Optimizing the NPB FT benchmark for multi-core
AMD Opteron microprocessors

Stephen Whalen
Cray, Inc.

August 13, 2007

1 Description of FT

1.1 High-level description

FT approximates the solution to the parabolic partial differential equation u, = @V*u by separation
of variables [2]. The Class D problem uses a 2048 x 1024 x 1024 discrete Fourier transform (DFT)
to approximate u in the transform space, and computes 25 timesteps, each of which is transformed
back into physical space [9].

1.2 Algorithm

The MPI parallel implementation requires that the number of processes be a power of two; other
process counts could not lead to a well-balanced distribution of work. The processes are arranged
in a 1D grid, and the global array is distributed along its last dimension [3]. Assuming p processes,
this results in each process holding a 2048 x 1024 x (1024/p) array.

Conceptually, the distributed DFTs are computed according to a standard algorithm:

1. Compute length-2048 DFTs along the first dimension.

2. Compute length-1024 DFTs along the second dimension.

3. Transpose the first and third dimensions.

4. Compute length-(1024/p) DFTs along the (new) first dimension.

This leaves the transformed data in a transposed layout across the processes.

Backward DFTs are compute by reversing this procedure.

After the forward DFT, the time evolution operator is applied, followed a backward DFT to
recover the approximate solution. This procedure (evolution followed by an inverse transform)
occurs once per timestep.

1.3 Implementational details

Computing multiple identically-sized serial 1D DFTs at once, rather than each one individually,
is a well-known DFT vectorization technique. With proper data layout, computing simultaneous
multiple DFTs allows stride-1 access [7]. The NPB2.4-MPI implementation uses this method,
computing the serial 1D DFTs in groups whose size is given by the variable fftblock. The
base code contains no logic to deal with partial blocks, so fftblock must divide the size of each
dimension of the u array. That is, £ftblock must be a power of two.

Rather than computing DFTs of subarrays of leading dimension fftblock, the data is first
copied into work arrays. This allows for array padding, as power-of-two leading dimensions could
lead to cache thrashing. The work arrays have leading dimension fftblockpad > fftblock,
where fftblockpad should not be a power of two. The default values are fftblock = 16 and
fftblockpad = 18.

Originally developed for vector supercomputers with interleaved memory, these techniques are
directly applicable to modern microprocessors and their cache structures: stride-1 access equates
to spatial locality to take advantage of full cache lines, and padded arrays avoid thrashing due to
cache associativity.

The base implementation uses the Stockham back-and-forth algorithm [4, 8] for the multiple
serial DFTs.

1.4 Profiles

Portions of function-level sampling profiles are shown in Tables 1 and 2. The £ftz2 subroutine is
the clear hotspot in both cases.

Samp % Cum. Samp Imb. Imb. Function
Samp % Samp Samp %
100.0% 100.0% 6487811 -- -- Total
50.1% 50.1% 3248833 1467.98 2.9% fftz2_
9.9% 59.9% 640567 614.14 5.9% cfftsl_
8.9% 68.9% 579189 1513.17 14.6% Ptl1EQPeek
7.5% 76.3% 484264 254.38 3.3% cffts2_
5.3% 81.7% 346901 375.67 6.6% transpose2_local_
4.8% 86.5% 309669 601.42 11.2% evolve_
3.9% 90.3% 251040 127.50 3.2% transpose2_finish_
2.6% 92.9% 168300 301.31 10.4% cfftz_
2.2% 95.2% 144761 640.11 22.4% PtlEQGet
1.5% 96.7% 99550 455.53 23.0% PtlEQGet_internal

Table 1: CrayPat sampling profile for FT Class D, 64 processes

Samp % Cum. Samp Imb. Imb. Function
Samp % Samp Samp %

100.0% 100.0% 7163068 -- -- Total

45.3% 45.3% 3242896 483.44 3.7% fftz2_

13.9% 59.2% 998672 436.94 10.1% PtlEQPeek

9.0% 68.2% 642862 216.82 8.0% cfftsl_
. 8% 75.0% 487337 237.34 11.1% cffts2_
.4% 79.4% 312700 184.52 13.2% transpose2_local_
. 2% 83.6% 301485 227.32 16.2% evolve_
.6% 87.2% 260345 40.03 3.8% transpose2_finish_
. 5% 90.7% 248259 282.24 22.6% PtlEQGet
.4% 93.1% 172737 309.25 31.6% PtlEQGet_internal
. 3% 95.4% 165864 152.09 19.1% cfftz_

N DN W WD O

Table 2: CrayPat sampling profile for FT Class D, 256 processes

2 Optimizations

2.1 Sizing for cache

We certainly expect degraded performance should each block of u spill out of cache. Indeed, this
happens with the default fftblockpad. In the first stage of the forward DFT, and the last stage
of each backward DFT, the blocked subarrays take on their largest size, fftblockpad x 2048.
With the default choice of fftblockpad = 18, each such subarray extends 576 kilobytes. Since
two arrays are required for the back-and-forth algorithm, this choice of £ftblockpad does indeed
cause spill from L2.

Halving the parameters to fftblock = 8, fftblockpad = 9 keeps the blocks in cache, and
results in nearly 30% improvement. Results are shown in Table 3. Note that in Tables 3, 4, 5, and
11, the heading “fftblockpad = 9” is meant to imply the setting of £ftblock = 8 as well.

Tables 4 and 5 show hardware counter data for runs using reference and modified code. In this
data, we see that sizing the workspace arrays to fit in L2 has the effect of reducing the number of
L2 misses by a remarkable 96%. This results in large reductions in the time spent stalled waiting
for the load-store unit, as well as reducing the time that the FPUs are stalled.

MPI processes Reference code fftblockpad =9 Speedup
(Mop/s/process) (Mop/s/process)

64 361.59 467.72 29.4%
256 327.10 422.50 29.2%

Table 3: Performance results before and after appropriate block size selection

Subroutine £ftz2

Reference code fftblockpad = 9
L1 D-cache accesses 149250398564 ops 148195554681 ops
L1 D-cache misses that hit in L2 16727341484 fills 16046991282 fills
L1 D-cache misses that miss in L2 268507845 fills 10702336 fills
D-TLB misses 6063319 misses 2280212 misses
HW FP Ops 198471313626 ops 196918325209 ops
HW FP Ops / User time 944.409 M/sec 1533.563 M/sec
LD & ST per TLB miss 24615.02 refs/miss 64989.43 refs/miss
User time 210.154 secs 128.406 secs
Avg Time FPUs stalled 50.997 secs 20.504 secs
Avg Time LSs stalled 5.837 secs 1.629 secs

Table 4: Hardware counter data for FT Class D, 64 processes, reported as per-process averages.

Subroutine £ftz2

Reference code fftblockpad = 9
L1 D-cache accesses 37310402283 ops 37041891556 ops
L1 D-cache misses that hit in L2 4182665584 fills 4011128415 fills
L1 D-cache misses that miss in L2 66335586 fills 2702270 fills
D-TLB misses 1500164 misses 565509 misses
HW FP Ops 49611111727 ops 49229654302 ops
HW FP Ops / User time 947.462 M/sec 1536.249 M/sec
LD & ST per TLB miss 24867.90 refs/miss 65496.53 refs/miss
User time 52.362 secs 32.045 secs
Avg Time FPUs stalled 12.638 secs 5.115 secs
Avg Time LSs stalled 1.458 secs 0.423 secs

Table 5: Hardware counter data for FT Class D, 256 processes, reported as per-process averages.

2.2 FFT libraries

Sizing for cache certainly has an important effect on FT’s performance, but one cannot ignore the
huge amount of research done over the past decades on the FFT algorithm itself. A thorough study
of NPB FT cannot be complete without some attempt to improve upon the reference implementa-
tion’s Stockham DFT.

To this end, Cray supports multiple DFT libraries that offer Opteron-specific, optimized imple-
mentations. The remainder of this section presents results from re-implementing NPB FT using
these various libraries. The first two, ACML and FFTW 3.1.1, offer highly-optimized serial DFTs.
The latter two, FFTW 2.1.5 and FFTW 3.2-alpha2 (which is not yet Cray supported), offer dis-
tributed DFTs.

2.2.1 ACML

The AMD Core Math Library (ACML) offers a large set of mathematical subroutines, including
BLAS, LAPACK, FFTs, transcendental functions, and random number generators [1]. Revising
NPB FT to use ACML’s zfftlmx subroutine in place of the reference fftz2 subroutine was
relatively straightforward. The only complication was the necessity to initialize nine separate
transforms, as £ftz2 may be called using to up nine different array sizes.

ACML does offer two options for initialization, which involves storing the factorization of the
array size, to be used for array decimation, as well as precomputing the twiddle factors [1]. The
default initialization method is very fast, using heuristic methods to produce a factorization that
is not guaranteed to be an optimal plan. The other option is very much slower, generating many
possible plans (though not exhaustive) and timing each to determine a near-optimal factorization.
Results for both initialization methods appear in Table 6.

MPI processes ACML
default plans measured plans
64 520.57 514.50
256 448.66 462.39

Table 6: Performance results, in Mop/s/process, after replacing £ftz2 with ACML’s zfft 1mx

2.22 FFTW3.1.1

Another serial FFT package available for XT systems, FFTW 3.1.1 [6], provides tuned DFTs
together with four initialization options. Implementing NPB FT with FFTW 3.1.1 is similar to
using ACML; nine separate transforms must be initialized, allowing one to replace fftz2 with
calls to dfftw_execute.

In order of increasing planning time, and generally increasing performance, FFTW’s options
are called FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT, and FFTW_EXHAUSTIVE. Results for
each method appear in Table 7.

MPI processes FFTW 3.1.1
FFTW_ESTIMATE FFTW_MEASURE FFTW_PATIENT FFTW_EXHAUSTIVE

64 488.13 562.46 571.88 573.59
256 458.36 523.05 530.09 529.88

Table 7: Performance results, in Mop/s/process, using FFTW 3.1.1

223 FFTW2.1.5

In addition to the serial transforms presented in subsections 2.2.1 and 2.2.2, Cray supports FFTW
2.1.5, which offers MPI distributed transforms in addition to serial transforms.

Distributed transforms in FFTW 2.1.5 require that global arrays be distributed over their last
dimensions, so that each process holds a contiguous portion of the global array [5]. As described in
Section 1.2, the reference NPB FT implementation uses the same distribution. As also described in
Section 1.2, the reference implementation leaves the data transposed across the processes (with the
first and third dimensions interchanged). This saves a global transpose step, in those cases where
it is possible to work with transposed data in the transform space.

By default, FFTW 2.1.5 will transpose the data back to the original ordering after the final serial
DFT calculations are complete. However, one can request that the last transposition be omitted by
using the FFTW_TRANSPOSED_ORDER flag when executing transforms. With this flag, revising NPB
FT to use FFTW 2.1.5 was straightforward.

FFTW 2.1.5 offers only FFTW_ESTIMATE and FFTW_MEASURE plan creation. Results for both
methods appear in Table 8.

MPI processes FFTW 2.1.5
FFTW_ESTIMATE FFTW MEASURE
64 273.78 273.81
256 298.67 300.30

Table 8: Performance results, in Mop/s/process, using FFTW 2.1.5

In spite of FFTW 2.1.5’s poor performance on these tests, users looking for a distributed DFT
library should not be disheartened. The current alpha release of FFTW 3.2 offers much-improved
performance.

2.2.4 FFTW 3.2-alpha2

Cray will support FFTW 3.2 as its distributed DFT package following MIT’s official release. Until
such time, Cray has built FFTW 3.2-alpha2 for XT systems.

Like FFTW 3.1.1, FFTW 3.2-alpha2 offers four plan creation methods. In Table 9, we list
results for all but FFTW_EXHAUSTIVE, as exhaustively planning such large problem sizes would
be prohibitively time consuming. This was not an issue with the other libraries described in this
paper: for the serial libraries, the DFTs are small enough that planning is very quick; for FFTW
2.1.5, the planning methods are not complex enough to consume large amounts of time. For the
reader’s interest, the planning times for each library described in this paper are listed in Table 10.

6

MPI processes FFTW 3.2alpha2
FFTW_ESTIMATE FFTW_MEASURE FFTW_PATIENT

64 180.94 591.15 596.41
256 164.16 460.63 460.36

Table 9: Performance results, in Mop/s/process, using FFTW 3.2alpha2

MPI processes Library Planning method Planning time (secs)
64 ACML default 1.193
measured 1.253
FFTW 3.1.1 FFTW_ESTIMATE 1.199
FFTW_MEASURE 1.196
FFTW_PATIENT 1.202
FFTW_EXHAUSTIVE 1.191
FFTW 2.1.5 FFTW_ESTIMATE 2.527
FFTW_MEASURE 2.725
FFTW 3.2alpha2 FFTW_ESTIMATE 2.776
FFTW_MEASURE 256
FFTW_PATIENT 4157
256 ACML default 0.302
measured 0.355
FFTW 3.1.1 FFTW_ESTIMATE 0.304
FFTW_MEASURE 0.301
FFTW_PATIENT 0.303
FFTW_EXHAUSTIVE 0.303
FFTW 2.1.5 FFTW_ESTIMATE 0.682
FFTW_MEASURE 0.682
FFTW 3.2alpha2 FFTW_ESTIMATE 0.589
FFTW_MEASURE 101
FFTW_PATIENT 1705

Table 10: Time to plan forward and backward DFTs. For ACML and FFTW 3.1.1, time includes
planning nine forward and nine backward DFTs.

MPI processes fftblockpad =9 ACML FFTW3.1.1 FFTW 2.1.5 FFTW 3.2alpha2

64 467.72 520.57 573.59 273.81 596.41
256 422.50 462.39 530.09 300.30 460.63

Table 11: Best performance results, in Mop/s/process, for each code revision

3 Conclusions

Given that DFTs are fundamentally important algorithms in a huge variety of computational disci-
plines, and that NPB FT tests only one type of transform, one must guard against generalizing too
much from the results presented in this paper.

Table 11 summarizes these results by listing the best results achieved with each code revision.
No single library or planning method is a certain “winner” for NPB FT. One should expect this in
general; given several choices of libraries, users who insist on the very best performance would
have to try each library for each size DFT used in their codes.

Generally, though, one may conclude that FFTW 3.1.1 shows here as the best of the choices,
since FFTW 3.2alpha? is still pre-release and unsupported. Nevertheless, users looking for quick
time-to-solution for distributed DFTs may wish to use FFTW 3.2alpha?2 until the official release of
FFTW 3.2.

References

[1] Advanced Micro Devices, Inc., Numerical Algorithms Group Ltd. AMD Core Math Library
User Guide, 2006.

[2] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS parallel benchmarks. Report RNR-94-007, NASA Advanced Supercomputing Divi-
sion, March 1994.

[3] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. RNR Technical Report NAS-95-020, NASA
Advanced Supercomputing Division, December 1995.

[4] David H. Bailey. A high-performance FFT algorithm for vector supercomputers. International
Journal of Supercomputer Applications, 2(1):82-87, 1988.

[5] Matteo Frigo and Steven G. Johnson. FFTW version 2.1.5 user manual. Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, November 2003.

[6] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216-231, 2005. Special Issue on Program Generation, Optimization, and
Platform Adaptation.

[7] Stefan Goedecker. Rotating a three-dimensional array in an optimal position for vector pro-
cessing: case study for a three-dimensional fast Fourier transform. Computer Physics Com-
munications, 76(3):294-300, 1993.

[8] Paul N. Swarztrauber. FFT algorithms for vector computers. Parallel Computing, 1(1):45-63,
August 1984.

[9] Rob van der Wijngaart. NAS parallel benchmarks version 2.4. NAS Technical Report NAS-
02-007, NASA Advanced Supercomputing Division, October 2002.

