
National Energy Research

Scientific Computing Center

(NERSC)

The Landscape of Computer Architecture

John Shalf

NERSC Center Division, LBNL

ISC2007, Dresden

June 25, 2007

The Landscape of Parallel

Computer Architecture

Session chair not satisfied with title

The NEW Landscape of Parallel

Computer Architecture

Session chair still not satisfied with title

Overturning the Conventional Wisdom for

the Multicore Era: Everything You Know is

WRONG!

Andreas (session chair) happy now…

Traditional Sources of Performance

Improvement are Flat-Lining
• New Constraints

– 15 years of exponential

clock rate growth has ended

• But Moore’s Law

continues!

– How do we use all of those
transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead of clock
frequency!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

Is Multicore the Correct Response

to New Lithography Constraints?

• Kurt Keutzer: “This shift toward increasing
parallelism is not a triumphant stride forward
based on breakthroughs in novel software and
architectures for parallelism; instead, this plunge
into parallelism is actually a retreat from even
greater challenges that thwart efficient silicon
implementation of traditional uniprocessor
architectures.”

• David Patterson: “Industry has already thrown the
hail-mary pass. . . But nobody is running yet.”

• Current Hardware/Lithography Constraints
– Power limits leading edge chip designs

• Intel Tejas Pentium 4 cancelled due to power issues

– Yield on leading edge processes dropping dramatically
• IBM quotes yields of 10 – 20% on 8-processor Cell

– Design/validation leading edge chip is becoming unmanageable
• Verification teams > design teams on leading edge processors

• Solution: Small Is Beautiful
– Expect modestly pipelined (5- to 9-stage)

CPUs, FPUs, vector, SIMD PEs
• Small cores not much slower than large cores

– Parallel is energy efficient path to performance:CV2F
• Lower threshold and supply voltages lowers energy per op

– Redundant processors can improve chip yield
• Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

– Small, regular processing elements easier to verify

Hardware: What are the problems?

How Small is “Small”

• Power5 (Server)

– 389mm^2

– 120W@1900MHz

• Intel Core2 sc (Laptop)

– 130mm^2

– 15W@1000MHz

• ARM Cortex A8 (BMW Auto)

– 5mm^2

– 0.8W@800MHz

• Tensilica DP (cell phones)

– 0.8mm^2

– 0.09W@600MHz

• Tensilica Xtensa (Cisco Router)

– 0.32mm^2 for 3!

– 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you

can pack 100x more cores onto a chip and consume 1/20 the power

Intel

Power Efficiency Motivates Manycore
(why should HPC “users” care?)

• Power Efficiency concerns drive industry to Manycore

• Power is leading factor limiting future system growth

– Cost of power > cost of hardware

– $33M/year projected power+cooling costs at ORNL 2010

– 130MW projected power for Exascale based on todays technology
(>$130M/year for cheap power!)

– Increasing fraction of budget will go to power (which means less capability
for YOU)

• Misplaced Concerns

– Old CW: Computational Efficiency is “sustained-to-peak” (KmPH/HP)

– New CW: Computational Efficiency is performance/watt (MPG)

– Optimizing performance-per-watt necessarily includes consideration of
programmability!

– This means hardware architects MUST understand application
requirements to move forward with next-generation architectures! (a
considerable departure from status quo)

Multicore vs. Manycore

• Multicore: current trajectory

– Stay with current fastest core design

– Replicate every 18 months (2, 4, 8 . . . Etc…)

– Advantage: Do not alienate serial workload

– Example: AMD X2 (2 core), Intel Core2 Duo (2 cores), Madison (2 cores),
AMD Barcelona (4 cores)

• Manycore: converging in this direction

– Simplify cores (shorter pipelines, lower clock frequencies, in-order
processing)

– Start at 100s of cores and replicate every 18 months

– Advantage: highest compute/surface-area, best power efficiency, easier
verification, defect tolerance, lower design costs.

– Examples: Cell SPE (8 cores), Nvidia G80 (128 cores), Intel Polaris (80
cores), Cisco/Tensilica Metro (188 cores)

• Convergence: Ultimately toward Manycore

– Manycore if we can figure out how to program it!

– Hedge: Heterogenous Multicore

The Future of

HPC System Concurrency

Must ride exponential wave of increasing concurrency for forseeable future!

You will hit 1M cores sooner than you think!

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000

Ju
n
-9
3

D
e
c
-9
3

Ju
n
-9
4

D
e
c
-9
4

Ju
n
-9
5

D
e
c
-9
5

Ju
n
-9
6

D
e
c
-9
6

Ju
n
-9
7

D
e
c
-9
7

Ju
n
-9
8

D
e
c
-9
8

Ju
n
-9
9

D
e
c
-9
9

Ju
n
-0
0

D
e
c
-0
0

Ju
n
-0
1

D
e
c
-0
1

Ju
n
-0
2

D
e
c
-0
2

Ju
n
-0
3

D
e
c
-0
3

Ju
n
-0
4

D
e
c
-0
4

Ju
n
-0
5

D
e
c
-0
5

Ju
n
-0
6

List

P
ro

ce
ss

o
rs

The Entire Computing Industry is

Betting Its future on Parallelism

• Old CW: Innovation trickles down from High End Computing to
your PC and consumer-electronics

• New CW: The flow is reversing! Innovation is trickling UP from
consumer applications to HPC! (petaflop cell phone?)

– They know more about computational/power efficiency than we do!

– They know more about cost-effectiveness than we do!

• This transition is NOT just about HPC!

– You are NOT in the driver’s seat of this revolution (get over it!)

– Your Motorola Razor Cell Phone already has 8 CPU cores in it (and will
grow geometrically from there)

– Cisco CRS-1 router has 188 tensilica CPU cores/socket (Metro) and
scales to 400,000 cores! (more than current HPC… runs an OS too!)

– Your toaster oven is going be running parallel applications on manycore
processors

• Industry has already moved forward with parallelism without
having a software solution in place (or even agreed upon)

– They are as scared as we are!

Failure Modes for the

Multicore Revolution

• System Balance: Concern that memory and
interconnect performance will ultimately cap multicore
performance

• Reliability: More “moving parts” means more
opportunity for failures

• Programmability: How can I possibly program 1M+
cores in an effective manner?

System Balance

Memory Bandwidth is the Primary Limiting

Factor for Future Multicore Performance

System Balance
(its all about the memory bandwidth)

Halving the memory bandwidth has virtually no effect on

performance for a broad variety of applications!!!

Single vs. Dual Core Performance
(wallclock time at fixed concurrency and problem size)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

W
a
ll

c
lo

c
k
 t

im
e

XT3 SC

XT3 DC

System Balance
(its all about memory bandwidth?)

• Even infinite improvement in FLOP rate or memory bandwidth nets

us 15% average performance benefit

• But biggest benefit from improving “other” which is dominated by

latency stalls!

• not application limited… it is limited by the CPU architecture

• multicore is not making this situation WORSE!

Distribution of Time Spent in Application
In Dual Core Opteron/XT4 System

0%

20%

40%

60%

80%

100%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench

Application

P
e
r
c
e
n

t
T
im

e
 S

p
e
n

t

other

flops

memory contention

System Balance

Bisection Bandwidth is the primary limiting

factor for future performance of MPPs

(therefore, must use Crossbar or CLOS)

Interconnect Design Considerations

for Massive Concurrency

• Application studies provide insight to
requirements for Interconnects (both on-
chip and off-chip)

– On-chip interconnect is 2D planar
(crossbar won’t scale!)

– Sparse connectivity for dwarfs; crossbar is
overkill

– No single best topology

• A Bandwidth-oriented network for data

– Most point-to-point message exhibit
sparse topology & bandwidth bound

• Separate Latency-oriented network for
collectives

– E.g., Thinking Machines CM-5, Cray T3D,
IBM BlueGene/L&P

• Ultimately, need to be aware of the on-chip
interconnect topology in addition to the off-
chip topology

– Adaptive topology interconnects (HFAST)

– Intelligent task migration?

Interconnects

Need For High Bisection Bandwidth

• 3D FFT easy-to-identify
as needing high bisection
– Each processor must send

messages to all PE’s! (all-to-all)
for 1D decomposition

– However, most implementations
are currently limited by overhead
of sending small messages!

– 2D domain decomposition
(required for high concurrency)
actually requires sqrt(N)
communicating partners! (some-
to-some)

• Same Deal for AMR

– AMR communication is sparse,
but by no means is it bisection
bandwidth limited

Reliability

• Do more cores mean less reliability?

Reliable System Design

• The future is unreliable

– Silicon Lithography pushes towards the atomic scale, the opportunity for
spurious hardware errors will increase dramatically

• Reliability of a system is not necessarily proportional to the
number of cores in the system

– Reliability is proportional to # of sockets in system (not #cores/chip)

– At LLNL, BG/L has longer MTBF than Purple despite having 12x more
processor cores

– Integrating more peripheral devices onto a single chip (e.g. caches, memory
controller, interconnect) can further reduce chip count and increase
reliability (System-on-Chip/SOC)

• A key limiting factor is software infrastructure

– Software was designed assuming perfect data integrity (but that is not a
multicore issue)

– Software written with implicit assumption of smaller concurrency (1M cores
not part of original design assumptions)

– Requires fundamental re-thinking of OS and math library design
assumptions

Operating Systems for CMP

• Even Cell Phones will need OS (and our idea of an OS is tooooo BIG!)
– Mediating resources for many cores, protection from viruses, and managing increasing

code complexity

– But it has to be very small and modular! (see also embedded Linux)

• Old OS Assumptions are bogus for hundreds of cores!

– Assumes limited number of CPUs that must be shared
• Old OS: time-multiplexing (context switching and cache pollution!)

• New OS: spatial partitioning

– Greedy allocation of finite I/O device interfaces (eg. 100 cores go after the network
interface simultaneously)

• Old OS: First process to acquire lock gets device (resource/lock contention! Nondeterm delay!)

• New OS: QoS management for symmetric device access

– Background task handling via threads and signals
• Old OS: Interrupts and threads (time-multiplexing) (inefficient!)

• New OS: side-cores dedicated to DMA and async I/O

– Fault Isolation
• Old OS: CPU failure --> Kernel Panic (will happen with increasing frequency in future silicon!)

• New OS: CPU failure --> Partition Restart (partitioned device drivers)

– Old OS invoked any interprocessor communication or scheduling vs. direct HW access

• What will the new OS look like?
– Whatever it is, it will probably look like Linux (or ISV’s will make life painful)

– Linux too big, but microkernel not sufficiently robust

– Modular kernels commonly used in embedded Linux applications! (e.g. vxWorks
running under a hypervisor XEN, K42, D.K. Panda Side Cores)

I/O For Massive Concurrency

• Scalable I/O for massively concurrent systems!

– Many issues with coordinating access to disk within node (on chip
or CMP)

– OS will need to devote more attention to QoS for cores competing
for finite resource (mutex locks and greedy resource allocation

policies will not do!) (its like rugby where device == the ball)

471 Mbytes/sec25 Mbytes/sec128

318 Mbytes/sec11 Mbytes/sec64

217 Mbytes/sec11 Mbytes/sec32

139 Mbytes/sec7 Mbytes/sec16

131 Mbytes/sec-8

I/O Rate

8 tasks per node

I/O Rate

16 Tasks/node

nTasks

Programming Model

High Productivity Computing is

the Uber Design Goal for Parallel

Computing Languages!

Programmability

• Widespread panic over programming model that can ride the
“Tsunami of concurrency”

• Inter-dependent requirements for programming environment

– Productivity

– Performance

– Correctness

• Approaches

– Abstracting single-chip parallelism
• Focus of the Broader Consumer Electronics/Computing Industry

• Even in HPC, observe that # chips growing much slower than # cores

– Hiding complexity of global parallelism
• Frameworks, Advanced compilers and programming languages, Auto-tuning

– Nightmare Scenario: Microsoft solves in-socket programming model and we are
stuck writing MPI between sockets that run C# code!

• Competing Goals

– Productivity Layer: Simplify specification of program/problem to solve

– Performance Layer: Expose all hardware Capabilities to programmer

Multicore is NOT a Familiar

Programming Target

• What about Message Passing on a chip?

– MPI buffers & datastructures growing O(N) or O(N2) a problem for constrained memory

– Redundant use of memory for shared variables and program image

– Flat view of parallelism doesn’t make sense given hierarchical nature of multicore sys.

• What about SMP on a chip?

– Hybrid Model (MPI+OpenMP) : Long and mostly unsuccessful history

– But it is NOT an SMP on a chip
• 10-100x higher bandwidth on chip

• 10-100x lower latency on chip

– SMP model ignores potential for much tighter coupling of cores

– Failure to exploit hierarchical machine architecture will drastically inhibit ability to
efficiently exploit concurrency! (requires code structure changes)

• Looking beyond SMP

– Cache Coherency: necessary but not sufficient (and not efficient for manycore!)

– Fine-grained language elements difficult to build on top of CC protocol

– Hardware Support for Fine-grained hardware synchronization

– Message Queues: direct hardware support for messages

– Transactions: Protect against incorrect reasoning about concurrency

Hardware Transactional Memory (TM)

Will Make Parallelism Easy

the silver bullet is already in our hands

Transactional Memory Will Save Us!

• What are Transactions

– Speculatively execute, but don’t commit result to memory (stays
resident in cache for HW-assisted transactions)

– If another thread wrote to the same memory addresses read by my
thread, then DO NOT commit results and re-execute (Rollback)

– If no dataflow conflict occurred, then commit results to memory

• Why transactions are good

– Can assume parallelization of loop iterations where every iteration
is a transaction (Lay-Z-boy parallelization!)

– If you reason incorrectly about dataflow hazards (read-after-write),
then suffer slower performance, but still get the correct answer
(very GOOD property)

– Auto-parallelizing compilers can be more aggressive

• Why transactions are bad (a subset of leading issues)

– What does it mean to have a nested transaction?

– What does it mean to mix transactional regions with non-
transactional regions? (Kozyrakis)

– How large can a transaction be? (finite hardware resources)

Threads and locks are a messy

parallel programming model

Krste Asanovic’s subtle critique of TM

Transactional Memory Helps a Bit

Krste Asanovic’s subtle critique of TM

Programming Model

Some Advanced Compiler Technology Will

Save Us!

Advanced Compiler

Technology Will Save Us!

• Old Conventional Wisdom: Depend on the Compiler to hide

architectural details

– We underestimate the amount of information compiler optimizers and back-ends
have to work with

– Many ambiguities at compile-time that are only resolved at runtime

– Have to be conservative to ensure “correctness”

– Don’t hold your breath waiting for “autoparallelization” (it WON’T happen!)

• New approach: “Auto-tuners” 1st run variations of program on

computer to heuristically search for best combinations of

optimizations (blocking, padding, …) and data structures, then

produce C code to be compiled for that computer

– E.g., PHiPAC (BLAS), Atlas (BLAS), Spiral (DSP), FFT-W

– Can achieve 10X over conventional compiler

– Encode body of knowledge regarding tuning strategies

• Can even have compiler assist with generating test cases (see also

Mary Hall)

Community Codes & Frameworks
(hiding complexity using good SW engineering)

• Frameworks (eg. Chombo, Cactus, SIERRA, UPIC, etc…)

– Clearly separate roles and responsibilities of your expert programmers from that of
the domain experts/scientist/users (productivity layer vs. performance layer)

– Define a social contract between the expert programmers and the domain scientists

– Enforces and facilitates SW engineering style/discipline to ensure correctness

– Hides complex domain-specific parallel abstractions from scientist/users to enable
performance (hence, most effective when applied to community codes)

– Allow scientists/users to code nominally serial plug-ins that are invoked by a parallel
“driver” (either as DAG or constraint-based scheduler) to enable productivity

• Properties of the “plug-ins” for successful frameworks (CSE07)

– Relinquish control of main(): invoke user module when framework thinks it is best

– Module must be stateless

– Module only operates on the data it is handed (no side-effects)

• Frameworks can be thought of as driver for coarse-grained dataflow

– Very much like classic static dataflow, except coarse-grained objects written in
declarative language (dataflow without the functional languages)

– Broad flexibility to schedule Directed Graph of dataflow constraints

– See also Jack Dongarra & Parry Husbands’ work on DAG-based scheduling

Multicore Opportunities
(thinking about large numbers of cores)

• Operating Systems

– Spatially partition cores instead of time multiplexing

– “Side-cores” for OS services and interrupts (D.K. Panda)

• Offload engines for efficient one-sided communication

• Truly asynchronous/background I/O

• Load balancing calculation and data movement

– Load-imbalance is looming impediment to future scalability

– Currently creates load-imbalance by attempting to compute balance

– Run in tandem with computations (background balancing) on dedicated cores

• Exploiting on-chip bandwidth (dataflow)

– Rather than decomposing for SPMD parallelism, decompose laterally (feed-
forward pipelines) to reuse on-chip bandwidth

– Good: More general than streaming. Better exploitation of on-chip bandwidth
and data locality!

– Bad: Requires strict control of side-effects

– Would benefit greatly from rediscovering dataflow and functional programming
languages

• SoC: Perhaps we shouldn’t use the area just for more cores!?!

– Integrated memory controllers etc… better reliability

Parallel Computing Everywhere
Cisco CRS-1 Terabit Router

• 188+4 Xtensa general purpose processor
cores per Silicon Packet Processor

• Up to 400,000 processors per system

• (this is not just about HPC!!!)

16 PPE

16 Clusters of

12 cores each

(192 cores!)

Replaces ASIC using 188 GP cores!

Emulates ASIC at nearly same power/performance

Better power/performance than FPGA!

New Definition for “Custom” in SoC

Conclusions

• “The processor is the new transistor!” Chris Rowen

• Enormous transition is underway that affects all
sectors of computing industry
– Motivated by power limits

– Proceeding before emergence of the parallel programming
model

• Will lead to new era of architectural exploration given
uncertainties about programming and execution
model (and we MUST explore!)

• Need to get involved now
– 3-5 years for new hardware designs to emerge

– 3-5 years lead for new software ideas necessary to support new
hardware to emerge

– 5+ MORE years to general adoption of new software

More Info

• “The Landscape of Computing

Architecture: A View from Berkeley”

– http://view.eecs.berkeley.edu

• Discussion of Impact of Embedded

Technology on HPC

– http://vis.lbl.gov/~jshalf/SIAM_CSE07

• RAMP Architectural Simulator

– http://ramp.eecs.berkeley.edu/

Extra Material

Memory Bandwidth

is not the primary problem

• Old CW: Bandwidth is the primary problem

– Strict adherence to Amdahl byte/flop ratios!

– Treat Latency and Bandwidth as independent issues!

• New CW: Bandwidth and Latency are intimately related via
Little’s Law

– Concurrency = Bandwidth * Latency

– Exacerbates problem if you throw memory bandwidth at it without
addressing deficient latency tolerance in existing CPU cores!

– Reduce problem if we have more cores to increase concurrent memory
requests

– Devote cores to hiding latency through DMA or other novel architectural
features for latency hiding!

– Please do not quote amdahl byte/flop ratios to me again!!

• Is Memory Bandwidth the problem?

– We should be so lucky…

Interconnect Design Considerations

for Massive Concurrency

• Bisection Bandwidth

– Old CW: scientific applications
(especially AMR) require high
bisection bandwidth (use a
crossbar!)

– New CW: No they don’t

• Topology

– Old CW: We can find an optimal
topology to serve needs of
applications

– New CW: No you can’t

• Collectives

– Old CW: Carry collective
operations over the same network
used for point-to-point
communication

– New CW: Have specialized
networks for point-to-point and
collective/sync operations

Frameworks
(its not all about computer languages!)

• Frameworks (eg. Chombo, Cactus, SIERRA, UPIC, etc…)

– Clearly separate roles and responsibilities of your expert programmers from that of
the domain experts/scientist/users (productivity layer vs. performance layer)

– Define a social contract between the expert programmers and the domain scientists
(importance constantly underestimated!)

– Hides complex domain-specific parallel abstractions from scientist/users (hence,
most effective when applied to community codes)

– Allow scientists/users to code nominally serial plug-ins that are invoked by a parallel
“driver” (either as DAG or constraint-based scheduler)

• Properties of the “plug-ins” for successful frameworks (CSE07)

– Relinquish control of main(): invoke user module when framework thinks it is best

– Module must be stateless

– Module only operates on the data it is handed (no side-effects)

• Frameworks can be thought of as driver for coarse-grained dataflow

– Very much like classic static dataflow, except coarse-grained objects written in
declarative language (dataflow without the functional languages)

– Broad flexibility to schedule Directed Graph of dataflow constraints

– We are slowly rediscovering dataflow (but don’t realize it yet)

Programmability

• Widespread panic over programming model that can
ride the “Tsunami of concurrency”

• Inter-dependent requirements for programming
environment
– Productivity

– Performance

– Correctness

• Approaches

– Abstracting single-chip parallelism
• Industry focus

• Observe # chips growing much slower than # cores

– Hiding complexity of global parallelism
• Frameworks, Advanced compilers and programming languages, Auto-tuning

– Imagining infinite-parallelism

21st Century Code

Generation

• New approach: “Auto-tuners” 1st run variations of program on

computer to heuristically search for best combinations of

optimizations (blocking, padding, …) and data structures, then

produce C code to be compiled for that computer

– E.g., PHiPAC (BLAS), Atlas (BLAS), Spiral (DSP), FFT-W

– Can achieve 10X over conventional compiler

• Example: Sparse Matrix (SPMv) for 3 multicores

– Fastest SPMv: 2X OSKI/PETSc Clovertown, 4X Opteron

– Optimization space: register blocking, cache blocking, TLB blocking,
prefetching/DMA options, NUMA,
BCOO v. BCSR data structures, 16b v. 32b indices, …

Power Now a Dominant Concern

Motivates search for more power efficient approach to computation

Chip Complexity and Design Costs

and Verification also Concern

Power3 Power5

Image From IBM Power5 RedbookImage From IBM Power3 Redbook

15 M Transistors

375 MHz

276 M Transistors (18x more!)

1900 MHz

-Most chip area used to hide latency for high clock frequencies

-Cost of new high-end chip ~$400M with 3 year lead time

 -One defect and the entire core is useless
 -Impossible to exhaustively verify 70M logic gates!

• Current Hardware/Lithography Constraints
– Power limits leading edge chip designs

• Intel Tejas Pentium 4 cancelled due to power issues

– Yield on leading edge processes dropping dramatically
• IBM quotes yields of 10 – 20% on 8-processor Cell

– Design/validation leading edge chip is becoming unmanageable
• Verification teams > design teams on leading edge processors

• Solution: Small Is Beautiful
– Expect modestly pipelined (5- to 9-stage)

CPUs, FPUs, vector, SIMD PEs
• Small cores not much slower than large cores

– Parallel is energy efficient path to performance:CV2F
• Lower threshold and supply voltages lowers energy per op

– Redundant processors can improve chip yield
• Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

– Small, regular processing elements easier to verify

Hardware: What are the problems?

Chris Rowen Data

