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About This Book

The Engineering and Scientific Subroutine Library (ESSL) for AIX is a set of
high-performance mathematical subroutines. ESSL is provided as two run-time
libraries, running on IBM @server' " pSeries” and RS/6000® POWER, PowerPC®,
POWER2, POWER3, POWER3-II, and POWER4 processors. ESSL can be used with
Fortran, C, C++, and Programming Language/I (PL/I) programs operating under
the AIX operating system.

This book is a guide and reference manual for using ESSL in doing application
programming. It includes:

* An overview of ESSL and guidance information for designing, coding, and
processing your program, as well as migrating existing programs, and
diagnosing problems

* Reference information for coding each ESSL calling sequence

This book is written for a wide class of ESSL users: scientists, mathematicians,
engineers, statisticians, computer scientists, and system programmers. It assumes a
basic knowledge of mathematics in the areas of ESSL computation. It also assumes
that users are familiar with Fortran, C, and C++ programming.

How to Use This Book

Front Matter consists of the Table of Contents and the Preface. Use these to find or
interpret information in the book.

Part 1. “Guide Information” provides guidance information for using ESSL. It
covers the user-oriented tasks of learning, designing, coding, migrating, processing,
and diagnosing. Use the following chapters when performing any of these tasks:

* Chapter 1, “Learning about ESSL” gives an introduction to ESSL, providing
highlights and general information. Read this chapter first to determine the
aspects of ESSL you want to use.

* Chapter 2, “Designing Your Program” provides ESSL-specific information that
helps you design your program. Read this chapter before designing your
program.

* Chapter 3, “Setting Up Your Data Structures” describes all types of data
structures, such as vectors, matrices, and sequences. Use this information when
designing and coding your program.

¢ Chapter 4, “Coding Your Program” tells you how to code your scalar and array
data, how to code calls to ESSL in Fortran, C, and C++ programs, and how to do
the coding necessary to handle errors. Use this information when coding your
program.

* Chapter 5, “Processing Your Program” describes how to process your program
under your particular operating system on your hardware. Use this information
after you have coded your program and are ready to run it.

¢ Chapter 6, “Migrating Your Programs” explains all aspects of migration to
ESSL, to this version of ESSL, to different processors, and to future releases and
future processors. Read this chapter before starting to design your program.
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* Chapter 7, “Handling Problems” provides diagnostic procedures for analyzing
all ESSL problems. When you encounter a problem, use the symptom indexes at
the beginning of this chapter to guide you to the appropriate diagnostic
procedure.

Part 2. “Reference Information” provides reference information you need to code
the ESSL calling sequences. It covers each of the mathematical areas of ESSL, and
the utility subroutines. Each chapter begins with an introduction, followed by the
subroutine descriptions. Each introduction applies to all the subroutines in that
chapter and is especially important in planning your use of the subroutines and
aV01d1ng problems. To understand the information in the subroutine descriptions,

ee ['How to Interpret the Subroutine Descriptions” on page xiN. Use the

approprlate chapter when coding your program:

e Chapter 8, “Linear Algebra Subprograms”
* Chapter 9, “Matrix Operations”

* Chapter 10, “Linear Algebraic Equations”
e Chapter 11, “Eigensystem Analysis”

* Chapter 12, “Fourier Transforms, Convolutions and Correlations, and Related
Computations”

* Chapter 13, “Sorting and Searching”

e Chapter 14, “Interpolation”

* Chapter 15, “Numerical Quadrature”

e Chapter 16, “Random Number Generation”
* Chapter 17, “Utilities”

Appendix A. Basic Linear Algebra Subprograms provides a list of the Level 1, 2,
and 3 Basic Linear Algebra Subprograms (BLAS) included in ESSL.

Appendix B. LAPACK provides a list of the LAPACK subroutines included in
ESSL.

Glossary contains definitions of terms used in this book.

Bibliography provides information about publications related to ESSL. Use it when
you need more information than this book provides.

How to Find a Subroutine Description

If you want to locate a subroutine description and you know the subroutine name,
you can find it listed individually or under the entry “subroutines, ESSL” in the
Index.

Where to Find Related Publications

xii

™

If you have a question about the SP, PSSP, or a related product, the following
online information resources make it easy to find the information you are looking
for:

 If you have installed the RS/6000 SP Resource Center available with Parallel
System Support Programs (PSSP) Version 3 Release 1 or later, you can access the
SP Resource Center by issuing the command:

lust/lpp/ssp/bin/resource_center

If you have the SP Resource Center on CD ROM, see the readme.txt file for
information on how to run it.
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* Access the following IBM Web site:
http://www.ibm.com/servers/eserver/pseries

A list of all ESSL publications, as well as related programming and hardware
publications, are listed in the bibliography. Also included is a list of math
background publications you may find helpful, along with the necessary
information for ordering them from independent sources. See LBi

How to Look Up a Bibliography Reference

Special references are made throughout this book to mathematical background
publications and software libraries, available through IBM, publishers, or other
companies. All of these are described in detail in the bibliography. A reference to
one of these is made by using a bracketed number. The number refers to the item
listed under that number in the bibliography. For example, reference [1] cites the
first item listed in the bibliography.

Special Terms

Standard data processing and mathematical terms are used in this book.
Terminology is generally consistent with that used for Fortran. See the Glossary for
definitions of terms used in this book.

Short and Long Precision

Because ESSL can be used with more than one programming language, the terms
short precision and long precision are used in place of the Fortran terms single
precision and double precision.

Subroutines and Subprograms

An ESSL subroutine is a named sequence of instructions within the ESSL product
library whose execution is invoked by a call. A subroutine can be called in one or
more user programs and at one or more times within each program. The ESSL
subroutines are referred to as subprograms in the area of linear algebra
subprograms. The term subprograms is used because it is consistent with the
BLAS. Many of the linear algebra subprograms correspond to the BLAS; these are

listed in EAppendix A Basic Linear Algebra Subprograms (BLAS)” on page 959.

How to Interpret the Subroutine Names with a Prefix Underscore

A name specified in this book with an underscore (_) prefix, such as _GEMUL,
refers to all the versions of the subroutine with that name. To get the entire list of
subroutines that name refers to, substitute the first letter for each version of the
subroutine. For example, _GEMUL, refers to all versions of the matrix
multiplication subroutine: SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do
not use the underscore in coding the names of the ESSL subroutines in your
program. You code a complete name, such as SGEMUL. For details about these
names, see L i i i “
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Abbreviated Names

The abbreviated names used in this book are defined below.

Short Name Full Name

AIX Advanced Interactive Executive

BLAS Basic Linear Algebra Subprograms

ESSL IBM Engineering and Scientific Subroutine Library
HTML Hypertext Markup Language

LAPACK Linear Algebra Package

PL/1 Programming Language/I

POWER, POWER2, POWERS3, | IBM @server pSeries and RS/6000 processors
POWER3-II, POWER4, and
PowerPC processors

SL MATH Subroutine Library—Mathematics
SMP Symmetric Multi-Processing
SSP Scientific Subroutine Package

Fonts

This book uses a variety of special fonts to distinguish between many
mathematical and programming items. These are defined below.

Special Font Example Description

Italic with no subscripts |m, inclx, aux, iopt Calling sequence argument or
mathematical variable

Italic with subscripts X1, s X1 j2 Element of a vector, matrix, or
sequence

Bold italic lowercase X, Y,z Vector or sequence

Bold italic uppercase A, B, C Matrix

Gothic uppercase A, B, C, AGB Array

IM=ISMAX(4,X,2) Fortran statement

Special Notations and Conventions

This section explains the special notations and conventions used in this book to
describe various types of data.

Scalar Data

Following are the special notations used in the examples in this book for scalar
data items. These notations are used to simplify the examples, and they do not
imply usage of any precision. For a definition of scalar data in Fortran, C, C++,

and PL/I, see I{Chapter 4 Coding Your Program” on page 103,

Data Item Example Description
Character item T Character(s) in single quotation marks
Hexadecimal string X'97FA0OC1' String of 4-bit hexadecimal characters
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Data Item Example Description
Logical item .TRUE. .FALSE. True or false logical value, as indicated
Integer data 1 Number with no decimal point
Real data 1.6 Number with a decimal point
Complex data (1.0,-2.9) Real part followed by the imaginary part
Continuation 1.6666 Continue the last digit
(1.6666666... and so forth)
Vectors

A vector is represented as a single row or column of subscripted elements enclosed
in square brackets. The subscripts refer to the element positions within the vector:

Xn

[x x, x5 ...

For a definition of vector, see 'NVectors” on page 53.

Matrices

A matrix is represented as a block of elements enclosed in square brackets.
Subscripts refer to the row and column positions, respectively:

a .a

ml

all . . .Cll

n

mn

For a definition of matrix, see [Matrices” on page 59.

Sequences

Sequences are used in the areas of sorting, searching, Fourier transforms,
convolutions, and correlations. For a definition of sequences, see

One-Dimensional Sequences
A one-dimensional sequence is represented as a series of elements enclosed in
parentheses. Subscripts refer to the element position within the sequence:

(21, X5, X5, ...

, Xn)
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Two-Dimensional Sequences
A two-dimensional sequence is represented as a series of columns of elements.

(They are represented in the same way as a matrix without the square brackets.)
Subscripts refer to the element positions within the first and second dimensions,
respectively:

all alz . . . aln
a, dp ayy
Ay Ay - - - Ay

Three-Dimensional Sequences

A three-dimensional sequence is represented as a series of blocks of elements.
Subscripts refer to the elements positions within the first, second, and third
dimensions, respectively:

a a .. a
allz a122 o e . alnz llp 12p lnp
Ar1p Aoy Ao D1p Anp Dopp
A2 Az - - Ay Qip A2p- +  Aymp

Arrays contain vectors, matrices, or sequences. For a definition of array, see FHowl

One-Dimensional Arrays
A one-dimensional array is represented as a single row of numeric elements

enclosed in parentheses:
(1.0, 2.0, 3.0, 4.0, 5.0)

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. In the following array, five elements
are significant to the computation, and two elements not used in the computation
exist between each of the elements shown:

(r.o, ., .,2.0, ., .,3.0, .,.,40,.,.,5.0)
This notation is used to show vector elements inside an array.
Two-Dimensional Arrays

A two-dimensional array is represented as a block of numeric elements enclosed in
square brackets:

N =
[N o)
= =
N =
[N o)
o O
[N o)
NN
o o1
[N o)
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S w
oo
= =
B w
oo
[N
oo
N N
[N
oo

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. The following array contains three
rows and two columns not used in the computation:

BN
[cNoNoRo)
OB WM.
[cNoNoRo)
0 N OO .
[cNoNoRo)
=N WS
e e e .
[cNoNoRo)

This notation is used to show matrix elements inside an array.

Three-Dimensional Arrays
A three-dimensional array is represented as a series of blocks of elements separated
by ellipses. Each block appears like a two-dimensional array:

1.0 11.0 5.0 25.0 10.0 111.0 15.0 125.0 100.0 11.0 15.0 25.0
2.0 12.0 6.0 26.0 20.0 112.0 16.0 126.0 200.0 12.0 16.0 26.0
3.0 13.0 7.0 27.0 30.0 113.0 17.0 127.0 300.0 13.0 17.0 27.0
4.0 14.0 8.0 28.0 40.0 114.0 18.0 128.0 400.0 14.0 18.0 28.0

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown, just as for two-dimensional arrays.

Special Characters, Symbols, Expressions, and Abbreviations

The mathematical and programming notations used in this book are consistent
with traditional mathematical and programming usage. These conventions are

explained below, along with special abbreviations that are associated with specific

values.
Item Description
Greek letters: «, 0, ®, 0 Symbolic scalar values
lal The absolute value of a
ab The dot product of a and b
X; The i-th element of vector x
Cij The element in matrix C at row i and column j
X . X, Elements from x; to x,,
i=1n i is assigned the values 1 to n
yex Vector y is replaced by vector x
xy Vector x times vector y
AX=B AX is congruent to B
a* a raised to the k power
e~ Exponential function of x
AT x" The transpose of matrix A; the transpose of vector x
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Item

Description

kel
|

The complex conjugate of vector x; the complex conjugate of
matrix A

The complex conjugate of the complex vector element x;, where:
if x; = (a;, ),
then X; = (a;, —b,)

1

The complex conjugate of the complex matrix element c;

L AP

The complex conjugate transpose of vector x; the complex
conjugate transpose of matrix A

n
2%

i=1

The sum of elements x; to x,,

Ja+b

The square root of a+b

Lb f(x) dx

The integral from a to b of f(x) dx

[Ix]l» The Euclidean norm of vector x, defined as:

Al

LAl The spectral norm of matrix A, defined as:
max{[|Ax|, : [x, = 1}

lAllg The Frobenius norm of matrix A, defined as:

A7l The inverse of matrix A

AT The transpose of A inverse

[A| The determinant of matrix A

m by n matrix A

Matrix A has m rows and n columns

sin a The sine of a
cos b The cosine of b
SIGN (a) The sign of a; the result is either + or —

address {a}

The storage address of a

max(x)

The maximum element in vector x

min(x)

The minimum element in vector x

ESSL Version 3 Release 3 Guide and Reference




Item Description

ceiling(x) The smallest integer that is greater than or equal to x
floor(x) The largest integer that is not greater than x

int(x) The largest integer that is less than or equal to x

x mod(m) x modulo m; the remainder when x is divided by m
o Infinity

n Pi, 3.14159265...

How to Interpret the Subroutine Descriptions

This section explains how to interpret the information in the subroutine
descriptions in Part 2 of this book.

Description

Each subroutine description begins with a brief explanation of what the subroutine
does. When we combine the description of multiple versions of a subroutine, we
give enough information to enable you to easily tell the differences among the
subroutines. Differences usually occur in either the function performed or the data

types required for each subroutine.

Syntax
This shows the syntax for the Fortran, C, C++, and PL/I calling statements:
Fortran CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ...)
C and C++ name-1 | name-2 | ... | name-n (arg-1, ... ,arg-m);
PL/I CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ... );

The syntax indicates:
¢ The programming language (Fortran, C, C++, or PL/I)

* Each possible subroutine name that you can code in the calling sequence. Each

name is separated by the | (or) symbol. You specify only one of these names in
your calling sequence. (You do not code the | in the calling sequence.)

* The arguments, listed in the order in which you code them in the calling

sequence. You must code them all in your calling sequence.

You can distinguish between input arguments and output arguments by looking
at the “On Entry” and “On Return” sections, respectively. An argument used for
both input and output is described in both the “On Entry” and “On Return”
sections. In this case, the input value for the argument is overlaid with the
output value.

The names of the arguments give an indication of the type of data that you
should specify for the argument; for example:

— Names beginning with the letters i through n, such as m, incx, iopt, and isign,
indicate that you specify integer data.

— Names beginning with the letters a through / and o through z, such as b, t,
alpha, sigma, and omega, indicate that you specify real or complex data.
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On Entry

This lists the input arguments, which are the arguments you pass to the ESSL
subroutine. Each argument description first gives the meaning of the argument,
and then gives the form of data required for the argument. (To help you avoid
errors, output arguments are also listed, along with a reference to the

section.)

On Return

This lists the output arguments, which are the arguments passed back to your
program from the ESSL subroutine. Each argument description first gives the
meaning of the argument, and then gives the form of data passed back to your
program for the argument.

Notes

The notes describe any programming considerations and restrictions that apply to
the arguments or the data for the arguments. There may be references to other
parts of the book for further information.

Function

This is a functional, or mathematical, description of the function performed by this
subroutine. It explains what computation is performed, not the implementation.
It explains the variations in the computation depending on the input arguments.
References are made, where appropriate, to mathematical background books listed
in the bibliography. References appear as a number enclosed in square brackets,
where the number refers to the item listed under that number in the bibliography.
For example, reference [1] cites the first item listed.

Special Usage

These are unique ways you can use the subroutine in your application. In most
cases, this book does not address applications of the ESSL subroutines; however, in
special situations where the functional capability of the subroutine can be extended
by following certain rules for its use, these rules are described in this section.

Error Conditions

These are all the ESSL run-time errors that can occur in the subroutine. They are
organized under three headings; Computational Errors, Input-Argument Errors,
and Resource Errors. The return code values resulting from these errors are also
explained.

Examples

The examples show how you would call the subroutine from a Fortran program.
They show a variety of uses of the subroutine. Except where it is important to
show differences in use between the various versions of the subroutine, the
simplest version of the subroutine is used in the examples. In most cases, this is
the short-precision real version of the subroutine. Each example provides a
description of the important features of the example, followed by the Fortran
calling sequence, the input data, and the resulting output data.
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What's New for ESSL for AIX

This section summarizes all the changes made to ESSL for AIX.

What's New for ESSL Version 3 Release 3

The ESSL Libraries are tuned for the POWERA4.

ESSL now supports the AIX 5L for POWER Version 5.1, with service, 32-bit
and 64-bit kernels.

The ESSL header file now supports the C++ Standard Numerics Library facilities
for complex arithmetic and uses const qualifiers in the function prototypes.

The Dense Linear Algebraic Equations Subroutines now include these new
LAPACK subroutines:

— General Matrix Inverse
— Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization

— Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple
Right-Hand Side Solve

— Positive Definite Real Symmetric Matrix Inverse
— Triangular Matrix Inverse

The Linear Least Squares Subroutines now include this new LAPACK
subroutine:

— Linear Least Squares Solution for a General Matrix

Additional functionality has been added to the Packed Dense Linear Algebraic
Equation subroutines, _PPF. (See 'SPPE, DPPE,_SPQE,_DPQFE_CPQE, ZPQF)
BPOTRE,_DPOTRE. CPOTRE. and ZPOTRE—Paositive Definite Real Symmetric o

Comnloy Tormition Moftix Factorioafion” 1)

Changes for ESSL Version 3 Release 2

The ESSL Libraries are tuned for the POWER3-II.

The Dense Linear Algebraic Equations Subroutines now include these new
subroutines:

— Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side
Solve.

— Symmetric Indefinite Matrix Factorization.

— Symmetric Indefinite Matrix Multiple Right-Hand Side Solve.

The Linear Least Squares Subroutines now include this new subroutine:
— General Matrix QR Factorization.

The ESSL POWER and Thread-Safe libraries have been replaced by a
thread-safe library referred to as the ESSL Serial Library.

The ESSL POWER2 and Thread-Safe POWER?2 libraries are no longer
provided; the ESSL Serial or the ESSL SMP Library should be used instead. See
The ESSL Version 3 Guide and Reference manual is provided in PDF format
with the product package; the postscript file is no longer provided.

The ESSL Product Package is now distributed on a CD.
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Changes for ESSL Version 3 Release 1.2

* The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL

Symmetric Multi-Processing (SMP) Library are tuned for the POWER3 SMP
thin, wide, and high nodes.

The serial and SMP performance of the packed Dense Linear Algebraic Equation
subroutines, _PPF, _PPFCD, and _PPICD have been improved in many cases by
utilizing new algorithms based on recursive packed storage format (see
references [E] ], and [@]).

The SMP performance of the Dense Linear Algebraic Equation subroutine,
DPOF, has been improved for a positive definite symmetric matrix stored in
upper storage mode.

* Additional multithreaded ESSL SMP subroutines are provided (see [Cable 21 od

lage24)

Changes for ESSL Version 3 Release 1.1

* The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP

Library are tuned for the RS/6000 POWERS.

The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP
Library now support both 32-bit environment and 64-bit environment
applications. For details on creating 64-bit environment applications see
t‘Chapter 4 Coding Your Program” on page 103 and EChapter 5 Pracessing You
[Program” on page 157. If you are migrating to a 64-bit environment, you may

need to make changes to your calls to ERRSET. For details see 'ERRSET—ESSI|
[ERRSET Subroutine for ESSL” on page 93,

e ESSL for AIX provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:

— The AIX 4.2.1 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2
Library, and the ESSL SMP Library were built using the pthreads draft 7
library supplied on AIX 4.2.1. This is the same as ESSL Version 3.1.

— The AIX 4.3.2 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2
Library, and the ESSL SMP Library were built using the pthreads library that
conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Changes for ESSL Version 3

xxii

e ESSL for AIX provides two new run-time libraries:

— The ESSL SMP Library provides thread-safe versions of the ESSL subroutines
for use on RS/6000 SMP (for example 604e) processors. In addition, a subset
of these subroutines are also multithreaded versions; that is, they support the
shared memory parallel processing programming model. You do not have to
change your existing application programs that call ESSL to take advantage of
the increased performance of using the SMP processors. You can simply
re-link your existing programs. For a list of the multithreaded subroutines in
the ESSL SMP Library, see

— The ESSL Thread-Safe Library provides thread-safe versions of the ESSL
subroutines for use on all RS/6000 processors. You may use this library to
develop your own multithreaded applications.

If your existing application program calls ESSL, you only need to re-link your
program to take advantage of the increased performance of the ESSL SMP
Library or to use the ESSL Thread-Safe Library.

* ESSL provides new subroutines (_GETRF and _GETRS), bringing the total

number of subroutines to 458.
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* For those ESSL subroutines that require extra working storage to perform
computations, ESSL now provides a way to dynamically allocate storage when it

does not need to persist after the subroutine call. See [1lsing Auxiliary Storagd

fin ESSI.” on page 29

* The files for the Hypertext Markup Language (HTML) version of the ESSL
Version 3 Guide and Reference are packaged with the ESSL product.

* All the ESSL messages are provided in an ESSL message catalog.

Future Migration

If you are concerned with migration to pos31ble future releases of ESSL or possible
future hardware, you should read L ”

That section explains what you can do now to prevent future migration
problems.

What's New for ESSL for AIX  Xxxiii
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In Brief—What's Provided in ESSL for AIX

* ESSL provides two run-time libraries:

— The ESSL SMP Library provides thread-safe versions of the ESSL subroutines
for use on all SMP (for example, 604e or 630) processors. In addition, a subset
of these subroutines are also multithreaded versions; that is, they support the
shared memory parallel processing programming model. You do not have to
change your existing application programs that call ESSL to take advantage of
the increased performance of using the SMP processors. You can simply
re-link your existing application programs. For a list of the multithreaded
subroutines in the ESSL SMP Library, see

— The ESSL Serial Library provides thread-safe versions of the ESSL
subroutines for use on all processors. You may use this library to develop
your own multithreaded applications.

All libraries are designed to provide high levels of performance for numerically
intensive computing jobs on these respective processors. All versions provide
mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications.

 Callable from Fortran, C, and C++ programs.

e For a list of subroutines, refer to FList of ESSI. Suibroutines” on page 9

© Copyright IBM Corp. 1997, 2001 XXV



XXV1  ESSL Version 3 Release 3 Guide and Reference



Part 1. Guide Information

This part of the book is organized into seven chapters, providing guidance
information on how to use ESSL. It is organized as follows:

* Learning about ESSL

* Designing your program

* Setting up your data structures

* Coding your program

* Processing your program

* Migrating your programs

¢ Handling problems
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Chapter 1. Introduction and Requirements

This chapter introduces you to the Engineering and Scientific Subroutine Library
(ESSL) for Advanced Interactive Executive (AIX).

Overview of ESSL

This section gives an overview of the ESSL capabilities and requirements.

ESSL is a state-of-the-art collection of subroutines providing a wide range of
mathematical functions for many different scientific and engineering applications.
Its primary characteristics are performance, functional capability, and usability.

Performance and Functional Capability

The mathematical subroutines, in nine computational areas, are tuned for
performance on the RS/6000. The computational areas are:

* Linear Algebra Subprograms

* Matrix Operations

* Linear Algebraic Equations

* Eigensystem Analysis

* Fourier Transforms, Convolutions and Correlations, and Related Computations
 Sorting and Searching

* Interpolation

* Numerical Quadrature

* Random Number Generation

ESSL provides two run-time libraries:

¢ The ESSL Symmetric Multi-Processing (SMP) Library provides thread-safe
versions of the ESSL subroutines for use on all SMP (for example, 604e or 630)
processors. In addition, a subset of these subroutines are also multithreaded
versions; that is, they support the shared memory parallel processing
programming model. For a list of the multithreaded subroutines in the ESSL
SMP Library, see [[able 21 on page 24,

* The ESSL Serial Library provides thread-safe versions of the ESSL subroutines
for use on all processors. You may use this library to develop your own
multithreaded applications.

All libraries are designed to provide high levels of performance for numerically
intensive computing jobs on these respective processors. All versions provide
mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications.

The ESSL subroutines can be called from application programs written in Fortran,
C, and C++. ESSL runs under the AIX operating system.

Usability
ESSL is designed for usability:

* It has an easy-to-use call interface.
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* If your existing application programs use the ESSL Serial library, you only need
to re-link your program to take advantage of the increased performance of the
ESSL SMP Library.

* It supports a 64-bit environment.

64-bit applications can be created on any system, but can only run on 64-bit
hardware.

The data model used for the 64-bit environment is referred to as LP64. This data
model supports 32-bit integers and 64-bit pointers. In accordance with the LP64
data model, all ESSL integer arguments remain 32-bit except for the iusadr
ariument for ERRSET. See 'ERRSET—ESSL ERRSET Subroutine for ESSL” on

* It has informative error-handling capabilities, enabling you to calculate auxiliary
storage sizes and transform lengths.

* An online book that can be displayed using an Hypertext Markup Language
(HTML) document browser, is available for use with ESSL.

The Variety of Mathematical Functions

This section describes the mathematical functions included in ESSL.

Areas of Application

ESSL provides a variety of mathematical functions for many different types of
scientific and engineering applications. Some of the industries using these
applications are: Aerospace, Automotive, Electronics, Petroleum, Finance, Utilities,
and Research. Examples of applications in these industries are:

Structural Analysis Time Series Analysis
Computational Chemistry Computational Techniques
Fluid Dynamics Analysis Mathematical Analysis
Seismic Analysis Dynamic Systems Simulation
Reservoir Modeling Nuclear Engineering
Quantitative Analysis Electronic Circuit Design

What ESSL Provides

The subroutines provided in ESSL, summarized in [[able 1, fall into the following

groups:

* Nine major areas of mathematical computation, providing the computations
commonly used by the industry applications listed above

» Utilities, performing general-purpose functions

To help you select the ESSL subroutines that fulfill your needs for performance,
accuracy, storage, and so forth, see L i ine”
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Table 1. Summary of ESSL Subroutines

Integer Short-Precision Long-Precision
ESSL Area of Computation Subroutines Subroutines Subroutines
Linear Algebra Subprograms:
Vector-scalar 0 41 41
Sparse vector-scalar 0 11 11
Matrix-vector 1 32 32
Sparse matrix-vector 0 0 3
Matrix Operations:
Addition, subtraction, multiplications, rank-k updates,
rank-2k updates, and matrix transposes 0 25 26
Linear Algebraic Equations:
Dense linear algebraic equations 3 38 43
Banded linear algebraic equations 0 18 18
Sparse linear algebraic equations 0 0 11
Linear least squares 0 3 5
Eigensystem Analysis:
Solutions to the algebraic eigensystem analysis
problem and the generalized eigensystem analysis
problem 0 8 8
Signal Processing Computations:
Fourier transforms 0 15 11
Convolutions and correlations 0 10 2
Related computations 6 6
Sorting and Searching:
Sorting, sorting with index, and binary and sequential
searching 5 5 5
Interpolation:
Polynomial and cubic spline interpolation 0 4 4
Numerical Quadrature:
Numerical quadrature on a set of points or on a
function 0 6 6
Random Number Generation:
Generating vectors of uniformly distributed and
normally distributed random numbers 0 3 3
Utilities:
General service operations 8 0 3
Total ESSL Subroutines 13 225 238

ESSL—Processing Capabilities

ESSL provides two run-time libraries, the ESSL SMP Library and the ESSL Serial

Library. These libraries are designed to provide high levels of performance for
numerically intensive computing jobs on the IBM @server pSeries and RS/6000
processors. To order the IBM Engineering and Scientific Subroutine Library for

Chapter 1. Introduction and Requirements

5



AIX, specify program number 5765-C42. Most of the subroutine calls are
compatible with those in the ESSL/370 product.

Accuracy of the Computations

ESSL provides accuracy comparable to libraries using equivalent algorithms with
identical precision formats. Both short- and long-precision real versions of the
subroutines are provided in most areas of ESSL. In some areas, short- and
long-precision complex versions are also provided, and, occasionally, an integer
version is provided. The data types operated on by the short-precision,
long-precision, and integer versions of the subroutines are ANSI/IEEE 32-bit and
64-bit binary floating-point format, and 32-bit integer. See the ANSI/IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for more detail.
(There are ESSL-specific rules that apply to the results of computations on
workstation processors using the ANSI/IEEE standards. For details, see

Data Type Standards Are Ulsed by ESSI, and What Exceptions Should You Knowl
About?” on page 42)

For more information on accuracy, see l/Getting the Best Accuracy” on page 41,

High Performance of ESSL

Algorithms: The ESSL subroutines have been designed to provide high
performance. (See references [], [E'], and [@].) To achieve this performance, the
subroutines use state-of-the-art algorithms tailored to specific operational
characteristics of the hardware, such as cache size, Translation Lookaside Buffer
(TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:

* Managing the cache and TLB efficiently so the hit ratios are maximized; that is,
data is blocked so it stays in the cache or TLB for its computation.

* Accessing data stored contiguously—that is, using stride-1 computations.
* Exploiting the large number of available floating-point registers.

* Using algorithms that minimize paging.

* On the SMP processors:

— The ESSL SMP Library is designed to exploit the processing power and
shared memory of the SMP processor. In addition, a subset of the ESSL SMP
subroutines have been coded to take advantage of increased performance
from multithreaded (parallel) programming techniques. For a list of the
multithreaded subroutines in the ESSL SMP Library, see [lable 21 on page 24.

— Choosing the number of threads depends on the problem size, the specific
subroutine being called, and the number of physical processors you are
running on. To achieve optimal performance, experimentation is necessary;
however, picking the number of threads equal to the number of online
processors generally provides good performance in most cases. In some cases,
performance may increase if you choose the number of threads to be less than
the number of online processors.

You should use either the XL Fortran XLSMPOPTS or the
OMP_NUM_THREADS environment variable to specify the number of
threads you want to create.

* On the POWER4 processor:

— Structuring the ESSL subroutines so, where applicable, the compiled code
fully utilizes the dual floating-point execution units. Because two
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Multiply-Add instructions can be executed each cycle, neglecting overhead,
this allows four floating-point operations per cycle to be performed.

— Structuring the ESSL subroutines so, where applicable, the compiled code
takes full advantage of the hardware data prefetching.

* On the POWER3 and POWERB-II processors:

— Structuring the ESSL subroutines so, where applicable, the compiled code
fully utilizes the dual floating-point execution units. Because two
Multiply-Add instructions can be executed each cycle, neglecting overhead,
this allows four floating-point operations per cycle to be performed.

— Structuring the ESSL subroutines so, where applicable, the compiled code
takes full advantage of the hardware data prefetching.

¢ On the POWER processor:

— Using algorithms that balance floating-point operations with loads in the
innermost loop.

— Using algorithms that minimize stores in the innermost loops.

— Structuring the ESSL subroutines so, where applicable, the compiled code
uses the Multiply-Add instructions. Neglecting overhead, these instructions
perform two floating-point operations per cycle.

Mathematical Techniques: All areas of ESSL use state-of-the-art mathematical
techniques to achieve high performance. For example, the matrix-vector linear
algebra subprograms operate on a higher-level data structure, matrix-vector rather
than vector-scalar. As a result, they optimize performance directly for your
program and indirectly through those ESSL subroutines using them.

The Fortran Language Interface to the Subroutines

The ESSL subroutines follow standard Fortran calling conventions and must run in
the Fortran run-time environment. When ESSL subroutines are called from a
program in a language other than Fortran, such as C, C++, or PL/I, the Fortran
conventions must be used. This applies to all aspects of the interface, such as the
linkage conventions and the data conventions. For example, array ordering must
be consistent with Fortran array ordering techniques. Data and linkage conventions
for each language are given in [ i -

Software and Hardware Products That Can Be Used with ESSL

This section describes the hardware and software products you can use with ESSL,
as well as those products for installing ESSL and displaying the online
documentation.

For ESSL—Hardware

ESSL runs on the IBM @server pSeries and RS/6000 processors supported by the
AIX operating systems.

64-bit applications require 64-bit hardware.

ESSL—Operating Systems
ESSL is supported in the following operating system environments:
e AIX 5L for POWER Version 5.1, with service (product number 5765-E61)
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ESSL—Software Products

ESSL requires the software products shown in [fable 3 for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is

”

described in L

Table 2. Software Products Required for Use with ESSL

”

and L

For Compiling

For Linking, Loading, or Running

XL Fortran for AIX, Version 7.1.1 (program number
5765-E02) —or—

IBM Visual Age C++ Professional for AIX Version 5.0.2
(program number 5765-E26)—or—

C for AIX, Version 5.0.2 (program number 5765-E32)

XL Fortran Run-Time Environment for AIX, Version 7.1.1
(program number 5765-E03) —and—

C libraries®

1 The AIX product includes the C and math libraries in the Application Development Toolkit.

Installation and Customization Products

The ESSL licensed program is distributed on a CD. The ESSL Version 3 Installation
Memo provides the detailed information you need to install ESSL.

The ESSL product is packaged according to the AIX guidelines, as described in the
AIX General Programming Concepts: Writing and Debugging Programs manual. The
product can be installed using the smit command, as described in the AIX System
Management Guide: Operating System and Devices manual.

Software Products for Displaying ESSL Online Information
The ESSL Guide and Reference is available in PDF and HTML format on the product

media.

To view the online publications shipped on the product media, you need the

following:

* Access to a common HTML document browser (such as Netscape Navigator).

* The location of the HTML index file provided with the file sets. Contact your
system administrator or installer for this location.

ESSL Internet Resources

This section describes how you can use the ESSL resources available over the

Internet.

Obtaining Documentation

To access the ESSL Guide and Reference in either PDF or HTML format, go to the

following IBM Web site:

http://www.ibm.com/servers/eserver/pseries/library

and click on “RS/6000 SP Hardware and Software Books.”

To view the ESSL PDF publications, you need access to the Adobe Acrobat Reader.
The Acrobat Reader is shipped with the AIX Bonus Pack and is also freely
available for downloading from the Adobe web site at:
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http://www.adobe.com

Accessing ESSL’s Product Home Pages

The following home page contains information on ESSL and Parallel ESSL:

http://www.ibm.com/servers/eserver/pseries/software/sp/essl.html

Getting on the ESSL Mailing List

Late breaking information about ESSL can be obtained by being placed on the
ESSL mailing list. In addition, users on the mailing list will receive information
about new ESSL function and may receive customer satisfaction surveys and
requirements surveys, to provide feedback to ESSL Development on the product
and user requirements.

You can be placed on the mailing list by sending a request to either of the
following, asking to be placed on the ESSL mailing list:

International Business Machines Corporation

ESSL Development

Department 85BA/Mail Station P963

2455 South Rd.

Poughkeepsie, N.Y. 12601-5400

e-mail: essl@us.ibm.com

Note: You should send us e-mail if you would like to be withdrawn from the ESSL
mailing list.

When requesting to be placed on the mailing list or asking any questions, please
provide the following information:

* Your name

* The name of your company

* Your mailing address

* Your Internet address

* Your phone number

List of ESSL Subroutines

This section provides an overview of the subroutines in each of the areas of ESSL.

7 . N . 77

contains a
list of Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in
ESSL.

’ . ”

contains a list of Linear Algebra Package
(LAPACK) subroutines included in ESSL.

Linear Algebra Subprograms

The linear algebra subprograms consist of:

* Vector-scalar linear algebra subprograms (fabled
* Sparse vector-scalar linear algebra subprograms )
* Matrix-vector linear algebra subprograms ( )

* Sparse matrix-vector linear algebra subprograms (Lable d)
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Notes:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the
BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Vector-Scalar Linear Algebra Subprograms

The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference [E]. The remainder of the
vector-scalar linear algebra subprograms are commonly used computations
provided for your applications. Both real and complex versions of the subprograms
are provided.

Table 3. List of Vector-Scalar Linear Algebra Subprograms

Short- Precision |Long- Precision
Descriptive Name Subprogram Subprogram Page
Position of the First or Last Occurrence of the Vector Element ISAMAX* IDAMAX™ o3
Having the Largest Magnitude ICAMAX™ [ZAMAX™
Position of the First or Last Occurrence of the Vector Element ISAMIN® IDAMIN® lod
Having Minimum Absolute Value
Position of the First or Last Occurrence of the Vector Element ISMAX* IDMAX?* [od
Having Maximum Value
Position of the First or Last Occurrence of the Vector Element ISMIN* IDMIN' bod
Having Minimum Value
Sum of the Magnitudes of the Elements in a Vector SASUM™ DASUM™ pod
SCASUM™ DZASUM*
Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the | SAXPY" DAXPY"
Vector Y CAXPY" ZAXPY"
Copy a Vector SCOPY" DCOPY" b1
CcCcorY” ZCOPY"
Dot Product of Two Vectors SDOT* DDOT™ b14
CDOTU™ ZDOTU"™
CDOTC™ ZDOTC™
Compute SAXPY or DAXPY N Times SNAXPY DNAXPY p1d
Compute Special Dot Products N Times SNDOT DNDOT b23
Euclidean Length of a Vector with Scaling of Input to Avoid SNRM2*" DNRM2" bod
Destructive Underflow and Overflow SCNRM2™ DZNRM2™
Euclidean Length of a Vector with No Scaling of Input SNORM2* DNORM2" RN
CNORM2* ZNORM2*
Construct a Givens Plane Rotation SROTG" DROTG" P34
CROTG" ZROTG"
Apply a Plane Rotation SROT" DROT" pad
CROT" ZROT"
CSROT" ZDROT"
Multiply a Vector X by a Scalar and Store in the Vector X SSCAL" DSCAL" bad
CSCAL’ ZSCAL’
CSSCAL" ZDSCAL”
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Table 3. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short- Precision |Long- Precision

Descriptive Name Subprogram Subprogram Page

Interchange the Elements of Two Vectors SSWAP" DSWAP" pad
CSWATP” ZSWAP”

Add a Vector X to a Vector Y and Store in a Vector Z SVEA DVEA bad
CVEA ZVEA

Subtract a Vector Y from a Vector X and Store in a Vector Z SVES DVES P54
CVES ZVES

Multiply a Vector X by a Vector Y and Store in a Vector Z SVEM DVEM p5g
CVEM ZVEM

Multiply a Vector X by a Scalar and Store in a Vector Y SYAX DYAX bed
CYAX ZYAX
CSYAX ZDYAX

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store ina |SZAXPY DZAXPY bed

Vector Z CZAXPY Z7ZAXPY

* This subprogram is invoked as a function in a Fortran program.

" Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms

The sparse vector-scalar linear algebra subprograms operate on sparse vectors; that
is, only the nonzero elements of the vector are stored. These subprograms provide
similar functions to the vector-scalar subprograms. These subprograms represent a
subset of the sparse extensions to the Level 1 BLAS described in reference [@].
Both real and complex versions of the subprograms are provided.

Table 4. List of Sparse Vector-Scalar Linear Algebra Subprograms

Short- Precision |Long- Precision
Descriptive Name Subprogram Subprogram Page
Scatter the Elements of a Sparse Vector X in Compressed-Vector SSCTR DSCTR bed
Storage Mode into Specified Elements of a Sparse Vector Y in CSCTR ZSCTR
Full-Vector Storage Mode
Gather Specified Elements of a Sparse Vector Y in Full-Vector SGTHR DGTHR bz3
Storage Mode into a Sparse Vector X in Compressed-Vector Storage | CGTHR ZGTHR
Mode
Gather Specified Elements of a Sparse Vector Y in Full-Vector SGTHRZ DGTHRZ V|
Mode into a Sparse Vector X in Compressed-Vector Mode, and CGTHRZ ZGTHRZ
Zero the Same Specified Elements of Y
Multiply a Sparse Vector X in Compressed-Vector Storage Mode by | SAXPYI DAXPYI bzd
a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, CAXPYI ZAXPYI
and Store in the Vector Y
Dot Product of a Sparse Vector X in Compressed-Vector Storage SDOTI" DDOTT ba1
Mode and a Sparse Vector Y in Full-Vector Storage Mode CDOTCI* ZDOTCI*

Ccboturt ZDOTUI"
* This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms

The matrix-vector linear algebra subprograms operate on a higher-level data
structure—matrix-vector rather than vector-scalar—using optimized algorithms to
improve performance. These subprograms include a subset of the standard set of
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Level 2 BLAS. For details on the Level 2 BLAS, see [] and [@]. Both real and
complex versions of the subprograms are provided.

Table 5. List of Matrix-Vector Linear Algebra Subprograms

Short- Precision |Long- Precision
Descriptive Name Subprogram Subprogram Page
Matrix-Vector Product for a General Matrix, Its Transpose, or Its SGEMV™ DGEMV™ psq
Conjugate Transpose CGEMV™ ZGEMV™

SGEMXS® DGEMX$

SGEMTXS DGEMTXS
Rank-One Update of a General Matrix SGER™ DGER™ bod

CGERU™ ZGERU™

CGERC™ ZGERC™
Matrix-Vector Product for a Real Symmetric or Complex Hermitian | SSPMV™ DSPMV™ Bod
Matrix CHPMV™ ZHPMV™

SSYMV™ DSYMV™

CHEMV™ ZHEMV™

SSLMXS DSLMX®
Rank-One Update of a Real Symmetric or Complex Hermitian SSPR™ DSPR™ BQY
Matrix CHPR™ ZHPR™

SSYR™ DSYR™

CHER™ ZHER™

SSLR1% DSLR15
Rank-Two Update of a Real Symmetric or Complex Hermitian SSPR2* DSPR2* kid
Matrix CHPR2™ ZHPR2™

SSYR2® DSYR2™

CHER2" ZHER2™

SSLR2S DSLR2S
Matrix-Vector Product for a General Band Matrix, Its Transpose, or | SGBMV™ DGBMV™ VY|
Its Conjugate Transpose CGBMV™ ZGBMV™
Matrix-Vector Product for a Real Symmetric or Complex Hermitian | SSBMV™ DSBMV™ Rad
Band Matrix CHBMV™ ZHBMV™
Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its | STRMV™ DTRMV™ Rad
Conjugate Transpose CTRMV™ ZTRMV™

STPMV™ DTPMV™

CTPMV™ ZTPMV™
Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, | STBMV™ DTBMV™ a1
or Its Conjugate Transpose CTBMV™ ZTBMV™

“ Level 2 BLAS

S This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

Sparse Matrix-Vector Linear Algebra Subprograms

The sparse matrix-vector linear algebra subprograms operate on sparse matrices;
that is, only the nonzero elements of the matrix are stored. These subprograms
provide similar functions to the matrix-vector subprograms.

Table 6. List of Sparse Matrix-Vector Linear Algebra Subprograms

Descriptive Name Long- Precision Page
Subprogram

Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode | DSMMX BaZ

Transpose a Sparse Matrix in Compressed-Matrix Storage Mode DSMTM Bad
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Table 6. List of Sparse Matrix-Vector Linear Algebra Subprograms (continued)

Descriptive Name Long- Precision Page
Subprogram
Matrix-Vector Product for a Sparse Matrix or Its Transpose in DSDMX Bs4

Compressed-Diagonal Storage Mode

Matrix Operations

Some of the matrix operation subroutines were designed in accordance with the

Level 3 BLAS de facto standard. If these subroutines do not comply with the

standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the calling

application program. For details on the Level 3 BLAS, see reference [BJ]. The

matrix operation subroutines also include the commonly used matrix operations:
addition, subtraction, multiplication, and transposition.

Table 7. List of Matrix Operation Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Matrix Addition for General Matrices or Their Transposes SGEADD DGEADD Bad
CGEADD ZGEADD
Matrix Subtraction for General Matrices or Their Transposes SGESUB DGESUB kad
CGESUB ZGESUB
Matrix Multiplication for General Matrices, Their Transposes, or SGEMUL DGEMUL VE
Conjugate Transposes CGEMUL ZGEMUL
DGEMLPS
Matrix Multiplication for General Matrices, Their Transposes, or SGEMMS DGEMMS B34
Conjugate Transposes Using Winograd’s Variation of Strassen’s CGEMMS ZGEMMS
Algorithm
Combined Matrix Multiplication and Addition for General SGEMM* DGEMM*
Matrices, Their Transposes, or Conjugate Transposes CGEMM* ZGEMM®*
Matrix-Matrix Product Where One Matrix is Real or Complex SSYMM* DSYMM* bad
Symmetric or Complex Hermitian CSYMM* ZSYMM?*
CHEMM®* ZHEMM®
Triangular Matrix-Matrix Product STRMM* DTRMM* kod
CTRMM* ZTRMM?*
Rank-K Update of a Real or Complex Symmetric or a Complex SSYRK* DSYRK* fid
Hermitian Matrix CSYRK* ZSYRK*
CHERK"* ZHERK®*
Rank-2K Update of a Real or Complex Symmetric or a Complex SSYR2K* DSYR2K* kid
Hermitian Matrix CSYR2K* ZSYR2K*
CHER2K* ZHER2K*®
General Matrix Transpose (In-Place) SGETMI DGETMI 23
CGETMI ZGETMI
General Matrix Transpose (Out-of-Place) SGETMO DGETMO k2d
CGETMO ZGETMO

* Level 3 BLAS

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new

programs.
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Linear Algebraic Equations

The linear algebraic equations consist of:
* Dense linear algebraic equations ([[able 8)

* Banded linear algebraic equations

* Sparse linear algebraic equations (

* Linear least squares ( )

)
)

Note: Some of the linear algebraic equations were designed in accordance with the
Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these
subprograms do not comply with the standard as approved, IBM will
consider updating them to do so. If IBM updates these subprograms, the
updates could require modifications of the calling application program. For

]. For details on

details on the Level 2 and 3 BLAS, see [@] and

LAPACK, see [H].

Dense Linear Algebraic Equations
The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, real symmetric
indefinite matrices and triangular matrices. Some of these subroutines correspond
to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references

[B2], B4] and [H].
Table 8. List of Dense Linear Algebraic Equation Subroutines
Short- Long-
Precision Precision
Descriptive Name Subroutine Subroutine Page
General Matrix Factorization SGEF DGEF 3
CGEF ZGEF
SGETRF~ DGETRF~ kad
CGETRF~ ZGETRF#
DGEFPS
General Matrix, Its Transpose, or Its Conjugate Transpose Solve | SGES DGES bl
CGES ZGES
General Matrix, Its Transpose, or Its Conjugate Transpose SGESM DGESM kad
Multiple Right-Hand Side Solve CGESM ZGESM
SGETRS” DGETRSA k53
CGETRS” ZGETRS#
General Matrix Factorization, Condition Number Reciprocal, and | SGEFCD DGEFCD 57
Determinant
Positive Definite Real Symmetric or Complex Hermitian Matrix | SPPF DPPF kel
Factorization SPOF DPOF
CPOF ZPOF
SPOTRF” DPOTRF#
CPOTRF~ ZPOTRF»
DPPFPS
Positive Definite Real Symmetric Matrix Solve SPPS DPPS Ezd
Positive Definite Real Symmetric or Complex Hermitian Matrix SPOSM DPOSM VZ|
Multiple Right-Hand Side Solve CPOSM ZPOSM
SPOTRS” DPOTRS”
CPOTRS” ZPOTRS”
Positive Definite Real Symmetric Matrix Factorization, Condition |SPPFCD DPPFCD @
Number Reciprocal, and Determinant SPOFCD DPOFCD
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Table 8. List of Dense Linear Algebraic Equation Subroutines (continued)

Short- Long-

Precision Precision
Descriptive Name Subroutine Subroutine Page
Symmetric Indefinite Matrix Factorization and Multiple DBSSV Y|
Right-Hand Side Solve
Symmetric Indefinite Matrix Factorization DBSTRF
Symmetric Indefinite Matrix Multiple Right-Hand Side Solve DBSTRS koq
General Matrix Inverse, Condition Number Reciprocal, and SGEICD DGEICD fiod
Determinant SGETRI® DGETRI®
Positive Definite Real Symmetric Matrix Inverse, Condition SPPICD DPPICD F0S
Number Reciprocal, and Determinant SPOICD DPOICD

SPOTRI# DPOTRI®
Solution of a Triangular System of Equations with a Single STRSV™ DTRSV™ SE
Right-Hand Side CTRSV™ ZTRSV™

STPSV™ DTPSV™

CTPSV™ ZTPSV™
Solution of Triangular Systems of Equations with Multiple STRSM* DTRSM* Eid
Right-Hand Sides CTRSM* ZTRSM*
Triangular Matrix Inverse STRI DTRI b2d

STPI DTPI

STRTRI® DTRTRI®

STPTRI* DTPTRI®

“ Level 2 BLAS
* Level 3 BLAS

~ LAPACK

S This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use is new
programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equations
The banded linear algebraic equation subroutines provide solutions to linear

systems of equations for real general band matrices, real positive definite
symmetric band matrices, real or complex general tridiagonal matrices, real

positive definite symmetric tridiagonal matrices, and real or complex triangular

band matrices.

Table 9. List of Banded Linear Algebraic Equation Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
General Band Matrix Factorization SGBF DGBF ad
General Band Matrix Solve SGBS DGBS v
Positive Definite Symmetric Band Matrix Factorization SPBF DPBF Bad
SPBCHF DPBCHF
Positive Definite Symmetric Band Matrix Solve SPBS DPBS Bad
SPBCHS DPBCHS
General Tridiagonal Matrix Factorization SGTF DGTF Bad
General Tridiagonal Matrix Solve SGTS DGTS Bad
General Tridiagonal Matrix Combined Factorization and Solve SGTNP DGTNP 651
with No Pivoting CGTNP ZGTNP
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Table 9. List of Banded Linear Algebraic Equation Subroutines (continued)

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
General Tridiagonal Matrix Factorization with No Pivoting SGTNPF DGTNPF Ba4
CGTNPF ZGTNPF
General Tridiagonal Matrix Solve with No Pivoting SGTNPS DGTNPS 32
CGTNPS ZGTNPS
Positive Definite Symmetric Tridiagonal Matrix Factorization SPTF DPTF
Positive Definite Symmetric Tridiagonal Matrix Solve SPTS DPTS Bad
Triangular Band Equation Solve STBSV™ DTBSV™ Bed
CTBSV™ ZTBSV™
“ Level 2 BLAS

Sparse Linear Algebraic Equations

The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their

transposes and for sparse symmetric matrices.

Table 10. List of Sparse Linear Algebraic Equation Subroutines

Long- Precision
Descriptive Name Subroutine Page
General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns | DGSF Ezd
General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or | DGSS Ezd
Columns
General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve DGKEFS
Using Skyline Storage Mode DGKFSPS
Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline DSKFS Bad
Storage Mode DSKFSPS
Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored | DSRIS kd
by Rows
Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve DSMCGH k2d
Using Compressed-Matrix Storage Mode
Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve DSDCG ka1
Using Compressed-Diagonal Storage Mode
General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode DSMGCGH kad
General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode | DSDGCG kad
§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.
* This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Use DSRIS instead.

Linear Least Squares

The linear least squares subroutines provide least squares solutions to linear

systems of equations for real general matrices. Three methods are provided: one
that uses the singular value decomposition; one that uses a QR decomposition with
column pivoting; and another that uses a QR decomposition without column
pivoting. Some of these subroutines correspond to the LAPACK routines described
in reference [].
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Table 11. List of Linear Least Squares Subroutines

Descriptive Name Short- Precision |Long- Precision |Page
Subroutine Subroutine

Singular Value Decomposition for a General Matrix SGESVF DGESVF 35
Linear Least Squares Solution for a General Matrix Using the SGESVS DGESVS Bsd
Singular Value Decomposition

General Matrix QR Factorization DGEQRF# ked
Linear Least Squares Solution for a General Matrix DGELS” bad
Linear Least Squares Solution for a General Matrix with Column | SGELLS DGELLS 52|

Pivoting

2 LAPACK

Eigensystem Analysis

The eigensystem analysis subroutines provide solutions to the algebraic

eigensystem analysis problem Az =
problem Az = wBz (

wz and the generalized eigensystem analysis
). Many of the eigensystem analysis subroutines use
the algorithms presented in Linear Algebra by Wilkinson and Reinsch [R9] or use

adaptations of EISPACK routines, as described in theEISPACK Guide Lecture Notes
in Computer Science in reference [] or in the EISPACK Guide Extension Lecture
Notes in Computer Science in reference [ES]. (EISPACK is available from the sources

listed in reference [E].)

Table 12. List of Eigensystem Analysis Subroutines

Descriptive Name Short- Precision |Long- Precision |Page
Subroutine Subroutine

Eigenvalues and, Optionally, All or Selected Eigenvectors of a SGEEV DGEEV kel

General Matrix CGEEV ZGEEV

Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric |SSPEV DSPEV ka1

Matrix or a Complex Hermitian Matrix CHPEV ZHPEV

Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real SSPSV DSPSV bod

Symmetric Matrix or a Complex Hermitian Matrix CHPSV ZHPSV

Eigenvalues and, Optionally, the Eigenvectors of a Generalized SGEGV DGEGV fod

Real Eigensystem, Az=wBz, where A and B Are Real General

Matrices

Eigenvalues and, Optionally, the Eigenvectors of a Generalized SSYGV DSYGV 2%

Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric
and B Is Real Symmetric Positive Definite

Fourier Transforms, Convolutions and Correlations, and

Related Computations

This signal processing area provides:
* Fourier transform subroutines (

Cable 13)

* Convolution and correlation subroutines )

* Related-computation subroutines

Fourier Transforms

The Fourier transform subroutines perform mixed-radix transforms in one, two,

and three dimensions.
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Table 13. List of Fourier Transform Subroutines

Short- Precision

Long- Precision

Descriptive Name Subroutine Subroutine Page

Complex Fourier Transform SCFT DCFT k24
SCFTPS

Real-to-Complex Fourier Transform SRCFT DRCFT 2%

Complex-to-Real Fourier Transform SCRFT DCRFT Fa3

Cosine Transform SCOSF DCOSF fFad
SCOSFTS

Sine Transform SSINF DSINF 754

Complex Fourier Transform in Two Dimensions SCFT2 DCFT2 7% |
SCFT2PS

Real-to-Complex Fourier Transform in Two Dimensions SRCFT2 DRCFT2 fed

Complex-to-Real Fourier Transform in Two Dimensions SCRFT2 DCRFT2 frzd

Complex Fourier Transform in Three Dimensions SCFT3 DCFT3 fed
SCFT3PS

Real-to-Complex Fourier Transform in Three Dimensions SRCFT3 DRCFT3 fsd

Complex-to-Real Fourier Transform in Three Dimensions SCRFT3 DCRFT3 fad

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

programs. Documentation for this subroutine is no longer provided.

Convolutions and Correlations

The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a
high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

Table 14. List of Convolution and Correlation Subroutines

Short- Precision

Long- Precision

Descriptive Name Subroutine Subroutine Page
Convolution or Correlation of One Sequence with One or More SCONS fad
Sequences SCORS

Convolution or Correlation of One Sequence with Another SCOND kod
Sequence Using a Direct Method SCORD

Convolution or Correlation of One Sequence with One or More SCONF kid
Sequences Using the Mixed-Radix Fourier Method SCORF

Convolution or Correlation with Decimated Output Using a Direct | SDCON DDCON kid
Method SDCOR DDCOR
Autocorrelation of One or More Sequences SACORS kg
Autocorrelation of One or More Sequences Using the Mixed-Radix | SACORF kod

Fourier Method

S These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in

new programs.

Related Computations

The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those

provided on the IBM 3838 Array Processor; however, the ESSL subroutines

generally solve a wider range of problems.
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Table 15. List of Related-Computation Subroutines

Descriptive Name Short- Precision |Long- Precision |Page
Subroutine Subroutine

Polynomial Evaluation SPOLY DPOLY Rad

I-th Zero Crossing S1ZC DIZC kad

Time-Varying Recursive Filter STREC DTREC Rad

Quadratic Interpolation SQINT DQINT ka1

Wiener-Levinson Filter Coefficients SWLEV DWLEV Ra4
CWLEV ZWLEV

Sorting and Searching

The sorting and searching subroutines operate on three types of data: integer,

short-precision real, and long-precision real

). The sorting subroutines

perform sorts with or without index designations. The searching subroutines
perform either a binary or sequential search.

Table 16. List of Sorting and Searching Subroutines

Descriptive Name Integer Short- Precision |Long- Precision |Page
Subroutine Subroutine Subroutine

Sort the Elements of a Sequence ISORT SSORT DSORT k=1l

Sort the Elements of a Sequence and Note the ISORTX SSORTX DSORTX B3

Original Element Positions

Sort the Elements of a Sequence Using a Stable |ISORTS SSORTS DSORTS B=d

Sort and Note the Original Element Positions

Binary Search for Elements of a Sequence X in a |IBSRCH SBSRCH DBSRCH Bxd

Sorted Sequence Y

Sequential Search for Elements of a Sequence X |ISSRCH SSSRCH DSSRCH Bed

in the Sequence Y

Interpolation

The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and both one- and two-dimensional

cubic spline interpolation

Table 17. List of Interpolation Subroutines

Descriptive Name Short- Precision |Long- Precision |Page
Subroutine Subroutine

Polynomial Interpolation SPINT DPINT Rad

Local Polynomial Interpolation STPINT DTPINT RZ3

Cubic Spline Interpolation SCSINT DCSINT kzd

Two-Dimensional Cubic Spline Interpolation SCSIN2 DCSIN2 ka1

Numerical Quadrature

The numerical quadrature subroutines provide Gaussian quadrature methods for

integrating a tabulated function and a user-su

lied function over a finite,

semi-infinite, or infinite region of integration ( ).
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Table 18. List of Numerical Quadrature Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Numerical Quadrature Performed on a Set of Points SPTNQ DPTNQ
Numerical Quadrature Performed on a Function Using SGLNQ?' DGLNQ" kod
Gauss-Legendre Quadrature
Numerical Quadrature Performed on a Function Over a Rectangle |SGLNQ2" DGLNQ2" Rod
Using Two-Dimensional Gauss-Legendre Quadrature
Numerical Quadrature Performed on a Function Using SGLGQ" DGLGQ?
Gauss-Laguerre Quadrature
Numerical Quadrature Performed on a Function Using SGRAQ" DGRAQ" bod
Gauss-Rational Quadrature
Numerical Quadrature Performed on a Function Using SGHMQ" DGHMQ" bod
Gauss-Hermite Quadrature
* This subprogram is invoked as a function in a Fortran program.

Random Number Generation

Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers ( ).

Table 19. List of Random Number Generation Subroutines

Descriptive Name Short- Precision |Long- Precision |Page
Subroutine Subroutine
Generate a Vector of Uniformly Distributed Random Numbers SURAND DURAND b1d
Generate a Vector of Normally Distributed Random Numbers SNRAND DNRAND b1d
Generate a Vector of Long Period Uniformly Distributed Random | SURXOR DURXOR p1d
Numbers
Utilities

The utility subroutines perform general service functions that support ESSL, rather
than mathematical computations (M).

Table 20. List of Utility Subroutines

Descriptive Name Subroutine Page
ESSL Error Information-Handler Subroutine EINFO bB2d
ESSL ERRSAV Subroutine for ESSL ERRSAV B2d
ESSL ERRSET Subroutine for ESSL ERRSET bad
ESSL ERRSTR Subroutine for ESSL ERRSTR Bad
Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library IVSSETS

Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library IEVOPSS

Determine the Level of ESSL Installed IESSL Ba3
Determine the Stride Value for Optimal Performance in Specified Fourier Transform | STRIDE 3%
Subroutines

Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode | DSRSM bud
For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline DGKTRN bad
Storage Mode
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Table 20. List of Utility Subroutines (continued)

Descriptive Name Subroutine Page
bxd

For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline | DSKTRN
Storage Mode
§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.
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Chapter 2. Planning Your Program

This chapter provides information about ESSL that you need when planning your
program. Its purpose is to help you in performing the following tasks:

* Selecting an ESSL subroutine

* Avoiding Conflicts with Internal ESSL Routine Names That are Exported
* Setting up your data

* Setting up your ESSL calling sequences

* Using auxiliary storage in ESSL

¢ Providing a correct transform length to ESSL

* Getting the best accuracy

* Getting the best performance

* Dealing with errors when using ESSL

If you are using ESSL with PL/I Set for AIX, Version 1, see the PL/I publications
for details on calling subroutines and functions.

Selecting an ESSL Subroutine

Your choice of which ESSL subroutine to use is based mainly on the functional
needs of your program. However, you have a choice of several variations of many
of the subroutines. In addition, there are instances where certain subroutines
cannot be used. This section describes these variations and limitations. See the
answers to each question below that applies to you.

Which ESSL Library Do You Want to Use?

ESSL provides two run-time libraries:

* The ESSL SMP Library provides thread-safe versions of the ESSL subroutines
for use on all SMP processors. In addition, a subset of these subroutines are also
multithreaded versions; that is, they support the shared memory parallel
processing programming model. For a list of the multithreaded subroutines in

the ESSL SMP Library, see [able 21 on page 24.

* The ESSL Serial Library provides thread-safe versions of the ESSL subroutines
for use on all processors. You may choose to use this library if you decide to
develop your own multithreaded programs that call the thread-safe ESSL
subroutines.

The number of threads you choose to use depends on the problem size, the
specific subroutine being called, and the number of physical processors you are
running on. To achieve optimal performance, experimentation is necessary;
however, picking the number of threads equal to the number of online
processors generally provides good performance in most cases. In a few cases,
performance may increase if you choose the number of threads to be less than
the number of online processors. For more information about thread concepts,
see AIX General Programming Concepts: Writing and Debugging Programs.

The ESSL SERIAL Library and the ESSL SMP Library support both 32-bit
environment and 64-bit environment applications. For details see
i ” and L i
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Table 21. Multithreaded ESSL SMP Subroutines

Subroutine Names

Vector-Scalar Linear Algebra Subprograms:
SASUM, DASUM, SCASUM, DZASUM

SAXPY, DAXPY, CAXPY, ZAXPY

SCOPY, DCOPY, CCOPY, ZCOPY

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC
SNDOT, DNDOT

SNORM2, DNORM2, CNORM2, ZNORM2

SROT, DROT, CROT, ZROT, CSROT, ZDROT
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL
SSWAP, DSWAP, CSWAP, ZSWAP

SVEA, DVEA, CVEA, ZVEA

SVES, DVES, CVES, ZVES

SVEM, DVEM, CVEM, ZVEM

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX
SZAXPY, DZAXPY, CZAXPY, ZZAXPY

Matrix-Vector Linear Algebra Subprograms:
SGEMV, DGEMV, CGEMV, ZGEMV

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC
SSPMV, DSPMV, CHPMV, ZHPMV
SSYMV, DSYMV, CHEMV, ZHEMV

SSPR, DSPR, CHPR, ZHPR

SSYR, DSYR, CHER, ZHER

SSPR2, DSPR2, CHPR2, ZHPR2

SSYR2, DSYR2, CHER2, ZHER2

SGBMV*, DGBMV*

CGBMV*, ZGBMV*

SSBMV*, DSBMV*

CHBMV*, ZHBMV"*

STRMV, DTRMV, CTRMV, ZTRMV
STPMV, DTPMV, CTPMV, ZTPMV
STBMV*, DTBMV*

CTBMV*, ZTBMV*

Matrix Operations:

SGEADD, DGEADD, CGEADD, ZGEADD

SGESUB, DGESUB, CGESUB, ZGESUB

SGEMUL, DGEMUL, CGEMUL, ZGEMUL

SGEMM, DGEMM, CGEMM, ZGEMM

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM
STRMM, DTRMM, CTRMM, ZTRMM

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K
SGETMI, DGETMI, CGETMI, ZGETMI

SGETMO, DGETMO, CGETMO, ZGETMO

Dense Linear Algebraic Equations:
SGEF, DGEF, CGEF, ZGEF

SGETRF, DGETRF, CGETRF, ZGETRF
SPPF, DPPF, DPOF, DPOTRF

SPPFCD*, DPPFCD*, DPOFCD*
SPPICD*, DPPICD*, DPOICD*, DPOTRI*
STRSV, DTRSV, CTRSV, ZTRSV

STPSV, DTPSV, CTPSV, ZTPSV

STRSM, DTRSM, CTRSM, ZTRSM

STRI, DTRI, STRTRI, DTRTRI

Sparse Linear Algebraic Equations:
DSRIS*
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Table 21. Multithreaded ESSL SMP Subroutines (continued)

Subroutine Names

Linear Least Squares:
DGEQRF

Fourier Transforms:
SCFT, DCFT
SRCFT, DRCFT
SCRFT, DCRFT
SCFT2, DCFT2
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SRCFT3, DRCFT3
DCRFT3, DCRFT3

Convolution and Correlation:
SCOND, SCORD
SDCON, SDCOR, DDCON, DDCOR

Many of the dense linear algebraic equations and eigensystem analysis subroutines make
one or more calls to the multithreaded versions of the matrix-vector linear algebra and
matrix operation subroutines shown in this table. SCOSF, DCOSEF, SSINF, and DSINF make
one or more calls to the multithreaded versions of the Fourier Transform subroutines
shown in this table. These subroutines benefit from the increased performance of the
multithreaded versions of the ESSL SMP subroutines.

Your performance may be improved by setting the Environment variables:
export MALLOCMULTIHEAP=true
export XLSMPOPTS="spins=0:yields=0".

For additional information, see the AIX Performance Management Guide and the XLF
Manuals.

" DSRIS only uses multiple threads when IPARM(4) = 1 or 2.

* The Level 2 Banded BLAS use multiple threads only when the bandwidth is sufficiently
large.

* Multiple threads are used for the factor or inverse computation.

What Type of Data Are You Processing in Your Program?

The version of the ESSL subroutine you select should agree with the data you are
using. ESSL provides a short- and long-precision version of most of its subroutines
processing short- and long-precision data, respectively. In a few cases, it also
provides an integer version processing integer data or returning just integer data.
The subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real

D for long-precision real

C for short-precision complex

Z for long-precision complex

I for integer

The precision of your data affects the accuracy of your results. This is discussed in
[Getting the Best Accuracy” on page 41l. For a description of these data types, see
[How Do You Set Up Your Scalar Data?” on page 24
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How Is Your Data Structured? And What Storage Technique
Are You Using?

Some subroutines process specific data structures, such as sparse vectors and
matrices or dense and banded matrices. In addition, these data structures can be
stored using various storage techniques. You should select the proper subroutine
on the basis of the type of data structure you have and the storage technique you
want to use. If possible, you should use a storage technique that conserves storage
and potentially improves performance. For more about storage techniques, see

" .

What about Performance and Accuracy?

ESSL provides variations among some of its subroutines. You should consider
performance and accuracy when deciding which subroutine is the best to use.
Study the “Function” section in each subroutine description. It helps you
understand exactly what each subroutine does, and helps you determine which
subroutine is best for you. For example, some subroutines perform multiple
computations of a certain type. This might give you better performance than a
subroutine that does each computation individually. In other cases, one subroutine
may do scaling while another does not. If scaling is not necessary for your data,
you get better performance by using the subroutine without scaling.

Avoiding Conflicts with Internal ESSL Routine Names That are
Exported

Do not use names for your own subroutines, functions, and global variables that
are the same as the ESSL exported names. All internal ESSL routine names that are
exported begin with the ESV prefix, so you should avoid using this prefix for your
own names.

Setting Up Your Data

This section explains how to set up your scalar and array data and points you to
where you can find more detail.

How Do You Set Up Your Scalar Data?

A scalar item is a single item of data, whether it is a constant, a variable, or an
element of an array. ESSL assumes that your scalar data conforms to the
appropriate standards, as described below. The scalar data types and how you
should code them for each programming language are listed under “Coding Your

Scalar Data” in each language section in EChapter 4 Coding Your Program” od

Internal Representation

Scalar data passed to ESSL from all types of programs, including Fortran, C, and
C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point
format, as described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985.

How Do You Set Up Your Arrays?

An array represents an area of storage in your program, containing data stored in
a series of locations. An array has a single name. It is made up of one or more
pieces of scalar data, all the same type. These are the elements of the array. It can
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be passed to the ESSL subroutine as input, returned to your program as output, or
used for both input and output, in which case the original contents are
overwritten.

Arrays can contain conceptual (mathematical) data structures, such as vectors,
matrices, or sequences. There are many different types of data structures. Each type
of data structure requires a unique arrangement of data in an array and does not
necessarily have to include all the elements of the array. In addition, the elements
of these data structures are not always contiguous in storage within an array.
Stride and leading dimension arguments passed to ESSL subroutines define the
separations in array storage for the elements of the vector, matrix, and sequence.
All these aspects of data structures are described in Chapter 3Setting Up Youd
Data Structures” on page 53. You must first understand array storage techniques to
fully understand the concepts of data structures, stride, and leading dimension,
especially if you are using them in unconventional ways.

ESSL subroutines assume that all arrays passed to them are stored using the
Fortran array storage techniques (in column-major order), and they process your
data accordingly. For details, see I'Setting IIp Arrays in Eartran” on page 104. On
the other hand, C, C++, and PL/I programs store arrays in row-major order. For
details on what you can do, see:

e For C, see page I”prﬁng IIp Arrays in C” on page 127,

* For C++, see page [‘Setting T Arrays in C++” on page 144

* For PL/I, see the PL/I publications.

How Should Your Array Data Be Aligned?

All arrays, regardless of the type of data, should be aligned on a doubleword
boundary to ensure optimal performance; however, when running on a POWER?2
processor, it is best to align your long-precision arrays on a quadword boundary.
For information on how your programming language aligns data, see your
programming language manuals.

What Storage Mode Should You Use for Your Data?

The amount of storage used by arrays and the storage arrangement of data in the
arrays can affect overall program performance. As a result, ESSL provides
subroutines that operate on different types of data structures, stored using various
storage modes. You should chose a storage mode that conserves storage and
potentially improves performance. For definitions of the various data structures
and their corresponding storage modes, see !Chapter 3_Setting 1Ip Your Datal
Btructures” on page 53. You can also find special storage considerations, where
applicable, in the “Notes” section of each subroutine description.

How Do You Convert from One Storage Mode to Another?

This section describes how you can convert from one storage mode to another.

Conversion Subroutines
ESSL provides several subroutines that help you convert from one storage mode to
another:

* DSRSM is used to migrate your existing program from sparse matrices stored by
rows to sparse matrices stored in compressed-matrix storage mode. This
converts the matrices into a storage format that is compatible with the input
requirements for some ESSL sparse matrix subroutines, such as DSMMX.
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* DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKESP or DSKFS/DSKESP, respectively.

Sample Programs

In addition, sample programs are provided with many of the storage mode
descriptions in i . You can
use these sample programs to convert your data to the desired storage mode by
adapting them to your application program.

Setting Up Your ESSL Calling Sequences

28

This section gives the general rules for setting up the ESSL calling sequences. The
information given here applies to all types of programs, running in all
environments. For a description and examples of how to code the ESSL calling
sequences in your particular programming language, see the following sections:

s ”

. 7 ”

° 7 ”

For details on the conventions used in this book to describe the calling sequence

syntax, see lHow to Interpret the Subroutine Descriptions” on page xix. It describes

how required and optional arguments are indicated in the calling sequence and the
naming conventions used for different data types.

What Is an Input-Output Argument?

Some arguments are used for both input and output. The contents of the input
argument are overlaid with the output value(s) on return to your program. Be
careful that you save any data you need to preserve before calling the ESSL
subroutine.

What Are the General Rules to Follow when Specifying Data
for the Arguments?

You should follow the syntax rules given for each argument in “On Entry” in the
subroutine description. Input-argument error messages may be issued, and your
program may terminate when you make an error specifying the input arguments.
For example:

* Data passed to ESSL must be of the correct type: integer, character, real,
complex, short-precision, or long-precision. There is no conversion of data.
Assuming you are using the ESSL header file with your C and C++ programs,
you first need to define the following:

— Complex and logical data in C programs, using the guidelines given on page

— Short-precision complex and logical data in C++ programs, using the
guidelines given on page
* Character values must be one of the specified values. For example, it may have
to be 'N', 'T', or 'C'.
* Numeric values must fall within the correct range for that argument. For

example, a numeric value may need to be greater than or equal to 0, or it may
have to be a nonzero value.

* Arrays must be defined correctly; that is, they must have the correct dimensions,
or the dimensions must fall within the correct range. For example, input and
output matrices may need to be conformable, or the number of rows in the
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matrix must be less than or equal to the leading dimension specified. (ESSL
assumes all arrays are stored in column-major order.)

What Happens When a Value of 0 Is Specified for N?

For most ESSL subroutines, if you specify 0 for the number of elements to be
processed in a vector or the order of a matrix (usually argument #), no
computation is performed. After checking for input-argument errors, the
subroutine returns immediately and no result is returned. In the other subroutines,
an error message may be issued.

How Do You Specify the Beginning of the Data Structure in
the ESSL Calling Sequence?

When you specify a vector, matrix, or sequence in your calling sequence, it does
not necessarily have to start at the beginning of the array. It can begin at any
point in the array. For example, if you want vector x to start at element 3 in array
A, which is declared A(1:12), specify A(3) in your calling sequence for argument x,
such as in the following SASUM calling sequence in your Fortran program:

N X INCX

X = SASUM( 4 , A(3) , 2)

Also, for example, if you want matrix A to start at the second row and third
column of array A, which is declared A(0:10,2:8), specify A(1,4) in your calling
sequence for argument 4, such as in the following SGEADD calling sequence in
your Fortran program:

A LDA TRANSA B LDB TRANSB C LDC
| [ N
CALL SGEADD( A(1,4) , 11, 'N' , B, 4, 'N' ,C, 4 )

For more examples of specifying vectors and matrices, see !Chapter 3 Setting 11y

M
|
4

w—2=

”

Using Auxiliary Storage in ESSL

For the ESSL subroutines listed in [able 23, you need to provide extra working
storage to perform the computation. This section describes the use of dynamic
allocation for providing auxiliary storage in ESSL and how to calculate the amount
of auxiliary storage you need by use of formulas or error-handling capabilities
provided in ESSL, if dynamic allocation is not an option.

Auxiliary storage, or working storage, is supplied through one or more arguments,
such as aux, in the calling sequence for the ESSL subroutine. If the working
storage does not need to persist after the subroutine call, it is suggested you use
dynamic allocation. For example, in the Fourier Transforms subroutines, you may
allocate aux2 dynamically, but not aux1. See the subroutine descriptions in Part 2 of
this book for details and variations.

Table 22. ESSL Subroutines Requiring Auxiliary Working Storage

Subroutine Names

Linear Algebra Subprograms:
DSMTM

Matrix Operations:
_GEMMS
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Table 22. ESSL Subroutines Requiring Auxiliary Working Storage (continued)

Subroutine Names

Dense Linear Algebraic Equations:
_GEFCD _PPFCD _GEICD _PPICD _POFCD
_POICD DGEFP* DPPFP*

Sparse Linear Algebraic Equations:
DGSF DGSS DGKFS DGKFSP* DSKFS DSKFSPA
DSRIS DSMCG DSDCG DSMGCG DSDGCG

Linear Least Squares:
_GESVF _GELLS DGEQRF

Eigensystem Analysis:
_GEEV _SPEV _HPEV _SPSV _HPSV
_GEGV _SYGV

Fourier Transforms:

_CFT _RCFT _CRFT _COSF _SINF
SCOSFT» _CFT2 _RCFT2 _CRFI2 _CFT3
_RCFT3 _CRFT3 SCFTP” SCFT2P* SCFT3P*

Convolutions and Correlations:
SCONF SCORF SACORF

Related Computations:
_WLEV

Interpolation:
_TPINT _CSIN2

Random Number Generation:
_NRAND

Utilities:

DGKTRN DSKTRN

4 Documentation for this subroutine is no longer provided. The aux and naux arguments
for the subroutine are specified the same as for the corresponding serial ESSL subroutine.

Dynamic Allocation of Auxiliary Storage

Dynamic allocation for the auxiliary storage is performed when error 2015 is
unrecoverable and naux=0. For details on which aux arguments allow dynamic
allocation, see the subroutine descriptions in Part 2 of this book.

Setting Up Auxiliary Storage When Dynamic Allocation Is Not
Used

You set up the storage area in your program and pass it to ESSL through
arguments, specifying the size of the aux work area in the naux argument.

Who Do You Want to Calculate the Size? You or ESSL?

You have a choice of two methods for determining how much auxiliary storage
you should specify:

* Use the formulas provided in the subroutine description to derive sufficient
values for your current and future needs. Use them if ease of migration to
future machines and future releases of ESSL is your primary concern. For details,
see 'How Da You Calculate the Size Using the Formulas?” on page 31l

* Use the ESSL error-handling facilities to return to you a minimum value for the
particular processor you are currently running on. (Values vary by platform.)
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Use this approach if conserving storage is your primary concern. For details, see
I“How Do You Get ESSL. to Calculate the Size Using ESSI, Error Hand]ing7’1

How Do You Calculate the Size Using the Formulas?

The formulas provided for calculating naux indicate a sufficient amount of
auxiliary storage required, which, in most cases, is larger than the minimum
amount, returned by ESSL error handling. There are two types of formulas:

* Simple formulas

These are given in the naux argument syntax descriptions. In general, these
formulas result in the minimum required value, but, in a few cases, they provide
overestimates.

* Processor-independent formulas

These are given in separate sections in the subroutine description. In general,
these provide overestimates.

Both types of formulas provide values that are sufficient for all processors. As a
result, you can migrate to any other processor and to future releases of ESSL
without being concerned about having to increase the amount of storage for aux.
You do, of course, need to weigh your storage requirements against the
convenience of using this larger value.

To calculate the amount of storage using the formulas, you must substitute values
for specific variables, such as 1, m, n1, or n2. These variables are arguments
specified in the ESSL calling sequence or derived from the arguments in the calling
sequence.

How Do You Get ESSL to Calculate the Size Using ESSL Error
Handling?

This section describes how you can get ESSL to calculate auxiliary storage.

Here Are the Two Ways You Can Do It
Ask yourself which of the following ways you prefer to obtain the information
from ESSL:

* By leaving error 2015 unrecoverable, you can obtain the minimum required
value of naux from the input-argument error message, but your program
terminates.

* By making error 2015 recoverable, you can obtain the minimum required value
of naux from the input-argument error message and have the updated naux
argument returned to your program.

For both techniques, the amount returned by the ESSL error-handling facility is the
minimum amount of auxiliary storage required to run your program successfully
on the particular processor you are currently running on. The ESSL
error-handling capability usually returns a smaller value than you derive by using
the formulas listed for the subroutine. This is because the formulas provide a good
estimate, but ESSL can calculate exactly what is needed on the basis of your data.

The values returned by ESSL error handling may not apply to future processors.
You should not use them if you plan to run your program on a future processor.
You should use them only if you are concerned with minimizing the amount of
auxiliary storage used by your program.
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The First Way

In this case, you obtain the minimum required value of naux from the error
message, but your program terminates. The following description assumes that
dynamic allocation is not selected as an option.

Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with the naux values smaller than required by the subroutine for the
particular processor you are running on. As a general guideline, specify values
smaller than those listed in the formulas. However, if a lower limit is specified in
the syntax (only for several naux1 arguments in the Fourier transform, convolution,
and correlation subroutines), you should not go below that limit. The ESSL error
monitor returns the necessary sizes of the aux storage areas in the input-argument
error message. This does, however, terminate your program when the error is
encountered. (If you accidentally specify a sufficient amount of storage for the
ESSL subroutine to perform the computation, error handling does not issue an

error message and processing continues normally.) Eigure 1 on page 33 illustrates
what happens when error 2015 is unrecoverable.

ESSL Version 3 Release 3 Guide and Reference



User Program

Call ESSL
subroutine

] ESSL Subroutine

—/

[P

Is NAUX=0
and
dynamic allocation
is allowed

2

Is NAUX >
lower limit
?*

yes

I‘

with lower limit
|

Terminate ]

Issue message 2538—2015)

> (
(

Is NAUX 2

minimum
required
value?

no

Issue message 2538-2015
yes with minimum
required value

|
( Terminate ]
Perform ESSL
computation

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

subroutines.

Figure 1. How to Obtain an NAUX Value from an Error Message, but Terminate

The Second Way
In this case, you obtain the minimum required value of naux from the error
message and from the updated naux argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2015 recoverable. This allows you to dynamically determine in your program the
minimum sizes required for the auxiliary working storage areas, specified in the
naux arguments. Run your program with the naux values smaller than required by
the subroutine for the particular processor you are running on. As a general
guideline, specify values smaller than those listed in the formulas. However, if a
lower limit is specified in the syntax (only for several naux1 arguments in the
Fourier transform, convolution, and correlation subroutines), you should not go
below that limit. The ESSL error monitor returns the necessary sizes of the aux
storage areas in the input-argument error message and a return code is passed
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User Program

back to your program, indicating that updated values are also returned in the naux
arguments. You can then react to these updated values during run time in your
program. ESSL does not perform any computation when this error occurs. For
details on how to do this, see [!Chapter 4 Coding Your Program” on page 105, (If
you accidentally specify a sufficient amount of storage for the ESSL subroutine to
perform the computation, error handling does not issue an error message and
processing continues normally.) illustrates what happens when error 2015
is recoverable.

ESSL Subroutine

(

Make error

2015 recoverable ]

Is NAUX >

lower limit
’?*

Issue message 2538-2015

(

Call ESSL
subroutine

with lower limit

N
J

&
<

Is return code
=r?

Terminate

Is NAUX >
minimum
required
value?

(

Issue message 2538-2015
React to updated yes with minimum
NAUX value required value

Perform ESSL
computation

Updated NAUX argument
with minimum

required value

Set return code
=r

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation
subroutines.

Figure 2. How to Obtain an NAUX Value from an Error Message and in Your Program
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Here Is an Example of What Happens When You Use These Two

Techniques
The following example illustrates all the actions taken by the ESSL error-handling

facility for each possible value of a recoverable input argument, naux. A key point
here is that if you want to have the updated argument value returned to your
program, you must make error 2015 recoverable and then specify an naux value

ESSL Version 3 Release 3 Guide and Reference



greater than or equal to 20 and less than 300. For values out of that range, the
error recovery facility is not in effect. (These values of naux, 20 and 300, are used
only for the purposes of this example and do not relate to any of the ESSL

subroutines.)

NAUX Meaning of the NAUX Value

20 Lower limit of naux required for using recoverable input-argument
error-handling facilities in ESSL. (This applies only to several naux1
arguments in the Fourier transform, convolution, and correlation
subroutines. You can find the lower limit in the syntax description for the

naux1 argument. For a list of subroutines, see [Table 22 on page 2d.)

300 Minimum value of naux, required for successful running (on the processor

the program is being run on).

[Cable 23 describes the actions taken by ESSL in every possible situation for the

values given in this example.

Table 23. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

NAUX Value Action When 2015 Is an Unrecoverable Action When 2015 Is a Recoverable
Input-Argument Error Input-Argument Error
naux < 20 An input-argument error message is issued. |An input-argument error message is issued.

The value in the error message is the lower
limit, 20. The application program stops.

The value in the error message is the lower
limit, 20. The application program stops.

20 = naux < 300

An input-argument error message is issued.

The value in the error message is the
minimum required value, 300. The
application program stops.

ESSL returns the value of naux as 300 to the
application program, and an input-argument
error message is issued. The value in the
error message is the minimum required
value, 300. ESSL does no computation, and
control is returned to the application
program.

naux = 300

Your application program runs successfully.

Your application program runs successfully.

Here Is How You Code It in Your Program
If you leave error 2015 unrecoverable, you do not code anything in your program.

You just look at the error messages to get the sizes of auxiliary storage. On the
other hand, if you want to make error 2015 recoverable to obtain the auxiliary
storage sizes dynamically in your program, you need to add some coding
statements to your program. For details on coding these statements in each
programming language, see the following examples:

* For Fortran, see page
* For C, see page ﬁ
* For C++, see page

You may want to provide a separate subroutine to calculate the auxiliary storage

size whenever you need it. [Ei

shows how you might code a

separate Fortran subroutine. Before calling SCFT in your program, call this
subroutine, SCFT which calculates the minimum size and stores it in the naux
arguments. Upon return, your program checks the return code. If it is nonzero, the
naux arguments were updated, as planned. You should then make sure adequate
storage is available and call SCFT. On the other hand, if the return code is zero,
error handling was not invoked, the naux arguments were not updated, and the
initialization step was performed for SCFT.
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SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUXI,AUX2,NAUX2)
REAL#4 X(0:%),Y(0:%),SCALE
REAL*8 AUX1(7),AUX2(0:%*)
INTEGER*4 INIT,INC1X,INC2X,INCLY,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8  $2015
CALL EINFO(0)
CALL ERRSAV(2015,52015)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INCLX,INC2X,Y,INCLY,INC2Y,
* N,M, ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,52015)
RETURN
10 CONTINUE
CALL ERRSTR(2015,52015)
RETURN 1
END

Figure 3. Fortran Subroutine to Calculate Auxiliary Storage Sizes

Providing a Correct Transform Length to ESSL

This section describes how to calculate the length of your transform by use of
formulas or error-handling capabilities provided in ESSL.

What ESSL Subroutines Require Transform Lengths?

For the ESSL subroutines listed in [able 24, you need to provide one or more
transform lengths for the computation of a Fourier transform. These transform
lengths are supplied through one or more arguments, such as 1, n1, n2, and #3, in
the calling sequence for the ESSL subroutine. Only certain lengths of transforms
are permitted in the computation.

Table 24. ESSL Subroutines Requiring Transform Lengths

Subroutine Names

Fourier Transforms:

_CFT _RCFT _CRFT _COSF _SINF
SCOSFT _CFT2 _RCFT2 _CRFTI2 _CFT3
_RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P

Who Do You Want to Calculate the Length? You or ESSL?

You have a choice of two methods for determining an acceptable length for your
transform to be processed by ESSL:

”

* Use the formula or large table in L

to determine an acceptable length. For details, see
b ?I/

» Use the ESSL error-handling facilities to return to you an acceptable length. For

details, see 'How Da You Get ESSI ta Calculate the Tength Tsing ESSI Errod
[Handling?” on page 37,
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How Do You Calculate the Length Using the Table or
Formula?

The lengths ESSL accepts for transforms in the Fourier transform subroutines are
listed in EAcceptable Lengths fc e Transforms” on page 719, You should use the
table in that section to find the two values your length falls between. You then
specify the larger length for your transform. If you find a perfect match, you can
use that value without having to change it. The formula provided in that section
expresses how to calculate the acceptable values listed in the table. If necessary,
you can use the formula to dynamically check lengths in your program.

How Do You Get ESSL to Calculate the Length Using ESSL
Error Handling?

This section describes how to get ESSL to calculate transform lengths.

Here Are the Two Ways You Can Do It
Ask yourself which of the following ways you prefer to obtain the information
from ESSL:

* By leaving error 2030 unrecoverable, you can obtain an acceptable value for n
from the input-argument error message, but your program terminates.

* By making error 2030 recoverable, you obtain an acceptable value for n from
the input-argument error message and have the updated n argument returned to
your program.

Because the Fourier transform subroutines allow only certain lengths for
transforms, ESSL provides this error-handling capability to return acceptable
lengths to your program. It returns them in the transform length arguments. The
value ESSL returns is the next larger acceptable length for a transform, based on
the length you specify in the n argument.

The First Way

In this case, you obtain an acceptable value of n from the error message, but your
program terminates.

Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in input-argument error message. This does,
however, terminates your program when the error is encountered. (If you do
happen to specify an acceptable length for the transform, error handling does not

issue an error message and processing continues normally.) Bigure 4 on page 34

illustrates what happens when error 2030 is unrecoverable.
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ESSL Subroutine

Is N=

acceptable no

. transform

. length?

| Issue message 2538-2030
Call ESSL \ yes with next larger
subroutine acceptable transform

P length

I |

Terminate

Perform ESSL
computation

Figure 4. How to Obtain an N Value from an Error Message, but Terminate

The Second Way
In this case, you obtain an acceptable value of 7 from the error message and from
the updated n argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2030 recoverable. This allows you to dynamically determine in your program an
acceptable length for your transform, specified in the n argument(s). Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in the input-argument error message and a
return code is passed back to your program, indicating that updated values are
also returned in the n argument(s). You can then react to these updated values
during run time in your program. ESSL does not perform any computation when
this error occurs. For details on how to do this, see L i

Program” on page 104. (If you do happen to specify an acceptable length for the

transform, error handling does not issue an error message and processing

continues normally.) Eigure 5 an page 3d illustrates what happens when error 2030

is recoverable.
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Figure 5. How to Obtain an N Value from an Error Message and in Your Program

Here Is an Example of What Happens When You Use These Two

Techniques
The following example illustrates all the actions taken by the ESSL error-handling

facility for each possible value of a recoverable input argument, n. The values of n
used in the example are as follows:

N Meaning of the N Value

7208960
An acceptable transform length, required for successful computing of a
Fourier transform

7340032
The next larger acceptable transform length, required for successful
computing of a Fourier transform

[able 25 on page 40 describes the actions taken by ESSL in every possible situation

for the values given in this example.
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Table 25. Example of Input-Argument Error Recovery for Transform Lengths

N Value Action When 2030 Is an Unrecoverable Action When 2030 Is a Recoverable
Input-Argument Error Input-Argument Error

n = 7208960 Your application program runs Your application program runs
successfully. successfully.

n = 7340032

7208960 < n < 7340032

An input-argument error message is
issued. The value in the error message is
7340032. The application program stops.

ESSL returns the value of 1 as 7340032 to
the application program, and an
input-argument error message is issued.

The value in the error message is 7340032.
ESSL does no computation, and control is
returned to the application program.

40

Here Is How You Code It in Your Program

If you leave error 2030 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the transform lengths. On the other
hand, if you want to make error 2030 recoverable to obtain the transform lengths
dynamically in your program, you need to add some coding statements to your
program. For details on coding these statements in each programming language,
see the following examples:

* For Fortran, see page E

* For C, see page ﬁ

* For C++, see page

You may want to provide a separate subroutine to calculate the transform length
whenever you need it. wwows how you might code a separate Fortran
subroutine. Before calling SCFT in your program, you call this subroutine, SCFT
which calculates the correct length and stores it in 7. Upon return, your program
checks the return code. If it is nonzero, the n argument was updated, as planned.
You then do any necessary data setup and call SCFT. On the other hand, if the
return code is zero, error handling was not invoked, the n argument was not
updated, and the initialization step was performed for SCFT.

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUXI,AUX2,NAUX2)
REAL#4 X(0:%),Y(0:%),SCALE
REAL*8 AUX1(7),AUX2(0:%*)
INTEGER+4 INIT,INC1X,INC2X,INCLY,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8  $2030
CALL EINFO(0)
CALL ERRSAV(2030,52030)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
CALL SCFT(INIT,X,INCIX,INC2X,Y,INCLY,INC2Y,

* N,M, ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2030,52030)
RETURN
10 CONTINUE
CALL ERRSTR(2030,52030)
RETURN 1
END

Figure 6. Fortran Subroutine to Calculate Transform Length

You might want to combine the request for auxiliary storage sizes along with your

request for transform lengths. Bigure 7 an page 41 shows how you might code a
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separate Fortran subroutine combining both requests. It combines the functions

performed by the subroutines in Figure 3 on page 36 and [Eigure 6 on page 40.

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:%),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:%)
INTEGER*4 INIT,INCI1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8  $2015,52030
CALL EINFO(0)
CALL ERRSAV(2015,52015)
CALL ERRSAV(2030,52030)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUXZ2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY

NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INCIX,INC2X,Y,INC1Y,INC2Y,
* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)

CALL ERRSTR(2015,52015)
CALL ERRSTR(2030,52030)
RETURN

10 CONTINUE
CALL ERRSTR(2015,52015)
CALL ERRSTR(2030,52030)
RETURN 1
END

Figure 7. Fortran Subroutine to Calculate Auxiliary Storage Sizes and Transform Length

Getting the Best Accuracy

This section explains how accuracy of your results can be affected in various
situations and what you can do to achieve the best possible accuracy.

What Precisions Do ESSL Subroutines Operate On?

Both short- and long-precision real versions of the subroutines are provided in
most areas of ESSL. In some areas, short- and long-precision complex versions are
also provided, and, occasionally, an integer version is provided. The subroutine
names are distinguished by a one- or two-letter prefix based on the following
letters:

S for short-precision real

D for long-precision real

C for short-precision complex

Z for long-precision complex

I for integer

For a description of these data types, see ['How Do You Set Up Your Scalar Data?’]
. The scalar data types and how you should code them for each
programming language are listed under “Coding Your Scalar Data” in each

language section in [‘Chapter 4 Coding Your Program” on page 105.
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How does the Nature of the ESSL Computation Affect
Accuracy?

In subroutines performing operations such as copy and swap, the accuracy of data
is not affected. In subroutines performing computations involving mathematical
operations on array data, the accuracy of the result may be affected by the
following:

* The algorithm, which can vary depending on values or array sizes within the
computation or the number of threads used.

¢ The matrix and vector sizes

For this reason, the ESSL subroutines do not have a closed formula for the error of
computation. In other words, there is no formula with which you can calculate the
error of computation in each subroutine.

Short-precision subroutines sometimes provide increased accuracy of results by
accumulating intermediate results in long precision. This is also noted in the
functional description for each subroutine.

For the RS/6000 POWER and POWER?2, the short-precision, floating-point
operands are stored by the hardware in the floating-point registers as
long-precision values, and, as a result, all arithmetic operations are performed in
long-precision. Where applicable, the ESSL subroutines use the Multiply-Add
instructions, which combine a Multiply and Add operation without an
intermediate rounding operation.

For the ESSL POWER Library, ESSL Thread-Safe Library, and ESSL SMP
Library, results obtained by 32-bit environment and 64-bit environment
applications using the same ESSL library are mathematically equivalent but may
not be bit identical.

What Data Type Standards Are Used by ESSL, and What
Exceptions Should You Know About?

The data types operated on by the short-precision, long-precision, and integer
versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary floating-point
format, and 32-bit integer. See the ANSI/IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 for more detail.

There are ESSL-specific rules that apply to the results of computations using the
ANSI/IEEE standards. When running your program, the result of a multiplication
of NaN (“Not-a-Number”) by a scalar zero, under certain circumstances, may
differ in the ESSL subroutines from the result you expect.

Usually, when NaN is multiplied by a scalar zero, the result is NaN; however, in
some ESSL subroutines where scaling is performed, the result may be zero. For
example, in computing oA, where « is a scalar and A is a matrix, if « is zero and
one (or more) of the elements of A is NaN, the scaled result, using that element,
may be a zero, rather than NaN. To avoid problems, you should consider this
when designing your program.

How is Underflow Handled?

ESSL does not mask underflow. If your program incurs a number of unmasked
underflows, its overall performance decreases. For the RS/6000, floating-point
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exception trapping is disabled by default. Therefore, you do not have to mask
underflow unless you have changed the default.

Where Can You Find More Information on Accuracy?
Information about accuracy can be found in the following places:

Migration considerations concerning accuracy of results between releases,

;Elatformsi and so forth are described in EChapter 6 Migrating Your Programs’|

Specific information on accuracy for each area of ESSL is given in “Performance
and Accuracy Considerations” in each chapter introduction in Part 2.

The functional description under “Function” for each subroutine explains what
you need to know about the accuracy of the computation. Varying
implementation techniques are sometimes used to improve performance. To let
you know how accuracy is affected, the functional description may explain in
general terms the different techniques used in the computation.

Getting the Best Performance

This section describes how you can achieve the best possible performance from the
ESSL subroutines.

What General Coding Techniques Can You Use to Improve
Performance?

There are many ways in which you can improve the performance of your program.
Here are some of them:

Use the basic linear algebra subprograms and matrix operations in the order of
optimum performance: matrix-matrix computations, matrix-vector computations,
and vector-scalar computations. When data is presented in matrices or vectors,
rather than vectors or scalars, multiple operations can be performed by a single
ESSL subroutine.

Where possible, use subroutines that do multiple computations, such as SNDOT
and SNAXPY, rather than individual computations, such as SDOT and SAXPY.

Use a stride of 1 for the data in your computations. Not having vector elements

consecutively accessed in storage can degrade your performance. The closer the

vector elements are to each other in storage, the better your performance. For an
explanation of stride, see [ i ”

Do not specify the size of the leading dimension of an array (/da) or stride of a
vector (inc) equal to or near a multiple of:

— 128 for a long-precision array

— 256 for a short-precision array

Do not specify the individual sizes of your one-dimensional arrays as multiples
of 128. This is especially important when you are passing several
one-dimensional arrays to an ESSL subroutine. (The multiplicity can cause a
performance problem that otherwise might not occur.)

For small problems, avoid using a large leading dimension (Ida) for your matrix.

In general, align your arrays on doubleword boundaries, regardless of the type
of data; however, when running on a POWER2 processor, it is best to align your
long-precision arrays on a quadword boundary. For information on how your
programming language aligns data, see your programming language manuals.

One subroutine may do scaling while another does not. If scaling is not
necessary for your data, you get better performance by using the subroutine
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without scaling. SNORM2 and DNORM?2 are examples of subroutines that do
not do scaling, versus SNRM2 and DNRM?2, which do scaling.

* Use the STRIDE subroutine to calculate the optimal stride values for your input
or output data when using any of the Fourier transform subroutines, except
_RCFT and _CRFT. Using these stride values for your data allows the Fourier
transform subroutines to achieve maximum performance. You first obtain the
optimal stride values from STRIDE, calling it once for each stride value desired.
You then arrange your data using these stride values. After the data is set up,
you call the Fourier transform subroutine. For details on the STRIDE subroutine

and how to use it for each Fourier transform subroutine, see
FSTRIDE—Determine the Stride Value for ﬂpfimn] Performance in Qppniﬁpr‘i

[Eourier Transform Subroutines” on page 934, For additional information, see

Where Can You Find More Information on Performance?

Information about performance can be found in the following places:

* Many of the techniques ESSL uses to achieve the best possible performance are

described in the 'High Performance of ESSI” on page 4.

* Migration considerations concerning performance are described in m

[ESSIL. Version ?2 Prngramq to Version 3” on page 163

* Specific information on performance for each area of ESSL is given in
“Performance and Accuracy Considerations” in each chapter introduction in Part
2.

* Detailed performance information for selected subroutines can be found in

reference [Bd], [1], [B].

Dealing with Errors when Using ESSL

44

At run time, you can encounter different types of errors or messages that are
related to the use of the ESSL subroutines:

* Program exceptions

* ESSL input-argument errors

* ESSL computational errors

* ESSL resource errors

* ESSL attention messages

This section explains how to handle all these situations.

What Can You Do about Program Exceptions?

The program exceptions you can encounter in ESSL are described in the ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

What Can You Do about ESSL Input-Argument Errors?

This section gives an overview on how you can handle input-argument errors.

All Input-Argument Errors

ESSL checks the validity of most input arguments. If it finds that any are invalid, it
issues the appropriate error messages. Also, except for the three recoverable errors
described below, it terminates your program. You should use standard
programming techniques to diagnose and fix unrecoverable input-argument errors,
as described in L i "
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You can determine the input-argument errors that can occur in a subroutine by
looking under “Error Conditions” in the subroutine description in Part 2 of this
book. Error messages for all input-argument errors are listed in EInput-Argument
Error Messages(2001-2099)” on page 172

Recoverable Errors 2015, 2030 and 2200 Can Return Updated
Values in the NAUX, N and NSINFO Arguments

For three input-argument errors, 2015, 2030, and 2200 in Fortran, C, C++, and PL/I
programs, you have the option to continue running and have an updated value of
the input argument returned to your program for subsequent use. These are called
recoverable errors. This recoverable error-handling capability gives you flexibility
in determining the correct values for the arguments. You can:

* Determine the correct size of an auxiliary work area by using error 2015. For
help in deciding whether you want to use this capability and details on how to
use it, see [Llsi ili i ”

* Determine the correct length of a transform by using error 2030. For help in
deciding whether you want to use this capability and details on how to use it,
See ’ : . 7

¢ Determine the minimal size of the array AP for DBSTRF and DBSSV by using
error 2200. For help deciding whether you want to use this capability, see

__ and
FDBSSV-—Summetric Indefinite Matrix Factarization and Mn]ﬁp]p Righ’r-T—TnndI

Ei oo =

If you chose to leave errors 2015, 2030 and 2200 unrecoverable, you do not need to
make any coding changes to your program. The input-argument error message is
issued upon termination, containing the updated values you could have specified
for the program to run successfully. You then make the necessary corrections in
your program and rerun it.

If you choose to make errors 2015, 2030 and 2200 recoverable, you call the ERRSET
subroutine to set up the ESSL error exit routine, ENOTRM, and then call the ESSL
subroutine. When one or more of these errors occurs, the input-argument error
message is issued with the updated values. In addition, the updated values are
returned to your program in the input arguments named in the error message,
along with a nonzero return code and processing continues. Return code values
associated with these recoverable errors are described under “Error Conditions” for
each ESSL subroutine in Part 2.

For details on how to code the necessary statements in your program to make
2015, 2030 and 2200 recoverable, see the following sections:

° I:/I I'é IE E l ” 113

° G _ : 7

° G _ : ”

What Can You Do about ESSL Computational Errors?

This section gives an overview on how you can handle computational errors.

All Computational Errors

ESSL computational errors are errors occurring in the computational data, such as
in your vectors and matrices. You can determine the computational errors that can
occur in a subroutine by looking under “Error Conditions” in the subroutine
description in Part 2 of this book. These errors cause your program to terminate
abnormally unless you take preventive action. A message is also provided in your
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User Program

”

output, containing information about the error. Messages are listed in

When a computational error occurs, you should assume that the results are
unpredictable. The result of the computation is valid only if no errors have
occurred. In this case, a zero return code is returned.

w shows what happens when a computational error occurs.

ESSL Subroutine

Does error

(

21nn occur during yes
: the ESSL
. computation?
no Issue message 2538-21nn
Cagl ESSL ) with information on inf1
subroutine J and, optionally, inf2

l¢

I‘

Terminate

Figure 8. How to Obtain Computational Error Information from an Error Message, but Terminate

Recoverable Computational Errors Can Return Values Through
EINFO

In Fortran, C, C++, and PL/I programs, you have the capability to make certain
computational errors recoverable and have information returned to your program
about the errors. Recoverable computational errors are listed in mﬁé

. First, you call EINFO in the beginning of your program to initialize the
ESSL error option table. You then call ERRSET to reset the number of allowable
errors for the computational error codes in which you are interested. When a
computational error occurs, a nonzero return code is returned for each
computational error. Return code values associated with these errors are described
under “Error Conditions” in each subroutine description. Based on the return code,
your program can branch to an appropriate statement to call the ESSL error
information-handler subroutine, EINFO, to obtain specific information about the
data involved in the error. This information is returned in the EINFO output
arguments, infl and, optionally, inf2. You can then check the information returned
and continue processing, if you choose. The syntax for EINFO is described under
['EINEQ—FESSI . Error Information-Handler Subroutine” on page 924. You also get a
message in your output for each computational error encountered, containing
information about the error. The EINFO subroutine provides the same information
in the messages as it provides to your program.

For details on how to code the necessary statements in your program to obtain
specific information on computational errors, see the following sections:
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Eigure d shows what happens if you make a computational error recoverable.

User Program ESSL Subroutine
: Y
Make error 210 voeut during N\ S
21nnrecoverable the ESSL g
computation?
no Issue message 2538-21nn
Call ESSL \ with information on inf1
subroutine )

and, optionally, inf2

<&
<

=r?

Is return code

Set return code
=r

Call EINFO to obtain
information on inf1
and, optionally, inf2

React to this
information

Figure 9. How to Obtain Computational Error Information in an Error Message and in Your Program

What Can You Do about ESSL Resource Errors?

This section gives an overview on how you can handle resource errors.

All Resource Errors

ESSL returns a resource error and terminates your program when an attempt to
allocate work area fails. Some ESSL subroutines attempt to allocate work area for
their internal use. Other ESSL subroutines attempt to dynamically allocate auxiliary
storage when a user requests it through calling sequence arguments, such as aux
and naux. For information on how you could reduce memory constraints on the
system or increase the amount of memory available before rerunning the

application program, see 'ESSI. Resource Frror Messages” an page 170,

You can determine the resource errors that can occur in a subroutine by looking
under “Error Conditions” in the subroutine description in Part 2 of this book. Error

messages for all resource errors are listed in 'Resource Frror Messages(2400-2499)"]
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What Can You Do about ESSL Attention Messages?

This section gives an overview on how you can handle attention messages.

All Attention Messages

ESSL returns an attention message to describe a condition that occurred, however,
ESSL is able to continue processing. For information on how you could reduce
memory constraints on the system or increase the amount of memory available, see

”

For example, an attention message may be issued when enough work area was
available to continue processing, but was not the amount initially requested. An
attention message would be issued to indicate that performance may be degraded.

For a list of subroutines that may generate an attention message, see [Cable 31 od
. For a list of attention messages, see Informational and Attention Errod

How Do You Control Error Handling by Setting Values in the
ESSL Error Option Table?

This section explains all aspects of using the ESSL error option table.

What Values Are Set in the ESSL Error Option Table?

The ESSL error option table contains information that tells ESSL what to do every

time it encounters an ESSL-generated error. [able 2d shows the default values
established in the table when ESSL is installed.

Table 26. ESSL Error Option Table Default Values

Number of
Allowable Errors Number of Messages | Modifiable Table
Range of Error Messages (From-To) (ALLOW) Printed (PRINT) Entry (MODENT)
2538-2000 Unlimited 255 NO
2538-2001 through 2538-2073 Unlimited 255 YES
2538-2074 Unlimited 5 YES
2538-2075 through 2538-2098 Unlimited 255 YES
2538-2099 1 255 YES
2538-2100 through 2538-2101 1 255 YES
2538-2102 Unlimited 255 YES
2538-2103 through 2538-2113 1 255 YES
2538-2114 Unlimited 255 YES
2538-2115 through 2538-2122 1 255 YES
2538-2123 through 2538-2124 Unlimited 255 YES
2538-2125 through 2538-2126 1 255 YES
2538-2127 Unlimited 255 YES
2538-2128 through 2538-2137 1 255 YES
2538-2138 through 2538-2143 Unlimited 255 YES
2538-2144 through 2538-2145 1 255 YES
2538-2146 through 2538-2149 Unlimited 255 YES
2538-2150 1 255 YES
2538-2151 Unlimited 255 YES
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Table 26. ESSL Error Option Table Default Values (continued)

Number of
Allowable Errors Number of Messages | Modifiable Table
Range of Error Messages (From-To) (ALLOW) Printed (PRINT) Entry (MODENT)
2538-2152 through 2538-2198 1 255 YES
2538-2199 1 255 YES
2538-2200 through 2538-2299 Unlimited 255 YES
2538-2400 through 2538-2499 1 255 NO
2538-2600 through 2538-2699 Unlimited 255 NO
2538-2700 through 2538-2799 1 255 NO

How Can You Change the Values in the Error Option Table?

You can change any of the values in the ESSL error option table by calling the
ERRSET subroutine in your program. This dynamically changes values at run time.
You can also save and restore entries in the table by using the ERRSAV and
ERRSTR subroutines, respectively. For a description of the ERRSET, ERRSAV, and

ERRSTR subroutines see !Chapter 17 ltilities” an page 923,
When Do You Change the Values in the Error Option Table?

Because you can change the information in the error option table, you can control
what happens when any of the ESSL errors occur. There are a number of instances
when you may want to do this:

To Customize Your Error-Handling Environment: You may simply want to adjust
the number of times an error is allowed to occur before your program terminates.
You can use any of the capabilities available in ERRSET.

To Obtain Auxiliary Storage Sizes and Transform Lengths: You may want to
make ESSL input-argument error 2015 or 2030 recoverable, so ESSL returns
updated auxiliary storage sizes or transform lengths, respectively, to your program.
For a more detailed discussion, see

[nput-Argument Errors?” on page 44. For how to use ERRSET to do this, see the
section for your programming language in !Chapter 4 Coding Your Program” onl

To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV: You may
want to make ESSL input-argument error 2200 recoverable, so ESSL returns an
updated size to your program. For a more detailed discussion, see

= 27 For how to use ERRSET to do
this, see the section for your programming language in

”

To Get More Information About a Computational Error: You may want ESSL to
return information about a computational error to your program. For a more
detailed discussion, see 'What Can You Do about ESST ann11fafinna] Errars?” on

. For how to do use ERRSET to do this, see the sectlon for your

programming language in I’Chapter 4 Coding Your Program” on page 103.

To Allow Parts of Your Application to Have Unique Error-Handling
Environments: If your program is part of a large application, you may want to
dynamically save and restore entries in the error option table that have been
altered by ERRSET. This ensures the integrity of the error option table when it is
used by multiple programs within an application. For a more detailed discussion,
see “How Can You Control Error Handling in Large Applications by Saving and
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Requ‘ing Entries in the Error Option Table?”l For how to use ERRSAV and

ERRSTR, see the section for your programming language in I’‘Chapter 4. Coding
Nour Program” on page 103.

How Can You Control Error Handling in Large Applications by

Saving and Restoring Entries in the Error Option Table?

When your program is part of a larger application, you should consider that one of
the following can occur:

* If you use ERRSET in your program to reset any of the values in the error
option table for any of the ESSL input-argument errors or computational errors,
some other program in the application may be adversely affected. It may be
expecting its original values.

* If some other program in the application uses ERRSET to reset any of the values
in the error option table for any of the ESSL input-argument errors or
computational errors, your program may be adversely affected. You may need a
certain value in the error option table, and the application may have reset that
value.

These situations can be avoided if every program that uses ERRSET, in the large
application, also uses the ERRSAV and ERRSTR facilities. For a particular error
number, ERRSAV saves an entry from the error option table in an area accessible to
your program. ERRSTR then stores the entry back into the error option table from
the storage area. You code an ERRSAV and ERRSTR for each input-argument error
number and computational error number for which you do an ERRSET to reset the
values in the error option table. Call ERRSAV at the beginning of your program
after you call EINFO, and then call ERRSTR at the end of your program after all
ESSL computations are completed. This saves the original contents of the error
option table while your program is running with different values, and then restores
it to its original contents when your program is done. For details on how to code

these statements in your program, see l/Chapter 4 Coding Your Program” onl

How does Error Handling Work in a Threaded Environment?

When your application program or Fortran first creates a thread, ESSL initializes
the error option table information to the default settings shown in

. You can change the default settings for each thread you created by calling
the appropriate error handling subroutines (ERRSET, ERRSAV, or ERRSTR) from
each thread. An example of how to initialize the error option table and change the

default settings on multiple threads is shown in Example of Handling Errors in d
Multithreaded Application Program” on page 121,

”

ESSL issues error messages as they occur in a threaded environment. Error
messages issued from any of the existing threads are written to standard output in
the order in which they occur.

When a terminating condition occurs on any of the existing threads (for example,
the number of allowable errors was exceeded), ESSL terminates your application
program. One set of summary information corresponding to the terminating thread
is always printed. Summary information corresponding to other threads may also
be printed.

Where Can You Find More Information on Errors?

Information about errors and how to handle them can be found in the following
places:
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How to code your program to use the ESSL error-handling facilities is described

’ ”

m

All ESSL error messages are listed under [‘Messa ges” on page 171

The errors and return codes associated with each ESSL subroutine are listed
under “Error Conditions” in each subroutine description in Part 2.

Complete diagnostic procedures for all types of ESSL programming and
documentation problems, along with how to collect information and report a
problem, are provided in L i “
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Chapter 3. Setting Up Your Data Structures

This chapter provides you with information that you need to set up your data
structures, consisting of vectors, matrices, and sequences. These techniques apply
to programs in all programming languages.

Concepts

Vectors, matrices, and sequences are conceptual data structures contained in arrays.
In many cases, ESSL uses stride or leading dimension to select the elements of the
vector, matrix, or sequence from an array. In other cases, ESSL uses a specific
mapping, or storage layout, that identifies the elements of the vector, matrix, or
sequence in an array, sometimes requiring several arrays to help define the
mapping. These elements selected from the array(s) make up the conceptual data
structure.

When you call an ESSL subroutine, it assumes that the data structure is set up
properly in the array(s) you pass to it. If it is not, your results are unpredictable.
ESSL also uses these same storage layouts for data structures passed back to your
program.

The use of the terms vector, matrix, and sequence in this book is consistent with
standard mathematical definitions, and their representations are consistent with
conventions used in mathematical texts. Special notations and conventions used in
this book for describing vectors, matrices, and sequences are explained in

”

Overlapping Data Structures: Most of the subroutines do not allow vectors,
matrices, or sequences to overlap. If this occurs, results are unpredictable. Where
this applies, it is explained in in each subroutine description. This means the
elements of the data structure cannot reside in the same storage locations as any of
the other data structures. It is possible, however, to have elements of different data
structures in the same array, as long as the elements are interleaved through
storage using strides greater than 1. For example, using vectors x and y with
strides of 2, where x starts at A(1) and y starts at A(2), the elements reside in array
A in the order xy, ¥4, X5, Yo, X3, Y3, ... and so forth.

When you use this technique, you should be careful that you specify different
starting locations for each data structure contained in the array.

Vectors

A vector is a one-dimensional, ordered collection of numbers. It can be a column
vector, which represents an 7 by 1 ordered collection, or a row vector, which
represents a 1 by n ordered collection.

The column vector appears symbolically as follows:

© Copyright IBM Corp. 1997, 2001 53



54

A row vector appears symbolically as follows:

x=[xx,x5 ... x,]

Vectors can contain either real or complex numbers. When they contain real
numbers, they are sometimes called real vectors. When they contain complex
numbers, they are called complex vectors.

Transpose of a Vector

The transpose of a vector changes a column vector to a row vector, or vice versa:

[ x, | [ x, |
X, X2
*3 T |7
X = [x1 X, x3...xn] (x) =

=
Il

X, X

n

The ESSL subroutines use the vector as it is intended in the computation, as either
a column vector or a row vector; therefore, no movement of data is necessary.

In the examples provided with the subroutine descriptions in [Part 2 Referencd
of this book, both types of vectors are represented in the same way,
showing the elements of the array that make up the vector x, as follows:

(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Conjugate Transpose of a Vector

The conjugate transpose of a vector x, containing complex numbers, is denoted by
x'" and is expressed as follows:

]
X
X3 °
x=|.| x"'=[xX %..%,]

n
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Just as for the transpose of a vector, no movement of data is necessary for the
conjugate transpose of a vector.

In Storage

A vector is usually stored within a one- or two-dimensional array. Its elements are
stored sequentially in the array, but not necessarily contiguously.

The location of the vector in the array is specified by the argument for the vector
in the ESSL calling sequence. It can be specified in a number of ways. For example,
if A is an array of length 12, and you want to specify vector x as starting at the first
element of array A, specify A as the argument, such as in:

X = SASUM (4,A,2)

where the number of elements to be summed in the vector is 4, the location of the
vector is A, and the stride is 2.

If you want to specify vector x as starting at element 3 in array A, which is
declared as A(1:12), specify:

X = SASUM (4,A(3),2)

If A is declared as A(-1:8), specify the following for element 3:
X = SASUM (4,A(1),2)

If A is a two-dimensional array and declared as A(1:4,1:10), and you want vector
x to start at the second row and third column of A, specify the following;:

X = SASUM (4,A(2,3),2)

The stride specified in the ESSL calling sequence is used to step through the array
to select the vector elements. The direction in which the vector elements are
selected from the array—that is, front to back or back to front—is indicated by the
sign (+ or —) of the stride. The absolute value of the stride gives the spacing
between each element selected from the array.

To calculate the total number of elements needed in an array for a vector, you can
use the following formula, which takes into account the number of elements, 1, in
the array and the stride, inc, specified for the vector:

1+(n-1) linc|

An array can be much larger than the vector that it contains; that is, there can be
many elements following the vector in the array, as well as elements preceding
the vector.

For a complete description of how vectors are stored within arrays, see

7

For a complex vector, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex vectors and matrices as for
real vectors and matrices of the same precision. See I/How Do You Set Up Youd
Bealar Data?” on page 26 for a description of real and complex numbers, and
Do You Set Up Your Arrays?” on page 24 for a description of how real and
complex data is stored in arrays.
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How Stride Is Used for Vectors

The stride for a vector is an increment that is used to step through array storage to
select the vector elements from an array. To define exactly which elements become
the conceptual vector in the array, the following items are used together:

* The location of the vector within the array

* The stride for the vector

* The number of elements, n, to be processed

The stride can be positive, negative, or 0. For positive and negative strides, if you
specify vector elements beyond the range of the array, your results are be
unpredictable, and you may get program errors.

This section explains how each of the three types of stride is used to select the
vector elements from the array.

Positive Stride

When a positive stride is specified for a vector, the location specified by the
argument for the vector is the location of the first element in the vector, element x;.
The vector is in forward order in the array: (x, x,, ..., x,,). For example, if you
specify X(1) for vector x, where X is declared as X(0:12) and defined as:

= (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.6, 11.0, 12.0, 13.0)
then processing begins at the second element in X, which is 2.0.

To find each successive element, the stride is added cumulatively to the starting
point of vector x in the array. In this case, the starting point is X(1). If the stride
specified for vector x is 3 and the number of elements to be processed is 4, then
the resulting elements selected from X for vector x are: X(1),X(4),X(7), and X(10).

Vector x is then:
(2.0, 5.0, 8.0, 11.0)

As shown in this example, a vector does not have to extend to the end of the array.
Elements are selected from the second to the eleventh element of the array, and the
array elements after that are not used.

This element selection can be expressed in general terms. Using BEGIN as the
starting point in an array X and inc as the stride, this results in the following
elements being selected from the array:

X(BEGIN)

X(BEGIN-+inc)

X(BEGIN+(2)inc)

X(BEGIN+(3)inc)

X(BEGIN+(n—1)inc)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:
x; = X(BEGIN + (i-1)(inc)) fori = 1, n

When using an array with more than one dimension, you should understand how
the array elements are stored to ensure that elements are selected properly. For a

description of array storage, see I‘Setting Up Arrays in Fortran” on page 104. You
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should remember that the elements of an array are selected as they are arranged in
storage, regardless of the number of dimensions defined in the array. Stride is used
to step through array storage until n elements are selected. ESSL processing stops
at that point. For example, given the following two-dimensional array, declared as
A(1:7,1:4).

Matrix A is:
1.0 8.0 15.0 22.0
2.0 9.0 16.0 23.0
3.0 10.0 17.0 24.0
4.0 11.0 18.0 25.0
5.0 12.0 19.0 26.0
6.0 13.0 20.0 27.0
7.0 0 .0 0

14.

with A(3,1) specified for vector x, a stride of 2, and the number of elements to be
processed as 12, the resulting vector x is:

(3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)

This is not a conventional use of arrays, and you should be very careful when
using this technique.

Zero Stride

When a zero stride is specified for a vector, the starting point for the vector is the
only element used in the computation. The starting point for the vector is at the
location specified by the argument for the vector, just as though you had specified
a positive stride. For example, if you specify X for vector x, where X is defined as:

X = (5.0, 4.0, 3.0, 2.0, 1.0)

and you specify the number of elements, 1, to be processed as 6, then processing
begins at the first element, which is 5.0. This element is used for each of the six
elements in vector x.

This makes the conceptual vector x appear as:
(5.0, 5.0, 5.0, 5.0, 5.0, 5.0)

The following general formula shows how to calculate each vector position in a
one-dimensional array:
x; = X(BEGIN) fori = 1, n

Negative Stride

When a negative stride is specified for a vector, the location specified for the vector
is actually the location of the last element in the vector. In other words, the vector
is in reverse order in the array: (x,, x,_y, ..., X;). You specify the end of the vector,
(x,))- ESSL then calculates where the starting point (x;) is by using the following
arguments:

* The location of the vector in the array

e The stride for the vector, inc

* The number of elements, n, to be processed

If you specify vector x at location X(BEGIN) in array X with a negative stride of inc
and 7 elements to be processed, then the following formula gives the starting point
of vector x in the array:

X(BEGIN + (—n+1)(inc))
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For example, if you specify X(2) for vector x, where X is declared as X(1:9) and
defined as:

X =(l.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

and if you specify a stride of -2, and four elements to be processed, processing
begins at the following element in X:
X(2+(—4+1)(-2)) = X(8)

where element X(8) is 8.0.

To find each of the n successive element positions in the array, you successively
add the stride to the starting point n—1 times. Suppose the formula calculated a
starting point of X(SP); the elements selected are:

X(SP)

X(SP+inc)

X(SP+(2)inc)

X(SP+(3)inc)

;((SP+(n—1)inc)

In the above example, the resulting elements selected from X for vector x are X(8),
X(6), X(4), and X(2). This makes the resulting vector x appear as follows:

(8.0, 6.0, 4.0, 2.0)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:
x; = X(BEGIN + (-n+i)(inc)) fori = 1, n

Sparse Vector

A sparse vector is a vector having a relatively small number of nonzero elements.

Consider the following as an example of a sparse vector x with n elements, where
n is 11, and vector x is:

(0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

In Storage

There are two storage modes that apply to sparse vectors: full-vector storage mode
and compressed-vector storage mode. When a sparse vector is stored in full-vector
storage mode, all its elements, including its zero elements, are stored in an array.

For example, sparse vector x is stored in full-vector storage mode in a
one-dimensional array X, as follows:

X = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

When a sparse vector is stored in compressed-vector storage mode, it is stored
without its zero elements. It consists of two one-dimensional arrays, each with a
length of nz, where nz is the number of nonzero elements in vector x:

* The first array contains the nonzero elements of the sparse vector x, stored
contiguously within the array.

Note: The ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.
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* The second array contains a sequence of integers indicating the element
positions (indices) of the nonzero elements of the sparse vector x stored in
full-vector storage mode. This is referred to as the indices array.

For example, the sparse vector x shown above might have its five nonzero
elements stored in ascending order in array X of length 5, as follows:

X = (1.0, 2.0, 3.0, 4.0, 5.0)

in which case, the array of indices, INDX, also of length 5, contains:
INDX = (3, 5, 6, 8, 10)

If the sparse vector x has its elements stored in random order in the array X as:
X = (5.0, 3.0, 4.0, 1.0, 2.0)

then the array INDX contains:
INDX = (16, 6, 8, 3, 5)

In general terms, this storage technique can be expressed as follows:
For each x; # 0, forj=1,n
there exists i, where 1 = i = nz,
such that X(i) = x; and INDX(i) = j.

where:
Xy, ..., X,, are the n elements of sparse vector x, stored in full-vector storage
mode.
X is the array containing the nz nonzero elements of sparse vector x; that is,
vector x is stored in compressed-vector storage mode.
INDX is the array containing the nz indices indicating the element positions.

To avoid an error when using the INDX array to access the elements in any other
target vector, the length of the target vector must be greater than or equal to
max(INDX(i)) for i = 1, nz.

Matrices

A matrix, also referred to as a general matrix, is an m by n ordered collection of
numbers. It is represented symbolically as:

where the matrix is named A and has m rows and n columns. The elements of the

matrix are a;;,, wherei = 1, mandj = 1, n.

ijs

Matrices can contain either real or complex numbers. Those containing real
numbers are called real matrices; those containing complex numbers are called
complex matrices.

Chapter 3. Setting Up Your Data Structures

59



60

Transpose of a Matrix

The transpose of a matrix A is a matrix formed from A by interchanging the rows
and columns such that row i of matrix A becomes column i of the transposed
matrix. The transpose of A is denoted by A". Each element a; in A becomes
element a;; in A" If A is an m by n matrix, then A" is an n by m matrix. The
following represents a matrix and its transpose:

n* * " "mn

ESSL assumes that all matrices are stored in untransformed format, such as matrix
A shown above. No movement of data is necessary in your application program
when you are processing transposed matrices. The ESSL subroutines adjust their
selection of elements from the matrix when an argument in the calling sequence
indicates that the transposed matrix is to be used in the computation. Examples of
this are the transa and transb arguments specified for SGEADD, matrix addition.

Conjugate Transpose of a Matrix

The conjugate transpose of a matrix A, containing complex numbers, is denoted by
A" and is expressed as follows:

a a,. . .da

ml * * *“mn mn

Just as for the transpose of a matrix, the conjugate transpose of a matrix is stored
in untransformed format. No movement of data is necessary in your program.

In Storage

A matrix is usually stored in a two-dimensional array. Its elements are stored
successively within the array. Each column of the matrix is stored successively in
the array. The leading dimension argument is used to select the matrix elements
from each successive column of the array. The starting point of the matrix in the
array is specified as the argument for the matrix in the ESSL calling sequence. For
example, if matrix A is contained in array A and starts at the first element in the
first row and first column of A, you should specify A as the argument for matrix A,
such as in:

CALL SGEMX (5,2,1.0,A,6,X,1,Y,1)

where, in the matrix-vector product, the number of rows in matrix A is 5, the
number of columns in matrix A is 2, the scaling constant is 1.0, the location of the
matrix is A, the leading dimension is 6, the vectors used in the matrix-vector
product are X and Y, and their strides are 1.
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If matrix A is contained in the array BIG, declared as BIG(1:20,1:30), and starts at
the second row and third column of BIG, you should specify BIG(2,3) as the
argument for matrix A, such as in:

CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)

See I'How Leading Dimension Is Used for Matrices! for a complete description of

how matrices are stored within arrays.

For a complex matrix, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex matrices as for real matrices
of the same precision. See EHmmDalauﬁeLLIplouLScaJax_Daialcm_pageld for
a description of real and complex numbers, and t‘How Do You Set Lp Youd

27 for a description of how real and complex data is stored in
arrays.

How Leading Dimension Is Used for Matrices

The leading dimension for a two-dimensional array is an increment that is used to
find the starting point for the matrix elements in each successive column of the
array. To define exactly which elements become the conceptual matrix in the array,
the following items are used together:

* The location of the matrix within the array

* The leading dimension

¢ The number of rows, m, to be processed in the array

* The number of columns, 7, to be processed in the array

The leading dimension must always be positive. It must always be greater than or
equal to m, the number of rows in the matrix to be processed. For an array, A,
declared as A(E1:E2,F1:F2), the leading dimension is equal to:

(E2-E1+1)

The starting point for selecting the matrix elements from the array is at the location
specified by the argument for the matrix in the ESSL calling sequence. For
example, if you specify A(3,0) for a 4 by 4 matrix A, where A is declared as

A(1:7,0:4):
1.0 8.0 15.0 22.0 29.0
2.0 9.0 16.0 23.0 30.0
3.0 10.0 17.0 24.0 31.0
4.0 11.0 18.0 25.0 32.0
5.0 12.0 19.0 26.0 33.0
6.0 13.0 20.0 27.0 34.0
7.0 14.0 21.0 28.0 35.0

then processing begins at the element at row 3 and column 0 in array A, which is
3.0.

The leading dimension is used to find the starting point for the matrix elements in
each of the n successive columns in the array. ESSL subroutines assume that the

arrays are stored in column-major order, as described under 'How Do You Set TId
Your Arrays?” on page 24, and they add the leading dimension (times the size of

the element in bytes) to the starting point. They do this n-1 times. This finds the
starting point in each of the n columns of the array.
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In the above example, the leading dimension is:
E2-E1+1 = 7-1+1 = 7

If the number of columns, 1, to be processed is 4, the starting points are: A(3,0),
A(3,1), A(3,2), and A(3,3). These are elements 3.0, 10.0, 17.0, and 24.0 for ay;, a,,,
a3, and a,,, respectively.

In general terms, this results in the following starting positions of each column in
the matrix being calculated as follows:

A(BEGINI, BEGINJ)

A(BEGINI, BEGINJ+1)

A(BEGINI, BEGINJ+2)

A(BEGINI, BEGINJ+n—1)

To find the elements in each column of the array, 1 is added successively to the
starting point in the column until m elements are selected. This is why the leading
dimension must be greater than or equal to m; otherwise, you go past the end of
each dimension of the array. In the above example, if the number of elements, m,
to be processed in each column is 4, the following elements are selected from array
A for the first column of the matrix: A(3,0), A(4,0), A(5,0), and A(6,0). These
are elements 3.0, 4.0, 5.0, and 6.0, corresponding to the matrix elements a;,, a5, a3,
and a4, respectively.

Column element selection can also be expressed in general terms. Using
A(BEGINI,BEGINJ) as the starting point in the array, this results in the following
elements being selected from each column in the array:

A(BEGINI, BEGINJ)

A(BEGINI+1, BEGINJ)

A(BEGINI+2, BEGINJ)

A(BEGINI+m—1, BEGINJ)

Combining this with the technique already described for finding the starting point
in each column of the array, the resulting matrix in the example is:

G- - iy 30 100 17.0 24.0
. . 40 110 180 250
50 120 190 260
60 130 200 270

As shown in this example, a matrix does not have to include all columns and rows
of an array. The elements of matrix A are selected from rows 3 through 6 and
columns 0 through 3 of the array. Rows 1, 2, and 7 and column 4 of the array are
not used.

Symmetric Matrix

The matrix A is symmetric if it has the property A = A", which means:
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e It has the same number of rows as it has columns; that is, it has n rows and n
columns.

¢ The value of every element a; on one side of the main diagonal equals its mirror
image a;; on the other side: a;; = g, for1 =i =nand1 =j = n

The following matrix illustrates a symmetric matrix of order #; that is, it has n
rows and n columns. The subscripts on each side of the diagonal appear the same
to show which elements are equal:

apdy dzp - - -4y
ay1 Ay Az
Qs ds; Az
A=
ay - . .. .4,
In Storage

The four storage modes used for storing symmetric matrices are described in the
following sections:

The storage technique you should use depends on the ESSL subroutine you are
using and is given under Noted in each subroutine description.

Lower-Packed Storage Mode: When a symmetric matrix is stored in
lower-packed storage mode, the lower triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. (This is equivalent to packing the upper triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element a;; of matrix A in
an array, AP, using the lower triangular packed technique, use the following
formula:

AP + (2n—j)(-1)/2)) =a;  wherei 2 j

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = ay; (start the first column)
AP(2) =ay

AP(3) = a3

AP(n) =a,,

AP(n+1) = a,, (start the second column)
AP(n+2) =4,
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AP(2n-1) =4a,,

AP(2n) = ag; (start the third column and so forth)
AP(n(n+1)/2) =4a,,

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array.

Given the following matrix A:

12 3 4 5
26 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Note: Additional work storage is required in the array for some ESSL subroutines;
for example, in the simultaneous linear algebraic equation subroutines SPPF,
DPPF, SPPS, and DPPS. See the description of those subroutines in
Reference Infarmation| for details.

Following is an example of how to transform your symmetric matrix to
lower-packed storage mode:

K=20
DO 1 J=1,N
DO 2 I=J,N
K = K+1
AP(K)=A(I,J)
2 CONTINUE
1 CONTINUE

Upper-Packed Storage Mode: When a symmetric matrix is stored in
upper-packed storage mode, the upper triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. (This is equivalent to packing the lower triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element 4;; of matrix A in
an array AP using the upper triangular packed technique, use the following
formula:

AP(i+(j(G-1)/2)) = a;  wherej = i

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:
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AP(1) = ay, (start the first column)

AP(2) = a,, (start the second column)
AP(3) =

AP(4) = 4,5 (start the third column)
AP (5) = a1y,

AP(6) = dg

AP(7) = a,, (start the fourth column)

AP(j(j-1)/2+1) = ay; (start the j-th column)
APGG-1)2+) = a,
APG(-1)/2+3) = ay,

AP(j(j-1)/2+j) = a; (end of the j-th column)

AP(n(n+1)/2) =a,,

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array. Given the
following matrix A:

N PN
N 0O oTwmMN
w o oo
o v oo
—
w

—_

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Following is an example of how to transform your symmetric matrix to
upper-packed storage mode:

K=20
DO 1 J=1,N
DO 2 I=1,J
K = K+1
AP(K)=A(I,J)
2 CONTINUE
1 CONTINUE

Lower Storage Mode: When a symmetric matrix is stored in lower storage mode,
the lower triangular part of the symmetric matrix is stored, including the diagonal,
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in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The upper part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AL.

Given the following matrix A:

1 2 3 4 5
26 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15
the array is:
1 = * * *
2 6 * * *
AL = 3 7 10 = o«
4 8 11 13 =
5 9 12 14 15

"o

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Upper Storage Mode: When a symmetric matrix is stored in upper storage mode,
the upper triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The lower part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AU.

Given the following matrix A:

12 3 4 5
26 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15
the array is:
1 2 3 4 5
* 6 7 8 9
AU = * o« 10 11 12
* o« % 13 14
*  * * * 15

7R

where “+” means you do not have to store a value in that position in the array.
However, these storage positions are required.
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Positive Definite or Negative Definite Symmetric Matrix

A real symmetric matrix A is positive definite if and only if xTAx is positive for all
nonzero vectors x.

A real symmetric matrix A is negative definite if and only if x'Ax is negative for
all nonzero vectors x.

In Storage
The positive definite or negative definite symmetric matrix is stored in the same
way the symmetric matrix is stored. For a description of this storage technique, see

s

Symmetric Indefinite Matrix

A real symmetric matrix A is indefinite if and only if (x"Ax) (A y"Ay) < 0 for some
non-zero vectors x and y.

In Storage
The symmetric indefinite matrix is stored in the same way the symmetric matrix is

stored. For a description of this storage technique, see l‘Symmetric Matrix” o

Complex Hermitian Matrix

A complex matrix is Hermitian if it is equal to its conjugate transpose:
H = H"

In Storage
The complex Hermitian matrix is stored using the same four techniques used for
symmetric matrices:

+ Lower-packed storage mode, as described in I‘Lower-Packed Starage Made” on

. (The complex Hermitian matrix is not symmetric; therefore,
lower-packed storage mode is not equivalent to packing the upper triangle by
rows, as it is for a symmetric matrix.)

* Upper-packed storage mode, as described in '1lpper-Packed Storage Mode” onl

. (The complex Hermitian matrix is not symmetric; therefore,
upper-packed storage mode is not equivalent to packing the lower triangle by
rows, as it is for a symmetric matrix.)

* Lower storage mode, as described in ‘Lawer Starage Made” an page 6.
+ Upper storage mode, as described in 'lpper Storage Mode” on page 66.

Following is an example of a complex Hermitian matrix H of order 5.

Given the following matrix H:

(11, 0) (21, -1) (31, 1) (41, -1) (51, -1)
(21, 1) (22, 0) (32, -1) (42, -1) (52, 1)
(31, -1) (32, 1) (33, 0) (43, -1) (53, -1)
(41, 1) (42, 1) (43, 1) (44, 0) (54, -1)
(51, 1) (52, -1) (53, 1) (54, 1) (55, 0)

it is stored in a one-dimensional array, HP, in n(n+1)/2 = 15 elements as follows:
* In lower-packed storage mode:

HP = ((11, =), (21, 1), (31, -1), (41, 1), (51, 1),
(223 *)s (32: 1)s (423 1): (523 '1)3 (33s *)s
(43, 1), (53, 1), (44, *), (54, 1), (55, *))
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* In upper-packed storage mode:

HP = ((119 *)s (21: _1)9 (22: *)9 (319 1): (329 _1)3
(33, *), (41, -1), (42, -1), 43, -1), (44, =),
(51, '1)s (523 1)s (539 '1)s (54: '1)s (553 *))

or it is stored in a two-dimensional array, HP, as follows:
* In lower storage mode:

(11, =) * * * *
(21, 1) (22, =) * * *

HP = (31, -1) (32, 1) (33, *) = *
(41, 1) (42, 1) (43, 1) (44, =) =
(51, 1) (52, -1) (53, 1) (54, 1) (55, *)

* In upper storage mode

(119 *) (219 _1) (319 1) (4ls '1) (513 '1)

* (22, =) (32, -1) (42, -1) (52, 1)

HP = * * (33, =) (43, -1) (53, -1)
* * * (449 *) (549 _1)

* * * * (55, =*)

"

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian matrix are
always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Positive Definite or Negative Definite Complex Hermitian

Matrix

A complex Hermitian matrix A is positive definite if and only if x"'Ax is positive
for all nonzero vectors x.

A complex Hermitian matrix A is negative definite if and only if x"Ax is negative
for all nonzero vectors x.

In Storage
The positive definite or negative definite complex Hermitian matrix is stored in the
same way the complex Hermitian matrix is stored. For a description of this storage

technique, see !Complex Hermitian Matrix” on page 6.

Positive Definite or Negative Definite Symmetric Toeplitz

Matrix

A positive definite or negative definite symmetric matrix A of order # is also a
Toeplitz matrix if and only if:
a;=a;4j, fori=2nandj=2mn

The elements on each diagonal of the Toeplitz matrix have a constant value. For
the definition of a positive definite or negative definite symmetric matrix, see

tEasﬂx&Deﬁumi&nﬂegaﬁx&Deﬁmhﬁ;&mmeinc.Maiﬁmen.p&ge.ﬂ

The following matrix illustrates a symmetric Toeplitz matrix of order n; that is, it
has n rows and #n columns:
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ayay @y . .. ay |
dy dyy doy -
a3y Ay dyy
A= .
as
.y
[ 1 a3y dyy dyy |

A symmetric Toeplitz matrix of order 7 is represented by a vector x of length n
containing the elements of the first column of the matrix (or the elements of the
first row), such that x; = a;, fori = 1, n.

The following vector represents the matrix A shown above:

ay
2531
a

x=| %
_anl

In Storage

The elements of the vector x, which represent a positive definite symmetric
Toeplitz matrix, are stored sequentially in an array. This is called
packed-symmetric-Toeplitz storage mode. Following is an example of a positive
definite symmetric Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

99 12 13 14 15 16
12 99 12 13 14 15
13 12 99 12 13 14
14 13 12 99 12 13
15 14 13 12 99 12
16 15 14 13 12 99

the array is:
X = (99, 12, 13, 14, 15, 16)

Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix

A positive definite or negative definite complex Hermitian matrix A of order # is
also a Toeplitz matrix if and only if:
ai]‘ = ai_l’]’_l fOI‘ l = 2, n al’ld] = 2, n

The real part of the diagonal elements of the Toeplitz matrix must have a constant
value. The imaginary part of the diagonal elements must be zero.

For the definition of a positive definite of negative definite complex Hermitian

matrix, see ['Positive Definite or Negative Definite Complex Hermitian Matrix” onl
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The following matrix illustrates a complex Hermitian Toeplitz matrix of order #;
that is, it has n rows and n columns:

Audp 4z - - - Ay
a2 9y App
a;3dp Ay
A=
a3
K - ap
[ - - - Gi3app Ay

A complex Hermitian Toeplitz matrix of order n is represented by a vector x of
length n containing the elements of the first row of the matrix.

The following vector represents the matrix A shown above.

ay
ap;
a
x=|%3
_aln
In Storage

The elements of the vector x, which represent a positive definite complex
Hermitian Toeplitz matrix, are stored sequentially in an array. This is called
packed-Hermitian-Toeplitz storage mode. Following is an example of a positive
definite complex Hermitian Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

(1.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0)
(2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0)
(-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0)
(1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0)

the array is:
X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

Triangular Matrix

There are two types of triangular matrices: upper triangular matrix and lower
triangular matrix. Triangular matrices have the same number of rows as they have
columns; that is, they have n rows and n columns.

A matrix U is an upper triangular matrix if its nonzero elements are found only in
the upper triangle of the matrix, including the main diagonal; that is:
u,-j = 0 lf l > ]

A matrix L is an lower triangular matrix if its nonzero elements are found only in
the lower triangle of the matrix, including the main diagonal; that is:
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The following matrices, U and L, illustrate upper and lower triangular matrices of
order n, respectively:

Uy Uy Uy« . . Uy, L 0 0 0
0wy, 15 . Ly I, 0
0 0 us . Ly Ly L
U=\ . . L= . .
. 0
0 O unn lnl lnn

A unit triangular matrix is a triangular matrix in which all the diagonal elements
have a value of one; that is:

* For an upper triangular matrix, u; = 1ifi = j.

* For an lower triangular matrix, [; = 1if i = j.

The following matrices, U and L, illustrate upper and lower unit real triangular
matrices of order 1, respectively:

IR T T 10 0 0
0 1 uy . Ly1 0
00 1 : Ly Ly 1
U = L =
0 0 1 I, 1]
In Storage

The four storage modes used for storing triangular matrices are described in the
following sections:

* Ilpper-Triangular-Packed Storage Made”|

° s . : _ ”

s . 17

4 . ”

It is important to note that because the diagonal elements of a unit triangular
matrix are always one, you do not need to set these values in the array for these
four storage modes. ESSL always assumes that the values in these positions are
one.

Upper-Triangular-Packed Storage Mode: When an upper-triangular matrix is
stored in upper-triangular-packed storage mode, the upper triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in

G 7

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.
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Given the following matrix U:

1 2 4 7 11
6 3 5 8 12
6 066 9 13
6 0 0 10 14
6 06 06 0 15

the array is:
up =(1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15)

Lower-Triangular-Packed Storage Mode: When a lower-triangular matrix is
stored in lower-triangular-packed storage mode, the lower triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in

s ”

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix L:

10 06 0 0
2 6 0 0 0
37 10 0 0
4 8 11 13 0
5 9 12 14 15

the array is:
Lp = (1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15)

Upper-Triangular Storage Mode: A triangular matrix is stored in upper-triangular
storage mode in a two-dimensional array. Only the elements in the upper triangle
of the matrix, including the diagonal, are stored in the upper triangle of the array.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UTA.

Given the following matrix U:

11 12 13 14 15
22 23 24 25
0 33 34 35
0 0 44 45

6 06 0 55

[ocNoNoNRoN

the array is:

* 22 23 24 25
UTA = * % 33 34 35
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where means you do not have to store a value in that position in the array.

Lower-Triangular Storage Mode: A triangular matrix is stored in lower-triangular
storage mode in a two-dimensional array. Only the elements in the lower triangle

of the matrix, including the diagonal, are stored in the lower triangle of the array.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LTA.

Given the following matrix L:

1 0 06 0 0
21 22 © 0 0O
31 32 33 0 0
41 42 43 44 0
51 52 53 54 55
the array is:
11 * * * *
21 22 %= % %
LTA = | 31 32 33 * =*
41 42 43 44 x
51 52 53 54 55

7

where “*” means you do not have to store a value in that position in the array.

General Band Matrix

A general band matrix has its nonzero elements arranged uniformly near the
diagonal, such that:

a; =0 if (i) > mlor (j=i) > mu

where ml and mu are the lower and upper band widths, respectively, and ml+mu+1
is the total band width.

The following matrix illustrates a square general band matrix of order n, where the
band widths are ml = g-1 and mu = p-1:

Chapter 3. Setting Up Your Data Structures 73



74

|« mu — |

ayap ajz - - a,0 . . 0]
_ |ayay any . 0
1| @503 as; .0 .
ml | . 0
A=11"
I
0 .
0 .
0 .
0 .0 . a,, |

Some special types of band matrices are:
 Tridiagonal matrix: ml = mu =1
* 9-diagonal matrix: ml = mu = 4

The following two matrices illustrate m by n rectangular general band matrices,
where the band widths are m/ = g-1 and mu = p-1. For both matrices, the leading
diagonal is ay, ayy, 433, ..., 4,,. Following is a general band matrix with m > n:

— mu - |
apap ays - a0 . 0 |
ay1 Ay A3 - 0
a3y Az ds3 . 0.
- 0
/]\
ml an
A=1]10.
- 0 .
0 .
0 . a,,
0 .
0 .
0 . 0. .a,,

Following is a general band matrix with m < n:
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|« mu — |

ayap ay - a0 000000
| 9219y A3 - 0
T | asas as -0
ml 0
A= 11" 0
— |ag 0 .
0 . .0
0 .
0 .
L 0 0 ann amn_
In Storage

The two storage modes used for storing general band matrices are described in the
following sections:

° 4 _ 7

. G _ _ 1

General-Band Storage Mode: (This storage mode is used only for square
matrices.) Only the band elements of a general band matrix are stored for
general-band storage mode. Additional storage must also be provided for fill- in.
General-band storage mode packs the matrix elements by columns into a
two-dimensional array, such that each diagonal of the matrix appears as a row in
the packed array.

For a matrix A of order n with band widths ml and mu, the array must have a
leading dimension, Ida, greater than or equal to 2ml+mu+16. The size of the second
dimension must be (at least) 1, the number of columns in the matrix.

Using array AGB, which is declared as AGB(2ml+mu+16, n), the columns of elements

in matrix A are stored in each column in array AGB as follows, where a,; is stored
at AGB(ml+mu+1, 1):
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T, .
ml
4 ]
T alp a2,p+1 : : : . an—mu,n
mu
a3
J | = a, :
AGB = l a” . . ann
ml
* aql aq+1,2 . aq+mu,p . . an,nfml
*
15
£ * %

7R

where “*” means you do not store an element in that position in the array.

In the ESSL subroutine computation, some of the positions in the array indicated

"y

by an “*” are used for fill- in. Other positions may not be accessed at all.

Following is an example of a band matrix A of order 9 and band widths of ml = 2
and mu = 3.

Given the following matrix A:

11 12 13 14 06 0 0 0
21 22 23 24 25 0O 0O O
0

0 42 43 44 45 46 47 0

0 64 65 66 67 68 69
6 0 75 76 77 78 79
6 0 0 8 87 88 89
6 06 06 0 97 98 99

you store it in general-band storage mode in a 23 by 9 array AGB as follows, where
a,, is stored in AGB(6,1):

* * * * * * *
* * * * * * *

* ok %

12 23 34 45 56 67 78 89
22 33 44 55 66 77 88 99

*
*
*
« x 13 24 35 46 57 68 79
*
1
1 32 43 54 65 76 87 98

1
2
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31 42 53 64 75 86 97 * %
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

AGB = * * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

Following is an example of how to transform your general band matrix, of order n,
to general-band storage mode:
MD=ML+MU+1
DO 1 J=1,N
DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
AGB(I-J+MD,J)=A(I,J)
1 CONTINUE

BLAS-General-Band Storage Mode: (This storage mode is used for both square
and rectangular matrices.) Only the band elements of a general band matrix are
stored for BLAS-general-band storage mode. The storage mode packs the matrix
elements by columns into a two-dimensional array, such that each diagonal of the
matrix appears as a row in the packed array.

For an m by n matrix A with band widths ml and mu, the array AGB must have a
leading dimension, [da, greater than or equal to ml+mu+1. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using the array AGB, which is declared as AGB(ml+mu+1, n), the columns of
elements in matrix A are stored in each column in array AGB as follows, where a;
is stored at AGB(mu+1, 1):

| « n —
T sk . . . sk alp az’p_'_l
mu

a3

l any
T
ml
i A, G411

o

where “*” means you do not store an element in that position in the array. These
positions are not accessed by ESSL. Unused positions in the array always occur in
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the upper left triangle of the array, but may not occur in the lower right triangle
of the array, as you can see from the examples given here.

Following is an example where m > n, and general band matrix A is 9 by 8 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:

11 12 13 14 0 0 0 0
21 22 23 24 25 0 0O O
31 32 33 34 35 36 0 0
0 42 43 44 45 46 47 0O
0 53 54 55 56 57 58
0 64 65 66 67 68
6 0 75 76 77 78
6 06 0 8 87 88
6 06 0 0 97 98

you store it in array AGB, declared as AGB(6,8), as follows, where a4, is stored in
AGB(4,1):

* o« o« 14 25 36 47 58
* « 13 24 35 46 57 68
AGB = * 12 23 34 45 56 67 78
11 22 33 44 55 66 77 88
21 32 43 54 65 76 87 98
31 42 53 64 75 86 97

Following is an example where m < n, and general band matrix A is 7 by 9 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:

11 12 13 14 0 0 ©
21 22 23 24 25 0O O
31 32 33 34 35 36 O
0 42 43 44 45 46 47
0 0 53 54 55 56 57

06 0 0 64 65 66 67 68 69
06 06 06 0 75 76 77 78 79

(S
[ceNoNoNoNo)
[oNoNoNoNo)

you store it in array AGB, declared as AGB(6,9), as follows, where a4, is stored in
AGB(4,1) and the leading diagonal does not fill up the whole row:

* o+« o« 14 25 36 47 58 69
* % 13 24 35 46 57 68 79
AGB = x 12 23 34 45 56 67 78 «*
11 22 33 44 55 66 77 =+ =*
21 32 43 54 65 76 x & %
31 42 53 64 75 * x %«

"y

and where “*” means you do not store an element in that position in the array.

Following is an example of how to transform your general band matrix, for all
values of m and n, to BLAS-general-band storage mode:
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DO 20 J=1,N
K=MU+1-J
DO 10 I=MAX(1,J-MU),MIN(M,J+ML)
AGB(K+I,J)=A(I,J)
CONTINUE
CONTINUE

Symmetric Band Matrix

A symmetric band matrix is a symmetric matrix whose nonzero elements are
arranged uniformly near the diagonal, such that:

a; = 0 if li-jl > k

i

where k is the half band width.

The following matrix illustrates a symmetric band matrix of order n, where the

half band width k = g-1:

|« k > |
ay ay azy . - 4,0 .
Qy1 Uy dzp 0
Qs dsz; Az

In Storage

0]

nn_|

The two storage modes used for storing symmetric band matrices are described in

the following sections:

. / — -

7

. / ‘- -

”

Upper-Band-Packed Storage Mode: Only the band elements of the upper
triangular part of a symmetric band matrix, including the main diagonal, are
stored for upper-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a

leading dimension, Ida, greater than or equal to k+1, and the size of the second

dimension must be (at least) n.

Using array ASB, which is declared as ASB(Ida,n), where p = Ilda = k+1, the
elements of a symmetric band matrix are stored as follows:

Chapter 3. Setting Up Your Data Structures

79



80

sk . . . sk alp a2,p+1 . o . anik’n

ASB = .
* Qi3 Ay
* dip Ay
an axn Dn
where “+” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 3.

Given the following matrix A:

you store it in upper-band-packed storage mode in array ASB, declared as ASB(4,6),
as follows.

x o« x 14 25 36]
ASB = | = % 13 24 35 46

x 12 23 34 45 56

11 22 33 44 55 66

Following is an example of how to transform your symmetric band matrix to
upper-band-packed storage mode:
DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J
ASB(M+1,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Lower-Band-Packed Storage Mode: Only the band elements of the lower
triangular part of a symmetric band matrix, including the main diagonal, are
stored for lower-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, /da, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(Ida,n), where q = Ida = k+1, the elements
of a symmetric band matrix are stored as follows:

ESSL Version 3 Release 3 Guide and Reference



ayp Ay Ay
ay dx *
azy dy

ASB =
_aql aq+1’2. . . an’n_k* P )

7

where “+” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 2.

Given the following matrix A:

11 21 31 06 0 0
21 22 32 42 0 0
31 32 33 43 53
0 42 43 44 54 64
0 0 53 54 55 65
6 0 0 64 65 66

(<}

you store it in lower-band-packed storage mode in array ASB, declared as ASB(3,6),
as follows:

11 22 33 44 55 66
ASB = | 21 32 43 54 65 =*
31 42 53 64 x «

Following is an example of how to transform your symmetric band matrix to
lower-band-packed storage mode:
DO 20 J=1,N
DO 10 I=J,MIN(J+K,N)
ASB(I-J+1,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Positive Definite Symmetric Band Matrix

A real symmetric band matrix A is positive definite if and only if x'Ax is positive
for all nonzero vectors x.

In Storage
The positive definite symmetric band matrix is stored in the same way a
symmetric band matrix is stored. For a description of this storage technique, see

[ls I B 111['” Zg

Complex Hermitian Band Matrix

A complex band matrix is Hermitian if it is equal to its conjugate transpose:
H = H"

In Storage
The complex Hermitian band matrix is stored using the same two techniques used
for symmetric band matrices:
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I

« Upper-band-packed storage mode, as described in [lUpper-Band-Packed Storagd
Im ] 7 E Z!‘

* Lower-band-packed storage mode, as described in I'Lower-Band-Packed Storagd
Mode” on page 801

Following is an example of a complex Hermitian band matrix H of order 5, having
a half band width of 2.

Given the following matrix H:

(11, 0) (21, -1) (31, 1) (0, 0) (0, 0)
(21, 1) (22, 0) (32, -1) (42, -1) (0, 0)
(31, -1) (32, 1) (33, 0) (43, -1) (53, -1)
(0, ©0) (42, 1) (43, 1) (44, 0) (54, -1)
(o, o) (o, 0) (53, 1) (54, 1) (55, 0)

you store it in a two-dimensional array HP, as follows:
* In lower-band-packed storage mode:

(11, =) (22, =) (33, *) (44, =) (55, *)
HP = | (21, 1) (32, 1) (43, 1) (54, 1) *
(3ls '1) (423 1) (53s 1) * *

* In upper-band-packed storage mode:

* * (31: 1) (429 _1) (539 _1)
HP = * (21, -1) (32, -1) (43, -1) (54, -1)
(11, =) (22, =) (33, =) (44, =) (55, =)

7R

where “+” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian band matrix
are always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Triangular Band Matrix

There are two types of triangular band matrices: upper triangular band matrix and
lower triangular band matrix. Triangular band matrices have the same number of
rows as they have columns; that is, they have n rows and n columns. They have an
upper or lower band width of k.

A band matrix U is an upper triangular band matrix if its nonzero elements are
found only in the upper triangle of the matrix, including the main diagonal; that
is:

Its band elements are arranged uniformly near the diagonal in the upper triangle
of the matrix, such that:

The following matrix U illustrates an upper triangular band matrix of order n with
an upper band width k = g-1:
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| « k> |

Ly 1ty Uy . u,0 . 0 |
0 uy, 13, 0
0 uyy 0 .
0
U =
o . .. 0 u, |

A band matrix L is a lower triangular band matrix if its nonzero elements are
found only in the lower triangle of the matrix, including the main diagonal; that is:
I; =0 ifi<j
j

Its band elements are arranged uniformly near the diagonal in the lower triangle of
the matrix such that:

The following matrix L illustrates an upper triangular band matrix of order n with
a lower band width k = g-1:

Ly 0 . 0
~ | 0
T Ly b5y L
k
l
L =
0
0
0 0
i 0 .0 l,m_

A triangular band matrix can also be a unit triangular band matrix if all the
diagonal elements have a value of 1. For an illustration of a unit triangular matrix,

s . s

see

In Storage
The two storage modes used for storing triangular band matrices are described in
the following sections:

+ Plpper-Triangular-Band-Packed Storage Maode” on page 84

° | ~Tri _ _ 7

It is important to note that because the diagonal elements of a unit triangular
band matrix are always one, you do not need to set these values in the array for
these two storage modes. ESSL always assumes that the values in these positions
are one.
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Upper-Triangular-Band-Packed Storage Mode: Only the band elements of the
upper triangular part of an upper triangular band matrix, including the main
diagonal, are stored for upper-triangular-band-packed storage mode.

For a matrix U of order n and an upper band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array UTB, which is declared as UTB(Ida,n), where p = Ilda = k+1, the
elements of an upper triangular band matrix are stored as follows:

* . . . * ulp uz’p_'_l ”n—k,n
UTB = .
® U Uy
®  Up Uy
Uy Uy . .. u,,

7

where “+” means you do not store an element in that position in the array.

Following is an example of an upper triangular band matrix U of order 6 and an
upper band width of 3.

Given the following matrix U:

11 12 13 14 0 0
0 22 23 24 25 0O
06 0 33 34 35 36
0 0 0 44 45 46
6 06 0 0 55 56
6 0 0 0 0 66

you store it in upper-triangular-band-packed storage mode in array UTB, declared
as UTB(4,6), as follows:

UTB = * %« 13 24 35 46
* 12 23 34 45 56
11 22 33 44 55 66

Following is an example of how to transform your upper triangular band matrix to
upper-triangular-band-packed storage mode:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J
UTB(M+I,Jd)=U(I,J)
10 CONTINUE
20 CONTINUE
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Lower-Triangular-Band-Packed Storage Mode: Only the band elements of the
lower triangular part of a lower triangular band matrix, including the main
diagonal, are stored for lower-triangular-band-packed storage mode.

Note: As an alternative to this storage mode, you can specify your arguments in
your subroutine in a special way so that ESSL selects the matrix elements
properly, and you can leave your matrix stored in full-matrix storage mode.
For details, see the @ in the subroutine description in Part 2 of this
book.

For a matrix L of order n and a lower band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array LTB, which is declared as LTB(Ida,n), where q = Ida = k+1, the elements
of a lower triangular band matrix are stored as follows:

N S I
121 132 *
131 l42

LTB =
_lql lq+1’2 DI ln,n—k E T |

o

where “*” means you do not store an element in that position in the array.

Following is an example of a lower triangular band matrix L of order 6 and a
lower band width of 2.

Given the following matrix L:

[N NoNoNoNo]
e NoNoNoNoNo]

,_
o
o
(o)
)
s
o U

you store it in lower-triangular-band-packed storage mode in array LTB, declared
as LTB(3,6), as follows:

11 22 33 44 55 66
LTB = 21 32 43 54 65 ~
31 42 53 64 =+ «

Following is an example of how to transform your lower triangular band matrix to
lower-triangular-band-packed storage mode:

D0 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)
LTB(M+I,J)=L(I,J)
10 CONTINUE
20 CONTINUE
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General Tridiagonal Matrix

A general tridiagonal matrix is a matrix whose nonzero elements are found only
on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:
uij=0 lfll—]l >1

The following matrix illustrates a general tridiagonal matrix of order n:

a,a, 0 . . . 0]
Ay Gyy a3 0
ay, ay; ay 0
4 = 0 063 Ayy
i 0 a,, |
In Storage

Only the diagonal, subdiagonal, and superdiagonal elements of the general
tridiagonal matrix are stored. This is called tridiagonal storage mode. The elements
of a general tridiagonal matrix, A, of order n are stored in three one-dimensional
arrays, C, D, and E, each of length #n, where array C contains the subdiagonal
elements, stored as follows:

C = (% an1, A3y, gz, -y Ay 1)

and array D contains the main diagonal elements, stored as follows:
D = (an, A, 33, -y )

and array E contains the superdiagonal elements, stored as follows:
E = (@12 423, 34 ooy By s %)

"y
*

where means you do not store an element in that position in the array.

Following is an example of a general tridiagonal matrix A of order 5:

11 12 0 0 0
21 22 23 O O
0 32 33 34 0
0 0 43 44 45
6 0 0 54 55

which you store in tridiagonal storage mode in arrays C, D, and E, each of length 5,

as follows:
C = (x, 21, 32, 43, 54)
D = (11, 22, 33, 44, 55)
E = (12, 23, 34, 45, %)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C, D, and E. These additional
locations are used for working storage by the ESSL subroutine. The reasons
for choosing this option are explained in the subroutine descriptions.
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Symmetric Tridiagonal Matrix

A tridiagonal matrix A is also symmetric if and only if its nonzero elements are
found only on the diagonal, subdiagonal, and superdiagonal of the matrix, and its
subdiagonal elements and superdiagonal elements are equal; that is:

(@; =0 if li-jl > 1) and (a5 =4; if li-j| =1)

The following matrix illustrates a symmetric tridiagonal matrix of order n:

fa,a,, 0 . . . 0]
ay Gy a3 O
0 a(3)2 a3 ayy 0
_ Ay3 Ayy
A= 0
| 0 a,, |
In Storage

Only the diagonal and subdiagonal elements of the positive definite symmetric
tridiagonal matrix are stored. This is called symmetric-tridiagonal storage mode.
The elements of a symmetric tridiagonal matrix A of order n are stored in two
one-dimensional arrays C and D, each of length 1, where array C contains the
subdiagonal elements, stored as follows:

C = (% an, A3y, gz, -y Ay 1)

7

where “+” means you do not store an element in that position in the array. Then
array D contains the main diagonal elements,stored as follows:

D = (441, Axo, 433, -y Ayy)

Following is an example of a symmetric tridiagonal matrix A of order 5:

1o 1 0 0 0
1 20 2 0 0
6 2 30 3 0
6 0 3 40 4
6 06 0 4 50

which you store in symmetric-tridiagonal storage mode in arrays C and D, each of
length 5, as follows:

C=1(x 1,2, 3, 4)

D

(10, 20, 30, 40, 50)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C and D. These additional locations
are used for working storage by the ESSL subroutine. The reasons for
choosing this option are explained in the subroutine descriptions.

Positive Definite Symmetric Tridiagonal Matrix

A real symmetric tridiagonal matrix A is positive definite if and only if xTAx is
positive for all nonzero vectors x.
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In Storage
The positive definite symmetric tridiagonal matrix is stored in the same way the
symmetric tridiagonal matrix is stored. For a description of this storage technique,

see 'Symmetric Tridiagonal Matrix” on page 87.

Sparse Matrix

A sparse matrix is a matrix having a relatively small number of nonzero elements.
Consider the following as an example of a sparse matrix A:

11 0 13 06 0 ©
21 22 0 24 0 0
06 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0 65 66

In Storage

A sparse matrix can be stored in full-matrix storage mode or a packed storage
mode. When a sparse matrix is stored in full-matrix storage mode, all its elements,
including its zero elements, are stored in an array.

The seven packed storage modes used for storing sparse matrices are described in
the following sections:

. 7 _ 2

e [ i 7

° 7 _ _ . ”

. I”anrzgp—hv—(’n]nmnc" on page 93

. I”Qfm‘agp—hv-Rnwa” on page 93
. I“T)iagrma]-ﬂnf Skyline Storage Made” on page o5

° I:IE E] _I S] ]' Sl lI 1 ” QZ

Note: When the elements of a sparse matrix are stored using any of these storage
modes, the ESSL subroutines do not check that all elements are nonzero. You
do not get an error if any elements are zero.

Compressed-Matrix Storage Mode: The sparse matrix A, stored in
compressed-matrix storage mode, uses two two-dimensional arrays to define the
sparse matrix storage, AC and KA. See reference [Z3]. Given the m by n sparse
matrix A, having a maximum of nz nonzero elements in each row:

* AC is defined as AC(lda,nz), where the leading dimension, Ida, must be greater
than or equal to m. Each row of array AC contains the nonzero elements of the
corresponding row of matrix A. For each row in matrix A containing less than nz
nonzero elements, the corresponding row in array AC is padded with zeros. The
elements in each row can be stored in any order.

* KA is an integer array defined as KA(Ida,nz), where the leading dimension, /da,
must be greater than or equal to m. It contains the column numbers of the
matrix A elements that are stored in the corresponding positions in array AC. For
each row in matrix A containing less than nz nonzero elements, the
corresponding row in array KA is padded with any values from 1 to n. Because
this array is used by the ESSL subroutines to access other target vectors in the
computation, you must adhere to these required values to avoid errors.
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Unless all the rows of sparse matrix A contain approximately the same number
of nonzero elements, this storage mode requires a large amount of storage. This
diminishes the performance you can obtain by using this storage mode.

Consider the following as an example of a 6 by 6 sparse matrix A with a
maximum of four nonzero elements in each row. It shows how matrix A can be

stored in arrays AC and KA.

Given the following matrix A:

11 0 13 0 0 0
21 22 0 24 0 ©
0 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0O 65 66

the arrays are:

11 13 0 0
22 21 24 0
AC = 33 32 35 0
44 43 46 0
55 51 54 0
66 61 62 65
1 3 * =
2 1 4 =
KA = 3 2 5 =
4 3 6 =
5 1 4 =
6 1 2 5

7

where “*” means you can store any value from 1 to 6 in that position in the array.

Symmetric sparse matrices use the same storage technique as nonsymmetric sparse
matrices; that is, all nonzero elements of a symmetric matrix A must be stored in
array AC, not just the elements of the upper triangle and diagonal of matrix A.

In general terms, this storage technique can be expressed as follows:
For each a; # 0,fori =1, mandj =1,n
there exists k, where 1 = k = nz,
such that AC(i,k) = a;; and KA(ik) = j.
For all other elements of AC and KA,
AC(ik) = Oand 1 = KA(,k) = n

where:

* a;; are the elements of the m by n matrix A that has a maximum of nz nonzero
elements in each row.

* Array AC is defined as AC(Ida,nz), where lda

* Array KA is defined as KA(Ida,nz), where lda

v

m.

\%

m.
Compressed-Diagonal Storage Mode: The storage mode used for square sparse

matrices stored in compressed-diagonal storage mode has two variations,
depending on whether the matrix is a general sparse matrix or a symmetric sparse
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matrix. This section explains both of these variations. This section begins, however,
by explaining the conventions used for numbering the diagonals in the matrix,
which apply to the storage descriptions.

Matrix A of order n has 2n-1 diagonals. Because k = j-i is constant for the
elements a;; along each diagonal, each diagonal can be assigned a diagonal number,
k, having a value from 1-n to n—1. Then the diagonals can be referred to as d,,

where k = 1-n, n—1.

The following matrix shows the starting position of each diagonal, d;:

d,d, d, . . . d
ap dyp iz - - anﬂ
d_, ayy dyp Ao
d., Qs dzp diz

d e

1-n L J
For a general (square) sparse matrix A, compressed-diagonal storage mode uses
two arrays to define the sparse matrix storage, AD and LA. Using the above
convention for numbering the diagonals, and given that sparse matrix A contains
nd diagonals having nonzero elements, arrays AD and LA are set up as follows:

* AD is defined as AD(Ida,nd), where the leading dimension, /da, must be greater
than or equal to n. Each diagonal of matrix A that has at least one nonzero
element is stored in a column of array AD. All of the elements of the diagonal,
including its zero elements, are stored in #n contiguous locations in the array, in
the same order as they appear in the diagonal. Padding with zeros is required as
follows to fill the n locations in each column of array AD:

— Each superdiagonal (k > 0), which has n—k elements, is padded with k
trailing zeros.
— The main diagonal (k = 0), which has n elements, does not require padding.

— Each subdiagonal (k < 0), which has n—1k| elements, is padded with |k|
leading zeros.

The diagonals can be stored in any columns in array AD.

* LA is a one-dimensional integer array of length nd, containing the diagonal
numbers k for the diagonals stored in each corresponding column in array AD.

Because this storage mode requires entire diagonals to be store