/*
Example 11
Interface: Linear-Algebraic (IJ)
Compile with: make ex11
Sample run: mpirun -np 4 ex11
Description: This example solves the 2-D Laplacian eigenvalue
problem with zero boundary conditions on an nxn grid.
The number of unknowns is N=n^2. The standard 5-point
stencil is used, and we solve for the interior nodes
only.
We use the same matrix as in Examples 3 and 5.
The eigensolver is LOBPCG with AMG preconditioner.
*/
#include <math.h>
#include "_hypre_utilities.h"
#include "krylov.h"
#include "HYPRE.h"
#include "HYPRE_parcsr_ls.h"
/* lobpcg stuff */
#include "HYPRE_lobpcg.h"
#include "interpreter.h"
#include "HYPRE_MatvecFunctions.h"
#include "temp_multivector.h"
int main (int argc, char *argv[])
{
int i;
int myid, num_procs;
int N, n;
int blockSize;
int ilower, iupper;
int local_size, extra;
int print_solution;
double h, h2;
HYPRE_IJMatrix A;
HYPRE_ParCSRMatrix parcsr_A;
HYPRE_IJVector b;
HYPRE_ParVector par_b;
HYPRE_IJVector x;
HYPRE_ParVector par_x;
HYPRE_ParVector* pvx;
HYPRE_Solver precond, lobpcg_solver;
mv_InterfaceInterpreter* interpreter;
HYPRE_MatvecFunctions matvec_fn;
/* Initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
/* Default problem parameters */
n = 33;
blockSize = 10;
print_solution = 0;
/* Parse command line */
{
int arg_index = 0;
int print_usage = 0;
while (arg_index < argc)
{
if ( strcmp(argv[arg_index], "-n") == 0 )
{
arg_index++;
n = atoi(argv[arg_index++]);
}
else if ( strcmp(argv[arg_index], "-blockSize") == 0 )
{
arg_index++;
blockSize = atoi(argv[arg_index++]);
}
else if ( strcmp(argv[arg_index], "-print_solution") == 0 )
{
arg_index++;
print_solution = 1;
}
else if ( strcmp(argv[arg_index], "-help") == 0 )
{
print_usage = 1;
break;
}
else
{
arg_index++;
}
}
if ((print_usage) && (myid == 0))
{
printf("\n");
printf("Usage: %s [<options>]\n", argv[0]);
printf("\n");
printf(" -n <n> : problem size in each direction (default: 33)\n");
printf(" -blockSize <n> : eigenproblem block size (default: 10)\n");
printf(" -print_solution : print the solution vector\n");
printf("\n");
}
if (print_usage)
{
MPI_Finalize();
return (0);
}
}
/* Preliminaries: want at least one processor per row */
if (n*n < num_procs) n = sqrt(num_procs) + 1;
N = n*n; /* global number of rows */
h = 1.0/(n+1); /* mesh size*/
h2 = h*h;
/* Each processor knows only of its own rows - the range is denoted by ilower
and iupper. Here we partition the rows. We account for the fact that
N may not divide evenly by the number of processors. */
local_size = N/num_procs;
extra = N - local_size*num_procs;
ilower = local_size*myid;
ilower += hypre_min(myid, extra);
iupper = local_size*(myid+1);
iupper += hypre_min(myid+1, extra);
iupper = iupper - 1;
/* How many rows do I have? */
local_size = iupper - ilower + 1;
/* Create the matrix.
Note that this is a square matrix, so we indicate the row partition
size twice (since number of rows = number of cols) */
HYPRE_IJMatrixCreate(MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &A);
/* Choose a parallel csr format storage (see the User's Manual) */
HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR);
/* Initialize before setting coefficients */
HYPRE_IJMatrixInitialize(A);
/* Now go through my local rows and set the matrix entries.
Each row has at most 5 entries. For example, if n=3:
A = [M -I 0; -I M -I; 0 -I M]
M = [4 -1 0; -1 4 -1; 0 -1 4]
Note that here we are setting one row at a time, though
one could set all the rows together (see the User's Manual).
*/
{
int nnz;
double values[5];
int cols[5];
for (i = ilower; i <= iupper; i++)
{
nnz = 0;
/* The left identity block:position i-n */
if ((i-n)>=0)
{
cols[nnz] = i-n;
values[nnz] = -1.0;
nnz++;
}
/* The left -1: position i-1 */
if (i%n)
{
cols[nnz] = i-1;
values[nnz] = -1.0;
nnz++;
}
/* Set the diagonal: position i */
cols[nnz] = i;
values[nnz] = 4.0;
nnz++;
/* The right -1: position i+1 */
if ((i+1)%n)
{
cols[nnz] = i+1;
values[nnz] = -1.0;
nnz++;
}
/* The right identity block:position i+n */
if ((i+n)< N)
{
cols[nnz] = i+n;
values[nnz] = -1.0;
nnz++;
}
/* Set the values for row i */
HYPRE_IJMatrixSetValues(A, 1, &nnz, &i, cols, values);
}
}
/* Assemble after setting the coefficients */
HYPRE_IJMatrixAssemble(A);
/* Get the parcsr matrix object to use */
HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A);
/* Create sample rhs and solution vectors */
HYPRE_IJVectorCreate(MPI_COMM_WORLD, ilower, iupper,&b);
HYPRE_IJVectorSetObjectType(b, HYPRE_PARCSR);
HYPRE_IJVectorInitialize(b);
HYPRE_IJVectorAssemble(b);
HYPRE_IJVectorGetObject(b, (void **) &par_b);
HYPRE_IJVectorCreate(MPI_COMM_WORLD, ilower, iupper,&x);
HYPRE_IJVectorSetObjectType(x, HYPRE_PARCSR);
HYPRE_IJVectorInitialize(x);
HYPRE_IJVectorAssemble(x);
HYPRE_IJVectorGetObject(x, (void **) &par_x);
/* Create a preconditioner and solve the eigenproblem */
/* AMG preconditioner */
{
HYPRE_BoomerAMGCreate(&precond);
HYPRE_BoomerAMGSetPrintLevel(precond, 1); /* print amg solution info */
HYPRE_BoomerAMGSetCoarsenType(precond, 6);
HYPRE_BoomerAMGSetRelaxType(precond, 6); /* Sym G.S./Jacobi hybrid */
HYPRE_BoomerAMGSetNumSweeps(precond, 1);
HYPRE_BoomerAMGSetTol(precond, 0.0); /* conv. tolerance zero */
HYPRE_BoomerAMGSetMaxIter(precond, 1); /* do only one iteration! */
}
/* LOBPCG eigensolver */
{
int time_index;
int maxIterations = 100; /* maximum number of iterations */
int pcgMode = 1; /* use rhs as initial guess for inner pcg iterations */
int verbosity = 1; /* print iterations info */
double tol = 1.e-8; /* absolute tolerance (all eigenvalues) */
int lobpcgSeed = 775; /* random seed */
mv_MultiVectorPtr eigenvectors = NULL;
mv_MultiVectorPtr constraints = NULL;
double *eigenvalues = NULL;
if (myid != 0)
verbosity = 0;
/* define an interpreter for the ParCSR interface */
interpreter = hypre_CTAlloc(mv_InterfaceInterpreter,1);
HYPRE_ParCSRSetupInterpreter(interpreter);
HYPRE_ParCSRSetupMatvec(&matvec_fn);
/* eigenvectors - create a multivector */
eigenvectors =
mv_MultiVectorCreateFromSampleVector(interpreter, blockSize, par_x);
mv_MultiVectorSetRandom (eigenvectors, lobpcgSeed);
/* eigenvectors - get a pointer */
{
mv_TempMultiVector* tmp = mv_MultiVectorGetData(eigenvectors);
pvx = (HYPRE_ParVector*)(tmp -> vector);
}
/* eigenvalues - allocate space */
eigenvalues = (double*) calloc( blockSize, sizeof(double) );
HYPRE_LOBPCGCreate(interpreter, &matvec_fn, &lobpcg_solver);
HYPRE_LOBPCGSetMaxIter(lobpcg_solver, maxIterations);
HYPRE_LOBPCGSetPrecondUsageMode(lobpcg_solver, pcgMode);
HYPRE_LOBPCGSetTol(lobpcg_solver, tol);
HYPRE_LOBPCGSetPrintLevel(lobpcg_solver, verbosity);
/* use a preconditioner */
HYPRE_LOBPCGSetPrecond(lobpcg_solver,
(HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSolve,
(HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup,
precond);
HYPRE_LOBPCGSetup(lobpcg_solver, (HYPRE_Matrix)parcsr_A,
(HYPRE_Vector)par_b, (HYPRE_Vector)par_x);
time_index = hypre_InitializeTiming("LOBPCG Solve");
hypre_BeginTiming(time_index);
HYPRE_LOBPCGSolve(lobpcg_solver, constraints, eigenvectors, eigenvalues );
hypre_EndTiming(time_index);
hypre_PrintTiming("Solve phase times", MPI_COMM_WORLD);
hypre_FinalizeTiming(time_index);
hypre_ClearTiming();
/* clean-up */
HYPRE_BoomerAMGDestroy(precond);
HYPRE_LOBPCGDestroy(lobpcg_solver);
hypre_TFree(eigenvalues);
hypre_TFree(interpreter);
}
/* Print the solution */
if (print_solution)
HYPRE_ParVectorPrint(pvx[blockSize-1], "ij.out.x");
/* Clean up */
HYPRE_IJMatrixDestroy(A);
HYPRE_IJVectorDestroy(b);
HYPRE_IJVectorDestroy(x);
/* Finalize MPI*/
MPI_Finalize();
return(0);
}