PGI® Fortran Reference

The Portland GroupTM
STMicroelectronics

Two Centerpointe Drive, Suite 320
Lake Oswego, OR 97035
WWW.pgroup.com

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of
STMicroelectronics, makes no warranty for the use of its products and assumes no responsibility for any errors that may appear, or
for damages resulting from the use of the information contained herein. STMicroelectronics retains the right to make changes to this
information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document
may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's personal use without the
express written permission of STMicroelectronics.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this manual, STMicroelectronics was aware of a trademark claim. The designations have been printed in caps
or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular, to the High Performance Debugging Forum for
their efforts.

PGF90, PGF95, PGC++, Cluster Development Kit, CDK and The Portland Group are trademarks and PGI, PGHPE, PGF77, PGCC,
PGPROF, and PGDBG are registered trademarks of STMicroelectronics, Inc. Other brands and names are the property of their
respective owners. The use of STLport, a C++ Library, is licensed separately and license, distribution and copyright notice can be
found in online documentation for a given release of the PGI compilers and tools.

PGI Fortran Reference
Copyright © 2005-2007, STMicroelectronics, Inc. All rights reserved.
Printed in the United States of America

First Printing:Release 6.0, March, 2005
Second Printing:Release 6.1, December, 2005
Third Printing:Release 6.1-3, February, 2006

Fourth Printing: Release 7.0-1, December, 2006
Fifth Printing: Release 7.0-2, February, 2007

Technical support: http://www.pgroup.com/support/
Sales: sales@pgroup.com
Web: http://www.pgroup.com

Contents

Prefaceo i et xiii
Audience DeSCIIPtONttt e e Xiii
Compatibility and Conformance to Standards i Xiv
OrganiZationottt e e XV
Hardware and Software Constraintsooinininin e, Xvi
CONVENLIONSt e Xvi
Related PUblicationso.ou i Xvii

1Language OVEIVIEWttt i eeineenneennernnennnennns 1
Elements of a Fortran Program Unito.iuiuinin e 1

SEAEMENLSo 1
Free and FiXed SOUICEo 2
Statement Orderingo ute ettt e 2
The Fortran Character SEtiuii ettt e 3
Free Form Formatting oo i 5
Fixed FOIMAtNGoot ettt ettt et e e e e e 6
Column FOrmMattingo.iueiee ittt et e e et 6
Fixed Format Label Field oo i e 6
Fixed Format Continuation Field 7
Fixed Format Statement Field 7
Fixed Format Debug Statementsottt 7
Tab FOrMattingottt e e 7
Fixed Input File Format — SUmmaryo.iuiuiuini e 8
Including Fortran Source Files i 8
The Components of Fortran Statementsoeueieieinini i ineenns 9
SYMDBOLC NAMESttt e e e e e e e 9
EXPIESSIONSottt ettt e e e e 10
Expression Precedence Rules oo 10
Arithmetic EXPressionso.oeuoueentt et 12
Relational EXPIeSSIONSouu ittt ettt e e 14
LOGICAl EXPIESSIONSottt ettt et e et et e e e e e 14
Character EXPreSSIONS uo ittt ettt ettt et e e e e e 15
Character CONCALENAIONttt ettt ettt ettt e 15
SYMDBOLC NAME SCOPE . . .« . o et ettt et e e e e e e e e 16
ASSIZNMENT SEALEIMIEISo\t e ettt e e e e e e e e e e e 16
Arithmetic ASSIgNMENt e 17

Logical Assignment Statementttt e 17

Character ASSIGNMENtottt 18
Listing Controlso 19
0penMP Dir€Ctives e 19
HPF DIreCtivesottt e e e e e e e e 20

2FortranDataTypesottt ittt ittt ineneenns 21
INtrinsic DAt@A TYPES . . .o v et e e 21

Kind Parameterouiuiti ittt 21

Number of Bytes Specification e 22
CONSEANES . . . oottt e et e e e e e e 25

Integer CONSTANESttt e e e e e e 25

Binary, Octal and Hexadecimal Constantso.uiiiiriiiiioiiiinennannn. 26

Real CONSLANLS\ttt ettt ettt e e e e e e e e 26

Double Precision CONSLANLSo\ttt ettt e e 27

COMPIEX CONSTANESo\ttt ettt ettt ettt ettt e et e 28

Double Complex CONSLANLS\ vut ettt ettt e et e e e 28

LOICAl CONSLANLS\ e ettt et e et e e e e e e e e 28

Character CONSLANTS oottt e e e e e e e e e 29

PARAMETER CONSEANESttt ettt e 30
DELIVEA TYPES . . o v ot e ettt ettt et e e e e e e 30
3 7 P 30

An Array Declaration Element i 31

Deferred Shape ArTayso.iniit i e 32

SUDSCIIPES . v vttt e 32

Character SUDSLIINGottt e e e e e 32
Fortran Pointers and TArgetsvuinironi it 33
Fortran Binary, Octal and Hexadecimal Constantscoiiiiiiiiiinranennnnn. 33

Octal and Hexadecimal Constants - Alternate Formccoiiiiiiiiin.... § 34
Hollerith CONStANtSot e e e 35
SEIUCLUTES . . . o\ttt e ettt e et e e e e e e e e e e e e e e 36

RECOTAS ...\t 37

UNION and MAP DeClarationsuroninuonentnt ettt aeieeenn, 38

Data Initializationottt e 40
Pointer Variables i 41

RESEIICHONS . . . o ettt ettt e e e e e e et e e e 42

3Fortran Statementscueiuuiiittriirrtnneerenaaeeenaaaaanns 43
Origin of Statement o e 43
SEALEIMENES\ttt ettt et et e e e e e e e e e e e 44

AFOrtrAN ALTAYS . ..o v vttt e iie et tneeeenneeeenneeeonnaeeennansnnns 139

ALTAY TYPOS . . oottt et e e 139
EXplicit Shape ATTAYSt 140
Assumed Shape AITAYSttt e e 140
Deferred SNAPe AITAYS o ettt ettt ettt e e 140
ASSUMEA SIZ€ ALTAYSottt ettt ettt e e e e e e e e e 140

Array SPecificationo.i.i e 141
EXplicit Shape ALTays oot 141
Assumed Shape AITAYSttt e e e e 141
Deferred Shape AITAYSottt ettt ettt e e 141
ASSUMEA SIZ€ ALTAYSo\ttt t ettt et e e e e e e 142

Array Subscripts And ACCESSo\ v ettt e 142
Array Sections and Subscript Tripletso.o it 142
Array Sections and Vector SUDSCIIPLSuiutn e e 143

ATTAY CONSLIUCOTS . . . v vttt ettt e e e e e et e e e e e e e e e e e e eeeaenes 144

CM FOrtran EXEENSIONSottt ettt et e e e e e e e e e e e 144
The ARRAY AEEIDULE § . ..o\ o e e e e e e 144
Array Constructors EXtENSions §o.uuerurerorir it 144

5 Input and Qutput Formattingccciiiiiiiiiiiinnnnnnnnn 145

File ACCess MEthOS o vttt et e et e 145
Standard Preconnected UNitso.uutiren it 146

Opening and Closing Filesot e e 146
DIrect ACCESS FIlESo\ttt 147
Closing A Fileot 147

Data Transfer SLAEIMENESottt ettt ettt e e e e e 149

Unformatted Data Transfero.iuiniuin it 150

Formatted Data Transfer oo 150
Implied DO List Input Qutput List oot i 151
Format Specificationst 151

A Format Control — Character Data i, 153
B Format Control —Binary Dataoiieini e 154
D Format Control — Real Double Precision Data with Exponent 154
E Format Control — Real Single Precision Data with Exponent 155
EN Format Controlo.oninini i 155
ES Format Controloo i 155
F Format Control - Real Single Precision Dataccviiiiiiiiiiiiinennnn... 156
G Format CONLrolttt e e e 156

[Format Control — Inte@er DAtaooiui ittt e s 156

L Format Control — Logical Data i 157

Quote Format CONtrolt e 157

BN Format Control — Blank Control, 158

H Format Control — Hollerith Control oo 158

0 Format Control Octal Valuesouiiiiiii i i 158

P Format Specifier — Scale Control ittt 159

Q Format Control - Quantityt 159

S Format Control — Sign Control 159

T, TL and X Format Controls — Spaces and Tab Controlsc.coviiin... 160

Z Format Control Hexadecimal Valuesttt 161
Slash Format Control /—End of Recordt 161

The : Format Specifier — Format Terminationcooiiiiiiiiiiininann... 162

$ Format CONLrolottt 162
Variable Format EXpressions ,<eXpI>uuiuineineine et 162
Non-advancing Input and OUEPULottt 162
List-directed formattingoo e 163
List-directed inPUE oo e 163
List-directed OUEPUL\ttt e e et e e 165
Commas in External Field o i 167
NAMELSE GIOUPS . . .+ . oottt e et ettt et e e e e 167
Namelist INPULot ettt e e 167
Namelist OULPULot e 168
OFortran INTrinsiCsvvtitri ettt ittt ittt it eneeneenennennns 171
FORTRAN 77 and Fortran 90/95 Intrinsics by Category ..ot 171
FORTRAN 77 and Fortran 90/95 Intrinsics Descriptionsccoviiiiiiiniinanen... 201
Supported HPF INEEINSICS\ v vttt ettt e et 258
CM FOrtran INEEINSICSo v ettt ettt e et § 261
7 3F Functions and VAX SUbroutinesc.oviiinerinernnennnennn. 265
BEROULINES . .. v ettt ettt et e e e e e e e e e e e e e e 265
VAX System SUDTOULINES ut ettt ettt et e et et e eeas 290
BUuilt-In FUNCHONS . . . o oottt e e e e e e e e e 291
VAX/VMS System SUDIOULINESooitirt et aaas 291
8 OpenMP Directives for Fortrancoitiiiiiinnrennnenennn. 295
Parallelization DITECLIVESottt e e e e e e e e 295
PARALLEL ... END PARALLEL i e e e e e 296
CRITICAL ... END CRITICAL oottt e e e e e 300
MASTER ... END MASTERo e 301

Vi

SINGLE ... END SINGLE i e e e e e 302

DO . END DO oo e e 302
BARRIER . .. e 305
DOACROSS .o e e 305
PARALLEL DO .. e 306
SECTIONS ... END SECTIONSot e e e e 307
PARALLEL SECTIONSo e e e e 308
ORDERED . ..o e e 309
ATOMIG . .. e e e e e e 309
FLUSH .. e e 310
THREADPRIVATE . ..o e e e e e 310
Run-time Library Routineso 310
Environment Variables 313
OHPF DIrectivesc.vvtuirenneeneeeneeenerenerenenenenonannnns 315
Adding HPF Directives to PrOZramsouuorintrotitet ittt eianeananns 315
HPF Directive SUMMALYottt ettt ettt e e e e e e ea e 316
Appendix A. HPF_LOCALounnnniiiiiiiiiiii ittt nnnns 327

Vii

viii

Tables

Table 1-1:
Table 1-2:
Table 1-3:
Table 1-4:
Table 1-5:
Table 1-6:
Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 3-1:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:
Table 6-8:
Table 6-9:

Table 6-10:
Table 6-11:
Table 6-12:
Table 6-13:
Table 6-14:
Table 6-15:
Table 6-16:
Table 6-17:
Table 6-18:

Table 8-1:

Fortran Characters.onini i 4
C Language Character Escape SeqUences.ouuuininrenineaniiineaanenns 5
Fixed Format Record Positionsand Fields iiiia.. 6
Fortran Operator Precedenceooieiiiiiii e, 11
Arithmetic OPeratorsou ittt e 13
Arithmetic Operator Precedenceot 13
Fortran Intrinsic Data Types.ot e 22
Data Types Kind Parametersot 22
Data Type EXIenSiONS.o ottt 23
Data Type RanKso 24
Example of Real Constants 27
Double Precision Constants.uuuiniin i 28
OPTIONS Statement.ouutt it 109
OPEN SPeCifierst 148
Format Character Controls fora Printer, 153
List Directed Input ValUuesuiu ittt e e 164
Default List Directed Output Formattingooiiiiiiiiinainain... 166
NumericFunctions 172
Mathematical Functions 179
Real Manipulation Functions 182
Bit Manipulation Functions i 182
Fortran 90/95 Bit Manipulation Subroutineo, 186
Elemental Character and Logical Functionsot 187
Fortran 90/95 Vector/Matrix FUNCLONSoirtiiti e 189
Fortran 90/95 Array Reduction Functionso, 189
Fortran 90/95 String Construction Functionsccoiiiiiiiiiiiiinn.. 193
Fortran 90/95 Array Construction/Manipulation Functions 193
Fortran 90/95 General Inquiry Functionscc.oiiiiiiiiiiinnanann. 197
Fortran 90/95 Numeric Inquiry Functions.cooiiiiiiiannnn.... 197
Fortran 90/95 Array Inquiry FUNCHONScouiiriiniiiieii e aiainnss 199
Fortran 90/95 String Inquiry Function.ooiiiiiiiiiiiainainnn.. 199
Fortran 90/95 SUDIOULINES\ttt ettt et e e e 199
Fortran 90/95 Transfer Functionttt 201
Miscellaneous FUNCHONSo vttt e 201
HPF Intrinsics and Library Procedures. o i, 259
Initialization of REDUCTION Variables i, 299

Table 9-1:
Table A-1:

HPF Directive Summary
HPF_LOCAL_LIBRARY Procedures

Figures

Figure 1-1:

Order of Statements

Xi

Xii

Audience Description

Preface

This help collection describes The Portland Group's implementation of the FORTRAN 77, Fortran 90/95
languages. Collectively, The Portland Group compilers that implement these languages are referred to as
the PGI Fortran compilers. This help collection is part of a set of other documents describing the Fortran
language and the compilation tools available from The Portland Group. This help collection presents
the Fortran language statements, intrinsics, and extension directives. The Portland Group’s Fortran
compilation system includes a compilation driver, multiple Fortran compilers, associated runtime
support and mathematical libraries, and associated software development tools for debugging and
profiling the performance of Fortran programs. Depending on the target system, The Portland Group’s
Fortran software development tools may also include an assembler or a linker. You can use these tools to
create, debug, optimize and profile your Fortran programs. ” Related Publications” lists other manuals
in the PGI documentation set.

This manual describes The Portland Group's implementation of the FORTRAN 77, Fortran 90/95 and
High Performance Fortran (HPF) languages. Collectively, The Portland Group compilers that implement
these languages are referred to as the PGI Fortran compilers. This manual is part of a set of other
documents describing the Fortran language and the compilation tools available from The Portland
Group. This manual presents the Fortran language statements, intrinsics, and extension directives. The
Portland Group’s Fortran compilation system includes a compilation driver, multiple Fortran compilers,
associated runtime support and mathematical libraries, and associated software development tools for
debugging and profiling the performance of Fortran programs. Depending on the target system, The
Portland Group’s Fortran software development tools may also include an assembler or a linker. You can
use these tools to create, debug, optimize and profile your Fortran programs. ” Related Publications”
lists other manuals in the PGI documentation set.

Audience Description

This help collectionmanual is intended for people who are porting or writing Fortran programs using
the PGI Fortran compilers. To use Fortran you should be aware of the role of Fortran and of source-level
programs in the software development process and you should have some knowledge of a particular
system or workstation cluster. To use the PGI Fortran compilers, you need to be familiar with the Fortran
language, either FORTRAN77, or Fortran 90/95 or HPF, and the basic commands available on your host
system.

Xii

Compatibility and Conformance to Standards

The PGI Fortran compilers, PGF77, or PGF95, run on a variety of 32-bit and 64-bit x86 processor-based
host systems. The PGF77 compiler accepts an enhanced version of FORTRAN 77 that conforms to the
ANSI standard for FORTRAN 77 and includes various extensions from VAX/VMS Fortran, IBM/VS Fortran,
and MIL-STD-1753. The PGF95 compiler accepts a similarly enhanced version of the ANSI standard for
Fortran 90/95.

The PGI Fortran compilers, PGF77, PGF95 and PGHPF, run on a variety of 32-bit and 64-bit x86
processor-based host systems. The PGF77 compiler accepts an enhanced version of FORTRAN 77 that
conforms to the ANSI standard for FORTRAN 77 and includes various extensions from VAX/VMS Fortran,
IBM/VS Fortran, and MIL-STD-1753. The PGF95 compiler accepts a similarly enhanced version of the
ANSI standard for Fortran 90/95. The PGHPF compiler accepts the HPF language and is largely, though
not strictly, a superset of Fortran 90/95. The PGHPF compiler conforms to the High Performance Fortran
Language Specification Version 1.1, published by the Center for Research on Parallel Computation, at
Rice University (with a few limitations and modifications, consult the PGHPF Release Notes for details).

For further information on the Fortran language, you can also refer to the following:
* American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

* ISO/IEC 1539 : 1991, Information technology — Programming Languages — Fortran, Geneva, 1991
(Fortran 90).

* ISO/IEC 1539 : 1997, Information technology — Programming Languages — Fortran, Geneva, 1997
(Fortran 95).

* Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass,
1997.

* High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas
(1993), http://www.crpc.rice.edu/HPFE.

* High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas
(1997), http://www.crpc.rice.edu/HPFF.

* OpenMP Fortran Application Program Interface, Version 1.1, November 1999, http://
WWW.0penmp.org.

* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

Xiv

Organization

* IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

* Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

This manual is divided into the following chapters and appendices:
Chapter 1, “Language Overview”, provides an introduction to the Fortran language.

Chapter 2, “Fortran Data Types”, describes the data types supported by PGI Fortran compilers and
provides examples using various data types. Memory allocation and alignment issues are also discussed.

Chapter 3, “Fortran Statements”, describes each Fortran and HPF statement that the PGI Fortran
compilers accept. Many HPF statements are in the form of compiler directives which can be ignored by
non-HPF compilers.

Chapter 4, “Fortran Arrays”, describes special characteristics of arrays in Fortran 90/95.

Chapter 5, “Input and Output Formatting”, describes the input, output, and format statements that
allow programs to transfer data to or from files.

Chapter 6, “Fortran Intrinsics”, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
comilers.

Chapter 7, “3F Functions and VAX Subroutines”, describes the functions and subroutines in the Fortran
run-time library and discusses the VAX/VMS system subroutines and the built-in functions supported by
the PGI Fortran compilers.

Chapter 8, “OpenMP Directives for Fortran”, lists the language extensions that the PGI Fortran
compilers support.

Chapter 9, “HPF Directives”, describes the HPF directives which support data distribution and alignment,
and influence data parallelism by providing additional information to the PGHPF compiler.

Appendix A., “HPF_LOCAL”, lists the HPF_LOCAL_LIBRARY procedures supported by the PGHPF
compiler.

XV

Hardware and Software Constraints

The PGI compilers operate on a variety of host systems and produce object code for a variety of target
systems. Details concerning environment-specific values and defaults and host-specific features or
limitations are presented in the PGI User’s Guide, the man pages for each compiler in a given
installation, and in the release notes and installation instructions included with all PGI compilers and
tools software products.

Conventions

This PGI Fortran Reference manual uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width is used in examples and for language statements in the text.

[item] square brackets indicate optional items. In this case item1 is optional.

{ item2 | item3} braces indicate that a selection is required. In this case, you must select
either item?2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may
occur. In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown using upper-case characters and a
reduced point size.

<TAB> non-printing characters, such as TAB, are shown enclosed in greater than

and less than characters and a reduced point size.

N this symbol indicates an area in the text that describes a Fortran 90/95
Language enhancement. Enhancements are features that are not
described in the ANSI Fortran 90/95 standards.

@ This symbol indicates an area in the text that describes a FORTRAN 77
enhancement. Enhancements may be VAX/VMS Fortran enhancements,
IBM/VM enhancements, or military standard MIL-STD-1753
enhancements.

XVi

Related Publications

Related Publications

The following documents contain additional information related to HPF and other compilers and tools
available from The Portland Group, Inc.

* The PGI User's Guide describes the general features and usage guidelines for all PGI compilers,
and describes in detail various available compiler options in a user's guide format.

* The PGHPF User's Guide describes the PGHPF compiler and describes some details concerning the
PGI implementation of HPF in a user's guide format.

* Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the statements,
data types, input/output format specifiers, and additional reference material that defines ANSI/ISO
Fortran 95.

* System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories,
Inc, (available from Prentice Hall, Inc.)

* The High Performance Fortran Handbook, from MIT Press, describes the HPF language in detail.

* High Performance Fortran Language Specification, Rice University, Houston Texas (1993), is the
specification for the HPF language and is available online at http://www.crpc.rice.edu/HPFE.

* American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
* Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation (September, 1984).
* IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

* Military Standard, FORTRAN, DOD Supplement to American National Standard Programming
Language FORTRAN, ANSI X3.-1978, MIL-STD-1753 (November 9, 1978).

XVil

XVili

Elements of a Fortran Program Unit

1 Language Overview

This chapter describes the basic elements of the Fortran language, the format of Fortran statements, and
the types of expressions and assignments accepted by the PGI Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language code,
binary object code or binary executables in conjunction with the assembler, linker and libraries on the
target system. The input language must be extended FORTRAN 77 as specified in this reference manual.
The PGF95 compiler functions similarly for Fortran 90/95. The PGF95 and PGHPF compilers function
similarly for Fortran 90/95 and HPF respectively.

This chapter is not an introduction to the overall capabilities of Fortran. Rather, it is an overview of the
syntax requirements of programs used with the PGI Fortran compilers. The Fortran 95 Handbook
provides details on the capabilities of Fortran 90/95 language.The Fortran 95 Handbook and The High
Performance Fortran Handbook provide details on the capabilities of Fortran 90/95 and HPF languages.

Elements of a Fortran Program Unit

A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or PROGRAM
program units.

Fortran source code consists of a sequence of program units which are to be compiled. Every program
unit consists of statements and optionally comments beginning with a program unit statement, either a
SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an END statement (BLOCK DATA
and MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM statement.

Statements

Statements are either executable statements or nonexecutable specification statements. Each statement
consists of a single line or source record, possibly followed by one or more continuation lines. Multiple
statements may appear on a single line if they are separated by a semicolon (;). Comments may appear
on any line following a comment character (!).

Language Overview

Free and Fixed Source

Fortran permits two types of source formatting, fixed source form and free source form. Fixed source
form uses the traditional Fortran approach where specific column positions are reserved for labels,
continuation characters, and statements and blank characters are ignored. The PGF77 compiler
supports only fixed source form. The PGF77 compiler also supports a less restrictive variety of fixed
source form called tab source form. Free source form introduced with Fortran 90 places few restrictions
on source formatting; the context of an element, as well as the position of blanks, or tabs, separate
logical tokens. Using the compiler option —Mfreeform you can select free source form as an option to
PGF95 or PGHPE

Statement Ordering

Fortran statements and constructs must conform to ordering requirements imposed by the language
definition. The figure “Order of Statements” illustrates these requirements. Vertical lines separate
statements and constructs that can be interspersed. Horizontal lines separate statements that must not
be interspersed.

These rules are less strict than those in the ANSI standard. The differences are as follows:

* DATA statements can be freely interspersed with PARAMETER statements and other specification
statements.

* NAMELIST statements are supported and have the same order requirements as FORMAT and
ENTRY statements.

* The IMPLICIT NONE statement can precede other IMPLICIT statements.

The Fortran Character Set

Figure 1-1: Order of Statements

Comments
and
INCLUDE
Statements

OPTIONS Statement

PROGRAM, FUNCTION, SUBROUTINE, or

BLOCK DATA Statements

USE Statements

NAMELIST,
FORMAT,
And
ENTRY
Statements

IMPLICIT NONE Statement

IMPLICIT Statements

DATA
Statements

Other
Specification

PARAMETER

Statement Function
Definition

EXECUTABLE Statements

CONTAINS Statement

Internal Subprograms or Module

END Statement

The Fortran Character Set

Table 1-1, “Fortran Characters”, shows the set of Fortran characters. Character variables and constants
can use any ASCII character. The value of the command-line option —Mupcase determines if the

compiler distinguishes between case (upper and lower) in identifiers. By default, without the —Mupcase
option selected, the compiler does not distinguish between upper and lower case characters in identifiers

Language Overview

(upper and lower case are always significant in character constants).

Table 1-1: Fortran Characters

Character Description Character Description

, Comma A-Z, a-z Alphabetic
Colon <space> Space character

; Semicolon = Equals

_ Underscore character + Plus

< Less than - Minus

> Greater than * Asterisk

? Question mark / Slash

% Percent (Left parenthesis

" Quotation mark) Right parenthesis

$ Currency symbol [Left bracket
Decimal point] Right bracket

! Exclamation mark <CR> Carriage return

0-9 Numeric <TAB> Tabulation charac-

ter

Table 1-2 , “C Language Character Escape Sequences”, shows C language character escape sequences
that the PGI Fortran compilers recognize in character string constants. These values depend on the
command-line option —Mbackslash.

Free Form Formatting

Table 1-2: C Language Character Escape Sequences

Charracte Description

\v vertical tab

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

\0 null

\ apostrophe (does not terminate a string)

\" double quotes (does not terminate a
string)

\ \

\x X, where x is any other character

\ddd character with the given octal representa-
tion.

Free Form Formatting

Using free form formatting, columns are not significant for the elements of a Fortran line, and a blank
or series of blanks or tabs and the context of a token specify the token type. 132 characters are valid per
line, and the compiler option —Mextend does not apply. Comments are indicated by a blank line, or by
following a Fortran line with the ! character. All characters after the ! are stripped out of the Fortran text.

Language Overview

Using free form formatting, the & character at the end of a line means the following line represents a
continuation line. If a continuation line starts with the & character, then the characters following the &
are the start of the continuation line. Without a leading & at the start of the continuation line, all
characters on the line are part of the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple statements
on a single line. Free format labels are valid at the start of a line, as long as the label is separated from
the remaining statements on the line by at least one blank or a <TAB>. Labels consist of a numeric field
drawn from digits 0 to 9. The label cannot be more than 5 characters.

Fixed Formatting

This section describes the two types of fixed formatting that PGI Fortran compilers support, column

formatting and tab formatting.

Column Formatting

Using column formatting a Fortran record consists of a sequence of up to 73 ASCII characters, the last

being <CR>. There is a fixed layout as shown in the table below.

Table 1-3: Fixed Format Record Positions and Fields

Position Field
1-5 Label field
6 Continuation field
7-72 Statement field

Characters beyond position 72 on a line are ignored unless the —Mextend option is specified. In addition,
any characters following a ! character are comments and are disregarded during compilation.

Fixed Format Label Field

The label field holds up to five characters. The characters C or * in the first character position of a label

field indicate a comment line.

Fixed Formatting

In addition to the characters C or *, either of the characters D or ! in the first position of a label field also
indicate a comment line.

When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is a label. A line with
no label, and with five space characters or a <TAB> in the label field, is an unlabeled statement. Each
label must be unique in its program unit. Continuation lines must not be labeled. Labels can only be
jumped to when they are on executable statements.

Fixed Format Continuation Field

The sixth character position, or the position after the tab, is the continuation field. This field is ignored
in comment lines. It is invalid if the label field is not five spaces. A value of 0, <space> or <TAB>
indicates the first line of a statement. Any other value indicates a subsequent, continuation line to the
preceding statement.

Fixed Format Statement Field

The statement field consists of valid identifiers and symbols, possibly separated by <space> or <TAB>
and terminated by <CR>.

Within the statement field tabs and spaces are ignored as are comments, characters following a !, or any
characters found beyond the 72nd character (unless the option —Mextend is enabled).

Fixed Format Debug Statements

The letter D in column 1 using fixed formatting designates the statement on the specified line is a

debugging statement. The compiler will treat the debugging statement as a comment, that is ignoring it,
unless the command line option —Mdlines is set during compilation. In that case, the compiler acts as if
the line starting with D were a Fortran statement and compiles the line according to the standard rules.

Tab Formatting

The PGI Fortran compilers support an alternate form of fixed source from called tab source form. A tab
formatted source file is made up of a label field, an optional continuation indicator and a statement
field. The label field is terminated by a tab character. The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a digit. The statement field
starts after a continuation indicator, when one is present. The 73rd and subsequent characters are
ignored.

Language Overview

Fixed Input File Format — Summary

Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins an
optional continuation indicator field. If a non-zero digit follows the tab character, the continuation field
exists and indicates a continuation field. If anything other than a non-zero digit follows the tab
character, the statement body begins with that character and extends to the end of the source statement.
Note that this does not override Fortran's free source form handling since no valid Fortran statement can
begin with a non-zero digit. The tab character is ignored if it occurs in a line except in Hollerith or
character constants.

Input lines may be of varying lengths. If there are fewer than 72 characters, the line is padded with
blanks; characters after the 72nd are ignored unless the —Mextend option is used on the command line.

If the —Mextend option is used on the command line then the input line can extend to 132 characters.
The line is padded with blanks if it is fewer than 132 characters; characters after the 132nd are ignored.
Note that use of this option extends the statement field to position 132.

Blank lines are allowed at the end of a program unit.

The number of continuation lines allowed is extended to 1000 lines.

Including Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. This is carried out using the INCLUDE statement which takes the form:

INCLUDE
"filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that source the
file is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same COMMON
block data mappings are used in several program units. For example the following statement includes
the file MYFILE.DEE

INCLUDE "MYFILE.DEF"

The Components of Fortran Statements

Recursive includes are not allowed. That is, if a file includes a file, that file may not also include the
same file.

Nested includes are allowed, up to a PGI Fortran defined limit of 20.

The Components of Fortran Statements

Fortran program units are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its elements combined with
operators. Hence the basic building block of a statement is an element. An element takes one of the
following forms:

A constant represents a fixed value.
A variable represents a value which may change during program execution.

An array is a group of values that can be referred to as a whole, as a section, or separately. The separate
values are known as the elements of the array. The array has a symbolic name.

A function reference or subroutine reference is the name of a function or subroutine followed by an
argument list. The reference causes the code specified at function/subroutine definition to be executed
and if a function, the result is substituted for the function reference.

Symbolic Names

Symbolic names identify different entities in Fortran source code. A symbolic name is a string of letters
and digits, which must start with a letter and be terminated by a character not in the symbolic names set
(for example a <space> or a <TAB> character). Underscore (_) characters may appear within symbolic
names. Only the first thirty-one characters identify the symbolic name. Below are several examples of
symbolic names:

NUM
CRA9
numericabcdefghijklmnopgrstuvwxyz

The last example is identified by its first 31 characters and is equivalent to:
numericabcdefghijklmnopgrstuvwx
The following examples are invalid symbolic names.

8Q

Language Overview

This is invalid because it begins with a number.

FIVE.4

This is invalid because it contains a period which is an invalid character for a symbolic name.

Expressions

Each data item, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary or
unary operators, so that the expression itself yields a value. A Fortran expression may be any of the
following:

* A scalar expression

* An array expression

* A constant expression

* A specification expression

* An initialization expression

* Mixed array and scalar expressions

Expression Precedence Rules

Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in “Arithmetic Expressions” on page 12. When no guidance is given to the
compiler it will impose a set of precedence rules to identify each expression uniquely. Table 1-4 ,
“Fortran Operator Precedence”, shows the operator precedence rules for expressions.

10

Table 1-4: Fortran Operator Precedence

Operator Evaluated

Unary defined Highest

sk N/A

*or/ N/A

Unary + or - N/A

Binary + or — N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same prece-
dence

Relational operators <, <=, >, >= Same prece-
dence

Relational operators .EQ., .NE., .LT. Same prece-
dence

NOT. N/A

AND. N/A

.OR. N/A

NEQV. and .EQV. N/A

Binary defined Lowest

An expression is formed as:

expr binary-operator expr

or

unary-operator expr

where an expr is formed as

Expressions

11

Language Overview

expression or element

For example,
A+B

-C
+D

These are simple expressions whose components are elements. Expressions fall into one of four classes:
arithmetic, relational, logical or character.

Operators of equal rank are evaluated left to right. Thus:

A*B+B**C .EQ. X+Y/Z
.AND. .NOT. K-3.0 .GT. T

is equivalent to:
((((A*B)+ (B**C)) .EQ.
(X+(Y/2))) .AND. (.NOT. ((K-3.0) .GT. T)))

Arithmetic Expressions

12

Arithmetic expressions are formed from arithmetic elements and arithmetic operators. An arithmetic
element may be:

* an arithmetic expression
* avariable

* a constant

* an array element

* a function reference

* afield of a structure

The arithmetic operators specify a computation to be performed on the elements. The result is a numeric
result. Table 1-5 , “Arithmetic Operators”, shows the arithmetic operators.

Note that a value should be associated with a variable or array element before it is used in an expression.
Arithmetic expressions are evaluated in an order determined by a precedence associated with each
operator. The precedence of each arithmetic operator is shown in Table 1-5 | “Arithmetic Operators”.

Expressions

This following example is resolved into the arithmetic expressions (a) + (B * c) rather than (a +
B) * (C).

A+ B * C

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed to be
evaluated first.

(A + B) * C

The compiler resolves this into the expressions (A + B) * (c).

Table 1-5: Arithmetic Operators

Operator Function

ok Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary
minus

Table 1-6: Arithmetic Operator Precedence

Operator Precedence
o First
*and/ Second
+ and - Third

The type of an arithmetic expression is:
INTEGER if it contains only integer elements.

REAL if it contains only real and integer elements.

13

Language Overview
DOUBLE PRECISION

COMPLEX

DOUBLE COMPLEX

Relational Expressions

if it contains only double precision, real and integer elements.

if any element is complex. Any element which needs conversion to complex
will be converted by taking the real part from the original value and
setting the imaginary part to zero.

if any element is double complex.

A relational expression is composed of two arithmetic expressions separated by a relational operator. The
value of the expression is true or false (. TruE. or . Fanse.) depending on the value of the expressions
and the nature of the operator. The table below shows the relational operators.

Operator Relationship
IT. Less than
IE. Less than or equal to
.EQ. Equal to
NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values. The relationship
is then evaluated to obtain the true or false result. Thus the relational expression:

TIME + MEAN .LT. LAST

means if the sum of T1ME and MeaN is less than the value of L.asT, then the result is true, otherwise it is

false.

Logical Expressions

A logical expression is composed of two relational or logical expressions separated by a logical operator.
Each logical expression yields the value true or false (. TruE. or . rarse.) The following table shows

the logical operators.

14

Expressions

Operator Relationship
.AND. True if both expressions are true.
.OR. True if either expression or both is true.
NOT. This is a unary operator; it is true if the expression is false, otherwise
it is false.
NEQV. False if both expressions have the same logical value
XOR. Same as .NEQV.
.EQV. True if both expressions have the same logical value

In the following example, TesT will be .TrUE. if A is greater than & or 1 is not equal to g+17.

TEST = A .GT. B .OR. I .NE. J+17

Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Its length is the
number of characters in the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

'ab &'

'A@HJi2'
'var([1,12]"

Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions using
the concatenation operator //. The following table shows several examples of concatenation.

Expression Value

"ABC'//'YZ! "ABCYZ"

19

Language Overview

Expression Value
'"JOHN '//'SMITH' "JOHN SMITH"
'‘g '//'JAMES '// "J JAMES JOYy"
'Joy!

Symbolic Name Scope

Fortran 90/95 scoping is expanded from the traditional FORTRAN 77 capabilities which provide a
scoping mechanism using subroutines, main programs, and COMMONSs. Fortran 90/95 adds the
MODULE statement. Modules provide an expanded alternative to the use of both COMMONs and
INCLUDE statements. Modules allow data and functions to be packaged and defined as a unit,
incorporating data hiding and using a scope that is determined with the USE statement.

Fortran 90/95 and HPF scoping is expanded from the traditional FORTRAN 77 capabilities which provide
a scoping mechanism using subroutines, main programs, and COMMONSs. Fortran 90/95 and HPF add
the MODULE statement. Modules provide an expanded alternative to the use of both COMMONSs and
INCLUDE statements. Modules allow data and functions to be packaged and defined as a unit,
incorporating data hiding and using a scope that is determined with the USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONS are global to those modules that reference
them. They must refer to unique objects, not only during compilation, but also in the link stage.

The scope of names other than these is local to the module in which they occur, and any reference to the
name in a different module will imply a new local declaration. This includes the arithmetic function
statement.

Assignment Statements

A Fortran assignment statement can be any of the following:
* An intrinsic assignment statement
* A statement label assignment
* An array assignment

* A masked array assignment

16

Assignment Statements

* A pointer assignment

* A defined assignment

Arithmetic Assignment

The arithmetic assignment statement has the following form:

object = arithmetic-expression
where object is one of the following:
* Variable
* Function name (within a function body)
* Subroutine argument
* Array element
* Field of a structure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE PRECISION or
COMPLEX) and the arithmetic-expression is coerced into the correct type if necessary.

In the case of:

complex = real expression

the implication is that the real part of the complex number becomes the result of the expression and the
imaginary part becomes zero. The same applies if the expression is double precision, except that the
expression will be coerced to real.

The following are examples of arithmetic assignment statements.

A= (P+Q) * (T/V)
B=R**T**2

Logical Assignment Statement

The logical assignment statement has the following form:

object = logical-expression

17

Language Overview

where object is one of the following:
* Variable
* Function name (only within the body of the function)
* Subroutine argument
* Array element
* Afield of a structure
The type of object must be logical.

In the following example, F1.aG takes the logical value .TruE. if p+q is greater than r; otherwise FLaG
has the logical value . FaLsE.

FLAG= (P+Q) .GT. R

Character Assignment

The form of a character assignment is:

object = character
expression

where object is one of the following:
* Variable
* Function name (only within the body of the function)
* Subroutine argument
* Array element
* Character substring
* Afield of a structure

Above, object must be of type character.

18

Listing Controls

None of the character positions being defined in object can be referenced in the character expression and
only such characters as are necessary for the assignment to object need to be defined in the character
expression. The character expression and object can have different lengths. When object is longer than
the character expression trailing blanks are added to the object; and if object is shorter than the
character expression the right-hand characters of the character expression are truncated as necessary.

In the following example, note that all the variables and arrays are assumed to be of type character.

FILE = 'BOOKS'
PLOT (3:8) = 'PLANTS'
TEXT(I,K+1) (2:B-1) = TITLE//X

Listing Controls

The PGI Fortran compilers recognize three compiler directives that affect the program listing process:

%LIST Turns on the listing process beginning at the following source code line.
%NOLIST Turns off the listing process (including the %NOLIST line itself).
%EJECT Causes a new listing page to be started.

These directives have an effect only when the —Mlist option is used. All of the directives must begin in
column one.

OpenMP Directives

OpenMP directives in a Fortran program provide information that allows the PGF77 and PGF95
compilers to generate executable programs that use multiple threads and processors on a shared-
memory parallel (SMP) computer system. An OpenMP directive may have any of the following forms:

| SOMPdirective
C$OMPdirective
*SOMPdirective

A complete list and specifications of OpenMP directives supported by the PGF77 and PGF95 compilers,
along with descriptions of the related OpenMP runtime library routines, can be found in Chapter 8,
“OpenMP Directives for Fortran”.

19

Language Overview

HPF Directives

20

HPF directives in a Fortran program provide information that allows the PGHPF compiler to explicitly
create data distributions from which parallelism can be derived. An HPF directive may have any of the
following forms:

CHPFS$Sdirective
|HPFS$Sdirective
*HPFsdirective

Since HPF supports two source forms, fixed source form and free source form, there are a variety of
methods to enter a directive. The C, !, or * must be in column 1 for fixed source form directives. In free
source form, Fortran limits the comment character to !. If you use the !HPF$ form for the directive
origin, your code will be universally valid. The body of the directive may immediately follow the directive
origin. Alternatively, any number of blanks may precede the HPF directive. Any names in the body of the
directive, including the directive name, may not contain embedded blanks. Blanks may surround any
special characters, such as a comma or an equals sign.

The directive name, including the directive origin, may contain upper or lower case letters (case is not
significant). A complete list and specifications of HPF directives supported by the PGHPF compiler can be
found in Chapter 9, “HPF Directives”.

Intrinsic Data Types

2 Fortran Data Types

Every Fortran element and expression has a data type. The data type of an element may be implicit in its
definition or explicitly attached to the element in a declaration statement. This chapter describes the
Fortran data types and constants that are supported by the PGI Fortran compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types provided by
the language are intrinsic types. Types specified by the programmer and built from the intrinsic data
types are called derived types.

Intrinsic Data Types

Fortran provides six different intrinsic data types as shown in Table 2-1, “Fortran Intrinsic Data Types”.
Table 2-2 , “Data Types Kind Parameters” and Table 2-3 , “Data Type Extensions” show variations and
different "kinds" of the intrinsic data types supported by the PGI Fortran compilers.

Kind Parameter

The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND parameter
follows a data type specifier and specifies size or type of the supported data type. A KIND specification
overrides the length attribute that the statement implies and assigns a specific length to the item,
regardless of the compiler's command-line options. A KIND is defined for a data type by a PARAMETER
statement, using sizes supported on the particular system.

The following are some examples using a KIND specification:

INTEGER (SHORT) :: L
REAL (HIGH) B
REAL (KIND=HIGH) XVAR, YVAR

These examples require that the programmer use a PARAMETER statement to define kinds:

INTEGER, PARAMETER :: SHORT=1
INTEGER HIGH
PARAMETER (HIGH=8)

The following table shows several examples of KINDs that a system could support.

Fortran Data Types

Table 2-1: Fortran Intrinsic Data Types

Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION | A double precision floating point number, real number,
taking up two numeric storage units and whose preci-
sion is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic. For-
tran provides two precisions for COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

Table 2-2: Data Types Kind Parameters

Type Kind Size
INTEGER SHORT 1 byte
INTEGER LONG 4 bytes
REAL HIGH 8 bytes

Number of Bytes Specification

22

The PGI Fortran compilers support a length specifier for some data types. The data type can be followed
by a data type length specifier of the form *s, where s is one of the supported lengths for the data type.
Such a specification overrides the length attribute that the statement implies and assigns a specific
length to the specified item, regardless of the compiler options. For example, REAL*8 is equivalent to
DOUBLE PRECISION. The following table shows the lengths of data types, their meanings, and their
sizes.

Table 2-3: Data Type Extensions

Intrinsic Data Types

Type Meaning Size
LOGICAL*1 Small LOGICAL 1 byte
LOGICAL*2 Short LOGICAL 2 bytes
LOGICAL*4 LOGICAL 4 bytes
LOGICAL*8 LOGICAL 8 bytes
BYTE Small INTEGER 1 byte
INTEGER*1 Same as BYTE 1 byte
INTEGER*2 Short INTEGER 2 bytes
INTEGER*4 INTEGER 4 bytes
INTEGER*8 INTEGER 8 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes
COMPLEX*8 COMPLEX 8 bytes
COMPLEX*16 DOUBLE COMPLEX 16 bytes

The BYTE type is treated as a signed one-byte integer and is equivalent to LOGICAL*1.

Assignment of a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type word has a

specifier.

For example:

CHARACTER*4 FUNCTION C*8 (VAR1)

23

24

Fortran Data Types

The function size specification C*8 overrides the CHARACTER*4 specification. Logical data items can be
used with any operation where a similar sized integer data item is permissible and vice versa. The logical
data item is treated as an integer or the integer data item is treated as a logical of the same size and no

type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array subscripts, in
computed GOTOs, in array bounds and in alternate returns. The floating point data item is converted to

an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The type of an
expression is determined by the rank of its elements. The following table shows the ranks of the various

data types, from lowest to highest.

Table 2-4: Data Type Ranks

Data Type

Rank

LOGICAL

1 (lowest)

LOGICAL*8

2

INTEGER*2

INTEGER*4

[SSNG S N}

INTEGER*8

REAL*4

REAL*8 (Double precision)

COMPLEX*8 (Complex)

COMPLEX*16 (Double complex)

o | 0| d | &N | W

(highest)

The data type of a value produced by an operation on two arithmetic elements of different data types is
the data type of the highest-ranked element in the operation. The exception to this rule is that an
operation involving a COMPLEX*8 element and a REAL*8 element produces a COMPLEX*16 result. In
this operation, the COMPLEX*8 element is converted to a COMPLEX*16 element, which consists of two

REAL*8 elements, before the operation is performed.

Constants

In most cases, a logical expression will have a LOGICAL*4 result. In cases where the hardware supports
LOGICAL*8 and if the expression is LOGICAL*S, the result may be LOGICAL*S.

Constants

A constant is an unchanging value that can be determined at compile time. It takes a form
corresponding to one of the data types. The PGI Fortran compilers support decimal (INTEGER and
REAL), unsigned binary, octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an
arithmetic assignment statement, is supported. These constants assume a data type that conforms to the
context in which they appear.

Integer Constants

The form of a decimal integer constant is:

[s]dld2...dn [_ kind-parameter]

where s is an optional sign and di is a digit in the range 0 to 9. The optional _kind-parameter is a
Fortran 90/95 feature supported only by PGF95 and PGHPF, and specifies a supported kind. The value of
an integer constant must be within the range for the specified kind.

The value of an integer constant must be within the range -2147483648 to 2147483647 inclusive (-231
to (231 - 1)). Integer constants assume a data type of INTEGER*4 and have a 32-bit storage
requirement.

The —i8 compilation option causes all data of type INTEGER to be promoted to an 8 byte INTEGER. The
—i8 option does not override an explicit data type extension size specifier (for example INTEGER*4). The
range, data type and storage requirement change if the —i8 flag is specified (this flag is not supported on
all targets). With the —i8 flag, the range for integer constants is -263 to (263 - 1)), and in this case the
value of an integer constant must be within the range -9223372036854775808 to
9223372036854775807. If the constant does not fit in an INTEGER*4 range, the data type is INTEGER*8
and the storage requirement is 64 bits.

Below are several examples of integer constants.

25

Fortran Data Types

+2

-36

437
-36_SHORT
369 I2

Binary, Octal and Hexadecimal Constants

The PGI compilers and Fortran 90/95 support various types of constants besides decimal constants.
Fortran allows unsigned binary, octal, or hexadecimal constants in DATA statements. PGI compilers
support these constants in DATA statements, and additionally, support some of these constants outside of
DATA statements. For more information on support of these constants, refer to “Fortran Binary, Octal
and Hexadecimal Constants” on page 33.

Real Constants

26

Real constants have two forms, scaled and unscaled. An unscaled real constant consists of a signed or
unsigned decimal number (a number with a decimal point). A scaled real constant takes the same form
as an unscaled constant, but is followed by an exponent scaling factor of the form:

E+digits [kind-parameter]
Edigit [kind-parameter]
E-digits [_ kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The first two
forms above are equivalent, that is, a scaling factor without a sign is assumed to be positive. The
following table shows several real constants.

Table 2-5: Example of Real Constants

Constants

Constant Value
1.0 unscaled single precision constant
L. unscaled single precision constant
-.003 signed unscaled single precision constant
-.003_LOW signed unscaled constant with kind LOW
-1.0 signed unscaled single precision constant
6.1E2_LOW is equivalent to 610.0 with kind LOW
+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH
6.1E2 is equivalent to 610.0
+2.3E3 is equivalent to 2300.0
-3.5E-1 is equivalent to -0.35

Double Precision Constants

A double precision constant has the same form as a scaled REAL constant except that the E is replaced by
D and the kind parameter is not permitted. For example:

D+digits
Ddigit
D-digits

The following table shows several double precision constants.

27

Fortran Data Types

Table 2-6: Double Precision Constants

Constant Value
6.1D2 is equivalent to 610.0
+2.3D3 is equivalent to 2300.0
-3.5D-1 is equivalent to -0.35
+4D4 is equivalent to 40000

Complex Constants

A complex constant is held as two real or integer constants separated by a comma and surrounded by
parentheses. The first real number is the real part and the second real number is the imaginary part.
Together these values represent a complex number. Integer values supplied as parameters for a
COMPLEX constant are converted to REAL numbers. Below are several examples:

(18,-4)
(3.5,-3.5)
(6.1E2,+2.3E3)

Double Complex Constants

A complex constant is held as two double constants separated by a comma and surrounded by
parentheses. The first double is the real part and the second double is the imaginary part. Together these
values represent a complex number. Below is an example:

(6.1D2,+2.3D3)

Logical Constants

A logical constant is one of:

.TRUE. [_ kind-parameter]
.FALSE. [_ kind-parameter]

The logical constants .TRUE. and .FALSE. are by default defined to be the four-byte values -1 and 0

respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE.

otherwise!.

28

Constants

Below are several examples:

.TRUE.
.FALSE.
.TRUE. BIT

The abbreviations T and F can be used in place of .TRUE. and .FALSE. in data initialization statements
and in NAMELIST input.

Character Constants

Character string constants may be delimited using either an apostrophe (') or a double quote ("). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use two
apostrophes together to include an apostrophe as part of the expression. If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote or
backslash escape. Within character constants, blanks are significant. For further information on the use
of the backslash character, refer to —Mbackslash in the PGI User’s Guide.

A character constant is one of;

[kind-parameter] "[characters]"
[kind-parameter] '[characters]'

Below are several examples of character constants.

tabe!

'tabc !

1 ab T C 1
"Test Word"
GREEK_"u"

A zero length character constant is written as ' or "

If a character constant is used in a numeric context, for example as the expression on the right side of
an arithmetic assignment statement, it is treated as a Hollerith constant. The rules for typing and sizing
character constants used in a numeric context are described in “Hollerith Constants” on page 35.

1. The option —Munixlogical defines a logical expression to be TRUE if its value is non-zero, and FALSE otherwise; also,
the internal value of .TRUE. is set to one. This option is not available on all target systems.

29

Fortran Data Types

PARAMETER Constants

The PARAMETER statement permits named constants to be defined. Refer to the description of the

PARAMETER statement found in Chapter 3, “Fortran Statements”, for more details on defining
constants.

Derived Types

A derived type is a type made up of components whose type is either intrinsic or another derived type. The
TYPE and END TYPE keywords define a derived type. For example, the following derived type declaration
defines the type PERSON and the array CUSTOMER of type PERSON:

! Declare a structure to define a person derived type
TYPE PERSON
INTEGER ID
LOGICAL LIVING
CHARACTER (LEN=20) FIRST, LAST, MIDDLE
INTEGER AGE
END TYPE PERSON
TYPE (PERSON) CUSTOMER(10)

A derived type statement definition is called a derived-type statement (the statements between TYPE
PERSON and END TYPE PERSON in the previous example. The definition of a variable of the new type is

called a TYPE statement (CUSTOMER in the previous example); note the use of parentheses in the TYPE
statement.

The % character accesses the components of a derived type. For example:

CUSTOMER (1) $ID = 11308
Arrays
Arrays in Fortran are not data types, but are data objects of intrinsic or derived type with special

characteristics. A dimension statement provides a data type with one or more dimensions. There are
several differences between Fortran 90/95 and traditional FORTRAN 77 arrays.

Note: Fortran 90/95 supports all FORTRAN 77 array semantics.

30

Arrays

An array is a group of consecutive, contiguous storage locations associated with a symbolic name which
is the array name. Each individual element of storage, called the array element, is referenced by the
array name modified by a list of subscripts. Arrays are declared with type declaration statements,
DIMENSION statements and COMMON statements; they are not defined by implicit reference. These
declarations will introduce an array name and establish the number of dimensions and the bounds and
size of each dimension. If a symbol, modified by a list of subscripts is not defined as an array, then it will
be assumed to be a FUNCTION reference with an argument list.

Fortran 90/95 arrays are “objects” and operations and expressions involving arrays may apply to every
element of the array in an unspecified order. For example, in the following code, where A and B are
arrays of the same shape (conformable arrays), the following expression adds six to every element of B
and assigns the results to the corresponding elements of A:

A =B + 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections of
arrays may be used and passed as well. Arrays of derived type are also valid. In addition, allocatable
arrays may be created with deferred shapes (number of dimensions is specified at declaration, but the
actual bounds and size of each dimension are determined when the array is allocated while the program
is running).

An Array Declaration Element

An array declaration has the following form:

name ([1b:]Jub[, [1b:]ub]...)

where name is the symbolic name of the array, Ib is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound, ub must be greater than the
lower bound Ib. The values Ib and ub may be negative. The bound Ib is taken to be 1 if it is not specified.
The difference (ub-1b+1) specifies the number of elements in that dimension. The number of Ib,ub pairs
specifies the rank of the array. Assuming the array is of a data type that requires N bytes per element, the
total amount of storage of the array is:

N* (ub-1b+1) * (ub-1b+1) *. ..

The dimension specifiers of an array subroutine argument may themselves be subroutine arguments or
members of COMMON.

31

Fortran Data Types

Deferred Shape Arrays

Deferred-shape arrays are those arrays whose shape can be changed by an executable statement.
Deferred-shape arrays are declared with a rank, but with no bounds information. They assume their
shape when either an ALLOCATE statement or a REDIMENSION statement is encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:

REAL A(:, :)

Subscripts

A subscript is used to specify an array element for access. An array name qualified by a subscript list has
the following form:

name (sub [, sub] ...)
where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower and
upper bounds. Arrays are stored as a linear sequence of values in memory and are held such that the
first element is in the first store location and the last element is in the last store location. In a multi-
dimensional array the first subscript varies more rapidly than the second, the second more rapidly than
the third, and so on (column major order).

Character Substring

32

A character substring is a contiguous portion of a character variable and is of type character. A character
substring can be referenced, assigned values and named. It can take either of the following forms:

character variable_name (x1:x2)
character_array name (subscripts) (x1:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-hand one.
These are known as substring expressions. In substring expressions x1 must be both greater than or
equal to 1 and less than x2 and x2 must be less than or equal to the length of the character variable or
array element.

For example:

J(2:4)

Fortran Pointers and Targets

the characters in positions 2 to 4 of character variable 7.
K(3,5) (1:4)
the characters in positions 1 to 4 of array element x (3, 5) .

A substring expression can be any valid integer expression and may contain array elements or function
references.

Fortran Pointers and Targets

Fortran pointers are similar to allocatable arrays. Pointers are declared with a type and a rank; they do
not actually represent a value, however, but represent a value's address. Fortran 90/95 has a specific
assignment operator, =>, for use in pointer assignments.

Fortran Binary, Octal and Hexadecimal Constants

The PGI Fortran compilers support two representations for binary, octal, and hexadecimal numbers: the
standard Fortran 90/95 representation and the PGI extension representation. Refer to the next section
for details on the alternate representation.

Fortran supports binary, octal and hexadecimal constants in DATA statements. The form of a binary
constant is:

B'blb2...bn'
B"blb2...bn"

where b i is either 0 or 1.

The form of an octal constant is:

O'clc2...cn!
O"clc2...cn"

where c i is in the range 0 through 7.

The form of a hexadecimal constant is:

Z'ala2...an'
Z"ala2...an"

or

33

Fortran Data Types

'ala2...an'X
"ala2...an"X

where a is in the range 0 through 9 or a letter in the range A through F or a through f (case mixing is
allowed).

Octal and Hexadecimal Constants - Alternate Form §

34

The PGF95 compiler supports additional extensions.The PGF95 and PGHPF compilers support additional
extensions. This is an alternate form for octal constants, outside of DATA statements. The form for an
octal constant is:

'clc2...cn'O
The form of a hexadecimal constant is:

'ala2...an'X

where ci is a digit in the range 0 to 7 and ai is a digit in the range 0 to 9 or a letter in the range A to F or
a to f (case mixing is allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded on the
left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

* A constant is always either 32 or 64 bits in size and is typeless. Sign-extension and type-conversion
are never performed. All binary operations are performed on 32-bit or 64-bit quantities. This
implies that the rules to follow are only concerned with mixing 32-bit and 64-bit data.

* When a constant is used with an arithmetic binary operator (including the assignment operator)
and the other operand is typed, the constant assumes the type and size of the other operand.

* When a constant is used in a relational expression such as .EQ., its size is chosen from the operand
having the largest size. This implies that 64-bit comparisons are possible.

* When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or COMPL
function, a 32-bit operation is performed if no argument is more than 32 bits in size; otherwise, a
64-bit operation is performed. The size of the result corresponds to the chosen operation.

* When a constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

Hollerith Constants

* When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant. Array
subscripting is an example.

* When a constant is used in a context other than those mentioned above, an INTEGER*4 data type
is assumed. Logical expressions and binary arithmetic operations with other untyped constants are
examples.

* When the required data type for a constant implies that the length needed is more than the
number of digits specified, the leftmost digits have a value of zero. When the required data type for
a constant implies that the length needed is less than the number of digits specified, the constant is
truncated on the left. Truncation of nonzero digits is allowed.

In the example below, the constant I (of type INTEGER*4) and the constant J (of type INTEGER*2) will
have hex values 1234 and 4567, respectively. The variable D (of type REAL*8) will have the hex value
x4000012345678954 after its second assignment:

'1234'X | Leftmost Pad with zero

'1234567'X ! Truncate Leftmost 3 hex digits
'40000123456789%ab'X

NEQV (D, 'ff'X) ! 64-bit Exclusive Or

O ogH
o

Hollerith Constants

The form of a Hollerith constant is:

nHclc2...cn

where 7 specifies the positive number of characters in the constant and cannot exceed 2000 characters.
A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith constants
are untyped arrays of INTEGER*4. The last word of the array is padded on the right with blanks if
necessary. Hollerith constants cannot assume a character data type and cannot be used where a
character value is expected. The data type of a Hollerith constant used in a numeric expression is
determined by the following rules:

* Sign-extension is never performed.

* The byte size of the Hollerith constant is determined by its context and is not strictly limited to 32
or 64 bits like hexadecimal and octal constants.

* When the constant is used with a binary operator (including the assignment operator), the data
type of the constant assumes the data type of the other operand.

35

Fortran Data Types

* When a specific data type is required, that type is assumed for the constant. When an integer or
logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required, REAL*4 is
assumed (array subscripting is an example of the use of a required data type).

* When a constant is used as an argument to certain generic functions (AND, OR, EQV, NEQV, SHIFT,
and COMPL), a 32-bit operation is performed if no argument is larger than 32 bits; otherwise, a
64-bit operation is performed. The size of the result corresponds to the chosen operation.

* When a constant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER*4 array. Character constants are passed by descriptor only.

* When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces are
appended to the constant on the right. When the length of the constant is greater than the length
implied by the data type, the constant is truncated on the right.

Structures

A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the following
form:

STRUCTURE [/structure name/] [field namelist]
field declaration
[field declaration]

[field declaration]
END STRUCTURE

Where:

structure_name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

Sield_namelist is a list of fields having the structure of the associated structure
declaration. A field_namelist is allowed only in nested structure
declarations.

field_declaration can consist of any combination of substructure declarations, typed data

declarations, union declarations or unnamed field declarations.

36

Structures

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields
also provides a C-like "struct" building capability and allows convenient inter-language
communications.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
because records use periods to separate fields, it is not legal to use relational operators (for example,
.EQ., XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions (.AND., .NOT., .OR.) as field
names in structure declarations.

Fields in a structure are aligned as required by hardware; therefore a structure's storage requirements
are machine-dependent. Because explicit padding of records is not necessary, the compiler recognizes
the %FILL intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.

Records

A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the following
form:

RECORD /structure name/record namelist
[, /structure name/record namelist]

[, /structure name/record namelist]

where:
structure_name is the name of a previously declared structure.
record_namelist is a list of one or more variable or array names separated by commas.

You create memory storage for a record by specifying a structure name in the RECORD statement. You
define the field values in a record either by defining them in the structure declaration or by assigning
them with executable code.

You can access individual fields in a record by combining the parent record name, a period (.), and the
field name (for example, recordname.fieldname). For records, a scalar reference means a reference to a
name that resolves to a single typed data item (for example, INTEGER), while an aggregate reference
means a reference that resolves to a structured data item.

37

Fortran Data Types

Scalar field references may appear wherever normal variable or array elements may appear with the
exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate references may
only appear in aggregate assignment statements, unformatted I/0 statements, and as parameters to
subprograms.

The following is an example of RECORD and STRUCTURE usage.

STRUCTURE /person/ ! Declare a structure
defining a person
INTEGER id
LOGICAL living
CHARACTER*5 first, last, middle
INTEGER age
END STRUCTURE
! Define population to be an array where each element is
! of type person. Also define a variable, me, of type
! person.
RECORD /person/ population(2), me

me.age = 34 ! Assign values for the variable me

to
me.living = .TRUE. ! some of the fields.
me.first = 'Steve'

me.id = 542124822

population(l) .last = 'Jones' ! Assign the "last" field
of

! element 1 of array population.
population(2) = me ! Assign all values of record

! "me" to the record

! population(2)

UNION and MAP Declarations

38

A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration defining a data
area that can be shared intermittently during program execution by one or more fields or groups of
fields. It declares groups of fields that share a common location within a structure. Each group of fields
within a union declaration is declared by a MAP declaration, with one or more fields per MAP
declaration.

Structures

Union declarations are used when one wants to use the same area of memory to alternately contain two
or more groups of fields. Whenever one of the fields declared by a union declaration is referenced in a
program, that field and any other fields in its map declaration become defined. Then, when a field in
one of the other map declarations in the union declaration is referenced, the fields in that map
declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION statement.
Enclosed within these statements are one or more map declarations, initiated and terminated by MAP
and END MAP statements, respectively. Each unique field or group of fields is defined by a separate map
declaration.

The format of a UNION statement is described in the following example:

UNION
map_declaration
[map_declaration]

[map_declaration]
END UNION

The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

[field declaration]
END MAP

where field_declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed
data field within a union.

Data can be initialized in field declaration statements in union declarations. Note, however, it is illegal
to initialize multiple map declarations in a single union.

Field alignment within multiple map declarations is performed as previously defined in structure
declarations.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for
alignment purposes.

39

Fortran Data Types

Manipulating data using union declarations is similar to what happens using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language C. The
main difference is that the C language requires one to associate a name with each "map" (union).
Fortran field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE, MAP and UNION usage. The size of each element
of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP, the employee
map (24 bytes).

STRUCTURE /account/
INTEGER typetag ! Tag to determine defined map.
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct_cust
REAL*4 credit amt
CHARACTER*8 due_ date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct_supp
REAL*4 debit amt
BYTE num_items
BYTE items(12) ! Items supplied
END MAP
END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

Data Initialization

40

Data initialization is allowed within data type declaration statements. This is an extension to the Fortran
language. Data is initialized by placing values bounded by slashes immediately following the symbolic
name (variable or array) to be initialized. Initialization of fields within structure declarations is
allowed, but initialization of unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type declarations
and in DATA statements. Truncation and padding occur for constants that differ in size from the declared
data item (as specified in the discussion of constants).

Pointer Variables

Pointer Variables

The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran 90/95
POINTER specification statement or attribute, declares a scalar variable to be a pointer variable (of data
type INTEGER), and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:
POINTER (pl1, v1) [, (p2, v2) ...]

vl and v2 are pointer-based variables. A pointer-based variable can be of any type,
including STRUCTURE. A pointer-based variable can be dimensioned in a
separate type, in a DIMENSION statement, or in the POINTER statement.
The dimension expression may be adjustable, where the rules for
adjustable dummy arrays regarding any variables which appear in the
dimension declarators apply.

pl and p2 are the pointer variables corresponding to v1 and v2. A pointer variable
may not be an array. The pointer is an integer variable containing the
address of a pointer-based variable. The storage located by the pointer
variable is defined by the pointer-based variable (for example, array, data
type, etc.). A reference to a pointer-based variable appears in Fortran
statements like a normal variable reference (for example, a local variable,
a COMMON block variable, or a dummy variable). When the based
variable is referenced, the address to which it refers is always taken from
its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.
The pointer is defined in one of the following ways:

* By assigning the value of the LOC function.

* By assigning a value defined in terms of another pointer variable.

* By dynamically allocating a memory area for the based variable. If a pointer-based variable is
dynamically allocated, it may also be freed.

The following code illustrates the use of pointers:

4

Fortran Data Types

REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))
P = LOC(IC)

I 0 ! IC gets O

P = LOC (XC)

Q =P + 20 ! same as LOC(XC(6))

X(1) = 0 ! XC(6) gets 0

ALLOCATE (X) ! Q locates an allocated memory area
Restrictions

42

The following restrictions apply to the POINTER statement:
* No storage is allocated when a pointer-based variable is declared.
* If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

* A pointer-based variable may not appear in the argument list of a SUBROUTINE or FUNCTION and
may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statements.

* A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. If a
pointer-based variable is an adjustable array, it is assumed that the variables in the dimension
declarators are defined with an integer value at the time the SUBROUTINE or FUNCTION is called.
For a variable which appears in a pointer-based variable's adjustable declarator, modifying its
value during the execution of the SUBROUTINE or FUNCTION does not modify the bounds of the
dimensions of the pointer-based array.

* A pointer-based variable is assumed not to overlap with another pointer-based variable.

Origin of Statement

3 Fortran Statements

This chapter describes each of the Fortran statements supported by the PGI Fortran compilers. Each
description includes a brief summary of the statement, a syntax description, a complete description and
an example. The statements are listed in alphabetical order. The first section lists terms that are used
throughout the chapter.

Definition of Terms

character scalar memory reference
is a character variable, a character array element, or a character member of a structure.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a structure.

logical scalar memory reference
is a logical variable, a logical array element, or a logical member of a structure.

obsolescent
The statement is unchanged from the FORTRAN 77 definition but has a better replacement
in Fortran 95.

Origin of Statement

At the top of each reference page is an indication of the origin of the statement.
HeadingExplanation

77 FORTRAN 77 statements that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

90/95 This statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from
its original FORTRAN 77 definition and is supported by the PGF95 and PGHPF compilers.

HPF The statement has its origin in the HPF standard.
N The statement is an extension to the Fortran language.

CMF Indicates a CM Fortran feature (CM Fortran is a version of Fortran that was produced by
Thinking Machines Corporation for parallel computers).

43

Fortran Statements

Statements
ACCEPT §77

The ACCEPT statement has the same syntax as the PRINT statement and causes formatted input to be
read on standard input. ACCEPT is identical to the READ statement with a unit specifier of asterisk (*).

Syntax

ACCEPT £ [,iolist]
ACCEPT namelist

f format-specifier, a * indicates list directed input.

iolist is a list of variables to be input.

namelist is the name of a namelist specified with the NAMELIST statement.
Examples

ACCEPT *, IA, ZA
ACCEPT 99, I, J, K
ACCEPT SUM

99 FORMAT (I2, I4, I3)

Non-character Format-specifier§

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER variable, the
compiler accepts it and treats it as if the contents were character. For example, below sum is treated as
a format descriptor:

real sum
sum = 4h()
accept sum

and is roughly equivalent to

character*4 ch
ch = ()"
accept ch

See Also
READ, PRINT

44

Statements

ALLOCATABLE 90

The ALLOCATABLE specification statement (attribute) specifies that an array with fixed rank but
deferred shape is available for a future ALLOCATE statement. An ALLOCATE statement allocates space
for the allocatable array.

Syntax

ALLOCATABLE [::] array-name [(deferred-array-spec)]
[, array-name [(deferred-array-spec)]l]...

array-name is the name of the allocatable array.
deferred-array-spec is a : character.
Example
REAL SCORE(:), NAMES(:, :)
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: TEST
ALLOCATABLE SCORE, NAMES
INTEGER, ALLOCATABLE :: REC1(: ,: , =)
See Also

ALLOCATE, DEALLOCATE
ALLOCATE 90

The ALLOCATE statement is an extension to FORTRAN 77 but is part of the Fortran 90/95 standard. It
allocates storage for each pointer-based variable and allocatable array which appears in the
statement. ALLOCATE also declares storage for deferred-shape arrays.

Syntax

ALLOCATE (allocation-list [, STAT= var])
allocation-list is:

allocate-object [allocate-shape-spec-list]
allocate-object is:

variable-name
structure-component

allocate-shape-spec-list is:

45

Fortran Statements

[allocate-lower-bound :] allocate-upper-bound

var is an integer variable, integer array element or an integer member of a STRUCTURE (that
is, an integer scalar memory reference). This variable is assigned a value depending on
the success of the ALLOCATE statement.

name is a pointer-based variable or name of an allocatable COMMON enclosed in slashes.

Description

For a pointer-based variable, its associated pointer variable is defined with the address of the allocated
memory area. If the specifier STAT= is present, successful execution of the ALLOCATE statement causes
the status variable to be defined with a value of zero. If an error occurs during execution of the
statement and the specifier STAT= is present, the status variable is defined to have the integer value
one. If an error occurs and the specifier STAT= is not present, program execution is terminated.

A dynamic, or allocatable COMMON block is a common block whose storage is not allocated until an
explicit ALLOCATE statement is executed. Note: Allocatable COMMON blocks are an extension to
FORTRAN 77 supported only by PGF77 compiler, and not by the PGF95 or PGHPF compilers.

For an ALLOCATABLE array, the array is allocated with the executable ALLOCATE statement.
Examples

COMMON P, N, M
POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, IS

X(5) = A(2, 1)

DEALLOCATE (A)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

For a deferred shape array, the allocate must include the bounds of the array.

REAL, ALLOCATABLE :: A(:), B(:)
ALLOCATE (A(10), B(SIZE(A)))
REAL A(:,:)

N=3

M=1

Statements

ALLOCATE (A(1:11, M:N))
INTEGER FLAG, N

REAL, ALLOCATABLE:: B(:,:)
ALLOCATE (B(N,N),STAT=FLAG)

ARRAY CMF

The ARRAY attribute defines the number of dimensions in an array that may be defined and the
number of elements and bounds in each dimension.

Syntax

ARRAY [::] array-name (array-spec)
[, array-name (array-spec)]

array-name is the symbolic name of an array.

array-spec is a valid array specification, either explicit-shape, assumed-shape,
deferred-shape, or assumed size (refer to Chapter 4, “Fortran Arrays”,
for details on array specifications).

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as an
array, and in this case the declarator can use expressions formed from integer variables and constants
to establish the dimensions (adjustable arrays). Note however that these integer variables must be
either arguments or declared in COMMON; they cannot be local. Note that in this case the function of
ARRAY is merely to supply a mapping of the argument to the subroutine code, and not to allocate
storage.

The typing of the array in an ARRAY statement is defined by the initial letter of the array name in the
same way as variable names, unless overridden by an IMPLICIT or type declaration statement. Arrays
may appear in type declaration and COMMON statements but the array name can appear in only one

array declaration.

Example
REAL, ARRAY(3:10):: ARRAY ONE
INTEGER, ARRAY(3,-2:2):: ARRAY TWO

47

Fortran Statements

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3 and the upper
bound of 10.

ARRAY_TWO as a matrix of two dimensions having fifteen elements. The first dimension has three
elements and the second has five with bounds from -2 to 2.

ASSIGN 11

(Obsolescent) The assign statement assigns a statement label to a variable. Internal procedures can be
used in place of the assign statement. Other cases where the assign statement is used can be replaced

by using character strings (for different format statements that were formally assigned labels by using
an integer variable as a format specifier).

Syntax

ASSIGN a TO b

a is the statement label.
b is an integer variable.
Description

Executing an ASSIGN statement assigns a statement label to an integer variable. This is the only way
that a variable may be defined with a statement label value. The statement label must be:

* A statement label in the same program unit as the ASSIGN statement.
* The label of an executable statement or a FORMAT statement.

A variable must be defined with a statement label when it is referenced:
* In an assigned GOTO statement.

* As a format identifier in an input/output statement and while so defined must not be referenced
in any other way.

An integer variable defined with a statement label can be redefined with a different statement label,
the same statement label or with an integer value.

Statements

Example

ASSIGN 40 TO K
GO TO K
40 L = P + I + 56

BACKSPACE 17

When a BACKSPACE statement is executed the file connected to the specified unit is positioned before
the preceding record.

Syntax

BACKSPACE unit
BACKSPACE ([UNIT=]unit [,ERR=errs] [,
IOSTAT=ios])

UNIT=unit unit is the unit specifier.

ERR=s s is an executable statement label for the statement used for processing
an error condition.

[0STAT=ios ios is an integer variable or array element. ios becomes defined with 0 if
no error occurs, and a positive integer when there is an error.

Description

If there is no preceding record, the position of the file is not changed. A BACKSPACE statement cannot
be executed on a file that does not exist. Do not issue a BACKSPACE statement for a file that is open for
direct or append access.

Examples

BACKSPACE 4
BACKSPACE (UNIT=3)
BACKSPACE (7, IOSTAT=IOCHEK, ERR=50)

BLOCK DATA 7

The BLOCK DATA statement introduces a number of statements that initialize data values in COMMON
blocks. No executable statements are allowed in a BLOCK DATA segment.

49

50

Fortran Statements

Syntax

BLOCK DATA [name]
[specification]
END [BLOCK DATA [name]]

name is a symbol identifying the name of the block data and must be unique
among all global names (COMMON block names, program name,
module names). If missing, the block data is given a default name.

Example

BLOCK DATA

COMMON /SIDE/ BASE, ANGLE, HEIGHT, WIDTH
INTEGER SIZE

PARAMETER (SIZE=100)

INTEGER BASE (0:SIZE)

REAL WIDTH(0:SIZE), ANGLE (0:SIZE)

DATA (BASE(I),I=0,SIZE)/SIZE*-1,-1/,
+ (WIDTH(I),I=0,SIZE)/SIZE*0.0,0.0/

END

BYTE §77

The BYTE statement establishes the data type of a variable by explicitly attaching the name of a
variable to a 1-byte integer. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

BYTE name [/clist/],

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).
clist is a list of constants that initialize the data, as in a DATA statement.
Description

Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BYTE declaration statements must not be labeled.

Statements

Example

BYTE TB3, SEC, STORE (5,5)

CALL 17
The CALL statement transfers control to a subroutine.
Syntax
CALL subroutine [([actual-arg-list]...])]
subroutine is the name of the subroutine.
argument is the actual argument being passed to the subroutine. The first
argument corresponds to the first dummy argument in the
SUBROUTINE statement and so on.
actual-arg-list has the form:
[keyword =] subroutine-argument.
keyword is a dummy argument name in the
subroutine interface.
subroutine-argument is an actual argument.
Description

Actual arguments can be expressions including: constants, scalar variables, function references and
arrays.

Actual arguments can also be alternate return specifiers. Alternate return specifiers are labels prefixed
by asterisks (*) or ampersands (&). The ampersand is an extension to FORTRAN 77.

Recursive calls are allowed using the —Mrecursive command-line option.
Examples

CALL CRASH ! no arguments

CALL BANG(1.0) ! one argument

CALL WALLOP(V, INT) ! two arguments
CALL ALTRET(I, *10, *20)

SUBROUTINE ONE

DIMENSION ARR (10, 10)

REAL WORK

51

52

Fortran Statements

INTEGER ROW, COL

PI=3.142857

CALL EXPENS (ARR,ROW, COL, WORK, SIN(PI/2)+3.4)
RETURN

END

CASE 90

The CASE statement begins a case-statement-block portion of a SELECT CASE construct.
Syntax

[case-name :] SELECT CASE (case-expr)
[CASE (selector) [name]

block 1]

[CASE DEFAULT [case-name]

block 1]

END SELECT [case-name]

Example

SELECT CASE (FLAG)
CASE (1, 2, 3)
TYPE=1

CASE (4:6)
TYPE=2

CASE DEFAULT
TYPE=0

END SELECT

Type
Executable
See Also
SELECT CASE

CHARACTER 90

The CHARACTER statement establishes the data type of a variable by explicitly attaching the name of a
variable to a character data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Statements

Syntax

The syntax for CHARACTER has two forms, the standard Fortran form and the PGI extended form. This
section describes both syntax forms.

CHARACTER [character-selector] [,
attribute-list ::] entity-list

character-selector the character selector specifies the length of the character string. This
has one of several forms:

([LEN=] type-param-value)
* character-length [,]

Character-selector also permits a KIND specification. Refer to the Fortran 95 Handbook for more
syntax details.

attribute-list is the list of attributes for the character variable.
entity-list is the list of defined entities.
Syntax Extension§

CHARACTER [*len] [,] name [dimension] [*len] [/clist/],

len is a constant or *. A * is only valid if the corresponding name is a dummy argument.

name is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist isalist of constants that initialize the data, as in a DATA statement.

Description

Character type declaration statements may be used to dimension arrays explicitly in the same way as
the DIMENSION statement. Type declaration statements must not be labeled.

Note: The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration of a type
overrides any implicit declaration. An IMPLICIT statement overrides predefined typing rules.

53

Fortran Statements

Examples

CHARACTER A*4, B*6, C
CHARACTER (LEN=10):: NAME

Ais 4 and B is 6 characters long and C is 1 character long. NAME is 10 characters long.
CLOSE 17

The CLOSE statement terminates the connection of the specified file to a unit.
Syntax

CLOSE ([UNIT=] u [,ERR= errs] [,DISP[OSE]= stal
[, IOSTAT=ios] [,STATUS= stal)

u is the external unit specifier where u is an integer.

errs is an error specifier in the form of a statement label of an executable statement in the
same program unit. If an error condition occurs, execution continues with the statement
specified by errs.

ios is an integer scalar; if this is included ios becomes defined with 0 (zero) if no error
condition exists or a positive integer when there is an error condition. A value of -1
indicates an end-of-file condition with no error. A value of -2 indicates an end-of-record
condition with no error when using non-advancing 1/0.

sta is a character expression, where case is insignificant, specifying the file status and the
same keywords are used for the dispose status. Status can be 'KEEP' or 'DELETE' (the
quotes are required). KEEP cannot be specified for a file whose dispose status is SCRATCH.
When KEEP is specified (for a file that exists) the file continues to exist after the CLOSE
statement; conversely DELETE deletes the file after the CLOSE statement. The default value
is KEEP unless the file status is SCRATCH.

Description

A unit may be the subject of a CLOSE statement from within any program unit. If the unit specified
does not exist or has no file connected to it the use of the CLOSE statement has no effect. Provided the
file is still in existence it may be reconnected to the same or a different unit after the execution of a
CLOSE statement. Note that an implicit CLOSE is executed when a program stops.

54

Example

Statements

In the following example, the file on UNIT 6 is closed and deleted.

CLOSE (UNIT=6, STATUS='DELETE')

COMMON

17

The COMMON statement defines global blocks of storage that are either sequential or non sequential.
There are two forms of the COMMON statement, a static form and a dynamic form. Each common
block is identified by the symbolic name defined in the COMMON block.

Syntax
COMMON / [name] /nlist [, /name/nlist]...
name is the name of each common block and is declared between the /..,/
delimiters for 2 named common and with no name for a blank
common.
nlist is a list of variable names where arrays may be defined in DIMENSION

statements or formally declared by their inclusion in the COMMON
block.

Common Block Rules and Behaviors

A common block is a global entity. Any common block name (or blank common) can appear more
than once in one or more COMMON statements in a program unit. The following is a list of rules
associated with common blocks:

Blank Common

Same Names

The name of the COMMON block need not be supplied; without a name,
the common is a BLANK COMMON. In this case the compiler uses a
default name.

There can be several COMMON block statements of the same name in a
program segment; these are effectively treated as one statement, with
variables concatenated from one COMMON statement of the same name
to the next. This is an alternative to the use of continuation lines when
declaring a common block with many symbols.

Common blocks with the same name that are declared in different
program units share the same storage area when combined into one
executable program and they are defined using the SEQUENCE attribute.

55

Fortran Statements

HPF In HPF, a common block is non-sequential by default, unless there is an
explicit SEQUENCE directive that specifies the array as sequential. Note
this may require that older FORTRAN 77 programs assuming sequence
association in COMMON statements have SEQUENCE statements for
COMMON variables.

Example

DIMENSION R(10)
COMMON /HOST/ A, R, Q(3), U

This declares a common block called HOST

Note

The different types of declaration used for R (declared in a DIMENSION statement) and Q
(declared in the COMMON statement).

The declaration of HOST in a SUBROUTINE in the same executable program, with a different shape for
its elements would require that the array be declared using the SEQUENCE attribute.

SUBROUTINE DEMO
|HPF$ SEQUENCE HOST
COMMON/HOST/STORE (15)

RETURN
END

Common Blocks and Subroutines

If the main program has the common block declaration as in the previous example, the COMMON
statement in the subroutine causes STORE(1) to correspond to A, STORE(2) to correspond to R(1),
STORE(3) to correspond to R(2), and so on through to STORE(15) corresponding to the variable U.

Common Block Records and Characters

You can name records within a COMMON block. Because the storage requirements of records are
machine-dependent, the size of a COMMON block containing records may vary between machines.
Note that this may also affect subsequent equivalence associations to variables within COMMON blocks
that contain records.

Statements

Both character and non-character data may reside in one COMMON block. Data is aligned within the
COMMON block in order to conform to machine-dependent alignment requirements.

Blank COMMON is always saved. Blank COMMON may be data initialized.
See Also

The SEQUENCE directive.
Syntax Extension — dynamic COMMON§

A dynamic, or allocatable, COMMON block is a common block whose storage is not allocated until an
explicit ALLOCATE statement is executed. PGF77 supports dynamic COMMON blocks, while PGF95
does not.and PGHPF do not.

If the ALLOCATABLE attribute is present, all named COMMON blocks appearing in the COMMON
statement are marked as allocatable. Like a normal COMMON statement, the name of an allocatable
COMMON block may appear in more than one COMMON statement. Note that the ALLOCATABLE
attribute need not appear in every COMMON statement.

The following restrictions apply to the dynamic COMMON statement:

* Before members of an allocatable COMMON block can be referenced, the common block must
have been explicitly allocated using the ALLOCATE statement.

¢ The data in an allocatable common block cannot be initialized.

* The memory used for an allocatable common block may be freed using the DEALLOCATE
statement.

* If a SUBPROGRAM declares a COMMON block to be allocatable, all other subprograms
containing COMMON statements of the same COMMON block must also declare the COMMON to
be allocatable.

Example (dynamic COMMON)

COMMON, ALLOCATABLE /ALLl/ A, B, /ALL2/ AA,
BB
COMMON /STAT/ D, /ALLl/ C

This declares the following variables:

ALL1 is an allocatable COMMON block whose members are A, B, and C.

57

58

Fortran Statements

ALL2 is an allocatable COMMON block whose members are AA, and BB.
STAT s a statically-allocated COMMON block whose only member is D.

A reference to a member of an allocatable COMMON block appears in a Fortran statement just like a
member of a normal (static) COMMON block. No special syntax is required to access members of
allocatable common blocks. For example, using the above declarations, the following is a valid pgf77
statement:

AA =B * D

COMPLEX 90

The COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a
variable to a complex data type. This overrides the implication of data typing by the initial letter of a
symbolic name.

Syntax

The syntax for COMPLEX has two forms, the standard Fortran form and the PGI extended form. This
section describes both syntax forms.

COMPLEX [([KIND =] kind-value
) 1 [, attribute-list ::] entity-list

COMPLEX permits a KIND specification. Refer to the Fortran 95 Handbook for more syntax details.
attribute-list is the list of attributes for the character variable.
entity-list is the list of defined entities.

Syntax Extension§

COMPLEX name [*n] [dimensions] [/clist/] [,
name] [/clist/]

name is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement below for an explanation of array declarators).

clist isalist of constants that initialize the data, as in a DATA statement.

Statements

Description

COMPLEX statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. COMPLEX statements must not be labeled.

Note

The data type of a symbol may be explicitly declared only once. It is established by type
declaration statement, IMPLICIT statement or by predefined typing rules. Explicit declaration
of a type overrides any implicit declaration. An IMPLICIT statement overrides predefined
typing rules.

Example

COMPLEX CURRENT
COMPLEX DIMENSION (8) :: CONV1, FLUX1

The default size of a COMPLEX variable is 8 bytes. With the -r8 option, the default size of a COMP