fortran CALL SCRFT3 | DCRFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++ scrft3 | dcrft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

PL/I CALL SCRFT3 | DCRFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry:

x is the array X, containing the three-dimensional data to be transformed,
where each element xj1,j2,j3, using zero-based indexing, is stored in
X(j1+j2(inc2x)+j3(inc3x)) for j1 = 0, 1, ..., n1/2, j2 = 0, 1, ..., n2−1, and
j3 = 0, 1, ..., n3−1. Due to complex conjugate symmetry, the input consists
of only the first n1/2+1 values along the first dimension of the array, for
j1 = 0, 1, ..., n1/2. The strides for the elements in the first, second, and
third dimensions are assumed to be 1, inc2x(≥ n1/2+1), and
inc3x(≥ (n2)(inc2x)), respectively.

Specified as: an array, containing numbers of the data type indicated in
Table 141. This array must be aligned on a doubleword boundary. If the
array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
(LDA1)(LDA2) = inc3x, and LDA3 ≥ n3. For information on how to set up this
array, see “Setting Up Your Data” on page 722. For more details, see
“Notes” on page 795.

inc2x is the stride between the elements in array X for the second dimension.
Specified as: a fullword integer; inc2x ≥ n1/2+1.

inc3x is the stride between the elements in array X for the third dimension.
Specified as: a fullword integer; inc3x ≥ (n2)(inc2x).

y See “On Return” on page 794.

inc2y is the stride between the elements in array Y for the second dimension.
Specified as: a fullword integer; inc2y ≥ n1+2.

inc3y is the stride between the elements in array Y for the third dimension.
Specified as: a fullword integer; inc3y ≥ (n2)(inc2y).

n1 is the length of the first dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n1 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,

SCRFT3 and DCRFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 793

you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

n2 is the length of the second dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n2 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

n3 is the length of the third dimension of the three-dimensional data in the
array to be transformed. Specified as: a fullword integer; n3 ≤ 37748736
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 719. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in
this argument. For details, see “Providing a Correct Transform Length to
ESSL” on page 36.

isign controls the direction of the transform, determining the sign Isign of the
exponents of Wn1, Wn2, and Wn3, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = − (transforming frequency to time).

Specified as: a fullword integer; isign > 0 or isign < 0.

scale is the scaling constant scale. See “Function” on page 796 for its usage.
Specified as: a number of the data type indicated in Table 141 on page 793,
where scale > 0.0 or scale < 0.0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Specified as:
an area of storage, containing naux long-precision real numbers. On output,
the contents are overwritten.

naux is the number of doublewords in the working storage specified in aux.
Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SCRFT3 and DCRFT3
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For
all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y is the array Y, containing the elements resulting from the three-dimensional
discrete Fourier transform of the data in X. Each element yk1,k2,k3, using
zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y)) for k1 = 0, 1, ...,
n1−1, k2 = 0, 1, ..., n2−1, and k3 = 0, 1, ..., n3−1. The strides for the
elements in the first, second, and third dimensions are assumed to be 1,
inc2y(≥ n1+2), and inc3y(≥ (n2)(inc2y)), respectively.

SCRFT3 and DCRFT3

794 ESSL Version 3 Release 3 Guide and Reference

Returned as: an array, containing numbers of the data type indicated in
Table 141 on page 793. If the array is dimensioned Y(LDA1,LDA2,LDA3), then
LDA1 = inc2y, (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3. For information on
how to set up this array, see “Setting Up Your Data” on page 722. For more
details, see “Notes”.

Notes
1. If you specify the same array for X and Y, then inc2y must equal (2)(inc2x) and

inc3y must equal (2)(inc3x). In this case, output overwrites input. If you specify
different arrays X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 53.

2. To achieve the best performance, you should align array Y on a doubleword
boundary, and inc2y and inc3y should be even numbers. In addition, you
should use “STRIDE—Determine the Stride Value for Optimal Performance in
Specified Fourier Transform Subroutines” on page 935 to determine the optimal
values for the strides inc2y and inc3y for your output array. To obtain the best
performance, you should use inc2x = inc2y/2 and inc3x = inc3y/2. Example 9
in the STRIDE subroutine description explains how it is used for these
subroutines. For additional information on how to set up your data, see
“Setting Up Your Data” on page 722.

Processor-Independent Formulas for SCRFT3 for Calculating
NAUX
Use the following formulas for calculating naux:
1. If max(n2, n3) < 252 and:

If n1 ≤ 16384, use naux = 65000.
If n1 > 16384, use naux = 60000+1.39n1.

2. If n2 ≥ 252, n3 < 252, and:
If n1 ≤ 16384, use naux = 65000+λ.
If n1 > 16384, use naux = 60000+1.39n1+λ,

where λ = (n2+256)(s+2.28)
and s = min(64, 1+n1/2).

3. If n2 < 252, n3 ≥ 252, and:
If n1 ≤ 16384, use naux = 65000+ψ.
If n1 > 16384, use naux = 60000+1.39n1+ψ,

where ψ = (n3+256)(s+2.28)
and s = min(64, (n2)(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

If inc2y or inc3y is an odd number, or if array Y is not aligned on a doubleword
boundary, you should add the following amount to all the formulas given above:

(1+n1/2)(max(n2, n3))

Processor-Independent Formulas for DCRFT3 for NAUX
Use the following formulas for calculating naux:
1. If max(n2, n3) < 252 and:

If n1 ≤ 4096, use naux = 62000.
If n1 > 4096, use naux = 60000+2.78n1.

2. If n2 ≥ 252, n3 < 252, and:
If n1 ≤ 4096, use naux = 62000+λ.
If n1 > 4096, use naux = 60000+2.78n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1/2).

SCRFT3 and DCRFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 795

3. If n2 < 252, n3 ≥ 252, and:
If n1 ≤ 4096, use naux = 62000+ψ.
If n1 > 4096, use naux = 60000+2.78n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, n2(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

Function
The three-dimensional discrete Fourier transform of complex conjugate even data
in array X, with results going into array Y, is expressed as follows:

for:
k1 = 0, 1, ..., n1−1
k2 = 0, 1, ..., n2−1
k3 = 0, 1, ..., n3−1

where:

and where:
xj1,j2,j3 are elements of array X.
yk1,k2,k3 are elements of array Y.
Isign is + or − (determined by argument isign).
scale is a scalar value.

Because of the complex conjugate symmetry, the output in array Y is real. For
scale = 1.0 and isign being positive, you obtain the discrete Fourier transform, a
function of frequency. The inverse Fourier transform is obtained with
scale = 1.0/((n1)(n2)(n3)) and isign being negative. See references [1], [4], [5], [19],
and [20].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 > 37748736
2. n2 > 37748736
3. n3 > 37748736
4. inc2x < n1/2+1
5. inc3x < (n2)(inc2x)

SCRFT3 and DCRFT3

796 ESSL Version 3 Release 3 Guide and Reference

6. inc2y < n1+2
7. inc3y < (n2)(inc2y)
8. scale = 0.0
9. isign = 0

10. The length of one of the transforms in n1, n2, or n3 is not an allowable value.
Return code 1 is returned if error 2030 is recoverable.

11. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example
This example shows how to compute a three-dimensional transform. In this
example, INC2Y = (2)(INC2X) and INC3Y = (2)(INC3X), so that the same array can be
used for both input and output. The STRIDE subroutine is called to select good
values for the INC2Y and INC3Y strides. (As explained below, STRIDE is not called
for INC2X and INC3X.) Using the transform lengths (N1 = 32, N2 = 64, and N3 = 40)
along with the output data type (short-precision real: 'S'), STRIDE is called once
for each stride needed. First, it is called for INC2Y:

CALL STRIDE (N2,N1+2,INC2Y,'S',0)

The output value returned for INC2Y is 34. (This value is equal to N1+2.) Then
STRIDE is called again for INC3Y:

CALL STRIDE (N3,N2*INC2Y,INC3Y,'S',0)

The output value returned for INC3Y is 2176. Because INC3Y is a multiple of
INC2Y—that is, INC3Y = (N2)(INC2Y)—Y is declared as a three-dimensional array,
Y(34,64,40). (In general, for larger arrays, these types of values for INC2Y and
INC3Y are not returned by STRIDE, and you are probably not able to declare Y as a
three-dimensional array.)

A good stride value for INC2X is INC2Y/2, and a good stride value for INC3X is
INC3Y/2. Also, to equivalence the X and Y arrays requires INC2Y = (2)(INC2X) and
INC3Y = (2)(INC3X). Therefore, the values INC2X = INC2Y/2 = 17 and
INC3X = INC3Y/2 = 1088 are set, and X is declared as a three-dimensional array,
X(17,64,40).

The arrays are declared as follows:
COMPLEX*8 X(17,64,40)
REAL*4 Y(34,64,40)
REAL*8 AUX(32000)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Call Statement and Input:

SCALE = 1.0
X has (1.0,0.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output: Y has 1.0 in all locations.

X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
| | | | | | | | | | | | |

CALL SCRFT3(X , 17 , 1088 , Y , 34 , 2176 , 32 , 64 , 40 , 1 , SCALE , AUX , 32000)

SCRFT3 and DCRFT3

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 797

Convolution and Correlation Subroutines
This section contains the convolution and correlation subroutine descriptions.

SCON and SCOR

798 ESSL Version 3 Release 3 Guide and Reference

SCON and SCOR—Convolution or Correlation of One Sequence with
One or More Sequences

These subroutines compute the convolutions and correlations of a sequence with
one or more sequences using a direct method. The input and output sequences
contain short-precision real numbers.

Note: These subroutines are considered obsolete. They are provided in ESSL only
for compatibility with earlier releases. You should use SCOND, SCORD,
SDCON, SDCOR, SCONF, and SCORF instead, because they provide better
performance. For further details, see “Convolution and Correlation
Considerations” on page 723.

Syntax

Fortran CALL SCON | SCOR (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1,
aux2, naux2)

C and C++ scon | scor (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2,
naux2);

PL/I CALL SCON | SCOR (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1,
aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, no computation is performed, error checking is performed, and
the subroutine exits back to the calling program.

If init = 0, the convolutions or correlations of the sequence in h with the
sequences in x are computed.

Specified as: a fullword integer. It can have any value.

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequences in array X. Specified as: an array of (at least)
length 1+(Nh−1)|inc1h|, containing short-precision real numbers.

inc1h is the stride between the elements within the sequence in array H. Specified
as: a fullword integer; inc1h > 0.

x is the array X, consisting of m input sequences of length Nx, each to be
convolved or correlated with the sequence in array H. Specified as: an array
of (at least) length 1 + (m−1)inc2x + (Nx−1)inc1x, containing short-precision
real numbers.

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X.
Specified as: a fullword integer; inc2x > 0.

y See “On Return” on page 800.

inc1y is the stride between the elements within each sequence in output array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of each sequence in output array Y.
Specified as: a fullword integer; inc2y > 0.

SCON and SCOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 799

nh is the number of elements, Nh, in the sequence in array H. Specified as: a
fullword integer; Nh > 0.

nx is the number of elements, Nx, in each sequence in array X. Specified as: a
fullword integer; Nx > 0.

m is the number of sequences in array X to be convolved or correlated.
Specified as: a fullword integer; m > 0.

iy0 is the convolution or correlation index of the element to be stored in the
first position of each sequence in array Y. Specified as: a fullword integer. It
can have any value.

ny is the number of elements, Ny, in each sequence in array Y. Specified as: a
fullword integer; Ny > 0 for SCON and Ny ≥ −Nh+1 for SCOR.

aux1 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

naux1 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

aux2 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

naux2 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

On Return:

y is array Y, consisting of m output sequences of length Ny that are the result
of the convolutions or correlations of the sequence in array H with the
sequences in array X. Returned as: an array of (at least) length 1 +
(m−1)inc2y + (Ny−1)inc1y, containing short-precision real numbers.

Notes
1. Output should not overwrite input; that is, input arrays X and H must have no

common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 53.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. Auxiliary storage is not needed, but the arguments aux1, naux1, aux2, and
naux2 must still be specified. You can assign any values to these arguments.

Function
The convolutions and correlations of a sequence in array H with one or more
sequences in array X are expressed as follows:

Convolutions for SCON:

SCON and SCOR

800 ESSL Version 3 Release 3 Guide and Reference

Correlations for SCOR:

for:
k = iy0, iy0+1, ..., iy0+Ny−1
i = 1, 2, ..., m

where:
yki are elements of the m sequences of length Ny in array Y.
xki are elements of the m sequences of length Nx in array X.
hj are elements of the sequence of length Nh in array H.
iy0 is the convolution or correlation index of the element to be stored in the
first position of each sequence in array Y.
min and max select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See references
[17] and [84].

Only one invocation of this subroutine is needed:
1. You do not need to invoke the subroutine with init ≠ 0. If you do, however, the

subroutine performs error checking, exits back to the calling program, and no
computation is performed.

2. With init = 0, the subroutine performs the calculation of the convolutions or
correlations.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. nh, nx, ny, or m ≤ 0
2. inc1h, inc1x, inc2x, inc1y, or inc2y ≤ 0

Example 1
This example shows how to compute a convolution of a sequence in H, which is a
ramp function, and three sequences in X, a triangular function and its cyclic
translates. It computes the full range of nonzero values of the convolution plus two
extra points, which are set to 0. The arrays are declared as follows:

REAL*4 H(0:4999), X(0:49999), Y(0:49999)
REAL*8 AUX1, AUX2

Call Statement and Input:

INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0)

X contains the following three sequences:

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCON(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, 0, 15, AUX1 , 0 , AUX2 , 0)

SCON and SCOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 801

1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

Output: Y contains the following three sequences:
1.0 2.0 3.0
4.0 5.0 8.0

10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
8.0 12.0 16.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 2
This example shows how the output from Example 1 differs when the values for
NY and inc2y are 10 rather than 15. The output is the same except that it consists of
only the first 10 values produced in Example 1.

Output: Y contains the following three sequences:
1.0 2.0 3.0
4.0 5.0 8.0

10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0

Example 3
This example shows how the output from Example 2 differs if the value for IY0 is
3 rather than 0. The output is the same except it starts at element 3 of the
convolution sequences rather than element 0.

Output: Y contains the following three sequences:
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
8.0 12.0 16.0

SCON and SCOR

802 ESSL Version 3 Release 3 Guide and Reference

Example 4
This example shows how to compute a correlation of a sequence in H, which is a
ramp function, and three sequences in X, a triangular function and its cyclic
translates. It computes the full range of nonzero values of the correlation plus two
extra points, which are set to 0. The arrays are declared as follows:

REAL*4 H(0:4999), X(0:49999), Y(0:49999)
REAL*8 AUX1, AUX2

Call Statement and Input:

INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

Output: Y contains the following three sequences:
4.0 8.0 12.0

11.0 10.0 17.0
20.0 15.0 16.0
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0
16.0 22.0 28.0
7.0 10.0 13.0
2.0 3.0 4.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 5
This example shows how the output from Example 4 differs when the values for
NY and INC2Y are 10 rather than 15. The output is the same except that it consists of
only the first 10 values produced in Example 4.

Output: Y contains the following three sequences:
4.0 8.0 12.0

11.0 10.0 17.0
20.0 15.0 16.0
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCOR(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, -3, 15, AUX1 , 0 , AUX2 , 0)

SCON and SCOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 803

Example 6
This example shows how the output from Example 5 differs if the value for IY0 is
0 rather than −3. The output is the same except it starts at element 0 of the
correlation sequences rather than element −3.

Output: Y contains the following three sequences:
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0
16.0 22.0 28.0
7.0 10.0 13.0
2.0 3.0 4.0

SCON and SCOR

804 ESSL Version 3 Release 3 Guide and Reference

SCOND and SCORD—Convolution or Correlation of One Sequence
with Another Sequence Using a Direct Method

These subroutines compute the convolution and correlation of a sequence with
another sequence using a direct method. The input and output sequences contain
short-precision real numbers.

Notes:

1. These subroutines compute the convolution and correlation using direct
methods. In most cases, these subroutines provide better performance than
using SCON or SCOR, if you determine that SCON or SCOR would have used
a direct method for its computation. For information on how to make this
determination, see reference [4].

2. For long-precision data, you should use DDCON or DDCOR with the
decimation rate, id, equal to 1.

Syntax

Fortran CALL SCOND | SCORD (h, inch, x, incx, y, incy, nh, nx, iy0, ny)

C and C++ scond | scord (h, inch, x, incx, y, incy, nh, nx, iy0, ny);

PL/I CALL SCOND | SCORD (h, inch, x, incx, y, incy, nh, nx, iy0, ny);

On Entry:

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequence in array X. Specified as: an array of (at least)
length 1+(Nh−1)|inch|, containing short-precision real numbers.

inch is the stride between the elements within the sequence in array H. Specified
as: a fullword integer; inch > 0 or inch < 0.

x is the array X, consisting of the input sequence of length Nx, to be
convolved or correlated with the sequence in array H. Specified as: an array
of (at least) length 1+(Nx−1)|incx|, containing short-precision real
numbers.

incx is the stride between the elements within the sequence in array X. Specified
as: a fullword integer; incx > 0 or incx < 0.

y See “On Return”.

incy is the stride between the elements within the sequence in output array Y.
Specified as: a fullword integer; incy > 0 or incy < 0.

nh is the number of elements, Nh, in the sequence in array H. Specified as: a
fullword integer; Nh > 0.

nx is the number of elements, Nx, in the sequence in array X. Specified as: a
fullword integer; Nx > 0.

iy0 is the convolution or correlation index of the element to be stored in the
first position of the sequence in array Y. Specified as: a fullword integer. It
can have any value.

ny is the number of elements, Ny, in the sequence in array Y. Specified as: a
fullword integer; Ny > 0.

On Return:

y is the array Y of length Ny, consisting of the output sequence that is the

SCOND and SCORD

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 805

result of the convolution or correlation of the sequence in array H with the
sequence in array X. Returned as: an array of (at least) length
1+(Ny−1)|incy|, containing short-precision real numbers.

Notes
1. Output should not overwrite input—that is, input arrays X and H must have no

common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 53.

2. If iy0 and ny are such that output outside the basic range is needed, where the
basic range is 0 ≤ k ≤ (nh+nx−2) for SCOND and (−nh+1) ≤ k ≤ (nx−1) for
SCORD, the subroutine stores zeros using scalar code. It is not efficient to store
many zeros in this manner. It is more efficient to set iy0 and ny so that the
output is produced within the above range of k values.

Function
The convolution and correlation of a sequence in array H with a sequence in array
X are expressed as follows:

Convolution for SCOND:

Correlation for SCORD:

for k = iy0, iy0+1, ..., iy0+Ny−1

where:
yk are elements of the sequence of length Ny in array Y.
xk are elements of the sequence of length Nx in array X.
hj are elements of the sequence of length Nh in array H.
iy0 is the convolution or correlation index of the element to be stored in the
first position of each sequence in array Y.
min and max select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See reference
[4].

Special Usage
SCORD can also perform the functions of SCON and SACOR; that is, it can
compute convolutions and autocorrelations. To compute a convolution, you must
specify a negative stride for H (see Example 9). To compute the autocorrelation, you
must specify the two input sequences to be the same (see Example 10). In fact, you
can also compute the autoconvolution by using both of these techniques together,
letting the two input sequences be the same, and specifying a negative stride for
the first input sequence.

SCOND and SCORD

806 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. nh, nx, or ny ≤ 0
2. inch, incx, or incy = 0

Example 1
This example shows how to compute a convolution of a sequence in H with a
sequence in X, where both sequences are ramp functions.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

Example 2
This example shows how the output from Example 1 differs when the value for
IY0 is −2 rather than 0, and NY is 15 rather than 11. The output has two zeros at the
beginning and end of the sequence, for points outside the range of nonzero output.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(H , 1 , X , 1 , Y , 1 , 4 , 8 , -2 , 15)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0,

160.0, 151.0, 122.0, 72.0, 0.0, 0.0)

Example 3
This example shows how the same output as Example 1 can be obtained when H
and X are interchanged, because the convolution is symmetric in H and X. (The
arguments are switched in the calling sequence.)

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(X , 1 , H , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

SCOND and SCORD

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 807

Example 4
This example shows how the output from Example 1 differs when a negative stride
is specified for the sequence in H. By reversing the H sequence, the correlation is
computed.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(H , -1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0,

104.0, 53.0, 18.0)

Example 5
This example shows how to compute the autoconvolution of a sequence by letting
the two input sequences for H and X be the same. (X is specified for both arguments
in the calling sequence.)

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(X , 1 , X , 1 , Y , 1 , 4 , 4 , 0 , 7)

X = (11.0, 12.0, 13.0, 14.0)

Output:
Y = (121.0, 264.0, 430.0, 620.0, 505.0, 364.0, 196.0)

Example 6
This example shows how to compute a correlation of a sequence in H with a
sequence in X, where both sequences are ramp functions.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(H , 1 , X , 1 , Y , 1 , 4 , 8 , -3 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0,

104.0, 53.0, 18.0)

Example 7
This example shows how the output from Example 6 differs when the value for
IY0 is −5 rather than −3 and NY is 15 rather than 11. The output has two zeros at
the beginning and end of the sequence, for points outside the range of nonzero
output.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(H , 1 , X , 1 , Y , 1 , 4 , 8 , -5 , 15)

SCOND and SCORD

808 ESSL Version 3 Release 3 Guide and Reference

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (0.0, 0.0, 44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0,

170.0, 104.0, 53.0, 18.0, 0.0, 0.0)

Example 8
This example shows how the output from Example 6 differs when H and X are
interchanged (in the calling sequence). The output sequence is the reverse of that
in Example 6. To get the full range of output, IY0 is set to −NX+1.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(X , 1 , H , 1 , Y , 1 , 4 , 8 , -7 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (18.0, 53.0, 104.0, 170.0, 160.0, 150.0, 140.0, 130.0,

110.0, 81.0, 44.0)

Example 9
This example shows how the output from Example 6 differs when a negative stride
is specified for the sequence in H. By reversing the H sequence, the convolution is
computed.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(H , -1 , X , 1 , Y , 1 , 4 , 8 , -3 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

Example 10
This example shows how to compute the autocorrelation of a sequence by letting
the two input sequences for H and X be the same. (X is specified for both arguments
in the calling sequence.)

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(X , 1 , X , 1 , Y , 1 , 4 , 4 , -3 , 7)

X = (11.0, 12.0, 13.0, 14.0)

Output:
Y = (154.0, 311.0, 470.0, 630.0, 470.0, 311.0, 154.0)

SCOND and SCORD

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 809

SCONF and SCORF—Convolution or Correlation of One Sequence with
One or More Sequences Using the Mixed-Radix Fourier Method

These subroutines compute the convolutions and correlations, respectively, of a
sequence with one or more sequences using the mixed-radix Fourier method. The
input and output sequences contain short-precision real numbers.

Note: Two invocations of these subroutines are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SCONF | SCORF (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1,
aux2, naux2)

C and C++ sconf | scorf (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2,
naux2);

PL/I CALL SCONF | SCORF (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1,
aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions, the transform of the sequence in h, and
other parameters, depending on arguments other than x, are computed and
saved in aux1. The contents of x and y are not used or changed.

If init = 0, the convolutions or correlations of the sequence that was in h at
initialization with the sequences in x are computed. h is not used or
changed. The only arguments that may change after initialization are x, y,
and aux2. All scalar arguments must be the same as when the subroutine
was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequences in array X. Specified as: an array of (at least)
length 1+(Nh−1)|inc1h|, containing short-precision real numbers.

inc1h is the stride between the elements within the sequence in array H. Specified
as: a fullword integer; inc1h > 0.

x is the array X, consisting of m input sequences of length Nx, each to be
convolved or correlated with the sequence in array H. Specified as: an array
of (at least) length 1+(Nx−1)inc1x+(m−1)inc2x, containing short-precision
real numbers.

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X.
Specified as: a fullword integer; inc2x > 0.

y See “On Return” on page 811.

inc1y is the stride between the elements within each sequence in output array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of each sequence in output array Y.
Specified as: a fullword integer; inc2y > 0.

SCONF and SCORF

810 ESSL Version 3 Release 3 Guide and Reference

nh is the number of elements, Nh, in the sequence in array H. Specified as: a
fullword integer; Nh > 0.

nx is the number of elements, Nx, in each sequence in array X. Specified as: a
fullword integer; Nx > 0.

m is the number of sequences in array X to be convolved or correlated.
Specified as: a fullword integer; m > 0.

iy0 is the convolution or correlation index of the element to be stored in the
first position of each sequence in array Y. Specified as: a fullword integer. It
can have any value.

ny is the number of elements, Ny, in each sequence in array Y. Specified as: a
fullword integer; Ny > 0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the
convolutions.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 > 23 and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas. For values between 23 and the minimum
value, you have the option of having the minimum value returned in this
argument. For details, see “Using Auxiliary Storage in ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCONF and SCORF
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of m output sequences of length Ny

that are the result of the convolutions or correlations of the sequence in
array H with the sequences in array X.

SCONF and SCORF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 811

Returned as: an array of (at least) length 1+(Ny−1)inc1y+(m−1)inc2y,
containing short-precision real numbers.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input.

4. If you specify different arrays for X and Y, they must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. If iy0 and ny are such that output outside the basic range is needed, the
subroutine stores zeros. These ranges are: 0 ≤ k ≤ Nx+Nh−2 for SCONF and
1−Nh ≤ k ≤ Nx−1 for SCORF.

Formulas for the Length of the Fourier Transform
Before calculating the necessary sizes of naux1 and naux2, you must determine the
length n of the Fourier transform. The value of n is based on nf. You can use one of
two techniques to determine nf:
v Use the simple overestimate of nf = nx+nh−1. (If iy0 = 0 and ny > nh+nx, this

is the actual value, not an overestimate.)
v Use the values of the arguments iy0, nh, nx, and ny inserted into the following

formulas to get a value for the variable nf:
iy0p = max(iy0, 0)
ix0 = max((iy0p+1)−nh, 0)
ih0 = max((iy0p+1)−nx, 0)
nd = ix0+ih0
n1 = iy0+ny
nxx = min(n1, nx)−ix0
nhh = min(n1, nh)−ih0
ntt = nxx+nhh−1
nn1 = n1−nd
iyy0 = iy0p−nd
nzleft = max(0, nhh−iyy0−1)
nzrt = min(nn1, ntt)−nxx
nf = max(12, nxx+max(nzleft, nzrt))

After calculating the value for nf, using one of these two techniques, refer to the
formula or table of allowable values of n in “Acceptable Lengths for the
Transforms” on page 719, selecting the value equal to or greater than nf.

Processor-Independent Formulas for NAUX1 and NAUX2
The required values of naux1 and naux2 depend on the value determined for n in
“Formulas for the Length of the Fourier Transform”.

NAUX1 Formulas:

SCONF and SCORF

812 ESSL Version 3 Release 3 Guide and Reference

If n ≤ 16384, use naux1 = 58000.
If n > 16384, use naux1 = 40000+2.14n.

NAUX2 Formulas:
If n ≤ 16384, use naux2 = 30000.
If n > 16384, use naux2 = 20000+1.07n.

Function
The convolutions and correlations of a sequence in array H with one or more
sequences in array X are expressed as follows.

Convolutions for SCONF:

Correlations for SCORF:

for:
k = iy0, iy0+1, ..., iy0+Ny−1
i = 1, 2, ..., m

where:
yki are elements of the m sequences of length Ny in array Y.
xki are elements of the m sequences of length Nx in array X.
hj are elements of the sequence of length Nh in array H.
iy0 is the convolution or correlation index of the element to be stored in the
first position of each sequence in array Y.
min and max select the minimum and maximum values, respectively.

These subroutines use a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application. The length of the
transform, n, that you must calculate to determine the correct sizes for naux1 and
naux2 is the same length used by the Fourier transform subroutines called by this
subroutine. It is assumed that elements outside the range of definition are zero. See
references [17] and [84].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the

aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the convolutions.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

SCONF and SCORF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 813

Computational Errors: None

Input-Argument Errors:
1. nh, nx, ny, or m ≤ 0
2. inc1h, inc1x, inc2x, inc1y, or inc2y ≤ 0
3. The resulting internal Fourier transform length n, is too large. See

“Convolutions and Correlations by Fourier Methods” on page 724.
4. The subroutine has not been initialized with the present arguments.
5. naux1 ≤ 23
6. naux1 is too small—that is, less than the minimum required value. Return code

1 is returned if error 2015 is recoverable.
7. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to compute a convolution of a sequence in H, where H
and X are ramp functions. It calculates all nonzero values of the convolution of the
sequences in H and X. The arrays are declared as follows:

REAL*4 H(8), X(10,1), Y(17)

Because this convolution is symmetric in H and X, you can interchange the H and X
sequences, leaving all other arguments the same, and you get the same output
shown below. First, initialize AUX1 using the calling sequence shown below with
INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0, 480.0,

516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0, 292.0,
160.0)

Example 2
This example shows how the output from Example 1 differs when the value for NY
is 21 rather than 17, and the value for IY0 is −2 rather than 0. This yields two zeros
on each end of the convolution.

Output:
Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0,

480.0, 516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0,
292.0, 160.0, 0.0, 0.0)

Example 3
This example shows how to compute the autoconvolution by letting the two input
sequences be the same for Example 2. First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , X , 1 , 1 , Y, 1 , 1 , 8, 10, 1, 0, 17, AUX1, 128, AUX2, 23)

SCONF and SCORF

814 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

Output:
Y = (1.0, 4.0, 10.0, 20.0, 35.0, 56.0, 84.0, 120.0, 147.0,

164.0, 170.0, 164.0, 145.0, 112.0, 64.0)

Example 4
This example shows how to compute all nonzero values of the convolution of the
sequence in H with the two sequences in X. First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)

X contains the following two sequences:
11.0 12.0
12.0 13.0
13.0 14.0
14.0 15.0
15.0 16.0
16.0 17.0
17.0 18.0
18.0 19.0
19.0 20.0
20.0 11.0

Output: Y contains the following two sequences:
11.0 12.0
34.0 37.0
70.0 76.0

120.0 130.0
185.0 200.0
266.0 287.0
364.0 392.0
480.0 516.0
516.0 552.0
552.0 578.0
567.0 582.0
560.0 563.0
530.0 520.0
476.0 452.0
397.0 358.0
292.0 237.0
160.0 88.0

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , H , 1 , 1 , Y, 1 , 1 , 8, 10, 1, -2, 21, AUX1, 128, AUX2, 23)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , X, 1 , 10 , Y, 1 , 17 , 8, 10, 2, 0, 17, AUX1, 148, AUX2, 43)

SCONF and SCORF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 815

Example 5
This example shows how to compute a correlation of a sequence in H, where H and
X are ramp functions. It calculates all nonzero values of the correlation of the
sequences in H and X. The arrays are declared as follows:

REAL*4 H(8), X(10,1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H =(same as input H in Example 1)
X =(same as input X in Example 1)

Output:
Y = (88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0, 564.0,

600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0,
59.0, 20.0)

Example 6
This example shows how the output from Example 5 differs when the value for NY
is 21 rather than 17, and the value for IY0 is −9 rather than 0. This yields two zeros
on each end of the correlation.

Output:
Y = (0.0, 0.0, 88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0,

564.0, 600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0,
59.0, 20.0, 0.0, 0.0)

Example 7
This example shows the effect of interchanging H and X. It uses the same input as
Example 5, with H and X switched in the calling sequence, and with IY0 with a
value of −9. Unlike convolution, as noted in Example 1, the correlation is not
symmetric in H and X. First, initialize AUX1 using the calling sequence shown below
with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the
calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

Output:
Y = (20.0, 59.0, 116.0, 190.0, 280.0, 385.0, 504.0, 636.0,

600.0, 564.0, 518.0, 463.0, 400.0, 330.0, 254.0, 173.0,
88.0)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCORF(INIT, H , 1 , X, 1 , 1 , Y, 1 , 1 , 8, 10, 1, -7, 17, AUX1, 128, AUX2, 23)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, X , 1 , H, 1 , 1 , Y, 1 , 1 , 8, 10, 1, -9, 17, AUX1, 128, AUX2, 23)

SCONF and SCORF

816 ESSL Version 3 Release 3 Guide and Reference

Example 8
This example shows how to compute the autocorrelation by letting the two input
sequences be the same. First, initialize AUX1 using the calling sequence shown
below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the
calculation. Because there is only one H input sequence, only one autocorrelation
can be computed. Furthermore, this usage does not take advantage of the fact that
the output is symmetric. Therefore, you should use SACORF to compute
autocorrelations, because it does not have either of these problems.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

Output:
Y = (8.0, 23.0, 44.0, 70.0, 100.0, 133.0, 168.0, 204.0, 168.0,

133.0, 100.0 , 70.0, 44.0, 23.0, 8.0)

Example 9
This example shows how to compute all nonzero values of the correlation of the
sequence in H with the two sequences in X. First, initialize AUX1 using the calling
sequence shown below with INIT ≠ 0. Then use the same calling sequence with
INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H =(same as input H in Example 4)
X =(same as input X in Example 4)

Output: Y contains the following two sequences:
88.0 96.0

173.0 188.0
254.0 275.0
330.0 356.0
400.0 430.0
463.0 496.0
518.0 553.0
564.0 600.0
600.0 636.0
636.0 592.0
504.0 462.0
385.0 346.0
280.0 245.0
190.0 160.0
116.0 92.0
59.0 42.0
20.0 11.0

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , H, 1 , 1 , Y, 1 , 1 , 8, 8, 1, -7, 15, AUX1, 148, AUX2, 43)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , X, 1 , 10 , Y, 1 , 17 , 8, 10, 2, -7, 17, AUX1, 148, AUX2, 43)

SCONF and SCORF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 817

SDCON, DDCON, SDCOR, and DDCOR—Convolution or Correlation
with Decimated Output Using a Direct Method

These subroutines compute the convolution and correlation of a sequence with
another sequence, with decimated output, using a direct method.

Table 142. Data Types

h, x, y Subroutine

Short-precision real SDCON

Long-precision real DDCON

Short-precision real SDCOR

Long-precision real DDCOR

Note: These subroutines are the short- and long-precision equivalents of SCOND
and SCORD when the decimation interval id is equal to 1. Because there is
no long-precision version of SCOND and SCORD, you can use DDCON and
DDCOR, respectively, with decimation interval id = 1 to perform the same
function.

Syntax

Fortran CALL SDCON | DDCON | SDCOR | DDCOR (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id)

C and C++ sdcon | ddcon | sdcor | ddcor (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id);

PL/I CALL SDCON | DDCON | SDCOR | DDCOR (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id);

On Entry:

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequence in array X. Specified as: an array of (at least)
length 1+(Nh−1)|inch|, containing numbers of the data type indicated in
Table 142.

inch is the stride between the elements within the sequence in array H. Specified
as: a fullword integer; inch > 0 or inch < 0.

x is the array X, consisting of the input sequence of length Nx, to be
convolved or correlated with the sequence in array H. Specified as: an array
of (at least) length 1+(Nx−1)|incx|, containing numbers of the data type
indicated in Table 142.

incx is the stride between the elements within the sequence in array X. Specified
as: a fullword integer; incx > 0 or incx < 0.

y See “On Return” on page 819.

incy is the stride between the elements within the sequence in output array Y.
Specified as: a fullword integer; incy > 0 or incy < 0.

nh is the number of elements, Nh, in the sequence in array H. Specified as: a
fullword integer; Nh > 0.

nx is the number of elements, Nx, in the sequence in array X. Specified as: a
fullword integer; Nx > 0.

iy0 is the convolution or correlation index of the element to be stored in the
first position of the sequence in array Y. Specified as: a fullword integer. It
can have any value.

SDCON, DDCON, SDCOR, and DDCOR

818 ESSL Version 3 Release 3 Guide and Reference

ny is the number of elements, Ny, in the sequence in array Y. Specified as: a
fullword integer; Ny > 0.

id is the decimation interval id for the output sequence in array Y; that is,
every id-th value of the convolution or correlation is produced. Specified
as: a fullword integer; id > 0.

On Return:

y is the array Y of length Ny, consisting of the output sequence that is the
result of the convolution or correlation of the sequence in array H with the
sequence in array X, given for every id-th value in the convolution or
correlation.

Returned as: an array of (at least) length 1+(Ny−1)|incy|, containing
numbers of the data type indicated in Table 142 on page 818.

Notes
1. If you specify the same array for X and Y, the following conditions must be

true: incx = incy, incx > 0, incy > 0, id = 1, and iy0 ≥ Nh−1 for _DCON and
iy0 ≥ 0 for _DCOR. In this case, output overwrites input. In all other cases,
output should not overwrite input; that is, input arrays X and H must have no
common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 53.

2. If iy0 and ny are such that output outside the basic range is needed, where the
basic range is 0 ≤ k ≤ (nh+nx−2) for SDCON and DDCON and is
(−nh+1) ≤ k ≤ (nx−1) for SDCOR and DDCOR, the subroutine stores zeros
using scalar code. It is not efficient to store many zeros in this manner. If you
anticipate that this will happen, you may want to adjust iy0 and ny, so the
subroutine computes only for k in the above range, or use the ESSL subroutine
SSCAL or DSCAL to store the zeros, so you achieve better performance.

Function
The convolution and correlation of a sequence in array H with a sequence in array
X, with decimated output, are expressed as follows:

Convolution for SDCON and DDCON:

Correlation for SDCOR and DDCOR:

for k = iy0, iy0+id, iy0+(2)id, ..., iy0+(Ny−1)id

where:
yk are elements of the sequence of length Ny in array Y.
xk are elements of the sequence of length Nx in array X.
hj are elements of the sequence of length Nh in array H.

SDCON, DDCON, SDCOR, and DDCOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 819

iy0 is the convolution or correlation index of the element to be stored in the
first position of the sequence in array Y.
min and max select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See reference
[4].

Special Usage
SDCON and DDCON can also perform a correlation, autoconvolution, or
autocorrelation. To compute a correlation, you must specify a negative stride for H.
To compute the autoconvolution, you must specify the two input sequences to be
the same. You can also compute the autocorrelation by using both of these
techniques together, letting the two input sequences be the same, and specifying a
negative stride for the first input sequence. For examples of this, see the examples
for SCOND on page 807. Because SCOND and SDCON are functionally the same,
their results are the same as long as the decimation interval id = 1 for SDCON.

SDCOR and DDCOR can also perform a convolution, autocorrelation, or
autoconvolution. To compute a convolution, you must specify a negative stride for
H. To compute the autocorrelation, you must specify the two input sequences to be
the same. You can also compute the autoconvolution by using both of these
techniques together, letting the two input sequences be the same and specifying a
negative stride for the first input sequence. For examples of these, see the examples
for SCORD on page 808. Because SCORD and SDCOR are functionally the same,
their results are the same as long as the decimation interval id = 1 for SDCOR.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. nh, nx, or ny ≤ 0
2. inch, incx, or incy = 0
3. id ≤ 0

Example 1
This example shows how to compute a convolution of a sequence in H with a
sequence in X, where both sequences are ramp functions. It shows how a
decimated output can be obtained, using the same input as “Example 1” on
page 807 for SCOND and using a decimation interval ID = 2.

Note: For further examples of use, see the examples for SCOND on page 807.
Because SCOND and SDCON are functionally the same, their results are the
same as long as the decimation interval ID = 1 for SDCON.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY ID
| | | | | | | | | | |

CALL SDCON(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 6 , 2)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 70.0, 130.0, 150.0, 151.0, 72.0)

SDCON, DDCON, SDCOR, and DDCOR

820 ESSL Version 3 Release 3 Guide and Reference

Example 2
This example shows how to compute a correlation of a sequence in H with a
sequence in X, where both sequences are ramp functions. It shows how a
decimated output can be obtained, using the same input as “Example 6” on
page 808 for SCORD and using a decimation interval ID = 2.

Note: For further examples of use, see the examples for SCORD on page 808.
Because SCORD and SDCOR are functionally the same, their results are the
same as long as the decimation interval ID = 1 for SDCOR.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY ID
| | | | | | | | | | |

CALL SDCOR(H , 1 , X , 1 , Y , 1 , 4 , 8 , -3 , 6 , 2)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (44.0, 110.0, 140.0, 160.0, 104.0, 18.0)

Example 3
This example shows how to compute the same function as computed in “Example
1” on page 807 for SCOND. The input sequences and arguments are the same as
that example, except a decimation interval ID = 1 is specified here for SDCON.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY ID
| | | | | | | | | | |

CALL SDCON(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11 , 1)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

SDCON, DDCON, SDCOR, and DDCOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 821

SACOR—Autocorrelation of One or More Sequences
This subroutine computes the autocorrelations of one or more sequences using a
direct method. The input and output sequences contain short-precision real
numbers.

Note: This subroutine is considered obsolete. It is provided in ESSL only for
compatibility with earlier releases. You should use SCORD, SDCOR, SCORF
and SACORF instead, because they provide better performance. For further
details, see reference [4].

Syntax

Fortran CALL SACOR (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2)

C and C++ sacor (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

PL/I CALL SACOR (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, no computation is performed, error checking is performed, and
the subroutine exits back to the calling program.

If init = 0, the autocorrelations of the sequence in x are computed.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m input sequences of length Nx, to be
autocorrelated. Specified as: an array of (at least) length
1+(Nx−1)inc1x+(m−1)inc2x, containing short-precision real numbers.

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X.
Specified as: a fullword integer; inc2x > 0.

y See “On Return” on page 823.

inc1y is the stride between the elements within each sequence in output array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of each sequence in output array Y.
Specified as: a fullword integer; inc2y > 0.

nx is the number of elements, Nx, in each sequence in array X. Specified as: a
fullword integer; Nx > 0.

m is the number of sequences in array X to be correlated. Specified as: a
fullword integer; m > 0.

ny is the number of elements, Ny, in each sequence in array Y. Specified as: a
fullword integer; Ny > 0.

aux1 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

naux1 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

SACOR

822 ESSL Version 3 Release 3 Guide and Reference

aux2 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

naux2 is no longer used in the computation, but must still be specified as a
dummy argument (for migration purposes from Version 1 of ESSL). It can
have any value.

On Return:

y is array Y, consisting of m output sequences of length Ny that are the
autocorrelation functions of the sequences in array X. Returned as: an array
of (at least) length 1 + (Ny−1)inc1y + (m−1)inc2y, containing short-precision
real numbers.

Notes
1. Output should not overwrite input; that is, input arrays X and H must have no

common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 53.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. Auxiliary storage is not needed, but the arguments aux1, naux1, aux2, and
naux2 must still be specified. You can assign any values to these arguments.

Function
The autocorrelations of the sequences in array X are expressed as follows:

for:
k = 0, 1, ..., Ny−1
i = 1, 2, ..., m

where:
yki are elements of the m sequences of length Ny in array Y.
xji and xj+k,i are elements of the m sequences of length Nx in array X.

See references [17] and [84].

Only one invocation of this subroutine is needed:
1. You do not need to invoke the subroutine with init ≠ 0. If you do, however, the

subroutine performs error checking, exits back to the calling program, and no
computation is performed.

2. With init = 0, the subroutine performs the calculation of the convolutions or
correlations.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. nx, ny, or m ≤ 0
2. inc1x, inc2x, inc1y, or inc2y ≤ 0 (or incompatible)

SACOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 823

Example 1
This example shows how to compute an autocorrelation for three short sequences
in array X, where the input sequence length NX is equal to the output sequence
length NY. This gives all nonzero autocorrelation values.

The arrays are declared as follows:
REAL*4 X(0:49999), Y(0:49999)
REAL*8 AUX1, AUX2

Call Statement and Input:

INIT = 0(for computation)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

Output: Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0

Example 2
This example shows how the output from Example 1 differs when the values for
NY and INC2Y are 9 rather than 7. This shows that when NY is greater than NX, the
output array is longer, and that part is filled with zeros.

Output: Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 3
This example shows how the output from Example 1 differs when the value for NY
is 5 rather than 7. Also, the values for INC1X and INC1Y are 3, and the values for
INC2X and INC2Y are 1 rather than 7. This shows that when NY is less than NX, the
output array is shortened.

Output: Y contains the following three sequences:

INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SACOR(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1 , 0 , AUX2 , 0)

SACOR

824 ESSL Version 3 Release 3 Guide and Reference

59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0

SACOR

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 825

SACORF—Autocorrelation of One or More Sequences Using the
Mixed-Radix Fourier Method

This subroutine computes the autocorrelations of one or more sequences using the
mixed-radix Fourier method. The input and output sequences contain
short-precision real numbers.

Note: Two invocations of this subroutine are necessary: one to prepare the
working storage for the subroutine, and the other to perform the
computations.

Syntax

Fortran CALL SACORF (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2)

C and C++ sacorf (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

PL/I CALL SACORF (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

On Entry:

init is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the autocorrelations of the sequence in x are computed. The
only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x is the array X, consisting of m input sequences of length Nx, to be
autocorrelated. Specified as: an array of (at least) length
1+(Nx−1)inc1x+(m−1)inc2x, containing short-precision real numbers.

inc1x is the stride between the elements within each sequence in array X.
Specified as: a fullword integer; inc1x > 0.

inc2x is the stride between the first elements of the sequences in array X.
Specified as: a fullword integer; inc2x > 0.

y See “On Return” on page 827.

inc1y is the stride between the elements within each sequence in output array Y.
Specified as: a fullword integer; inc1y > 0.

inc2y is the stride between the first elements of each sequence in output array Y.
Specified as: a fullword integer; inc2y > 0.

nx is the number of elements, Nx, in each sequence in array X. Specified as: a
fullword integer; Nx > 0.

m is the number of sequences in array X to be correlated. Specified as: a
fullword integer; m > 0.

ny is the number of elements, Ny, in each sequence in array Y. Specified as: a
fullword integer; Ny > 0.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

SACORF

826 ESSL Version 3 Release 3 Guide and Reference

If init = 0, the working storage is used in the computation of the
autocorrelations.

Specified as: an area of storage, containing naux1 long-precision real
numbers.

naux1 is the number of doublewords in the working storage specified in aux1.
Specified as: a fullword integer; naux1 > 21 and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas. For values between 21 and the minimum
value, you have the option of having the minimum value returned in this
argument. For details, see “Using Auxiliary Storage in ESSL” on page 29.

aux2 has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is
available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real
numbers. On output, the contents are overwritten.

naux2 is the number of doublewords in the working storage specified in aux2.
Specified as: a fullword integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SACORF dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing).
To determine a sufficient value, use the processor-independent formulas.
For all other values specified less than the minimum value, you have the
option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 29.

On Return:

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of m output sequences of length Ny

that are the autocorrelation functions of the sequences in array X.

Returned as: an array of (at least) length 1+(Ny−1)inc1y+(m−1)inc2y,
containing short-precision real numbers.

aux1 is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

SACORF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 827

3. If you specify the same array for X and Y, then inc1x and inc1y must be equal
and inc2x and inc2y must be equal. In this case, output overwrites input.

4. If you specify different arrays for X and Y, they must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. If ny is such that output outside the basic range is needed, the subroutine
stores zeros. This range is: 0 ≤ k ≤ nx−1.

Formula for Calculating the Length of the Fourier Transform
Before calculating the necessary sizes of naux1 and naux2, you must determine the
length n of the Fourier transform. To do this, you use the values of the arguments
nx and ny, inserted into the following formula, to get a value for the variable nf.
After calculating nf, reference the formula or table of allowable values of n in
“Acceptable Lengths for the Transforms” on page 719, selecting the value equal to
or greater than nf. Following is the formula for determining nf:

nf = min(ny, nx)+nx+1

Processor-Independent Formulas for NAUX1 and NAUX2
The required values of naux1 and naux2 depend on the value determined for n in
“Formula for Calculating the Length of the Fourier Transform” and the argument
m.

NAUX1 Formulas:
If n ≤ 16384, use naux1 = 55000.
If n > 16384, use naux1 = 40000+1.89n.

NAUX2 Formulas:
If n ≤ 16384, use naux2 = 50000.
If n > 16384, use naux2 = 40000+1.64n.

Function
The autocorrelations of the sequences in array X are expressed as follows:

for:
k = 0, 1, ..., Ny−1
i = 1, 2, ..., m

where:
yki are elements of the m sequences of length Ny in array Y.
xji and xj+k,i are elements of the m sequences of length Nx in array X.

This subroutine uses a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application. The length of the
transform, n, that you must calculate to determine the correct sizes for naux1 and
naux2 is the same length used by the Fourier transform subroutines called by this
subroutine. See references [17] and [84].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.

SACORF

828 ESSL Version 3 Release 3 Guide and Reference

2. With init = 0, the subroutine checks that the initialization arguments in the
aux1 working storage correspond to the present arguments, and if so, performs
the calculation of the autocorrelations.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. nx, ny, or m ≤ 0
2. inc1x, inc2x, inc1y, or inc2y ≤ 0 (or incompatible)
3. The resulting correlation is too long.
4. The subroutine has not been initialized with the present arguments.
5. naux1 ≤ 21
6. naux1 is too small—that is, less than the minimum required value. Return code

1 is returned if error 2015 is recoverable.
7. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to compute an autocorrelation for three short sequences
in array X, where the input sequence length NX is equal to the output sequence
length NY. This gives all nonzero autocorrelation values. The arrays are declared as
follows:

REAL*4 X(0:49999), Y(0:49999)
REAL*8 AUX1(30788), AUX2(17105)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then
use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

Output: Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0

INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SACORF(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1, 2959, AUX2, 4354)

SACORF

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 829

29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0

Example 2
This example shows how the output from Example 1 differs when the value for NY
and INC2Y are 9 rather than 7. This shows that when NY is greater than NX, the
output array is longer and that part is filled with zeros.

Output: Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 3
This example shows how the output from Example 1 differs when the value for NY
is 5 rather than 7. Also, the values for INC1X and INC1Y are 3 rather than 1, and the
values for INC2X and INC2Y are 1 rather than 7. This shows that when NY is less
than NX, the output array is shortened.

Output: Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0

SACORF

830 ESSL Version 3 Release 3 Guide and Reference

Related-Computation Subroutines
This section contains the related-computation subroutine descriptions.

SPOLY and DPOLY

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 831

SPOLY and DPOLY—Polynomial Evaluation
These subroutines evaluate a polynomial of degree k, using coefficient vector u,
input vector x, and output vector y:

where uk, xi, and yi are elements of u, x, and y, respectively.

Table 143. Data Types

u, x, y Subroutine

Short-precision real SPOLY

Long-precision real DPOLY

Syntax

Fortran CALL SPOLY | DPOLY (u, incu, k, x, incx, y, incy, n)

C and C++ spoly | dpoly (u, incu, k, x, incx, y, incy, n);

PL/I CALL SPOLY | DPOLY (u, incu, k, x, incx, y, incy, n);

On Entry:

u is the coefficient vector u of length k+1. It contains elements u0, u1, u0, u1,
u2, ..., uk, which are stored in this order. Specified as: a one-dimensional
array of (at least) length 1+k|incu|, containing numbers of the data type
indicated in Table 143.

incu is the stride for vector u. Specified as: a fullword integer. It can have any
value.

k is the degree k of the polynomial. Specified as: a fullword integer; k ≥ 0.

x is the input vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n−1)|incx|, containing numbers of the data type
indicated in Table 143.

incx is the stride for vector x. Specified as: a fullword integer. It can have any
value.

y See “On Return”.

incy is the stride for the output vector y. Specified as: a fullword integer. It can
have any value.

n is the number of elements in input vector x and the number of resulting
elements in output vector y. Specified as: a fullword integer; n ≥ 0.

On Return:

y is the output vector y of length n, containing the results of the polynomial
evaluation. Returned as: a one-dimensional array of (at least) length
1+(n−1)|incy|, containing numbers of the data type indicated in Table 143.

Note
Vectors u, x, and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 53.

SPOLY and DPOLY

832 ESSL Version 3 Release 3 Guide and Reference

Function
The evaluation of the polynomial:

is expressed as follows:
yi = u0+xi (u1+xi (u2+ ...+xi (uk−1 + xiuk) ...) for i = 1, 2, ..., n

See reference [81] for Horner’s Rule. If n is 0, no computation is performed. For
SPOLY, intermediate results are accumulated in long precision.

SPOLY provides the same function as the IBM 3838 function POLY, with
restrictions removed. DPOLY provides a long-precision computation that is not
included in the IBM 3838 functions. See the IBM 3838 Array Processor Functional
Characteristics manual.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. k < 0
2. n < 0

Example 1
This example shows a polynomial evaluation with the degree, K, equal to 0.

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , INCU , 0 , X , INCX , Y , 1 , 3)

U = (4.0)
INCU =(not relevant)
X =(not relevant)
INCX =(not relevant)

Output:
Y = (4.0, 4.0, 4.0)

Example 2
This example shows a polynomial evaluation, using a negative stride INCU for
vector u. For u, processing begins at element U(4) which is 1.0.

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , -1 , 3 , X , 1 , Y , 1 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, 1.0, -3.0)

Output:
Y = (49.0, 10.0, -86.0)

SPOLY and DPOLY

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 833

Example 3
This example shows a polynomial evaluation, using a stride INCX of 0 for input
vector x.

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , 1 , 3 , X , 0 , Y , 1 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, . , .)

Output:
Y = (26.0, 26.0, 26.0)

Example 4
This example shows a polynomial evaluation, using a stride INCX greater than 1 for
input vector x, and a negative stride INCY for output vector y. For y, results are
stored beginning at element Y(5).

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , 1 , 3 , X , 2 , Y , -2 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, . , -3.0, . , 1.0)

Output:
Y = (10.0, . , -14.0, . , 26.0)

SPOLY and DPOLY

834 ESSL Version 3 Release 3 Guide and Reference

SIZC and DIZC—I-th Zero Crossing
These subroutines find the position of the i-th zero crossing in vector x. This is the
i-th transition between positive and negative or negative and positive, where 0 is
considered a positive value. It returns the position of the element in vector x where
the i-th zero crossing is detected. The direction of the scan is either from the first
element to the last or from the last element to the first, depending on the value
you specify for the scan direction argument.

Table 144. Data Types

x Subroutine

Short-precision real SIZC

Long-precision real DIZC

Syntax

Fortran CALL SIZC | DIZC (x, idrx, n, i, ky)

C and C++ sizc | dizc (x, idrx, n, i, ky);

PL/I CALL SIZC | DIZC (x, idrx, n, i, ky);

On Entry:

x is the target vector x of length n. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in
Table 144.

idrx indicates the scan direction. If it is positive or 0, x is scanned from the first
element to the last (1, n). If it is negative, x is scanned from the last
element to the first (n, 1). Specified as: a fullword integer. It can have any
value.

n is the number of elements in vector x. Specified as: a fullword integer;
n > 1.

i is the number of the zero crossing to be identified. Specified as: a fullword
integer; i > 0.

ky See “On Return”.

On Return:

ky is the integer vector ky of length 2, containing elements ky1 and ky2, where:

If the i-th zero crossing is found:
v ky1 = j, where j is the position of the element xj at the point that the i-th

zero crossing is found. The position is always relative to the beginning
of the vector regardless of the scan direction.

v ky2 = i

If the i-th zero crossing is not found:
v ky1 = 0
v ky2 = the total number of zero crossings encountered in the scan.

Returned as: an array of (at least) length 2, containing fullword integers.

SIZC and DIZC

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 835

Note
The aux and naux arguments, required in some earlier releases of ESSL, are no
longer required by these subroutines. If your program still includes them, you do
not have to change your program; it continues to run normally. It ignores these
arguments. However, if you did any program checking for error code 2015, you
may want to remove it, because this error no longer occurs. (You must not code
these arguments in your C program.)

Function
The i-th zero crossing in vector x is found by scanning vector x for i occurrences of
TRUE for the following logical expressions. A zero crossing is defined here as a
crossing either from a positive value to a negative value or from a negative value
to a positive value, where 0 is considered a positive value. If the i-th zero crossing
is found, the value of j at that point is returned in ky1 as the position of the i-th
zero crossing, and i is returned in ky2.

If idrx ≥ 0:
TRUE = (xj−1 < 0 and xj ≥ 0) or (xj−1 ≥ 0 and xj < 0) for j = 2, n

If idrx < 0:
TRUE = (xj+1 < 0 and xj ≥ 0) or (xj+1 ≥ 0 and xj < 0) for j = n−1, 1

If the position of the i-th zero crossing is not found, 0 is returned in y1 and the
number of zero crossings encountered in the scan is returned in y2.

SIZC provides the same functions as the IBM 3838 functions NZCP and NZCN,
with restrictions removed. It combines these functions into one ESSL subroutine.
DIZC provides a long-precision computation that is not included in the IBM 3838
functions. See the IBM 3838 Array Processor Functional Characteristics manual.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n ≤ 1
2. i ≤ 0

Example 1
This example shows a scan of a vector x from the first element to the last. It is
looking for the fifth zero crossing, which is encountered at position 9.

Call Statement and Input:
X IDRX N I KY
| | | | |

CALL SIZC(X , 1 , 12 , 5 , KY)

X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0,
2.0, -9.0)

Output:
KY = (9, 5)

Example 2
This example shows a scan of a vector x from the last element to the first. It is
looking for the seventh zero crossing, which is encountered at position 3. Because
IDRX is negative, X is scanned from the last element, X(12), to the first element,
X(1).

SIZC and DIZC

836 ESSL Version 3 Release 3 Guide and Reference

Call Statement and Input:
X IDRX N I KY
| | | | |

CALL SIZC(X , -1 , 12 , 7 , KY)

X = (2.0, -1.0, 3.0, -3.0, 0.0, -8.0, -2.0, 0.0, -5.0, -3.0,
2.0, -9.0)

Output:
KY = (3, 7)

Example 3
This example shows a scan of a vector x when the i-th zero crossing is not found.
It encounters seven zero crossings and returns this value in KY(2).

Call Statement and Input:
X IDRX N I KY
| | | | |

CALL SIZC(X , 1 , 12 , 10 , KY)

X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0,
2.0, -9.0)

Output:
KY = (0, 7)

SIZC and DIZC

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 837

STREC and DTREC—Time-Varying Recursive Filter
These subroutines implement the first-order time-varying recursive equation, using
initial value s, target vectors u and x, and output vector y.

Table 145. Data Types

s, u, x, y Subroutine

Short-precision real STREC

Long-precision real DTREC

Syntax

Fortran CALL STREC | DTREC (s, u, incu, x, incx, y, incy, n , iopt)

C and C++ strec | dtrec (s, u, incu, x, incx, y, incy, n, iopt);

PL/I CALL STREC | DTREC (s, u, incu, x, incx, y, incy, n , iopt);

On Entry:

s is the scalar s used in the initial computation for y1. Specified as: a number
of the data type indicated in Table 145.

u is the target vector u of length n. Specified as: a one-dimensional array of
(at least) length 1+(n−1)|incu|, containing numbers of the data type
indicated in Table 145.

incu is the stride for target vector u. Specified as: a fullword integer. It can have
any value.

x is the target vector x of length n. Specified as: a one-dimensional array of
(at least) length 1+(n−1)|incx|, containing numbers of the data type
indicated in Table 145.

incx is the stride for target vector x. Specified as: a fullword integer. It can have
any value.

y See “On Return”.

incy is the stride for output vector y. Specified as: a fullword integer; incy > 0
or incy < 0.

n is the number of elements in vectors u and x and the number of resulting
elements in output vector y. Specified as: a fullword integer; n ≥ 0.

iopt this argument has no effect on the performance of the computation, but
still must be specified as: a fullword integer; iopt = 0 or 1.

On Return:

y is the vector y of length n, containing the results of the implementation of
the first-order time-varying recursive equation. Returned as: a
one-dimensional array of (at least) length 1+(n−1)|incy|, containing
numbers of the data type indicated in Table 145.

Note
Vectors u, x, and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 53.

STREC and DTREC

838 ESSL Version 3 Release 3 Guide and Reference

Function
The first-order time-varying recursive equation is expressed as follows:

y1 = s+u1x1
y2 = u2y1+u1x2
.
.
.
yi = uiyi−1+u1xi for i = 3, 4, ..., n

STREC provides the same function as the IBM 3838 function REC, with restrictions
removed. DTREC provides a long-precision computation that is not included in the
IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics
manual.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. incy = 0
2. n < 0
3. iopt ≠ 0 or 1

Example 1
This example shows all strides INCU, INCX, and INCY equal to 1 for vectors u, x, and
y, respectively.

Call Statement and Input:
S U INCU X INCX Y INCY N IOPT
| | | | | | | | |

CALL STREC(1.0 , U , 1 , X , 1 , Y , 1 , 8 , 0)

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)

Output:
Y = (4.0, 10.0, 31.0, 94.0, 190.0, 193.0, 196.0, 394.0)

Example 2
This example shows a stride, INCU, that is greater than 1 for vector u. The strides
INCX and INCY for vectors x and y, respectively, are 1.

Call Statement and Input:
S U INCU X INCX Y INCY N IOPT
| | | | | | | | |

CALL STREC(1.0 , U , 2 , X , 1 , Y , 1 , 4 , 0)

U = (1.0, . , 3.0, . , 2.0, . , 1.0, .)
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)

Output:
Y = (4.0, 14.0, 29.0, 30.0)

Example 3
This example shows a stride, INCU, of 1 for vector u, a stride, INCX, that is greater
than 1 for vector x, and a negative stride, INCY, for vector y. For y, results are
stored beginning at element Y(4).

Call Statement and Input:

STREC and DTREC

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 839

S U INCU X INCX Y INCY N IOPT
| | | | | | | | |

CALL STREC(1.0 , U , 1 , X , 2 , Y , -1 , 4 , 1)

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, . , 1.0, . , 2.0, . , 3.0)

Output:
Y = (90.0, 29.0, 9.0, 4.0)

STREC and DTREC

840 ESSL Version 3 Release 3 Guide and Reference

SQINT and DQINT—Quadratic Interpolation
These subroutines perform a quadratic interpolation at specified points in the
vector x, using initial linear displacement in the samples s, sample interval g,
output scaling parameter ó, and sample reflection times in vector t. The result is
returned in vector y.

Table 146. Data Types

x, s, g, ó, t, y Subroutine

Short-precision real SQINT

Long-precision real DQINT

Syntax

Fortran CALL SQINT | DQINT (s, g, omega, x, incx, n, t, inct, y, incy, m)

C and C++ sqint | dqint (s, g, omega, x, incx, n, t, inct, y, incy, m);

PL/I CALL SQINT | DQINT (s, g, omega, x, incx, n, t, inct, y, incy, m);

On Entry:

s is the scalar s, containing the initial linear displacement in samples.
Specified as: a number of the data type indicated in Table 146.

g is the scalar g, containing the sample interval. Specified as: a number of the
data type indicated in Table 146; g > 0.0.

omega is the output scaling parameter ó. Specified as: a number of the data type
indicated in Table 146.

x is the vector x of length n, containing the trace data. Specified as: a
one-dimensional array of (at least) length 1+(n−1)|incx|, containing
numbers of the data type indicated in Table 146.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0 or
incx < 0.

n is the number of elements in vector x. Specified as: a fullword integer;
n ≥ 3.

t is the vector t of length m, containing the sample reflection times to be
processed. Specified as: a one-dimensional array of (at least) length
1+(m−1)|inct|, containing numbers of the data type indicated in Table 146.

inct is the stride for vector t. Specified as: a fullword integer; inct > 0 or
inct < 0.

y See “On Return”.

incy is the stride for output vector y. Specified as: a fullword integer; incy > 0
or incy < 0.

m is the number of elements in vector t and the number of elements in
output vector y. Specified as: a fullword integer; m ≥ 0.

On Return:

y is the vector y of length m, containing the results of the quadratic
interpolation. Returned as: a one-dimensional array of (at least) length
1+(m−1)|incy|, containing numbers of the data type indicated in Table 146.

SQINT and DQINT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 841

Function
The quadratic interpolation, which is expressed as follows:

for i = 1, 2, ..., m

uses the following values:
x is the vector containing the specified points.
s is the initial linear displacement in the samples.
g is a sample interval.
ó is the output scaling parameter.
t is the vector containing the sample reflection times.

and where trace, k, f, and w are four working vectors, and so is a working scalar
defined as:

trace1 = 3x1−3x2+x3
tracei+1 = xi for i = 1, 2, ..., n
so = s+2.0
wi = so+ti / g for i = 1, 2, ..., m
fi = fraction part of wi

ki+1 = integer part of wi

Note: Allowing ki+1 to have a value of 2 results in performance degradation. If
possible, avoid specifying a point at which this occurs.

If n or m is 0, no computation is performed.

SQINT provides the same function as the IBM 3838 function INT, with restrictions
removed. DQINT provides a long-precision computation that is not included in the
IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics
manual.

Error Conditions

Computational Errors: The condition (ki+1 > n) or (ki+1 ≤ 2) has occurred, where
n is the number of elements in vector x. See “Function” for how to calculate ki.
v The lower range l and the upper range j of the vector are identified in the

computational error message.
v The return code is set to 1.
v The ranges l and j of the vector can be determined at run time by using the

ESSL error-handling facilities. To obtain this information, you must use ERRSET
to change the number of allowable errors for error code 2100 in the ESSL error
option table; otherwise, the default value causes your program to terminate
when this error occurs. For details, see “What Can You Do about ESSL
Computational Errors?” on page 45.

Input-Argument Errors:
1. n < 3
2. m < 0
3. g ≤ 0
4. incx = 0
5. inct = 0
6. incy = 0

SQINT and DQINT

842 ESSL Version 3 Release 3 Guide and Reference

Example 1
This example shows a quadratic interpolation, using vectors with strides of 1.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(2.0 , 1.0 , 1.0 , X , 1 , 8 , T , 1 , Y , 1 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, 2.5, 3.5, 4.5)

Output:
Y = (9.0, 11.0, 13.0, 15.0)

Example 2
This example shows a quadratic interpolation, using vectors with a positive stride
of 1 and negative strides of −1.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(2.0 , 1.0 , 1.0 , X , -1 , 8 , T , -1 , Y , 1 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, 2.5, 3.5, 4.5)

Output:
Y = (3.0, 5.0, 7.0, 9.0)

Example 3
This example shows a quadratic interpolation, using vectors with a positive stride
greater than 1 and negative strides less than −1.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(2.0 , 1.0 , 1.0 , X , -2 , 8 , T , -1 , Y , 2 , 4)

X = (1.0, . , 3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0, . ,
13.0, . , 15.0)

T = (1.36, 2.36, 3.36, 4.36)

Output:
Y = (4.56, . , 8.56, . , 12.56, . , 16.56)

Example 4
This example shows a quadratic interpolation, using vectors with positive strides
and larger values for S and G than shown in the previous examples.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(3.0 , 10.0 , 1.0 , X , 1 , 8 , T , 2 , Y , 3 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, . , 2.5, . , 3.5, . , 4.5)

Output:
Y = (8.3, . , . , 8.5, . , . , 8.7, . , . , 8.9)

SQINT and DQINT

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 843

SWLEV, DWLEV, CWLEV, and ZWLEV—Wiener-Levinson Filter
Coefficients

These subroutines compute the coefficients of an n-point Wiener-Levinson filter,
using vector x, the trace for which the filter is to be designed, and vector u, the
right-hand side of the system, chosen to remove reverberations or sharpen the
wavelet. The result is returned in vector y.

Table 147. Data Types

x, u, y aux Subroutine

Short-precision real Long-precision real SWLEV

Long-precision real Long-precision real DWLEV

Short-precision complex Long-precision complex CWLEV

Long-precision complex Long-precision complex ZWLEV

Syntax

Fortran CALL SWLEV | DWLEV | CWLEV | ZWLEV | (x, incx, u, incu, y, incy, n, aux, naux)

C and C++ swlev | dwlev | cwlev | zwlev (x, incx, u, incu, y, incy, n, aux, naux);

PL/I CALL SWLEV | DWLEV | CWLEV | ZWLEV (x, incx, u, incu, y, incy, n, aux, naux);

On Entry:

x is the vector x of length n, containing the trace data for which the filter is
to be designed.

For SWLEV and DWLEV, x represents the first row (or the first column) of
a positive definite or negative definite symmetric Toeplitz matrix, which is
the autocorrelation matrix for which the filter is designed.

For CWLEV and ZWLEV, x represents the first row of a positive definite or
negative definite complex Hermitian Toeplitz matrix, which is the
autocorrelation matrix for which the filter is designed.

Specified as: a one-dimensional array of (at least) length 1+(n−1)|incx|,
containing numbers of the data type indicated in Table 147.

incx is the stride for vector x. Specified as: a fullword integer; incx > 0.

u is the vector u of length n, containing the right-hand side of the system to
be solved. Specified as: a one-dimensional array of (at least) length
1+(n−1)|incu|, containing numbers of the data type indicated in Table 147.

incu is the stride for vector u. Specified as: a fullword integer. It can have any
value.

y See “On Return” on page 845.

incy is the stride for vector y. Specified as: a fullword integer; incy > 0 or
incy < 0.

n is the number of elements in vectors x, u, and y. Specified as: a fullword
integer; n ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by these subroutines.

SWLEV, DWLEV, CWLEV, and ZWLEV

844 ESSL Version 3 Release 3 Guide and Reference

Specified as: an area of storage of length naux, containing numbers of the
data type indicated in Table 147 on page 844.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SWLEV, DWLEV, CWLEV, and
ZWLEV dynamically allocate the work area used by the subroutine. The
work area is deallocated before control is returned to the calling program.

Otherwise, naux ≥ 3n.

You cannot use dynamic allocation if you need the information returned in
AUX(1).

On Return:

y is the vector y of length n, containing the solution vector—that is, the
coefficients of the n-point Wiener-Levinson filter. Returned as: a
one-dimensional array of (at least) length 1+(n−1)|incy|, containing
numbers of the data type indicated in Table 147 on page 844.

aux is the storage work area used by these subroutines, where if naux ≠ 0:

If AUX(1) = 0.0, the input Toeplitz matrix is positive definite or negative
definite.

If AUX(1) > 0.0, the input Toeplitz matrix is indefinite (that is, it is not
positive definite and it is not negative definite). The value returned in
AUX(1) is the order of the first submatrix of A that is indefinite. The
subroutine continues processing. See reference [62] for information about
under what circumstances your solution vector y would be valid.

All other values in aux are overwritten and are not significant.

Returned as: an area of storage of length naux, containing numbers of the
data type indicated in Table 147 on page 844, where AUX(1)≥0.0.

Notes
1. For a description of a positive definite or negative definite symmetric Toeplitz

matrix, see “Positive Definite or Negative Definite Symmetric Toeplitz Matrix”
on page 68.

2. For a description of a positive definite or negative definite complex Hermitian
Toeplitz matrix, see “Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix” on page 69.

3. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The computation of the coefficients of an n-point Wiener-Levinson filter in vector y
is expressed as solving the following system:

Ay = u

where:
v For SWLEV and DWLEV, matrix A is a real symmetric Toeplitz matrix whose

first row (or first column) is represented by vector x.
For CWLEV and ZWLEV, matrix A is a complex Hermitian Toeplitz matrix
whose first row is represented by vector x.

SWLEV, DWLEV, CWLEV, and ZWLEV

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 845

v u is the vector specifying the right side of the system, chosen to remove
reverberations or to sharpen the wavelet.

v y is the solution vector.

See reference [62], [27], and the IBM 3838 Array Processor Functional Characteristics.

If n is 0, no computation is performed. For SWLEV and CWLEV, intermediate
results are accumulated in long precision.

SWLEV provides the same function as the IBM 3838 function WLEV, with
restrictions removed. See the IBM 3838 Array Processor Functional Characteristics
manual.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. incx ≤ 0
3. incy = 0
4. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value specified in the syntax for this argument. Return code
1 is returned if error 2015 is recoverable.

Example 1
This example shows how to compute filter coefficients in vector y by solving the
system Ay = u. Matrix A is:

┌ ┐
| 50.0 -8.0 7.0 -5.0 |
| -8.0 50.0 -8.0 7.0 |
| 7.0 -8.0 50.0 -8.0 |
| -5.0 7.0 -8.0 50.0 |
└ ┘

This input Toeplitz matrix is positive definite, as indicated by the zero value in
AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL SWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

X = (50.0, -8.0, 7.0, -5.0)
U = (40.0, -10.0, 30.0, 20.0)
AUX =(not relevant)

Output:
Y = (0.7667, -0.0663, 0.5745, 0.5778)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

Example 2
This example shows how to compute filter coefficients in vector y by solving the
system Ay = u. Matrix A is:

SWLEV, DWLEV, CWLEV, and ZWLEV

846 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 10.0 -8.0 7.0 -5.0 |
| -8.0 10.0 -8.0 7.0 |
| 7.0 -8.0 10.0 -8.0 |
| -5.0 7.0 -8.0 10.0 |
└ ┘

This input Toeplitz matrix is not positive definite, as indicated by the zero value in
AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL SWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

X = (10.0, -8.0, 7.0, -5.0)
U = (40.0, -10.0, 30.0, 20.0)
AUX =(not relevant)

Output:
Y = (5.1111, 5.5555, 12.2222, 10.4444)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

Example 3
This example shows a vector x with a stride greater than 1, a vector u with a
negative stride, and a vector y with a stride of 1. It uses the same input Toeplitz
matrix as in Example 2, which is not positive definite.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL SWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)

X = (10.0, . , -8.0, . , 7.0, . , -5.0)
U = (20.0, . , 30.0, . , -10.0, . , 40.0)
AUX =(not relevant)

Output:
Y = (5.1111, 5.5555, 12.2222, 10.4444)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

Example 4
This example shows how to compute filter coefficients in vector y by solving the
system Ay = u. Matrix A is:

┌ ┐
| (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0) |
| (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) |
| (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) |
| (1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) |
└ ┘

This input complex Hermitian Toeplitz matrix is positive definite, as indicated by
the zero value in AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL ZWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

SWLEV, DWLEV, CWLEV, and ZWLEV

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 847

X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))
U = ((8.0, 3.0), (21.0, -5.0), (67.0, -13.0), (72.0, 11.0))
AUX =(not relevant)

Output:
Y = ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0))
AUX = ((0.0, 0.0), . , . , . , . , . , . , . , . , . , . , .)

Example 5
This example shows a vector x with a stride greater than 1, a vector u with a
negative stride, and a vector y with a stride of 1. It uses the same input complex
Hermitian Toeplitz matrix as in Example 4.

This input complex Hermitian Toeplitz matrix is positive definite, as indicated by
the zero value in AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL ZWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)

X = ((10.0, 0.0), . , (2.0, -3.0), . , (-3.0, 1.0), .
,

(1.0, 1.0))
U = ((72.0, 11.0), . , (67.0, -13.0), . , (21.0, -5.0), . ,

(8.0, 3.0), .)
AUX =(not relevant)

Output:
Y = ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0))
AUX = ((0.0, 0.0), . , . , . , . , . , . , . , . , . , . , .)

SWLEV, DWLEV, CWLEV, and ZWLEV

848 ESSL Version 3 Release 3 Guide and Reference

Chapter 13. Sorting and Searching

The sorting and searching subroutines are described in this chapter.

Overview of the Sorting and Searching Subroutines
The sorting and searching subroutines operate on three types of data: integer,
short-precision real, and long-precision-real (Table 148). The sorting subroutines
perform sorts with or without index designations. The searching subroutines
perform either a binary or sequential search.

Table 148. List of Sorting and Searching Subroutines

Descriptive Name Integer
Subroutine

Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Sort the Elements of a Sequence ISORT SSORT DSORT 851

Sort the Elements of a Sequence and Note the
Original Element Positions

ISORTX SSORTX DSORTX 853

Sort the Elements of a Sequence Using a Stable
Sort and Note the Original Element Positions

ISORTS SSORTS DSORTS 856

Binary Search for Elements of a Sequence X in a
Sorted Sequence Y

IBSRCH SBSRCH DBSRCH 859

Sequential Search for Elements of a Sequence X
in the Sequence Y

ISSRCH SSSRCH DSSRCH 863

Use Considerations
It is important to understand the concept of stride for sequences when using these
subroutines. For example, in the sort subroutines, a negative stride causes a
sequence to be sorted into descending order in an array. In the search subroutines,
a negative stride reverses the direction of the search. See “How Stride Is Used for
Vectors” on page 56.

Performance and Accuracy Considerations
1. The binary search subroutines provide better performance than the sequential

search subroutines because of the nature of the searching algorithms. However,
the binary search subroutines require that, before the subroutine is called, the
sequence to be searched is sorted into ascending order. Therefore, if your data
is already sorted, a binary search subroutine is faster. On the other hand, if
your data is in random order and the number of elements being searched for is
small, a sequential search subroutine is faster than doing a sort and binary
search.

2. When doing multiple invocations of the binary search subroutines, you get
better overall performance from the searching algorithms by doing fewer
invocations and specifying larger search element arrays for argument x.

3. If you do not need the results provided in array RC by these subroutine, you
get better performance if you do not request it. That is, specify 0 for the iopt
argument.

© Copyright IBM Corp. 1997, 2001 849

Sorting and Searching Subroutines
This section contains the sorting and searching subroutine descriptions.

ISORT, SSORT, and DSORT

850 ESSL Version 3 Release 3 Guide and Reference

ISORT, SSORT, and DSORT—Sort the Elements of a Sequence
These subroutines sort the elements of sequence x.

Table 149. Data Types

x Subroutine

Integer ISORT

Short-precision real SSORT

Long-precision real DSORT

Syntax

Fortran CALL ISORT | SSORT | DSORT (x, incx, n)

C and C++ isort | ssort | dsort (x, incx, n);

PL/I CALL ISORT | SSORT | DSORT (x, incx, n);

On Entry:

x is the sequence x of length n, to be sorted. Specified as: a one-dimensional
array of (at least) length 1+(n−1)|incx|, containing numbers of the data
type indicated in Table 149.

incx is the stride for both the input sequence x and the output sequence x. If it
is positive, elements are sorted into ascending order in the array, and if it
is negative, elements are sorted into descending order in the array.

Specified as: a fullword integer. It can have any value.

n is the number of elements in sequence x. Specified as: a fullword integer;
n ≥ 0.

On Return:

x is the sequence x of length n, with its elements sorted into designated
order in the array. Returned as: a one-dimensional array, containing
numbers of the data type indicated in Table 149.

Function
The elements of input sequence x are sorted into ascending order, in place and
using a partition sort. The elements of output sequence x can be expressed as
follows:

x1 ≤ x2 ≤ x3 ≤ ... ≤ xn

By specifying a negative stride for sequence x, the elements of sequence x are
assumed to be reversed in the array, (xn, xn−1, ... , x1), thus producing a sort into
descending order within the array. If n is 0 or 1 or if incx is 0, no sort is performed.
See reference [75].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors: n < 0

ISORT, SSORT, and DSORT

Chapter 13. Sorting and Searching 851

Example 1
This example shows a sequence x with a positive stride.

Call Statement and Input:
X INCX N
| | |

CALL ISORT(X , 2 , 5)

X = (2, . , -1, . , 5, . , 4, . , -2)

Output:
X = (-2, . , -1, . , 2, . , 4, . , 5)

Example 2
This example shows a sequence x with a negative stride.

Call Statement and Input:
X INCX N
| | |

CALL ISORT(X , -1 , 5)

X = (2, -1, 5, 4, -2)

Output:
X = (5, 4, 2, -1, -2)

ISORT, SSORT, and DSORT

852 ESSL Version 3 Release 3 Guide and Reference

ISORTX, SSORTX, and DSORTX—Sort the Elements of a Sequence and
Note the Original Element Positions

These subroutines sort the elements of sequence x. The original positions of the
elements in sequence x are returned in the indices array, INDX. Where equal
elements occur in the input sequence, they do not necessarily remain in the same
relative order in the output sequence.

Note: If you need a stable sort, you should use ISORTS, SSORTS, or DSORTS
rather than these subroutines.

Table 150. Data Types

x Subroutine

Integer ISORTX

Short-precision real SSORTX

Long-precision real DSORTX

Syntax

Fortran CALL ISORTX | SSORTX | DSORTX (x, incx, n, indx)

C and C++ isortx | ssortx | dsortx (x, incx, n, indx);

PL/I CALL ISORTX | SSORTX | DSORTX (x, incx, n, indx);

On Entry:

x is the sequence x of length n, to be sorted. Specified as: a one-dimensional
array of (at least) length 1+(n−1)|incx| elements, containing numbers of
the data type indicated in Table 150.

incx is the stride for both the input sequence x and the output sequence x. If it
is positive, elements are sorted into ascending order in the array, and if it
is negative, elements are sorted into descending order in the array.

Specified as: a fullword integer. It can have any value.

n is the number of elements in sequence x. Specified as: a fullword integer;
n ≥ 0.

indx See “On Return”.

On Return:

x is the sequence x of length n, with its elements sorted into designated
order in the array. Returned as: a one-dimensional array, containing
numbers of the data type indicated in Table 150.

indx is the array, referred to as INDX, containing the n indices that indicate, for
the elements in the sorted output sequence, the original positions of those
elements in input sequence x.

Note: It is important to remember that when you specify a negative stride,
ESSL assumes that the order of the input and output sequence
elements in the X array is reversed; however, the elements in INDX
are not reversed. See “Function” on page 854.

ISORTX, SSORTX, and DSORTX

Chapter 13. Sorting and Searching 853

Returned as: a one-dimensional array of length n, containing fullword
integers; 1 ≤ (INDX elements) ≤ n.

Function
The elements of input sequence x are sorted into ascending order, in place and
using a partition sort. The elements of output sequence x can be expressed as
follows:

x1 ≤ x2 ≤ x3 ≤ ... ≤ xn

Where equal elements occur in the input sequence, they do not necessarily remain
in the same relative order in the output sequence.

By specifying a negative stride for x, the elements of input sequence x are assumed
to be reversed in the array, (xn, xn−1, ... , x1), thus producing a sort into descending
order within the array.

In addition, the INDX array contains the n indices that indicate, for the elements in
the sorted output sequence, the original positions of those elements in input
sequence x. (These are not the positions in the array, but rather the positions in the
sequence.) For each element xj in the input sequence, becoming element xxk in the
output sequence, the elements in INDX are defined as follows:

INDX(k) = j for j = 1, n and k = 1, n
where xxk = xj

To understand INDX when you specify a negative stride, you should remember that
both the input and output sequences, x, are assumed to be in reverse order in
array X, but INDX is not affected by stride. The sequence elements of x are assumed
to be stored in your input array as follows:

X = (xn, xn−1, ... , x1)

The sequence elements of x are stored in your output array by ESSL as follows:
X = (xxn, xxn−1, ... , xx1)

where the elements xxk are the elements xj, sorted into descending order in X. As
an example of how INDX is calculated, if xx1 = xn−1, then INDX(1) = n−1.

If n is 0, no computation is performed. See reference [75].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows how to sort a sequence x into ascending order by specifying a
positive stride.

Call Statement and Input:
X INCX N INDX
| | | |

CALL ISORTX(X , 2 , 5 , INDX)

X = (2, . , -1, . , 5, . , 1, . , -2)

Output:

ISORTX, SSORTX, and DSORTX

854 ESSL Version 3 Release 3 Guide and Reference

X = (-2, . , -1, . , 1, . , 2, . , 5)
INDX = (5, 2, 4, 1, 3)

Example 2
This example shows how to sort a sequence x into descending order by specifying
a negative stride. Therefore, both the input and output sequences are assumed to
be reversed in the array X. The input sequence is assumed to be stored as follows:

X = (x5, x4, x3, x2, x1) = (2, -1, 5, 1, -2)

The output sequence is stored by ESSL as follows:
X = (xx5, xx4, xx3, xx2, xx1) = (5, 2, 1, -1, -2)

As a result, INDX is defined as follows:
INDX = (indx1, indx2, indx3, indx4, indx5) = (1, 4, 2, 5, 3)

For example, because output sequence element xx4 = 2 is input sequence element
x5, then INDX(4) = 5.

Call Statement and Input:
X INCX N INDX
| | | |

CALL ISORTX(X , -1 , 5 , INDX)

X = (2, -1, 5, 1, -2)

Output:
X = (5, 2, 1, -1, -2)
INDX = (1, 4, 2, 5, 3)

ISORTX, SSORTX, and DSORTX

Chapter 13. Sorting and Searching 855

ISORTS, SSORTS, and DSORTS—Sort the Elements of a Sequence
Using a Stable Sort and Note the Original Element Positions

These subroutines sort the elements of sequence x using a stable sort; that is,
where equal elements occur in the input sequence, they remain in the same relative
order in the output sequence. The original positions of the elements in sequence x
are returned in the indices array INDX.

Note: If you need a stable sort, then you should use these subroutines rather than
ISORTX, SSORTX, or DSORTX.

Table 151. Data Types

x, work Subroutine

Integer ISORTS

Short-precision real SSORTS

Long-precision real DSORTS

Syntax

Fortran CALL ISORTS | SSORTS | DSORTS (x, incx, n, indx, work, lwork)

C and C++ isorts | ssorts | dsorts (x, incx, n, indx, work, lwork);

PL/I CALL ISORTS | SSORTS | DSORTS (x, incx, n, indx, work, lwork);

On Entry:

x is the sequence x of length n, to be sorted. Specified as: a one-dimensional
array of (at least) length 1+(n−1)|incx| elements, containing numbers of
the data type indicated in Table 151.

incx is the stride for both the input sequence x and the output sequence x. If it
is positive, elements are sorted into ascending order in the array, and if it
is negative, elements are sorted into descending order in the array.

Specified as: a fullword integer. It can have any value.

n is the number of elements in sequence x. Specified as: a fullword integer;
n ≥ 0.

indx See “On Return”.

work is the storage work area used by this subroutine. Its size is specified by
lwork. Specified as: an area of storage, containing numbers of the data type
indicated in Table 151.

lwork is the size of the work area specified by work— that is, the number of
elements in work. Specified as: a fullword integer; lwork ≥ n/2.

Note: This is the value to achieve optimal performance. The sort is
performed regardless of the value you specify for lwork, but you
may receive an attention message.

On Return:

x is the sequence x of length n, with its elements sorted into designated
order in the array. Returned as: a one-dimensional array, containing
numbers of the data type indicated in Table 151.

ISORTS, SSORTS, and DSORTS

856 ESSL Version 3 Release 3 Guide and Reference

indx is the array, referred to as INDX, containing the n indices that indicate, for
the elements in the sorted output sequence, the original positions of those
elements in input sequence x.

Note: It is important to remember that when you specify a negative stride,
ESSL assumes that the order of the input and output sequence
elements in the X array is reversed; however, the elements in INDX
are not reversed. See “Function”.

Returned as: a one-dimensional array of length n, containing fullword
integers; 1 ≤ (INDX elements) ≤ n.

Function
The elements of input sequence x are sorted into ascending order using a partition
sort. The sorting is stable; that is, where equal elements occur in the input
sequence, they remain in the same relative order in the output sequence. The
elements of output sequence x can be expressed as follows:

x1 ≤ x2 ≤ x3 ≤ ... ≤ xn

By specifying a negative stride for x, the elements of input sequence x are assumed
to be reversed in the array, (xn, xn−1, ... , x1), thus producing a sort into descending
order within the array.

In addition, the INDX array contains the n indices that indicate, for the elements in
the sorted output sequence, the original positions of those elements in input
sequence x. (These are not the positions in the array, but rather the positions in the
sequence.) For each element xj in the input sequence, becoming element xxk in the
output sequence, the elements in INDX are defined as follows:

INDX(k) = j for j = 1, n and k = 1, n
where xxk = xj

To understand INDX when you specify a negative stride, you should remember that
both the input and output sequences, x, are assumed to be in reverse order in
array X, but INDX is not affected by stride. The sequence elements of x are assumed
to be stored in your input array as follows:

X = (xn, xn−1, ... , x1)

The sequence elements of x are stored in your output array by ESSL as follows:
X = (xxn, xxn−1, ... , xx1)

where the elements xxk are the elements xj, sorted into descending order in X. As
an example of how INDX is calculated, if xx1 = xn−1, then INDX(1) = n−1.

If n is 0, no computation is performed. See references [28] and [75].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors: n < 0

Example 1
This example shows how to sort a sequence x into ascending order by specifying a
positive stride. Because this is a stable sort, the −1 elements remain in the same
relative order in the output sequence, indicated by INDX(2) = 2 and INDX(3) = 4.

ISORTS, SSORTS, and DSORTS

Chapter 13. Sorting and Searching 857

Call Statement and Input:
X INCX N INDX WORK LWORK
| | | | | |

CALL ISORTS(X , 2 , 5 , INDX , WORK , 5)

X = (2, . , -1, . , 5, . , -1, . , -2)

Output:
X = (-2, . , -1, . , -1, . , 2, . , 5)
INDX = (5, 2, 4, 1, 3)

Example 2
This example shows how to sort a sequence x into descending order by specifying
a negative stride. Therefore, both the input and output sequences are assumed to
be reversed in the array X. The input sequence is assumed to be stored as follows:

X = (x5, x4, x3, x2, x1) = (2, -1, 5, -1, -2)

The output sequence is stored by ESSL as follows:
X = (xx5, xx4, xx3, xx2, xx1) = (5, 2, -1, -1, -2)

As a result, INDX is defined as follows:
INDX = (indx1, indx2, indx3, indx4, indx5) = (1, 2, 4, 5, 3)

For example, because output sequence element xx4 = 2 is input sequence element
x5, then INDX(4) = 5. Also, because this is a stable sort, the −1 elements remain in
the same relative order in the output sequence, indicated by INDX(2) = 2 and
INDX(3) = 4.

Call Statement and Input:
X INCX N INDX WORK LWORK
| | | | | |

CALL ISORTS(X , -1 , 5 , INDX , WORK , 5)

X = (2, -1, 5, -1, -2)

Output:
X = (5, 2, -1, -1, -2)
INDX = (1, 2, 4, 5, 3)

ISORTS, SSORTS, and DSORTS

858 ESSL Version 3 Release 3 Guide and Reference

IBSRCH, SBSRCH, and DBSRCH—Binary Search for Elements of a
Sequence X in a Sorted Sequence Y

These subroutines perform a binary search for the locations of the elements of
sequence x in another sequence y, where y has been sorted into ascending order.
The first occurrence of each element is found. When an exact match is not found,
the position of the next larger element in y is indicated. The locations are returned
in the indices array INDX, and, optionally, return codes indicating whether the exact
elements were found are returned in array RC.

Table 152. Data Types

x, y Subroutine

Integer IBSRCH

Short-precision real SBSRCH

Long-precision real DBSRCH

Syntax

Fortran CALL IBSRCH | SBSRCH | DBSRCH (x, incx, n, y, incy, m, indx, rc, iopt)

C and C++ ibsrch | sbsrch | dbsrch (x, incx, n, y, incy, m, indx, rc, iopt);

PL/I CALL IBSRCH | SBSRCH | DBSRCH (x, incx, n, y, incy, m, indx, rc, iopt);

On Entry:

x is the sequence x of length n, containing the elements for which sequence y
is searched. Specified as: a one-dimensional array, containing numbers of
the data type indicated in Table 152. It must have at least 1+(n−1)|incx|
elements.

incx is the stride for sequence x. Specified as: a fullword integer. It can have
any value.

n is the number of elements in sequence x and arrays INDX and RC. Specified
as: a fullword integer; n ≥ 0.

y is the sequence y of length m, to be searched, where y must be sorted into
ascending order.

Note: Be careful in specifying the stride for sequence y. A negative stride
reverses the direction of the search, because the order of the
sequence elements is reversed in the array.

Specified as: a one-dimensional array of (at least) length 1+(m−1)|incy|,
containing numbers of the data type indicated in Table 152.

incy is the stride for sequence y. Specified as: a fullword integer. It can have
any value.

m is the number of elements in sequence y. Specified as: a fullword integer;
m ≥ 0.

indx See “On Return” on page 860.

rc See “On Return” on page 860.

iopt has the following meaning, where:

If iopt = 0, the rc argument is not used in the computation.

IBSRCH, SBSRCH, and DBSRCH

Chapter 13. Sorting and Searching 859

If iopt = 1, the rc argument is used in the computation.

Specified as: a fullword integer; iopt = 0 or 1.

On Return:

indx is the array, referred to as INDX, containing the n indices that indicate the
positions of the elements of sequence x in sequence y. The first occurrence
of the element found in sequence y is indicated in array INDX. When an
exact match between an element of sequence x and an element of sequence
y is not found, the position of the next larger element in sequence y is
indicated. When the element in sequence x is larger than all the elements
in sequence y, then m+1 is indicated in array INDX.

Returned as: a one-dimensional array of length n, containing fullword
integers; 1 ≤ (INDX elements) ≤ m+1.

rc has the following meaning, where:

If iopt = 0, then rc is not used, and its contents remain unchanged.

If iopt = 1, it is the array, referred to as RC, containing the n return codes
that indicate whether the elements in sequence x were found in sequence
y. For i = 1, n, elements RC(i) = 0 if xi matches an element in sequence y,
and RC(i) = 1 if an exact match is not found in sequence y.

Returned as: a one-dimensional array of length n, containing fullword
integers; RC(i) = 0 or 1.

Notes
1. The elements of y must be sorted into ascending order; otherwise, results are

unpredictable. For details on how to do this, see “ISORT, SSORT, and
DSORT—Sort the Elements of a Sequence” on page 851.

2. If you do not need the results provided in array RC by these subroutines, you
get better performance if you do not request it. That is, specify 0 for the iopt
argument.

Function
These subroutines perform a binary search for the first occurrence (or last
occurrence, using negative stride) of the locations of the elements of sequence x in
another sequence y, where y must be sorted into ascending order before calling
this subroutine. The first occurrence of each element is found. Two arrays are
returned, containing the results of the binary searches:
v INDX, the indices array, contains the positions of the elements of sequence x in

sequence y. When an exact match between values of elements in sequences x
and y is not found, the location of the next larger element in sequence y is
indicated in array INDX.

v RC, the return codes array, indicates for each element in sequence x whether the
exact element was found in sequence y. If you do not need these results, you get
better performance if you set iopt = 0.

The results returned for the INDX and RC arrays are expressed as follows:
For i = 1, n

for all yj ≥ xi, j = 1, m , INDX(i) = min(j)
if all yj < xi, j = 1, m , INDX(i) = m+1

And for i = 1, n
if xi = yINDX(i), RC(i) = 0
if xi ≠ yINDX(i), RC(i) = 1

IBSRCH, SBSRCH, and DBSRCH

860 ESSL Version 3 Release 3 Guide and Reference

where:
x is a sequence of length n, containing the search elements.
y is a sequence of length m to be searched. It must be sorted into ascending
order.
INDX is the array of length n of indices.
RC is the array of length n of return codes.

See reference [75]. If n is 0, no search is performed. If m is 0, then:
INDX(i) = 1 and RC(i) = 1 for i = 1, n

It is important to note that a negative stride for sequence y reverses the direction
of the search, because the order of the sequence elements is reversed in the array.
For more details on sorting sequences, see “Function” on page 851.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. m < 0
3. iopt ≠ 0 or 1

Example 1
This example shows a search where sequences x and y have positive strides, and
where the optional return codes are returned as part of the output.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100)

Output:
INDX = (1, 11, 3, 2, 8)
RC = (1, 1, 0, 0, 1)

Example 2
This example shows the same calling sequence as in Example 1, except that it
includes the IOPT argument, specified as 1. This is equivalent to using the calling
sequence in Example 1 and gives the same results.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)

Example 3
This example shows a search where sequence x has a negative stride, and sequence
y has a positive stride. The optional return codes are not requested, because IOPT is
specified as 0.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , -2 , 5 , Y , 1 , 10 , INDX , RC , 0)

IBSRCH, SBSRCH, and DBSRCH

Chapter 13. Sorting and Searching 861

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100)

Output:
INDX = (8, 2, 3, 11, 1)
RC =(not relevant)

Example 4
This example shows a search where sequence x has a positive stride, and sequence
y has a negative stride. As shown below, elements of y are in descending order in
array Y. The optional return codes are not requested, because IOPT is specified as 0.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , 2 , 5 , Y , -1 , 10 , INDX , RC , 0)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (100, 90, 80, 60, 50, 40, 30, 30, 20, 10)
RC =(not relevant)

Output:
INDX = (1, 11, 3, 2, 8)

IBSRCH, SBSRCH, and DBSRCH

862 ESSL Version 3 Release 3 Guide and Reference

ISSRCH, SSSRCH, and DSSRCH—Sequential Search for Elements of a
Sequence X in the Sequence Y

These subroutines perform a sequential search for the locations of the elements of
sequence x in another sequence y. Depending on the sign of the idir argument, the
search direction indicator, the location of either the first or last occurrence of each
element is indicated in the resulting indices array INDX. When an exact match
between elements is not found, the position is indicated as 0.

Table 153. Data Types

x, y Subroutine

Integer ISSRCH

Short-precision real SSSRCH

Long-precision real DSSRCH

Syntax

Fortran CALL ISSRCH | SSSRCH | DSSRCH (x, incx, n, y, incy, m, idir, indx)

C and C++ issrch | sssrch | dssrch (x, incx, n, y, incy, m, idir, indx);

PL/I CALL ISSRCH | SSSRCH | DSSRCH (x, incx, n, y, incy, m, idir, indx);

On Entry:

x is the sequence x of length n, containing the elements for which sequence y
is searched. Specified as: a one-dimensional array of (at least) length
1+(n−1)|incx|, containing numbers of the data type indicated in Table 153.

incx is the stride for sequence x. Specified as: a fullword integer. It can have
any value.

n is the number of elements in sequence x and array INDX. Specified as: a
fullword integer; n ≥ 0.

y is the sequence y of length m to be searched.

Note: Be careful in specifying the stride for sequence y. A negative stride
reverses the direction of the search, because the order of the
sequence elements is reversed in the array.

Specified as: a one-dimensional array of (at least) length 1+(m−1)|incy|,
containing numbers of the data type indicated in Table 153.

incy is the stride for sequence y. Specified as: a fullword integer. It can have
any value.

m is the number of elements in sequence y. Specified as: a fullword integer;
m ≥ 0.

idir indicates the search direction, where:

If idir ≥ 0, sequence y is searched from the first element to the last (1, n),
thus finding the first occurrence of the element in the sequence.

If idir < 0, sequence y is searched from the last element to the first (n, 1),
thus finding the last occurrence of the element in the sequence.

Specified as: a fullword integer. It can have any value.

ISSRCH, SSSRCH, and DSSRCH

Chapter 13. Sorting and Searching 863

indx See On Return.

On Return:

indx is the array, referred to as INDX, containing the n indices that indicate the
positions of the elements of sequence x in sequence y, where:

If idir ≥ 0, the first occurrence of the element found in sequence y is
indicated in array INDX.

If idir < 0, the last occurrence of the element found in sequence y is
indicated in array INDX.

In all cases, if no match is found, 0 is indicated in array INDX.

Returned as: a one-dimensional array of length n, containing fullword
integers; 0 ≤ (INDX elements) ≤ m.

Function
These subroutines perform a sequential search for the first occurrence (or last
occurrence, using a negative idir) of the locations of the elements of sequence x in
another sequence y. The results of the sequential searches are returned in the
indices array INDX, indicating the positions of the elements of sequence x in
sequence y. The positions indicated in array INDX are calculated relative to the first
sequence element position—that is, the position of y1. When an exact match
between values of elements in sequences x and y is not found, 0 is indicated in
array INDX for that position.

The results returned in array INDX are expressed as follows:
For i = 1, n

for all yj = xi, j = 1, m
INDX(i) = min(j), if idir ≥ 0
INDX(i) = max(j), if idir < 0

if all yj ≠ xi, j = 1, m
INDX(i) = 0

where:
x is a sequence of length n, containing the search elements.
y is a sequence of length m to be searched.
INDX is the array of length n of indices.

See reference [75]. If n is 0, no search is performed.

It is important to note that a negative stride for sequence y reverses the direction
of the search, because the order of the sequence elements is reversed in the array.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. m < 0

Example 1
This example shows a search where sequences x and y have positive strides, and
the search direction indicator, idir, is positive.

Call Statement and Input:

ISSRCH, SSSRCH, and DSSRCH

864 ESSL Version 3 Release 3 Guide and Reference

X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , 1 , 3 , Y , 2 , 8 , 1 , INDX)

X = (0, 12, 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

Output:
INDX = (1, 3, 0)

Example 2
This example shows a search where sequences x and y have positive strides, and
the search direction indicator, idir, is negative.

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , 2 , 3 , Y , 2 , 8 , -1 , INDX)

X = (0, . , 12, . , 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

Output:
INDX = (7, 3, 0)

Example 3
This example shows a search where sequences x and y have negative strides, and
the search direction indicator, idir, is positive.

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , -1 , 3 , Y , -2 , 8 , 1 , INDX)

X = (0, 12, 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

Output:
INDX = (0, 6, 2)

Example 4
This example shows a search where sequences x and y have negative strides, and
the search direction indicator, idir, is negative.

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , -2 , 3 , Y , -1 , 8 , -1 , INDX)

X = (0, . , 12, . , 3)
Y = (0, 8, 12, 0, 1, 4, 0, 2)

Output:
INDX = (0, 6, 8)

ISSRCH, SSSRCH, and DSSRCH

Chapter 13. Sorting and Searching 865

ISSRCH, SSSRCH, and DSSRCH

866 ESSL Version 3 Release 3 Guide and Reference

Chapter 14. Interpolation

The interpolation subroutines are described in this chapter.

Overview of the Interpolation Subroutines
The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and one- and two-dimensional cubic
spline interpolation (Table 154).

Table 154. List of Interpolation Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Polynomial Interpolation SPINT DPINT 869

Local Polynomial Interpolation STPINT DTPINT 873

Cubic Spline Interpolation SCSINT DCSINT 876

Two-Dimensional Cubic Spline Interpolation SCSIN2 DCSIN2 881

Use Considerations
Polynomial interpolation (SPINT and DPINT) is a global scheme. As the number of
data points increases, the degree of the interpolating polynomial is raised;
therefore, the graph of the interpolating polynomial tends to be oscillatory.

Local polynomial interpolation (STPINT and DTPINT) is a local scheme. The data
generated is affected only by locally grouped data points. The degree of the local
interpolating polynomial is usually lower than a global interpolating polynomial.

Performance and Accuracy Considerations
1. Doing extrapolation with SPINT and DPINT is not encouraged unless you

know the consequences of doing polynomial extrapolation.
2. If performance is the overriding consideration, you should investigate using the

general signal processing subroutines, DQINT and SQINT.
3. There are some ESSL-specific rules that apply to the results of computations on

the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 42.

© Copyright IBM Corp. 1997, 2001 867

Interpolation Subroutines
This section contains the interpolation subroutine descriptions.

SPINT and DPINT

868 ESSL Version 3 Release 3 Guide and Reference

SPINT and DPINT—Polynomial Interpolation
These subroutines compute the Newton divided difference coefficients and perform
a polynomial interpolation through a set of data points at specified abscissas.

Table 155. Data Types

x, y, c, t, s Subroutine

Short-precision real SPINT

Long-precision real DPINT

Syntax

Fortran CALL SPINT | DPINT (x, y, n, c, ninit, t, s, m)

C and C++ spint | dpint (x, y, n, c, ninit, t, s, m);

PL/I CALL SPINT | DPINT (x, y, n, c, ninit, t, s, m);

On Entry:

x is the vector x of length n, containing the abscissas of the data points used
in the interpolations. The elements of x must be distinct. Specified as: a
one-dimensional array of (at least) length n, containing numbers of the
data type indicated in Table 155.

y is the vector y of length n, containing the ordinates of the data points used
in the interpolations. Specified as: a one-dimensional array of (at least)
length n, containing numbers of the data type indicated in Table 155.

n is the number of elements in vectors x, y, and c—that is, the number of
data points. Specified as: a fullword integer; n ≥ 0.

c is the vector c of length n, where:

If ninit ≤ 0, all elements of c are undefined on entry.

If ninit > 0, c contains the Newton divided difference coefficients, cj for
j = 1, ninit, for the interpolating polynomial through the data points (xj,yj)
for j = 1, ninit. If ninit < n, the values of cj for j = ninit+1, n are
undefined.

Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 155.

ninit indicates the following:

If ninit ≤ 0, this is the first call to this subroutine with the data in x and y;
therefore, none of the Newton divided difference coefficients in c have
been initialized.

If ninit > 0, a previous call to this subroutine was made with the data
points (xj, yj) for j = 1, ninit, where:
v If ninit = n, all the Newton divided difference coefficients in c were

computed for the data points. No additional coefficients are computed
on this entry.

v If ninit < n, the first ninit Newton divided difference coefficients in c
were computed for the data points (xj, yj) for j = 1, ninit. The
coefficients are updated for the additional data points (xj, yj) for
j = ninit+1, n on this entry.

SPINT and DPINT

Chapter 14. Interpolation 869

Specified as: a fullword integer; ninit ≤ n.

t is the vector t of length m, containing the abscissas at which interpolation
is to be done. Specified as: a one-dimensional array of (at least) length m,
containing numbers of the data type indicated in Table 155 on page 869.

s See “On Return”.

m is the number of elements in vectors t and s—that is, the number of
interpolations to be performed. Specified as: a fullword integer; m ≥ 0.

On Return:

c is the vector c of length n, containing the coefficients of the Newton
divided difference form of the interpolating polynomial through the data
points (xj,yj) for j = 1, n. Returned as: a one-dimensional array of (at least)
length n, containing numbers of the data type indicated in Table 155 on
page 869.

ninit is the number of coefficients, n, in output vector c. (If you call this
subroutine again with the same data, this value should be specified for
ninit.) Returned as: a fullword integer; ninit = n.

s is the vector s of length m, containing the resulting interpolated values;
that is, each si is the value of the interpolating polynomial evaluated at ti.
Returned as: a one-dimensional array of (at least) length m, containing
numbers of the data type indicated in Table 155 on page 869.

Notes
1. In your C program, argument ninit must be passed by reference.
2. Vectors x, y, and t must have no common elements with vectors c and s, and

vector c must have no common element with vector s; otherwise, results are
unpredictable.

3. The elements of vector x must be distinct; that is, xi ≠ xj if i ≠ j for i, j = 1, n.

Function
Polynomial interpolation is performed at specified abscissas, ti for i = 1, m, in
vector t, using the method of Newton divided differences through the data points:

(xj, yj) for j = 1, n

where:
xj are elements of vector x.
yj are elements of vector y.

The interpolated value at each ti is returned in si for i = 1, m. See references [15]
and [54]. The interpolating values returned in s are computed using the Newton
divided difference coefficients, as defined in the following section.

The divided difference coefficients, cj for j = 1, n, are returned in vector c. These
coefficients can then be reused on subsequent calls to this subroutine, using the
same data points (xj, yj), but with new values of ti. If the number of data points is
increased from one call this subroutine to the next, the new coefficients are
computed, and the existing coefficients are updated (not recomputed). This feature
can be used to test for the convergence of the interpolations through a sequence of
an increasingly larger set of points.

The values specified for ninit and m indicate which combination of functions are
performed by this subroutine: computing the coefficients, performing the

SPINT and DPINT

870 ESSL Version 3 Release 3 Guide and Reference

interpolation, or both. If m = 0, only the divided difference coefficients are
computed. No interpolation is performed. If n = 0, no computation or
interpolation is performed.

For SPINT, the Newton divided differences and interpolating values are
accumulated in long precision.

Newton Divided Differences and Interpolating Values: The Newton divided
differences of the following data points:

(xj, yj) for j = 1, n
where xj ≠ xl if j ≠ l for j, l = 1, n

are denoted by δkyj for k = 0, 1, 2, ..., n−1 and j = 1, 2, ..., n−k, and are defined as
follows:

For k = 0 and 1:
δ0yj = yj for j = 1, 2, ..., n
δ1yj = (yj+1 − yj) / (xj+1 − xj) for j = 1, 2, ..., n−1

For k = 2, 3, ..., n−1:
δkyj = (δk−1 yj+1 − δk−1yj) / (xj+k − xj) for j = 1, 2, ..., n−k

The value s of the Newton divided difference form of the interpolating polynomial
evaluated at an abscissa t is given by:

s = yn + (t−xn) δ1yn−1
+ (t−xn−1) (t−xn) δ2yn−2
+ ...+(t−x2) (t−x3) ... (t−xn) δn−1y1

Therefore, on output, the coefficients in vector c are as follows:
cn = yn

cn−1 = δ1yn−1
cn−2 = δ2yn−2
.
.
.
c1 = δn−1y1

Also, the interpolating values in s, in terms of c, are as follows for i = 1, m:
si = cn + (ti−xn) cn−1

+ (ti−xn−1) (ti−xn) cn−2
+ ...
+ (ti−x2) (ti−x3) ... (ti−xn) c1

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. ninit > n
3. m < 0

Example 1
This example shows a quadratic polynomial interpolation on the initial call with
the specified data points; that is, NINIT = 0, and C contains all undefined values.
On output, NINIT and C are updated with new values.

Call Statement and Input:

SPINT and DPINT

Chapter 14. Interpolation 871

X Y N C NINIT T S M
| | | | | | | |

CALL SPINT(X , Y , 3 , C , 0 , T , S , 2)

X = (-0.50, 0.00, 1.00)
Y = (0.25, 0.00, 1.00)
C = (. , . , .)
T = (-0.2, 0.2)

Output:
C = (1.00, 1.00, 1.00)
NINIT = 3
S = (0.04, 0.04)

Example 2
This example shows a quadratic polynomial interpolation on a subsequent call
with the same data points specified in Example 1, but using a different set of
abscissas in T. In this case, NINIT = N = 3, and C contains the values defined on
output in Example 1. On output here, the values in NINIT and C are unchanged.

Call Statement and Input:
X Y N C NINIT T S M
| | | | | | | |

CALL SPINT(X , Y , 3 , C , 3 , T , S , 2)

X = (-0.50, 0.00, 1.00)
Y = (0.25, 0.00, 1.00)
C = (1.00, 1.00, 1.00)
T = (-0.10, 0.10)

Output:
C = (1.00, 1.00, 1.00)
NINIT = 3
S = (0.01, 0.01)

Example 3
This example is the same as Example 2 except that it specifies additional data
points on the subsequent call to the subroutine. In this case, 0 < NINIT < N. On
output here, the values in NINIT and C are updated. The interpolating polynomial
is a degree of 4.

Call Statement and Input:
X Y N C NINIT T S M
| | | | | | | |

CALL SPINT(X , Y , 5 , C , 3 , T , S , 2)

X = (-0.50, 0.00, 1.00, -1.00, 0.50)
Y = (0.25, 0.00, 1.00, 1.10, 0.26)
C = (1.00, 1.00, 1.00, . , .)
T = (-0.10, 0.10)

Output:
C = (0.04, -0.06, 1.02, -0.56, 0.26)
NINIT = 5
S = (0.0072, 0.0130)

SPINT and DPINT

872 ESSL Version 3 Release 3 Guide and Reference

STPINT and DTPINT—Local Polynomial Interpolation
These subroutines perform a polynomial interpolation at specified abscissas, using
data points selected from a table of data.

Table 156. Data Types

x, y, t, s, aux Subroutine

Short-precision real STPINT

Long-precision real DTPINT

Syntax

Fortran CALL STPINT | DTPINT (x, y, n, nint, t, s, m, aux, naux)

C and C++ stpint | dtpint (x, y, n, nint, t, s, m, aux, naux);

PL/I CALL STPINT | DTPINT (x, y, n, nint, t, s, m, aux, naux);

On Entry:

x is the vector x of length n, containing the abscissas of the data points used
in the interpolations. The elements of x must be distinct and sorted into
ascending order. Specified as: a one-dimensional array of (at least) length
n, containing numbers of the data type indicated in Table 156.

y is the vector y of length n, containing the ordinates of the data points used
in the interpolations. Specified as: a one-dimensional array of (at least)
length n, containing numbers of the data type indicated in Table 156.

n is the number of elements in vectors x and y—that is, the number of data
points. Specified as: a fullword integer; n ≥ 0.

nint is the number of data points to be used in the interpolation at any given
point. Specified as: a fullword integer; 0 ≤ nint ≤ n.

t is the vector t of length m, containing the abscissas at which interpolation
is to be done. For optimal performance, t should be sorted into ascending
order. Specified as: a one-dimensional array of (at least) length m,
containing numbers of the data type indicated in Table 156.

s See “On Return” on page 874.

m is the number of elements in vectors t and s—that is, the number of
interpolations to be performed. Specified as: a fullword integer; m ≥ 0.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 156. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, STPINT and DTPINT
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ nint+m.

STPINT and DTPINT

Chapter 14. Interpolation 873

On Return:

s is the vector s of length m, containing the resulting interpolated values;
that is, each si is the value of the interpolating polynomial evaluated at ti.
Returned as: a one-dimensional array of (at least) length m, containing
numbers of the data type indicated in Table 156 on page 873.

Notes
1. Vectors x, y, and t must have no common elements with vector s or work area

aux; otherwise, results are unpredictable. See “Concepts” on page 53.
2. The elements of vector x must be distinct and must be sorted into ascending

order; that is, x1 < x2 < ... < xn. Otherwise, results are unpredictable. For
details on how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements
of a Sequence” on page 851.

3. The elements of vector t should be sorted into ascending order; that is,
t1 ≤ t2 ≤ t3 ≤ ... ≤ tm. Otherwise, performance is affected.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
Polynomial interpolation is performed at specified abscissas, ti for i = 1, m, in
vector t, using nint points selected from the following data:

(xj, yj) for j = 1, n

where:
x1 < x2 < x3 < ... < xn

xj are elements of vector x.
yj are elements of vector y.

The points (xj, yj), used in the interpolation at a given abscissa ti, are chosen as
follows, where k = nint/2:

For ti ≤ xk+1, the first nint points are used.
For ti > xn −nint+k, the last nint points are used.
Otherwise, points h through h+nint−1 are used, where:

xh+k−1 < ti ≤ xh+k

The interpolated value at each ti is returned in si for i = 1, m. See references [15]
and [54]. If n, nint, or m is 0, no computation is performed. For a definition of the
polynomial interpolation function performed through a set of data points, see
“Function” on page 870.

For STPINT, the Newton divided differences and interpolating values are
accumulated in long precision.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. nint < 0 or nint > n
3. m < 0

STPINT and DTPINT

874 ESSL Version 3 Release 3 Guide and Reference

4. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the
minimum required value specified in the syntax for this argument. Return code
1 is returned if error 2015 is recoverable.

Example 1
This example shows interpolation using two data points—that is, linear
interpolation—at each ti value.

Call Statement and Input:
X Y N NINT T S M AUX NAUX
| | | | | | | | |

CALL STPINT(X , Y , 10 , 2 , T , S , 5 , AUX , 7)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)
T = (-1.0, 0.1, 1.1, 1.2, 3.9)

Output:
S = (-1.5000, 1.2500, 3.2000, 3.4000, 2.0000)

Example 2
This example shows interpolation using three data points—that is, quadratic
interpolation—at each ti value.

Call Statement and Input:
X Y N NINT T S M AUX NAUX
| | | | | | | | |

CALL STPINT(X , Y , 10 , 3 , T , S , 5 , AUX , 8)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)
T = (-1.0, 0.1, 1.1, 1.2, 3.9)

Output:
S = (-2.6667, 1.2750, 3.2121, 3.4182, 2.0000)

STPINT and DTPINT

Chapter 14. Interpolation 875

SCSINT and DCSINT—Cubic Spline Interpolation
These subroutines compute the coefficients of the cubic spline through a set of data
points and evaluate the spline at specified abscissas.

Table 157. Data Types

x, y, C, t, s Subroutine

Short-precision real SCSINT

Long-precision real DCSINT

Syntax

Fortran CALL SCSINT | DCSINT (x, y, c, n, init, t, s, m)

C and C++ scsint | dcsint (x, y, c, n, init, t, s, m);

PL/I CALL SCSINT | DCSINT (x, y, c, n, init, t, s, m);

On Entry:

x is the vector x of length n, containing the abscissas of the data points that
define the spline. The elements of x must be distinct and sorted into
ascending order. Specified as: a one-dimensional array of (at least) length
n, containing numbers of the data type indicated in Table 157.

y is the vector y of length n, containing the ordinates of the data points that
define the spline. Specified as: a one-dimensional array of (at least) length
n, containing numbers of the data type indicated in Table 157.

c is the matrix C with elements cjk for j = 1, n and k = 1, 4 that contain the
following:

If init ≤ 0, all elements of c are undefined on entry.

If init = 1, c11 contains the spline derivative at x1.

If init = 2, c21 contains the spline derivative at xn.

If init = 3, c11 contains the spline derivative at x1, and c21 contains the
spline derivative at xn.

If init > 3, c contains the coefficients of the spline computed for the data
points (xj,yj) for j = 1, n on a previous call to this subroutine.

Specified as: an n by (at least) 4 array, containing numbers of the data type
indicated in Table 157.

n is the number of elements in vectors x and y and the number of rows in
matrix C—that is, the number of data points. Specified as: a fullword
integer; n ≥ 0.

init indicates the following, where in those cases for uninitialized coefficients,
this is the first call to this subroutine with the data in x and y:

If init ≤ 0, the coefficients are uninitialized. The second derivatives of the
spline at x1 and xn are set to zero. (These are free end conditions, also
called natural boundary conditions.)

If init = 1, the coefficients are uninitialized. The value in c11 is used as the
spline derivative at x1.

If init = 2, the coefficients are uninitialized. The value in c21 is used as the
spline derivative at xn.

SCSINT and DCSINT

876 ESSL Version 3 Release 3 Guide and Reference

If init = 3, the coefficients are uninitialized. The value in c11 is used as the
spline derivative at x1 and the value in c21 is used as the spline derivative
at xn.

If init > 3, the coefficients in c were computed for data points (xj, yj) for
j = 1, n on a previous call to this subroutine.

Specified as: a fullword integer. It can have any value.

t is the vector t of length m, containing the abscissas at which the spline is
evaluated. Specified as: a one-dimensional array of (at least) length m,
containing numbers of the data type indicated in Table 157 on page 876.

s See “On Return”.

m is the number of elements in vectors t and s—that is, the number of points
at which the spline interpolation is evaluated. Specified as: a fullword
integer; m ≥ 0.

On Return:

c is the matrix C, containing the coefficients of the spline through the data
points (xj,yj) for j = 1, n. Returned as: an n by (at least) 4 array, containing
numbers of the data type indicated in Table 157 on page 876.

init is an indicator that is set to indicate that the coefficients have been
initialized. (If you call this subroutine again with the same data, this value
should be specified for init.) Returned as: a fullword integer; init = 4.

s is the vector s of length m, containing the resulting values of the spline;
that is, each si is the value of the spline evaluated at ti. Returned as: a
one-dimensional array of (at least) length m, containing numbers of the
data type indicated in Table 157 on page 876.

Notes
1. In your C program, argument init must be passed by reference.
2. Vectors x, y, and t must have no common elements with matrix C and vector s,

and matrix C must have no common elements with vector s; otherwise, results
are unpredictable.

3. The elements of vector x must be distinct and must be sorted into ascending
order; that is, x1 < x2 < ... < xn. Otherwise, results are unpredictable. For
details on how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements
of a Sequence” on page 851.

Function
Interpolation is performed at specified abscissas, ti for i = 1, m, in vector t, using
the cubic spline passing through the data points:

(xj, yj) for j = 1, n

where:
x1 < x2 < x3 < ... < xn

xj are elements of vector x.
yj are elements of vector y.

The value of the cubic spline at each ti is returned in si for i = 1, m. See references
[15] and [54]. The coefficients of the spline, cjk for j = 1, n and k = 1, 4, are
returned in matrix C. These coefficients can then be reused on subsequent calls to
this subroutine, using the same data points (xj, yj), but with new values of ti. The
cubic spline values returned in s are computed using the coefficients as follows:

si = cj1 + cj2 (xj−ti) + cj3 (xj−ti)
2 + cj4 (xj−ti)

3 for i = 1, m

SCSINT and DCSINT

Chapter 14. Interpolation 877

where:
j = 1 for ti ≤ x1
j = k for x1 < ti ≤ xn, such that xk−1 < ti ≤ xk

j = n for xn < ti

The values specified for m and init indicate which combination of functions are
performed by this subroutine:
v If m = 0 and init > 3, no computation is performed.
v If m = 0 and init ≤ 3, only the coefficients are computed, and no interpolation is

performed.
v If m ≠ 0 and init > 3, the coefficients are not computed, and the interpolation is

performed.
v If m ≠ 0 and init ≤ 3, the coefficients are computed, and the interpolation is

performed.

In addition, if n = 0, no computation is performed.

The values specified for n and init determine the type of spline function:
v If n = 1, the constructed spline is a constant function.
v If n = 2 and init = 0, the constructed spline is a line through the points.
v If n = 2 and init = 1, the constructed spline is a cubic function through the

points whose derivative at x1 is c11.
v If n = 2 and init = 2, the constructed spline is a cubic function through the

points whose derivative at xn is c21.
v If n = 2 and init = 3, the constructed spline is a cubic function through the

points whose derivative at x1 is c11 and at xn is c21.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. m < 0

Example 1
This example computes the spline coefficients through a set of data points with no
derivative value specified. It also evaluates the spline at the abscissas specified in
T. On output, INIT and C are updated with new values.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 0 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)
C =(not relevant)
T = (-1.000, 2.500, 4.000, 7.000)

Output:
┌ ┐
| 0.000 -0.868 0.000 -0.132 |
| 1.000 -1.264 0.396 -0.132 |

C = | 2.000 -0.076 -1.585 0.660 |
| 1.100 1.267 0.243 -0.609 |

SCSINT and DCSINT

878 ESSL Version 3 Release 3 Guide and Reference

| 0.000 1.010 0.014 0.076 |
| -1.000 0.995 0.000 0.005 |
└ ┘

INIT = 4
S = (-2.792, 1.649, 1.100, -2.000)

Example 2
This example computes the spline coefficients through a set of data points with a
derivative value specified at the right endpoint. It also evaluates the spline at the
abscissas specified in T. On output, INIT and C are updated with new values.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 2 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

┌ ┐
| |
| 0.1 . . . |

C = | |
| |
| |
| |
└ ┘

T = (-1.000, 2.500, 4.000, 7.000)

Output:
┌ ┐
| 0.000 -0.865 0.000 -0.135 |
| 1.000 -1.270 0.405 -0.135 |

C = | 2.000 -0.054 -1.621 0.675 |
| 1.100 1.188 0.379 -0.667 |
| 0.000 1.303 -0.494 0.291 |
| -1.000 0.100 1.897 -0.797 |
└ ┘

INIT = 4
S = (-2.810, 1.652, 1.100, 1.794)

Example 3
This example computes the spline coefficients through a set of data points with a
derivative value specified at both endpoints. It does not evaluate the spline at any
points. On output, INIT and C are updated with new values. Because arrays are not
needed for arguments t and s, the value 0 is specified in their place.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 3 , 0 , 0 , 0)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

┌ ┐
| -1.0 . . . |
| 0.1 . . . |

C = | |

SCSINT and DCSINT

Chapter 14. Interpolation 879

| |
| |
| |
└ ┘

Output:
┌ ┐
| 0.000 1.000 3.230 1.230 |
| 1.000 -1.770 -0.460 1.230 |

C = | 2.000 0.079 -1.389 0.310 |
| 1.100 1.152 0.316 -0.568 |
| 0.000 1.312 -0.476 0.264 |
| -1.000 -0.100 1.888 -0.788 |
└ ┘

INIT = 4

Example 4
This example evaluates the spline at a set of points, using the coefficients obtained
in Example 3.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 4 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)
C =(same as output C in Example 3)
T = (-1.000, 2.500, 4.000, 7.000)

Output:

C =(same as output C in Example 3)
S = (24.762, 1.731, 1.100, 1.776)
INIT = 4

SCSINT and DCSINT

880 ESSL Version 3 Release 3 Guide and Reference

SCSIN2 and DCSIN2—Two-Dimensional Cubic Spline Interpolation
These subroutines compute the interpolation values at a specified set of points,
using data defined on a rectangular mesh in the x-y plane.

Table 158. Data Types

x, y, Z, t, u, aux, S Subroutine

Short-precision real SCSIN2

Long-precision real DCSIN2

Syntax

Fortran CALL SCSIN2 | DCSIN2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux)

C and C++ scsin2 | dcsin2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux);

PL/I CALL SCSIN2 | DCSIN2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux);

On Entry:

x is the vector x of length n1, containing the x-coordinates of the data points
that define the spline. The elements of x must be distinct and sorted into
ascending order. Specified as: a one-dimensional array of (at least) length
n1, containing numbers of the data type indicated in Table 158.

y is the vector y of length n2, containing the y-coordinates of the data points
that define the spline. The elements of y must be distinct and sorted into
ascending order. Specified as: a one-dimensional array of (at least) length
n2, containing numbers of the data type indicated in Table 158.

z is the matrix Z, containing the data at (xi, yj) for i = 1, n1 and j = 1, n2
that defines the spline. Specified as: an ldz by (at least) n2 array, containing
numbers of the data type indicated in Table 158.

n1 is the number of elements in vector x and the number of rows in matrix
Z—that is, the number of x-coordinates at which the spline is defined.
Specified as: a fullword integer; n1 ≥ 0.

n2 is the number of elements in vector y and the number of columns in
matrix Z—that is, the number of y-coordinates at which the spline is
defined. Specified as: a fullword integer; n2 ≥ 0.

ldz is the leading dimension of the array specified for z. Specified as: a
fullword integer; ldz > 0 and ldz ≥ n1.

t is the vector t of length m1, containing the x-coordinates at which the
spline is evaluated. Specified as: a one-dimensional array of (at least)
length m1, containing numbers of the data type indicated in Table 158.

u is the vector u of length m2, containing the y-coordinates at which the
spline is evaluated. Specified as: a one-dimensional array of (at least)
length m2, containing numbers of the data type indicated in Table 158.

m1 is the number of elements in vector t—that is, the number of x-coordinates
at which the spline interpolation is evaluated. Specified as: a fullword
integer; m1 ≥ 0.

m2 is the number of elements in vector u—that is, the number of y-coordinates
at which the spline interpolation is evaluated. Specified as: a fullword
integer; m2 ≥ 0.

SCSIN2 and DCSIN2

Chapter 14. Interpolation 881

s See “On Return”.

lds is the leading dimension of the array specified for s. Specified as: a
fullword integer; lds > 0 and lds ≥ m1.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 156 on page 873. On output, the contents are overwritten.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, SCSIN2 and DCSIN2
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ (10)(max(n1, n2))+(n2+1)(m1)+2(m2).

On Return:

s is the matrix S with elements skh that contain the interpolation values at (tk,
uh) for k = 1, m1 and h = 1, m2. Returned as: an lds by (at least) m2 array,
containing numbers of the data type indicated in Table 158 on page 881.

Notes
1. The cyclic reduction method used to solve the equations in this subroutine can

generate underflows on well-scaled problems. This does not affect accuracy, but
it may decrease performance. For this reason, you may want to disable
underflow before calling this subroutine.

2. Vectors x, y, t, and u, matrix Z, and the aux work area must have no common
elements with matrix S; otherwise, results are unpredictable.

3. The elements within vectors x and y must be distinct. In addition, the elements
in the vectors must be sorted into ascending order; that is, x1 < x2 < ... < xn1

and y1 < y2 < ... < yn2. Otherwise, results are unpredictable. For details on
how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements of a
Sequence” on page 851.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
Interpolation is performed at a specified set of points:

(tk, uh) for k = 1, m1 and h = 1, m2

by fitting bicubic spline functions with natural boundary conditions, using the
following set of data, defined on a rectangular grid, (xi, yj) for i = 1, n1 and j = 1,
n2:

zij for i = 1, n1 and j = 1, n2

where tk, uh, xi, yj, and zij are elements of vectors t, u, x, and y and matrix Z,
respectively. In vectors x and y, elements are assumed to be sorted into ascending
order.

The interpolation involves two steps:

SCSIN2 and DCSIN2

882 ESSL Version 3 Release 3 Guide and Reference

1. For each j from 1 to n2, the single variable cubic spline:

with natural boundary conditions, is constructed using the data points:
(xi, zij) for i = 1, n1

The following interpolation values are then computed:

2. For each k from 1 to m1, the single variable cubic spline:

with natural boundary conditions, is constructed using the data points:

The following interpolation values are then computed:

See references [54] and [60]. Because natural boundary conditions (zero second
derivatives at the end of the ranges) are used for the splines, unless the underlying
function has these properties, interpolated values near the boundaries may be less
satisfactory than elsewhere. If n1, n2, m1, or m2 is 0, no computation is performed.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n1 < 0 or n1 > ldz
2. n2 < 0
3. m1 < 0 or m1 > lds
4. m2 < 0
5. ldz < 0
6. lds < 0
7. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value specified in the syntax for this argument. Return code
1 is returned if error 2015 is recoverable.

SCSIN2 and DCSIN2

Chapter 14. Interpolation 883

Example
This example computes the interpolated values at a specified set of points, given
by T and U, from a set of data points defined on a rectangular mesh in the x-y
plane, using X, Y, and Z.

Call Statement and Input:
X Y Z N1 N2 LDZ T U M1 M2 S LDS AUX NAUX
| | | | | | | | | | | | | |

CALL SCSIN2(X , Y , Z , 6 , 5 , 6 , T , U , 4 , 3 , S , 4 , AUX , 90)

X = (0.0, 0.2, 0.3, 0.4, 0.5, 0.7)
Y = (0.0, 0.2, 0.3, 0.4, 0.6)

┌ ┐
| 0.000 0.008 0.027 0.064 0.216 |
| 0.008 0.016 0.035 0.072 0.224 |

Z = | 0.027 0.035 0.054 0.091 0.243 |
| 0.064 0.072 0.091 0.128 0.280 |
| 0.125 0.133 0.152 0.189 0.341 |
| 0.343 0.351 0.370 0.407 0.559 |
└ ┘

T = (0.10, 0.15, 0.25, 0.35)
U = (0.05, 0.25, 0.45)

Output:
┌ ┐
| 0.001 0.017 0.095 |

S = | 0.003 0.019 0.097 |
| 0.016 0.031 0.110 |
| 0.043 0.059 0.137 |
└ ┘

SCSIN2 and DCSIN2

884 ESSL Version 3 Release 3 Guide and Reference

Chapter 15. Numerical Quadrature

The numerical quadrature subroutines are described in this chapter.

Overview of the Numerical Quadrature Subroutines
The numerical quadrature subroutines provide Gaussian quadrature methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration (Table 159).

Table 159. List of Numerical Quadrature Subroutines

Descriptive Name
Short- Precision
Subroutine

Long- Precision
Subroutine Page

Numerical Quadrature Performed on a Set of Points SPTNQ DPTNQ 889

Numerical Quadrature Performed on a Function Using
Gauss-Legendre Quadrature

SGLNQ† DGLNQ† 892

Numerical Quadrature Performed on a Function Over a Rectangle
Using Two-Dimensional Gauss-Legendre Quadrature

SGLNQ2† DGLNQ2† 894

Numerical Quadrature Performed on a Function Using
Gauss-Laguerre Quadrature

SGLGQ† DGLGQ† 900

Numerical Quadrature Performed on a Function Using
Gauss-Rational Quadrature

SGRAQ† DGRAQ† 903

Numerical Quadrature Performed on a Function Using
Gauss-Hermite Quadrature

SGHMQ† DGHMQ† 907

† This subprogram is invoked as a function in a Fortran program.

Use Considerations
This section contains some key points about using the numerical quadrature
subroutines.

Choosing the Method
The theoretical aspects of choosing the method to use for integration can be found
in the references [26], [61], and [92].

Performance and Accuracy Considerations
1. There are n function evaluations for a method of order n. Because function

evaluations are expensive in terms of computing time, you should weigh the
considerations for computing time and accuracy in choosing a value for n.

2. To achieve optimal performance in the _GLNQ2 subroutines, specify the first
variable integrated to be the variable having more points. This allows both the
subroutine and the function evaluation to achieve optimal performance. Details
on how to do this are given in “Notes” on page 895.

3. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 42.

© Copyright IBM Corp. 1997, 2001 885

Programming Considerations for the SUBF Subroutine
This section describes how to design and code the subf subroutine for use by the
numerical quadrature subrutines.

Designing SUBF
For the Gaussian quadrature subroutines, you must supply a separate subroutine
that is callable by ESSL. You specify the name of the subroutine in the subf
argument. This subroutine name is selected by you. You should design the subf
subroutine so it receives, as input, a tabulated set of points at which the integrand
is evaluated, and it returns, as output, the values of the integrand evaluated at
these points.

Depending on the numerical quadrature subroutine that you use, the subf
subroutine is defined in one of the two following ways:
v For _GLNQ, _GLGQ, _GRAQ, and _GHMQ, you define the subf subroutine with

three arguments: t, y, and n, where:

t is an input array, referred to as T, of tabulated Gaussian quadrature
abscissas, containing n real numbers, ti, where ti is automatically
provided by the ESSL subroutine and is determined by n and the
Gaussian quadrature method chosen.

y is an output array, referred to as Y, containing n real numbers, where for
the integrand, the following is true: yi = f(ti) for i = 1, n.

n is a positive integer indicating the number of elements in T and Y.
v For _GLNQ2, you define the subf subroutine with six arguments: s, n1, t, n2, z,

and ldz, where:

s is an input array, referred to as S, of tabulated Gaussian quadrature
abscissas, containing n1 real numbers, si, where si is automatically
provided by the ESSL subroutine and is determined by n1 and the
Gaussian quadrature method.

n1 is a positive integer indicating the number of elements in S and the
number of rows to be used in array Z.

t is an input array, referred to as T, of tabulated Gaussian quadrature
abscissas, containing n2 real numbers, ti, where ti is automatically
provided by the ESSL subroutine and is determined by n2 and the
Gaussian quadrature method.

n2 is a positive integer indicating the number of elements in T and the
number of columns to be used in array Z.

z is an ldz by (at least) n2 output array, referred to as Z, of real numbers,
where for the integrand, the following is true: zij = f(si, tj) for i = 1, n1
and j = 1, n2.

ldz is a positive integer indicating the size of the leading dimension of the
array Z.

Coding and Setting Up SUBF in Your Program
Examples of coding a subf subroutine in Fortran are provided for each subroutine
in this chapter. Examples of coding a subf subroutine in C, C++, and PL/I are
provided in “Example 1” on page 896.

886 ESSL Version 3 Release 3 Guide and Reference

Depending on the programming language you use for your program that calls the
numerical quadrature subroutines, you have a choice of one or more languages
that you can use for writing subf. These rules and other langauge-related coding
rules for setting up subf in your program are described in the following sections:
v “Setting Up a User-Supplied Subroutine for ESSL in Fortran” on page 105
v “Setting Up a User-Supplied Subroutine for ESSL in C” on page 125
v “Setting Up a User-Supplied Subroutine for ESSL in C++” on page 141

Chapter 15. Numerical Quadrature 887

Numerical Quadrature Subroutines
This section contains the numerical quadrature subroutine descriptions.

SPTNQ and DPTNQ

888 ESSL Version 3 Release 3 Guide and Reference

SPTNQ and DPTNQ—Numerical Quadrature Performed on a Set of
Points

These subroutines approximate the integral of a real valued function specified in
tabular form, (xi, yi) for i = 1, n. For more than four points, an error estimate is
returned along with the resulting value.

Table 160. Data Types

x, y, xyint, eest Subroutine

Short-precision real SPTNQ

Long-precision real DPTNQ

Syntax

Fortran CALL SPTNQ | DPTNQ (x, y, n, xyint, eest)

C and C++ sptnq | dptnq (x, y, n, xyint, eest);

PL/I CALL SPTNQ | DPTNQ (x, y, n, xyint, eest);

On Entry:

x is the vector x of length n, containing the abscissas of the data points to be
integrated. The elements of x must be distinct and sorted into ascending or
descending order. Specified as: a one-dimensional array of (at least) length
n, containing numbers of the data type indicated in Table 160.

y is the vector y of length n, containing the ordinates of the data points to be
integrated. Specified as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 160.

n is the number of elements in vectors x and y—that is, the number of data
points. The value of n determines the algorithm used by this subroutine.
For details, see “Function” on page 890. Specified as: a fullword integer;
n ≥ 2.

xyint See “On Return”.

eest See “On Return”.

On Return:

xyint is the approximation xyint of the integral. Returned as: a number of the
data type indicated in Table 160.

eest has the following meaning, where:

If n < 5, it is undefined and is set to 0.

If n ≥ 5, it is an estimate, eest, of the error in the integral, where xyint+eest
tends to give a better approximation to the integral than xyint. For details,
see references [26] and [61].

Returned as: a number of the data type indicated in Table 160.

Notes
1. In your C program, arguments xyint and eest must be passed by reference.

SPTNQ and DPTNQ

Chapter 15. Numerical Quadrature 889

2. The elements of vector x must be distinct—that is, xi ≠ xj for i ≠ j,—and they
must be sorted into ascending or descending order; otherwise, results are
unpredictable. For how to do this, see “ISORT, SSORT, and DSORT—Sort the
Elements of a Sequence” on page 851.

Function
The integral is approximated for a real valued function specified in tabular form,
(xi, yi) for i = 1, n, where xi are distinct and sorted into ascending or descending
order, and n ≥ 2. If yi = f(xi) for i = 1, n, then on output, xyint is an
approximation to the integral of the following form:

The algorithm used by this subroutine is based on the number of data points used
in the computation, where:
v If n = 2, the trapezoid rule is used to do the integration.
v If n = 3, the parabola through the three points is integrated.
v If n ≥ 4, the method of Gill and Miller is used to do the integration.

For n ≥ 5, an estimate of the error eest is returned. For the method of Gill and
Miller, it is shown that adding the estimate of the error eest to the result xyint often
gives a better approximation to the integral than the result xyint by itself. For
n < 5, an estimate of the error is not returned. In this case, a value of 0 is returned
for eest. See references [61] and [26].

Error Conditions

Computational Errors: None

Input-Argument Errors: n < 2

Example 1
This example shows the result of an integration, where the abscissas in X are sorted
into ascending order.

Call Statement and Input:
X Y N XYINT EEST
| | | | |

CALL SPTNQ(X , Y , 10 , XYINT , EEST)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.0, 3.5, 3.3)

Output:
XYINT = 15.137
EEST = -0.003

Example 2
This example shows the result of an integration, where the abscissas in X are sorted
into descending order.

Call Statement and Input:
X Y N XYINT EEST
| | | | |

CALL SPTNQ(X , Y , 10 , XYINT , EEST)

SPTNQ and DPTNQ

890 ESSL Version 3 Release 3 Guide and Reference

X = (4.3, 3.9, 3.4, 3.0, 2.6, 2.1, 1.5, 1.0, 0.4, 0.0)
Y = (3.3, 3.5, 3.0, 4.0, 4.5, 5.0, 4.0, 3.0, 2.0, 1.0)

Output:
XYINT = -15.137
EEST = 0.003

SPTNQ and DPTNQ

Chapter 15. Numerical Quadrature 891

SGLNQ and DGLNQ—Numerical Quadrature Performed on a Function
Using Gauss-Legendre Quadrature

These functions approximate the integral of a real valued function over a finite
interval, using the Gauss-Legendre Quadrature method of specified order.

Table 161. Data Types

a, b, Result Subroutine

Short-precision real SGLNQ

Long-precision real DGLNQ

Syntax

Fortran SGLNQ | DGLNQ (subf, a, b, n)

C and C++ sglnq | dglnq (subf, a, b, n);

PL/I SGLNQ | DGLNQ (subf, a, b, n);

On Entry:

subf is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details,
see “Programming Considerations for the SUBF Subroutine” on page 886.

Specified as: subf must be declared as an external subroutine in you
application program. It can be whatever name you choose.

a is the lower limit of integration, a. Specified as: a number of the data type
indicated in Table 161.

b is the upper limit of integration, b. Specified as: a number of the data type
indicated in Table 161.

n is the order of the quadrature method to be used. Specified as: a fullword
integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128, or
256.

On Return:

Function value

is the approximation of the integral. Returned as: a number of the data type
indicated in Table 161.

Notes
1. Declare the DGLNQ function in your program as returning a long-precision

real number. Declare the SGLNQ, if necessary, as returning a short-precision
real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function” on page 893, and
the argument n correspond to the subf arguments t and n, respectively. For
details on how to set up the subroutine, see “Programming Considerations for
the SUBF Subroutine” on page 886.

SGLNQ and DGLNQ

892 ESSL Version 3 Release 3 Guide and Reference

Function
The integral is approximated for a real valued function over a finite interval, using
the Gauss-Legendre Quadrature method of specified order. The region of
integration is from a to b. The method of order n is theoretically exact for integrals
of the following form, where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the form f(x), where f is a polynomial of degree less
than 2n. See references [26] and [92]. The result is returned as the function value.

Error Conditions

Computational Errors: None

Input-Argument Errors: n is not an allowable value, as listed in the syntax for
this argument.

Example
This example shows how to compute the integral of the function f given by:

f(x) = x2+ex

over the interval (0.0, 2.0), using the Gauss-Legendre method with 10 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N

1 Y(I)=T(I)**2+EXP(T(I))
RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

XINT = SGLNQ(FUN1 , 0.0 , 2.0 , 10)
.
.
.

FUN1 =(see above)

Output:
XINT = 9.056

SGLNQ and DGLNQ

Chapter 15. Numerical Quadrature 893

SGLNQ2 and DGLNQ2—Numerical Quadrature Performed on a
Function Over a Rectangle Using Two-Dimensional Gauss-Legendre
Quadrature

These functions approximate the integral of a real valued function of two variables
over a rectangular region, using the Gauss-Legendre Quadrature method of
specified order in each variable.

Table 162. Data Types

a, b, c, d, Z, Result Subroutine

Short-precision real SGLNQ2

Long-precision real DGLNQ2

Syntax

Fortran SGLNQ2 | DGLNQ2 (subf, a, b, n1, c, d, n2, z, ldz)

C and C++ sglnq2 | dglnq2 (subf, a, b, n1, c, d, n2, z, ldz);

PL/I SGLNQ2 | DGLNQ2 (subf, a, b, n1, c, d, n2, z, ldz);

On Entry:

subf is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with six arguments: s, n1, t, n2, z, and ldz.
For details, see “Programming Considerations for the SUBF Subroutine” on
page 886.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a is the lower limit of integration, a, for the first variable integrated.
Specified as: a number of the data type indicated in Table 162.

b is the upper limit of integration, b, for the first variable integrated.
Specified as: a number of the data type indicated in Table 162.

n1 is the order of the quadrature method to be used for the first variable
integrated. Specified as: a fullword integer; n1 = 1, 2, 3, 4, 5, 6, 8, 10, 12,
14, 16, 20, 24, 32, 40, 48, 64, 96, 128, or 256.

c is the lower limit of integration, c, for the second variable integrated.
Specified as: a number of the data type indicated in Table 162.

d is the upper limit of integration, d, for the second variable integrated.
Specified as: a number of the data type indicated in Table 162.

n2 is the order of the quadrature method to be used for the second variable
integrated. Specified as: a fullword integer; n2 = 1, 2, 3, 4, 5, 6, 8, 10, 12,
14, 16, 20, 24, 32, 40, 48, 64, 96, 128, or 256.

z is the matrix Z, containing the n1 rows and n2 columns of data used to
evaluate the integrand function. (The output values from the subf
subroutine are placed in Z.) Specified as: an ldz by (at least) n2 array,
containing numbers of the data type indicated in Table 162.

ldz is the size of the leading dimension of the array specified for z. Specified
as: a fullword integer; ldz > 0 and ldz ≥ n1.

On Return:

SGLNQ2 and DGLNQ2

894 ESSL Version 3 Release 3 Guide and Reference

Function value
is the approximation of the integral. Returned as: a number of the data type
indicated in Table 162 on page 894.

Notes
1. Declare the DGLNQ2 function in your program as returning a long-precision

real number. Declare the SGLNQ2 function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. For details on how to set up the subroutine, see
“Programming Considerations for the SUBF Subroutine” on page 886.

Function
The integral:

is approximated for a real valued function of two variables s and t, over a
rectangular region, using the Gauss-Legendre Quadrature method of specified
order in each variable. The region of integration is:

(a, b) for s
(c, d) for t

The method gives a good approximation when your integrand is closely
approximated by a function of the form f(s, t), where f is a polynomial of degree
less than 2(n1) for s and 2(n2) for t. See the function description for “SGLNQ and
DGLNQ—Numerical Quadrature Performed on a Function Using Gauss-Legendre
Quadrature” on page 892 and references [26] and [92]. The result is returned as the
function value.

Special Usage
To achieve optimal performance in this subroutine and in the functional
evaluation, specify the first variable integrated in this subroutine as the variable
having more points. The first variable integrated is the variable in the inner
integral. For example, in the following integration, x is the first variable integrated:

This is the suggested order of integration if the x variable has more points than the
y variable. On the other hand, if the y variable has more points, you make y the
first variable integrated.

Because the order of integration does not matter to the resulting approximation,
you may be able to reverse the order that x and y are integrated and get better
performance. This can be expressed as:

SGLNQ2 and DGLNQ2

Chapter 15. Numerical Quadrature 895

Results are mathematically equivalent. However, because the algorithm is
computed in a different way, results may not be bitwise identical.

Table 163 shows how to assign your variables to the _GLNQ2 and subf arguments
for the x-y integration shown on the left and for the y-x integration shown on the
right. For examples of how to do each of these, see “Example 1” and “Example 2”
on page 898.

Table 163. How to Assign Your Variables for x-y Integration Versus y-x Integration

_GLNQ2 and SUBF
Arguments

Variables for
x-y Integration

Variables for
y-x Integration

For _GLNQ2:
a
b

n1
c
d

n2
For subf:

s
t

n1
n2

r1
r2

(order for x)
u1
u2

(order for y)

x
y

(order for x)
(order for y)

u1
u2

(order for y)
r1
r2

(order for x)

y
x

(order for y)
(order for x)

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. ldz ≤ 0
2. n1 > ldz
3. n1 or n2 is not an allowable value, as listed in the syntax for this argument.

Example 1
This example shows how to compute the integral of the function f given by:

f(x, y) = ex sin y

over the intervals (0.0, 2.0) for the first variable x and (−2.0, −1.0) for the second
variable y, using the Gauss-Legendre method with 10 points in the x variable and 5
points in the y variable:

Because the variable x has more points, it is the first variable integrated. This
allows the SGLNQ2 subroutine and the FUN1 evaluation to achieve optimal
performance. Therefore, the x and y variables correspond to S and T in the FUN1
subroutine. Also, the x and y variables correspond to the A, B, N1 and C, D, N2 sets
of arguments, respectively, for SGLNQ2.

Using Fortran for SUBF: The user-supplied subroutine FUN1, which evaluates the
integrand function, is coded in Fortran as follows:

SUBROUTINE FUN1 (S,N1,T,N2,Z,LDZ)
INTEGER*4 N1,N2,LDZ
REAL*4 S(*),T(*),Z(LDZ,*)
DO 1 J=1,N2

SGLNQ2 and DGLNQ2

896 ESSL Version 3 Release 3 Guide and Reference

DO 2 I=1,N1
2 Z(I,J)=EXP(S(I))*SIN(T(J))
1 CONTINUE

RETURN
END

Note: The computation for this user-supplied subroutine FUN1 can also be
performed by using the following statements in place of the above DO
loops, using T1 and T2 as temporary storage areas:

.

.

.
DO 1 I=1,N1

1 T1(I)=EXP(S(I))
DO 2 J=1,N2

2 T2(J)=SIN(T(J))
DO 3 J=1,N2
DO 4 I=1,N1

4 Z(I,J)=T1(I)*T2(J)
3 CONTINUE

.

.

.

When coding your application, this is the preferred technique. It reduces the
number of evaluations performed and, therefore, provides better performance.

Using C for SUBF: The user-supplied subroutine FUN1, which evaluates the
integrand function, is coded in C as follows:

void fun1(s, n1, t, n2, z, ldz)
float *s, *t, *z;
int *n1, *n2, *ldz;
{

int i, j;
for(j = 0; j < *n2; ++j, z += *ldz)

{
for(i = 0; i < *n1; ++i)
z[i] = exp(s[i]) * sin(t[j]);

}
}

Using C++ for SUBF: The user-supplied subroutine FUN1, which evaluates the
integrand function, is coded in C++ as follows:

void fun1(float *s, int *n1, float *t, int *n2, float *z, int *ldz)
{

int i, j;
for(j = 0; j < *n2; ++j, z += *ldz)

{
for(i = 0; i < *n1; ++i)
z[i] = exp(s[i]) * sin(t[j]);

}
}

Using PL/I for SUBF: The user-supplied subroutine FUN1, which evaluates the
integrand function, is coded in PL/I as follows:

FUN1: PROCEDURE(S,N1,T,N2,Z,LDZ) OPTIONS(FORTRAN,NOMAP);
DCL (N1,N2,LDZ,I,J) REAL FIXED BINARY(31,0);
DCL (S(10),T(10),Z(5,10)) REAL FLOAT DEC(16) ALIGNED CONNECTED;
DO J=1 TO N1;

DO I=1 TO N2;
Z(I,J)=EXP(S(J))*SIN(T(I));

SGLNQ2 and DGLNQ2

Chapter 15. Numerical Quadrature 897

END;
END;
RETURN;
END FUN1;

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N1 C D N2 Z LDZ
| | | | | | | | |

XYINT = SGLNQ2(FUN1 , 0.0 , 2.0 , 10 , -2.0 , -1.0 , 5 , Z , 10)
.
.
.

FUN1 =(see sections above)
Z =(not relevant)

Output:
XYINT = -6.1108

Example 2
This example shows how to reverse the order of integration of the variables x and
y. It computes the integral of the function f given by:

f(x, y) = cos x sin y

over the intervals (0.0, 1.0) for the variable x and (0.0, 20.0) for the variable y, using
the Gauss-Legendre method with 5 points in the x variable and 48 points in the y
variable. Because the order of integration does not matter to the approximation:

the variable y, having more points, is the first variable integrated (performing the
integration shown on the right.) This allows the SGLNQ2 subroutine and the FUN1
evaluation to achieve optimal performance. Therefore, the x and y variables
correspond to T and S in the FUN2 subroutine. Also, the x and y variables
correspond to the C, D, N2 and A, B, N1 sets of arguments, respectively, for SGLNQ2.

The user-supplied subroutine FUN2, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN2 (S,N1,T,N2,Z,LDZ)
INTEGER*4 N1,N2,LDZ
REAL*4 S(*),T(*),Z(LDZ,*)
DO 1 J=1,N2
DO 2 I=1,N1

2 Z(I,J)=COS(T(J))*SIN(S(I))
1 CONTINUE

RETURN
END

Note: The same coding principles for achieving good performance that are noted
in “Example 1” on page 896 also apply to this user-supplied subroutine FUN2.

Program Statements and Input:

SGLNQ2 and DGLNQ2

898 ESSL Version 3 Release 3 Guide and Reference

EXTERNAL FUN2.
.
.
.

SUBF A B N1 C D N2 Z LDZ
| | | | | | | | |

YXINT = SGLNQ2(FUN2 , 0.0 , 20.0 , 48 , 0.0 , 1.0 , 5 , Z , 48)
.
.
.

FUN2 =(see above)
Z =(not relevant)

Output:
YXINT = 0.4981

SGLNQ2 and DGLNQ2

Chapter 15. Numerical Quadrature 899

SGLGQ and DGLGQ—Numerical Quadrature Performed on a Function
Using Gauss-Laguerre Quadrature

These functions approximate the integral of a real valued function over a
semi-infinite interval, using the Gauss-Laguerre Quadrature method of specified
order.

Table 164. Data Types

a, b, Result Subroutine

Short-precision real SGLGQ

Long-precision real DGLGQ

Syntax

Fortran SGLGQ | DGLGQ (subf, a, b, n)

C and C++ sglgq | dglgq (subf, a, b, n);

PL/I SGLGQ | DGLGQ (subf, a, b, n);

On Entry:

subf is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details,
see “Programming Considerations for the SUBF Subroutine” on page 886.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a has the following meaning, where:

If b > 0, it is the lower limit of integration.

If b < 0, it is the upper limit of integration.

Specified as: a number of the data type indicated in Table 164.

b is the scaling constant b for the exponential. Specified as: a number of the
data type indicated in Table 164; b > 0 or b < 0.

n is the order of the quadrature method to be used. Specified as: a fullword
integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, or 64.

On Return:

Function value
is the approximation of the integral. Returned as: a number of the data type
indicated in Table 164.

Notes
1. Declare the DGLGQ function in your program as returning a long-precision

real number. Declare the SGLGQ function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function” on page 901, and
the argument n correspond to the subf arguments t and n, respectively. For
details on how to set up the subroutine, see “Programming Considerations for
the SUBF Subroutine” on page 886.

SGLGQ and DGLGQ

900 ESSL Version 3 Release 3 Guide and Reference

Function
The integral is approximated for a real valued function over a semi-infinite
interval, using the Gauss-Laguerre Quadrature method of specified order. The
region of integration is:

(a, ∞) if b > 0
(−∞, a) if b < 0

The method of order n is theoretically exact for integrals of the following form,
where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the form f(x)e−bx, where f is a polynomial of degree
less than 2n. See references [26] and [92]. The result is returned as the function
value.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. b = 0
2. n is not an allowable value, as listed in the syntax for this argument.

Example 1
This example shows how to compute the integral of the function f given by:

f(x) = sin (3.0x)e−1.5x

over the interval (−2.0, ∞), using the Gauss-Laguerre method with 20 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N

1 Y(I)=SIN(3.0*T(I))*EXP(-1.5*T(I))
RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

SGLGQ and DGLGQ

Chapter 15. Numerical Quadrature 901

XINT = SGLGQ(FUN1 , -2.0 , 1.5 , 20)
.
.
.

FUN1 =(see above)

Output:
XINT = 5.891

Example 2
This example shows how to compute the integral of the function f given by:

f(x) = sin (3.0x)e1.5x

over the interval (−∞, −2.0), using the Gauss-Laguerre method with 20 points:

The user-supplied subroutine FUN2, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN2 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N

1 Y(I)=SIN(3.0*T(I))*EXP(1.5*T(I))
RETURN
END

Program Statements and Input:
EXTERNAL FUN2

.

.

.
SUBF A B N
| | | |

XINT = SGLGQ(FUN2 , -2.0 , -1.5 , 20)
.
.
.

FUN2 = (see above)

Output:
XINT = -0.011

SGLGQ and DGLGQ

902 ESSL Version 3 Release 3 Guide and Reference

SGRAQ and DGRAQ—Numerical Quadrature Performed on a Function
Using Gauss-Rational Quadrature

These functions approximate the integral of a real valued function over a
semi-infinite interval, using the Gaussian-Rational quadrature method of specified
order.

Table 165. Data Types

a, b, Result Subroutine

Short-precision real SGRAQ

Long-precision real DGRAQ

Syntax

Fortran SGRAQ | DGRAQ (subf, a, b, n)

C and C++ sgraq | dgraq (subf, a, b, n);

PL/I SGRAQ | DGRAQ (subf, a, b, n);

On Entry:

subf is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details,
see “Programming Considerations for the SUBF Subroutine” on page 886.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a has the following meaning, where:

If a+b > 0, it is the lower limit of integration.

If a+b < 0, it is the upper limit of integration.

Specified as: a number of the data type indicated in Table 165.

b is the centering constant b for the integrand. Specified as: a number of the
data type indicated in Table 165.

n is the order of the quadrature method to be used. Specified as: a fullword
integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128, or
256.

On Return:

Function value

is the approximation of the integral. Returned as: a number of the data type
indicated in Table 165.

Notes
1. Declare the DGRAQ function in your program as returning a long-precision

real number. Declare the SGRAQ function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function” on page 904, and

SGRAQ and DGRAQ

Chapter 15. Numerical Quadrature 903

the argument n correspond to the subf arguments t and n, respectively. For
details on how to set up the subroutine, see “Programming Considerations for
the SUBF Subroutine” on page 886.

Function
The integral is approximated for a real valued function over a semi-infinite
interval, using the Gauss-Rational quadrature method of specified order. The
region of integration is:

(a, ∞) if a+b > 0
(−∞, a) if a+b < 0

The method of order n is theoretically exact for integrals of the following form,
where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the following form, where f is a polynomial of
degree less than 2n:

See references [26] and [92]. The result is returned as the function value to a
Fortran, C, C++, or PL/I program.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. a+b = 0
2. n is not an allowable value, as listed in the syntax for this argument.

Example 1
This example shows how to compute the integral of the function f given by:

f(x) = (e1.0/x) / x2

over the interval (−∞, −2.0), using the Gauss-Rational method with 10 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SGRAQ and DGRAQ

904 ESSL Version 3 Release 3 Guide and Reference

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N

TEMP=1.0/T(I)
1 Y(I)=EXP(TEMP)*TEMP**2

RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

XINT = SGRAQ(FUN1 , -2.0 , 0.0 , 10)
.
.
.

FUN1 =(see above)

Output:
XINT = 0.393

Example 2
This example shows how to compute the integral of the function f given by:

f(x) = (x−3.0)−2 + 10(x−3.0)−11

over the interval (4.0, ∞), using the Gauss-Rational method with 6 points:

The user-supplied subroutine FUN2, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN2 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N

TEMP=1.0/(T(I)-3.0)
1 Y(I)=TEMP**2+10.0*TEMP**11

RETURN
END

Program Statements and Input:
EXTERNAL FUN2

.

.

.
SUBF A B N
| | | |

XINT = SGRAQ(FUN2 , 4.0 , -3.0 , 6)
.
.
.

FUN2 = (see above)

Output:

SGRAQ and DGRAQ

Chapter 15. Numerical Quadrature 905

XINT = 2.00

SGRAQ and DGRAQ

906 ESSL Version 3 Release 3 Guide and Reference

SGHMQ and DGHMQ—Numerical Quadrature Performed on a Function
Using Gauss-Hermite Quadrature

These functions approximate the integral of a real valued function over the entire
real line, using the Gauss-Hermite Quadrature method of specified order.

Table 166. Data Types

a, b, Result Subroutine

Short-precision real SGHMQ

Long-precision real DGHMQ

Syntax

Fortran SGHMQ | DGHMQ (subf, a, b, n)

C and C++ sghmq | dghmq (subf, a, b, n);

PL/I SGHMQ | DGHMQ (subf, a, b, n);

On Entry:

subf is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details,
see “Programming Considerations for the SUBF Subroutine” on page 886.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a is the centering constant a for the exponential. Specified as: a number of
the data type indicated in Table 166.

b is the scaling constant b for the exponential. Specified as: a number of the
data type indicated in Table 166; b > 0.

n is the order of the quadrature method to be used. Specified as: a fullword
integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, or 96.

On Return:

Function value

is the approximation of the integral. Returned as: a number of the data type
indicated in Table 166.

Notes
1. Declare the DGHMQ function in your program as returning a long-precision

real number. Declare the SGHMQ function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function”, and the argument
n correspond to the subf arguments t and n, respectively. For details on how to
set up the subroutine, see “Programming Considerations for the SUBF
Subroutine” on page 886.

Function
The integral is approximated for a real valued function over the entire real line,
using the Gauss-Hermite Quadrature method of specified order. The region of

SGHMQ and DGHMQ

Chapter 15. Numerical Quadrature 907

integration is from −∞ to ∞. The method of order n is theoretically exact for
integrals of the following form, where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the following form, where f is a polynomial of
degree less than 2n:

See references [26] and [92]. The result is returned as the function value to a
Fortran, C, C++, or PL/I program.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. b ≤ 0
2. n is not an allowable value, as listed in the syntax for this argument.

Example
This example shows how to compute the integral of the function f given by:

over the interval (−∞, ∞), using the Gauss-Hermite method with 4 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N

1 Y(I)=T(I)**2*EXP(-2.0*(T(I)+5.0)**2)
RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

SGHMQ and DGHMQ

908 ESSL Version 3 Release 3 Guide and Reference

XINT = SGHMQ(FUN1 , -5.0 , 2.0 , 4)
.
.
.

FUN1 =(see above)

Output:
XINT = 31.646

SGHMQ and DGHMQ

Chapter 15. Numerical Quadrature 909

SGHMQ and DGHMQ

910 ESSL Version 3 Release 3 Guide and Reference

Chapter 16. Random Number Generation

The random number generation subroutines are described in this chapter.

Overview of the Random Number Generation Subroutines
Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers (Table 167).

Table 167. List of Random Number Generation Subroutines

Descriptive Name Short- Precision
Subroutine

Long- Precision
Subroutine

Page

Generate a Vector of Uniformly Distributed Random Numbers SURAND DURAND 913

Generate a Vector of Normally Distributed Random Numbers SNRAND DNRAND 916

Generate a Vector of Long Period Uniformly Distributed Random
Numbers

SURXOR DURXOR 919

Use Considerations
If you need a very long period random number generator, you should use
SURXOR and DURXOR, rather than SURAND and DURAND, respectively. The
very long period of the generator used by SURXOR and DURXOR, 21279−1, makes
it useful in modern statistical simulations in which the shorter period of other
generators can be exhausted during a single run. As a result, if you need a large
number of random numbers, you can use these subroutines, because with this
generator, you are not be requesting more than a small percentage of the entire
period of the generator.

© Copyright IBM Corp. 1997, 2001 911

Random Number Generation Subroutines
This section contains the random number generation subroutine descriptions.

SURAND and DURAND

912 ESSL Version 3 Release 3 Guide and Reference

SURAND and DURAND—Generate a Vector of Uniformly Distributed
Random Numbers

These subroutines generate vector x of uniform (0,1) pseudo-random numbers,
using the multiplicative congruential method with a user-specified seed.

Table 168. Data Types

x seed Subroutine

Short-precision real Long-precision real SURAND

Long-precision real Long-precision real DURAND

Note: If you need a very long period random number generator, use SURXOR and
DURXOR instead of these subroutines.

Syntax

Fortran CALL SURAND | DURAND (seed, n, x)

C and C++ surand | durand (seed, n, x);

PL/I CALL SURAND | DURAND (seed, n, x);

On Entry:

seed is the initial value used to generate the random numbers. Specified as: a
number of the data type indicated in Table 168. It should be a whole
number; that is, the fraction part should be 0. (If you specify a mixed
number, it is truncated.) Its value must be
1.0 ≤ seed < (2147483647.0 = 231−1).

Note: seed is always a long-precision real number, even in SURAND.

n is the number of random numbers to be generated. Specified as: a fullword
integer; n ≥ 0.

x See “On Return”.

On Return:

seed is the new seed that is to be used to generate additional random numbers
in subsequent invocations of SURAND or DURAND. Returned as: a
number of the data type indicated in Table 168. It is a whole number
whose value is 1.0 ≤ seed < (2147483647.0 = 231−1).

x is a vector of length n, containing the uniform pseudo-random numbers
with values between 0 and 1. Returned as: a one-dimensional array of (at
least) length n, containing numbers of the data type indicated in Table 168.

Note
In your C program, argument seed must be passed by reference.

Function
The uniform (0,1) pseudo-random numbers are generated as follows, using the
multiplicative congruential method:

si = (a(si−1)) mod(m) = (ais0) mod(m)
xi = si/m for i = 1, 2, ..., n

where:

SURAND and DURAND

Chapter 16. Random Number Generation 913

si is a random sequence.
xi is a random number.
s0 is the initial seed provided by the caller.
a = 75 = 16807.0
m = 231−1 = 2147483647.0
n is the number of random numbers to be generated.

See references [76] and [80]. If n is 0, no computation is performed, and the initial
seed is unchanged.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. seed < 1.0 or seed ≥ 2147483647.0

Example 1
This example shows a call to SURAND to generate 10 random numbers.

Call Statement and Input:
SEED N X
| | |

CALL SURAND(SEED , 10 , X)

SEED = 80629.0

Note: It is important to note that SEED is a long-precision number, even though X
contains short-precision numbers.

Output:
SEED = 759150100.0

X = (0.6310323,
0.7603202,
0.7015232,
0.5014868,
0.4895853,
0.4602344,
0.1603608,
0.1832564,
0.9899062,
0.3535068)

Example 2
This example shows a call to DURAND to generate 10 random numbers.

Call Statement and Input:
SEED N X
| | |

CALL DURAND(SEED , 10 , X)

SEED = 80629.0

Output:
SEED = 759150100.0

X = (0.6310323270182275,
0.7603201953509451,

SURAND and DURAND

914 ESSL Version 3 Release 3 Guide and Reference

0.7015232633340746,
0.5014868557925740,
0.4895853057920864,
0.4602344475967038,
0.1603607578018497,
0.1832563756887132,
0.9899062002030695,
0.3535068129904134)

SURAND and DURAND

Chapter 16. Random Number Generation 915

SNRAND and DNRAND—Generate a Vector of Normally Distributed
Random Numbers

These subroutines generate vector x of normally distributed pseudo-random
numbers, with a mean of 0 and a standard deviation of 1, using Polar methods
with a user-specified seed.

Table 169. Data Types

x, aux seed Subroutine

Short-precision real Long-precision real SNRAND

Long-precision real Long-precision real DNRAND

Syntax

Fortran CALL SNRAND | DNRAND (seed, n, x, aux, naux)

C and C++ snrand | dnrand (seed, n, x, aux, naux);

PL/I CALL SNRAND | DNRAND (seed, n, x, aux, naux);

On Entry:

seed is the initial value used to generate the random numbers. Specified as: a
number of the data type indicated in Table 169. It must be a whole
number; that is, the fraction part must be 0. Its value must be
1.0 ≤ seed < (2147483647.0 = 231−1).

Note: seed is always a long-precision real number, even in SNRAND.

n is the number of random numbers to be generated. Specified as: a fullword
integer; n must be an even number and n ≥ 0.

x See “On Return”.

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size must
be greater than or equal to n/2.

Specified as: an area of storage, containing numbers of the data type
indicated in Table 169. They can have any value.

naux is the size of the work area specified by aux. Specified as: a fullword
integer, where:

If naux = 0 and error 2015 is unrecoverable, SNRAND and DNRAND
dynamically allocate the work area used by the subroutine. The work area
is deallocated before control is returned to the calling program.

Otherwise, naux ≥ n/2.

On Return:

seed is the new seed that is to be used to generate additional random numbers
in subsequent invocations of SNRAND or DNRAND. Returned as: a
number of the data type indicated in Table 169. It is a whole number
whose value is 1.0 ≤ seed < (2147483647.0 = 231−1).

x is a vector of length n, containing the normally distributed pseudo-random

SNRAND and DNRAND

916 ESSL Version 3 Release 3 Guide and Reference

numbers. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 169 on page 916.

Notes
1. In your C program, argument seed must be passed by reference.
2. Vector x must have no common elements with the storage area specified for

aux; otherwise, results are unpredictable.
3. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
The normally distributed pseudo-random numbers, with a mean of 0 and a
standard deviation of 1, are generated as follows, using Polar methods with a
user-specified seed. The Polar method, which this technique is based on, was
developed by G. E. P. Box, M. E. Muller, and G. Marsaglia and is described in
reference [76].
1. Using seed, a vector of uniform (0,1) pseudo-random numbers, ui for i = 1, n, is

generated by calling SURAND or DURAND, respectively. These ui values are
then used in the subsequent steps.

2. All (yj, zj) for j = 1, n/2 are set as follows, where each (y, z) is a point in the
square −1 to 1:

yj = 2u2j−1−1
zj = 2u2j−1

3. All pj for j = 1, n/2 are set as follows, where each p measures the square of the
radius of (y, z):

If pj ≥ 1, then pj is discarded, and steps 1 through 3 are repeated until pj < 1.
4. All xi for i = 1, n are set as follows to produce the normally distributed

random numbers:
x2j−1 = yj ((−2 ln pj) / pj)

0.5

x2j = zj ((−2 ln pj) / pj)
0.5

for j = 1, n/2

If n is 0, no computation is performed, and the initial seed is unchanged.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n < 0 or n is an odd number
2. seed < 1.0 or seed ≥ 2147483647.0
3. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than the

minimum required value. Return code 1 is returned if error 2015 is recoverable.

SNRAND and DNRAND

Chapter 16. Random Number Generation 917

Example 1
This example shows a call to SNRAND to generate 10 random numbers.

Call Statement and Input:
SEED N X AUX NAUX
| | | | |

CALL SNRAND(SEED , 10 , X , AUX , 5)

SEED = 80629.0

Note: It is important to note that SEED is a long-precision number, even though X
contains short-precision numbers.

Output:
SEED = 48669425.0

X = (0.660649538,
1.312503695,
1.906438112,
0.014065863,

-0.800935328,
-3.058144093,
-0.397426069,
-0.370634943,
-0.064151444,
-0.275887042)

Example 2
This example shows a call to DNRAND to generate 10 random numbers.

Call Statement and Input:
SEED N X AUX NAUX
| | | | |

CALL DNRAND(SEED , 10 , X , AUX , 5)

SEED = 80629.0

Output:
SEED = 48669425.0

X = (0.6606495655963802,
1.3125037758861060,
1.9064381379483730,
0.0140658628770495,

-0.8009353314494653,
-3.0581441239248530,
-0.3974260845722100,
-0.3706349643478605,
-0.0641514443372939,
-0.2758870630332470)

SNRAND and DNRAND

918 ESSL Version 3 Release 3 Guide and Reference

SURXOR and DURXOR—Generate a Vector of Long Period Uniformly
Distributed Random Numbers

These subroutines generate a vector x of uniform [0,1) pseudo-random numbers,
using the Tausworthe exclusive-or algorithm.

Table 170. Data Types

x, vseed iseed Subroutine

Short-precision real Integer SURXOR

Long-precision real Integer DURXOR

Syntax

Fortran CALL SURXOR | DURXOR (iseed, n, x, vseed)

C and C++ surxor | durxor (iseed, n, x, vseed);

PL/I CALL SURXOR | DURXOR (iseed, n, x, vseed);

On Entry:

iseed has the following meaning, where:

If iseed ≠ 0, iseed is the initial value used to generate the random numbers.
You specify iseed ≠ 0 when you call this subroutine for the first time or
when you changed vseed between calls to this subroutine.

If iseed = 0, vseed is used to generate the random numbers, where vseed
was initialized by an earlier call to this subroutine. ESSL assumes you have
not changed vseed between calls to this subroutine, when you specify
iseed = 0.

Specified as: a fullword integer, as indicated in Table 170.

n is the number of random numbers to be generated. Specified as: a fullword
integer; n ≥ 0.

x See “On Return”.

vseed is the work area used by this subroutine and has the following meaning,
where:

If iseed ≠ 0, vseed is not used for input. The work area can contain
anything.

If iseed = 0, vseed contains the seed vector generated by a preceding call to
this subroutine. vseed is used in this computation to generate the new
random numbers. It should not be changed between calls to this
subroutine.

Specified as: a one-dimensional array of (at least) length 10000, containing
numbers of the data type indicated in Table 170.

On Return:

iseed is set to 0 for subsequent calls to SURXOR or DURXOR. Returned as: a
fullword integer, as indicated in Table 170.

x is a vector of length n, containing the uniform pseudo-random numbers

SURXOR and DURXOR

Chapter 16. Random Number Generation 919

with the following values: 0 ≤ x < 1. Returned as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated
in Table 170 on page 919.

vseed is the work area used by these subroutines, containing the new seed that is
to be used in subsequent calls to this subroutine. Returned as: a
one-dimensional array of (at least) length 10000, containing numbers of the
data type indicated in Table 170 on page 919.

Notes
1. You can generate the same vector x of random numbers by starting over and

specifying your original nonzero iseed value.
2. Multiple calls to these subroutines with mixed sizes generate the same

sequence of numbers as a single call the total length, assuming you specify the
same initial iseed in both cases. For example, you can generate the same vector
x of random numbers by calling this subroutine twice and specifying n = 10 or
by calling this subroutine once and specifying n = 20. You need to specify the
same iseed in the initial call in both cases, and iseed = 0 in the second call with
n = 10.

3. Vector x must have no common elements with the storage area specified for
vseed; otherwise, results are unpredictable.

4. In your C program, argument iseed must be passed by reference.

Function
The pseudo-random numbers uniformly distributed in the interval [0,1) are
generated using the Tausworthe exclusive-or algorithm. This is based on a
linear-feedback shift-register sequence. The very long period of the generator,
21279−1, makes it useful in modern statistical simulations where the shorter period
of other generators could be exhausted during a single run. If you need a large
number of random numbers, you can use these subroutines, because with this
generator you do not request more than a small percentage of the entire period of
the generator.

This generator is based on two feedback positions to generate a new binary digit:

where:
p > q
k = 1, 2, ...
z is a bit vector.
and where:

For details, see references [53], [74], and [94]. The values of p and q are selected
according to the criteria stated in reference [100].

The algorithm initializes a seed vector of length p, starting with iseed. The seed
vector is stored in vseed for use in subsequent calls to this subroutine with
iseed = 0.

If n is 0, no computation is performed, and the initial seed is unchanged.

SURXOR and DURXOR

920 ESSL Version 3 Release 3 Guide and Reference

Special Usage
For some specialized applications, if you need multiple sources of random
numbers, you can specify different vseed areas, which are initialized with different
seeds on multiple calls to this subroutine. You then get multiple sequences of the
random number sequence provided by the generator that are sufficiently far apart
for most purposes.

Error Conditions

Computational Errors: None.

Input-Argument Errors:
1. n < 0
2. iseed = 0 and vseed does not contain valid data.

Example 1
This example shows a call to SURXOR to generate 10 random numbers.

Call Statement and Input:
ISEED N X VSEED
| | | |

CALL SURXOR(ISEED , 10 , X , VSEED)

ISEED = 137

Output:
ISEED = 0

X = (0.6440868,
0.5105118,
0.4878680,
0.3209075,
0.6624528,
0.2499877,
0.0056630,
0.7329214,
0.7486335,
0.8050517)

Example 2
This example shows a call to SURXOR to generate 10 random numbers. This
example specifies iseed = 0 and uses the vseed output generated from Example 1.

Call Statement and Input:
ISEED N X VSEED
| | | |

CALL SURXOR(ISEED , 10 , X , VSEED)

ISEED = 0

Output:
ISEED = 0

X = (0.9930249,
0.0441873,
0.6891295,
0.3101060,
0.6324178,
0.3299408,

SURXOR and DURXOR

Chapter 16. Random Number Generation 921

0.3553145,
0.0100013,
0.0214620,
0.8059390)

Example 3
This example shows a call to DURXOR to generate 20 random numbers. This
sequence of numbers generated are like those generated in Examples 1 and 2.

Call Statement and Input:
ISEED N X VSEED
| | | |

CALL DURXOR(ISEED , 20 , X , VSEED)

ISEED = 137

Output:
ISEED = 0

X = (0.64408693438956721,
0.51051182536460882,
0.48786801310787142,
0.32090755617007050,
0.66245283144861666,
0.24998782843358081,
0.00566308101257373,
0.73292147005172925,
0.74863359794102236,
0.80505169697755319,
0.99302499462139138,
0.04418740640269125,
0.68912952155409579,
0.31010611495627916,
0.63241786342211936,
0.32994081459690583,
0.35531452631408911,
0.01000134413132581,
0.02146199494672940,
0.80593898487597615)

SURXOR and DURXOR

922 ESSL Version 3 Release 3 Guide and Reference

Chapter 17. Utilities

The utility subroutines are described in this chapter.

Overview of the Utility Subroutines
The utility subroutines perform general service functions that support ESSL, rather
than mathematical computations (Table 171).

Table 171. List of Utility Subroutines

Descriptive Name Subroutine Page

ESSL Error Information-Handler Subroutine EINFO 926

ESSL ERRSAV Subroutine for ESSL ERRSAV 929

ESSL ERRSET Subroutine for ESSL ERRSET 930

ESSL ERRSTR Subroutine for ESSL ERRSTR 932

Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library IVSSET‡

Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library IEVOPS‡

Determine the Level of ESSL Installed IESSL 933

Determine the Stride Value for Optimal Performance in Specified Fourier Transform
Subroutines

STRIDE 935

Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode DSRSM 944

For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline
Storage Mode

DGKTRN 948

For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline
Storage Mode

DSKTRN 953

‡ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutines is no longer provided.

Use Considerations
This section describes what you use the utility subroutines for.

Determining the Level of ESSL Installed
IESSL gets the level of ESSL and returns it to your program. The level consists of
the following: version number, release number, modification number, and number
of the most recently installed ESSL PTF. You can use this function to verify that
you are running on or using the capabilities of the desired level.

Finding the Optimal Stride(s) for Your Fourier Transforms
STRIDE is used to determine optimal stride values for your Fourier transforms
when using any of the Fourier transform subroutines, except _RCFT and _CRFT.
You must invoke STRIDE for each optimal stride you want computed. Sometimes
you need a separate stride for your input and output data. For the
three-dimensional Fourier transforms, you need an optimal stride for both the
second and third dimensions of the array. The examples provided for STRIDE
explain how it is used for each of the subroutines listed above.

© Copyright IBM Corp. 1997, 2001 923

After obtaining the optimal strides from STRIDE, you should arrange your data
using these stride values. After the data is set up, call the Fourier transform
subroutine. For additional information on how to set up your data, see “Setting Up
Your Data” on page 722.

Converting Sparse Matrix Storage
DSRSM is used to migrate your existing program from sparse matrices stored by
rows to sparse matrices stored in compressed-matrix storage mode. This converts
the matrices into a storage format that is compatible with the input requirements
for some ESSL sparse matrix subroutines, such as DSMMX.

DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

924 ESSL Version 3 Release 3 Guide and Reference

Utility Subroutines
This section contains the utility subroutine descriptions.

EINFO

Chapter 17. Utilities 925

EINFO—ESSL Error Information-Handler Subroutine
This subroutine returns information to your program about the data involved in a
computational error that occurred in an ESSL subroutine. This is the same
information that is provided in the ESSL messages; however, it allows you to check
the information in your program at run time and continue processing. You pass the
computational error code of interest to this subroutine in icode, and it passes back
one or more pieces of information in the output arguments inf1 and, optionally,
inf2, as defined in Table 172. You should use this subroutine only for those
computational errors listed in the table. It does not apply to computational
errors that do not return information.

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 121.

Table 172. Computational Error Information Returned by EINFO

Error Code Receiver Type of Information

2100 inf1

inf2

Lower range of a vector

Upper range of a vector

2101 inf1

inf2

Index of the eigenvalue that failed to converge

Number of iterations after which it failed to converge

2102 inf1

inf2

Index of the last eigenvector that failed to converge

Number of iterations after which it failed to converge

2103 inf1 Index of the pivot with zero value

2104 inf1 Index of the last pivot with nonpositive value

2105 inf1 Index of the pivot element near zero causing factorization
to fail

2107 inf1

inf2

Index of the singular value that failed to converge

Number of iterations after which it failed to converge

2109 inf1 Iteration count when it was determined that the matrix
was not definite

2114 inf1

inf2

Index of the last eigenvalue that failed to converge

Number of iterations after which it failed to converge

2115 inf1 Order of the leading minor that was discovered to have a
nonpositive determinant

2117 inf1 Column number for which pivot value was near zero

2118 inf1 Row number for which pivot value was near zero

2120 inf1 Row number of empty row where factorization failed

2121 inf1 Column number of empty column where factorization
failed

2126 inf1 Row number for which pivot value was unacceptable

2145 inf1 First diagonal element with zero value

EINFO

926 ESSL Version 3 Release 3 Guide and Reference

Table 172. Computational Error Information Returned by EINFO (continued)

Error Code Receiver Type of Information

2150 inf1 First diagonal element with zero value

Syntax

Fortran CALL EINFO (icode[, inf1[, inf2]])

C and C++ einfo (icode, inf1, inf2);

PL/I CALL EINFO (icode[, inf1[, inf2]]);

On Entry:

icode has the following meaning, where:

If icode = 0, this indicates that the ESSL error option table is to be
initialized. (You specify this value once in the beginning of your program
before calls to ERRSET.)

If icode has any of the allowable error code values listed in Table 172 on
page 926, this is the computational error code of interest. (You specify one
of these values whenever you want information returned about a
computational error.)

Specified as: a fullword integer; icode = 0 or an error code value indicated
in Table 172 on page 926.

inf1 See “On Return”.

inf2 See “On Return”.

On Return:

inf1 has the following meaning, where:

If icode = 0, this argument is not used in the computation. In this case, inf1
is an optional argument, except in C and C++ programs.

If icode ≠ 0, then inf1 is the first information receiver, containing numerical
information related to the computational error.

Returned as: a fullword integer.

inf2 has the following meaning, where:

If icode = 0, this argument is not used in the computation.

If icode ≠ 0, then inf2 is the second information receiver, containing
numerical information related to the computational error. It should be
specified when the error code provides a second piece of information, and
you want the information.

In both of these cases, inf2 is an optional argument, except in C and C++
programs. For more details, see “Notes”.

Returned as: a fullword integer.

Notes
1. If icode is not 0 and is not one of the error codes specified in Table 172 on

page 926, this subroutine returns to the caller, and no information is provided
in inf1 and inf2.

EINFO

Chapter 17. Utilities 927

|||

2. If there are two pieces of information for the error and you specify one output
argument, the second piece of information is not returned to the caller.

3. If there is one piece of information for the error and you specify two output
arguments, the second output argument is not set by this subroutine.

4. In C and C++ programs you must code the inf1 and inf2 arguments, because
they are not optional arguments.

5. In Fortran programs, inf1 and inf2 are optional arguments. This is an exception
to the rule, because other ESSL subroutines do not allow optional arguments.

6. Examples of how to use EINFO are provided in “Chapter 4. Coding Your
Program” on page 105.

EINFO

928 ESSL Version 3 Release 3 Guide and Reference

ERRSAV—ESSL ERRSAV Subroutine for ESSL
The ERRSAV subroutine copies an ESSL error option table entry into an 8-byte
storage area that is accessible to your program.

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 121.

Syntax

Fortran CALL ERRSAV (ierno, tabent)

C and C++ errsav (ierno, tabent);

PL/I CALL ERRSAV (ierno, tabent);

On Entry:

ierno
is the error number in the option table. The entry for ierno in the ESSL error
option table is stored in the 8-byte storage area tabent. Specified as: a fullword
integer; ierno must be one of the error numbers in the option table. For a list of
these numbers, see Table 26 on page 48.

On Return:

tabent
is the storage area where the option table entry is stored. Specified as: an area
of storage of length 8-bytes.

Note
Examples of how to use ERRSAV are provided in “Chapter 4. Coding Your
Program” on page 105.

ERRSAV

Chapter 17. Utilities 929

|

|
|
|

|

ERRSET—ESSL ERRSET Subroutine for ESSL
The ERRSET subroutine allows you to control execution when error conditions
occur. It modifies the information in the ESSL error option table for the error
number indicated. For a range of error messages, you can specify the following:
v How many times a particular error is allowed to occur before the program is

terminated
v How many times a particular error message is printed before printing is

suppressed
v Whether the ESSL error exit routine is to be invoked

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 121.

Syntax

Fortran CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange)

C and C++ errset (ierno, inoal, inomes, itrace, iusadr, irange);

PL/I CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange);

On Entry:

ierno is the error number in the option table. The entry for ierno in the ESSL
error option table is updated as indicated by the other arguments.
Specified as: a fullword integer; ierno must be one of the error numbers in
the option table. For a list of these numbers, see Table 26 on page 48.

inoal indicates the number of errors allowed before each execution is terminated,
where:

If inoal ≤ 0, the specification is ignored, and the number-of-errors option is
not changed.

If inoal = 1, execution is terminated after one error.

If 2 ≤ inoal ≤ 255, then inoal specifies the number of errors allowed before
each execution is terminated.

If inoal > 255, an unlimited number of errors is allowed.

Specified as: a fullword integer, where:

If iusadr = ENOTRM, then 2 ≤ inoal ≤ 255.

inomes indicates the number of messages to be printed, where:

If inomes < 0, all messages are suppressed.

If inomes = 0, the number-of-messages option is not changed.

If 0 < inomes ≤ 255, then inomes specifies the number of messages to be
printed.

If inomes > 255, an unlimited number of error messages is allowed.

Specified as: a fullword integer.

ERRSET

930 ESSL Version 3 Release 3 Guide and Reference

itrace this argument is ignored, but must be specified. Specified as: a fullword
integer where, itrace = 0, 1, or 2 (for migration purposes).

iusadr indicates whether or not the ESSL error exit routine is to be invoked,
where:

If iusadr is zero, the option table is not altered.

If iusadr is one, the option table is set to show no exit routine. Therefore,
standard corrective action is to be used when continuing execution.

If iusadr = ENOTRM, the option table entry is set to the ESSL error exit
routine ENOTRM. Therefore, the ENOTRM subroutine is to be invoked
after the occurrence of the indicated errors. (ENOTRM must appear in an
EXTERNAL statement in your program.)

Specified as: a 32-bit integer in a 32-bit environment or the name of a
subroutine; iusadr = 0, 1, or ENOTRM.

Specified as: a 64-bit integer in a 64-bit environment or the name of a
subroutine; iusadr = 0_8, 1_8, or ENOTRM.

irange indicates the range of errors to be updated in the ESSL error option table,
where:

If irange < ierno, the parameter is ignored.

If irange ≥ ierno, the options specified for the other parameters are to be
applied to the entire range of error conditions encompassed by ierno and
irange.

Specified as: a fullword integer.

Notes
1. Examples of how to use ERRSET are provided in “Chapter 4. Coding Your

Program” on page 105.
2. If you specify ENOTRM for iusadr, then inoal must be in the following range:

2 ≤ inoal ≤ 255.

ERRSET

Chapter 17. Utilities 931

ERRSTR—ESSL ERRSTR Subroutine for ESSL
The ERRSTR subroutine stores an entry in the ESSL error option table.

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 121.

Syntax

Fortran CALL ERRSTR (ierno, tabent)

C and C++ errstr (ierno, tabent);

PL/I CALL ERRSTR (ierno, tabent);

On Entry:

ierno is the error number in the option table. The information in the 8-byte
storage area tabent is stored into the entry for ierno in the ESSL error option
table. Specified as: a fullword integer; ierno must be one of the error
numbers in the option table. For a list of these numbers, see Table 26 on
page 48.

tabent is the storage area containing the table entry data. Specified as: an area of
storage of length 8-bytes.

Note
Examples of how to use ERRSTR are provided in “Chapter 4. Coding Your
Program” on page 105.

ERRSTR

932 ESSL Version 3 Release 3 Guide and Reference

IESSL—Determine the Level of ESSL Installed
This function returns the level of ESSL installed on your system, where the level
consists of a version number, release number, and modification number, plus the
fix number of the most recent PTF installed.

Syntax

Fortran IESSL ()

C and C++ iessl ();

PL/I IESSL ();

On Return:

Function value

is the level of ESSL installed on your system. It is provided as a fullword
integer in the form vvrrmmff, where each two digits represents a part of the
level:
v vv is the version number.
v rr is the release number.
v mm is the modification number.
v ff is the fix number of the most recent PTF installed.

Returned as: a fullword integer; vvrrmmff > 0.

Notes
1. To use IESSL effectively, you must install your ESSL PTFs in their proper

sequential order. As part of the result, IESSL returns the value ff of the most
recent PTF installed, rather than the highest number PTF installed. Therefore,
if you do not install your PTFs sequentially, the ff value returned by IESSL does
not reflect the actual level of ESSL.

2. Declare the IESSL function in your program as returning a fullword integer
value.

Function
The IESSL function enables you to determine the current level of ESSL installed on
your system. It is useful to you in those instances where your program is using a
subroutine or feature that exists only in certain levels of ESSL. It is also useful
when your program is dependent upon certain PTFs being applied to ESSL.

Example
This example shows several ways to use the IESSL function. Most typically, you
use IESSL for checking the version and release level of ESSL. Suppose you are
dependent on a new capability in ESSL, such as a new subroutine or feature,
provided for the first time in ESSL Version 3. You can add the following check in
your program before using the new capability:

IF IESSL() ≥ 3010000

By specifying 0000 for mmff, the modification and fix level, you are independent of
the order in which your modifications and PTFs are installed.

Less typically, you use IESSL for checking the PTF level of ESSL. Suppose you are
dependent on PTF 2 being installed on your ESSL Version 3 system. You want to

IESSL

Chapter 17. Utilities 933

|

|

know whether to call a different user-callable subroutine to set up your array data.
You can add the following check in your program before making the call:

IF IESSL() ≥ 3010002

If your system support group installed the ESSL PTFs in their proper sequential
order, this test works properly; otherwise, it is unpredictable.

IESSL

934 ESSL Version 3 Release 3 Guide and Reference

STRIDE—Determine the Stride Value for Optimal Performance in
Specified Fourier Transform Subroutines

This subroutine determines an optimal stride value for you to use for your input
or output data when you are computing large row Fourier transforms in any of the
Fourier transform subroutines, except _RCFT and _CRFT. The strides determined
by this subroutine allow your arrays to fit comfortably in various levels of storage
hierarchy on your particular processor, thus allowing you to improve your
run-time performance.

Note: This subroutine returns a single stride value. Where you need multiple
strides, you must invoke this subroutine multiple times; for example, in the
multidimensional Fourier transforms and, also, when input and output data
types differ. For more details, see “Function” on page 936.

Syntax

Fortran CALL STRIDE (n, incd, incr, dt, iopt)

C and C++ stride (n, incd, incr, dt, iopt);

PL/I CALL STRIDE (n, incd, incr, dt, iopt);

On Entry:

n is the length n of the Fourier transform for which the optimal stride is
being determined. The transform corresponding to n is usually a row
transform; that is, the data elements are stored using a stride value.

Specified as: a fullword integer; n > 0.

incd is the minimum allowable stride for the Fourier transform for which the
optimal stride is being determined. For each situation in each subroutine,
there is a specific way to compute this minimum value. This is explained
in the examples starting on page 937.

Specified as: a fullword integer; incd > 0 or incd < 0.

incr See “On Return”.

dt is the data type of the numbers for the Fourier transform for which the
optimal stride is being determined, where:

If dt = 'S', the numbers are short-precision real.

If dt = 'D', the numbers are long-precision real.

If dt = 'C', the numbers are short-precision complex.

If dt = 'Z', the numbers are long-precision complex.

Specified as: a single character; dt = 'S', 'D', 'C', or 'Z'.

iopt is provided only for migration purposes from ESSL Version 1 and is no
longer used; however, you must still specify it as a dummy argument.
Specified as: a fullword integer; iopt = 0, 1, or 2.

On Return:

incr is the stride that allows you to improve your run-time performance in your
Fourier transform computation on your particular processor. In general,
this value differs for each processor you are running on.

STRIDE

Chapter 17. Utilities 935

Returned as: a fullword integer; incr > 0 or incr < 0 and |incr| ≥ |incd|,
where incr has the same sign (+ or −) as incd.

Notes
1. In your C program, argument incr must be passed by reference.
2. All subroutines accept lowercase letters for the dt argument.
3. For each situation in each of the Fourier transform subroutines, there is a

specific way to compute the value you should specify for the incd argument.
Details on how to compute each of these values is given in the examples
starting on page 937. See the example corresponding to the Fourier transform
subroutine you are using.

4. Where different data types are specified for the input and output data in your
Fourier transform subroutine, you should be careful to indicate the correct data
type in the dt argument in this subroutine.

5. For additional information on how to set up your data, see “Setting Up Your
Data” on page 722.

Function
This subroutine determines an optimal stride, incr, for you to use for your input or
output data when computing large row Fourier transforms. The stride value
returned by this subroutine is based on the size and structure of your transform
data, using:
v The size of each data item (dt)
v The minimum allowable stride for this transform (incd)
v The length of the transform (n)

This information is used in determining the optimal stride for the processor you
are currently running on. The stride determined by this subroutine allows your
arrays to fit comfortably in various levels of storage hierarchy for that processor,
thus giving you the ability to improve your run-time performance.

You get only one stride value returned by this subroutine on each invocation.
Therefore, in many instances, you may need to invoke this subroutine multiple
times to obtain several stride values to use in your Fourier transform computation:
v For multidimensional Fourier transforms using several strides, this subroutine

must be called once for each optimal stride you want to obtain. Successive
invocations should go from the lower (earlier) dimensions to the higher (later)
dimensions, because the results from the lower dimensions are used to calculate
the incd values for the higher dimensions.

v Where input and output data have different data types and you want to obtain
optimal strides for each, this subroutine must be called once for each data type.

Where multiple invocations are necessary, they are explained in the examples
starting on page 937. The examples also explain how to calculate the incd values
for each invocation. There are nine examples to cover the Fourier transform
subroutines that can use the STRIDE subroutine.

After calling this subroutine and obtaining the optimal stride value, you then set
up your input or output array accordingly. This may involve movement of data for
input arrays or increasing the sizes of input or output arrays. To accomplish this,
you may want to set up a separate subroutine with the stride values passed into it
as arguments. You can then dimension your arrays in that subroutine, depending
on the values calculated by STRIDE. For additional information on how to set up
your data, see “Setting Up Your Data” on page 722.

STRIDE

936 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. n ≤ 0
2. incd = 0
3. iopt ≠ 0, 1, or 2
4. dt ≠ S, D, C, or Z

Example 1—SCFT
This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the SCFT subroutine.

If inc2x = 1, the input sequences are stored in the transposed form as rows of a
two-dimensional array X(INC1X,N). In this case, the STRIDE subroutine helps in
determining a good value of inc1x for this array. The required minimum value of
inc1x is m, the number of Fourier transforms being computed. To find a good value
of inc1x, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N , M , INC1X , 'C' , 0)

Here, the arguments refer to the SCFT subroutine. In the following table, values of
inc1x are given (as obtained from the STRIDE subroutine) for some combinations
of n and m and for POWER3 with 64KB level 1 cache:

N M INC1X

128 64 64
240 32 32
240 64 65
256 256 264
512 60 60

1024 64 65

The above example also applies when the output sequences are stored in the
transposed form (inc2y = 1). In that case, in the above example, inc1x is replaced
by inc1y.

In computing column transforms (inc1x = inc1y = 1), the values of inc2x and inc2y
are not very important. For these, any value over the required minimum of n can
be used.

Example 2—DCOSF
This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the DCOSF subroutine.

If inc2x = 1, the input sequences are stored in the transposed form as rows of a
two-dimensional array X(INC1X,N/2+1). In this case, the STRIDE subroutine helps
in determining a good value of inc1x for this array. The required minimum value
of inc1x is m, the number of Fourier transforms being computed. To find a good
value of inc1x, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N/2+1 , M , INC1X , 'D' , 0)

STRIDE

Chapter 17. Utilities 937

|

|
|
|
|
|
|
|
|

Here, the arguments refer to the DCOSF subroutine. In the following table, values
of inc1x are given (as obtained from the STRIDE subroutine) for some
combinations of n and m and for POWER3 with 64KB level 1 cache:

N M INC1X

128 64 64
240 32 32
240 64 64
256 256 264
512 60 60

1024 64 65

The above example also applies when the output sequences are stored in the
transposed form (inc2y = 1). In that case, in the above example, inc1x is replaced
by inc1y.

In computing column transforms (inc1x = inc1y = 1), the values of inc2x and inc2y
are not very important. For these, any value over the required minimum of n/2+1
can be used.

Example 3—DSINF
This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the DSINF subroutine.

If inc2x = 1, the input sequences are stored in the transposed form as rows of a
two-dimensional array X(INC1X,N/2). In this case, the STRIDE subroutine helps in
determining a good value of inc1x for this array. The required minimum value of
inc1x is m, the number of Fourier transforms being computed. To find a good value
of inc1x, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N/2 , M , INC1X , 'D' , 0)

Here, the arguments refer to the DSINF subroutine. In the following table, values
of inc1x are given (as obtained from the STRIDE subroutine) for some
combinations of n and m and for POWER3 with 64KB level 1 cache:

N M INC1X

128 64 64
240 32 32
240 64 64
256 256 264
512 60 60

1024 64 65

The above example also applies when the output sequences are stored in the
transposed form (inc2y = 1). In that case, in the above example, inc1x is replaced
by inc1y.

In computing column transforms (inc1x = inc1y = 1), the values of inc2x and inc2y
are not very important. For these, any value over the required minimum of n/2
can be used.

Example 4—SCFT2
This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SCFT2 subroutine.

If inc1y = 1, the two-dimensional output array is stored in the normal form. In this
case, the output array can be declared as Y(INC2Y,N2), where the required

STRIDE

938 ESSL Version 3 Release 3 Guide and Reference

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

minimum value of inc2y is n1. The STRIDE subroutine helps in picking a good
value of inc2y. To find a good value of inc2y, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 , INC2Y , 'C' , 0)

Here, the arguments refer to the SCFT2 subroutine. In the following table, values
of inc2y are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER3 with 64KB level 1 cache:

N1 N2 INC2Y

64 64 64
128 128 136
240 240 240
512 512 520
840 840 848

If the input array is stored in the normal form (inc1x = 1), the value of inc2x is not
important. However, if you want to use the same array for input and output, you
should use inc2x = inc2y.

If inc2y = 1, the two-dimensional output array is stored in the transposed form. In
this case, the output array can be declared as Y(INC1Y,N1), where the required
minimum value of inc1y is n2. The STRIDE subroutine helps in picking a good
value of inc1y. To find a good value of inc1y, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N1 , N2 , INC1Y , 'C' , 0)

Here, the arguments refer to the SCFT2 subroutine. In the following table, values
of inc1y are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and n2 and for POWER3 with 64K level 1 cache:

N1 N2 INC1Y

60 64 64
120 128 136
256 240 240
512 512 520
840 840 848

If the input array is stored in the transposed form (inc2x = 1), the value of inc1x is
also important. The above example can be used to find a good value of inc1x, by
replacing inc1y with inc1x. If both arrays are stored in the transposed form, a good
value for inc1y is also a good value for inc1x. In that situation, the two arrays can
also be made equivalent.

Example 5—SRCFT2
This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SRCFT2 subroutine.

For this subroutine, the output array is declared as Y(INC2Y,N2), where the
required minimum value of inc2y is n1/2+1. The STRIDE subroutine helps in
picking a good value of inc2y. To find a good value of inc2y, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1/2 + 1 , INC2Y , 'C' , 0)

STRIDE

Chapter 17. Utilities 939

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

Here, the arguments refer to the SRCFT2 subroutine. In the following table, values
of inc2y are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER3 with 64KB level 1 cache:

N1 N2 INC2Y

240 240 121
420 420 211
512 512 257
840 840 421

1024 1024 513
2048 2048 1032

For this subroutine, the leading dimension of the input array (inc2x) is not
important. If you want to use the same array for input and output, you should use
inc2x ≥ 2(inc2y).

Example 6—SCRFT2
This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SCRFT2 subroutine.

For this subroutine, the output array is declared as Y(INC2Y,N2), where the
required minimum value of inc2y is n1+2. The STRIDE subroutine helps in picking
a good value of inc2y. To find a good value of inc2y, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 + 2 , INC2Y , 'S' , 0)

Here, the arguments refer to the SCRFT2 subroutine. In the following table, values
of inc2y are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER3 with 64KB level 1 cache:

N1 N2 INC2Y

240 240 242
420 420 422
512 512 514
840 840 842

1024 1024 1026
2048 2048 2064

For this subroutine, the leading dimension of the input array (inc2x) is also
important. In general, inc2x = inc2y/2 is a good choice. This is also the
requirement if you want to use the same array for input and output.

Example 7—SCFT3
This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SCFT3 subroutine.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of inc2y and inc3y. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for inc2y. The minimum
acceptable value for inc2y is n1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 , INC2Y , 'C' , 0)

Here, the arguments refer to the SCFT3 subroutine. Next, you should find a good
value for inc3y. The minimum acceptable value for inc3y is (n2)(inc2y).

STRIDE

940 ESSL Version 3 Release 3 Guide and Reference

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N3 , N2*INC2Y, INC3Y , 'C' , 0)

If inc3y turns out to be a multiple of inc2y, then Y can be declared a
three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3). For large problems, this may
not happen. In that case, you can declare the Y array as a two-dimensional array
Y(0:INC3Y-1,0:N3-1) or a one-dimensional array Y(0:INC3Y*N3-1). Using
zero-based indexing, the element y(k1,k2,k3) is stored in the following location in
these arrays:
v For the two-dimensional array, location (k1+k2*inc2y,k3)
v For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

In the following table, values of inc2y and inc3y are given (as obtained from the
STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3 and for
POWER3 with 64KB level 1 cache:

N1,N2,N3 INC2Y INC3Y

30 30 900
32 32 1032
64 64 4112

120 120 14408
128 136 17416
240 240 57608
256 264 67592
420 420 176400

As mentioned before, the strides of the input array are not important. The array
can be declared as a three-dimensional array. If you want to use the same array for
input and output, the requirements are inc2x ≥ inc2y and inc3x ≥ inc3y. A simple
thing to do is to use inc2x = inc2y and make inc3x a multiple of inc2x not smaller
than inc3y. Then X can be declared as a three-dimensional array
X(INC2X,INC3X/INC2X,N3).

Example 8—SRCFT3
This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SRCFT3 subroutine.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of inc2y and inc3y. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for inc2y. The minimum
acceptable value for inc2y is n1/2+1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1/2 + 1 , INC2Y , 'C' , 0)

Here, the arguments refer to the SRCFT3 subroutine. Next, you should find a good
value for inc3y. The minimum acceptable value for inc3y is (n2)(inc2y).

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N3 , N2*INC2Y , INC3Y , 'C' , 0)

If inc3y turns out to be a multiple of inc2y, then Y can be declared a
three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3). For large problems, this may
not happen. In that case, you can declare the Y array as a two-dimensional array

STRIDE

Chapter 17. Utilities 941

|

|
|
|
|
|
|
|
|
|
|

Y(0:INC3Y-1,0:N3-1) or a one-dimensional array Y(0:INC3Y*N3-1). Using
zero-based indexing, the element y(k1,k2,k3) is stored in the following location in
these arrays:
v For the two-dimensional array, location (k1+k2*inc2y,k3)
v For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

In the following table, values of inc2y and inc3y are given (as obtained from the
STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3 and for
POWER3 with 64KB level 1 cache:

N1,N2,N3 INC2Y INC3Y

30 16 488
32 17 552
64 33 2128

120 61 7320
128 65 8328
240 121 29064
256 129 33032
420 211 88620

As mentioned before, the strides of the input array are not important. The array
can be declared as a three-dimensional array. If you want to use the same array for
input and output, the requirements are inc2x ≥ 2(inc2y) and inc3x ≥ 2(inc3y). A
simple thing to do is to use inc2x = 2(inc2y) and make inc3x a multiple of inc2x
not smaller than 2(inc3y). Then X can be declared as a three-dimensional array
X(INC2X,INC3X/INC2X,N3).

Example 9—SCRFT3
This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SCRFT3 subroutine.

The STRIDE subroutine helps in picking good values of inc2y and inc3y. This
requires two calls to the STRIDE subroutine as shown below. First, you should find
a good value for inc2y. The minimum acceptable value for inc2y is n1+2.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 + 2 , INC2Y , 'S' , 0)

Here, the arguments refer to the SCRFT3 subroutine. Next, you should find a good
value for inc3y. The minimum acceptable value for inc3y is (n2)(inc2y).

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N3 , N2*INC2Y , INC3Y , 'S' , 0)

If inc3y turns out to be a multiple of inc2y, then Y can be declared a
three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3). For large problems, this may
not happen. In that case, you can declare the Y array as a two-dimensional array
Y(0:INC3Y-1,0:N3-1) or a one-dimensional array Y(0:INC3Y*N3-1). Using
zero-based indexing, the element y(k1,k2,k3) is stored in the following location in
these arrays:
v For the two-dimensional array, location (k1+k2*inc2y,k3)
v For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

In the following table, values of inc2y and inc3y are given (as obtained from the
STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3 and for
POWER3 with 64KB level 1 cache:

STRIDE

942 ESSL Version 3 Release 3 Guide and Reference

|

|
|
|
|
|
|
|
|
|
|

|

N1,N2,N3 INC2Y INC3Y

30 32 976
32 34 1104
64 66 4256

120 122 14640
128 130 16656
240 242 58128
256 258 66064
420 422 177240

For this subroutine, the strides (inc2x and inc3x) of the input array are also
important. In general, inc2x = inc2y/2 and inc3x = inc3y/2 are good choices.
These are also the requirement if you want to use the same array for input and
output.

STRIDE

Chapter 17. Utilities 943

|
|
|
|
|
|
|
|
|
|

DSRSM—Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode

This subroutine converts either m by n general sparse matrix A or symmetric
sparse matrix A of order n from storage-by-rows to compressed-matrix storage
mode, where matrix A contains long-precision real numbers.

Syntax

Fortran CALL DSRSM (iopt, ar, ja, ia, m, nz, ac, ka, lda)

C and C++ dsrsm (iopt, ar, ja, ia, m, nz, ac, ka, lda);

PL/I CALL DSRSM (iopt, ar, ja, ia, m, nz, ac, ka, lda);

On Entry:

iopt indicates the storage variation used for sparse matrix A storage-by-rows:

If iopt = 0, matrix A is a general sparse matrix, where all the nonzero
elements in matrix A are used to set up the storage arrays.

If iopt = 1, matrix A is a symmetric sparse matrix, where only the upper
triangle and diagonal elements are used to set up the storage arrays.

Specified as: a fullword integer; iopt = 0 or 1.

ar is the sparse matrix A, stored by rows in an array, referred to as AR. The
iopt argument indicates the storage variation used for storing matrix A.
Specified as: a one-dimensional array, containing long-precision real
numbers. The number of elements, ne, in this array can be determined by
subtracting 1 from the value in IA(m+1).

ja is the array, referred to as JA, containing the column numbers of each
nonzero element in sparse matrix A. Specified as: a one-dimensional array,
containing fullword integers; 1 ≤ (JA elements) ≤ n. The number of
elements, ne, in this array can be determined by subtracting 1 from the
value in IA(m+1).

ia is the row pointer array, referred to as IA, containing the starting positions
of each row of matrix A in array AR and one position past the end of array
AR. Specified as: a one-dimensional array of (at least) length m+1,
containing fullword integers; IA(i+1) ≥ IA(i) for i = 1, m+1.

m is the number of rows in sparse matrix A. Specified as: a fullword integer;
m ≥ 0.

nz is the number of columns in output arrays AC and KA that are available for
use. Specified as: a fullword integer; nz > 0.

ac See “On Return”.

ka See “On Return”.

lda is the size of the leading dimension of the arrays specified for ac and ka.
Specified as: a fullword integer; 0 < lda ≤ m.

On Return:

nz is the maximum number of nonzero elements, nz, in each row of matrix A,
which is stored in compressed-matrix storage mode. Returned as: a
fullword integer; (input argument) nz ≤ (output argument) nz.

ac is the m by n general sparse matrix A or symmetric matrix A of order n

DSRSM

944 ESSL Version 3 Release 3 Guide and Reference

stored in compressed-matrix storage mode in an array, referred to as AC.
Returned as: an lda by at least (input argument) nz array, containing
long-precision real numbers, where only the first (output argument) nz
columns are used to store the matrix.

ka is the array, referred to as KA, containing the column numbers of the matrix
A elements that are stored in the corresponding positions in array AC.
Returned as: an lda by at least (input argument) nz array, containing
fullword integers, where only the first (output argument) nz columns are
used to store the column numbers.

Notes
1. In your C program, argument nz must be passed by reference.
2. The value specified for input argument nz should be greater than or equal to

the number of nonzero elements you estimate to be in each row of sparse
matrix A. The value returned in output argument nz corresponds to the nz
value defined for compressed-matrix storage mode. This value is less than or
equal to the value specified for input argument nz.

3. For a description of the storage modes for sparse matrices, see
“Compressed-Matrix Storage Mode” on page 88 and “Storage-by-Rows” on
page 93.

Function
A sparse matrix A is converted from storage-by-rows (using arrays AR, JA, and IA)
to compressed-matrix storage mode (using arrays AC and KA). The argument iopt
indicates whether the input matrix A is stored by rows using the storage variation
for general sparse matrices or for symmetric sparse matrices. See reference [73].

This subroutine is meant for existing programs that need to convert their sparse
matrices to a storage mode compatible with some of the ESSL sparse matrix
subroutines, such as DSMMX.

Error Conditions

Computational Errors: None

Input-Argument Errors:
1. iopt ≠ 0 or 1
2. m < 0
3. lda < 1
4. lda < m
5. nz ≤ 0
6. IA(m+1) < 1
7. IA(i+1)−IA(i) < 0, for any i = 1, m
8. nz is too small to store matrix A in array AC, where:
v If iopt = 0 , AC and KA are not modified.
v If iopt = 1 , AC and KA are modified.

Example 1
This example shows a general sparse matrix A, which is stored by rows and
converted to compressed-matrix storage mode, where sparse matrix A is:

┌ ┐
| 11.0 0.0 0.0 14.0 |
| 0.0 22.0 0.0 24.0 |
| 0.0 0.0 33.0 34.0 |
| 0.0 0.0 0.0 44.0 |
└ ┘

DSRSM

Chapter 17. Utilities 945

Because there is a maximum of only two nonzero elements in each row of A, and
argument nz is specified as 5, columns 3 through 5 of arrays AC and KA are not
used.

Call Statement and Input:
IOPT AR JA IA M NZ AC KA LDA
| | | | | | | | |

CALL DSRSM(0 , AR , JA , IA , 4 , 5 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

Output:
NZ = 2

┌ ┐
| 11.0 14.0 . . . |

AC = | 22.0 24.0 . . . |
| 33.0 34.0 . . . |
| 44.0 0.0 . . . |
└ ┘

┌ ┐
| 1 4 . . . |

KA = | 2 4 . . . |
| 3 4 . . . |
| 4 4 . . . |
└ ┘

Example 2
This example shows a symmetric sparse matrix A, which is stored by rows and
converted to compressed-matrix storage mode, where sparse matrix A is:

┌ ┐
| 11.0 0.0 0.0 14.0 |
| 0.0 22.0 0.0 24.0 |
| 0.0 0.0 33.0 34.0 |
| 14.0 24.0 34.0 44.0 |
└ ┘

Because there is a maximum of only four nonzero elements in each row of A, and
argument nz is specified as 6, columns 5 and 6 of arrays AC and KA are not used.

Call Statement and Input:
IOPT AR JA IA M NZ AC KA LDA
| | | | | | | | |

CALL DSRSM(1 , AR , JA , IA , 4 , 6 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

Output:
NZ = 4

┌ ┐
| 11.0 14.0 0.0 0.0 . . |

AC = | 22.0 24.0 0.0 0.0 . . |
| 33.0 34.0 0.0 0.0 . . |
| 44.0 24.0 34.0 14.0 . . |
└ ┘

DSRSM

946 ESSL Version 3 Release 3 Guide and Reference

┌ ┐
| 1 4 4 4 . . |

KA = | 2 4 4 4 . . |
| 3 4 4 4 . . |
| 4 2 3 1 . . |
└ ┘

DSRSM

Chapter 17. Utilities 947

DGKTRN—For a General Sparse Matrix, Convert Between Diagonal-Out
and Profile-In Skyline Storage Mode

This subroutine converts general sparse matrix A of order n from one skyline
storage mode to another—that is, between the following:
v Diagonal-out skyline storage mode
v Profile-in skyline storage mode

Syntax

Fortran CALL DGKTRN (n, au, nu, idu, al, nl, idl, itran, aux, naux)

C and C++ dgktrn (n, au, nu, idu, al, nl, idl, itran, aux, naux);

PL/I CALL DGKTRN (n, au, nu, idu, al, nl, idl, itran, aux, naux);

On Entry:

n is the order of general sparse matrix A. Specified as: a fullword integer;
n ≥ 0.

au is the array, referred to as AU, containing the upper triangular part of
general sparse matrix A, stored as follows, where:

If ITRAN(1) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(1) = 1, A is stored in profile-in skyline storage mode.

Specified as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

nu is the length of array AU. Specified as: a fullword integer; nu ≥ 0 and
nu ≥ (IDU(n+1)−1).

idu is the array, referred to as IDU, containing the relative positions of the
diagonal elements of matrix A in input array AU. Specified as: a
one-dimensional array of (at least) length n+1, containing fullword
integers.

al is the array, referred to as AL, containing the lower triangular part of
general sparse matrix A, stored as follows, where:

If ITRAN(1) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(1) = 1, A is stored in profile-in skyline storage mode.

Note: Entries in AL for diagonal elements of A are assumed not to have
meaningful values.

Specified as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

nl is the length of array AL. Specified as: a fullword integer; nl ≥ 0 and
nl ≥ (IDL(n+1)−1).

idl is the array, referred to as IDL, containing the relative positions of the
diagonal elements of matrix A in input array AL. Specified as: a
one-dimensional array of (at least) length n+1, containing fullword
integers.

itran is an array of parameters, ITRAN(i), where:

DGKTRN

948 ESSL Version 3 Release 3 Guide and Reference

v ITRAN(1) indicates the input storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on
input, where:
If ITRAN(1) = 0, diagonal-out skyline storage mode is used.
If ITRAN(1) = 1, profile-in skyline storage mode is used.

v ITRAN(2) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on
output, where:
If ITRAN(2) = 0, diagonal-out skyline storage mode is used.
If ITRAN(2) = 1, profile-in skyline storage mode is used.

v ITRAN(3) indicates the direction of sweep that ESSL uses through the
matrix A, allowing you to optimize performance (see “Notes” on
page 950), where:
If ITRAN(3) = 1, matrix A is transformed in the positive direction,
starting in row or column 1 and ending in row or column n.
If ITRAN(3) = −1, matrix A is transformed in the negative direction,
starting in row or column n and ending in row or column 1.

Specified as: a one-dimensional array of (at least) length 3, containing
fullword integers, where:

ITRAN(1) = 0 or 1
ITRAN(2) = 0 or 1
ITRAN(3) = −1 or 1

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing naux long-precision real
numbers.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, DGKTRN dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux ≥ 2n.

On Return:

au is the array, referred to as AU, containing the upper triangular part of
general sparse matrix A, stored as follows, where:

If ITRAN(2) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(2) = 1, A is stored in profile-in skyline storage mode.

Returned as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

idu is the array, referred to as IDU, containing the relative positions of the
diagonal elements of matrix A in output array AU. Returned as: a
one-dimensional array of (at least) length n+1, containing fullword
integers.

DGKTRN

Chapter 17. Utilities 949

al is the array, referred to as AL, containing the lower triangular part of
general sparse matrix A, stored as follows, where:

If ITRAN(2) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(2) = 1, A is stored in profile-in skyline storage mode.

Note: You should assume that entries in AL for diagonal elements of A do
not have meaningful values.

Returned as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

idl is the array, referred to as IDL, containing the relative positions of the
diagonal elements of matrix A in output array AL. Returned as: a
one-dimensional array of (at least) length n+1, containing fullword
integers.

Notes
1. Your various arrays must have no common elements; otherwise, results are

unpredictable.
2. The ITRAN(3) argument allows you to specify the direction of travel through

matrix A that ESSL takes during the transformation. By properly specifying
ITRAN(3), you can optimize the performance of the transformation, which is
especially beneficial when transforming large matrices.
The direction specified by ITRAN(3) should be opposite the most recent
direction of access through the matrix performed by the DGKFS or DGKFSP
subroutine, as indicated in the following table:

Most Recent
Computation Performed
by DGKFS/DGKFSP

Direction Used by
DGKFS/DGKFSP

Direction to Specify in ITRAN(3)

Factor and Solve Negative Positive (ITRAN(3) = 1)

Factor Only Positive Negative (ITRAN(3) = −1)

Solve Only Negative Positive (ITRAN(3) = 1)

3. For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 97 and “Diagonal-Out Skyline
Storage Mode” on page 95.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
A general sparse matrix A, stored in diagonal-out or profile-in skyline storage
mode is converted to either of these same two storage modes. (Generally, you
convert from one to the other, but the capability exists to specify the same storage
mode for input and output.) The argument ITRAN(3) indicates the direction in
which you want the transformation performed on matrix A, allowing you to
optimize your performance in this subroutine. This is especially beneficial for large
matrices.

This subroutine is meant to be used in conjunction with DGKFS and DGKFSP,
which process matrices stored in these skyline storage modes.

DGKTRN

950 ESSL Version 3 Release 3 Guide and Reference

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. nu < 0
3. IDU(n+1) > nu+1
4. IDU(i+1) ≤ IDU(i) for i = 1, n
5. IDU(i+1) > IDU(i)+i and ITRAN(1) = 0 for i = 1, n
6. IDU(i) > IDU(i−1)+i and ITRAN(1) = 1 for i = 2, n
7. nl < 0
8. IDL(n+1) > nl+1
9. IDL(i+1) ≤ IDL(i) for i = 1, n

10. IDL(i+1) > IDL(i)+i and ITRAN(1) = 0 for i = 1, n
11. IDL(i) > IDL(i−1)+i and ITRAN(1) = 1 for i = 2, n
12. ITRAN(1) ≠ 0 or 1
13. ITRAN(2) ≠ 0 or 1
14. ITRAN(3) ≠ −1 or 1
15. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to convert a 9 by 9 general sparse matrix A from
diagonal-out skyline storage mode to profile-in skyline storage mode. Matrix A is:

┌ ┐
| 11.0 12.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 21.0 22.0 23.0 24.0 25.0 0.0 0.0 0.0 29.0 |
| 31.0 32.0 33.0 34.0 35.0 0.0 37.0 0.0 39.0 |
| 41.0 42.0 43.0 44.0 45.0 46.0 47.0 0.0 49.0 |
| 0.0 0.0 0.0 54.0 55.0 56.0 57.0 58.0 59.0 |
| 0.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 |
| 0.0 0.0 0.0 74.0 75.0 76.0 77.0 78.0 79.0 |
| 0.0 0.0 0.0 84.0 85.0 86.0 87.0 88.0 89.0 |
| 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 |
└ ┘

Assuming that DGKFS last performed a solve on matrix A, the direction of the
transformation is positive; that is, ITRAN(3) is 1. This provides the best
performance here.

Note: On input and output, the diagonal elements in AL do not have meaningful
values.

Call Statement and Input:

AU = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0,
55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 77.0, 67.0,
57.0, 47.0, 37.0, 88.0, 78.0, 68.0, 58.0, 99.0, 89.0,
79.0, 69.0, 59.0, 49.0, 39.0, 29.0)

IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)

N AU NU IDU AL NL IDL ITRAN AUX NAUX
| | | | | | | | | |

CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18

DGKTRN

Chapter 17. Utilities 951

AL = (. , . , 21.0, . , 32.0, 31.0, . , 43.0, 42.0, 41.0, . ,
54.0, . , 65.0, 64.0, 63.0, 62.0, . , 76.0, 75.0, 74.0,
. , 87.0, 86.0, 85.0, 84.0, . , 98.0, 97.0, 96.0, 95.0,
94.0, 93.0, 92.0, 91.0)

IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
ITRAN = (0, 1, 1)

Output:
AU = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 24.0, 34.0, 44.0,

25.0, 35.0, 45.0, 55.0, 46.0, 56.0, 66.0, 37.0, 47.0,
57.0, 67.0, 77.0, 58.0, 68.0, 78.0, 88.0, 29.0, 39.0,
49.0, 59.0, 69.0, 79.0, 89.0, 99.0)

IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (. , 21.0, . , 31.0, 32.0, . , 41.0, 42.0, 43.0, . , 54.0,

. , 62.0, 63.0, 64.0, 65.0, . , 74.0, 75.0, 76.0, . ,
84.0, 85.0, 86.0, 87.0, . , 91.0, 92.0, 93.0, 94.0, 95.0,
96.0, 97.0, 98.0, .)

IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)

Example 2
This example shows how to convert the same 9 by 9 general sparse matrix A in
Example 1 from profile-in skyline storage mode to diagonal-out skyline storage
mode.

Assuming that DGKFS last performed a factorization on matrix A, the direction of
the transformation is negative; that is, ITRAN(3) is −1. This provides the best
performance here.

Note: On input and output, the diagonal elements in AL do not have meaningful
values.

Call Statement and Input:

AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
ITRAN = (1, 0, -1)

Output:

AU =(same as input AU in Example 1)
IDU =(same as input IDU in Example 1)
AL =(same as input AL in Example 1)
IDL =(same as input IDL in Example 1)

N AU NU IDU AL NL IDL ITRAN AUX NAUX
| | | | | | | | | |

CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18

DGKTRN

952 ESSL Version 3 Release 3 Guide and Reference

DSKTRN—For a Symmetric Sparse Matrix, Convert Between
Diagonal-Out and Profile-In Skyline Storage Mode

This subroutine converts symmetric sparse matrix A of order n from one skyline
storage mode to another—that is, between the following:
v Diagonal-out skyline storage mode
v Profile-in skyline storage mode

Syntax

Fortran CALL DSKTRN (n, a, na, idiag, itran, aux, naux)

C and C++ dsktrn (n, a, na, idiag, itran, aux, naux);

PL/I CALL DSKTRN (n, a, na, idiag, itran, aux, naux);

On Entry:

n is the order of symmetric sparse matrix A. Specified as: a fullword integer;
n ≥ 0.

a is the array, referred to as A, containing the upper triangular part of
symmetric sparse matrix A, stored as follows, where:

If ITRAN(1) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(1) = 1, A is stored in profile-in skyline storage mode.

Specified as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

na is the length of array A. Specified as: a fullword integer; na ≥ 0 and
na ≥ (IDIAG(n+1)−1).

idiag is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of matrix A in input array A. Specified as: a
one-dimensional array of (at least) length n+1, containing fullword
integers.

itran is an array of parameters, ITRAN(i), where:
v ITRAN(1) indicates the input storage mode used for matrix A. This

determines the arrangement of data in arrays A and IDIAG on input,
where:
If ITRAN(1) = 0, diagonal-out skyline storage mode is used.
If ITRAN(1) = 1, profile-in skyline storage mode is used.

v ITRAN(2) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays A and IDAIG on output,
where:
If ITRAN(2) = 0, diagonal-out skyline storage mode is used.
If ITRAN(2) = 1, profile-in skyline storage mode is used.

v ITRAN(3) indicates the direction of sweep that ESSL uses through the
matrix A, allowing you to optimize performance (see “Notes” on
page 954), where:
If ITRAN(3) = 1, matrix A is transformed in the positive direction,
starting in row or column 1 and ending in row or column n.
If ITRAN(3) = −1, matrix A is transformed in the negative direction,
starting in row or column n and ending in row or column 1.

DSKTRN

Chapter 17. Utilities 953

Specified as: a one-dimensional array of (at least) length 3, containing
fullword integers, where:

ITRAN(1) = 0 or 1
ITRAN(2) = 0 or 1
ITRAN(3) = −1 or 1

aux has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing naux long-precision real
numbers.

naux is the size of the work area specified by aux—that is, the number of
elements in aux. Specified as: a fullword integer, where:

If naux = 0 and error 2015 is unrecoverable, DSKTRN dynamically
allocates the work area used by this subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux ≥ n.

On Return:

a is the array, referred to as A, containing the upper triangular part of
symmetric sparse matrix A, stored as follows, where:

If ITRAN(2) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(2) = 1, A is stored in profile-in skyline storage mode.

Returned as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

idiag is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of matrix A in output array A. Returned as: a
one-dimensional array of (at least) length n+1, containing fullword
integers.

Notes
1. Your various arrays must have no common elements; otherwise, results are

unpredictable.
2. The ITRAN(3) argument allows you to specify the direction of travel through

matrix A that ESSL takes during the transformation. By properly specifying
ITRAN(3), you can optimize the performance of the transformation, which is
especially beneficial when transforming large matrices.
The direction specified by ITRAN(3) should be opposite the most recent
direction of access through the matrix performed by the DSKFS or DSKFSP
subroutine, as indicated in the following table:

Most Recent
Computation Performed
by DSKFS/DSKFSP

Direction Used by
DSKFS/DSKFSP

Direction to Specify in ITRAN(3)

Factor and Solve Negative Positive (ITRAN(3) = 1)

Factor Only Positive Negative (ITRAN(3) = −1)

Solve Only Negative Positive (ITRAN(3) = 1)

DSKTRN

954 ESSL Version 3 Release 3 Guide and Reference

3. For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 97 and “Diagonal-Out Skyline
Storage Mode” on page 95.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 29.

Function
A symmetric sparse matrix A, stored in diagonal-out or profile-in skyline storage
mode is converted to either of these same two storage modes. (Generally, you
convert from one to the other, but the capability exists to specify the same storage
mode for input and output.) The argument ITRAN(3) indicates the direction in
which you want the transformation performed on matrix A, allowing you to
optimize your performance in this subroutine. This is especially beneficial for large
matrices.

This subroutine is meant to be used in conjunction with DSKFS and DSKFSP,
which process matrices stored in these skyline storage modes.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate
work area.

Computational Errors: None

Input-Argument Errors:
1. n < 0
2. na < 0
3. IDIAG(n+1) > na+1
4. IDIAG(i+1) ≤ IDIAG(i) for i = 1, n
5. IDIAG(i+1) > IDIAG(i)+i and ITRAN(1) = 0 for i = 1, n
6. IDIAG(i) > IDIAG(i−1)+i and ITRAN(1) = 1 for i = 2, n
7. ITRAN(1) ≠ 0 or 1
8. ITRAN(2) ≠ 0 or 1
9. ITRAN(3) ≠ −1 or 1

10. naux Error 2015 is recoverable or naux≠0, and is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Example 1
This example shows how to convert a 9 by 9 symmetric sparse matrix A from
diagonal-out skyline storage mode to profile-in skyline storage mode. Matrix A is:

┌ ┐
| 11.0 12.0 13.0 14.0 0.0 0.0 0.0 0.0 0.0 |
| 12.0 22.0 23.0 24.0 25.0 26.0 0.0 28.0 0.0 |
| 13.0 23.0 33.0 34.0 35.0 36.0 0.0 38.0 0.0 |
| 14.0 24.0 34.0 44.0 45.0 46.0 0.0 48.0 0.0 |
| 0.0 25.0 35.0 45.0 55.0 56.0 57.0 58.0 0.0 |
| 0.0 26.0 36.0 46.0 56.0 66.0 67.0 68.0 69.0 |
| 0.0 0.0 0.0 0.0 57.0 67.0 77.0 78.0 79.0 |
| 0.0 28.0 38.0 48.0 58.0 68.0 78.0 88.0 89.0 |
| 0.0 0.0 0.0 0.0 0.0 69.0 79.0 89.0 99.0 |
└ ┘

Assuming that DSKFS last performed a factorization on matrix A, the direction of
the transformation is negative; that is, ITRAN(3) is −1. This provides the best
performance here.

DSKTRN

Chapter 17. Utilities 955

Call Statement and Input:

A = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0,
14.0, 55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 36.0,
26.0, 77.0, 67.0, 57.0, 88.0, 78.0, 68.0, 58.0, 48.0,
38.0, 28.0, 99.0, 89.0, 79.0, 69.0)

IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
ITRAN = (0, 1, -1)

Output:
A = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 14.0, 24.0, 34.0,

44.0, 25.0, 35.0, 45.0, 55.0, 26.0, 36.0, 46.0, 56.0,
66.0, 57.0, 67.0, 77.0, 28.0, 38.0, 48.0, 58.0, 68.0,
78.0, 88.0, 69.0, 79.0, 89.0, 99.0)

IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)

Example 2
This example shows how to convert the same 9 by 9 symmetric sparse matrix A in
Example 1 from profile-in skyline storage mode to diagonal-out skyline storage
mode.

Assuming that DSKFS last performed a solve on matrix A, the direction of the
transformation is positive; that is, ITRAN(3) is 1. This provides the best
performance here.

Call Statement and Input:

A =(same as output A in Example 1)
IDIAG =(same as output IDIAG in Example 1)
ITRAN = (1, 0, 1)

Output:

A =(same as input A in Example 1)
IDIAG =(same as input IDIAG in Example 1)

N A NA IDIAG ITRAN AUX NAUX
| | | | | | |

CALL DSKTRN(9 , A , 33 , IDIAG , ITRAN , AUX , 9)

N A NA IDIAG ITRAN AUX NAUX
| | | | | | |

CALL DSKTRN(9 , A , 33 , IDIAG , ITRAN , AUX , 9

DSKTRN

956 ESSL Version 3 Release 3 Guide and Reference

Part 3. Appendixes

© Copyright IBM Corp. 1997, 2001 957

958 ESSL Version 3 Release 3 Guide and Reference

Appendix A. Basic Linear Algebra Subprograms (BLAS)

This appendix lists the ESSL subprograms corresponding to a subprogram in the
standard set of BLAS.

Level 1 BLAS
Table 173. Level 1 BLAS Included in ESSL

Descriptive Name Short- Precision
Subprogram

Long- Precision
Subprogram

Position of the First or Last Occurrence of the Vector Element Having the
Largest Magnitude

ISAMAX
ICAMAX

IDAMAX
IZAMAX

Sum of the Magnitudes of the Elements in a Vector SASUM
SCASUM

DASUM
DZASUM

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the
Vector Y

SAXPY
CAXPY

DAXPY
ZAXPY

Copy a Vector SCOPY
CCOPY

DCOPY
ZCOPY

Dot Product of Two Vectors SDOT
CDOTU
CDOTC

DDOT
ZDOTU
ZDOTC

Euclidean Length of a Vector with Scaling of Input to Avoid Destructive
Underflow and Overflow

SNRM2
SCNRM2

DNRM2
DZNRM2

Construct a Givens Plane Rotation SROTG
CROTG

DROTG
ZROTG

Apply a Plane Rotation SROT
CROT
CSROT

DROT
ZROT
ZDROT

Multiply a Vector X by a Scalar and Store in the Vector X SSCAL
CSCAL
CSSCAL

DSCAL
ZSCAL
ZDSCAL

Interchange the Elements of Two Vectors SSWAP
CSWAP

DSWAP
ZSWAP

Level 2 BLAS
Table 174. Level 2 BLAS Included in ESSL

Descriptive Name Short- Precision
Subprogram

Long- Precision
Subprogram

Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose

SGEMV
CGEMV

DGEMV
ZGEMV

Rank-One Update of a General Matrix SGER
CGERU
CGERC

DGER
ZGERU
ZGERC

Matrix-Vector Product for a Real Symmetric or Complex Hermitian
Matrix

SSPMV
CHPMV
SSYMV
CHEMV

DSPMV
ZHPMV
DSYMV
ZHEMV

© Copyright IBM Corp. 1997, 2001 959

Table 174. Level 2 BLAS Included in ESSL (continued)

Descriptive Name Short- Precision
Subprogram

Long- Precision
Subprogram

Rank-One Update of a Real Symmetric or Complex Hermitian Matrix SSPR
CHPR
SSYR
CHER

DSPR
ZHPR
DSYR
ZHER

Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix SSPR2
CHPR2
SSYR2
CHER2

DSPR2
ZHPR2
DSYR2
ZHER2

Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its
Conjugate Transpose

SGBMV
CGBMV

DGBMV
ZGBMV

Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band
Matrix

SSBMV
CHBMV

DSBMV
ZHBMV

Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose

STPMV
CTPMV
STRMV
CTRMV

DTPMV
ZTPMV
DTRMV
ZTRMV

Solution of a Triangular System of Equations with a Single Right-Hand
Side

STPSV
CTPSV
STRSV
CTRSV

DTPSV
ZTPSV
DTRSV
ZTRSV

Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its
Conjugate Transpose

STBMV
CTBMV

DTBMV
ZTBMV

Triangular Band Equation Solve STBSV
CTBSV

DTBSV
ZTBSV

Level 3 BLAS
Table 175. Level 3 BLAS Included in ESSL

Descriptive Name Short- Precision
Subprogram

Long- Precision
Subprogram

Combined Matrix Multiplication and Addition for General Matrices, Their
Transposes, or Conjugate Transposes

SGEMM
CGEMM

DGEMM
ZGEMM

Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric
or Complex Hermitian

SSYMM
CSYMM
CHEMM

DSYMM
ZSYMM
ZHEMM

Triangular Matrix-Matrix Product STRMM
CTRMM

DTRMM
ZTRMM

Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian
Matrix

SSYRK
CSYRK
CHERK

DSYRK
ZSYRK
ZHERK

Rank-2K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

SSYR2K
CSYR2K
CHER2K

DSYR2K
ZSYR2K
ZHER2K

Solution of Triangular Systems of Equations with Multiple Right-Hand
Sides

STRSM
CTRSM

DTRSM
ZTRSM

960 ESSL Version 3 Release 3 Guide and Reference

Appendix B. LAPACK

This appendix lists the ESSL subroutines corresponding to subroutines in the
standard set of LAPACK.

LAPACK
Table 176. LAPACK Included in ESSL

Descriptive Name Short- Precision
Subprogram

Long- Precision
Subprogram

General Matrix Factorization SGETRF
CGETRF

DGETRF
ZGETRF

General Matrix, Its Transpose, or Its Conjugate Transpose Multiple
Right-Hand Side Solve

SGETRS
CGETRS

DGETRS
ZGETRS

Positive Definite Real Symmetric or Complex Hermitian Matrix
Factorization

SPOTRF
CPOTRF

DPOTRF
ZPOTRF

Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple
Right-Hand Side Solve

SPOTRS
CPOTRS

DPOTRS
ZPOTRS

General Matrix Inverse SGETRI DGETRI

Positive Definite Real Symmetric Matrix Inverse SPOTRI DPOTRI

Triangular Matrix Inverse STRTRI
STPTRI

DTRTRI
DTPTRI

General Matrix QR Factorization DGEQRF

Linear Least Squares Solution for a General Matrix DGELS

© Copyright IBM Corp. 1997, 2001 961

|
|
|
|
|
|

|
|
|
|
|
|

|||

||
|
|
|

|||

|||

962 ESSL Version 3 Release 3 Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2001 963

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

AIX
AIX 5L
e (logo)
IBM
IBMLink
PowerPC
pSeries
RS/6000

964 ESSL Version 3 Release 3 Guide and Reference

SP
System/370™

System/390®

VisualAge

UNIX® is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be the trademarks or service
marks of others.

Software Update Protocol
IBM has provided modifications to this software. The resulting software is
provided to you on an “AS IS” basis and WITHOUT WARRANTY OF ANY KIND,
WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Programming Interfaces
This ESSL Version 3 Guide and Reference manual is intended to help the customer do
application programming. This ESSL Version 3 Guide and Reference manual
documents General-use Programming Interface and Associated Guidance
Information provided by ESSL Version 3.

General-use programming interfaces allow the customer to write programs that
obtain the services of ESSL Version 3.

Notices 965

|
|
|
|

966 ESSL Version 3 Release 3 Guide and Reference

Glossary

This glossary defines terms and abbreviations
used in this publication. If you do not find the
term you are looking for, refer to the index
portion of this book. This glossary includes terms
and definitions from:
v IBM Dictionary of Computing, New York:

McGraw Hill (1-800-2MC-GRAW), 1994.
v American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v Information Technology Vocabulary, developed by
Subcommittee 1, Joint Technical Committee 1,
of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions from published sections
of these vocabularies are identified by the
symbol (I) after the definition. Definitions taken
from draft international standards, committee
drafts, and working papers being developed by
ISO/IEC JTC1/SC1 are identified by the
symbol (T) after the definition, indicating that
final agreement has not yet been reached
among the participating National Bodies of
SC1.

APAR. Authorized Program Analysis Report. A report
of a problem caused by a suspected defect in a current
unaltered release of a program.

argument. A parameter passed between a calling
program and a SUBROUTINE subprogram, a
FUNCTION subprogram, or a statement function.

array. An ordered set of data items identified by a
single name.

array element. A data item in an array, identified by
the array name followed by a subscript indicating its
position in the array.

array name. The name of an ordered set of data items
that make up an array.

assignment statement. A statement that assigns a
value to a variable or array element. It is made up of a
variable or array element, followed by an equal sign

(=), followed by an expression. The variable, array
element, or expression can be character, logical, or
arithmetic. When the assignment statement is
processed, the expression to the right of the equal sign
replaces the value of the variable or array element to
the left.

Basic Linear Algebra Subprograms (BLAS). A
standard, public domain, set of mathematical
subroutines that perform linear algebra operations.

BLAS. Basic Linear Algebra Subprograms.

cache. A special-purpose buffer storage, smaller and
faster than main storage, used to hold a copy of
instructions and data obtained from main storage and
likely to be needed next by the processor. (T)

character constant. A string of one or more
alphanumeric characters enclosed in apostrophes. The
delimiting apostrophes are not part of the value of the
constant.

character expression. An expression in the form of a
single character constant, variable, array element,
substring, function reference, or another expression
enclosed in parentheses. A character expression is
always of type character.

character type. The data type for representing strings
of alphanumeric characters; in storage, one byte is used
for each character.

column-major order. A sequencing method used for
storing multidimensional arrays according to the
subscripts of the array elements. In this method the
leftmost subscript position varies most rapidly and
completes a full cycle before the next subscript position
to the right is incremented.

complex conjugate even data. Complex data that has
its real part even and its imaginary part odd.

complex constant. An ordered pair of real or integer
constants separated by a comma and enclosed in
parentheses. The first real constant of the pair is the
real part of the complex number; the second is the
imaginary part.

complex type. The data type for representing an
approximation of the value of a complex number. A
data item of this type consists of an ordered pair of real
data items separated by a comma and enclosed in
parentheses. The first item represents the real part of
the complex number; the second represents the
imaginary part.

© Copyright IBM Corp. 1997, 2001 967

constant. An unvarying quantity. The four classes of
constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal
data.

data type. The structural characteristics, features and
properties of data that may be directly specified by a
programming language; for example, integers, real
numbers in Fortran; arrays in APL; linked lists in LISP;
character string in SNOBOL.

decimation. The formation of a sequence containing
every n-th element of another sequence.

dimension of an array. One of the subscript
expression positions in a subscript for an array. In
Fortran, an array may have from one to seven
dimensions. Graphically, the first dimension is
represented by the rows, the second by the columns,
and the third by the planes. Contrast with rank. See
also extent of a dimension.

direct access storage. A storage device in which the
access time is in effect independent of the location of
the data. (A)

divide-by-zero exception. The condition recognized
by a processor that results from running a program that
attempts to divide by zero.

double precision. Synonym for long-precision.

expression. A notation that represents a value: a
primary appearing alone, or combinations of primaries
and operators. An expression can be arithmetic,
character, logical, or relational.

extent of a dimension. The number of different
integer values that may be represented by subscript
expressions for a particular dimension in a subscript for
an array.

external function. A function defined outside the
program unit that refers to it. It may be referred to in a
procedure subprogram or in the main program, but it
must not refer to itself, either directly or indirectly.
Contrast with statement function.

function. In Fortran, a procedure that is invoked by
referring to it in an expression and that supplies a
value to the expression. The value supplied is the value
of the function. See also external function, intrinsic
function, and statement function. Contrast with
subroutine.

function reference. A Fortran source program
reference to an intrinsic function, to an external
function, or to a statement function.

general matrix. A matrix with no assumed special
properties such as symmetry. Synonym for matrix.

integer constant. A string of decimal digits containing
no decimal point and expressing a whole number.

integer expression. An arithmetic expression whose
values are of integer type.

integer type. An arithmetic data type capable of
expressing the value of an integer. It can have a
positive, negative, or 0 value. It must not include a
decimal point.

intrinsic function. A function, supplied by Fortran,
that performs mathematical or character operations.

leading dimension. For a two-dimensional array, an
increment used to find the starting point for the matrix
elements in each successive column of the array.

logical constant. A constant that can have one of two
values: true or false. The form of these values in
Fortran is: .TRUE. and .FALSE. respectively.

logical expression. A logical primary alone or a
combination of logical primaries and logical operators.
A logical expression can have one of two values: true
or false.

logical type. The data type for data items that can
have the value true or false and upon which logical
operations such as .NOT. and .OR. can be performed.
See also “data type”.

long-precision. Real type of data of length 8. Contrast
with single precision and short-precision.

main program. In Fortran, a program unit, required
for running, that can call other program units but
cannot be called by them.

mask. To use a pattern of characters to control the
retention or elimination of portions of another pattern
of characters. (I)

matrix. A rectangular array of elements, arranged in
rows and columns, that may be manipulated according
to the rules of matrix algebra. (A) (I)

multithreaded. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently. An application program is
multithreaded if more than one thread is executed
concurrently.

overflow exception. A condition caused by the result
of an arithmetic operation having a magnitude that
exceeds the largest possible number.

platform. A mainframe or a workstation.

primary. An irreducible unit of data; a single constant,
variable, array element, function reference, or
expression enclosed in parentheses.

968 ESSL Version 3 Release 3 Guide and Reference

program exception. The condition recognized by a
processor that results from running a program that
improperly specifies or uses instructions, operands, or
control information.

PTF. Program Temporary Fix. A temporary solution or
by-pass of a problem diagnosed by IBM as resulting
from a defect in a current unaltered release of the
program. A report of a problem caused by a suspected
defect in a current unaltered release of a program.

pthread. A thread that conforms to the POSIX Threads
Programming Model.

real constant. A string of decimal digits that expresses
a real number. A real constant must contain either a
decimal point or a decimal exponent and may contain
both. For example, the real constant 0.36819E+2 has the
value +36.819.

real type. An arithmetic data type, capable of
approximating the value of a real number. It can have a
positive, negative, or 0 value.

row-major order. A sequencing method used for
storing multidimensional arrays according to the
subscripts of the array elements. In this method the
rightmost subscript position varies most rapidly and
completes a full cycle before the next subscript position
to the left is incremented.

scalar. (1) A quantity characterized by a single
number. (A) (I) (2) Contrast with vector.

shape of an array. The extents of all the dimensions of
an array listed in order. For example, the shape of a
three-dimensional array that has four rows, five
columns, and three planes is (4,5,3) or 4 by 5 by 3.

short-precision. Real type data of length 4. Contrast
with double precision and long-precision.

single precision. Synonym for short-precision.

size of an array. The number of elements in an array.
This is the product of the extents of its dimensions.

SMP. Symmetric Multi-Processing.

statement. The basic unit of a program, that specifies
an action to be performed, or the nature and
characteristics of the data to be processed, or
information about the program itself. Statements fall
into two broad classes: executable and nonexecutable.

statement function. A procedure specified by a single
statement that is similar in form to an arithmetic,
logical, or character assignment statement. The
statement must appear after the specification
statements and before the first executable statement. In
the remainder of the program it can be referenced as a

function. A statement function may be referred to only
in the program unit in which it is defined. Contrast
with external function.

statement label. A number of from one through five
decimal digits that is used to identify a statement.
Statement labels can be used to transfer control, to
define the range of a DO, or to refer to a FORMAT
statement.

statement number. See “statement label”.

stride. The increment used to step through array
storage to select the vector or matrix elements from the
array.

subprogram. A program unit that is invoked by
another program unit in the same program. In Fortran,
a subprogram has a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement.

subscript. (1) A symbol that is associated with the
name of a set to identify a particular subset or element.
(A) (2) A subscript expression or set of subscript
expressions, enclosed in parentheses and used with an
array name to identify a particular array element.

subscript expression. An integer expression in a
subscript whose value and position in the subscript
determine the index number for the corresponding
dimension in the referenced array.

thread. A thread is the element that is scheduled, and
to which resources such as execution time, locks, and
queues may be assigned. There may be one or more
threads in a process, and each thread is executed by the
operating system concurrently.

thread-safe. A subroutine which may be called from
multiple threads of the same process simultaneously.

type declaration. The explicit specification of the type
of a constant, variable, array, or function by use of an
explicit type specification statement.

underflow exception. A condition caused by the result
of an arithmetic operation having a magnitude less
than the smallest possible nonzero number.

variable. (1) A quantity that can assume any of a
given set of values. (A) (2) A data item, identified by a
name, that is not a named constant, array, or array
element, and that can assume different values at
different times during program processing.

vector. A one-dimensional ordered collection of
numbers.

working storage. A storage area provided by the
application program for the use of an ESSL subroutine.

workstation. A workstation is a single-user,
high-performance microcomputer (or even a
minicomputer) which has been specialized in some

Glossary 969

way, usually for graphics output. Such a machine has a
screen and a keyboard, but is also capable of extensive
processing of your input before it is passed to the host.
Likewise, the host’s responses may be extensively
processed before being passed along to your screen. A
workstation may be intelligent enough to do much or
all the processing itself.

970 ESSL Version 3 Release 3 Guide and Reference

Bibliography

This bibliography lists the publications that you
may need to use with ESSL and describes how to
obtain them.

References
Text books and articles covering the mathematical
aspects of ESSL are listed in this section, as well
as several software libraries available from other
companies. They are listed alphabetically as
follows:
v Publications are listed by the author’s name.

IBM publications that include an order number,
other than an IBM Technical Report can be
ordered through the Subscription Library
Services System (SLSS). The non-IBM
publications listed here should be obtained
through publishers, bookstores, or professional
computing organizations.

v Software libraries are listed by their product
name. Each reference includes the names,
addresses, and phone numbers of the
companies from which they can be obtained.

Each citation in the text of this book is shown as
a number enclosed in square brackets. It indicates
the number of the item listed in the bibliography.
For example, reference [1] cites the first item
listed below.

1. Agarwal, R. C. Dec. 1984. “An Efficient
Formulation of the Mixed-Radix FFT
Algorithm.” Proceedings of the International
Conference on Computers, Systems, and Signal
Processing , 769–772. Bangalore, India.

2. Agarwal, R. C. August 1988. “A Vector and
Parallel Implementation of the FFT
Algorithm on the IBM 3090.” Proceedings from
the IFIP WG 2.5 (International Federation for
Information Processing Working Conference 5) ,
Stanford University.

3. Agarwal, R. C. 1989. “A Vector and Parallel
Implementation of the FFT Algorithm on the
IBM 3090.” Aspects of Computation on
Asynchronous Parallel Processors , 45–54.
Edited by M. H. Wright. Elsevier Science
Publishers, New York, N. Y.

4. Agarwal, R. C.; Cooley, J. W. March 1986.
“Fourier Transform and Convolution
Subroutines for the IBM 3090 Vector Facility.”

IBM Journal of Research and Development ,
30(2):145–162 (Order no. G322-0146).

5. Agarwal, R. C.; Cooley, J. W. September 1987.
“Vectorized Mixed-Radix Discrete Fourier
Transform Algorithms” IEEE Proceedings ,
75:1283–1292.

6. Agarwal, R.; Cooley, J.; Gustavson F.; Shearer
J.; Slishman G.; Tuckerman B. March 1986.
“New Scalar and Vector Elementary
Functions for the IBM System/370.” IBM
Journal of Research and Development,
30(2):126–144 (Order no. G322-0146).

7. Agarwal, R.; Gustavson F.; Zubair, M. May
1994. “An Efficient Parallel Algorithm for the
3-D FFT NAS Parallel Benchmark.”
Proceedings of IEEE SHPCC 94 :129–133.

8. Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.;
Dongarra, J.; DuCroz, J.; Greenbaum, A.;
Hammarling, S.; McKenney, A.; Ostrouchov,
S.; Sorensen, D. 1995. LAPACK: A Portable
Linear Algebra Library for High-Performance
ComputersLAPACK User’s Guide (second
edition), SIAM Publications, Philadelphia, Pa.
(For more information, see
http://www.netlib.org/lapack/index.html.)

9. Bathe, K.; Wilson, E. L. 1976. Numerical
Methods in Finite Element Analysis , 249–258.

10. Brayton, R. K.; Gustavson F. G.; Willoughby,
R. A.; 1970. “Some Results on Sparse
Matrices.” Mathematics of Computation ,
24(112):937–954.

11. Borodin, A.; Munro, I. 1975. The
Computational Complexity of Algebraic and
Numeric Problems American Elsevier, New
York, N. Y.

12. Carey, G. F.; Oden, J. T. 1984. Finite Elements:
Computational Aspects, Vol 3 , 144–147.
Prentice Hall, Englewood Cliffs, N. J.

13. Chan, T. F. March 1982. “An Improved
Algorithm for Computing the Singular Value
Decomposition.” ACM Transactions on
Mathematical Software 8(1):72–83.

14. Cline, A. K.; Moler, C. B.; Stewart, G. W.;
Wilkinson, J. H. 1979. “An Estimate for the
Condition Number of a Matrix.” SIAM
Journal of Numerical Analysis 16:368–375.

© Copyright IBM Corp. 1997, 2001 971

15. Conte, S. D.; DeBoor, C. 1972. Elementary
Numerical Analysis: An Algorithmic Approach
(second edition), McGraw-Hill, New York, N.
Y.

16. Cooley, J. W. 1976. “Fast Fourier Transform.”
Encyclopedia of Computer Sciences Edited by A.
Ralston. Auerbach Publishers.

17. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
June 1967. “Application of the Fast Fourier
Transform to Computation of Fourier
Integrals, Fourier Series, and Convolution
Integrals.” IEEE Transactions Audio
Electroacoustics AU-15:79–84.

18. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
June 1967. “Historical Notes on the Fast
Fourier Transform.” IEEE Transactions Audio
Electroacoustics AU-15:76–79. (Also published
Oct. 1967 in Proceedings of IEEE
55(10):1675–1677.)

19. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
March 1969. “The Fast Fourier Transform
Algorithm and its Applications.” IEEE
Transactions on Education E12:27–34.

20. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
June 1969. “The Finite Fast Fourier
Transform.” IEEE Transactions Audio
Electroacoustics AU-17:77–85.

21. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
July 1970. “The Fast Fourier Transform:
Programming Considerations in the
Calculation of Sine, Cosine, and LaPlace
Transforms.” Journal of Sound Vibration and
Analysis 12(3):315–337.

22. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
July 1970. “The Application of the Fast
Fourier Transform Algorithm to the
Estimation of Spectra and Cross-Spectra.”
Journal of Sound Vibration and Analysis
12(3):339–352.

23. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D.
1977. “Statistical Methods for Digital
Computers.” Mathematical Methods for Digital
Computers Chapter 14. Edited by Ensein,
Ralston and Wilf, Wiley-Interscience. John
Wiley, New York.

24. Cooley, J. W.; Tukey, J. W. April 1965. “An
Algorithm for the Machine Calculation of
Complex Fourier Series.” Mathematics of
Computation 19:297.

25. Dahlquist, G.; Bjorck, A.; (Translated by
Anderson, N.). 1974. Numerical Methods ,
Prentice Hall, Englewoods Cliffs, N. J. (For
skyline subroutines, see 169–170.)

26. Davis, P. J.; Rabinowitz, P. 1984. Methods of
Numerical Integration , (second edition),
Academic Press, Orlando, Florida.

27. Delsarte, P.; Genin, Y. V. June 1986. “The Split
Levinson Algorithm.” IEEE Transactions on
Acoustics, Speech, and Signal Processing
ASSP-34(3):472.

28. Di Chio, P.; Filippone, S. January 1992. “A
Stable Partition Sorting Algorithm.” Report
No. ICE-0045 IBM European Center for
Scientific and Engineering Computing, Rome,
Italy.

29. Dodson, D. S.; Lewis, J. G. Jan. 1985.
“Proposed Sparse Extensions to the Basic
Linear Algebra Subprograms.” ACM
SIGNUM Newsletter , 20(1).

30. Dongarra, J. J. July 1997. “Performance of
Various Computers Using Standard Linear
Equations Software.” University of
Tennessee, CS-89-85. (You can download this
document from
http://www.netlib.org/benchmark/performance.ps.)

31. Dongarra, J. J.; Bunch, J. R.; Moler C. B.;
Stewart, G. W. 1986. LINPACK User’s Guide ,
SIAM Publications, Philadelphia, Pa. (For
more information, see
http://www.netlib.org/linpack/index.html.)

32. Dongarra, J. J.; DuCroz, J.; Hammarling, S.;
Duff, I. March 1990. “A Set of Level 3 Basic
Linear Algebra Subprograms.” ACM
Transactions on Mathematical Software ,
16(1):1–17.

33. Dongarra, J. J.; DuCroz, J.; Hammarling, S.;
Duff, I. March 1990. “Algorithm 679. A Set of
Level 3 Basic Linear Algebra Subprograms:
Model Implementation and Test Programs.”
ACM Tranactions on Mathematical Software ,
16(1):18–28.

34. Dongarra, J. J.; DuCroz, J.; Hammarling, S.;
Hanson, R. J. March 1988. “An Extended Set
of Fortran Basic Linear Algebra
Subprograms.” ACM Transactions on
Mathematical Software , 14(1):1–17.

35. Dongarra, J. J.; DuCroz, J.; Hammarling, S.;
Hanson, R. J. March 1988. “Algorithm 656.
An Extended Set of Basic Linear Algebra
Subprograms: Model Implementation and
Test Programs.” ACM Tranactions on
Mathematical Software , 14(1):18–32.

36. Dongarra, J. J.; Duff, I. S.; Sorensen, D. C.;
Van der Vorst, H. 1991. Solving Linear Systems
on Vector and Shared Memory Computers ,
SIAM Publications, ISBN 0-89871-270-X.

972 ESSL Version 3 Release 3 Guide and Reference

37. Dongarra, J. J.; Eisenstat, S. C. May 1983.
“Squeezing the Most Out of an Algorithm in
Cray Fortran.” Technical Memorandum 9
Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439.

38. Dongarra, J. J.; Gustavson, F. G.; Karp, A.
Jan. 1984. “Implementing Linear Algebra
Algorithms for Dense Matrices on a Vector
Pipeline Machine.” SIAM Review , 26(1).

39. Dongarra, J. J.; Kaufman, L.; Hammarling, S.
Jan. 1985. “Squeezing the Most Out of
Eigenvalue Solvers on High-Performance
Computers.” Technical Memorandum 46
Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439.

40. Dongarra, J. J.; Kolatis M. October 1994. “Call
Conversion Interface (CCI) for
LAPACK/ESSL.” LAPACK Working Note 82,
Department of Computer Science University
of Tennessee, Knoxville, Tennessee. (You can
download this document from
http://www.netlib.org/lapack/lawns/lawn82.ps.)

41. Dongarra, J. J.; Kolatis M. May 1994. “IBM
RS/6000-550 & -590 Performance for Selected
Routines in ESSL/LAPACK/NAG/IMSL”,
LAPACK Working Note 71, Department of
Computer Science University of Tennessee,
Knoxville, Tennessee. (You can download this
document from
http://www.netlib.org/lapack/lawns/lawn71.ps.)

42. Dongarra, J. J; Meuer, H. W.; Strohmaier, E.
June 1997. “Top500 Supercomputer Sites.”
University of Tennessee, UT-CS-97-365.;
University of Mannheim, RUM 50/97, (You
can view this document from
http://www.netlib.org/benchmark/top500.html.)

43. Dongarra, J. J.; Moler, C. B. August 1983.
“EISPACK—A Package for Solving Matrix
Eigenvalue Problems.” Technical Memorandum
12 Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439.

44. Dongarra, J. J.; Moler, C. B; Bunch, J. R.;
Stewart, G. W. 1979. LINPACK Users’ Guide ,
SIAM, Philadelphia, Pa.

45. Dubrulle, A. A. 1971. “QR Algorithm with
Implicit Shift.” IBM licensed program:
PL/MATH.

46. Dubrulle, A. A. November 1979. “The Design
of Matrix Algorithms for Fortran and Virtual
Storage.” IBM Palo Alto Scientific Center
Technical Report (Order no. G320-3396).

47. Duff, I. S.; Erisman, A. M.; Reid, J. K. 1986.
Direct Methods for Sparse Matrices Oxford

University Press (Claredon), Oxford. (For
skyline subroutines, see 151–153.)

48. Eisenstat, S. C. March 1981. “Efficient
Implementation of a Class of Preconditioned
Conjugate Gradient Methods.” SIAM Journal
of Scientific Statistical Computing , 2(1).

49. EISPACK software library; National Energy
Software Center, Argonne National
Laboratory, 9700 South Cass Avenue,
Argonne, IL 60439 (312-972-7250);
International Mathematical and Statistical
Libraries, Inc., Sixth Floor, GNB Building,
7500 Bellaire Boulevard, Houston, Texas
77036 (713-772-1927)

50. Elmroth, E.; Gustavson, F. ″Applying
Recursion to Serial and Parallel QR
Factorization Leads to Better Performance.″
To be Published.IBM J. Res. Develop. 44, No. 5.

51. Elmroth, E.; Gustavson, F. ″A
High-Performance Algorithm for the Linear
Least Squares Problem on SMP Systems.″
Submitted for Publication. Lecture Notes in
Computer Science Springer-Verlag, Berlin,
2000.

52. Elmroth, E.; Gustavson, F. June 1998. ″New
Serial and Parallel Recursive QR
Factorization Algorithms for SMP Systems.″
Applied Parallel Computing Large Scale Scientific
and Industrial Problems, 4th International
Workshop, PARA’98 Umea, Sweden, June
14-17, 1998 Proceedings:120—128.

53. Filippone, S.; Santangelo, P.; Vitaletti M. Nov.
1990. “A Vectorized Long-Period Shift
Register Random Number Generation.”
Proceedings of Supercomputing ’90 , 676–684,
New York.

54. Forsythe, G. E.; Malcolm, M. A. 1977.
Computer Methods for Mathematical
Computations , Prentice Hall, Englewoods
Cliffs, N. J.

55. Forsythe, G.E.; Moler, C. 1967. Computer
Solution of Linear Algebra Systems , Prentice
Hall, Englewoods Cliffs, N. J.

56. Freund, R. W. July 28, 1992. “Transpose-Free
Quasi-Minimal Residual Methods for
Non-Hermitian Linear Systems.” Numerical
Analysis Manuscript 92-07 AT&T Bell
Laboratories. (To appear in SIAM Journal of
Scientific Statistical Computing , 1993, Vol. 14.)

57. Gans, D. 1969. Transformations and Geometries
Appleton Century Crofts, New York.

58. Garbow, B. S.; Boyle, J. M.; Dongarra, J. J.;
Moler, C. B. 1977. “Matrix Eigensystem

Bibliography 973

Routines.” EISPACK Guide Extension Lecture
Notes in Computer Science, Vol. 51
Springer-Verlag, New York, Heidelberg,
Berlin.

59. George, A.; Liu, J. W. 1981. “Computer
Solution of Large Sparse Positive Definite
Systems.” Series in Computational Mathematics
Prentice-Hall, Englewood Cliffs, New Jersey.

60. Gerald, C. F.; Wheatley, P. O. 1985. Applied
Numerical Analysis (third edition),
Addison-Wesley, Reading, Mass.

61. Gill, P. E.; Miller, G. R. 1972. “An Algorithm
for the Integration of Unequally Spaced
Data.” Computer Journal 15:80–83.

62. Golub, G. H.; Van Loan, C. F. 1996. Matrix
Computations , John Hopkins University
Press, Baltimore, Maryland.

63. Gregory, R. T.; Karney, D. L. 1969. A
Collection of Matrices for Testing Computational
Algorithms , Wiley-Interscience, New York,
London, Sydney, Toronto.

64. Grimes, R. C.; Kincaid, D. R.; Young, D. M.
1979. ITPACK 2.0 User’s Guide , CNA-150.
Center for Numerical Analysis, University of
Texas at Austin.

65. Gustavson, Fred.; Alexander Karaivanov,
Minka I. Marinova, Jerzy Wasniewski,
Plamen Yalamov. ″A new block packed
storage for symmetric indefinite matrices.″
Lecture Notes in Computer Science Fifth
International Workshop, Bergen, Norway.

66. Gustavson, F.G. Nov. 1997. ″Recursion leads
to automatic variable blocking for dense
linear-algebra algorithms.″ IBM Journal of
Research and Development , Volume 41
Number 6:737—755.

67. Gustavson, F.; Henriksson, A.; Jonsson, I.;
Kagstrom, B.; Ling, P. June 1998. ″Recursive
Blocked Data Formats and BLAS’s for Dense
Linear Algebra Algorithms.″ Applied Parallel
Computing Large Scale Scientific and Industrial
Problems , 4th International Workshop,
PARA’98 Umea, Sweden, June 14-17, 1998
Proceedings:195—215.

68. Hageman, L. A.; Young, D. M.. 1981. Applied
Iterative Methods Academic Press, New York,
N. Y.

69. Higham, N. J. 1996. Accuracy and Stability of
Numerical Algorithms , SIAM Publications,
Philadelphia, Pa.

70. Higham, N. J. December 1988. Fortran Codes
for Estimating the One-Norm of a Real or
Complex Matrix, with Application to Condition

Estimating ACM Transactions on
Mathematical Software, 14(4):381–396.

71. Jennings, A. 1977. Matrix Computation for
Engineers and Scientists , 153–158, John Wiley
and Sons, Ltd., New York, N. Y.

72. Kagstrom, B.; Ling, P.; Van Loan, C. 1993.
“Portable High Performance GEMM-Based
Level 3 BLAS”, Proceedings of the Sixth SIAM
Conference on Parallel Processing for Scientific
Computing , 339–346. Edited by: R. Sincovec,
D. Keyes, M. Leize, L. Petzold, and D. Reed.
SIAM Publications.

73. Kincaid, D. R.; Oppe, T. C.; Respess, J. R.;
Young, D. M. 1984. ITPACKV 2C User’s Guide
, CNA-191. Center for Numerical Analysis,
University of Texas at Austin.

74. Kirkpatrick, S.; Stoll, E. P. 1981. “A Very Fast
Shift-Register Sequence Random Number
Generation.” Journal of Computational Physics ,
40:517–526.

75. Knuth, D. E. 1973. The Art of Computer
Programming, Vol. 3: Sorting and Searching ,
Addison-Wesley, Reading, Mass.

76. Knuth, D. E. 1981. The Art of Computer
Programming, Vol. 2: Seminumerical Algorithms
, (second edition), Addison-Wesley, Reading,
Mass.

77. Lambiotte, J. J.; Voigt, R. G. December 1975.
“The Solution of Tridiagonal Linear Systems
on the CDC STAR-100 Computer.” ACM
Transactions on Mathematical Software
1(4):308–329.

78. Lawson, C. L.; Hanson, R. J. 1974. Solving
Least Squares Problems Prentice-Hall,
Englewood Cliffs, New Jersey.

79. Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.;
Krough, F. T. Sept. 1979. “Basic Linear
Algebra Subprograms for Fortran Usage.”
ACM Transactions on Mathematical Software
5(3):308–323.

80. Lewis, P. A. W.; Goodman, A. S.; Miller, J. M.
1969. “A Pseudo-Random Number Generator
for the System/360.” IBM System Journal,
8(2).

81. McCracken, D. D.; Dorn, W. S. 1964.
Numerical Methods and Fortran Programming ,
John Wiley and Sons, New York.

82. Melhem, R. 1987. “Toward Efficient
Implementation of Preconditioned Conjugate
Gradient Methods on Vector
Supercomputers.” Journal of Supercomputer
Applications , Vol. 1.

974 ESSL Version 3 Release 3 Guide and Reference

83. Moler, C. B.; Stewart, G. W. 1973. “An
Algorithm for the Generalized Matrix
Eigenvalue Problem.” SIAM Journal of
Numerical Analysis , 10:241–256.

84. Oppenheim, A. V.; Schafer, R. W. 1975. Digital
Signal Processing Prentice-Hall, Englewood
Cliffs, New Jersey.

85. Oppenheim, A. V.; Weinstein, C. August
1972. “Effects of Finite Register Length in
Digital Filtering and the Fast Fourier
Transform.” IEEE Proceedings ,
AU-17:209–215.

86. Saad, Y.; Schultz, M. H. 1986. “GMRES: A
Generalized Minimum Residual Algorithm
for Solving Nonsymmetric Linear Systems.”
SIAM Journal of Scientific and Statistical
Computing , 7:856–869. Philadelphia, Pa.

87. Smith, B. T.; Boyle, J. M.; Dongarra, J. J.;
Garbow, B. S.; Ikebe, Y.; Klema, V. C.; Moler,
C. B. 1976. “Matrix Eigensystem Routines.”
EISPACK Guide Lecture Notes in Computer
Science, Vol. 6 Springer-Verlag, New York,
Heidelberg, Berlin.

88. Sonneveld; Wesseling; DeZeeuv. 1985.
Multigrid and Conjugate Gradient Methods as
Convergence Acceleration Techniques in
Multigrid Methods for Integral and Differential
Equations , 117–167. Edited by D.J. Paddon
and M. Holstein. Oxford University Press
(Claredon), Oxford.

89. Sonneveld, P. January 1989. “CGS, a Fast
Lanczos-Type Solver for Nonsymmetric
Linear Systems.” SIAM Journal of Scientific
and Statistical Computing , 10(1):36–52.

90. Stewart, G. 1973. Introduction to Matrix
Computations Academic Press, New York, N.
Y.

91. Stewart, G. W. 1976. “The Economical
Storage of Plane Rotations.” Numerische
Mathematik , 25(2):137–139.

92. Stroud, A. H.; Secrest, D. 1966. Gaussian
Quadrature Formulas Prentice-Hall,
Englewood Cliffs, New Jersey.

93. Suhl, U. H.; Aittoniemi, L. 1987. “Computing
Sparse LU-Factorization for Large-Scale
Linear Programming Bases.” Report Number
58 Freie University, Berlin.

94. Tausworthe, R. C. 1965. “Random Numbers
Generated by Linear Recurrence Modulo
Two.” Mathematical Computing, Vol. 19

95. Van der Vorst, H. A. 1992. “Bi-CGSTAB: A
Fast and Smoothly Converging Variant of
Bi-CG for the Solution of Nonsymmetric

Linear Systems.” SIAM Journal of Scientific
Statistical Computing , 13:631–644.

96. Weinstein, C. September 1969. “Round-off
Noise in Floating Point Fast Fourier
Transform Calculation.” IEEE Transactions on
Audio Electroacoustics AU-17:209–215.

97. Wilkinson, J. H. 1965. The Algebraic Eigenvalue
Problem , Oxford University Press (Claredon),
Oxford.

98. Wilkinson, J. H. 1963. Rounding Errors in
Algebraic Processes , Prentice-Hall, Englewood
Cliffs, New Jersey.

99. Wilkinson, J. H.; Reinsch, C. 1971. Handbook
for Automatic Computation, Vol. II, Linear
Algebra , Springer-Verlag, New York,
Heidelberg, Berlin.

100. Zierler, N. 1969 “Primitive Trinomials
Whose Degree Is a Mersenne Exponent.”
Information and Control , 15:67–69.

101. Zlatev, Z. 1980. “On Some Pivotal Strategies
in Gaussian Elimination by Sparse
Technique.” SIAM Journal of Numerical
Analysis , 17(1):18–30.

ESSL Publications
This section lists the ESSL publications for each
major task that you perform.

Evaluation and Planning
ESSL Products General Information, GC23-0529
—provides detailed information helpful in
evaluating and planning for ESSL: Parallel ESSL,
ESSL for AIX, and ESSL/370.

Installation
ESSL Version 3 Installation Memo,
GI10-0604—describes how to install ESSL on AIX.
It is a packing list for the ESSL product when it is
shipped. (One copy is delivered with each ESSL
product.)

Application Programming
ESSL Version 3 Guide and Reference,
SA22-7272—contains ESSL guidance information
for designing, coding, and running programs
using ESSL, and contains complete reference
information for coding calls to the ESSL
subroutines. This manual is available in HTML
and PDF format on the product medium.

Parallel ESSL Version 2 Guide and Reference,
SA22-7273—contains Parallel ESSL guidance

Bibliography 975

|

|
|

|
|

|

|
|

information for designing, coding, and running
programs using Parallel ESSL, and contains
complete reference information for coding calls to
the Parallel ESSL subroutines. This manual is
available in HTML and PDF format on the
Parallel ESSL product medium.

Related Publications
The related publications listed below may be
useful to you when using ESSL.

AIX
For the latest updates, visit the AIX web site at
this URL:

http://www.ibm.com/servers/aix/library/techpubs.html

AIX Commands Reference (all volumes)

AIX General Programming Concepts: Writing and
Debugging Programs

AIX Performance Management Guide

AIX System Management Guide: Operating System
and Devices

AIX System User’s Guide: Operating System and
Devices

XL Fortran
IBM XL Fortran for AIX User’s Guide, SC09-2866

IBM XL Fortran for AIX Language Reference,
SC09-2867

PL/I
IBM PL/I Set for AIX Programming Guide,
SC26-8456

IBM PL/I Set for AIX Language Reference, SC26-8455

IBM 3838 Array Processor
IBM 3838 Array Processor Functional Characteristics,
GA24-3639

OS/VS1 and OS/VS2 MVS Vector Processing
Subsystem Programmer’s Guide, GC24-5125

MVS Extended Architecture Vector Processing
Subsystem Application Programmer’s Guide,
SC28-1202

976 ESSL Version 3 Release 3 Guide and Reference

|

|
|

|

|
|

|

|
|

|
|

Index

Numerics
3838 Array Processor

general signal processing
routines 718

3838 Array Processor publications 976

A
abbreviations

for product names xiv
in the Glossary 967
interpreting math and

programming xvii
absolute value

maximum 193
minimum 196
notation xvii
sum of all absolute values 205

accuracy
considerations for dense and banded

linear algebraic equations 432
considerations for eigensystem

analysis 679
considerations for Fourier transforms,

convolutions, and correlations 721
considerations for interpolation 867
considerations for linear algebra

subprograms 190
considerations for matrix

operations 361
considerations for numerical

quadrature 885
considerations for related

computations 725
considerations for sorting and

searching 849
error of computation 42
of results 6, 41
precisions 41
what accuracy means 41
where to find information on 41

acronyms
associated with programming

values xvii
in the Glossary 967
product names xiv

adding
absolute values 205
general matrices or their

transposes 363
vector x to vector y and store in

vector z 250
address notation xvii
advantages of ESSL 3
AIX

publications 976
algebra 429
Announcing ESSL brochure 975
ANSI definitions in Glossary 967

application programming, publication
for 975

applications in the industry 4
architecture supported by ESSL on the

workstations 7
arguments

coding rules 28
conventions used in the subroutine

descriptions xx
diagnosing ESSL input-argument

errors 169
font for ESSL calling xiv
list of ESSL input-argument

errors 172, 182
passing in C++ programs 139
passing in C programs 124

array
coding in C++ programs 144
coding in C programs 127
coding in Fortran programs 106
conventions for xvi
definition of 26
real and complex elements 106
setting up data structures inside 53
storage techniques overview 26

array data
storage and performance tradeoffs 43

arrow notation, what it means xvii
attention error messages,

interpreting 171
autocorrelation of one or more

sequences 822, 826
auxiliary working storage

calculating 31
dynamic allocation 30
list of subroutines using 29
provided by the user 30

B
background books 971
band matrix

definition of 73
storage layout 75, 77, 79, 80, 84, 85

band matrix subroutines, names of 429
band width 73, 79
banded linear algebraic equation

subroutines 429
SGBF and DGBF 533
SGBS and DGBS 537
SGTF and DGTF 546
SGTNP, DGTNP, CGTNP, and

ZGTNP 551
SGTNPF, DGTNPF, CGTNPF, and

ZGTNPF 554
SGTNPS, DGTNPS, CGTNPS, and

ZGTNPS 557
SGTS and DGTS 549
SPBF, DPBF, SPBCHF, and

DPBCHF 540

banded linear algebraic equation
subroutines (continued)

SPBS, DPBS, SPBCHS, and
DPBCHS 543

SPTF and DPTF 560
SPTS and DPTS 562
STBSV, DTBSV, CTBSV, and

ZTBSV 564
base program, processing your

under AIX 157
bibliography 971
binary search 859
BLAS (Basic Linear Algebra

Subprograms) 187
ESSL subprograms 187, 959
Level 1 959
Level 2 959
Level 3 960
migrating from 165
migrating to ESSL 23

BLAS-general-band storage mode 77
bold letters, usage of xiv
books 971

C
C++ (C++ programming language)

coding programs 139
ESSL header file 139, 142
function reference 139
handling errors in your program 146
how to code arrays 144
modifying procedures for using

ESSL 159
passing character arguments 139
program calling interface 139
setting up complex and logical

data 142
C (C programming language)

coding programs 123
ESSL header file 123, 126
function reference 123
handling errors in your program 130
how to code arrays 127
modifying procedures for using

ESSL 158
passing character arguments 124
program calling interface 123
setting up complex and logical

data 126
calculating auxiliary working storage 30
calculating transform lengths 36
CALL statement 105
calling sequence

for C++ programs 139
for C programs 123
for Fortran programs 105
specifying the arguments 28
subroutines versus functions 105,

123, 139
syntax description xix

© Copyright IBM Corp. 1997, 2001 977

cataloged procedures, ESSL 157
CAXPY 208
CAXPYI 278
CCOPY 211
CDOTC 214
CDOTCI 281
CDOTU 214
CDOTUI 281
ceiling notation and meaning xvii
CGBMV 324
CGEADD 363
CGEEV 681
CGEF 438
CGEMM 389
CGEMMS 384
CGEMUL 375
CGEMV 285
CGERC 295
CGERU 295
CGES 441
CGESM 444
CGESUB 369
CGETMI 423
CGETMO 426
CGETRF 449
CGETRS 453
CGTHR 272
CGTHRZ 275
CGTNP 551
CGTNPF 554
CGTNPS 557
character data

conventions xiv, 26
characters, special usage of xvii
CHBMV 330
CHEMM 397
CHEMV 302
CHER 309
CHER2 316
CHER2K 416
CHERK 410
choosing the ESSL library 23
choosing the ESSL subroutine 23
CHPEV 691
CHPMV 302
CHPR 309
CHPR2 316
CHPSV 699
citations 971
CNORM2 231
coding your program

arguments in ESSL calling
sequences 28

CALL sequence for C++
programs 139

CALL sequence for C programs 123
CALL sequence for Fortran

programs 105
calls to ESSL in C++ programs 139
calls to ESSL in C programs 123
calls to ESSL in Fortran

programs 105
data types used in your program 26
handling errors with ERRSET, EINFO,

ERRSAV, ERRSTR, and return
codes 113, 130, 146

coding your program (continued)
restrictions for application

programs 26
techniques that affect

performance 43
column vector 53
comparison of accuracy for libraries 6
compilers, required by ESSL on the

workstations 8
compiling your program

C++ programs 159
C programs 158
Fortran programs 157
under AIX 157

complex and real array elements 106
complex conjugate notation xvii
complex data

conventions xiv, 26
setting up for C 126
setting up for C++ 142

complex Hermitian band matrix
definition of 81
storage layout 81

complex Hermitian matrix
definition of 67
storage layout 67

complex Hermitian Toeplitz matrix
definition of 69

complex matrix 59
complex vector 53
compressed-diagonal storage mode for

sparse matrices 89
compressed-matrix storage mode for

sparse matrices 88
compressed-vector, definition and storage

mode 58
computational areas, overview 4
computational errors

diagnosing 169
list of messages for 179
overview 45

condition number, reciprocal of
general matrix 457, 499
positive definite real symmetric

matrix 478, 505
conjugate notation xvii
conjugate transpose

of matrix operation results for
multiply 378, 387, 392

conjugate transpose of a matrix 60
conjugate transpose of a vector 54
continuation, convention for numerical

data xiv
conventions xiv

for messages 172
mathematical and programming

notations xvii
subroutine descriptions xix

convolution and correlation
autocorrelation of one or more

sequences 822
direct method

one sequence with another
sequence 805

with decimated output 818

convolution and correlation (continued)
mixed radix Fourier method

autocorrelation of one or more
sequences 826

one sequence with one or more
sequences 810

one sequence with one or more
sequences 799

convolution and correlation subroutines
accuracy considerations 721
performance and accuracy

considerations 723
performance considerations 721
SACOR 822
SACORF 826
SCON and SCOR 799
SCOND and SCORD 805
SCONF and SCORF 810
SDCON, DDCON, SDCOR, and

DDCOR 818
usage considerations 718

copy a vector 211
correlation 799
cosine notation xvii
cosine transform 749
courier font usage xiv
CPOF 461
CPOSM 473
CPOTRF 461
CPOTRS 473
CROT 240
CROTG 234
CSCAL 244
CSCTR 269
CSROT 240
CSSCAL 244
CSWAP 247
CSYAX 262
CSYMM 397
CSYR2K 416
CSYRK 410
CTBMV 341
CTBSV 564
CTPMV 335
CTPSV 513
CTRMM 404
CTRMV 335
CTRSM 519
CTRSV 513
cubic spline interpolating 876, 881
customer service, IBM 167
customer support, IBM 167
CVEA 250
CVEM 258
CVES 254
CWLEV 844
CYAX 262
CZAXPY 265

D
DASUM 205
data

array data 26
conventions for scalar data xiv, 26

data structures (vectors and matrices) 53
DAXPY 208

978 ESSL Version 3 Release 3 Guide and Reference

DAXPYI 278
DBSRCH 859
DBSSV 484
DBSTRF 490
DBSTRS 495
DCFT 727
DCFT2 763
DCFT3 783
DCOPY 211
DCOSF 749
DCRFT 742
DCRFT2 776
DCRFT3 793
DCSIN2 881
DCSINT 876
DDCON 818
DDCOR 818
DDOT 214
DDOTI 281
default values in the ESSL error option

table 48
definitions of terms in the Glossary 967
dense and banded subroutines

performance and accuracy
considerations 432

dense linear algebraic equation
subroutines 429

DBSSV 484
DBSTRF 490
DBSTRS 495
SGEF, DGEF, CGEF, and ZGEF 438
SGEFCD and DGEFCD 457
SGEICD, DGEICD, SGETRI, and

DGETRI 499
SGES, DGES, CGES, and ZGES 441
SGESM, DGESM, CGESM, and

ZGESM 444
SGETRF, DGETRF, CGETRF and

ZGETRF 449
SGETRS, DGETRS, CGETRS, and

ZGETRS 453
SPOFCD and DPOFCD 478
SPOSM, DPOSM, CPOSM, ZPOSM,

SPOTRS, DPOTRS, CPOTRS, and
ZPOTRS 473

SPPF, DPPF, SPOF, DPOF, CPOF,
ZPOF, SPOTRF, DPOTRF, CPOTRF,
ZPOTRF 461

SPPFCD and DPPFCD 478
SPPICD, DPPICD, SPOICD, DPOICD,

SPOTRI, and DPOTRI 505
SPPS and DPPS 470
STPSV, DTPSV, CTPSV, and

ZTPSV 513
STRI, DTRI, STPI, DPTI, STRTRI,

DTRTRI, STPTRI, DTPTRI 526
STRSM, DTRSM, CTRSM, and

ZTRSM 519
STRSV, DTRSV, CTRSV, and

ZTRSV 513
dense matrix, definition 88
descriptions, conventions used in the

subroutine xix
designing your program

accuracy of results 41
choosing the ESSL library 23
choosing the ESSL subroutine 23

designing your program (continued)
error considerations 44
performance considerations 43
storage considerations 26

determinant
general matrix 457, 499
general skyline sparse matrix 580
matrix notation xvii
positive definite real symmetric

matrix 478, 505
symmetric skyline sparse matrix 597

DGBF 533
DGBMV 324
DGBS 537
DGEADD 363
DGEEV 681
DGEF 438
DGEFCD 457
DGEGV 706
DGEICD 499
DGELLS 674
DGELS 667
DGEMM 389
DGEMMS 384
DGEMTX 285
DGEMUL 375
DGEMV 285
DGEMX 285
DGEQRF 663
DGER 295
DGES 441
DGESM 444
DGESUB 369
DGESVF 652
DGESVS 659
DGETMI 423
DGETMO 426
DGETRF 449
DGETRI 499
DGETRS 453
DGHMQ 907
DGKFS 580
DGKTRN 948
DGLGQ 900
DGLNQ 892
DGLNQ2 894
DGRAQ 903
DGSF 570
DGSS 576
DGTF 546
DGTHR 272
DGTHRZ 275
DGTNP 551
DGTNPF 554
DGTNPS 557
DGTS 549
diagnosis procedures

attention error messages 171
computational errors 169
ESSL messages, list of 171
in your program 167
informational error messages 170
initial problem diagnosis procedures

(symptom index) 168
input-argument errors 169
miscellaneous error messages 171
program exceptions 168

diagnosis procedures (continued)
resource error messages 170

diagnostics 171
diagonal-out skyline storage mode 95
dimensions of arrays

storage layout 106
direct method

general skyline sparse matrix 580
general sparse matrix 570
symmetric skyline sparse matrix 597

direct sparse matrix solvers
usage considerations 433

DIZC 835
DNAXPY 218
DNDOT 223
DNORM2 231
DNRAND 916
DNRM2 228
documentation 971
dot product

notation xvii
of dense vectors 214
of sparse vectors 281
special (compute N times) 223

DPBCHF 540
DPBCHS 543
DPBF 540
DPBS 543
DPINT 869
DPOF 461
DPOFCD 478
DPOICD 505
DPOLY 832
DPOSM 473
DPOTRF 461
DPOTRI 505
DPOTRS 473
DPPF 461
DPPFCD 478
DPPICD 505
DPPS 470
DPTF 560
DPTNQ 889
DPTS 562
DQINT 841
DRCFT 735
DRCFT2 769
DRCFT3 788
DROT 240
DROTG 234
DSBMV 330
DSCAL 244
DSCTR 269
DSDCG 631
DSDGCG 645
DSDMX 354
DSINF 756
DSKFS 597
DSKTRN 953
DSLMX 302
DSLR1 309
DSLR2 316
DSMCG 624
DSMGCG 638
DSMMX 347
DSMTM 350
DSORT 851

Index 979

DSORTS 856
DSORTX 853
DSPEV 691
DSPMV 302
DSPR 309
DSPR2 316
DSPSV 699
DSRIS 614
DSRSM 944
DSSRCH 863
DSWAP 247
DSYGV 711
DSYMM 397
DSYMV 302
DSYR 309
DSYR2 316
DSYR2K 416
DSYRK 410
DTBMV 341
DTBSV 564
DTPI 526
DTPINT 873
DTPMV 335
DTPSV 513
DTPTRI 526
DTREC 838
DTRI 526
DTRMM 404
DTRMV 335
DTRSM 519
DTRSV 513
DTRTRI 526
DURAND 913
DURXOR 919
DVEA 250
DVEM 258
DVES 254
DWLEV 844
DYAX 262
dynamic allocation of auxiliary working

storage 30
dynamic linking versus static

linking 157
DZASUM 205
DZAXPY 265
DZNRM2 228

E
efficiency of your program 43
eigensystem analysis subroutines

performance and accuracy
considerations 679

SGEEV, DGEEV, CGEEV, and
ZGEEV 681

SGEGV and DGEGV 706
SSPEV, DSPEV, CHPEV, and

ZHPEV 691
SSPSV, DSPSV, CHPSV, and

ZHPSV 699
SSYGV and DSYGV 711

eigenvalues and eigenvectors 681
complex Hermitian matrix 691
general matrix 681
real general matrices 706
real symmetric matrix 691, 711

eigenvalues and eigenvectors (continued)
real symmetric positive definite

matrix 711
EINFO, ESSL error information-handler

considerations when designing your
program 45

diagnosis procedures using 169
subroutine description 926
using EINFO in C++ programs 146
using EINFO in C programs 130
using EINFO in Fortran

programs 113
element of a matrix notation xvii
element of a vector notation xvii
error conditions, conventions used in the

subroutine descriptions xx
error-handling subroutines

EINFO 926
ERRSAV 929
ERRSET 930
ERRSTR 932

error messages 171
error option table default values 48
errors

attention error messages,
interpreting 171

attention messages, overview 48
calculating auxiliary storage 29
computational errors 45, 169
EINFO subroutine description 926
extended error-handling

subroutines 20
handling errors in your C++

program 146
handling errors in your C

program 130
handling errors in your Fortran

program 113
how errors affect output 44
informational error messages,

interpreting 170
input-argument errors 169
input-argument errors, overview 44
miscellaneous error messages,

interpreting 171
overview of 44
program exceptions 44, 168
resource error messages,

interpreting 170
resource errors, overview 47
types of errors that you can

encounter 44
using ERRSAV and ERRSTR 50
values returned for EINFO error

codes 926
when to use ERRSET 48
where to find information on 44

ERRSAV
in workstation environment 20
subroutine description 929
using with large applications 50

ERRSET
diagnosis procedures using 169
ESSL default values for 48
handling errors in C 130
handling errors in C++ 146
in workstation environment 20

ERRSET (continued)
subroutine description 930
using EINFO in C++ programs 146
using EINFO in C programs 130
using EINFO in Fortran

programs 113
using ERRSET, EINFO, and return

codes in C 130
using ERRSET, EINFO, and return

codes in C++ 146
using ERRSET, EINFO, and return

codes in Fortran 113
when to use 45, 48
when to use ERRSAV and ERRSTR

with ERRSET 50
ERRSTR

in workstation environment 20
subroutine description 932
using with large applications 50

ESSL (Engineering and Scientific
Subroutine Library)

advantages of 3
attention error messages,

interpreting 171
attention messages, overview 48
coding your program 105
computational areas, overview 4
computational errors 45
computational errors, diagnosing 169
designing your program 23
diagnosis procedures for ESSL

errors 167
dynamic linking versus static

linking 157
eigensystem analysis subroutines 679
error option table default values 48
extended error-handling

subroutines 20
Fourier transform, convolutions and

correlations, and
related-computation
subroutines 717

functional capability 4
informational error messages,

interpreting 170
input-argument errors,

diagnosing 169
input-argument errors, overview 44
installation requirements 8
interpolation subroutines 867
introduction to 3
languages supported 7
linear algebra subprograms 187
linear algebraic equations

subroutines 429
matrix operation subroutines 359
message conventions 172
messages, list of 171
migrating between IBM
EserverEserver pSeries and
RS/6000 processors 164

migrating programs 161
migrating to future releases or future

hardware 164
miscellaneous error messages,

interpreting 171
name xiv

980 ESSL Version 3 Release 3 Guide and Reference

ESSL (Engineering and Scientific
Subroutine Library) (continued)

names with an underscore,
interpreting xiii

number of subroutines in each area 4
numerical quadrature

subroutines 885
ordering publications 975
overview 3
overview of the subroutines 4
packaging characteristics 8
parallel processing subroutines on the

workstations 5
processing your program 157
program exceptions 44
program number for 975
publications overview 975
random number generation

subroutines 911
reference information

conventions xix
related publications 976
resource error messages,

interpreting 170
resource errors, overview 47
setting up your data structures 53
sorting and searching

subroutines 849
usability of subroutines 3
utility subroutines 923
when coding large applications 50
when to use ERRSET for ESSL

errors 48
ESSL/370, migrating from 164
ESSL messages 171
ESSLPARM file

migrating programs to use 163
Euclidean length

with no scaling of input 231
with scaling of input 228

Euclidean norm notation xvii
evaluation and planning, publications

for 975
examples, conventions used in the

subroutine descriptions xx
examples of matrices 59
examples of vectors 53
exponential function notation xvii
expressions, special usage of xvii
extended error-handling subroutines

handling errors in C 130
handling errors in C++ 146
handling errors in your Fortran

program 113
how they work 44, 50
in ESSL and in Fortran, list of 20
using them in diagnosing

problems 169
extended-error-handling subroutines,

using
in your C++ program 146
in your C program 130
in your Fortran program 113

extreme eigenvalues and
eigenvectors 681, 699, 711

complex Hermitian matrix 699
real symmetric matrix 699

F
factoring

general band matrix 533
general matrix 438, 449, 457
general skyline sparse matrix 580
general sparse matrix 570
general tridiagonal matrix 546
positive definite

complex Hermitian matrix 461
real symmetric indefinite

matrix 490, 495
real symmetric matrix 461, 478
symmetric band matrix 540
symmetric tridiagonal matrix 560

symmetric skyline sparse matrix 597
tridiagonal matrix 551, 554

fast Fourier transform (FFT) 723
FFT 723
floor notation and meaning xvii
fonts used in this book xiv
formula for transform lengths,

interpreting 37
formulas for auxiliary storage,

interpreting 31
Fortran

languages required by ESSL on the
workstations 8

modifying procedures for using
ESSL 157

publications 976
Fortran considerations

coding programs 105
function reference 187
handling errors in your program 113

Fortran function reference 105
Fortran program calling interface 105
Fourier transform 723

one dimension
complex 727
complex-to-real 742
cosine transform 749
real-to-complex 735
sine transform 756

three dimensions
complex 783
complex-to-real 793
real-to-complex 788

two dimensions
complex 763
complex-to-real 776
real-to-complex 769

fourier transform subroutines
SCFT and DCFT 727
SCFT2 and DCFT2 763
SCFT3 and DCFT3 783
SCOSF and DCOSF 749
SCRFT and DCRFT 742
SCRFT2 and DCRFT2 776
SCRFT3 and DCRFT3 793
SRCFT and DRCFT 735
SRCFT2 and DRCFT2 769
SRCFT3 and DRCFT3 788
SSINF and DSINF 756

Fourier transform subroutines
accuracy considerations 721
how they achieve high

performance 723

Fourier transform subroutines (continued)
performance considerations 721
terminology used for 718
usage considerations 718

Frobenius norm notation xvii
full-matrix storage mode 88
full-vector, definition and storage

mode 58
function

calling sequence in C++
programs 139

calling sequence in C programs 123
calling sequence in Fortran

programs 105
function reference 187
functional capability of the ESSL

subroutines 4
functional description, conventions used

in the subroutine descriptions xx
functions, ESSL 187
future migration considerations 164

G
gather vector elements 272, 275
Gaussian quadrature methods

Gauss-Hermite Quadrature 907
Gauss-Laguerre Quadrature 900
Gauss-Legendre Quadrature 892
Gauss-Rational Quadrature 903
two-dimensional Gauss-Legendre

Quadrature 894
general-band storage mode 75
general matrix 429
general matrix subroutines, names

of 429
general tridiagonal matrix

definition of 86
storage layout 86

generalized eigensystem
real general matrices 706
real symmetric matrix 711
real symmetric positive definite

matrix 711
generation of random numbers 911
Givens plane rotation, constructing 234
Glossary 967
greek letters notation xvii
guide information 1
guidelines for handling problems 167

H
half band width 79
handling errors

in your C++ program 146
in your C program 130
in your Fortran program 113

hardware
required on the workstations 7

header file, ESSL, for C 123, 126
header file, ESSL, for C++ 139, 142
Hermitian band matrix

definition of 81
storage layout 81

Index 981

Hermitian matrix
definition of 67
definition of, complex 69
storage layout 67

how to use this book xi, xii
Hypertext Markup Language, required

products 8

I
i-th zero crossing 718, 835
IBM products, migrating from 165
IBM publications 975
IBSRCH 859
ICAMAX 193
IDAMAX 193
IDAMIN 196
identifying problems 168
IDMAX 199
IDMIN 202
IESSL 933
industry areas 4
infinity notation xvii
informational error messages,

interpreting 170
informational messages, for ESSL 171
input-argument errors

diagnosing 169
list of messages for 172, 182
overview 44, 47, 48

input arguments, conventions used in the
subroutine descriptions xx

input data, conventions for 26
installation documentation, Program

Directory 975
int notation and meaning xvii
integer data

conventions xiv, 26
integral notation xvii
interchange elements of two vectors 247
interface, ESSL

for C++ programs 139
for C programs 123
for Fortran programs 105

interpolating
cubic spline 876
local polynomial 873
polynomial 869
quadratic 841
two-dimensional cubic spline 881

interpolation subroutines
accuracy considerations 867
performance considerations 867
SCSIN2 and DCSIN2 881
SCSINT and DCSINT 876
SPINT and DPINT 869
STPINT and DTPINT 873
usage considerations 867

introduction to ESSL 3
inverse

general matrix 499
matrix notation xvii
positive definite real symmetric

matrix 505
triangular matrix 526

ISAMAX 193
ISAMIN 196

ISMAX 199
ISMIN 202
ISO definitions in Glossary 967
ISORT 851
ISORTS 856
ISORTX 853
ISSRCH 863
italic font usage xiv
iterative linear system solver

general sparse matrix 614, 638, 645
sparse negative definite symmetric

matrix 624, 631
sparse positive definite symmetric

matrix 624, 631
symmetric sparse matrix 614
usage considerations 435

IZAMAX 193

L
l(2) norm

with no scaling of input 231
with scaling of input 228

languages supported by ESSL 7
LAPACK

ESSL subprograms 961
LAPACK, migrating from 165
leading dimension for matrices

how it is used for matrices 61
how it is used in three

dimensions 102
least squares solution 659, 663
letters, fonts of xiv
Level 1 BLAS 959
Level 2 BLAS 959
Level 3 BLAS 960
level of ESSL, getting 933
library

migrating from a non-IBM 165
migrating from another IBM 165
migrating from ESSL Version 2 to

Version 3 163
migrating from ESSL Version 3 to

Version 3 Release 1.1 162
migrating from ESSL Version 3 to

Version 3 Release 1.2 162
migrating from ESSL Version 3 to

Version 3 Release 2 162
migrating from ESSL Version 3 to

Version 3 Release 3 161
migrating from LAPACK 165
overview 4

Licensed Program Specification,
ESSL 975

linear algebra 429
linear algebra subprograms 187

accuracy considerations 190
list of matrix-vector linear algebra

subprograms 189
list of sparse matrix-vector linear

algebra subprograms 190
list of sparse vector-scalar linear

algebra subprograms 188
list of vector-scalar linear algebra

subprograms 187
overview 187
performance considerations 190

linear algebra subprograms (continued)
usage considerations 190

linear algebraic equations
accuracy considerations 432
list of banded linear algebraic

equation subroutines 430
list of dense linear algebraic

equations 429
list of linear least squares

subroutines 432
list of sparse linear algebraic equation

subroutines 431
overview 429
performance considerations 432
usage considerations 432

linear least squares solution
preparing for 652
QR decomposition with column

pivoting 674
QR factorization 667
singular value decomposition 659

linear least squares subroutines 429
DGELS 667
DGEQRF 663
SGELLS and DGELLS 674
SGESVF and DGESVF 652
SGESVS and DGESVS 659

linking 157
C++ programs 159
C programs 158
dynamic versus static 157
Fortran programs 157

linking and loading your program
under AIX 157

logical data
conventions xiv, 26
setting up for C 126
setting up for C++ 142

long precision
accuracy statement 6
meaning of 41

lower-band-packed storage mode 80
lower band width 73
lower-packed storage mode 63
lower-storage-by-rows for symmetric

sparse matrices 93
lower storage mode 63, 65
lower-triangular-band-packed storage

mode 83, 85
lower-triangular-packed storage

mode 71, 72
lower-triangular storage mode 71, 73

M
mailing list for ESSL customers 9
masking underflow

for performance 43
why you should 42

math and programming notations xvii
math background publications 971
mathematical expressions, conventions

for xvii
mathematical functions, overview 4
matrix

band matrix 73
complex Hermitian band matrix 81

982 ESSL Version 3 Release 3 Guide and Reference

matrix (continued)
complex Hermitian matrix 67, 69
complex Hermitian Toeplitz

matrix 69
conventions for xv
description of 59
font for xiv
full or dense matrix 88
general tridiagonal matrix 86
leading dimension for 61
negative definite complex Hermitian

matrix 68
negative definite symmetric

matrix 67
positive definite complex Hermitian

matrix 68
positive definite symmetric band

matrix 81
positive definite symmetric matrix 67
positive definite symmetric tridiagonal

matrix 87
sparse matrix 88
storage of 60
symmetric band matrix 79
symmetric matrix 62
symmetric tridiagonal matrix 87
Toeplitz matrix 68
triangular band matrices 82
triangular matrices 70

matrix-matrix product
complex Hermitian matrix 397
complex symmetric matrix 397
general matrices, their transposes, or

their conjugate transposes 389
real symmetric matrix 397
triangular matrix 404

matrix operation subroutines
accuracy considerations 361
performance considerations 361
SGEADD, DGEADD, CGEADD, and

ZGEADD 363
SGEMM, DGEMM, CGEMM, and

ZGEMM 389
SGEMMS, DGEMMS, CGEMMS, and

ZGEMMS 384
SGEMUL, DGEMUL, CGEMUL, and

ZGEMUL 375
SGESUB, DGESUB, CGESUB, and

ZGESUB 369
SGETMI, DGETMI, CGETMI, and

ZGETMI 423
SGETMO, DGETMO, CGETMO, and

ZGETMO 426
SSYMM, DSYMM, CSYMM, ZSYMM,

CHEMM, and ZHEMM 397
SSYR2K, DSYR2K, CSYR2K, ZSYR2K,

CHER2K, and ZHER2K 416
SSYRK, DSYRK, CSYRK, ZSYRK,

CHERK, and ZHERK 410
STRMM, DTRMM, CTRMM, and

ZTRMM 404
usage considerations 360

matrix-vector linear algebra subprograms
SGBMV, DGBMV, CGBMV, and

ZGBMV 324

matrix-vector linear algebra
subprograms (continued)

SGEMX, DGEMX, SGEMTX,
DGEMTX, SGEMV, DGEMV,
CGEMV, and ZGEMV 285

SGER, DGER, CGERU, ZGERU,
CGERC, and ZGERC 295

SSBMV, DSBMV, CHBMV, and
ZHBMV 330

SSPMV, DSPMV, CHPMV, ZHPMV,
SSYMV, DSYMV, CHEMV, ZHEMV,
SSLMX and DSLMX 302

SSPR, DSPR, CHPR, ZHPR, SSYR,
DSYR, CHER, ZHER, SSLR1, and
DSLR1 309

SSPR2, DSPR2, CHPR2, ZHPR2,
SSYR2, DSYR2, CHER2, ZHER2,
SSLR2, and DSLR2 316

STBMV, DTBMV, CTBMV, and
ZTBMV 341

STPMV, DTPMV, CTPMV, ZTPMV,
STRMV, DTRMV, CTRMV, and
ZTRMV 335

matrix-vector product
complex Hermitian band matrix 330
complex Hermitian matrix 302
general band matrix, its transpose, or

its conjugate transpose 324
general matrix, its transpose, or its

conjugate transpose 285
real symmetric band matrix 330
real symmetric matrix 302
sparse matrix 347
sparse matrix or its transpose 354
triangular band matrix, its transpose,

or its conjugate transpose 341
triangular matrix, its transpose, or its

conjugate transpose 335
max notation and meaning xvii
maximum

absolute value 193
value 199

meanings of words in the Glossary 967
messages

ESSL and attention messages,
interpreting 171

ESSL informational messages,
interpreting 170

ESSL miscellaneous messages,
interpreting 171

ESSL resource messages,
interpreting 170

list of ESSL messages 172, 182
message conventions 172

migrating
from ESSL/370 164
from ESSL Version 2 to Version 3 163
from ESSL Version 3 to Version 3

Release 1.1 162
from ESSL Version 3 to Version 3

Release 1.2 162
from ESSL Version 3 to Version 3

Release 2 162
from ESSL Version 3 to Version 3

Release 3 161
from LAPACK 165
from non-IBM libraries 165

migrating (continued)
from other IBM subroutine

libraries 165
future migration considerations 164
IBM EserverEserver pSeries and

RS/6000 processors
considerations 164

programs to ESSL 161
RS/6000 and IBM EserverEserver

pSeries processors
considerations 164

min notation and meaning xvii
minimum

absolute value 196
value 202

miscellaneous error messages,
interpreting 171

mod notation and meaning xvii
modification level of ESSL, getting 933
modifying

C++ programs, for using Parallel
ESSL 159

C programs, for using ESSL 158
Fortran programs, for using

ESSL 157
modulo notation xvii
multiplying

compute SAXPY or DAXPY N
times 218

general matrices, their transposes, or
their conjugate transposes 375

general matrices using Strassen’s
algorithm 384

notation xvii
sparse vector x by a scalar, add sparse

vector y, and store in vector y 278
vector x by a scalar, add to vector y,

and store in vector y 208
vector x by a scalar, add to vector y,

and store in vector z 265
vector x by a scalar and store in

vector x 244
vector x by a scalar and store in

vector y 262
vector x by vector y, and store in

vector z 258
multithreaded

definition 968
ESSL subroutines 23

N
name usage restrictions 26
names in ESSL with an underscore (_)

prefix, how to interpret xiii
names of

products and acronyms xiv
the eigensystem analysis

subroutines 679
the Fourier transform, convolution

and correlation, and
related-computation
subroutines 717

the interpolation subroutines 867
the linear algebra subprograms 187
the linear algebraic equations

subroutines 429

Index 983

names of (continued)
the matrix operations

subroutines 359
the numerical quadrature

subroutines 885
the random number generation

subroutines 911
the sorting and searching

subroutines 849
the utility subroutines 923

National Language Support 168
negative definite complex Hermitian

matrix
definition of 68

negative definite complex Hermitian
Toeplitz matrix

definition of 69
negative definite Hermitian matrix

storage layout 68
negative definite symmetric matrix

definition of 67
storage layout 67

negative definite symmetric Toeplitz
matrix

definition of 68
negative stride, for vectors 57
NLS, National Language Support 168
non-IBM library, migrating from 165
norm notation xvii
normally distributed random numbers,

generate 916
notations and conventions xiv
notes, conventions used in the subroutine

descriptions xx
number of subroutines in each area 4
numbers 20

accuracy of computations 42
accuracy of computations, for ESSL 6

numerical quadrature
accuracy considerations 885
performance considerations 885
programming considerations for

SUBF 886
usage considerations 885

numerical quadrature performed
on a function

using Gauss-Hermite
Quadrature 907

using Gauss-Laguerre
Quadrature 900

using Gauss-Legendre
Quadrature 892

using Gauss-Rational
Quadrature 903

using two-dimensional
Gauss-Legendre Quadrature 894

on a set of points 889
numerical quadrature subroutines

SGHMQ and DGHMQ 907
SGLGQ and DGLGQ 900
SGLNQ and DGLNQ 892
SGLNQ2 and DGLNQ2 894
SGRAQ and DGRAQ 903
SPTNQ and DPTNQ 889

O
one norm notation xvii
online documentation

online Guide and Reference
manual 975

required Hypertext Markup Language
products 8

option table, default values for ESSL
errors 48

order numbers of the publications 975
ordering IBM publications 975
output

accuracy on different processors 6
how errors affect output 44

output arguments, conventions used in
the subroutine descriptions xx

overflow, avoiding 228
overview

of eigensystem analysis 679
of ESSL 3
of Fourier transforms, convolutions

and correlations, and related
computations 717

of interpolation 867
of linear algebra subprograms 187
of linear algebraic equations 429
of matrix operations 359
of numerical quadrature 885
of random number generation 911
of sorting and searching 849
of the documentation 975
of utility subroutines 923

P
packed band storage mode 75
packed-Hermitian-Toeplitz storage

mode 70
packed-symmetric-Toeplitz storage

mode 69
parallel processing

introduction to 5
performance

achieving better performance in your
program 43

aspects of parallel processing on the
workstations 5

coding techniques that affect
performance 43

considerations for dense and banded
linear algebraic equations 432

considerations for eigensystem
analysis 679

considerations for Fourier transforms,
convolutions, and correlations 721

considerations for interpolation 867
considerations for linear algebra

subprograms 190
considerations for matrix

operations 361
considerations for numerical

quadrature 885
considerations for related

computations 725
considerations for sorting and

searching 849

performance (continued)
how the Fourier transforms achieve

high performance 723
information on ESSL run-time

performance 44
tradeoffs for convolution and

correlation subroutines 723
where to find information on 44

pi notation xvii
PL/I

publications 976
PL/I (Programming Language/I)

handling errors in your
program 130, 146

plane rotation
applying a 240
constructing a Givens 234

planning, publications for 975
planning your program 23
polynomial

evaluating 832
interpolating 869, 873

positive definite complex Hermitian
matrix

definition of 68
positive definite complex Hermitian

Toeplitz matrix
definition of 69

positive definite Hermitian matrix
storage layout 68

positive definite symmetric band matrix
definition of 81
storage layout 81

positive definite symmetric band matrix
subroutines, names of 429

positive definite symmetric matrix
definition of 67
storage layout 67

positive definite symmetric matrix
subroutines, names of 429

positive definite symmetric Toeplitz
matrix

definition of 68
positive definite symmetric tridiagonal

matrix 87
definition of 87
storage layout 88

positive stride, for vectors 56
precision, meaning of 41
precision, short and long 6
problems, handling 167
problems, IBM support for 167
processing your program

requirements for ESSL on the
workstations 7

steps involved in 157
using parallel subroutines on the

workstations 5
processor-independent formulas for

auxiliary storage, interpreting 31
product 208

matrix-matrix
complex Hermitian matrix 397
complex symmetric matrix 397
general matrices, their transposes,

or their conjugate
transposes 389

984 ESSL Version 3 Release 3 Guide and Reference

product (continued)
matrix-matrix (continued)

real symmetric matrix 397
triangular matrix 404

matrix-vector
complex Hermitian band

matrix 330
complex Hermitian matrix 302
general band matrix, its transpose,

or its conjugate transpose 324
general matrix, its transpose, or its

conjugate transpose 285
real symmetric band matrix 330
real symmetric matrix 302
sparse matrix 347
sparse matrix or its transpose 354
triangular band matrix, its

transpose, or its conjugate
transpose 341

triangular matrix, its transpose, or
its conjugate transpose 335

product names, acronyms for xiv
products, programming

migrating from LAPACK 165
migrating from other IBM 165
required by ESSL on the workstations,

programming 8
profile-in skyline storage mode 97
program

attention messages, overview 48
coding 105
computational errors 45
design 23
errors 44
handling errors in your C++

program 146
handling errors in your C

program 130
handling errors in your Fortran

program 113
input-argument errors, overview 44
interface for C++ programs 139
interface for C programs 123
interface for Fortran programs 105
migrated to ESSL 161
performance, achieving high 43
processing your program 157
resource errors, overview 47
setting up your data structures 53
types of data in your program 26
when coding large applications 50

program exceptions
description of ESSL 44

program exceptions, diagnosing 168
program number for ESSL 975
programming considerations for SUBF in

numerical quadrature 886
programming items, font for xiv
programming products

required by ESSL on the
workstations 8

programming publications 975, 976
PTF

getting the most recent level
applied 933

publications
list of ESSL 975

publications (continued)
math background 971
related 976

Q
QR decomposition with column

pivoting 674
QR factorization 667
quadratic interpolation 18, 841

R
random number generation

long period uniformly
distributed 919

normally distributed 916
uniformly distributed 913
usage considerations 911

random number generation subroutines
SNRAND and DNRAND 916
SURAND and DURAND 913
SURXOR and DURXOR 919

rank-2k update
complex Hermitian matrix 416
complex symmetric matrix 416
real symmetric matrix 416

rank-k update
complex Hermitian matrix 410
complex symmetric matrix 410
real symmetric matrix 410

rank-one update
complex Hermitian matrix 309
general matrix 295
real symmetric matrix 309

rank-two update
complex Hermitian matrix 316
real symmetric matrix 316

real and complex array elements 106
real data

conventions xiv, 26
real general matrix eigensystem analysis

subroutine 679
real symmetric matrix eigensystem

analysis subroutine 679
reciprocal of the condition number

general matrix 457, 499
positive definite real symmetric

matrix 478, 505
reference for ESSL, online 975
reference information

ESSL online information 975
math background texts and

reports 971
organization of 185
what is in each subroutine description

and the conventions used xix
related-computation subroutines

accuracy considerations 725
CWLEV and ZWLEV 844
performance considerations 725
SIZC and DIZC 835
SPOLY and DPOLY 832
SQINT and DQINT 841
STREC and DTREC 838
SWLEV and DWLEV 844

related publications 976
release of ESSL, getting 933
reporting problems to IBM 167
required publications 975
requirements

auxiliary working storage 30
for ESSL workstation product 7
software products on the

workstations 8
transforms in storage, lengths of 36
workstation hardware 7

resource error messages,
interpreting 170

restrictions, ESSL coding 26
results

accuracy on different processors 6
how accuracy is affected by the nature

of the computation 42
in C++ programs 139
in C programs 123
in Fortran programs 105
multiplication of NaN 42

results transposed and conjugate
transposed for matrix
multiplication 378, 387, 392

results transposed for matrix
addition 365

results transposed for matrix
subtraction 371

return code
in C++ programs 146
in C programs 130
in Fortran programs 113
using during diagnosis 169

rotation
applying a plane 240
constructing a Givens plane 234

routine names 26
row vector 53
run-time performance

optimizing in your program 43
run-time problems, diagnosing

attention error messages,
interpreting 171

computational errors 169
informational error messages,

interpreting 170
input-argument errors 169
miscellaneous error messages,

interpreting 171
resource error messages,

interpreting 170
running your program

C++ programs 159
C programs 158
Fortran programs 157

S
SACOR 822
SACORF 826
SASUM 205
SAXPY 208
SAXPYI 278
SBSRCH 859
scalar data

conventions xiv, 26

Index 985

scalar items, font for xiv
scale argument used for Fourier

transform subroutines 722
scaling, when to use 43
SCASUM 205
scatter vector elements 269
SCFT 727
SCFT2 763
SCFT3 783
SCNRM2 228
SCON 799
SCOND 805
SCONF 810
SCOPY 211
SCOR 799
SCORD 805
SCORF 810
SCOSF 749
SCOSFT, no documentation provided

for 717
SCRFT 742
SCRFT2 776
SCRFT3 793
SCSIN2 881
SCSINT 876
SDCON 818
SDCOR 818
SDOT 214
SDOTI 281
searching

binary 859
sequential 863

selecting an ESSL library 23
selecting an ESSL subroutine 23
sequences

conventions for xv
description of 99
storage layout 99

sequential search 863
service, IBM 167
setting up

AIX procedures 157
setting up your data 26
SGBF 533
SGBMV 324
SGBS 537
SGEADD 363
SGEEV 681
SGEF 438
SGEFCD 457
SGEGV 706
SGEICD 499
SGELLS 674
SGEMM 389
SGEMMS 384
SGEMTX 285
SGEMUL 375
SGEMV 285
SGEMX 285
SGER 295
SGES 441
SGESM 444
SGESUB 369
SGESVF 652
SGESVS 659
SGETMI 423
SGETMO 426

SGETRF 449
SGETRI 499
SGETRS 453
SGHMQ 907
SGLGQ 900
SGLNQ 892
SGLNQ2 894
SGRAQ 903
SGTF 546
SGTHR 272
SGTHRZ 275
SGTNP 551
SGTNPF 554
SGTNPS 557
SGTS 549
short precision

accuracy statement 6
meaning of 41

SIGN notation and meaning xvii
signal processing subroutines 718
simple formulas for auxiliary storage,

interpreting 31
sin notation xvii
sine transform 756
singular value decomposition for a

general matrix 652, 659
SIZC 835
size of array

required for a vector 55
skyline solvers

usage considerations 434
skyline storage mode for sparse matrices,

diagonal-out 95
skyline storage mode for sparse matrices,

profile-in 97
SL MATH (Subroutine

Library—Mathematics)
migrating from 165

SLSS (Subscription Library Services
System) 975

SMP
definition 969
ESSL Library, why use it 23
ESSL multithreaded subroutines 23
performance 6

SNAXPY 218
SNDOT 223
SNORM2 231
SNRAND 916
SNRM2 228
software products

required by ESSL on the
workstations 8

required by Hypertext Markup
Language 8

solving
general band matrix 537
general matrix or its transpose 441,

453
general skyline sparse matrix 580
general sparse matrix or its

transpose 576
general tridiagonal matrix 549, 551,

557
iterative linear system solver

general sparse matrix 614, 638,
645

solving (continued)
iterative linear system solver

(continued)
sparse negative definite symmetric

matrix 624, 631
sparse positive definite symmetric

matrix 624, 631
symmetric sparse matrix 614

multiple right-hand sides
general matrix, its transpose, or its

conjugate transpose 444, 453
positive definite complex

Hermitian matrix 473
positive definite real symmetric

matrix 473
triangular matrix 519

positive definite
real symmetric matrix 470
symmetric band matrix 543
symmetric tridiagonal matrix 562

symmetric skyline sparse matrix 597
triangular band matrix 564
triangular matrix 513

some eigenvalues and eigenvectors 699
sorting

elements of a sequence 851
index 853
stable sort 856

sorting and searching subroutines
accuracy considerations 849
IBSRCH, SBSRCH, and DBSRCH 859
ISORT, SSORT, and DSORT 851
ISORTS, SSORTS, and DSORTS 856
ISORTX, SSORTX, and DSORTX 853
ISSRCH, SSSRCH, and DSSRCH 863
performance considerations 849
usage considerations 849

sparse linear algebraic equation
subroutines 429

DGKFS 580
DGSF 570
DGSS 576
DSDCG 631
DSDGCG 645
DSKFS 597
DSMCG 624
DSMGCG 638
DSRIS 614

sparse matrix, definition and storage
modes 88

sparse matrix subroutines
direct solvers 433
iterative linear system solvers 435
performance and accuracy

considerations 433, 434, 435
skyline solvers 434

sparse matrix-vector linear algebra
subprograms

DSDMX 354
DSMMX 347
DSMTM 350

sparse vector, definition and storage
modes 58

sparse vector-scalar linear algebra
subprograms

SAXPYI, DAXPYI, CAXPYI, and
ZAXPYI 278

986 ESSL Version 3 Release 3 Guide and Reference

sparse vector-scalar linear algebra
subprograms (continued)

SDOTI, DDOTI, CDOTUI, ZDOTUI,
CDOTCI, and, ZDOTCI 281

SGTHR, DGTHR, CGTHR, and
ZGTHR 272

SGTHRZ, DGTHRZ, CGTHRZ, and
ZGTHRZ 275

SSCTR, DSCTR, CSCTR, and
ZSCTR 269

SPBCHF 540
SPBCHS 543
SPBF 540
SPBS 543
special usage

of matrix addition 365
of matrix multiplication 378, 387, 392
of matrix subtraction 371

spectral norm notation xvii
SPINT 869
SPOF 461
SPOFCD 478
SPOICD 505
SPOLY 832
SPOSM 473
SPOTRF 461
SPOTRI 505
SPOTRS 473
SPPF 461
SPPFCD 478
SPPICD 505
SPPS 470
SPTF 560
SPTNQ 889
SPTS 562
SQINT 841
square root notation xvii
SRCFT 735
SRCFT2 769
SRCFT3 788
SROT 240
SROTG 234
SSBMV 330
SSCAL 244
SSCTR 269
SSINF 756
SSLMX 302
SSLR1 309
SSLR2 316
SSORT 851
SSORTS 856
SSORTX 853
SSP (Scientific Subroutine Package)

migrating from 165
SSPEV 691
SSPMV 302
SSPR 309
SSPR2 316
SSPSV 699
SSSRCH 863
SSWAP 247
SSYGV 711
SSYMM 397
SSYMV 302
SSYR 309
SSYR2 316
SSYR2K 416

SSYRK 410
stable sort 856
STBMV 341
STBSV 564
stepping through storage, for

matrices 60
stepping through storage, for vectors 56
storage

array storage techniques overview 26
auxiliary working storage

requirements 30
compressed-diagonal storage mode for

sparse matrices 89
compressed-matrix storage mode for

sparse matrices 88
considerations when designing your

program 26
diagonal-out skyline storage mode for

sparse matrices 95
for matrices 60
for vectors 55
layout for a complex Hermitian band

matrix 81
layout for a complex Hermitian

matrix 67
layout for a general tridiagonal

matrix 86
layout for a negative definite

Hermitian matrix 68
layout for a negative definite

symmetric matrix 67
layout for a positive definite

Hermitian matrix 68
layout for a positive definite

symmetric matrix 67
layout for a positive definite

symmetric tridiagonal matrix 88
layout for a sequence 99, 100, 101
layout for a symmetric indefinite

matrix 67
layout for a symmetric tridiagonal

matrix 87
layout for a Toeplitz matrix 69, 70
layout for band matrices 75, 77
layout for positive definite symmetric

band matrices 81
layout for sparse matrices 88
layout for sparse vectors 58
layout for symmetric band

matrices 79
layout for symmetric matrices 63
layout for triangular band

matrices 83, 84, 85
layout for triangular matrices 71
list of subroutines using auxiliary

storage 29
list of subroutines using

transforms 36
of arrays in Fortran 106
profile-in skyline storage mode for

sparse matrices 97
storage-by-columns for sparse

matrices 93
storage-by-indices for sparse

matrices 92
storage-by-rows for sparse

matrices 93

storage (continued)
tradeoffs for input 43
transform length requirements 36

storage-by-columns for sparse
matrices 93

storage-by-indices for sparse matrices 92
storage-by-rows for sparse matrices 93
storage conversion subroutine

general skyline sparse matrix 948
sparse matrix 944
symmetric skyline sparse matrix 953

STPI 526
STPINT 873
STPMV 335
STPSV 513
STPTRI 526
Strassen’s algorithm, multiplying general

matrices 384
STREC 838
STRI 526
stride

defining vectors in arrays 56
how it is used in three

dimensions 102
negative 57
optimizing for your Fourier

transforms 722
positive 56
subroutine for optimizing Fourier

transforms 935
zero 57

STRIDE 935
STRMM 404
STRMV 335
STRSM 519
STRSV 513
STRTRI 526
structures, data (vectors and

matrices) 53
subject code for ESSL

documentation 975
subprogram

linear algebra 187
meaning of xiii, 187

subprogram, definition xiii
subroutine

calling sequence format for C++
programs 139

calling sequence format for C
programs 123

calling sequence format for Fortran
programs 105

choose of 23
conventions used in the description

of xix
overview of ESSL 4

subroutine, definition xiii
subroutines, ESSL

CAXPY 208
CAXPYI 278
CCOPY 211
CDOTC 214
CDOTCI 281
CDOTU 214
CDOTUI 281
CGBMV 324
CGEADD 363

Index 987

subroutines, ESSL (continued)
CGEEV 681
CGEF 438
CGEMM 389
CGEMMS 384
CGEMUL 375
CGEMV 285
CGERC 295
CGERU 295
CGES 441
CGESM 444
CGESUB 369
CGETMI 423
CGETMO 426
CGETRF 449
CGETRS 453
CGTHR 272
CGTHRZ 275
CGTNP 551
CGTNPF 554
CGTNPS 557
CHBMV 330
CHEMM 397
CHEMV 302
CHER 309
CHER2 316
CHER2K 416
CHERK 410
CHPEV 691
CHPMV 302
CHPR 309
CHPR2 316
CHPSV 699
CNORM2 231
CPOF 461
CPOSM 473
CPOTRF 461
CPOTRS 473
CROT 240
CROTG 234
CSCAL 244
CSCTR 269
CSROT 240
CSSCAL 244
CSWAP 247
CSYAX 262
CSYMM 397
CSYR2K 416
CSYRK 410
CTBMV 341
CTBSV 564
CTPMV 335
CTPSV 513
CTRMM 404
CTRMV 335
CTRSM 519
CTRSV 513
CVEA 250
CVEM 258
CVES 254
CWLEV 844
CYAX 262
CZAXPY 265
DASUM 205
DAXPY 208
DAXPYI 278
DBSRCH 859

subroutines, ESSL (continued)
DBSSV 484
DBSTRF 490
DBSTRS 495
DCFT 727
DCFT2 763
DCFT3 783
DCOPY 211
DCOSF 749
DCRFT 742
DCRFT2 776
DCRFT3 793
DCSIN2 881
DCSINT 876
DDCON 818
DDCOR 818
DDOT 214
DDOTI 281
DGBF 533
DGBMV 324
DGBS 537
DGEADD 363
DGEEV 681
DGEF 438
DGEFCD 457
DGEGV 706
DGEICD 499
DGELLS 674
DGELS 667
DGEMM 389
DGEMMS 384
DGEMTX 285
DGEMUL 375
DGEMV 285
DGEMX 285
DGEQRF 663
DGER 295
DGES 441
DGESM 444
DGESUB 369
DGESVF 652
DGESVS 659
DGETMI 423
DGETMO 426
DGETRF 449
DGETRI 499
DGETRS 453
DGHMQ 907
DGKFS 580
DGKTRN 948
DGLGQ 900
DGLNQ 892
DGLNQ2 894
DGRAQ 903
DGSF 570
DGSS 576
DGTF 546
DGTHR 272
DGTHRZ 275
DGTNP 551
DGTNPF 554
DGTNPS 557
DGTS 549
DIZC 835
DNAXPY 218
DNDOT 223
DNORM2 231

subroutines, ESSL (continued)
DNRAND 916
DNRM2 228
DPBCHF 540
DPBCHS 543
DPBF 540
DPBS 543
DPINT 869
DPOF 461
DPOFCD 478
DPOICD 505
DPOLY 832
DPOSM 473
DPOTRF 461
DPOTRI 505
DPOTRS 473
DPPF 461
DPPFCD 478
DPPICD 505
DPPS 470
DPTF 560
DPTNQ 889
DPTS 562
DQINT 841
DRCFT 735
DRCFT2 769
DRCFT3 788
DROT 240
DROTG 234
DSBMV 330
DSCAL 244
DSCTR 269
DSDCG 631
DSDGCG 645
DSDMX 354
DSINF 756
DSKFS 597
DSKTRN 953
DSLMX 302
DSLR1 309
DSLR2 316
DSMCG 624
DSMGCG 638
DSMMX 347
DSMTM 350
DSORT 851
DSORTS 856
DSORTX 853
DSPEV 691
DSPMV 302
DSPR 309
DSPR2 316
DSPSV 699
DSRIS 614
DSRSM 944
DSSRCH 863
DSWAP 247
DSYGV 711
DSYMM 397
DSYMV 302
DSYR 309
DSYR2 316
DSYR2K 416
DSYRK 410
DTBMV 341
DTBSV 564
DTPI 526

988 ESSL Version 3 Release 3 Guide and Reference

subroutines, ESSL (continued)
DTPINT 873
DTPMV 335
DTPSV 513
DTPTRI 526
DTREC 838
DTRI 526
DTRMM 404
DTRMV 335
DTRSM 519
DTRSV 513
DTRTRI 526
DURAND 913
DURXOR 919
DVEA 250
DVEM 258
DVES 254
DWLEV 844
DYAX 262
DZASUM 205
DZAXPY 265
DZNRM2 228
EINFO 926
ERRSAV 929
ERRSET 930
ERRSTR 932
IBSRCH 859
ICAMAX 193
IDAMAX 193
IDAMIN 196
IDMAX 199
IDMIN 202
IESSL 933
ISAMAX 193
ISAMIN 196
ISMAX 199
ISMIN 202
ISORT 851
ISORTS 856
ISORTX 853
ISSRCH 863
IZAMAX 193
SACOR 822
SACORF 826
SASUM 205
SAXPY 208
SAXPYI 278
SBSRCH 859
SCASUM 205
SCFT 727
SCFT2 763
SCFT3 783
SCNRM2 228
SCON 799
SCOND 805
SCONF 810
SCOPY 211
SCOR 799
SCORD 805
SCORF 810
SCOSF 749
SCRFT 742
SCRFT2 776
SCRFT3 793
SCSIN2 881
SCSINT 876
SDCON 818

subroutines, ESSL (continued)
SDCOR 818
SDOT 214
SDOTI 281
SGBF 533
SGBMV 324
SGBS 537
SGEADD 363
SGEEV 681
SGEF 438
SGEFCD 457
SGEGV 706
SGEICD 499
SGELLS 674
SGEMM 389
SGEMMS 384
SGEMTX 285
SGEMUL 375
SGEMV 285
SGEMX 285
SGER 295
SGES 441
SGESM 444
SGESUB 369
SGESVF 652
SGESVS 659
SGETMI 423
SGETMO 426
SGETRF 449
SGETRI 499
SGETRS 453
SGHMQ 907
SGLGQ 900
SGLNQ 892
SGLNQ2 894
SGRAQ 903
SGTF 546
SGTHR 272
SGTHRZ 275
SGTNP 551
SGTNPF 554
SGTNPS 557
SGTS 549
SIZC 835
SNAXPY 218
SNDOT 223
SNORM2 231
SNRAND 916
SNRM2 228
SPBCHF 540
SPBCHS 543
SPBF 540
SPBS 543
SPINT 869
SPOF 461
SPOFCD 478
SPOICD 505
SPOLY 832
SPOSM 473
SPOTRF 461
SPOTRI 505
SPOTRS 473
SPPF 461
SPPFCD 478
SPPICD 505
SPPS 470
SPTF 560

subroutines, ESSL (continued)
SPTNQ 889
SPTS 562
SQINT 841
SRCFT 735
SRCFT2 769
SRCFT3 788
SROT 240
SROTG 234
SSBMV 330
SSCAL 244
SSCTR 269
SSINF 756
SSLMX 302
SSLR1 309
SSLR2 316
SSORT 851
SSORTS 856
SSORTX 853
SSPEV 691
SSPMV 302
SSPR 309
SSPR2 316
SSPSV 699
SSSRCH 863
SSWAP 247
SSYGV 711
SSYMM 397
SSYMV 302
SSYR 309
SSYR2 316
SSYR2K 416
SSYRK 410
STBMV 341
STBSV 564
STPI 526
STPINT 873
STPMV 335
STPSV 513
STPTRI 526
STREC 838
STRI 526
STRIDE 935
STRMM 404
STRMV 335
STRSM 519
STRSV 513
STRTRI 526
SURAND 913
SURXOR 919
SVEA 250
SVEM 258
SVES 254
SWLEV 844
SYAX 262
SZAXPY 265
ZAXPY 208
ZAXPYI 278
ZCOPY 211
ZDOTC 214
ZDOTCI 281
ZDOTU 214
ZDOTUI 281
ZDROT 240
ZDSCAL 244
ZDYAX 262
ZGBMV 324

Index 989

subroutines, ESSL (continued)
ZGEADD 363
ZGEEV 681
ZGEF 438
ZGEMM 389
ZGEMMS 384
ZGEMUL 375
ZGEMV 285
ZGERC 295
ZGERU 295
ZGES 441
ZGESM 444
ZGESUB 369
ZGETMI 423
ZGETMO 426
ZGETRF 449
ZGETRS 453
ZGTHR 272
ZGTHRZ 275
ZGTNP 551
ZGTNPF 554
ZGTNPS 557
ZHBMV 330
ZHEMM 397
ZHEMV 302
ZHER 309
ZHER2 316
ZHER2K 416
ZHERK 410
ZHPEV 691
ZHPMV 302
ZHPR 309
ZHPR2 316
ZHPSV 699
ZNORM2 231
ZPOF 461
ZPOSM 473
ZPOTRF 461
ZPOTRS 473
ZROT 240
ZROTG 234
ZSCAL 244
ZSCTR 269
ZSWAP 247
ZSYMM 397
ZSYR2K 416
ZSYRK 410
ZTBMV 341
ZTBSV 564
ZTPMV 335
ZTPSV 513
ZTRMM 404
ZTRMV 335
ZTRSM 519
ZTRSV 513
ZVEA 250
ZVEM 258
ZVES 254
ZWLEV 844
ZYAX 262
ZZAXPY 265

subscript notation, what it means xvii
subtracting

general matrices or their
transposes 369

vector y from vector x and store in
vector z 254

sum, calculating
absolute values 205

summation notation xvii
superscript notation, what it means xvii
support, IBM 167
SURAND 913
SURXOR 919
SVEA 250
SVEM 258
SVES 254
swap elements of two vectors 247
SWLEV 844
SYAX 262
symbols, special usage of xvii
symmetric band matrix

definition of 79
storage layout 79

symmetric indefinite matrix
definition of 67
storage layout 67
symmetric indefinite matrix 67

real symmetric indefinite
matrix 484

symmetric matrix
definition of 62
storage layout 63

symmetric tridiagonal matrix 87
definition of 87
storage layout 87

symmetric-tridiagonal storage mode 87
symptoms, identifying problem 168
syntax, conventions used in the

subroutine descriptions xix
syntax rules for call statements and

data 28
SZAXPY 265

T
table, default values for ESSL error

option 48
termination, program

attention messages 48
computational errors 45
input-argument errors 44
resource errors 47

terminology, names of products xiv
terminology in the Glossary 967
terminology used for Fourier transforms,

convolutions, and correlations 718
textbooks cited 971
thread-safe

definition 969
ESSL Library, why use it 23

three-dimensional data structures, how
stride is used for 102

time-varying recursive filter 18, 838
times notation, multiply xvii
timings, achieving high performance in

your program 43
Toeplitz matrix 68

definition of 68, 69
storage layout 69, 70

traceback map, using during
diagnosis 169

trademarks 964
transform lengths, calculating 36

transpose
conjugate, of a matrix 60
conjugate, of a vector 54
notation xvii
of a matrix 60
of a matrix inverse notation xvii
of a vector 54, 55
of a vector or matrix notation xvii
of matrix operation results for

add 365
of matrix operation results for

multiply 378, 387, 392
of matrix operation results for

subtract 371
transposing

general matrix (In-Place) 423
general matrix (Out-of-Place) 426
sparse matrix 350

triangular band matrices
storage layout 83

triangular band matrices, upper and
lower

definition of 82
triangular matrices

storage layout 71
triangular matrices, upper and lower

definition of 70
tridiagonal matrix

definition of 86
storage layout 86

tridiagonal storage mode 86
truncation

how truncation affects output 42
type font usage xiv

U
underflow

avoiding underflow 228
why mask it 42

uniformly distributed random numbers,
generate 913, 919

upper-band-packed storage mode 79
upper band width 73
upper-packed storage mode 63, 64
upper-storage-by-rows for symmetric

sparse matrices 93
upper storage mode 63, 66
upper-triangular-band-packed storage

mode 83, 84
upper-triangular-packed storage

mode 71
upper-triangular storage mode 71, 72
usability of subroutines 3
usability of the ESSL subroutines 3
usage, special

conventions used in the subroutine
description xx

for matrix addition 365
for matrix multiplication 378, 387,

392
for matrix subtraction 371

usage considerations
direct sparse matrix solvers 433
for Fourier transforms, convolutions,

and correlations 718
for interpolation 867

990 ESSL Version 3 Release 3 Guide and Reference

usage considerations (continued)
for linear algebra subprograms 190
for linear algebraic equations 432
for matrix operations 360
for numerical quadrature 885
for random number generation 911
for sorting and searching 849
for utility subroutines 923
sparse matrix subroutines (iterative

linear system solvers) 435
sparse matrix subroutines (skyline

solvers) 434
user applications 4
using this book xi, xii
utility subroutines

DGKTRN 948
DSKTRN 953
DSRSM 944
EINFO 926
ERRSAV 929
ERRSET 930
ERRSTR 932
IESSL 933
STRIDE 935
usage considerations 923

V
vector

compressed vector 58
conventions for xv
description of 53
font for xiv
full vector 58
number of array elements needed

for 55
sparse vector 58
storage of 55
stride for 56

vector-scalar linear algebra subprograms
ISAMAX, ICAMAX, IDAMAX, and

IZAMAX 193
ISAMIN and IDAMIN 196
ISMAX and IDMAX 199
ISMIN and IDMIN 202
SASUM, DASUM, SCASUM, and

DZASUM 205
SAXPY, DAXPY, CAXPY, and

ZAXPY 208
SCOPY, DCOPY, CCOPY, and

ZCOPY 211
SDOT, DDOT, CDOTU, ZDOTU,

CDOTC, and ZDOTC 214
SNAXPY and DNAXPY 218
SNDOT and DNDOT 223
SNORM2, DNORM2, CNORM2, and

ZNORM2 231
SNRM2, DNRM2, SCNRM2, and

DZNRM2 228
SROT, DROT, CROT, ZROT, CSROT,

and ZDROT 240
SROTG, DROTG, CROTG, and

ZROTG 234
SSCAL, DSCAL, CSCAL, ZSCAL,

CSSCAL, and ZDSCAL 244
SSWAP, DSWAP, CSWAP, and

ZSWAP 247

vector-scalar linear algebra subprograms
(continued)

SVEA, DVEA, CVEA, and ZVEA 250
SVEM, DVEM, CVEM, and

ZVEM 258
SVES, DVES, CVES, and ZVES 254
SYAX, DYAX, CYAX, ZYAX, CSYAX,

and ZDYAX 262
SZAXPY, DZAXPY, CZAXPY, and

ZZAXPY 265
version of ESSL, getting 933
versions of subroutines 4

W
Wiener-Levinson filter coefficients 844
Wiener-Levinson filter coefficients

subroutine 18
words in the Glossary 967
working auxiliary storage, list of

subroutines using 29
working storage for band matrix 75
workstations

migrating between IBM
EserverEserver pSeries and
RS/6000 processors 164

required for ESSL 7

Z
ZAXPY 208
ZAXPYI 278
ZCOPY 211
ZDOTC 214
ZDOTCI 281
ZDOTU 214
ZDOTUI 281
ZDROT 240
ZDSCAL 244
ZDYAX 262
zero stride, for vectors 57
ZGBMV 324
ZGEADD 363
ZGEEV 681
ZGEF 438
ZGEMM 389
ZGEMMS 384
ZGEMUL 375
ZGEMV 285
ZGERC 295
ZGERU 295
ZGES 441
ZGESM 444
ZGESUB 369
ZGETMI 423
ZGETMO 426
ZGETRF 449
ZGETRS 453
ZGTHR 272
ZGTHRZ 275
ZGTNP 551
ZGTNPF 554
ZGTNPS 557
ZHBMV 330
ZHEMM 397
ZHEMV 302

ZHER 309
ZHER2 316
ZHER2K 416
ZHERK 410
ZHPEV 691
ZHPMV 302
ZHPR 309
ZHPR2 316
ZHPSV 699
ZNORM2 231
ZPOF 461
ZPOSM 473
ZPOTRF 461
ZPOTRS 473
ZROT 240
ZROTG 234
ZSCAL 244
ZSCTR 269
ZSWAP 247
ZSYMM 397
ZSYR2K 416
ZSYRK 410
ZTBMV 341
ZTBSV 564
ZTPMV 335
ZTPSV 513
ZTRMM 404
ZTRMV 335
ZTRSM 519
ZTRSV 513
ZVEA 250
ZVEM 258
ZVES 254
ZWLEV 844
ZYAX 262
ZZAXPY 265

Index 991

992 ESSL Version 3 Release 3 Guide and Reference

IBMR

Program Number: 5765-C42

SA22-7272-04

	Contents
	About This Book
	How to Use This Book
	How to Find a Subroutine Description
	Where to Find Related Publications
	How to Look Up a Bibliography Reference
	Special Terms
	Short and Long Precision
	Subroutines and Subprograms

	How to Interpret the Subroutine Names with a Prefix Underscore
	Abbreviated Names
	Fonts
	Special Notations and Conventions
	Scalar Data
	Vectors
	Matrices
	Sequences
	One-Dimensional Sequences
	Two-Dimensional Sequences
	Three-Dimensional Sequences

	Arrays
	One-Dimensional Arrays
	Two-Dimensional Arrays
	Three-Dimensional Arrays

	Special Characters, Symbols, Expressions, and Abbreviations
	How to Interpret the Subroutine Descriptions
	Description
	Syntax
	On Entry
	On Return
	Notes
	Function
	Special Usage
	Error Conditions
	Examples

	What's New for ESSL for AIX
	What's New for ESSL Version 3 Release 3
	Changes for ESSL Version 3 Release 2
	Changes for ESSL Version 3 Release 1.2
	Changes for ESSL Version 3 Release 1.1
	Changes for ESSL Version 3
	Future Migration

	In Brief—What's Provided in ESSL for AIX
	Part 1. Guide Information
	Chapter 1. Introduction and Requirements
	Overview of ESSL
	Performance and Functional Capability
	Usability
	The Variety of Mathematical Functions
	Areas of Application
	What ESSL Provides

	ESSL—Processing Capabilities
	Accuracy of the Computations
	High Performance of ESSL
	The Fortran Language Interface to the Subroutines

	Software and Hardware Products That Can Be Used with ESSL
	For ESSL—Hardware
	ESSL—Operating Systems
	ESSL—Software Products
	Installation and Customization Products
	Software Products for Displaying ESSL Online Information

	ESSL Internet Resources
	Obtaining Documentation
	Accessing ESSL's Product Home Pages

	Getting on the ESSL Mailing List
	List of ESSL Subroutines
	Linear Algebra Subprograms
	Vector-Scalar Linear Algebra Subprograms
	Sparse Vector-Scalar Linear Algebra Subprograms
	Matrix-Vector Linear Algebra Subprograms
	Sparse Matrix-Vector Linear Algebra Subprograms

	Matrix Operations
	Linear Algebraic Equations
	Dense Linear Algebraic Equations
	Banded Linear Algebraic Equations
	Sparse Linear Algebraic Equations
	Linear Least Squares

	Eigensystem Analysis
	Fourier Transforms, Convolutions and Correlations, and Related Computations
	Fourier Transforms
	Convolutions and Correlations
	Related Computations

	Sorting and Searching
	Interpolation
	Numerical Quadrature
	Random Number Generation
	Utilities

	Chapter 2. Planning Your Program
	Selecting an ESSL Subroutine
	Which ESSL Library Do You Want to Use?
	What Type of Data Are You Processing in Your Program?
	How Is Your Data Structured? And What Storage Technique Are You Using?
	What about Performance and Accuracy?

	Avoiding Conflicts with Internal ESSL Routine Names That are Exported
	Setting Up Your Data
	How Do You Set Up Your Scalar Data?
	Internal Representation

	How Do You Set Up Your Arrays?
	How Should Your Array Data Be Aligned?
	What Storage Mode Should You Use for Your Data?
	How Do You Convert from One Storage Mode to Another?
	Conversion Subroutines
	Sample Programs

	Setting Up Your ESSL Calling Sequences
	What Is an Input-Output Argument?
	What Are the General Rules to Follow when Specifying Data for the Arguments?
	What Happens When a Value of 0 Is Specified for N?
	How Do You Specify the Beginning of the Data Structure in the ESSL Calling Sequence?

	Using Auxiliary Storage in ESSL
	Dynamic Allocation of Auxiliary Storage
	Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used
	Who Do You Want to Calculate the Size? You or ESSL?
	How Do You Calculate the Size Using the Formulas?
	How Do You Get ESSL to Calculate the Size Using ESSL Error Handling?
	Here Are the Two Ways You Can Do It
	The First Way
	The Second Way
	Here Is an Example of What Happens When You Use These Two Techniques
	Here Is How You Code It in Your Program

	Providing a Correct Transform Length to ESSL
	What ESSL Subroutines Require Transform Lengths?
	Who Do You Want to Calculate the Length? You or ESSL?
	How Do You Calculate the Length Using the Table or Formula?
	How Do You Get ESSL to Calculate the Length Using ESSL Error Handling?
	Here Are the Two Ways You Can Do It
	The First Way
	The Second Way
	Here Is an Example of What Happens When You Use These Two Techniques
	Here Is How You Code It in Your Program

	Getting the Best Accuracy
	What Precisions Do ESSL Subroutines Operate On?
	How does the Nature of the ESSL Computation Affect Accuracy?
	What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?
	How is Underflow Handled?
	Where Can You Find More Information on Accuracy?

	Getting the Best Performance
	What General Coding Techniques Can You Use to Improve Performance?
	Where Can You Find More Information on Performance?

	Dealing with Errors when Using ESSL
	What Can You Do about Program Exceptions?
	What Can You Do about ESSL Input-Argument Errors?
	All Input-Argument Errors
	Recoverable Errors 2015, 2030 and 2200 Can Return Updated Values in the NAUX, N and NSINFO Arguments

	What Can You Do about ESSL Computational Errors?
	All Computational Errors
	Recoverable Computational Errors Can Return Values Through EINFO

	What Can You Do about ESSL Resource Errors?
	All Resource Errors

	What Can You Do about ESSL Attention Messages?
	All Attention Messages

	How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?
	What Values Are Set in the ESSL Error Option Table?
	How Can You Change the Values in the Error Option Table?
	When Do You Change the Values in the Error Option Table?
	How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?

	How does Error Handling Work in a Threaded Environment?
	Where Can You Find More Information on Errors?

	Chapter 3. Setting Up Your Data Structures
	Concepts
	Vectors
	Transpose of a Vector
	Conjugate Transpose of a Vector
	In Storage
	How Stride Is Used for Vectors
	Positive Stride
	Zero Stride
	Negative Stride

	Sparse Vector
	In Storage

	Matrices
	Transpose of a Matrix
	Conjugate Transpose of a Matrix
	In Storage
	How Leading Dimension Is Used for Matrices
	Symmetric Matrix
	In Storage

	Positive Definite or Negative Definite Symmetric Matrix
	In Storage

	Symmetric Indefinite Matrix
	In Storage

	Complex Hermitian Matrix
	In Storage

	Positive Definite or Negative Definite Complex Hermitian Matrix
	In Storage

	Positive Definite or Negative Definite Symmetric Toeplitz Matrix
	In Storage

	Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix
	In Storage

	Triangular Matrix
	In Storage

	General Band Matrix
	In Storage

	Symmetric Band Matrix
	In Storage

	Positive Definite Symmetric Band Matrix
	In Storage

	Complex Hermitian Band Matrix
	In Storage

	Triangular Band Matrix
	In Storage

	General Tridiagonal Matrix
	In Storage

	Symmetric Tridiagonal Matrix
	In Storage

	Positive Definite Symmetric Tridiagonal Matrix
	In Storage

	Sparse Matrix
	In Storage

	Sequences
	Real and Complex Elements in Storage
	One-Dimensional Sequences
	In Storage

	Two-Dimensional Sequences
	In Storage

	Three-Dimensional Sequences
	In Storage

	How Stride Is Used for Three-Dimensional Sequences

	Chapter 4. Coding Your Program
	Fortran Programs
	Calling ESSL Subroutines and Functions in Fortran
	Setting Up a User-Supplied Subroutine for ESSL in Fortran
	Setting Up Scalar Data in Fortran
	Setting Up Arrays in Fortran
	Real and Complex Array Elements
	One-Dimensional Array
	Two-Dimensional Array
	Three-Dimensional Array

	Creating Multiple Threads and Calling ESSL from Your Fortran Program
	Handling Errors in Your Fortran Program
	Input-Argument Errors in Fortran
	Example
	Computational Errors in Fortran
	Example 1
	Example 2
	Example 3

	Example of Handling Errors in a Multithreaded Application Program

	C Programs
	Calling ESSL Subroutines and Functions in C
	Before You Call ESSL
	Coding the Calling Sequences

	Passing Arguments in C
	About the Syntax Shown in This Book
	No Optional Arguments
	Arguments That Must Be Passed by Value
	Arguments That Must Be Passed by Reference

	Setting Up a User-Supplied Subroutine for ESSL in C
	Setting Up Scalar Data in C
	Setting Up Complex Data Types in C
	Complex Data

	Using Logical Data in C
	Setting Up Arrays in C
	Creating Multiple Threads and Calling ESSL from Your C Program
	Handling Errors in Your C Program
	Input-Argument Errors in C
	Example 1
	Computational Errors in C
	Example 1

	C++ Programs
	Calling ESSL Subroutines and Functions in C++
	Before You Call ESSL
	Coding the Calling Sequences

	Passing Arguments in C++
	About the Syntax Shown in This Book
	No Optional Arguments
	Arguments That Must Be Passed by Value
	Arguments That Must Be Passed by Reference

	Setting Up a User-Supplied Subroutine for ESSL in C++
	Setting Up Scalar Data in C++
	Selecting the <complex> or <complex.h> Header File
	Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++
	Short-Precision Complex Data

	Using Logical Data in C++
	Setting Up Arrays in C++
	Creating Multiple Threads and Calling ESSL from Your C++ Program
	Handling Errors in Your C++ Program
	Input-Argument Errors in C++
	Example
	Computational Errors in C++
	Example

	Chapter 5. Processing Your Program
	Dynamic Linking Versus Static Linking
	Fortran Program Procedures
	C Program Procedures
	C++ Program Procedures

	Chapter 6. Migrating Your Programs
	Migrating ESSL Version 3 Programs to Version 3 Release 3
	ESSL Subroutines

	Migrating ESSL Version 3 Programs to Version 3 Release 2
	ESSL Subroutines

	Migrating ESSL Version 3 Programs to Version 3 Release 1.2
	ESSL Subroutines

	Migrating ESSL Version 3 Programs to Version 3 Release 1.1
	ESSL Subroutines

	Migrating ESSL Version 2 Programs to Version 3
	ESSL Subroutines
	ESSL Messages

	Planning for Future Migration
	Migrating between IBM Eserver pSeries and RS/6000 Processors
	Auxiliary Storage
	Bitwise-Identical Results

	Migrating from Other Libraries to ESSL
	Migrating from ESSL/370
	Migrating from Another IBM Subroutine Library
	Migrating from LAPACK
	Migrating from a Non-IBM Subroutine Library

	Chapter 7. Handling Problems
	Where to Find More Information About Errors
	Getting Help from IBM Support
	National Language Support
	Dealing with Errors
	Program Exceptions
	ESSL Input-Argument Error Messages
	ESSL Computational Error Messages
	ESSL Resource Error Messages
	ESSL Informational and Attention Messages
	Informational Messages
	ESSL Attention Messages

	Miscellaneous Error Messages

	Messages
	Message Conventions
	About Upper- and Lowercase
	Message Format

	Input-Argument Error Messages(2001-2099)
	Computational Error Messages(2100-2199)
	Input-Argument Error Messages(2200-2299)
	Resource Error Messages(2400-2499)
	Informational and Attention Error Messages(2600-2699)
	Miscellaneous Error Messages(2700-2799)

	Part 2. Reference Information
	Chapter 8. Linear Algebra Subprograms
	Overview of the Linear Algebra Subprograms
	Vector-Scalar Linear Algebra Subprograms
	Sparse Vector-Scalar Linear Algebra Subprograms
	Matrix-Vector Linear Algebra Subprograms
	Sparse Matrix-Vector Linear Algebra Subprograms

	Use Considerations
	Performance and Accuracy Considerations
	Vector-Scalar Subprograms
	ISAMAX, IDAMAX, ICAMAX, and IZAMAX—Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude
	ISAMIN and IDAMIN—Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value
	ISMAX and IDMAX—Position of the First or Last Occurrence of the Vector Element Having the Maximum Value
	ISMIN and IDMIN—Position of the First or Last Occurrence of the Vector Element Having Minimum Value
	SASUM, DASUM, SCASUM, and DZASUM—Sum of the Magnitudes of the Elements in a Vector
	SAXPY, DAXPY, CAXPY, and ZAXPY—Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y
	SCOPY, DCOPY, CCOPY, and ZCOPY—Copy a Vector
	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC—Dot Product of Two Vectors
	SNAXPY and DNAXPY—Compute SAXPY or DAXPY N Times
	SNDOT and DNDOT—Compute Special Dot Products N Times
	SNRM2, DNRM2, SCNRM2, and DZNRM2—Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow
	SNORM2, DNORM2, CNORM2, and ZNORM2—Euclidean Length of a Vector with No Scaling of Input
	SROTG, DROTG, CROTG, and ZROTG—Construct a Givens Plane Rotation
	SROT, DROT, CROT, ZROT, CSROT, and ZDROT—Apply a Plane Rotation
	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL—Multiply a Vector X by a Scalar and Store in the Vector X
	SSWAP, DSWAP, CSWAP, and ZSWAP—Interchange the Elements of Two Vectors
	SVEA, DVEA, CVEA, and ZVEA—Add a Vector X to a Vector Y and Store in a Vector Z
	SVES, DVES, CVES, and ZVES—Subtract a Vector Y from a Vector X and Store in a Vector Z
	SVEM, DVEM, CVEM, and ZVEM—Multiply a Vector X by a Vector Y and Store in a Vector Z
	SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX—Multiply a Vector X by a Scalar and Store in a Vector Y
	SZAXPY, DZAXPY, CZAXPY, and ZZAXPY—Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z
	Sparse Vector-Scalar Subprograms
	SSCTR, DSCTR, CSCTR, ZSCTR—Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode
	SGTHR, DGTHR, CGTHR, and ZGTHR—Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in Compressed-Vector Storage Mode
	SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ—Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y
	SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, and Store in the Vector Y
	SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI—Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y in Full-Vector Storage Mode
	Matrix-Vector Subprograms
	SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX—Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose
	SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC—Rank-One Update of a General Matrix
	SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX—Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix
	SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 —Rank-One Update of a Real Symmetric or Complex Hermitian Matrix
	SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2—Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix
	SGBMV, DGBMV, CGBMV, and ZGBMV—Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose
	SSBMV, DSBMV, CHBMV, and ZHBMV—Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix
	STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV—Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose
	STBMV, DTBMV, CTBMV, and ZTBMV—Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose
	Sparse Matrix-Vector Subprograms
	DSMMX—Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode
	DSMTM—Transpose a Sparse Matrix in Compressed-Matrix Storage Mode
	DSDMX—Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode

	Chapter 9. Matrix Operations
	Overview of the Matrix Operation Subroutines
	Use Considerations
	Specifying Normal, Transposed, or Conjugate Transposed Input Matrices
	Transposing or Conjugate Transposing:
	On Input
	On Output

	Performance and Accuracy Considerations
	In General
	For Large Matrices
	For Combined Operations

	Matrix Operation Subroutines
	SGEADD, DGEADD, CGEADD, and ZGEADD—Matrix Addition for General Matrices or Their Transposes
	SGESUB, DGESUB, CGESUB, and ZGESUB—Matrix Subtraction for General Matrices or Their Transposes
	SGEMUL, DGEMUL, CGEMUL, and ZGEMUL—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
	SGEMMS, DGEMMS, CGEMMS, and ZGEMMS—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's Algorithm
	SGEMM, DGEMM, CGEMM, and ZGEMM—Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes
	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM—Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian
	STRMM, DTRMM, CTRMM, and ZTRMM—Triangular Matrix-Matrix Product
	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK—Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix
	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K—Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix
	SGETMI, DGETMI, CGETMI, and ZGETMI—General Matrix Transpose (In-Place)
	SGETMO, DGETMO, CGETMO, and ZGETMO—General Matrix Transpose (Out-of-Place)

	Chapter 10. Linear Algebraic Equations
	Overview of the Linear Algebraic Equation Subroutines
	Dense Linear Algebraic Equation Subroutines
	Banded Linear Algebraic Equation Subroutines
	Sparse Linear Algebraic Equation Subroutines
	Linear Least Squares Subroutines

	Dense and Banded Linear Algebraic Equation Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Sparse Matrix Direct Solver Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Sparse Matrix Skyline Solver Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Sparse Matrix Iterative Solver Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Linear Least Squares Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Dense Linear Algebraic Equation Subroutines
	SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization
	SGES, DGES, CGES, and ZGES—General Matrix, Its Transpose, or Its Conjugate Transpose Solve
	SGESM, DGESM, CGESM, and ZGESM—General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve
	SGETRF, DGETRF, CGETRF and ZGETRF—General Matrix Factorization
	SGETRS, DGETRS, CGETRS, and ZGETRS—General Matrix Multiple Right-Hand Side Solve
	SGEFCD and DGEFCD—General Matrix Factorization, Condition Number Reciprocal, and Determinant
	SPPF, DPPF, SPOF, DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF, and ZPOTRF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization
	SPPS and DPPS—Positive Definite Real Symmetric Matrix Solve
	SPOSM, DPOSM, CPOSM, ZPOSM, SPOTRS, DPOTRS, CPOTRS, and ZPOTRS—Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve
	SPPFCD, DPPFCD, SPOFCD, and DPOFCD—Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and Determinant
	DBSSV—Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve
	DBSTRF—Symmetric Indefinite Matrix Factorization
	DBSTRS—Symmetric Indefinite Matrix Multiple Right-Hand Side Solve
	SGEICD, DGEICD, SGETRI and DGETRI—General Matrix Inverse
	SPPICD, DPPICD, SPOICD, DPOICD, SPOTRI and DPOTRI—Positive Definite Real Symmetric Matrix Inverse
	STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV—Solution of a Triangular System of Equations with a Single Right-Hand Side
	STRSM, DTRSM, CTRSM, and ZTRSM—Solution of Triangular Systems of Equations with Multiple Right-Hand Sides
	STRI, DTRI, STPI, DTPI, STRTRI, DTRTRI, STPTRI, and DTPTRI—Triangular Matrix Inverse
	Banded Linear Algebraic Equation Subroutines
	SGBF and DGBF—General Band Matrix Factorization
	SGBS and DGBS—General Band Matrix Solve
	SPBF, DPBF, SPBCHF, and DPBCHF—Positive Definite Symmetric Band Matrix Factorization
	SPBS, DPBS, SPBCHS, and DPBCHS—Positive Definite Symmetric Band Matrix Solve
	SGTF and DGTF—General Tridiagonal Matrix Factorization
	SGTS and DGTS—General Tridiagonal Matrix Solve
	SGTNP, DGTNP, CGTNP, and ZGTNP—General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting
	SGTNPF, DGTNPF, CGTNPF, and ZGTNPF—General Tridiagonal Matrix Factorization with No Pivoting
	SGTNPS, DGTNPS, CGTNPS, and ZGTNPS—General Tridiagonal Matrix Solve with No Pivoting
	SPTF and DPTF—Positive Definite Symmetric Tridiagonal Matrix Factorization
	SPTS and DPTS—Positive Definite Symmetric Tridiagonal Matrix Solve
	STBSV, DTBSV, CTBSV, and ZTBSV—Triangular Band Equation Solve
	Sparse Linear Algebraic Equation Subroutines
	DGSF—General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns
	DGSS—General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns
	DGKFS—General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode
	DSKFS—Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode
	DSRIS—Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows
	DSMCG—Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode
	DSDCG—Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode
	DSMGCG—General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode
	DSDGCG—General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode
	Linear Least Squares Subroutines
	SGESVF and DGESVF—Singular Value Decomposition for a General Matrix
	SGESVS and DGESVS—Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition
	DGEQRF—General Matrix QR Factorization
	DGELS—Linear Least Squares Solution for a General Matrix
	SGELLS and DGELLS—Linear Least Squares Solution for a General Matrix with Column Pivoting

	Chapter 11. Eigensystem Analysis
	Overview of the Eigensystem Analysis Subroutines
	Performance and Accuracy Considerations
	Eigensystem Analysis Subroutines
	SGEEV, DGEEV, CGEEV, and ZGEEV—Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix
	SSPEV, DSPEV, CHPEV, and ZHPEV—Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
	SSPSV, DSPSV, CHPSV, and ZHPSV—Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
	SGEGV and DGEGV—Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, Az=wBz, where A and B Are Real General Matrices
	SSYGV and DSYGV—Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric and B Is Real Symmetric Positive Definite

	Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations
	Overview of the Signal Processing Subroutines
	Fourier Transforms Subroutines
	Convolution and Correlation Subroutines
	Related-Computation Subroutines

	Fourier Transforms, Convolutions, and Correlations Considerations
	Use Considerations
	Understanding the Terminology and Conventions Used for Your Array Data
	Concerns about Lengths of Transforms
	Determining an Acceptable Length of a Transform
	Acceptable Lengths for the Transforms
	Understanding Auxiliary Working Storage Requirements

	Initializing Auxiliary Working Storage
	Determining the Amount of Auxiliary Working Storage That You Need

	Performance and Accuracy Considerations
	When Running on the Workstation Processors
	Defining Arrays
	Fourier Transform Considerations
	Setting Up Your Data
	Using the Scale Argument

	How the Fourier Transform Subroutines Achieve High Performance
	Convolution and Correlation Considerations
	Performance Tradeoffs between Subroutines
	Special Uses of SCORD
	Special Uses of _DCON and _DCOR
	Accuracy When Direct Methods Are Used
	Accuracy When Fourier Methods Are Used
	Convolutions and Correlations by Fourier Methods

	Related Computation Considerations
	Accuracy Considerations

	Fourier Transform Subroutines
	SCFT and DCFT—Complex Fourier Transform
	SRCFT and DRCFT—Real-to-Complex Fourier Transform
	SCRFT and DCRFT—Complex-to-Real Fourier Transform
	SCOSF and DCOSF—Cosine Transform
	SSINF and DSINF—Sine Transform
	SCFT2 and DCFT2—Complex Fourier Transform in Two Dimensions
	SRCFT2 and DRCFT2—Real-to-Complex Fourier Transform in Two Dimensions
	SCRFT2 and DCRFT2—Complex-to-Real Fourier Transform in Two Dimensions
	SCFT3 and DCFT3—Complex Fourier Transform in Three Dimensions
	SRCFT3 and DRCFT3—Real-to-Complex Fourier Transform in Three Dimensions
	SCRFT3 and DCRFT3—Complex-to-Real Fourier Transform in Three Dimensions
	Convolution and Correlation Subroutines
	SCON and SCOR—Convolution or Correlation of One Sequence with One or More Sequences
	SCOND and SCORD—Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method
	SCONF and SCORF—Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method
	SDCON, DDCON, SDCOR, and DDCOR—Convolution or Correlation with Decimated Output Using a Direct Method
	SACOR—Autocorrelation of One or More Sequences
	SACORF—Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method
	Related-Computation Subroutines
	SPOLY and DPOLY—Polynomial Evaluation
	SIZC and DIZC—I-th Zero Crossing
	STREC and DTREC—Time-Varying Recursive Filter
	SQINT and DQINT—Quadratic Interpolation
	SWLEV, DWLEV, CWLEV, and ZWLEV—Wiener-Levinson Filter Coefficients

	Chapter 13. Sorting and Searching
	Overview of the Sorting and Searching Subroutines
	Use Considerations
	Performance and Accuracy Considerations
	Sorting and Searching Subroutines
	ISORT, SSORT, and DSORT—Sort the Elements of a Sequence
	ISORTX, SSORTX, and DSORTX—Sort the Elements of a Sequence and Note the Original Element Positions
	ISORTS, SSORTS, and DSORTS—Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions
	IBSRCH, SBSRCH, and DBSRCH—Binary Search for Elements of a Sequence X in a Sorted Sequence Y
	ISSRCH, SSSRCH, and DSSRCH—Sequential Search for Elements of a Sequence X in the Sequence Y

	Chapter 14. Interpolation
	Overview of the Interpolation Subroutines
	Use Considerations
	Performance and Accuracy Considerations
	Interpolation Subroutines
	SPINT and DPINT—Polynomial Interpolation
	STPINT and DTPINT—Local Polynomial Interpolation
	SCSINT and DCSINT—Cubic Spline Interpolation
	SCSIN2 and DCSIN2—Two-Dimensional Cubic Spline Interpolation

	Chapter 15. Numerical Quadrature
	Overview of the Numerical Quadrature Subroutines
	Use Considerations
	Choosing the Method

	Performance and Accuracy Considerations
	Programming Considerations for the SUBF Subroutine
	Designing SUBF
	Coding and Setting Up SUBF in Your Program

	Numerical Quadrature Subroutines
	SPTNQ and DPTNQ—Numerical Quadrature Performed on a Set of Points
	SGLNQ and DGLNQ—Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature
	SGLNQ2 and DGLNQ2—Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature
	SGLGQ and DGLGQ—Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature
	SGRAQ and DGRAQ—Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature
	SGHMQ and DGHMQ—Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature

	Chapter 16. Random Number Generation
	Overview of the Random Number Generation Subroutines
	Use Considerations
	Random Number Generation Subroutines
	SURAND and DURAND—Generate a Vector of Uniformly Distributed Random Numbers
	SNRAND and DNRAND—Generate a Vector of Normally Distributed Random Numbers
	SURXOR and DURXOR—Generate a Vector of Long Period Uniformly Distributed Random Numbers

	Chapter 17. Utilities
	Overview of the Utility Subroutines
	Use Considerations
	Determining the Level of ESSL Installed
	Finding the Optimal Stride(s) for Your Fourier Transforms
	Converting Sparse Matrix Storage

	Utility Subroutines
	EINFO—ESSL Error Information-Handler Subroutine
	ERRSAV—ESSL ERRSAV Subroutine for ESSL
	ERRSET—ESSL ERRSET Subroutine for ESSL
	ERRSTR—ESSL ERRSTR Subroutine for ESSL
	IESSL—Determine the Level of ESSL Installed
	STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines
	DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode
	DGKTRN—For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode
	DSKTRN—For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode

	Part 3. Appendixes
	Appendix A. Basic Linear Algebra Subprograms (BLAS)
	Level 1 BLAS
	Level 2 BLAS
	Level 3 BLAS

	Appendix B. LAPACK
	LAPACK

	Notices
	Trademarks
	Software Update Protocol
	Programming Interfaces

	Glossary
	Bibliography
	References
	ESSL Publications
	Evaluation and Planning
	Installation
	Application Programming

	Related Publications
	AIX
	XL Fortran
	PL/I
	IBM 3838 Array Processor

	Index

