LSF JobScheduler User's Guide

Third Edition, August 1998

Platform Computing Corporation

LSF JobScheduler User’s Guide

Copyright © 1994-1998 Platform Computing Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, electronically stored, or reduced to machine readable form without prior
written consent from Platform Computing Corporation.

Although the material contained herein has been carefully reviewed, Platform Computing
Corporation does not warrant it to be free of errors or omissions. Platform Computing
Corporation reserves the right to make corrections, updates, revisions or changes to the
information contained herein.

UNLESS PROVIDED OTHERWISE IN WRITING BY PLATFORM COMPUTING
CORPORATION, THE PROGRAM DESCRIBED HEREIN IS PROVIDED AS IS WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
ANY LOST PROFITS OR LOST SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO
USE THIS PROGRAM.

LSF Base, LSF Batch, LSF JobScheduler, LSF MultiCluster, LSF Analyzer, LSF Make, LSF Parallel,
Platform Computing, and the Platform Computing and LSF logos are trademarks of Platform

Computing Corporation.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Printed in Canada

LSF JobScheduler User’'s Guide iii

Revision Information for the LSF JobScheduler User’s Guide

Edition Description

First This document describes LSF JobScheduler 3.0. Based on the LSF User’s Guide,
Fourth Edition.

Second Revised to reflect changes in LSF JobScheduler 3.1.

Third Revised to reflect changes in LSF JobScheduler 3.2.

Contents

Preface e e ix
AUAIBNCE . .. e iX

LSF SUItE 3.2 o e e iX
Related DOCUMENTS e e e e X
Technical ASSIStanCe i e e Xi
T-Infroduction. i et e 1
What is LSF JobScheduler?. 1
Structure of LSFJobScheduler....... 2

LSF CIUSter. .o e 2

JODS L 4

JOD GroUPS . .o 4

EVENtS . . e 4

Calendars e e 5
Exceptionsand Alarms 5

QUBUIBS . .ttt e e e 5

Inter-job Dependency. 6

Command Setand GUITools. i 6

JOb History 7
2-GettingStarted 9
Gettingto Know Your Cluster. ...t 9
DisplayingtheJob Queues i i, 10

Displaying Host Load and Resource Information................... 10

Displaying LSF JobScheduler Server Information................... 11
Submittingaob. 11
CreatingaCalendar.o i e e e 12
Creating a Calendar from the Command Line...................... 12

Creating a Calendar Using the LSF JobScheduler - Calendar GUI 13

Displaying Calendars e 14
Displaying Calendars from the Command Line 14

Displaying Calendars Using the LSF JobScheduler - Calendar GULI. ... 15

LSF JobScheduler User’'s Guide Y,

Contents

Associating Jobswith Calendars. o 15
Associating Jobs with Calendars from the Command Line........... 15
Associating Jobs with Calendars Using the LSF JobScheduler - Job Submis-
SION GUIL . oo 16

Deleting Jobs.o 16

Associating Jobs with OtherJobs. o 17

Associating Jobswith FileEvents i i 17

Tracking Jobs ... 18

Using LSF JobScheduler GUITools. 18

3-Eventsand Calendarsc i 21

How Are Events Created? i e 22

Event Status e 22

BUuilt-in EVeNts 23
TiIMe EVeNtS. ... e 23
JOb EVeNts. e 23
JOb Group EVvents 24
Job Exception EVents 25

EXxternal EVents. e 27
File EVENTS . .. 27
USer EVENTS . ..o e 28

VIEWING EVENTS. . ..o 29

Calendarsand Time Events i e 31
WhatisaCalendar? i e 31
Built-in Calendars and Reserved Names for Calendars.............. 31
System Calendars 33
Using the LSF JobScheduler - Calendar GUI 33
Calendar Expressions and the Command Line Interface............. 37
Manipulating Calendars Using the Command Line Interface......... 40
TiIMe EVeNtS. ... e 42

4 - RESOUICES . ..ottt te e et e e aaane e 45

Introduction tO RESOUICES. . .. oottt e 45
Load INiCeS. ot 47
StatiC RESOUICES. . . .ttt 49
Shared RESOUICES . ..o o 51

Resource Requirement Strings.t 51
Selection SEriNg . ..o 52
Order StriNg. ..o 54
Resource Usage Stringt e 55

Vi

Job Resource Requirement Specification Examples. 55
Configuring Resource Requirementsc.outiiininnnnenn.. 57
Remote Task ListFile....... ... s 57
Managing Your Task List i, 57
5-DefiningJobs 59
Typesof Jobs. 59
Job Attributes e 60
JOb Status. 60
Creatinga Simple Job 63
Inputand OQULPUL. o 65
Host Selection 67
HOSE GrouPs .. .o 68
Host Preference. 69
QUEUE SElECtION 69
Specifying the Default Queue. i 70
Choosinga QUEUE. i 70
Resource RequUIrements. e 71
Pre-execution Commands.t 72
File Transfer 73
Grouping Jobs. 75
JOb Group Status.o 76
Creatingalob Group 76
SubmittingaJob underaJob Group L 79
Specifying Dependency Conditions 80
Time Event Dependencyot 80
Inter-job Dependencies i 83

File Event Dependencyt 86

Job Exception Event Dependency i 89
User Event Dependencyot 90
Combining Dependency Conditions. 91
Synchronizing DependentJobs i i 91
Other Job Parameters. 91
Number of Processors for Parallel Jobs. 92
Start Time and Terminationtime............... iiiin. 92
ExclusiveJob 92
Ad-hOCJODS . .o 93
Exception Handlers 93

LSF JobScheduler User’'s Guide Vii

Contents

6 - Managing Jobsand Schedules, 95
Viewing DetailsofalJoborJobGroup i i 95
Viewing Job HiStory e 99
PeekingatJob Qutput. 103
ModifyingaJdob 104
ModifyingaJob Group 105
DeletingaJoborJob Group 107

DeletingJobs 107
Deleting Job Groups. 108
Delayed DeletionofaJob i 109
JOD CONtrolS ..o 109
Terminatingaldob 109
Terminatinga Group ofJobs. i 110
Sending Arbitrary SignalstoJobs i 110
Suspending and ResumingJobs. 111
ForcingaJobtoRun. 112
Job Group Control 112
Managing Schedulesof Jobs. 113
System Status MoNnitoring. 114
EVeNt View. ... 115
HOSE VIEW .o 115
QUEUE ViBW . . e e e e 117
Load VIEBW . ..o 119

7 - Exception Handlingand Alarms. et 123
EXCEPLIONS . . .o 123
Exception Handlers 125
Using Exception Handlers 126

Handling Failures with Built-in Exception Handlers 126

Handling Failures with Recovery Jobs 127

Setting Exception Handlers Using Command Line Interface 129

Al . 130

How Are Alarms Generated, 130
Manipulating Alarms. 132

INdeX. .o e 135

viii

Preface

Audience

This guide is intended for users of LSF JobScheduler, and provides tutorial and
reference information created for them. Users should be familiar with executing
commands in a UNIX or Windows NT environment.

LSF JobScheduler administrators should also be familiar with the contents of the LSF
JobScheduler Administrator’s Guide.

LSF Suite 3.2

LSF is a suite of workload management products including the following:

LSF Batch is a batch job processing system for distributed and heterogeneous
environments, which ensures optimal resource sharing.

LSF JobScheduler is a distributed production job scheduler that integrates
heterogeneous servers into a virtual mainframe or virtual supercomputer

LSF MultiCluster supports resource sharing among multiple clusters of computers
using LSF products, while maintaining resource ownership and cluster autonomy.

LSF Analyzer is a graphical tool for comprehensive workload data analysis. It
processes cluster-wide job logs from LSF Batch and LSF JobScheduler to produce
statistical reports on the usage of system resources by users on different hosts through
various queues.

LSF JobScheduler User’'s Guide iX

Preface

LSF Parallel is a software product that manages parallel job execution in a production
networked environment.

LSF Make is a distributed and parallel Make based on GNU Make that simultaneously
dispatches tasks to multiple hosts.

LSF Base is the software upon which all the other LSF products are based. It includes
the network servers (LIM and RES), the LSF API, and load sharing tools.

There are two editions of the LSF Suite:

LSF Enterprise Edition

Platform’s LSF Enterprise Edition provides a reliable, scalable means for organizations
to schedule, analyze, and monitor their distributed workloads across heterogeneous
UNIX and Windows NT computing environments. LSF Enterprise Edition includes all
the features in LSF Standard Edition (LSF Base and LSF Batch), plus the benefits of LSF
Analyzer and LSF MultiCluster.

LSF Standard Edition

The foundation for all LSF products, Platform’s Standard Edition consists of two
products, LSF Base and LSF Batch. LSF Standard Edition offers users robust load
sharing and sophisticated batch scheduling across distributed UNIX and Windows NT
computing environments.

Related Documents

The following guides are available from Platform Computing Corporation:

LSF Installation Guide

LSF Batch Administrator’s Guide

LSF Batch Administrator’s Quick Reference
LSF Batch User’s Guide

LSF Batch User’s Quick Reference

LSF JobScheduler Administrator’s Guide
LSF JobScheduler User’s Guide

LSF Analyzer User’s Guide

LSF Parallel User’s Guide
LSF Programmer’s Guide

Online Documentation

= Man pages (accessed with the man command) for all commands

= Online help available through the Help menu for the xI sbat ch, xbnod, xbsub,
xbal ar s, xbcal and x| sadni n applications.

Technical Assistance

If you need any technical assistance with LSF, please contact your reseller or Platform
Computing’s Technical Support Department at the following address:

LSF Technical Support

Platform Computing Corporation
3760 14th Avenue

Markham, Ontario

Canada L3R 3T7

Tel: +1 905 948 8448

Toll-free: 1-87PLATFORM (1-877-528-3676)
Fax: +1 905 948 9975

Electronic mail: support@platform.com

Please include the full name of your company.

You may find the answers you need from Platform Computing Corporation’s home
page on the World Wide Web. Point your browser to www.platform.com.

If you have any comments about this document, please send them to the attention of
LSF Documentation at the address above, or send email to doc@platform.com.

LSF JobScheduler User’'s Guide Xi

Preface

Xii

1. Infroduction

What is LSF JobScheduler?

Production job scheduling has been an integral part of mainframe data processing
operations for decades. With the emergence of distributed computing, along with
UNIX and Windows NT workstations and file servers, system architecture has
changed drastically, calling for a new approach to job scheduling.

LSF JobScheduler is part of Platform’s Workload Management solutions. LSF
JobScheduler centralizes and automates the scheduling of production workload in
distributed UNIX and Windows NT environments. LSF JobScheduler integrates
heterogeneous servers into a ‘virtual mainframe’ to deliver high availability,
robustness, and ease-of-use. It provides the functions of traditional mainframe job
scheduling with transparent operation across a network of heterogeneous UNIX and
Windows NT systems.

With LSF JobScheduler, you can target jobs to specific servers, or you can let the system
match the requirements of your jobs to the capabilities of your servers. LSF
JobScheduler dynamically collects system load information about all aspects of
computing resources including CPU, memory, I/0, disk space, and interactive
activities. Jobs are dynamically scheduled to run on the most suitable servers available.
LSF JobScheduler offers graphical tools in addition to the standard command line
interface.

Some of the features of LSF JobScheduler are:

= asingle system image for a heterogeneous network of computers

= dynamic and intelligent resource mapping and load balancing

= centralized monitoring of resource load information and job information

LSF JobScheduler User’s Guide 1

1 Introduction

e —
= calendar-driven job scheduling

= event-driven job scheduling

= site-defined event monitoring

= flexible exception handling and error recovery mechanism

= complex inter-job dependencies and job dependency-driven job scheduling

= high availability and fault tolerance

= flexible, hierarchical job grouping

Structure of LSF JobScheduler

LSF JobScheduler consists of a master scheduler and a number of slave execution
servers distributed across a cluster of computers. There is only one master scheduler in
the whole cluster, and one slave execution server on each machine that runs jobs. The
master scheduler (mbat chd) accepts jobs created by users and schedules jobs to run by
slave execution servers on individual machines. A slave execution server (sbat chd)
accepts jobs dispatched from the master scheduler and runs them on the local machine,
controlling the execution according to job specifications from the master.

The components of LSF JobScheduler are shown in Figure 1.
LSF Cluster

An LSF cluster is a group of computers that are configured to act as a single, integrated
system for job scheduling. All machines configured into the cluster share resources
transparently. An LSF cluster consists of one or more server hosts and zero or more
client hosts. A client host is a machine that does not run user-submitted jobs, but allows
users to submit, monitor, and control jobs running on LSF JobScheduler server hosts.
A server host does everything a client host can do, and also runs user-submitted jobs .

1

One of the server hosts acts as the master for the cluster. It runs the master scheduler,
nbat chd. Each server host runs a slave execution server, shat chd, which manages
jobs dispatched by the master scheduler. Each server host also runs a Load Information
Manager daemon, LIM. It monitors the availability of resources and makes this
information available to LSF JobScheduler and other LSF utilities.

Each cluster can have one or more LSF cluster administrators. An LSF cluster
administrator is a user account that has permission to change the LSF JobScheduler
configuration and perform other maintenance functions. The LSF cluster administrator
has the authority to decide how the LSF JobScheduler cluster is configured.

The master scheduler maintains the status of all entities defined in the system
including jobs, events, calendars, and queues.

Figure 1. Components of LSF JobScheduler

Load Information

mbatchd

Jobs Submitted

Jobs Dispatched

LSF JobScheduler User’'s Guide 3

1 Introduction

Jobs

A job is a program or command that is scheduled to run in a specific environment. A
job has many attributes specifying its scheduling and execution requirements. Job
attributes are specified by the user who submits the job. LSF JobScheduler uses job
attributes, system resource information, and configured scheduling policies to decide
when, where, and how to run jobs. While each job is assigned a unique job
identification number by the system, you can associate your own job names to make
referencing easier.

Job Groups

A job group is a container for jobs in much the same way that a directory is a container
for files. When developing a complex schedule involving many jobs, it is useful to
organize related jobs into groups so that it becomes easier to view and manipulate
them. For example, a payroll application may have one group of jobs that calculates
weekly payments, another job group for calculating monthly salaries, and a third job
group that handles the salaries of part-time or contract employees. Users can view and
operate on the job groups rather than looking at individual jobs.

Events

An event is a change or occurrence in the system (such as the creation of a specific file,
a tape drive becoming available, or a prior job completing successfully or at a
particular time) that can be used to trigger jobs. LSF JobScheduler responds to the
following types of events:

= time events - points of time (defined by calendars and time expressions) that can
be used to trigger the scheduling of jobs.

= job events - the starting and completion of other jobs
= job group events - status condition changes of job groups
= file events - changes in a file’s status

= user events - site-specific occurrences, such as a tape mount, defined by the LSF
cluster administrator

= exception events - conditions raised in response to errors in the scheduling or
execution of jobs

When defining a job, it is possible to specify any combination of events that must be
satisfied before the job is considered eligible for execution.

Calendars

A calendar consists of a sequence of days on which the calendar is considered active. A
job is scheduled when the calendar is active and a time of day specification is met.
Calendars are defined and manipulated independently of jobs so that multiple jobs can
share the same calendar. Each user can maintain a private set of calendars, reference
calendars of other users, or use the calendars configured into the system. A calendar
can be modified after it has been created. Any new jobs associated with it will
automatically run according to the new definition.

Exceptions and Alarms

When managing critical jobs it is important to ensure that the jobs run properly. When
problems are detected during the processing of the job, it becomes necessary to take
some form of corrective action. LSF JobScheduler allows you to associate each job with
one or more exception handlers which tell the system to watch for a particular type of
error and take a specified action if it occurs. An exception condition represents a
problem in processing a job. LSF JobScheduler can watch for several types of exception
conditions during a job’s life cycle.

An alarm specifies how a notification should be sent in the event of an exception.
Queues

Production job scheduling provides efficient, timely execution of mission-critical jobs.
When you submitajob, itis placed into a queue. The LSF JobScheduler system runs jobs
from the queue based on the scheduled time and when the appropriate resources are
available. Jobs from a queue can be dispatched to any server hosts in your cluster that
are configured to run jobs for the queue.

A queue can be configured with many features that make your life easier. LSF
JobScheduler allows you to define various types of services by configuring different

LSF JobScheduler User’'s Guide 5

1 Introduction

queues. For each queue, you can configure a set of parameters that customize job
scheduling policies, job execution behaviour, and resource allocation constraints.

Inter-job Dependency

LSF JobScheduler allows you to control a job’s execution upon the completion, failure,
or startup of other jobs. For example, you can configure the system to start several main
processing jobs only after a data preparation job has completed, then you can start the
post-processing job after all the main processing jobs are done. These jobs do not have
to run on the same host.

Command Set and GUI Tools

LSF JobScheduler provides a rich set of commands and GUI tools to define, monitor
and manage the workload using any desktop as the system console. Typically, you
define your calendars and jobs together with any interdependencies using the GUI
tools xbcal and xbsub. Once these are set up, LSF JobScheduler will ensure that jobs
are run according to the conditions and policies specified.

You can keep close track of your jobs with LSF JobScheduler using the GUI program
x| sj s. As well as monitoring the status of jobs, the system allows you to perform
various operations on them, including:

= terminating, suspending, and resuming each run of a job, as well as removing the
entire job from the system

= inspecting the output of a running job

= looking at the history of a repetitive job for all its run instances

= changing any parameter of a job

= inquiring why a job has not been scheduled

LSF JobScheduler also comes with a comprehensive set of tools for monitoring your

cluster. These tools allow you to view your cluster of resources from any host in the
cluster so that you know the dynamic resource usage of all your machines.

Job History

LSF JobScheduler maintains the full history data of all jobs. The history information
tells you what has happened to your jobs.

LSF JobScheduler User’'s Guide

2. Getting Started

You will most commonly use LSF JobScheduler to process periodic or repetitive jobs.
To accomplish this, you need to first select or create a calendar. Next you must
associate jobs with the calendar. Once you have performed these two tasks, LSF
JobScheduler will automatically execute your jobs according to the calendar schedule
and the resource requirements of your jobs.

You can also use LSF JobScheduler to process jobs based on the occurrence of some
other events in the system, e.g. the creation (arrival) of afile.

LSF JobScheduler offers many utilities to check the status and progress of your jobs and
calendars. You can set up alarms and exception handlers to handle job failure. Other
utilities allow you to discover the resources available in the clusters on the network.

This chapter walks you through some of the most common LSF JobScheduler
operations.

Getting to Know Your Cluster

LSF JobScheduler enables you to submit and monitor your mission critical jobs in a
heterogeneous network environment. It automatically balances the load on the hosts
in your cluster so that your jobs run faster. Tools are provided to allow you to view
your cluster resource and load information from any machine in your cluster. LSF
JobScheduler gathers cluster resource information as well as system state information
from all server hosts in the cluster. A variety of utilities are available to present such
information in various formats.

LSF JobScheduler User’s Guide 9

2 Getting Started

Displaying the Job Queues

Job queues represent different job scheduling and resource allocation services. All jobs
submitted to a queue share the same policy. Each queue can be configured to use a
subset of the servers in the LSF JobScheduler cluster.

The bqueues command lists the available queues.

%bqueues

QELE NAME PR O STATUS NGBS PEND RN SUSP
ni ghtly 43 Qoen: I nactive 5 5 0 0
accounting 30 Qpen: Active 0 0 0 0
evaluation 20 Qpen: Active 0 0 0 0

Displaying Host Load and Resource Information

The | sl oad command displays dynamic load information about LSF JobScheduler
server hosts.

%1 sl oad

HOST NAME status r15s rlmri15m ut pg Is it tnmp sw nem
host d ok 0.4 0301 14% 10 5 3 56M 203M 125M
host b ok 0.8 0.81.6 42% 7 4 0 10M 71M 43M
host a unavai |

The hosts are ordered so that lightly loaded hosts are listed first. The status ‘unavail’
indicates that the Load Information Manager (LIM) on that host is not running.

Thel shost s command shows the static resource information about LSF JobScheduler
server hosts.

%I shost s

HBT_NAME type nodel cpuf ncpus naxnem naxswp server RESORES
host a hppa H715 4 1 64M 128M Yes (hppa hpux)
host b sunsol sparc 3 1 96M 128M Yes (sun sol aris)
host d Sel R1I0000 10 8 512M 1024M Yes (sgi irix6)

Static resource information is either configured by your LSF administrator or
automatically identified by LIM.

Displaying LSF JobScheduler Server Information

The bhost s command displays information about LSF JobScheduler server hosts
information.

%bhost s

HOST_NAME STATUS JU/U MAX NGBS RUN SSUSP USUSP RsV
host a ok - 1 0 0 0 0 0
host b cl osed - 1 1 1 0 0 0
hostd ok - 4 2 2 0 0 0

These fields display the status and job counters on the LSF JobScheduler servers. The
status ‘closed’ indicates that the server will not accept any new jobs at the current time.

Submitting a Job

To submit ajob into LSF JobScheduler, use the bsub command or the xbsub graphical
tool. If you submit a job that has no dependency conditions (such as time events and
file events), then the job will be run once, at most, and will be removed from LSF
JobScheduler after it finishes.

For example, you can submit the job “sleep_30” from the command line as follows:

% bsub sl eep_30
Job <1234> is subnmitted to default queue <normal >.

Here, 1234 is the job ID assigned by LSF JobScheduler, and nor nal is the name of the
default job queue defined by your LSF cluster administrator. There are a number of
options you can specify to control the way in which your job should be scheduled.

See Section 5, ‘Defining Jobs’, beginning on page 59, for more information on controlling
the scheduling of your job.

LSF JobScheduler User’'s Guide 11

2 Getting Started

Creating a Calendar

There are two possible types of calendars you can use to submit your job: a
preconfigured system calendar, or a calendar you or another user created. See ‘What is
a Calendar?’ on page 31 for more details.

Creating a Calendar from the Command Line

The following example shows you how to create a calendar with the bcadd command.

%bcadd -d "Every Monday" -t "*:*:Mnday" on_nonday
Cal endar <on_nonday> i s creat ed.

This creates a calendar named ‘on_monday’ that is active every Monday. A calendar
has a name, a calendar expression, and an optional description. The calendar name is
case insensitive.

The optional description is a string of text declared with the - d option. If the string
contains blanks or special characters, the entire string should be placed within quotes.
This description string is displayed as part of the calendar information when you run
bcal command with ‘-I’ option.

% bcal -1
CALENDAR on_nonday
-- Bvery Mnday

OMER STATUS CREATI ON_TI ME LAST MDD FY_TI ME
userl inactive Fri Nov 14 17:50:01 1997 -

CAL_BEXPRESSI O\ *: *: Monday
LAST_CAL_DAY: <Mdn Nov 10 1997>
NEXT_CAL_DAY: <Mbn Nov 17 1997>

A calendar expression defines the days during which the calendar is active. To prevent
a command line interpreter, such as a shell in UNIX, from interpreting any special
characters, the calendar expression following the - t option of bcadd should be placed
within quotes. See ‘Command Line Interface for Defining Calendars’ on page 39 for further
details.

Once your calendar is created, it can be used to drive jobs. A calendar can also be
modified using bcnod command or the xbcal GUI.

Creating a Calendar Using the LSF JobScheduler - Calendar GUI

Although you can create calendars from the command line, it is more convenient to use
the LSF JobScheduler - Calendar graphical application to do it. Figure 2 shows the
calendar creation window of the xbcal GUI tool.

Figure 2. xbcal Calendar Creation Window

Every Monday

Sun| Mon Tue| wee| Thu| Fri sat|
o businessday i |

LSF JobScheduler User’'s Guide 13

2 Getting Started

Displaying Calendars

LSF JobScheduler gives you two ways to display calendars—using the bcal command
from a command-line prompt, or using the xbcal graphical tool.

Displaying Calendars from the Command Line

The bcal command displays information about the calendars in the system.

% bcal

CALENDAR NAME OMER STATUS LAST CAL_DAY NEXT_CAL DAY
on_nonday userl inactive Mn Nov 10 1997 Mn Nov 17 1997
wor kdays Sys active Ved Nov 12 1997 Thu Nov 13 1997

By default, bcal displays all of your calendars, and all system-defined calendars. You
can specify a calendar by hame.

% bcal on_nonday
CALENDAR NAME OMER STATUS LAST CAL_DAY NEXT_CAL_ DAY
on_nonday userl inactive Mn Nov 10 1997 Mn Nov 17 1997

See ‘Manipulating Calendars Using the Command Line Interface’ on page 40 for details of
the individual fields of the bcal output.

2

Displaying Calendars Using the LSF JobScheduler - Calendar GUI

The same information is available using the LSF JobScheduler - Calendar graphical
application xbcal . In Figure 3, xbcal has been used to display all the calendars on the
system.

Figure 3. xbcal Calendar List Window

- IsFlobScheduer-Calendr [

File View Options Help
Hame Dwmer Status Last Occurrence Next Occurrence
on_monday inactive Mon Dec 1 1997 Mon Dec B 1997
tusinessday 5Y3 active Wed Dec 3 1997 Fri Dec 5§ 1997
weekend 5Y3 inactive Sun Nov 30 1997 Sat Dec 6 1997
holiday GV E inactive Fri Jul 4 1997 Thu Dec 25 1997
weekdays GV E active Wed Dec 3 1997 Fri Dec 5 1997

Updated 14:11:24

Associating Jobs with Calendars

LSF JobScheduler gives you two ways to associate jobs with calendars—using the
bsub command from a command-line prompt, or using the xbsub graphical tool.

Associating Jobs with Calendars from the Command Line

Once you have created your calendar, you can associate jobs with it. Submit a calendar-
driven job using the bsub command. The - T option defines a calendar-dependent job
by specifying the active time within a calendar.

%bsub -T "on_nonday: 01: 00" nyj ob
Job <3456> is submtted to default queue <nornal >.

LSF JobScheduler User’'s Guide 15

? Getting Started

This calendar-driven job will be executed each Monday at 1:00 am.

Associating Jobs with Calendars Using the LSF JobScheduler - Job
Submission GUI

You can use the GUI application xbsub to associate jobs with your calendar. Figure 4
shows submitting a job to the calendar ‘on_monday’.

Figure 4. xbsub Window

=] LSF.JobScheduler - Job Submission -]

File Edit Options Help

Job l Job Group l

Command Line: Imyj oH Browse...| -! From File

Jobh Hame: Imonday_j ok

In Job Group: I”

o Date & Time

_1 Hold this Job
Calendar: Ifonimonday Choose...l when Submitted

Hours: I g— (e.g.,*, 1, 7,14-15) 1 Exclusive Joh
Minutes: I i e.q.. *, 20-30, 50
g B ! Conditions... I
U I 15 | TS Exception Handler...l

Submit | Advanced...| Defauits | Revert | Exit |

Updated 17:17:47

Deleting Jobs

Use the bdel command to remove a job.

% bdel 3456
Job <3456> is being del eted

2

This command removes a specific job from the system. If the job is currently running,
bdel kills the job before removing the job from the system. You can also delete a job

using the LSF JobScheduler GUI by selecting on the job from the x| sj s main window
and clicking “Delete a Job”.

Associating Jobs with Other Jobs

You can make a job depend on one or more prior jobs. For example, your job may
require that the previous job has started processing (but it does not matter if it has
completed).

%bsub -w “started(first_job)” -J second_job time_card

In normal processing, your job probably requires that the prior job finished
successfully.

%bsub -w “done(pre_process)” -J main_process cheque_run

Such operations can also be easily done using JobScheduler’s submission GUI. See
‘Inter-job Dependencies’ on page 83 for information on this graphical tool.

Associating Jobs with File Events

You may want a job to run after some file event has occurred. LSF JobScheduler will
check for the file event and run your job. For example,

%bsub -w "file(size(/data/log file)>40M" conmand

This tells LSF JobScheduler to run the job when file “/ dat a/ 1 og_fi | e” has grown
beyond 40 MB in size.

%bsub -w "file(exist(/data/new file))" command

This tells LSF JobScheduler to run the job if file “new_file” exists.

LSF JobScheduler User’s Guide 17

2 Getting Started

The LSF JobScheduler GUI xbsub provides you with an easier way to specify file event
dependencies. See ‘File Event Dependency’ on page 86 for all available file event
functions, and more examples.

Tracking Jobs

After you have submitted jobs to LSF JobScheduler, you can check the status of your
jobs by running the bj obs command.

%bj obs

JABID USER STAT QEE FROM HOBT EXEC HOST JCB NAME SUBM T_TI ME
1004 user6 RWN sim host a host a portfl Sep 1 09:23
1235 wuser6 PEND priority hosth backup Sep 1 13:55
1234 wuser6 SSUSP sim host d host b portf2 Sep 1 10:09
1250 wuser6 PEND sim host a forecast Sep 1 13:59

Running jobs are listed first. Pending jobs are listed in the order in which they will be
scheduled. Jobs in high priority queues are listed before those in lower priority queues.

The LSF JobScheduler GUI x| sj s provides an easy interface to monitor job status.

Using LSF JobScheduler GUI Tools

All the operations described above can be executed using the LSF JobScheduler GUI
suite xIsf.

xbsub - job submission GUI
xbrod - this GUI allows you to modify the attributes of already submitted jobs
xbcal - calendar GUI that allows you to create, remove, and modify calendars

xl sj s - this GUI allows you to do all of the above including monitoring job
execution history, schedules, dependencies, and job groups

2

xbal arns - LSFJobScheduler alarm GUI that allows you to view, acknowledge, and
resolve alarms

The online help built into these GUI tools allows you to learn as you work.

LSF JobScheduler User’'s Guide

19

3. Events and Calendars

LSF JobScheduler manages network-wide events, and uses events to drive the
scheduling of jobs. LSF JobScheduler responds to the following types of events:

= time events - points of time that can be used to trigger the scheduling of jobs
= job events - the starting and completion of other jobs

= job group events - job group status conditions which can be used to trigger the
execution of jobs that depend on them

= file events - changes in the files residing in accessible file systems, such as the
arrival (creation) of a specific file

= user events - site-specific occurrences—such as a tape mount—defined by the LSF
JobScheduler administrators for your system

= exception events - conditions which indicate a problem with the processing of a
job

File events and user events are handled by an External Event Server (eevent d). LSF
JobScheduler comes with an eevent d daemon that handles file events. A site can
modify eevent d to monitor any site-specific events and use them to drive jobs.

Since file events and user events are events external to the LSF JobScheduler, they are
also referred to as external events, whereas time events, job events, job group events, and
exception events are referred to as built-in events.

Time events are defined by calendars and time expressions, specified when a job is

submitted. A calendar is a set of days during which time events occur. A time
expression specifies time(s) of the day at which time events occur.

LSF JobScheduler User’s Guide 21

3 Events and Calendars

How Are Events Created?

LSF JobScheduler events are used to trigger jobs. As such, events are defined when jobs
that are to be triggered by the events are created. There is a difference between a
condition and an event. An event is a condition that has been associated with a job as
one of its scheduling conditions. A condition that is not associated with a job is not
monitored by LSF JobScheduler, and is not considered an event.

When you create a new job, you can specify one or more conditions that will trigger the

job’s execution. As a user, you only need to worry about the conditions of your jobs,
and LSF JobScheduler will automatically register events that monitor the conditions

you specify.

Event Status

The status of an event has three possible values:

= active - the event is considered to have occurred. The dependency condition for
jobs waiting on the event will evaluate to TRUE.

= inactive - the event is considered not to have occurred. The dependency condition
for jobs waiting on the event is considered FALSE.

= invalid - this applies to external events only. The event is invalid and thus is
ignored by eevent d. This usually occurs due to a syntax error in the event
statement. The dependency condition for jobs waiting on the event will evaluate to
FALSE.

At any given instant, the event is either active, inactive, or invalid.

22

Built-in Events

Built-in events are events inside LSF JobScheduler. These events are monitored by LSF
JobScheduler rather than by an eevent d.

Time Events

A calendar together with a time expression defines a sequence of time events. Time
events are a useful means of triggering repetitive jobs.

A time event has two attributes: a start time and a duration.
= start time - defines when the time event becomes active

= duration - specifies how long the time event remains active before it becomes
inactive

See ‘Calendars and Time Events’ on page 31 for detailed information on time events.

Job Events

Frequently, the status changes of some jobs can trigger the scheduling of other jobs.
The change in status of a job is a job event. LSF JobScheduler allows you to submit a
job so that the scheduling of this job is dependent on the status of some prior job(s).

The following job event functions are provided to specify an inter-job dependency
when you submit a job. For all functions, the parameter j ob is either a joblD or a
jobname.

started(job)
The condition is TRUE if the specified job has started running or has already
finished.

done(j ob)
The condition is TRUE if the specified job has finished successfully in the
DONE state. A job is considered to have finished successfully if it terminates
with exit code 0 (zero).

LSF JobScheduler User’s Guide 23

3 Events and Calendars

exi t(job)
The condition is TRUE if the specified job has terminated abnormally in the
EXIT state. A job is considered to have terminated abnormally if it terminates
with a non-zero exit code.

exit(job,exit _code)
The condition is TRUE if the specified job has terminated with the specified
exi t _code value.

exit(job,op exit_code)
The condition is TRUE if the specified job has terminated with an exit code
within the specified range of exi t _code, where op is one of >, >=, <, <=, ==,
or =

ended(j ob)
The condition is TRUE if the specified job has finished.

The jobname can be preceded by a job group specification to indicate a dependency on
a job belonging to a particular group. See ‘Inter-job Dependencies’ on page 83 for
examples of using the above functions when submitting a job.

Job Group Events

A job or a job group can depend on the status of another job group. Using the group
dependencies you can set up a sequence of job groups to execute in a particular order.
A group itself is not actually executed, but rather the individual jobs under the group.
Therefore the successful completion or failure of a group is determined by the state of
the jobs in the group.

The following functions are provided to specify job group dependencies:
active(group_spec)
TRUE if the group is in the ACTIVE state. A group is active if it is ready to
schedule jobs.
i nactive(group_spec)

TRUE if the group is in the INACTIVE state, i.e. no job in the group may
scheduled to run.

24

hol d(gr oup_spec)
TRUE if the group is in the HOLD state.

nunr un(group_spec, op nunj
TRUE if the number of jobs in RUN state satisfy the test.

nunpend(group_spec, op hum
TRUE if the number of jobs in PEND state satisfy the test.

nundone(gr oup_spec, op hum
TRUE if the number of jobs in DONE state satisfy the test.

nunexit (group_spec, op hum
TRUE if the number of jobs in EXIT state satisfy the test.

nunended(group_spec, op num
TRUE if the total number of jobs in the DONE or EXIT state satisfy the test.

nunst art ed(group_spec, op num
TRUE if the total number of jobs in the RUN, USUSP or SSUSP state satisfies
the test.

Job Exception Events

Exceptions are conditions that arise during the life of a job that may require notification
or corrective action. An exception can trigger either a corrective job (by means of an
exception event), or an exception handler (such as an alarm).

Since every job can potentially display unique behaviour, the definition of an exception
is entirely up to the user who creates the job, i.e. a condition that is considered to be an
error for one job may not be considered an error for another job. LSF JobScheduler

allows each user to have his/her own definition of exceptions for each of his/her jobs.

When you create a job, you can specify what you would consider to be an exception for
that job. You can then specify exception handlers to take care of the exception
conditions. When an exception occurs, the associated exception handler will be
automatically invoked to take action. Exception handling is discussed in more detail in
Section 7, ‘Exception Handling and Alarms’, beginning on page 123.

LSF JobScheduler User’'s Guide 25

3 Events and Calendars

This section focuses on exception events that can be created as a result of exception
handling. LSF JobScheduler provides many exception handlers to recover a job when
errors occur. These handlers allow you to specify how you want to handle the job when
certain exceptions happen. For example, you can re-run the job, terminate the job,
trigger an alarm, or trigger an external exception handler job. Exception events are
used to trigger external exception handlers.

As with all other events, an exception event is created when a job that responds to the
event is created. An exception event has a name defined by the user who creates the
job. The following is an example of how an exception event can be created:

% bsub -w "exception(too long)" re-init

This command submits ajob r e-i ni t that runs when exception eventt oo_| ong
occurs. LSF JobScheduler then registers an exception event named t oo_| ong. Note
that the full name of the eventist oo _| ong@iser where user is the owner of the job.
This allows different users to use the same exception name without causing conflicts.

For the registered exception event to become active, a source for the exception must
also be defined. This is done through the special exception event handler function
setexcept():

% bsub -X "overrun(60)::setexcept(too_long)" sinulation

Here, over run() isan exception function and set except () is an exception handler
that sets the exception eventt oo_| ong to active when the exception condition
overrun(60) becomes TRUE. The exception condition over r un(60) becomes
TRUE when the job runs for more than 60 minutes.

In the above example, the r e- i ni t job creates the event and serves as the external
event handler, and the simulation job sets the event to active when the exception
happens. It is possible to have more than one job handling the same exception event.
In this case, the first job creates the event and other jobs would refer to the event. The
event is removed from the system when all exception handling jobs for the event are
removed from LSF JobScheduler.

For a list of all valid exception conditions and exception handlers in LSF JobScheduler
see Section 7, ‘Exception Handling and Alarms’, beginning on page 123.

26

External Events

External events allow your jobs to be triggered by conditions external to LSF
JobScheduler. This provides a lot of flexibility for you to integrate your site-specific
conditions with the scheduling of your production jobs.

Typical examples of external events include the arrival of a file, the mount of a device,
and the detection of an exception situation in the system.

External events are detected by the External Event Daemon (eevent d), which resides
on the same server host as the master scheduler daemon (rbat chd). The eevent d
communicates with nbat chd using a well-defined protocol. LSF JobScheduler comes
with an eevent d that detects file events. A site can easily modify the eevent d to
integrate other events by adding event processing functions.

File Events

A file event condition is specified as:
file(file_condition_expression)

where the keyword fi | e() tells the master scheduler (nmbat chd) that this is a file
condition so that the parameter file_condition_expression should be passed to the
eevent d for processing. The file_condition_expression is a logical expression in terms of
the following four file status functions:

arrival (file_loc)
This function evaluates to TRUE when the file specified by file_loc arrives. The
arrival of a file refers to the transition from non-existence to existence of the
file.

exist(file_loc)
This function evaluates to TRUE if the file specified by file_loc exists. Note that
this function is different from ar ri val () in that a transition from a non-
existence to existence is not needed. As long as the file exists, the function
always evaluates to TRUE.

LSF JobScheduler User’s Guide 27

3 Events and Calendars

size(file_loc)
This function evaluates to the size of the file specified by file_loc in bytes. If the
file does not exist, this function evaluates to 0.
age(file_loc)
This function evaluates to the age of the file specified by file_loc since the last
modification in minutes. If the file does not exist, this function evaluates to 0.
Thefil e_Il oc in the above functions takes the following form:
[host nane:] absol ute_directory/fil enane
Here, host name is the name of the host on which the file can be accessed. Note that
this host does not have to be the same host on which the job executes. If host nane is
not specified, then the Event Server assumes that the file is accessible from any host.
Note
You must specify the absolute path name of the file being evaluated in the above
expressions.
An example of a file event condition using the above file event functions is:
file(exist(/tnp/core) && size(/tnp/core)>10M
A file event is automatically created when a user submits a job with a file event
dependency condition. The event is automatically removed when there are no

dependent jobs.

See ‘File Event Dependency’ on page 86 for examples of how to use file event conditions
when submitting a job.

User Events

LSF JobScheduler provides an open mechanism for sites to implement site specific
events by adding more event processing functions into the External Event Daemon
(eevent d). A user event condition is specified as:

event (event _spec)

28

3

where the keyword event () tells the master scheduler (mbat chd) that this is a user
event so that the parameter event_spec should be passed to eevent d for processing.
The site is responsible for writing the function that parses and processes the event_spec.
See “External Event Management” in the LSF JobScheduler Administrator’s Guide for
details of how to modify eevent d.

A user event can be used to detect arbitrary site specific environmental status that can
trigger production jobs. For example, a ‘di ski sf ul | * event could be designed to
detect the fact that a critical file system is full, and therefore, an exception handling job
should be triggered to correct the situation. In this case, the user event condition might
be specified as:

event (di skisfull)

This will create an event ‘di ski sf ul | “which is monitored by the di ski sf ul |
event processing function in the eevent d.

See ‘User Event Dependency’ on page 90 for examples of associating user events with job
submissions.

Viewing Events

You can view all events in LSF JobScheduler. To view prior job events and job group
events, use the bj obs command. To know the status of a time event, simply view the
time event definition of the job by looking at the detailed job definition information,
and by looking at the calendar status using a calendar tool, such as bcal or the xbcal
GUL.

To view exception events and external events, use the bevent s command.

LSF JobScheduler User’'s Guide 29

3 Events and Calendars

Examples
% bevent s

EVENT OMER STATUS SORCE ATTR BUTE LAST_UPDATE
size(/tnp/file) wuserl inactive file - Nov 19 18:09: 50 1997
too long@serl userl inactive except overrun Nov 19 18:27:01 1997

To view all details of an event, use long format:
% bevents -|
EVENT: size(/tnp/file)>45M

OMER STATUS SOURCE NUM OF DEPENDENTS LAST UPDATE
userl inactive file 1 Nov 19 18:09: 50 1997

LAST_DI SPATCHED JOBI D LAST_DI SPATCH_TI ME

ATTRI BUTE: -

EVENT: too_| ong@iserl
OMER STATUS SOURCE NUM_OF_DEPENDENTS LAST_UPDATE
mke inactive exception 1 Nov 19 18:27:01 1997

LAST_DI SPATCHED JOBI D LAST_DI SPATCH_TI ME

ATTRI BUTE: "overrun Job[105] User[userl] Queue[priority]"

The long format shows you the complete event information. In the above example, the
first event is a file event that watches the size of the file, and has one job—which has
never run—depending on it. If a job that depends on the event had been triggered by
the event, the LAST_DISPATCHED _JOBID and LAST_DISPATCH_TIME would
indicate the job ID and the time the job was dispatched.

The second event in the above example is an exception event and has one job—which

has never run—depending on it. The ATTRIBUTE parameter is event type-dependent
information. This information is passed to jobs that are triggered by the event via the

30

3

environment variable LSB_EVENT_ATTRIB. For file events, ATTRIBUTE is empty.
For exception events, ATTRIBUTE gives the exception function, job ID of the job that
caused the exception, login name of the user who owns the event, and name of the
queue to which the job belongs. If you want to define an error recovery job in response
to an exception event, for example, you can use the ATTRIBUTE to find the context
under which the error occurs.

Calendars and Time Events

What is a Calendar?

A calendar is a set of days defined using one or more calendar rules. A calendar,
together with a time expression, defines a sequence of time events that can trigger the
execution of repetitive jobs. Calendars are defined and manipulated independently of
jobs. This allows multiple jobs to share the same calendar. There are three types of
calendars you can use to submit your job:

= built-in calendars

= preconfigured system calendars

= user-defined calendars

A calendar has a name, an owner (user), and a description. The name of the calendar
and its owner are assigned when it is created, and are case-insensitive. The status of a
calendar is determined by whether the current day is one of the days specified in the

calendar definition. A calendar is active if the current day is in the calendar’s list of
days, otherwise it is inactive.

Built-in Calendars and Reserved Names for Calendars

Built-in calendars are provided in LSF JobScheduler to reflect the most commonly used
set of days. You can use these calendars directly without having to define them first.

The available built-in calendars supported in LSF JobScheduler include:

LSF JobScheduler User’s Guide 31

3 Events and Calendars

Sun, Mon, Tue, Wed, Thu, Fri, Sat
These are the days of the week. For example, the calendar “Sun” means every
Sunday.

Day
This calendar refers to every day.

Since built-in calendars have obvious meaning in daily life, you cannot view the status
of built-in calendars.

LSF JobScheduler reserves the names of all built-in calendars. You cannot create a user
calendar that conflicts in name with one of the built-in calendars.

In addition to built-in calendars, LSF JobScheduler also reserves the following names.
These names are not calendar names but they are reserved as building blocks of
calendar definition. See ‘Calendar Expressions and the Command Line Interface’ on page 37
for details of the use of these keywords in the definition of calendars.

Listed below are reserved keywords that are not built-in calendar names by
themselves.

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
These are months of the year and are reserved as building blocks of calendar
definitions. See ‘Calendar Expressions and the Command Line Interface’ on page 37
for detailed usage information.

Week
This keyword is reserved for use in calendar definitions to specify a period of
a week.

Month
This keyword is reserved for use in calendar definition to specify a period of a
month.

Quarter
This keyword is reserved for use in calendar definition to specify a period of a
quarter.

YY
This keyword is reserved for use in calendar definition to specify a set of years.

32

System Calendars

System calendars are read-only calendars defined in the LSF JobScheduler
configuration by the LSF administrator. System calendars are owned by the virtual
user “sys”, and can be viewed by everybody. You cannot modify or delete system
calendars.

Note
The user account “sys” does not need to exist in the system.

System calendars can be used as normal calendars. When a system calendar is defined,

its name becomes a reserved calendar name in the cluster. When the LSF JobScheduler
daemons start up, the system calendars are defined in the cluster.

Using the LSF JobScheduler - Calendar GUI

To create a calendar you can use either command line or GUI tools. The GUI tool
xbcal lets you create, view, and manipulate calendars.

Creating Calendars

xbcal supports three ways of defining calendars.
= clicking on dates

= specifying recurrence patterns

= combining existing calendars

LSF JobScheduler User’'s Guide 33

3 Events and Calendars

Figure 5 shows the xbcal screen that is displayed by choosing File | New Calendar]
by Specifying Recurrence Pattern.

Figure 5. Adding the “on_monday” calendar

If you wish to define a set of days with a regular recurrence pattern, you can use the
window shown in Figure 5 to create the calendar.

When the set of days you wish to define does not have any regular pattern, use the “by
Clicking on Dates” window. A natural calendar is displayed and you can click on

34

particular days that define the calendar. Figure 6 is the GUI interface for defining a
calendar by selecting specific days.

Figure 6. Defining a Calendar by Selecting Specific Days

ks Marss: [2t Cumer userl
e IH::-]1-13.H (R |]
Fuly 1990 Bzt 1R e ——
B Mo Tw Be Th Fr | |fw Mo T W Th Fr Bu| |80 He Tu Ve Th Fr 2
.332 1 TNERDE
5| €| 7| & of 18]a1 EH;;::-: & | afue]ai]ee
12| uz|14] 15| 25 17| 1m B R 0 B B T Y O RN T R R T B
19] 20 e | e eafeafes | fo6[a7] 18| 1s|m] o |]| |20{en)ee]safed]es]e
S EIEIE ETED 23 |2 |25 | 26| ep | 20| e |2 |es) 8]]
IED
[rrrm— pre——r e —
B Mo Tw Be Th Fr fa| |fw Mo Tm S Th Fr Bu| |80 W To Ve Th Fr 2
NEE i a| 8] 4f s | 7 MEERE
a| 5| &| 7| af sfan &) ain]ia|ie] 4| 14 6| 7] a| ofisfai]iz
E.nuuh:u o L R B X (e el T B
N EAREEAEGER |Hﬂ|ﬂﬂluh
B EIE S ELE 5| |27 (2820 | 30| 20
Boctwot | Fonus| Cmwrm| 0K | cavcel| e

LSF JobScheduler also provides the flexibility to create calendars on top of existing
calendars. For example, if you already have a calendar named “businessdays”, you can
define a new calendar called “lastbuzday” using the existing calendar businessdays.

LSF JobScheduler User’'s Guide 35

3 Events and Calendars

Figure 7 shows the window for creating the “lastbuzday” calendar out of the existing
“businessdays” calendar.

Figure 7. Creating the “lastbuzday” Calendar

| Zn| poal e | wed] Teu] Fu sl
™I pusinaiasy s |

Loy i[> oo 2 ot o1 | 2o 2

Ve Occurcns| || ok | Cancel]

The windows shown in Figure 7 and Figure 8 allow you to create a new calendar by
combining multiple calendars using logical expressions. The "AND" operator selects
days that are common to the two calendars, whereas the "OR" operator merges the
days of both calendars. The "NOT" operator selects all days that are not part of a

36

3

calendar. The "View Occurrences" button creates a popup window that displays the
actual days of the newly combined calendar.

Figure 8. Combining Existing Calendars

Calendar Mame:

Cnyner: userl

Tvholidays
REECRe: Mot working days
Existing Calendars Owned by Operators
myholidays userl 55 (AND)
on_tonday userl || (OR)
businessday 5YS I (NOT)
weekend 5YS [
holiday 5YS 1
weekdays 5YS

Caombining Expression:

Ehu:uliday@sys || weekendBsys

Wiew Ou:u:urrenu:es...' O, Cancel' Help'

Calendar Expressions and the Command Line Interface

Calendars can also be defined using the command line interface provided by LSF
JobScheduler. In order to use commands to manipulate calendars, you first need to
understand the concept of calendar expressions. A calendar expression in LSF

JobScheduler is a powerful calendar definition language that provides flexible ways to
define arbitrary sets of days.

Simple Calendar Expressions

A simple calendar expression takes one of the following formats:

LSF JobScheduler User’'s Guide 37

3 Events and Calendars

e YEAR:MONTH:DAY

= YEAR:WEEK:DAY

The "YEAR" field defines the set of years during which the set of days will be chosen.
Valid values for the "YEAR" field can be any one year, or a list of years separated by
commas, such as "1997, 1998". You can also use the keyword "YY" to specify arecurring
list of years in the following format:

YY(start _year, end_year, step)

Here,start _year,end_year, and st ep are integers.

The "MONTH" field specifies the set of months within the years defined by the "YEAR"
field. The format of the "MONTH" field can be one or more integers in the range of 1
to 12, separated by commas, such as "1, 3, 5", or one or more of the keywords from
“Jan” to “Dec”. You can also use the keyword "Month" to specify a recurring list of
months in the following format:

Mont h(start_nonth, end nonth, step)

Here, st art _nont h, end_nont h, and st ep are integers.

The "WEEK" field defines the set of weeks within the years defined by the "YEAR"
field. The format of the "WEEK" field is:

Week(start _week, end week, step)

Here, st art _week, end_week, and st ep are integers.

The "DAY" field defines the set of days within the specified months of the year, or
weeks of the year. You can specify multiple days separated by commas. Each day can
be specified by an integer between 1 and 31 for the days of the month, or between
“Sun” and “Sat” for the days of the week. To specify recurring days, you can also use:

Day(start _day, end_day, step)

Here, st art _day, end_day, and st ep are all integers.

38

A special character "*" can be used in any field above to mean "every year",
month", or "every day".

every

For each of the reserved keywords described in ‘Built-in Calendars and Reserved Names
for Calendars’ on page 31, you can also use sub-indices to select a day, week, month,
quarter or year in no particular order, or to select a particular day, week, month,
quarter, or year relative to the start of the range.

For instance, "Mon(-1)" refers to last Monday, "Day(-2)" refers to the second last day,
and "Week(3)" refers to the third week.

For examples of simple calendar expressions, see ‘Command Line Interface for Defining
Calendars’ on page 39.

Command Line Interface for Defining Calendars

Although it is easier to define calendars using the xbcal GUI interface, LSF
JobScheduler also provides a command line interface for calendar manipulations.
Calendars can be created using the bcadd command. Below are some examples of
creating calendars using bcadd:

% bcadd -d "Back up days on Friday" -t "*:*:Fri" backup_days

This creates a calendar named “backup_days” that includes every Friday. The - d
option allows you to give a description of your calendar.

%bcadd -d "bi-weekly pay days on Friday" -t "*:\Wek(1,*, 2):Fi" pay_days

This creates a calendar that is active every two weeks, on Fridays, starting from the
beginning of each year.

%bcadd -d "Last Friday of every July" -t "*:Jul:Fri(-1)" report_days
This creates a calendar that is active on the last Friday of July of every year.
%bcadd -d "Quarterly synchroni zati on days" -t "*:quarter:day(l)" quarterly

This creates a calendar that is active on the first day of each quarter.

LSF JobScheduler User’'s Guide 39

3 Events and Calendars

Complex Calendars

Simple calendar expressions give you a way to define a calendar that is
straightforward. In some cases, a calendar can be too sophisticated to be defined in a
single calendar. For example, suppose you want to define a calendar that is active on
all US holidays and Canadian holidays, but not if it is a Wednesday. It would be
difficult to define this using simple calendar expressions.

A combined calendar expression introduces logical operations into calendar definition
and provides a structured way to construct complex calendars out of simple calendars.

A combined calendar expression consists of one or more simple calendar expressions
and one of more of the logical operators "&&" (AND), "] |" (OR), and "!" (NOT).
Multiple levels of logical expressions can be constructed by using "(" and ")" to group
expressions in desired order.

The "&&" operator selects days that exist in both calendars, while the "] | " operator
merges all days in both calendars together. The "!I" operator specifies days that are not
contained in any calendar.

For example, to construct the calendar mentioned above, you would first define a
us_holidays calendar and a canadian_holidays calendar using simple calendar
expression, then create a complex calendar using:

%bcadd -t "(canadi an_holidays || us_holidays) & ! Ved" na_holidays

Note
Since "Wed" is a built-in calendar, you do not need to define it beforehand.

Manipulating Calendars Using the Command Line Interface

Although you can do all calendar-related operations through the GUI tools, LSF
JobScheduler also includes the command line tools necessary for you to manipulate
your calendars.

40

Calendars can be displayed using the bcal command:

% bcal

CALENDAR_NAME OWNER STATUS LAST_CAL_DAY NEXT_CAL_DAY
busi nessdays sys active Thu Nov 20 1997 Mon Nov 24 1997
weekdays sys active Thu Nov 20 1997 Mon Nov 24 1997
hol i days sys inactive Fri Jul 4 1997 Thu Dec 25 1997
on_nonday userl inactive Mn Nov 17 1997 Mon Nov 24 1997

By default, bcal shows all system calendars and the user’s own calendars. You can
view other users’ calendars by using the - u option of the bcal command.

To know more details about each calendar, you can use the - | option of the bcal
command:

% bcal -1 quarterly
CALENDAR. quarterly
-- First day of each quarter

OMER STATUS CREATI ON_TI ME LAST_MODI FY_TI ME
userl inactive Fri Nov 14 17:50:01 1997 -

CAL_EXPRESSI ON: *: quarter:day(1)

LAST_CAL_DAY: <Wed Cct 1 1997>

NEXT_CAL_DAY: <Thu Jan 1 1998>

After a calendar is created, you can modify it using the bcnmod command:

%bcrod -d "New description: quarterly nonday" -t "*:quarter:non(l)" quarterly

This overwrites the previous definition of calendar "quarterly”. You can only modify
your own calendars.

To delete a calendar, use the bcdel command:

% bcdel quarterly

LSF JobScheduler User’'s Guide 41

3 Events and Calendars

Time Events

Time events in LSF JobScheduler are durations of time that are used as jobs’ execution
conditions. A time event is defined when a job is created with a time event dependency
condition. The time event can be specified in the "Date & Time" area of the xbsub GUI,
or via the - T option of the bsub command.

A time event has a start date and time at which the event becomes active, and a
duration in which the event remains active. The start date can be represented by a
calendar, and the start time and duration must be specified for each job.

When a job is submitted with a time event, LSF JobScheduler monitors the time event
status. Once current time falls within the start time and duration, the time event
becomes active and triggers the job execution.

Figure 9. Defining a Time Event

—| LSFJobScheduler - Job Submission [[

File Edit Options Help |

Joh l Job Group l

Command Line: Imyj ok Bmwse...l _I From File
Job Hame: | monday_j 0]:_{_
In Job Group: I
¥ Date & Time
I Hold this Job
Calendar:

R Choose.... | when Submitted

Hours: Ig T (eq., ", 1,7,14-15) - Exclusive Job

Minutes: | e.q., *, 20-30, 50
I L teg) Conditions... |
Duration: [} ¢ | mimstes Exception Handler...

Submit | Advanced..| Defaults Revert Exit |

Updated 17:17:47

42

3

Figure 9 is an example of how a time event can be defined when submitting a job using
the xbsub GUI.

Note that multiple hours and minutes can be put in the time area to create a time event
that repeats multiple times per day. In particular, "*" can be put in the "Hours" or
"Minutes" areas to refer to "every hour" or " every minute".

Time Expressions and the Command Line Interface

To define atime event for ajob from the command-line interface, a time expression can
be specified. A time expression has the following format:

[cal endar _name[@user _nane] :] hour s: nmi nut es[%gur at i on]

Here, @ser _nane and %lur at i on are optional. By default, a user will be using his/
her own calendars and system calendars. If you intend to use another user’s calendar,
you must use "cal endar _nanme@iser _nane" to explicitly specify the owner of the
calendar.

If a duration is not specified, LSF JobScheduler assumes a default of one minute.

If a calendar is not explicitly specified, LSF JobScheduler assumes the built-in calendar,
"Day", as the calendar. The built-in calendar "Day" means every day. See ‘Built-in
Calendars and Reserved Names for Calendars’ on page 31 for detailed information on built-
in calendars.

With time expressions, you can submit jobs associated with time events from the
command line. For example:

% bsub -T "on_nonday: 2: 00%60" backup_j ob

This creates a job "backup_job" that will run every Monday between 2:00AM and
3:00AM. The duration is 60 minutes indicating that the event will be active at 2:00AM
and remain active until 3:00AM.

If the job is unable to start by 3:00AM, it is considered to have missed its schedule and

will not be scheduled until next time the event becomes active again. You can define
exception handlers to handle such situations.

LSF JobScheduler User’s Guide 43

3 Events and Calendars

See Section 7, ‘Exception Handling and Alarms’, beginning on page 123 for details on
exception handling.

44

4. Resources

This section describes the system resources monitored by LSF JobScheduler, and the
use of resource specifications. Specific topics covered in this section are;

= resources
= load indices
= resource requirement specifications

< how to use task lists to set resource requirements for applications

Infroduction to Resources

A computer network may be thought of as a collection of resources used to execute
programs. Different applications often require different resources. For example, a
number crunching program may take a lot of CPU power, but a large spreadsheet may
need a lot of memory to run well. Some applications may run only on machines of a
specific type, and not on others.

In LSF JobScheduler, resources are handled by naming them and tracking information
relevant to them. LSF JobScheduler does its scheduling according to applications’
resource requirements and the resources available on individual hosts. Resource
names are case sensitive, and can be up to 29 characters in length (excluding some
characters reserved as operators in resource requirement strings).

LSF JobScheduler classifies resources in different ways.

LSF JobScheduler User’'s Guide 45

4 Resources

Classification by Availability

general resources
These are resources that are available on all hosts, e.g. all the load indices,
number of processors on a host, total swap space, host status.

special resources
These are resources that are only associated with some hosts, e.g. FileServer,
solaris, compServer.

Classification by the Way Values Change

dynamic resources
These are resources that change their values dynamically, e.g. all the load
indices, host status.

static resources
These are resources that do not change their values dynamically, e.g. all
resources except load indices and host status are static resources.

Classification by Types of Values

numerical resources
These are resources that take numerical values, e.g. all the load indices,
number of processors on a host, host CPU factor.

string resources
These are resources that take string values, e.g. host type, host model, host
status.

boolean resources

These are resources that denote the availability of specific features, e.g. hspice,
FileServer, SYSV, aix.

Classification by Definition
configured resources

These are resources defined by user sites, e.g. all resources defined in the LSF
configuration files.

46

built-in resources
These are resources that are always defined by LSF, e.g. load indices, number
of CPUs, total swap space.

Classification by Location

host-based resources
These are resources that are not shared among hosts, but are tied to individual
hosts, e.g. CPU, memory, swap space. An application must run on a particular
host to access such resources.

shared resources
These are resources that are not associated with individual hosts in the same
way, but are "owned" by the entire cluster, or a subset of hosts within the
cluster, e.g. floating licenses, shared file systems. An application can access
such a resource from any host which is configured to share it, but doing so
affects its value as seen by other hosts.

You can list the resources available in your cluster using the | si nf o command.
Load Indices

Load indices measure the availability of dynamic, non-shared resources on hosts in the
LSF cluster. Load indices built into the LIM are updated at fixed time intervals. External
load indices are updated when new values are received from the external load collection
program, ELIM, configured by the LSF administrator. Load indices are numeric in
value.

LSF JobScheduler User’'s Guide 47

4 Resources

Table 1 summarizes the load indices collected by the LIM.

Table 1. Load Indices

Averaged |Update
Index |Measures Units Direction | over Interval
r15s run queue length |processes increasing |15 seconds |15 seconds
rim run queue length |processes increasing |1 minute |15 seconds
rism run queue length |processes increasing |15 minutes |15 seconds
ut CPU utilization (per cent) increasing |1 minute |15 seconds
pg paging activity pages in + pages |increasing |1 minute |15 seconds
out per second
I's logins users increasing |[N/A 30 seconds
it idle time minutes decreasing |IN/A 30 seconds
swWp available swap megabytes decreasing |IN/A 15 seconds
space
mem available memory |megabytes decreasing |IN/A 15 seconds
tnp available space in |megabytes decreasing |[N/A 120
temporary file seconds
system
io disk 170 (shown by |kilobytes per increasing |1 minute |15 seconds
I sload-1) second
name external load index configured by LSF administrator site
defined

48

Load indices can be viewed using the | sl oad command:

% | sl oad

HOST_NAME status r15s rlm r15m ut pg Is it tnp sSwWp mem
host a ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M
host b ok 0.0 0.0 0.0 3% 0.03 0 38M 40M 7M
host c busy *6. 2 6.9 9.5 85% 1.130 0 5M 400M 385M
host d busy 0.1 0.1 0.3 7% *17 6 0 9M 23M 28M
host e unavai |

Ther 15s, r 1mand r 15mload indices are the 15-second, 1-minute and 15-minute
average CPU run queue lengths. This is the average number of processes ready to use
the CPU during the given interval.

On multiprocessor systems more than one process can execute at a time. LSF scales the
run queue value on multiprocessor systems to make the CPU load of uniprocessors
and multiprocessors comparable. The scaled value is called the effective run queue
length. The - E option of | sl oad shows the effective run queue length.

LSF also adjusts the CPU run queue based on the relative speeds of the processors (the
CPU factor). The normalized run queue length is adjusted for both number of processors

and CPU speed. The host with the lowest normalized run queue length will run a CPU
intensive job the fastest. The - Noption shows the normalized CPU run queue lengths.

Static Resources

Static resources represent host information that does not change over time, such as the
maximum RAM available to user processes, or the number of processors in a machine.

LSF JobScheduler User’'s Guide 49

4 Resources

Most static resources are determined by the LIM at startup time. Table 2 lists the static
resources reported by LSF.

Table 2. Static Resources

Index Measures Units Determined by

type host type string configuration

nodel host model string configuration

hname host name string configuration

cpuf CPU factor relative configuration

server host can run jobs boolean configuration

rexpri execution priority (UNIX only) |ni ce(2) argument |configuration

ncpus number of processors processors LIM

ndi sks number of local disks disks LIM

maxnmem |maximum RAM memory megabytes LIM
available to users

maxswp maximum available swap space|megabytes LIM

maxt nmp maximum available space in megabytes LIM
temporary file system

The t ype and nodel static resources are strings specifying the host type and model.

The CPU factor is the speed of the host’s CPU relative to other hosts in the cluster. If
one processor is twice the speed of another, its CPU factor should be twice as large. The
CPU factors are defined by the LSF administrator. For multiprocessor hosts the CPU
factor is the speed of a single processor; LSF automatically scales the host CPU load to
account for additional processors.

The ser ver static resource is boolean; its value is 1 if the host is configured to run jobs
and 0 if the host is a client.

Static resources can be used to select appropriate hosts for particular jobs based on
binary architecture, relative CPU speed, and system configuration.

50

4

To view the static resources are available in your cluster, run the | shost s command.
Shared Resources

A shared resource is a resource that is not tied to a specific host, but is associated with
the entire cluster, or a specific subset of hosts within the cluster. Examples of shared
resources include:

= floating licenses for software packages
= disk space on a file server which is mounted by several machines
= the physical network connecting the hosts

An application may use a shared resource by running on any host from which that
resource is accessible. For example, in a cluster in which each host has a local disk but
can also access a disk on a file server, the disk on the file server is a shared resource,
and the local disk is a host-based resource. There will be one value for the entire cluster
which measures the utilization of the shared resource, but each host-based resource is
measured separately.

A shared resource may be configured to be dynamic or static. In the above example,
the total space on the shared disk may be static while the amount of space currently
free is dynamic. A site may also configure the shared resource to report numeric, string
or boolean values.

All shared resources must be configured by the LSF administrator. Run the | shost s
- s command to view the static shared resources currently configured in your cluster.

Runthel sl oad -s command to view the dynamic shared resources configured in
your cluster.

Resource Requirement Strings

A resource requirement string describes the resources a job needs. LSF JobScheduler
uses resource requirements to select hosts for remote execution and job execution.

LSF JobScheduler User’s Guide 51

4 Resources

A resource requirement string is divided into three sections:
= aselection section: specifies the criteria for selecting hosts from the system

= anordering section: indicates how the hosts that meet the selection criteria should
be sorted

= aresource usage section: specifies the expected resource consumption of the task
The syntax of a resource requirement expression is:
sel ect[sel ectstring] order[orderstring] rusage[usagestring]

Note
The square brackets are an essential part of the resource requirement expression.

The section names are sel ect, order, and rusage. The syntax for each of
sel ectstring,orderstringandusagestri ng is defined below.

If no section name is given, then the entire string is treated as a selection string. The
sel ect keyword may be omitted if the selection string is the first string in the resource
requirement.

Selection String

The selection string specifies the characteristics a host must have to match the resource
requirement. It is a logical expression built from a set of resource names. The | si nf o
command lists all the resource names and their descriptions. The resource names
swap, i dl e, | ogi n,and cpu are accepted as aliases for swp,it,l s,andr1m
respectively.

The selection string can combine resource names with logical and arithmetic operators.
Non-zero arithmetic values are treated as logical TRUE, and zero as logical FALSE.
Boolean resources (for example, ser ver to denote LSF server hosts) have a value of
one if they are defined for a host, and zero otherwise.

52

4

Table 3 below shows the operators that can be used in selection strings. The operators
are listed in order of decreasing precedence.

Table 3. Operators in Resource Requirements

Syntax Meaning

-a Negative of a

la Logical not: 1 if a==0, 0 otherwise

a*b Multiply a and b

al b Dividea by b

a+hb Addaandb

a-»b Subtract b from a

a>bhb 1 if a is greater than b, O otherwise

a<hbh 1 if ais less than b, O otherwise

a>b 1 if a is greater than or equal to b, O otherwise
a<=b 1 if a is less than or equal to b, O otherwise

a==~>b 1 if a isequal to b, O otherwise

al=»b 1 if a is not equal to b, O otherwise

a &k b Logical AND: 1 if both a and b are non-zero, O otherwise
al|l b Logical OR: 1 if either a or b is non-zero, 0 otherwise

The selection string is evaluated for each host. If the result is non-zero, then that host
is selected. For example:

select[(swp > 50 && type == MPS) || (swp > 35 && type == ALPHA)]
select[((2*r15s + 3*rim+r15n) / 6 <1.0) && !'fs && (cpuf > 4.0)]

For the string resources t ype and nodel , the special value any selects any value and
| ocal selects the same value as that of the local host. For example, t ype==I ocal
selects hosts of the same type as the host submitting the job. If a job can run on any type
of host, include t ype==any in the resource requirements. If not ype is specified, the
defaultist ype==Il ocal unlessamodel or boolean resource is specified, in which case
itist ype==any.

LSF JobScheduler User’'s Guide 53

4 Resources

Order String

The order string allows the selected hosts to be sorted according to the values of
resources. The syntax of the order string is:

[-]res[:[-]res]...

Each r es must be a dynamic load index; that is, one of the indicesr 15s,r 1mr 15m
ut,pg,io,ls,it,tnp,swp, mtem or an external load index defined by the LSF
administrator. For example, swp: r 1m t np: r 15s is a valid order string.

Note
The values of r 15s, r 1m and r 15mused for sorting are the normalized load indices
returned by | sl oad - N(see ‘Load Indices’ on page 47).

The order string is used for host sorting and selection. The ordering begins with the
rightmost index in the order string and proceeds from right to left. The hosts are sorted
into order based on each load index, and if more hosts are available than were
requested, the JobScheduler drops the least desirable hosts according to that index. The
remaining hosts are then sorted by the next index.

After the hosts are sorted by the leftmost index in the order string, the final phase of
sorting orders the hosts according to their status, with hosts that are currently not
available for load sharing (that is, not in the ok state) listed at the end.

Because the hosts are resorted for each load index, only the host status and the leftmost
index in the order string actually affect the order in which hosts are listed. The other
indices are only used to drop undesirable hosts from the list.

When sorting is done on each index, the direction in which the hosts are sorted
(increasing or decreasing values) is determined by the default order returned by

| si nf o for that index. This direction is chosen such that after sorting, the hosts are
ordered from best to worst on that index.

When an index name is preceded by a minus sign ‘-’, the sorting order is reversed so
that hosts are ordered from worst to best on that index.

The default sorting order isr 1m pg.

54

Resource Usage String

This string defines the expected resource usage of the task. It is used to specify job
resource reservations.

The syntax of the resource usage string is:
res=val ue[: res=val ue]...[:res=val ue] [: durati on=val ue] [: decay=val ue]

The res parameter can be any load index. The value parameter is the initial reserved
amount. If res or value is not given, the default is not to reserve that resource.

The duration parameter is the time period within which the specified resources should
be reserved. It is specified in minutes by default. If the value is followed by the letter
h, itis specified in hours. For example, 'dur at i on=30"and 'dur at i on=2h’specify a
duration of 30 minutes and two hours respectively. If duration is not specified, the
default is to reserve the total amount for the lifetime of the job.

The decay parameter indicates how the reserved amount should decrease over the
duration. A value of 1, 'decay=1’, indicates that system should linearly decrease the
amount reserved over the duration. The default decay value is 0, which causes the total
amount to be reserved for the entire duration. Values other than 0 or 1 are unsupported.
If duration is not specified, decay is ignored.

rusage[mene50: dur ati on=100:; decay=1

The above example indicates that 50MB memory should be reserved for the job. As the
job runs, the amount reserved will decrease at approximately 0.5 megabytes per
minute until the 100 minutes is up.

Job Resource Requirement Specification Examples

LSF resource requirement syntax is straightforward to use, even though it may look
complicated. The following examples illustrate how to specify a resource requirement
when submitting a job to LSF JobScheduler. These examples show the command line
interface to better illustrate the concepts involved (although it is easier to use the GUI
for job creation).

LSF JobScheduler User’s Guide 55

4 Resources

Example 1

This example creates a job that requires more than 50MB of swap space and requires
an ai x type of host to run.

% bsub -R “swp > 50 && type == aix” myJob
The section name “select” can be omitted because the select string is the first string in
the resource requirement. We did not specify “order” or “rusage” in this example,

which tells LSF JobScheduler to order hosts by default ordering (“rim:pg”), and not to
reserve resources.

Example 2

This example specifies a shared resource as a resource requirement.

% bsub -R “avail_scratch > 200 && swap > 50” myJob

Assume that avai | _scr at ch is a shared resource for scratch space in a shared file
system and all hosts in the cluster have access to the shared scratch space. The job will

only be scheduled if the value of the avai | _scr at ch resource is more than 200 MB
and will go to a host with at least 50MB of available swap space.

Example 3

It is possible for a system to be configured so that only some hosts within the LSF
cluster have access to the scratch space. In order to exclude hosts which cannot access
a shared resource, the “defined(resource_name)” function must be specified in the
resource requirement string.

%bsub - R"defi ned(avai |l _scratch) & avail scratch > 100 & swap > 100" nyJob
This command will exclude any hosts which cannot access the scratch resource. The

LSF administrator configures which hosts do and do not have access to a particular
shared resource.

56

Configuring Resource Requirements

Some applications require resources other than the default set. LSF can store resource
requirements for specific applications so that users do not have to specify resource
requirements each time a job is submitted.

Remote Task List File

The resource requirements of applications are stored in the remote task list file. A task is
a command or a user-created executable program; the terms application or job are also
used to refer to tasks. The remote task list file contains the resource requirements of each
task.

There are three sets of task list files: the system-wide default file | sf . t ask, the cluster
default file | sf . t ask. cluster, and the user file $HOVE/ . | sf t ask. The system and
cluster default files are set by LSF administrator and they apply to all users. The user
file specifies the tasks to be added to or removed from the system lists for your jobs.
Resource requirements specified in your user file override those in the system lists.

When you submit a job to LSF JobScheduler, the system automatically picks up the
job’s default resource requirement string from the remote task list files, unless you
explicitly override the default by specifying the resource requirement string on the
command line or job submission GUI.

Managing Your Task List

Thel srt asks command inspects and modifies the remote task list. Invoking
| srt asks commands with no arguments displays the resource requirements of tasks
in the remote list, separated from the task name by ‘7.

%/ srtasks

cc/ cpu conpr ess/ -: cpu: mem conpr essdi r/ cpu: mem

f77/ cpu veril og/ cpu & cadence synopsys/swp >150 && cpu
dsimtype == any hspi ce/ cpu & cadence nas/ swp > 200 && cpu
cfd3d/type == SGL && cpu epi/hpuxll sparc regr essi on/ cpu

cc/type == | ocal conpr ess/ cpu

LSF JobScheduler User’s Guide 57

4 Resources

You can specify resource requirements when tasks are added to the user’s remote task
list. If the task to be added is already in the list, its resource requirements are replaced.

% | srtasks + nyjob/swap>=100 && cpu

This command adds nyj ob, along with its resource requirement, to the remote tasks
list.

58

5. Defining Jobs

A job is a program or acommand that is run on a host within an LSF cluster. A job can
be a one-time job that is run only once and leaves the system forever, a repetitive job
that is run every time the associated dependency conditions are met, or an ad-hoc job
that will not run until a user explicitly directs it to.

Types of Jobs

There are three types of jobs in LSF JobScheduler.
= repetitive

= ad-hoc

* one-time

A job is treated as a repetitive job if the job has a dependency condition specified. A job
is considered to have a dependency condition if it is associated with an event as
described in Section 3, ‘Events and Calendars’, beginning on page 21.

A job is treated as an ad-hoc job if it is not a repetitive job and is submitted with a hold
requirement. A job with a hold requirement will be suspended as soon as it is created.
It must be explicitly resumed before it is considered for scheduling. After an ad-hoc job
finishes, it returns to suspended status for reexecution.

One-time jobs are jobs that are submitted by users for execution as soon as conditions
are right, and then removed from LSF JobScheduler memory without further user
involvement. A one-time job is executed once only, does not have a dependency
condition, and is not submitted with a hold requirement.

LSF JobScheduler User’s Guide 59

5 Defining Jobs

Jobs can be grouped into job groups for easy management. A job group is a container
for jobs, similar to the way in which a directory is a container for files. Multiple levels
of job groups can be defined to form a hierarchical tree. A job group can contain jobs
and sub-groups.

Job Attributes

A job can have several key attributes:

e jobld - a positive integer that uniquely identifies the job. Every job in the LSF
JobScheduler is automatically assigned a job ID, which is returned by LSF
JobScheduler when the job is submitted.

= j obNane - assigned as an additional identifier to simplify reference and
manipulation. This name does not have to be unique. If you do not supply a name,
the system uses the name of the submitted command as the j obNane.

= job group path - the name and location of a job group within the job group
hierarchy. Job groups allow the organization of a collection of jobs into a
hierarchical tree similar to the directory structure of a file system.

In LSF JobScheduler, every job belongs to a job group. If a user does not specify a
job group name when submitting a job, the job will be created under the “root”
group, denoted as “/”.

= owner - the login name of the user who creates the job or job group. Every job or
job group must have an owner, who has permission to manipulate the job or job

group by performing, for example, deletions, modifications, or sending control
signals. The LSF administrator has permission to manipulate the jobs of all users.

Job Status

After the job is submitted, it is placed into a job queue where it waits to be scheduled
by LSF JobScheduler. The job will be automatically started by LSF JobScheduler on a

60

5

suitable machine in the cluster once the specified conditions are met. After the job has
finished, the output from the job is delivered to the user, either into a specified file or
via email. If it is a repetitive job, it is placed back into the queue where it waits to be
scheduled the next time the specified conditions are met.

Figure 10 shows the state transitions a job may experience during its life-cycle. LSF
JobScheduler maintains and updates the status of each job as it passes into different
states. The possible job states are:

= PEND - waiting in the queue for scheduling

e PSUSP - on hold. The job was submitted with the hold flag or job was suspended
by the user while in PEND state.

< RUN - dispatched to a host and running
e SSUSP - suspended by LSF JobScheduler while running. This happens when the
load on the execution host exceeds the configured threshold (as can be seen from

the output of the bhosts -1 command).

= USUSP - suspended by the owner of the job or by the LSF administrator while the
job is running

< DONE - finished execution with a zero exit code

e EXIT - finished execution with a non-zero exit code

LSF JobScheduler User’'s Guide 61

5 Defining Jobs

When a job is submitted, it is given PEND status by default. If the hold flag is specified
for the job when it is submitted, the job will be given PSUSP status. Submitting the job
into the PSUSP state prevents it from being scheduled until explicitly requested.

Figure 10. Job States

clean

hold

bstop

bkill or
finished

bresume

system
stop

bresume
bsub no hold reschedule bkill or
job submitted

bdel

Depending on the nature of the job, a job with DONE or EXIT status is handled
differently. If a job is associated with an event that is not a time event, the job will go
back into the PEND state immediately, waiting for the event to become active again. If
a job is time event dependent, the job will stay in the DONE or EXIT state for a
configured period of CLEAN_PERIOD (as can be seen by reading the output of the
bpar ans command), or as soon as the time event becomes active again, whichever
happens first. Then the job will be requeued with PEND status.

62

5

If a job is a one-time job, the job will stay in the DONE or EXIT state for a configured
period of CLEAN_PERIOD (as can be seen by running the bpar ans command), and
then will be removed from LSF JobScheduler memory.

If ajob is submitted with hold flag, the job will go back to the PSUSP state immediately
after it finishes.

As can be seen from the state diagram, a repetitive job never leaves the system, unless
it is explicitly deleted.

A non-repetitive job submitted with the hold flag will be given PSUSP status when the
job is finished. A job with hold status will go into the PEND state only if the user
resumes it.

Jobs may also be suspended at any time. A job can be suspended by its owner, by the
LSF administrator, or by LSF JobScheduler. There are three different states for
suspended jobs: PSUSP, USUSP, and SSUSP.

Creating a Simple Job

You can use either the LSF JobScheduler GUI or the bsub command to submit a job to
the system. Figure 11 shows the Job Submission window of the LSF JobScheduler
xbsub GUI. All that is required in this window is the actual command line you want
to execute. LSF JobScheduler will find a suitable host to run your job if you do not
specify one.

The same job can be submitted to LSF JobScheduler using the bsub command:

% bsub -J nightly job sinulation
Job <101> is submtted to the default queue <normal >.

The j ob_nane is a string of text declared with the - J option. If the string contains
blanks or special characters, it should be placed within quotes. When you submit the

LSF JobScheduler User’'s Guide 63

5 Defining Jobs

job to the system, a job ID is assigned and displayed. If you do not supply a hame, the
system uses a portion of the command name as the default job name.

Figure 11. Job Submission Window

e | -
nightly joh

—"
— :
E—

El— —

T R T T EET

Since this job is not associated with a dependency condition, it is a simple one-time job.
To define a repetitive job, associate it with a dependency condition. See ‘Specifying
Dependency Conditions’ on page 80 for more information.

64

Input and Output

When one of your jobs completes or exits, the system emails you, by default, a job
report together with the job’s standard output (st dout) and error output (st derr).
The output from st dout and st der r are merged together in the order in which they
were printed, as if the job had been run interactively.

UNIX By default, the st di n of the jobissetto/ dev/ nul | .
NT By default, the st di n of the job is set to NUL.

If you do not wish to receive email for the st dout and st der r of your jobs, you can
customize this at job submission time. Figure 12 shows the GUI interface for specifying
job parameters—standard input and output and error output are the first three fields
in the window. This window is opened by clicking on the “Advanced” button of the
xbsub main window as shown in Figure 11.

LSF JobScheduler User’'s Guide 65

5 Defining Jobs

If you choose to receive email, you can redirect it to a specified user instead of your
current login name.

Figure 12. Job Parameters Window

T
O
T |
E
I—
ETR—

The same result can be achieved via the bsub command interface:

%bsub -0 outfile -e errfile -u userl -q nornal sinulation
Job <102> is submtted to default queue <normal >.

If you specify the - o outfile argument but do not specify the - e errfile argument, the
standard output and error are merged and stored in outfile.

66

5

The output file reported by LSF JobScheduler normally contains job report information
as well as job output. This information includes the submitting user and host, the
execution host, the CPU time used by the job, and the exit status.

The output files are created on the execution host.

Host Selection

LSF JobScheduler provides you with many ways to restrict the set of candidate hosts
on which your jobs may be run.

Clicking on the “Choose” button beside the “Hosts™ area (shown in Figure 12), displays
alist of all LSF JobScheduler server hosts on which your job may be run. Figure 13 is an
example of a host selection window. Click on “OK” to finish host seletion. All hosts
chosen will be displayed in the “Hosts” field of the original window (see Figure 12).

The hosts you choose at job submission time are candidate hosts for the job. LSF
JobScheduler will use intelligence in determining which host should be used to run the
job, depending on the dynamic load situation. If you want to restrict your job to run on
one specific host, choose only that host as the candidate host.

Host selection for a job can also be done using the bsub command line:

% bsub -m “hosta hostb hostc” simulation
Job <103> is submtted to default queue <nornal >.

Any host(s) you choose must also satisfy all other scheduling conditions in order to be
eligible to run the job.

LSF JobScheduler User’'s Guide 67

5 Defining Jobs

By specifying more than one host for your job, high availability is achieved
automatically, because as long as one of the hosts you specify is up and running, the
job will be able to run.

Figure 13. Host Selection Window

:

I hosth

W hostc
I hostd
I hoste

W hosti

W hostm

Bl

oK | Cancel Al

Host Groups

If you have a large cluster with many hosts, it can be inconvenient to type in or select
the same or a similar set of hosts if you frequently run jobs that are restricted to the
same hosts. To make this easier, LSF JobScheduler allows you to put hosts together in
host groups, and then select the name of the group you want, rather than each host
individually.

A host group is just an alias for a group of hosts in LSF JobScheduler. To see what host
groups are configured by your LSF administrator, run the bngr oup command. Host
group names can be used in any place that a host name can be supplied as a parameter.
For example:

% bsub -m HPservers nyjob
Job <104> is submtted to default queue <nornal >.

68

This submits a job that will run on one of the hosts defined by the host group
HPservers.

Host Preference

In some situations, you may want to specify a preference for the hosts chosen, rather
than an outright restriction.

For example, you may prefer to run a job on a big server because it is faster. But since
that server host may not always be available, you want to specify two other slower
hosts as backups in case the big server is not available.

Host preferences can be specified together with hosts chosen. For example:

% bsub -m hosta host b+1 hostc+2 comrand

This tells LSF JobScheduler that the job should be run on hostc if it satisfies the
requirements. Otherwise, run it on hosth. hosta should be used only if neither hostc nor
hostb can run the job. The “+nunber ” following the host name indicates the preference

level of the chosen host.

You can also specify host preferences using the GUI interface.

Queue Selection

When more than one queue is available, you need to decide which queue to use. If you
submit a job without specifying a queue name, LSF JobScheduler chooses a suitable
queue as the default queue.

LSF JobScheduler User’'s Guide 69

5 Defining Jobs

Specifying the Default Queue

Use the bpar ans command to display the default queue:

% bpar ans

Def aul t Queues: nor mal

Job Dispatch Interval:20 seconds
Job Checking Interval:80 seconds
Job Accepting Interval:20 seconds

This command displays LSF JobScheduler parameters configured by your cluster
administrator.

You can override the system default by defining the environment variable
LSB_DEFAULTQUEUE. For example:

% setenv LSB DEFAULTQUEUE priority
Choosing a Queue

The default queue is normally suitable to run most jobs. If you want to submit jobs to
queues other than the default queue, you should choose the most suitable queue for
each job.

To specify a queue for your job, simply put a queue name in the “Queue” area of the
Job Parameter window (shown in Figure 12). If you do not know what queues are
available, click on the “Choose” button beside the “Queue” field. This displays a
popup window from which you can select a queue for your job. It is possible to choose
multiple queues for your job, in which case LSF JobScheduler will automatically find a
queue that will be able to handle your job, based on your job’s parameters.

To see detailed queue information, use the bqueues command or use the LSF
JobScheduler xI sj s GUI.

70

Resource Requirements

Resource requirements specify the resources required before a job can be scheduled to
run on a host. This is especially useful when your cluster consists of machines with
different architectures, operating systems, or hardware/software resources. Resource
requirement support is a powerful mechanism for resource mapping in LSF
JobScheduler. For background information on resource requirements, See Section 4,
‘Resources’, beginning on page 45.

By specifying resource requirements, your job is guaranteed to run on a host with the
desired resources. For example, if your job must be run on a host with the Solaris
operating system, you can specify this requirement. LSF JobScheduler will consider
only Solaris machines as candidate hosts for your job.

With resource requirements specified for your job, you do not have to specify
candidate hosts. You can view your cluster as one virtual machine with different
resources. You specify the resource requirements for your job; LSF JobScheduler
matches your job’s resource requirements to actual resources that are available. For
example, if you know your job needs an HPPA machine and at least 50MB swap space
to run, simply include “t ype==HPPA&&swWp>50" as the job’s resource requirement.

You do not have to specify a resource requirement each time you submit a job. Simply
put the job’s resource requirement in your remote task list so that LSF JobScheduler
automatically finds this resource requirement by command name. See ‘Configuring
Resource Requirements’ on page 57 for remote task list operations.

By specifying resource requirements explicitly when you submit a job, you override
those defined in your remote task list. If your job’s resource requirements are not
defined in your remote task list, and you do not specify a resource requirement
explicitly at job submission time, LSF JobScheduler assumes the default resource
requirement. The default resource requirement is that your job be run on a host of the
same type as the host from which the job is submitted.

LSF JobScheduler User’s Guide 71

5 Defining Jobs

Pre-execution Commands

Some jobs require resources that LSF JobScheduler does not directly support. For
example, a job may need to successfully create a scratch space before it can run. This
pre-execution procedure may or may not succeed, depending on the dynamic situation
on the execution host.

A pre-execution command is a job attribute you can specify so that your job will run
on a host only if the pre-execution command has successfully completed. The pre-
execution command returns information to LSF JobScheduler using its exit status. If
the pre-execution command exits with non-zero status, the main job is not dispatched.
The job goes back to the PEND state and is rescheduled later.

A pre-execution command can be defined in the job parameter window shown in
Figure 12, or you can use the - E option of the bsub command. The following example
shows a job that requires a tape drive. The program t apecheck is a site-specific
program that exits with a status of O if the specified tape drive is ready, and exits with
a status of 1 otherwise.

% bsub -E "tapecheck /dev/rnt0l" backup

A pre-execution command is executed on the same host as the main job. A pre-
execution command is run under the same user ID, environment, and home and
working directory as the main job. If the pre-execution command is not in your normal
execution path, the full path name of the command must be specified.

The standard input, output and error files for the pre-execution command are those of
the main job.

The LSF JobScheduler system assumes the pre-execution command can be run many
times without having side effects.

Note
An alternative to using the - E option is for the LSF JobScheduler administrator to set
up a queue level pre-execution command. See “Queue-Level Pre-/Post-Execution
Commands” in the LSF JobScheduler Administrator’s Guide for more information.

72

File Transfer

LSF JobScheduler is normally used in networks with shared file space. When shared
file space is not available, LSF JobScheduler can copy needed files to the execution host
before running the job, then copy the resultant files back to the submission host after
the job completes.

When you click on the “File Transfer” button in the Job Parameter window (shown in
Figure 12), you will see a window for specifying file transfer requirements (shown in
Figure 14). You can specify multiple files to be transferred, and in different ways.

Figure 14. File Transfer Requirement Window

Jtmpoutpout file < Stmp/Soutpot

Choose

5] =

File on Submission Host File on Execution Host
Ftmp foutput_fild Chausel I St foutput]
| Copy hefore Execution

I Copy after Execution
I Copy and Append after Execution

Heplacel Add | Hemwel

Ok | Cancel' Clear| Help |

File transfer requirements can also be specified using the bsub command with the
following option:

[Ifile op [rfile]]

LSF JobScheduler User’'s Guide 73

5 Defining Jobs

Ifile
This is the file name on the submission host.

rfile
This is the file name on the execution host.

Thelfileandrfil e parameters can be specified with absolute or relative path
names. If you do not specify one of the files, bsub uses the file name of the other. At
least one must be given.

op
This is the operation to perform on the file. op must be surrounded by white
space, and is invalid without at least one of | fi |l e orrfi | e. The possible
values for op are:

>
| fil e onthesubmission hostis copiedtorfi | e on the execution
host before job execution. r f i | e is overwritten if it exists.

<
rfil e onthe execution hostis copiedto ! fi | e on the submission
host after the job completes. | fi | e is overwritten if it exists.

<<
rfil eisappendedtol fil e afterthejobcompletes.| fi |l eiscreated
if it does not exist.

><, <>

I fileiscopiedtorfil e beforethe jobexecutes, thenrfil eis
copied back (replacing the previous | fi | e) after the job completes
(<> is the same as ><).

If you specified an input for your job (see ‘Input and Output’ on page 65), and the input
file it is not found on the execution host, the file is copied from the submission host
using the LSF JobScheduler remote file access facility. It is removed from the execution
host after the job finishes.

If you specified output files for standard output and standard error, these files are

created on the execution host. They are not copied back to the submission host by
default. You must explicitly copy these files back to the submission host.

74

5

LSF JobScheduler tries to change directories to the same path name as the directory
where you ran the bsub command. If this directory does not exist, the job is run in the
temporary directory on the execution host.

If the submission and execution hosts have different directory structures, you must
ensure that the directory wherer f i | e will be placed exists. You should always specify
it with relative path names, preferably as a file name excluding any path. This places
r fil e inthe current working directory of the job. The job will work correctly even if
the directory where the bsub command is run does not exist on the execution host.

In addition, you can also specify any files that need to be transferred for the job
between the submission machine and execution machine.

Grouping Jobs

When developing a complex schedule containing many jobs, it is useful to organize
related jobs into groups so that it becomes easier to view and manipulate them. LSF
JobScheduler allows you to group your jobs into logically related job groups to make
your life easier. For example, if your jobs are responsible for the calculation of different
portfolios—each portfolio being calculated by a group of related jobs—then you can
make every portfolio a job group that contains all jobs responsible for that portfolio.
You can then define your schedules at the level of job groups, instead of individual
jobs.

LSF JobScheduler supports job grouping where jobs are organized into a hierarchical
tree similar to the structure of a file system. Like a file system, the tree contains groups
(which are similar to directories) and jobs (which can be considered to be files). Each
group can contain other groups or individual jobs. Job groups are created
independently of jobs, and can have dependency conditions which control when jobs
within the group are considered for scheduling.

The LSF JobScheduler system maintains a single tree under which all jobs in the system
are organized. The top-most level of the tree is represented by a group named “/”, the
root group. The root group is considered to be owned by the primary LSF
Administrator and cannot be removed. Under the root group users can create jobs or
new groups. By default, if a user submits a job without a group path, the job belongs
to the root group.

LSF JobScheduler User’s Guide 75

5 Defining Jobs

Job Group Status

A job group is a collection of jobs which has a status associated with it. The possible job
group status conditions are:

= active - ajob group has active status if and only if all dependency conditions for
the job group are satisfied. Jobs belonging to the job group are considered for
scheduling if the job group has active status.

= inactive - a job group has inactive status if one or more of the dependency
conditions for the job group is not satisfied. Jobs in the job group will not be
considered for scheduling if they have inactive status.

= hold - on hold. No jobs in the job group will be considered for scheduling
regardless of the dependency conditions of the job group.

When a new job group is created, it is automatically given hold status. This allows you
to finish building your job group hierarchy and then to release it after it is ready to be
scheduled. You must explicitly release a job group in order for jobs in the job group to
be scheduled. You can also explicitly give a job group hold status. This allows you to
“freeze” the scheduling of the job group. See ‘Job Controls’ on page 109 for more details.

Creating a Job Group

You can create a new job group from the command line, or from the graphical job
submission tool xbsub.

To do this using xbsub, select the “Job Group” tab, (as shown in Figure 15) to display
the appropriate options. The job group definition options in this window are a subset
of those displayed when the “Job” tab is selected (see Figure 11). You can specify a time
event dependency and other event dependencies for a job group, just as you can for an
individual job.

76

5

The “In Job Group” field specifies the parent job group path name starting from “/”.
If this parameter is not specified, the new group will be created under the root group.

Figure 15. Job Group Definition Window

portfoliol

Jrisk_group

r

reckdaysisys I

]

Job groups can also be created from the command line. The following examples show
how to create a job group:

% bgadd /risk_group

LSF JobScheduler User’'s Guide 77

5 Defining Jobs

This creates a job group named “risk_group” under the root group “/”.
% bgadd /risk_group/portfoliol
This creates a job group named “portfoliol” under job group “/risk_group”.

When creating a group from the command line, you must provide a group
specification with a full group path name. The last component of the path is the name
of the new group to be created. A parent job group must have been created before you
create a sub-group under it.

When the group is initially created it is given HOLD status. The above example creates
job groups without dependency conditions. Job groups will always have ACTIVE
status once you release them from HOLD status.

Each group is owned by the person who created it. The job group owner can operate
on all jobs within the job group and its sub-groups. It is possible for a user to add a job
or group into a group that is owned by another user.

Use the x| sj s graphical tool to view job groups and jobs under the job groups. The
x| sj s tool provides an intuitive interface for monitoring jobs and job groups. Figure
16 shows the x| sj s graphical tool.

The left side of the x| sj s GUI displays the job group tree structure. You can expand
and shrink the view by clicking on the group names at different levels. The right side
of the window displays jobs (upper area) and job groups (lower area) under the current
job group. The current job group is highlighted in the job group tree on the left side of
the window. The views on the right side can be adjusted to show information that is of
interest to you.

The xI sj s GUI is the console window of LSF JobScheduler. You can perform almost
all LSF JobScheduler-related operations from this window. For example, to create a
new job group under “/risk_group”, simply select “/risk_group” and then choose File
| New | Group. This displays the window as shown in Figure 15.

78

Command-line tools are also available to view and manipulate job groups.

Figure 16. Job and Job Group Monitoring Window

< LSF JobScheduler S I=] E3
File ¥iew Tools Options Help
AN by, =m-| =
Chf| Cal 7l =& G ca
Joh Group Tree: Contents in Group "Risk_Group"
B Eg /{Root) Hame User |St,at,u3|T:i.me Job_ID
EII‘a‘ﬁ‘l I3 Test Userz HOLD Jul 17:27:28 1008
L
(3 Exception 3 Tnitial TUser:z HOLD Jul 17:27:42 1998
3 Test (] Begression Userz HOLD Jul 17:27:51 1993

[Exception UserzHOLD Jul 17.27:58 1998

[Initial

=] getdata UserzPEND Jul 1998 Se664

'———— (] Regression
B &3 Payroll J getdatal Useri PEND Jul
J getdatal Useri PEND Jul

17:29:34 1998 5725

3 irput_data 17:51:39 1998 5925

[R R B BN - S B - R
=
-
[gu]
ux)
=
.

L [Portfoliol =] getdatad UserzPEND Jul 19:28:34 1938 §008
—0 [Report
] reportl
———— (] reportl
= = f
|80biect(3) Updating done. Updated 19:29:06

Submitting a Job under a Job Group

After you have created the desired job groups, you can then submit jobs into them. To
submit a job into a job group, select the job group and then choose File | New | Job.
This displays the job submission window as shown in Figure 11, with the current
working group set to the selected group.

You can also submit a job into a job group using the bsub command. For example:

% bsub -J /risk _group/portfoliol/ new ob nyjob
Job <105> is submitted to default queue.

LSF JobScheduler User’'s Guide 79

5 Defining Jobs

The - J option of the bsub command, followed by a group path, tells LSF
JobScheduler the exact location of the job group the job should belong to. If you assign
aunique job name to each job created, it will be easier for you to keep track of your jobs.

When using the command-line job submission tool, bsub, the job name parameter
should be used to specify the full path of the group in which the job is to be placed.

You will see the submitted jobs on the right side of the window as shown in Figure 16.
You can also view submitted jobs using the bj obs command. With the - g option of
the bj obs command, you can view job groups as well as jobs.

If you do not see submitted jobs in the x| sj s window, make sure that you have chosen
the right filters by choosing View | Filter Jobs. If you are submitting jobs to a newly
created job group, remember to release the job group after you submit all jobs so that
the job group can enter the ACTIVE state.

Specifying Dependency Conditions

Because many jobs are operations in response to various events, the scheduling of such
jobs is dependent on specific events occurring. A dependency condition is a job or job
group attribute you can specify so that your job or job group gets ready to run when
certain events happen. A dependency condition can be specified in terms of time
events, job events, job group events, exception events, file events and user events. For
a conceptual explanation of these events, see Section 3, ‘Events and Calendars’, beginning
on page 21.

Time Event Dependency

If your job needs to run periodically, or at pre-determined times, you can associate a
time event with your job. A time event can be specified at either the xbsub GUI or the
bsub command line level.

To specify a time event for your job, simply enable the “Date and Time” checkbox in

the xbsub main window. You can then specify the time event, as shown in Figure 17.
A time event specification contains two parts: a calendar and a time specification. By

80

5

clicking on the “Choose” button, you can choose a calendar from all calendars defined
in the system. To view calendar details, use the xbcal GUI.

Normally, you will choose from your own calendars and the system calendars, but you
can also use other users’ calendars. If you do use a calendar defined by another user,

remember that the other user’s calendar you are depending on can be modified by its
owner without warning!

Figure 17. Specifying Time Events

o powa -

r

reckdaysisys I
3, 14, 20

LSF JobScheduler User’'s Guide 81

5 Defining Jobs

The calendar specifies the days during which the event will repeat. If you do not
specify a calendar in the “Date & Time” area, LSF JobScheduler assumes the default
daily calendar, i.e. every day.

Time Specification

The time specification area specifies the way in which the time event should repeat in
a day defined by the calendar. It contains 3 fields: “Hours”, “Minutes”, and
“Duration”.

The “Hours” field specifies at which hours during the specified day(s) the event should
repeat. You can specify several time points separated by commas, or a range of hours
such as 5-17, or acombination of the above. The event will repeat at each hour specified
in this field. Valid values for “Hours” are 0-23.

The “Minutes” field specifies at which minutes during the hour(s) specified in the
“Hours” field the event should repeat. You can specify several time points separated
by commas, or a range of minutes such as 10-30. The event will repeat at each minute
specified in this field. Valid values for “Minutes” are 0-59.

The “Duration” field specifies how long the time event remains active after it becomes
active, and should be specified in minutes. It is important that you specify a reasonable
duration for your time event to allow your job time to be scheduled. The value for this
parameter should not exceed its recurrence interval. For example, if the time event
happens every eight hours, then the duration should not be more than eight hours. If
you specify a duration that is longer than the interval, it is considered to be the same
as the interval.

The job will be scheduled only if the time event is active. If the job is not able to run
before the time event becomes inactive, the job is considered to have missed its
schedule, and an exception will be triggered (if you have configured one). The job will
not be run until the next time the event becomes active.

Time events can also be associated with jobs using the bsub command line interface.
For example:

% bsub -T “weekdays:8,14,20:0%120" dbsync
Job <107> is submtted to default queue <normal >.

82

See ‘Time Expressions and the Command Line Interface’ on page 43 for details of time
expression syntax for the command-line interface. To view the calendars in the system,
use the bcal command. See ‘Manipulating Calendars Using the Command Line Interface’
on page 40 for an example of bcal command output.

Inter-job Dependencies

Some of your jobs depend on the results of other jobs. For example, a series of jobs
could process time sheet data, calculate earnings and taxes, update payroll and tax
ledgers, and finally print a cheque run. Most steps can only be performed after the
previous step completes.

In LSF JobScheduler, dependencies among jobs are handled by job events. Job events
and job status functions are described conceptually in ‘Job Events’ on page 23 and ‘Job
Group Events’ on page 24.

A job can also depend on one or more job groups. This is supported by job group
events. A job can depend on the status of a job group. A group itself does not execute,
but rather the individual jobs under the group. Therefore, the successful completion or
failure of a group is determined by the state of the jobs in the group. A set of job group
status functions are provided which expose the various job group counters and the
group state. The concepts of job group events and job group status functions are
discussed in ‘Job Group Events’ on page 24.

By associating job status functions and job group status functions with the current job,
you can define inter-job dependencies.

To submit a job that depends on prior jobs or job events, click on the “Conditions”
button from the job submission main window. This brings up a dependency condition
window as shown in Figure 18.

The function exi t (back_up_j ob) is a job status function and the function
nundone(/ ri sk_group) is ajob group status function. For a complete list of job
status functions and job group status functions, see ‘Built-in Events’ on page 23.

As can be seen in Figure 18, a job can depend multiple jobs or job groups. In the above
example, the dependency condition says the current job will be scheduled when
back_up_job has exited with exit code being less than or equal to 10 and when the
number of done jobs in job group Zrisk_group is greater than or equal to 2. Note that
you can use either job ID or JobName to specify a job dependency. In any case, the job

LSF JobScheduler User’s Guide 83

5 Defining Jobs

or job group to be depended on must already exist before you can create a dependency
onit.

A wildcard character “*’ can be specified at the end of a job name to indicate all jobs
matching the name. For example, j obA* will match j obA, j obAl, j obA test,

j obA. | og etc. There must be at least one match. If more than one job matches, your
job will depend on every one of the jobs.

Figure 18. Inter-Job Dependency Condition Window

Joh Dependency l Event l Exception l

Thiz job is considered for dispatch if sl | of the following are satisfied.

1 exiti haclk
2 numdone (Ao

Hrisk group

Job Group Mame: - |

Condition: exitWalue —i | == | |12
Replacel Add | Hemnvel

(]:4 | Cancell

Whilej obl d may be used to specify the jobs of any user, the job name can only be used
to specify your own jobs. If you submitted more than one job with the same job name,
all jobs with that name are assumed.

The prior jobs are identified by the job ID number or ajob name. The job ID is assigned
by LSF JobScheduler when the job is submitted. If you did not supply a name during

84

5

job submission, the system uses the last 60 characters of the submitted command as the
job name.

Inter-job dependency can also be specified at the command level using the bsub
command. Below are a few examples.

If your job only requires that the prior job has started processing (and it does not matter
if it has completed), use the st ar t ed keyword.

% bsub -w “started(first_job)” -J second_job time card
If your job requires that the prior job finished successfully, use the keyword done.
% bsub -w “done(pre_process)” -J main_process cheque_run

If your job depends on the prior job’s failure (for example, it is responsible for error
recovery should the prior job terminate abnormally), use the keyword exi t .

% bsub -w “exit(main_process)” -J error_recovery re_run

If your job depends on a particular exit value of another job, the value can be given in
the exit function.

% bsub -w “exit(main_process,100)” -J error_recovery re_run
If the job depends on a range of exit values of another job, the range can be given as:
% bsub -w “exit(main_process,< 100)" -J error_recovery re_run
When your job only requires that the prior job has finished, regardless of the success
or failure (for example, the prior task may end successfully, but with a non-zero exit
code), use the keyword ended.
% bsub -w “ended(cheque_run)” -J clean_up clean
Note

If you submit a job that depends on a repetitive prior job, then the newly submitted job

also becomes a repetitive job, that is, it will go to the PEND status after it completes a
run instead of being removed from the system.

LSF JobScheduler User’'s Guide 85

5 Defining Jobs

Specifying only j obl d or j obNane is equivalent to done(j obl d| j obNane) .

A numeric job name should be doubly quoted, for example -w "’ 210" ", since most
UNIX shells treat - w " 210" the same as-w 210, causing it to be treated as aj obl d.

The simplest inter-job dependency condition is aj obl d or a job name.
% bsub -w 8195 j obB

Your job may depend on a number of previous jobs. In the example following, the
submitted job, dependent , will not start until job 312 has completed successfully, and
either the job named Job2 has started or the job named Job3 has terminated
abnormally.

% bsub -w “done(312) && (started(Job2) || exit(Job3))” \
-J dependent command

The following submitted job will not start until either job 1532 has completed, the job
named j obName2 has completed, or all jobs with names beginning with j obNane3
have finished.

%bsub -w “1532 || jobName2 || ended(jobName3*)* -J NumberDepend command

If any one of the conditional jobs is not found, the bsub command will fail and the job
cannot be submitted.

File Event Dependency

File events monitor the status of files and can be used to trigger the scheduling of your
jobs. The concepts of file events and file status functions are discussed in ‘File Events’
on page 27. A file event dependency can be specified in logical expressions of file status
functions.

With the GUI interface, defining a file event dependency is fairly straightforward.
Figure 19 shows the file event dependency window. This window is brought up when
you click on the “Conditions” button from the job submission window as shown in
Figure 11, and then select the “Event” tab.

As shown in Figure 19, you can specify multiple file event dependency conditions for
your job. Note that in the GUI the size parameter of the file is in kilobytes, and the age

86

5

parameter is in minutes. Once a job with file event dependency conditions is submitted
to the system, LSF JobScheduler will register a file event with the External Event
Daemon (eevent d) which then monitors the status of the specified file periodically.
Once the status of the file event changes, the eevent d will inform LSF JobScheduler
about the change.

In the example shown in Figure 19, the dependency condition is considered satisfied if
and only if all of the event conditions listed evaluate to TRUE. You can also specify that
the dependency condition be satisfied if any of the event conditions listed evaluates to
TRUE.

For a complete list of all available file status functions, see ‘File Events’ on page 27.

Figure 19. File Event Dependency Window

Joh Dependency l Event l Exception l

File Events: |

This jok is cansidered for dispatch if sl | of the following are satisfied.

1 size(/usr/local/data/new_file) »=5000
2 age (fusr/local/data/new file) »=10

File Mame: I fust/local/datasnew fild Elruwse___l

Condition: age | == | I id minutes
Add | Finae |
Ok | Cancell

LSF JobScheduler User’'s Guide 87

5 Defining Jobs

A file event dependency condition can also be specified when you submit a job using
the bsub command line with the “- w” option and the f i | e keyword. Here are a few
examples.

% bsub -w "file(age(/u/db/datafile) > 2H)" conmand

This creates a job that runs when the file / u/ db/ dat af i | e is more than 2 hours old.
Note that “H” here stands for hour. Other characters that you can use to represent a
time duration include D (day) and W(week). The default is M (minute).

If you want to trigger the job execution by the creation of a file, use the ar ri val ()
function. This function detects the transition of the specified file from non-existence to
existence.

% bsub -w "file(arrival(fusr/data/newfile))" -R “type==hppa’ command

This creates a job that runs when file newf i | e is detected in/ usr/ dat a directory.
Also note that a resource requirement is specified so that this conmand should only

be run on an hppa host.

Unlike the age() function, thearri val () function does not need a relational
operator because the function evaluates to either TRUE or FALSE.

If you are only interested in the existence of the file instead of the transition of the
creation, you can use the exi st () function.

% bsub -w “file(lexist(/usr/data/lock_file))” command

This tells LSF JobScheduler to run the job if file / usr/ dat a/ | ock_fi | e does not
exist.

Use the function si ze() if you want to run a job when the size of the file becomes a
certain value.

% bsub -w "file(size(/var/adm/logs/log_file) >= 3.5 M)" command
The character Mrefers to megabytes. You could also use K to refer to kilobytes. The

default is bytes. Like the age() function, the si ze() function also requires a
relational operator to form a logical expression that evaluates to either TRUE or FALSE.

88

The file event you are depending on may be on another host.

% bsub -w “file(exist(hostd:/usr/local/fileA))” command

You can submit a combination of functions. The evaluation of the statement depends
on the operators you use. In the following statement, the command will be run if either

fileAexistsorfil eBarrives (is created).

% bsub -w "file(exist(/usr/dataffileA) || arrival(/usr/data/fileB))" \
command

The following statement will evaluate to TRUE only if fi | eAexistsand fi | eB has
arrived.

% bsub -w "file(exist(/usr/dataffleA) && armival(/usr/dataffileB))" \
command

The following command will be runiff i | eAexists and its size is greater than or equal
to 1MB.

% bsub -w "file(exist(/usr/data/fileA) && \
size(/usr/data/fileA) >= 1M)" command

Note
You must specify the absolute path name of the file in a file status function.

Job Exception Event Dependency

A job can be triggered by an exception condition of another job. The concept of job
exception events is discussed in ‘Job Exception Events’ on page 25.

The job exception dependency can be specified either at the command line using bsub
or using the job submission GUI. Below is a command line example,

% bsub -w “exception(event_name)” recoveryjob
This creates a job that will respond to the job exception event event_name . By
specifying the “except i on” keyword, you register a job exception event into LSF

JobScheduler which monitors the status of this event. event _name is an arbitrary
string specified by the user.

LSF JobScheduler User’'s Guide 89

5 Defining Jobs

The event specified here will remain inactive until it is set to active by a real exception
from another job. To do so the other job must be submitted with an exception handler
to explicitly set the exception event when the exception happens. This can be done by
using the set except action as its exception handler. When an exception handler sets
the exception event to active, this triggers all jobs waiting on the job exception event.

Exception handling is discussed in greater detail in ‘Exception Handling and Alarms’ on
page 123.

User Event Dependency

You should read this section only if your cluster administrator has installed site-
specific event detection functions into the External Event Daemon (eevent d) .

The concept of user events is described in ‘User Events’ on page 28. You can only use the
valid user event functions defined for your site.

A user event is created when submitting a job using the event keyword. For example,
you want to define a user event to detect the status of a tape device before a backup job
starts. If the status of the tape device is READY, the event becomes act i ve, otherwise
itisalwaysi nacti ve. You can submit the following command:

% bsub -w “event(tape_ready)” BackUp

A user event, t ape_r eady, is registered by LSF JobScheduler into the External Event
Daemon (eevent d), which then monitors the event. The string "t ape_r eady" is
passed to the eevent d by the master scheduler (mbat chd). The eevent d is
responsible for interpreting the string passed to it and must be able to associate the
event string passed to it with the actual device or event on which you are dependent.

The above example is a simple one in which the string passed to eevent d is a simple
string. In fact, your site can have complex syntax defined within the string to provide
more sophisticated event status functions, in which case, you must follow the
semantics defined by your site in specifying the event dependency condition.

Note
The External Event Daemon (eevent d) is a site-specific daemon that is customized
and installed by the LSF JobScheduler administrators. See “External Event
Management” in the LSF JobScheduler Administrator’s Guide.

90

Combining Dependency Conditions

You can submit a job with a combination of conditions. Simply specifying all needed
dependencies from the GUI will allow the job to depend simultaneously on time events
and multiple other events.

At the command line, use the - T and - woptions of the bsub command to specify
dependency conditions. The evaluation of the statement depends on the logical
expressions you specify. For example:

% bsub -w “done(jobA) && file(exist(fileA))” -J jobB command

The above statement will evaluate to TRUE if j obA has completed successfully and
fil eAexists.

Synchronizing Dependent Jobs

You can synchronize jobs by running the first job from a calendar and submitting the
second job to be dependent on the successful completion of the first.

% bsub -T “00:00” -J jobA command
Job <8085> is submtted to default queue <default>.

% bsub -w “done(jobA)” -J jobB command
Job <8086> is submtted to default queue <default>.

In the above example, jobB will be run every time jobA completes successfully. Since
jobA is arepetitive job, jobB also becomes repetitive because of the dependency. If jobA
is modified to follow a different calendar, jobB will still run after jobA.

Other Job Parameters

There are a few other parameters you can specify for your job to further tune the
behaviour of your jobs and schedules.

LSF JobScheduler User’s Guide 91

5 Defining Jobs

Number of Processors for Parallel Jobs

If your job is a parallel application, you can also specify the number of processors your
job requires to run. You can either choose a range of numbers or a single number. If
you choose a range, LSF JobScheduler will schedule the job as long as the number of
available processors meets the minimum number. In this case, your parallel
application must be able to run with a varying number of processors. If your
application has a fixed parallelism, choose a single number, in which case LSF
JobScheduler will run your parallel job with exactly that number of processors. This
parameter can be specified in the GUI as shown in Figure 12, or you can also specify it
from the bsub command line using the - n option.

Start Time and Termination time

You can also choose start and termination time ranges for your job. Your job will not
start until after its start time and will be terminated and removed from the system
when the termination time is reached. The start and termination times define your job’s
life. You do not have to specify both start time and termination times. If a start time is
not specified, the default is any time. If a termination time is not specified, the default
is never.

Note the difference between the start time/termination time pair and a time event that
has a start time and duration. A time event specifies a duration in which the job should
be scheduled. The job does not have to finish within the time event duration. A job can
only run once for each time duration. The start time and termination time of a job
specifies the active life time of a job. The job can run many times within the time range
and the job will be terminated and removed from the system when termination time
arrives.

The start time and termination time of a job can be specified as shown in Figure 12, or
from the bsub command line using options -b and - t .

Exclusive Job

An exclusive job is a job that runs on its own on a machine. LSF JobScheduler will not
mix an exclusive job with other jobs. You can define an exclusive job if you want
guaranteed performance for that job. Click on “Exclusive” in the job submission
window, as shown in Figure 11, to submit the job as an exclusive job. You can also do
this from the bsub command line using the - x option.

92

Ad-hoc Jobs

A job can be submitted so that it is suspended until it is explicitly resumed by the user
or administrator. This type of job is referred to as an ad-hoc job. It is put into the PSUSP
state as soon as it is submitted, and a user must resume the job explicitly before it can
run. After completion, the job is put back into the PSUSP state waiting for the next run.

Use the - Hoption of the bsub command to submit an ad-hoc job from the command
line. The br esune(1) command causes the job to go into the PEND state, from which
it can be scheduled. You can also submit an ad-hoc job from the Job Submission
window of the LSF JobScheduler xbsub GUI, shown in Figure 11 on page 64. Simply
enable the “Hold this Job when Submitted” checkbox before clicking on the “Submit”
button.

After completion, the job is put back into the PSUSP state waiting for the user to run it
once again.

Submitting an ad-hoc job is a useful solution whenever you have a job you need
scheduled only when a user requests it. For example, the lead job in a complex
schedule of dependent jobs may be an ad-hoc job. Whenever the lead job is released
and run, the downstream jobs are triggered. Every time you want to execute the
schedule, you need only release the lead job.

Exception Handlers

You can define exceptions for your job and associate exception handlers to process the
exceptions automatically. Exception handlers can be specified at job submission time
as shown by the “Exception Handler” button in Figure 11 on page 64. This topic will be
addressed in greater detail in ‘Exception Handling and Alarms’ on page 123.

LSF JobScheduler User’'s Guide 93

6. Managing Jobs and
Schedules

LSF JobScheduler provides a single system image for your cluster so that you can use
the whole cluster as if it were a single computer. As such, you can monitor, control, and
manipulate your jobs, job groups, and schedules from any host in the cluster through
a uniform interface.

The xI sj s GUI as shown in Figure 11 on page 64 is the focal point of all operations. If
you do not have any job group defined in the system, you will be seeing only the root
job group. All jobs submitted without a job group specification are in the root job

group.

If your system has job groups defined by users, you can use x| sj s to walk through
the job group tree to see the jobs and sub-groups at each level.

You can also manipulate your jobs and job groups through LSF JobScheduler
command-level tools.

Viewing Details of a Job or Job Group

As you walk through the job group tree, you can view all jobs and their status. To view
the details of a particular job, double click on the job to get a job detail window, as
shown by an example in Figure 20.

Depending on the current job status, the job detail information can be different. If the
job is already running, the details will contain information about the job execution,
such as execution host, process I1Ds of the job, resources used so far, and current
working directory on the execution machine.

LSF JobScheduler User’s Guide 95

6 Managing Jobs and Schedules

If the job is currently in PEND status, the job detail information will tell you why.
For suspended jobs, the job detail information will include why the job was suspended.

Figure 20. Job Details Window

General | History | Output |
A
Job Id «415:, Job Wame </risk_group/consolidater, User <userl:, Status <RUN:, 0Q
ueue <priocityr, Commend <verilog:
Mon Dec 1 13:08:45: Submitted from host <hosta>, CWD <SHOME utopia/lshatch/xls
batch:, Time Event <businessday@sys:+:0%60:, Specified Hos
ts c<hosth:;
Mon Dec 1 13:23:49: started on <hosth>, Execution Home </home/devl/userls, Exe
cution CWD </home/devl userl/utopiaslshatch/xlshatchs;
¥
= 1=
1 Mo Update Update | Close |

To view the details of a job group, select the job group from the x| sj s GUI and then
choose File | Details. You can also achieve this by double-clicking on the group listed
on the right hand side of the window. The job group details will be displayed in a
popup window as shown in Figure 21.

96

Figure 21. Job Group Detail Window

A
Parent: Srisk_group
GROUP NAME</risk_group/portfolioZ:, OWNER<userl:, Status<HOLD:, Time Event<week
days@sys:12: 0230, Dependency Condition< (file(arriwal(/usc
fdatasnew file))) s
COUNTERS
NIOES FEND DOHE REUN EXIT SSUSP USUSP PSUSP
5 3 1} 2 0 0 0 0
v
= I =
| Mo Update Update | Close |

Job and job group information can also be viewed from the command line using the
bj obs command. For example:

% bj obs -a
JOBI D USER STAT QUEUE FRCM HOST EXEC HOST JOB NAME SUBM T_TI ME
1031 wuserl PEND priority hostc /sl eep 567 Nov 27 16: 23

887 userl DONE priority hostc host b *nsol i date Nov 27 15: 36
1006 wuserl DONE priority hosta host b *nsol i date Nov 27 16: 00

Note if you do not specify the - a option, jobs having DONE and EXIT status will not
be displayed. By default bj obs will only display the jobs you submitted. Use the

- u user _nane option to view the jobs of other users. Use the reserved user name al |
to see the jobs of all the users.

% bj obs -u all
JABI D WSER STAT QEE FROM HCBT EXEC HOBT JCB NAME SUBMT_TIME

6745 user2 RN busi ness hostd host b report Dec 19 09: 04
6916 user3 RUN business hosta host d anal yse Dec 19 09: 05
6848 userl PEND sysadm hosta di skcheck Dec 17 11:52

LSF JobScheduler User’'s Guide 97

6 Managing Jobs and Schedules

7142 userl PEND sysadm hosta backup Dec 21 15:45
7157 user4 PEND night host a f or ecast Dec 18 10: 56

Use the - s option to view the suspended jobs only. Along with the job information, it
also shows the reason why the jobs are suspended.

% bj obs -s
JBID UIBER STAT QEE FROMHXT BEXEC HOST JCB NAME SUBMT_TIME
1999 wuserl PSUSP default hosta j oba Dec 10 15: 33

The job was suspended by user or system admi n while pending;

Use - p option to view the pending jobs only. Along with the job information it also
shows the reason why each job was not dispatched during the last dispatch turn.

% bj obs -p

JOBI D USER STAT QEE FROM HCBT BEXEC HOST JCB NAME SUBMT_TIME
1999 wuserl PSUSP default hosta j oba Dec 10 15: 33
The job was suspended by user or systemadmn while pending;

5518 wuserl PEND default hosta j obb Dec 14 10: 27
Job dependency condition not satisfied;

8056 wuserl PEND default hostA j obb Dec 20 11:41

Job dependency condition not satisfied;
To get the details of your job, use the - | option of the bj obs command:

% bjobs -1 -J /risk _group/consolidate

Parent: /risk_group

Job 1d <887>, Job Nane </risk_group/consolidate> User <userl> S
tatus <RUN>, Queue <priority> Comand <nyj
ob>

Thu Nov 27 15:36:39: Subnitted from host <hosta> CAD <$HOVE>, EX
cl usive Execution, Requested Resources <hpu
x>, Time Event <busi nessdays@ys: *: 09%60>;

Thu Nov 27 15:37:15: Started on <hostc>;

Thu Nov 27 15:41:53: Resource usage collected. MEM 440 Kbyt es;
SWAP: 1 Moytes PAD: 21699; PIDs: 21699

You can get the same output by running the bj obs command with j obl d as the
parameter instead of job group path name.

98

6

You can view job group information from the command line, too. This is supported by
the - g option of the bj obs command. For example,

% bj obs -g
Parent: /
GROP STAT OMER NICBS PEND DONE RN EXI T SSUSP USUSP PSUSP
fundl grp ACTIVE userl 5
fund2 grp ACTIVE userl 11
bond grp HAD user4 2
risk gr* ACTIVE user2 2
adm _grp INACTIVE user3 4

A FEPDNDND
OPFr OwOo
O O oOau Rk
cNoNeoN "N
cNeoNoNeNe]
[oNeoNoNeNe]
cNeoNoNeNe]

JOBID USER STAT QEWE FROM HOST EXEC HOST JCB NAME SUBM T_TI ME
1031 wuser5 PEND normal hostd /simulation Nov 27 16: 23

The - g option makes the bj obs command display job group information as well as job
information. It is similar to a directory listing in a file system. By default, the bj obs -
g command lists all job groups under the Root job group together with all jobs directly
submitted into the Root (/) job group. If you specify a- J / a/ b/ group path together
with the above command, it will display all job groups under the group / a/ b together
with all jobs submitted to the / a/ b job group level.

The job counters listed from the above output give a summary of jobs inside the job
group tree by different status. If you want to see all job groups and all jobs at all levels,
use “- R” option together with “- g” option of the bj obs command.

Viewing Job History

You may need to know what has happened to your job since it was submitted. By
clicking on the “History” tab of the Job Details window, you can see the history of your
job, as shown in Figure 22. Job history tells you in chronological order what has
happened to your job. It also gives you statistics about how long the job has stayed in
each job state cumulatively.

LSF JobScheduler User’s Guide 99

6 Managing Jobs and Schedules

Figure 22. Job History Window

General | History L Qutput |
Job Id <313, Job Name <(removeCore:, User <userZ>, Project <default:, Command < /|
CMCOTE >
Mon Dec 1 12:36:38: Submitted from host <hosta> to Queue <{priority>, CWD <S$HOM
E/utopiaflshatch/xlshatchy, Time Ewent <businessday@sys:*:
0=60:;
Mon Dec 1 12:40:16: Dispatched to <hostas;
Mon Dec 1 12:40:16: Starting (Pid 12025);
Mon Dec 1 12:40:22: Running with execution home < /homes/devl/user2:, Execution
CWD < /home/devl/userl /utopia/lshatch/xlsbatchy, Execution
Pid <12025:;
Mon Dec 1 12:40:27: Done successfully;
Summary of time in seconds spent in warlous states by Mon Dec 1 12:40:27 1997
PEND BSUSP RUN USUSP S5USPE UNEWH TOTAL |
427 0 11 0 0 0 438
]
= P
- Mo Update Update | Close |

The xI sj s GUI allows you to see the history of jobs currently in LSF JobScheduler. If
you want to see the history of a job that was already deleted from LSF JobScheduler,
you must use the bhi st command.

For example:

% bhi st -1 7848

Job 1d <7848>, Job Nane <di skcheck>, User <user1>, Command <find -
nane core -atinme +7 -exec rm{} \;>

Tue Dec 16 11:52:13: Subnmitted fromhost <hostA> to Queue <defau
It> OWD <$HOVE>, Dependency Condition <cal
endar (weekdays) >;

Sat Dec 20 07:00:12: Started on <hostA>, Pid <29027>;

Sat Dec 20 07:00:12: Running w th execution hone </ home/user1/>,
Execution CWD </ hone/ user 1>;

Sat Dec 20 07:00:55: Done successfully. The CPU time used is 12.
. 2 seconds;

Sun Dec 21 07:00:05: Started on <hostA>, Pid <986>;

100

Sun Dec 21 07:00:05: Running wth execution honme </hone/user1>
Executi on OAD </ hone/ user 1>;

Sun Dec 21 07:01:18: Done successfully. The CPU time used is
11. 9 seconds;

Mon Dec 22 07:00:02: Started on <hostA>, Pid <2892>;

Mon Dec 22 07:00:02: Running with execution hone </ hone/user1>
Executi on OAD </ hone/ user 1>;

Mon Dec 22 07:01:13: Done successfully. The CPU tinme used is 10.
5 seconds;

Tue Dec 23 07:00:10: Started on <hostA>, Pid <4905>;

Tue Dec 23 07:00:10: Running with execution home hone/user1>, EX
ecution QWD </ hone/ user 1>;

Tue Dec 23 07:03:31: Done successfully. The CPU tinme used is 19.
7 seconds;

Tue Dec 23 15:17:14: Delete requested by user or adm nistrator <
user1>;

Tue Dec 23 15:17:14: Exited. The CPU tinme used is 0.0 seconds.

Sunmary of tine in seconds spent in various states by Tue Dec 23 15:17: 14 1997
PEND PSUSP RUN USuUsP SSUSP UNKWN TOTAL
617057 O 44 0 0 0 617101

LSF JobScheduler keeps job history information after the job completes a run, so you
can look at the history of jobs that ran in the past. The length of the history depends on
how often your LSF administrator cleans up old log files. Unless a job ID or a time
range (using - S, - C, - D, or - T) is specified, bhi st only displays recent job history, i.e.
history stored in the current event log file.

The bhi st command also allows you to display the history of all jobs chronologically
rather than on a per job basis. This gives you a real trace of what exactly happened in
the whole system. This is done through the - t and - T option of the bhi st command:

% bhist -t -T “1997/9/22/18:00,1997/9/22/19:00"

Mon Sep 22 18:50:00: Job <429> Pendi ng: Job has been requeued;

Mon Sep 22 18:50:00: Job <429> D spatched to <host b>;

Mon Sep 22 18:50:01: Job <429> Starting (Pid 24289)

Mon Sep 22 18:50:01: Job <429> Running with execution home </hom
e/ dev2/user 1>, Execution CAD </ hone/ dev2/us
r1>, Execution Pid <24289>, Execution user
nanme <user1>;

LSF JobScheduler User’s Guide 101

6 Managing Jobs and Schedules

Mon
Mon
Mon

Mon
Mon

Sep 22

Sep 22
Sep 22
Sep 22

Sep 22
Sep 22

18:

18:
18:
18:

18:
18:

52:

52:
53:
53:

53:
53:

36:

52:
16:
17:

23:
56:

Job <750[19] > Pendi ng: Waiting for scheduli
ing after resuned by user;

Job <750[19] > Di spatched to <hostc>;

Job <750[19] > Starting (Pid 24708)

Job <750[19] > Running with execution hone <
/ hone/ dev2/ ussr2>, Execution CQAD </ hone/ dev
2/ user 2>, Execution Pid <24708>, Execution
user name <user2>;

Job <429> Done successfully;

Job <750[19] > Done successful ly;

This displays job history between 6 PM to 7 PM of September 22. If you specify - t but
not - T, bhi st assumes the time range of from one week ago to now.

102

Peeking at Job Output

You can view the output from the standard output and standard error while the job is
running. This can be done through the GUI by clicking on the “Output” tab of the
window shown in Figure 20 on page 96.

Figure 23. Job Output Window

Job Detail

General l History l Dutput l

Feading data done. -

Preparing for portfolio analysis

Starting process ...

<< oukput from stdout o

¥

= P
W Mo Update Update | Cloze |

You will only be able to see the output of your own jobs. This is only possible while
your job is in RUN, SSUSP, or USUSP status. If the job has not been started or has
finished, you cannot see the output. If your job is already finished, the output should
be already in the output file as specified in the job submission. See ‘Input and Output’
on page 65 for details.

You can also view the output of your job using the bpeek command.

LSF JobScheduler User’'s Guide 103

6 Managing Jobs and Schedules

Modifying a Job

From the x| sj s GUI shown in Figure 16 on page 79, you can perform different
operations on jobs and job groups. You can modify the attributes of a submitted job by
selecting the job and then choosing File | Modify. You can also do this by selecting the
job and then clicking on the job modification toolbar. This will bring up the Job
Modification window, as shown in Figure 24.

Figure 24. Job Modification Window

LSF JobScheduler - Job Modification {1031)

File Edit Options Help
Command Line: I dhsyne -d 209 Brnwse...l -
Job Mame: | nightly_synd
In Job Group: | /risk groug
o Date & Time
Calendar: eekdayslsys ChDDSB...l
Hours: I p (e.g.* 1,7,14-15) 1 Exclusive Job
Minutes: I d (e.q., %, 20-30, 50)
Conditions.. |
Duration: |12EI | minutes .
Exception Handler...l
Modfy | Advanced..| Defaults | Revert Ext |

Updated 13:27:41

The job modification window is almost the same as the job submission window, except
that it pre-loads the existing job parameters from LSF JobScheduler. This allows you to
make changes to any parameters. After you finish the changes, click on the “Modify”
button to commit the changes into LSF JobScheduler.

104

6

Job modification will have an effect only on future executions of the job. If the job is
running while you do the modification, the current execution will still use the original
parameters.

Job modification can be done at the command level using the bnod command. The
brmmod command has a set of options similar to those of the bsub command. The value
for the option you want to modify is overridden with a new value using the same
option syntax as the bsub command. However if you want to modify the actual
command line for the job, you need to use the - Z option of the bnod command. For
example,

% bnod -Z "new cnd arg" 848
Par ameters of job <848> are bei ng changed

The argument for - Z must be enclosed in quotes if it contains more than one string.
Itis a little bit more complicated if you use brrod to reset an option to its default value.
Use the option string followed by 'n’. No value should be specified when resetting an
option. For example,

% brod - Tn 848

This removes the time event dependency for job 848.

You can only modify jobs owned by yourself and other users; jobs submitted under job
groups owned by you. LSF administrator can modify jobs of all users.

Modifying a Job Group

Job groups can be modified in a way similar to that in which jobs are modified. Since
the dependency conditions specified at the job group level affect all jobs and job groups
in the job group tree, by modifying job group parameters you effectively modify the
scheduling behaviour of all jobs belong to the group tree.

Figure 25 shows the job group modification window. This window appears when you
select the group from the x| sj s GUI and then choose File | Modify.

LSF JobScheduler User’'s Guide 105

6 Managing Jobs and Schedules

As with job modification, modification to a job group has no immediate effect on jobs
that are already running. It only affects the future scheduling of jobs. However,
changing the dependency conditions of a group can cause the status of a job group and
all sub-groups to change. For example, if you change the time event dependency of a
group and the time event is currently inactive, then the status of the job group and all
its sub-groups which have ACTIVE status will immediately become INACTIVE. Jobs
already started will continue to run, but jobs that are not scheduled yet will be
prevented from further scheduling until the status of the job group becomes ACTIVE
again.

You can modify your own job groups and other users’ job groups that are created
under job groups owned by you. The LSF administrator can modify job groups of all
users.

Figure 25. Job Group Modification Window

4 LSF JobScheduler - Group Modification (,,'risk_gmup,"purtl‘nliu...ITIEIY

File Edit Options Help

Group Mame: | portfoliol

In Job Group: | frisk_groug

W Date & Time

on_nonday] ChDDSB.._l

Hours: I12 fe.g., ", 1,7.14-15)

Calendar:

Minutes: IIJ (e.q., *, 20-30, 50

Duration: I30 minutes

Modify |

Ctiite Revert Exit |

Updated 20:21:10

106

Deleting a Job or Job Group

By deleting a job, the job is removed from the memory and the job becomes history.
You will be able to see the deleted job from the job history by running bhi st
command.

If the job is currently running, deleting a job Kills the job before removing the job from
the system. If the job has any events associated with it, these events will also be
removed from the system unless these events are still in use by other jobs or job groups.

You can delete jobs or job groups owned by yourself and jobs and job groups that are

created by other users underneath a job group owned by you. The LSF administrator
can delete jobs or jobs groups owned by all users.

Deleting Jobs

A job can be deleted easily using the GUI. Click on the job to be deleted and choose File
| Delete. Or you can click on the job deletion toolbar after selecting the job.

You can also use the bdel command to remove a job.

% bdel 3456
Job <3456> is being del et ed

You can specify a job by name using the - J option.

% bdel -J jobA
Job <3457> is being del eted

To delete all jobs directly underneath a job group tree, specify the group path with the
bdel command:

% bdel -J /risk_group/

Job <1202> is being del eted
Job <1203> is being del eted
Job <1204> is being del eted

LSF JobScheduler User’s Guide 107

6 Managing Jobs and Schedules

To delete all jobs in a group recursively, use the - Roption:

% bdel -R -J /risk_group/

Job <1202> is being del eted
Job <1203> is being del eted
Job <1204> is being del eted
Job <1205> is being del eted
Job <1206> is being del eted

Note that the “/” following the group path is necessary. If the group path is not
followed by a “/”, the last component in the path is considered as a job instead of a job

group.

To remove all jobs inside a job group tree recursively at all levels, use the - Roption of
the bdel command.

Deleting Job Groups

A job group can be deleted from the GUI by selecting the job group and choosing the
“Delete” from the “Gr oup” pull-down menu. By deleting a job group, you delete all
jobs and job groups under the current job group. All events associated with the entire
job group tree will be removed as well unless they are also associated with other jobs
or job groups.

To remove a job group from the command level, you must first remove all jobs inside
the job group tree by running bdel command with option - R, then remove the job
group tree with the bgdel command.

% bdel -R -J /risk_group/

Job <1202> is being del eted
Job <1203> is being del eted
Job <1204> is being del eted
Job <1205> is being del eted
Job <1006> is being del eted

% bgdel /risk_group
Job group /risk _group is deleted.

108

Delayed Deletion of a Job

If you want to delete your job after certain a number of runs, use the - n option of the
bdel command. This allows you to specify the number of times your job will execute
before it is deleted. After the job runs for the specified number of times, it will be
deleted from the system. For example,

%bdel -n 5 -J jobA
Job <8087> will be deleted after running next 5 tines

Job Controls

After the jobs have been created, you can control their execution and scheduling using
LSF JobScheduler’s user interface tools. You can control jobs or job groups owned by
yourselfand jobs and job groups that are created by other users underneath ajob group
owned by you. The LSF administrator can control jobs or jobs groups owned by all
users.

Terminating a Job

Terminating a repetitive job kills the current run, if the job has been started, and
requeues the job. If the repetitive job is in PEND or PSUSP status, i.e., not running,
termination has no effect. However, if the job is not a repetitive job, terminating the job
has the same effect as deleting the job.

On UNIX, termination sends a sequence of signals to the job in the following order:
SIGINT followed by a 10 second delay, then SIGTERM followed by another 10 second
delay, and then SIGKILL. On Windows NT, job control messages replace the SIGINT
and SIGTERM signals, and termination is implemented by the

Ter m nat ePr ocess() system call. The 10 second delays are configurable by your
LSF administrator. See the LSF JobScheduler Administrator’s Guide for details.

You can only terminate your own jobs, or jobs of all users submitted underneath job
groups owned by you. The LSF Administrator can terminate jobs of all users.

LSF JobScheduler User’s Guide 109

6 Managing Jobs and Schedules

To terminate a job, select the job from the GUI and then choose File | Terminate. This
same can be done by clicking on job termination toolbar after selecting the job.

bki I | is the command line interface for terminating a job. For example,

% bkill 3467
Job <3467> is being termnated

Terminating a Group of Jobs

You can perform a termination operation for all jobs inside a job group tree by
choosing File | Terminate Jobs, or by running the bki I | command with option - R
and by specifying job group path. For example,

%bkill -R-J /risk_group/

Job <1413> is being term nated
Job <1414> is being term nated
Job <1415> is being term nated
Job <1416> is being term nated

If you only want to kill all jobs at one group level, do not use - R,

%bkill -J /risk_group/
Job <1413> is being term nated
Job <1414> is being term nated

Sending Arbitrary Signals to Jobs

You can use bki | | tosend an arbitrary signal to your job using the - s option. You can
specify either the signal name or the signal number. On most versions of UNIX, signal
names and numbers are listed in the ki I | (1) or si gnal (2) manual page. On
Windows NT, only customized applications will be able to process job control
messages specified with the - s option.

110

For example,

% bkill -s SIGISTP 3488
Job <3488> is being signalled

This example sends the SI GTSTP signal (terminal stop) to the job.

You can also use bki | | to send signals to all jobs inside a group tree or at one group
level by using - Roption and by specifying the group path.

Suspending and Resuming Jobs

Suspending a running job stops the job from running, freeing up CPU and memory
resources. However, the job is not killed. It is still kept in the virtual memory and can
be resumed later. On UNIX, this is implemented by sending a STOP signal to the job.
On NT, an equivalent function is implemented.

Suspending a job that has not started yet causes the job to go into PSUSP status. A job
in PSUSP status is held from scheduling until it is released explicitly.

To suspend a job, select it and then choose Job | Suspend. You can resume ajob in the
same way.

There are also command line tools for suspending and resuming jobs. To suspend a
job, run the bst op command:

% bstop -J di skcheck

Job <7848> is bei ng stopped

Use the br esune command to resume it:
% bresune -J di skcheck

Job <7848> is being resuned

Note that the - J option of all commands refers to a job name. If the job name does not
startwitha*“/”, itis supposed to be in the Root job group (“/”). If ajob name ends with
a*“/”, thenitis a pure job group path.

LSF JobScheduler User’'s Guide 111

6 Managing Jobs and Schedules

Resuming a user-suspended job does not immediately put your job into RUN state. The
job must first satisfy its dependency conditions. br esune first puts your job into
SSUSP state. The job can then be scheduled accordingly.

You can do group wide job suspending and resuming by specifying a group path and
by using the - Roption of these commands. This is similar to all other job control
commands we have discussed in the previous sections.

Forcing a Job to Run

A job can be forced to run regardless of its scheduling conditions. This is desirable in
certain situations, e.g., when performing a corrective action as a result of an
unscheduled job.

You can force your own jobs as well as jobs submitted by other users under a job group
owned by you. The LSF administrator can force any users’ jobs to run.

To force a job to run, select the job and choose File | Run Now. The command line
equivalent of this function is the br un command. For example,

% brun -m hosta 7884
Job <7884> is being forced to run.

Note that you must specify a host name on which the job should run.

Job Group Control

Job groups are containers for jobs. As such, we can control the schedule of the whole
group of jobs at the group level. Job group control can change the status of a job group
into HOLD or release its status from HOLD.

Putting a job group on hold prevents jobs under the group from being scheduled.
There are several situations where holding a job group is useful. If you want to define
many jobs under a job group tree, while you are in the process of defining inter-job
dependencies, you do not want LSF JobScheduler to schedule any of the jobs because
you have not finished defining all the necessary dependencies. If you want to make

112

modifications to several jobs in a job group tree, you do not want the jobs to be
accidentally scheduled before you finish the changes.

By default, when a new job group is created, it is put into HOLD status. You must
explicitly release the job group by releasing it. To release a job group, select the job
group and choose File | Release. When you hold or release a job group from the GUI,
all sub-groups will also be held or released recursively.

If you want to hold a job group, select the job group and choose File | Hold.

Thetools ‘bghol d’and ‘bgr el ’ can be used to perform the equivalent operations from
the command-line. Both commands take a group name as a parameter. For example:

% bghol d /a/b/c

will hold the group /a/b/c and all subgroups.

% bghol d 7al/b/c/g**

will hold the groups beginning with ‘g’ under the group Za/b/c.
% bgrel /alblc

will release the group Za/b/c and all subgroups.

% bgrel -d /alb/c

will release the group /a/b/c but not any sub-groups.

Managing Schedules of Jobs

Sometimes you may need to examine the schedules of your jobs to make sure the
schedules are met. You may have made a mistake in defining jobs and thus the jobs
were not scheduled as expected. Or certain events had not happened for some reasons.

There can be many reasons causing the job to not run. One obvious reason might be
that you forgot to release the job group so that it is no longer in HOLD status.

LSF JobScheduler User’'s Guide 113

6 Managing Jobs and Schedules

You may have specified a resource requirement that will never be satisfied, or the
system load has been too heavy to be able to run any additional jobs. You may have
specified a duration for a time event that is too short for a host to become available to
run your job.

Fortunately, LSF JobScheduler provides you with the information you would need to
find out why your jobs did not make the schedule.

Figure 26 shows a job history window that explains what happened to your job’s
schedule.

Figure 26. Job Schedule History

¢ Job Detail

General 1 History l Dutput 1
Al

Job Id <1426, Job Name <//hourly synchronization:, User <jwang:, Conmeand <db_s
yne

Fri How 28 15:35:14: Submitted from host <klee: to Queue <priority:, CWD <3HOME
>, Dependency Condition <({file(size{/usc/jwang) »67T)) >, Tim
e Event <+:0%d>;

Fri How 28 16:03:53: Detected job exception: missched. Missed the time event st
arted at <Fri Mow 28 16:00:00%. Reason: Job dependency co
ndition not satisfied;

Fri How 28 17:03:44: Detected job exception: missched. Missed the time event st
arted at <Fri Mow 28 17:00:00%. Reason: Job dependency co
ndition not satisfied;

Sunmary of time in seconds spent in wariows states by Fri Now 28 17:17:31 1997

PEND BEUSE RUN UsUse SEUSP UNEWN TOTAL
5310 0 0 0 0 227 6137 ||
f
|~ 1=
_1 Mo Update Update | Clase |

System Status Monitoring

Frequently you will need to know what is happening in the system and relate it to your
job’s schedule, and take some actions to correct problems with your network. LSF

114

JobScheduler provides you with a complete picture of what is happening to your
system from different angles.

Event View

If your job depends on one or more events, you should check the status of the events
so that you know what has caused your job to run or not to run unexpectedly.

The status of all job or job group related events is obvious from the job or job group
details, as was discussed in ‘Viewing Details of a Job or Job Group’ on page 95.

The status of time events can be viewed by looking at the date and time parameters of
the job and by checking the status of the calendar. The status of calendars can be
viewed using xbcal GUI, as was discussed in ‘Using the LSF JobScheduler - Calendar
GUI’ on page 33. You can also view calendar status using the bcal command, as was
discussed in ‘Manipulating Calendars Using the Command Line Interface’ on page 40.

For file events, exception events, and user events, you can view their status by running
the bevent s command, as was discussed in ‘Viewing Events’ on page 29.

Host View

To know the status of each LSF JobScheduler server host, choose Tools | Hosts in the
x| sj s main window. This command displays the host window shown in Figure 27.
Right-click to customize the view. The status of hosts is displayed in the List view, and
is indicated by colour in the icon view.

LSF JobScheduler User’'s Guide 115

6 Managing Jobs and Schedules

Figure 27. Host View of LSF JobScheduler

"] [L] 5“ v
Bawin beach b kaaed brpin
] [ml* RRAN m]
Sartd kzaky Bxrth kegki by
.ﬂ'\.- ﬁ..u--u - [1
Sawtk kzats v kmakg

Figure 28. Host View in List Format

Host_Name Status JL/AU MAY NJOES RUN S5USP USUS
hosta ok - - 0 1} 1}

hosth ok - 3] 0 1} 1}

hostc unreach - 32 0 1} 1}

hostd ok 5 3z 0 1} i}

hoste ok £ 32 0 1} 1}

hastf ok 5] 0 1} i}

hostyg ol £ 32 a0 a a

hasth ok 5 3z 0 i} i}

haosti unawail 5 32 0 i} i}

host] ok 5 32 0 i} i}

=] I
Closel Help |

Double-click any host to bring up the detailed host information window shown in
Figure 29. This window shows all the configuration information of the host and its
current status—such as how many jobs are currently running on the host, and recent
load information used for controlling jobs. The “Reserved” line shows the load
reserved for jobs that reserved resources. See Section 4, ‘Resources’, beginning on page 45,
for more information on resource reservation.

116

Figure 29. Detailed Host Information

Host Information « Erigf 4 Detail
HOST: hosta g
STATUS MAX NJOES RUN SSUSP USUSP R5V
ok = 0]]] 0
CURRENT LOAD USED FOR SCHEDULING:
rl5s rlm rlbm ut P io 1ls it tmp swp mem compE
Total 0.1 0.1 0.2 40% 400 18 28 51077 200M Z81M =
Reserved 0.0 0o 0.0 0% 0.0 0 1] 1] 0x 0x X 0.
LOaD THRESHOLD USED FOR SCHEDULING:
rlfs rlm rlbm ut jil] io ls it i sWp TETL
loadSched - = = = 500 = = = 24M = =
LoadStop - - - - 200.0 - - - - - -
compFLscratch Hidle]
loadSched = = =
LoadStop - - -
|
|EX I =

You can also view host information by running the bhost s command from the
command line. For detailed host information, run bhost s with option - | .

Queue View

You may also want to know how many jobs are in each queue. To display the queue
window shown in Figure 30, choose Tools | Queues in the x| sj s main window.
Right-click to customize the view. The status of queues is displayed in the List view,
and is indicated by different symbols in the icon view. You can also see if the queue is
empty by looking at the queue box.

LSF JobScheduler User’'s Guide 117

6 Managing Jobs and Schedules

Figure 30. Queue Window

- N | r o

idle license night normal
L »[HE L
OWIEL S priority short

s

Double-click a queue to display detailed configuration information for the queue and

statistics about jobs currently in the queue, as shown in Figure 31.

Figure 31. Detailed Queue Information Window

Queue Information

+ Brief 4 Detail

QUEUE: license
-- For licensed package. Scheduled to run with moderate pricrity. This gqueus uses falx

PARMMETERS /STATISTICS
ERID NICE STATUS Max JL/U JL/P JL/H NIOES PEND RUN S5USP USUSP RSV

33 10 Open: Aotive - - - -

Interval for a host to accept two jobs is 0 seconds

STACELIMIT HMEMLIMIT
2048 K 5000 K

You can also view queue information using command line interface via the bqueues

command. For detailed queue information, run bqueues with the - | option.

118

Load View

You may also want to check the load situation to get an understanding of the real-time
load situation on each host. The xI snon GUI gives you the overall load information.
Figure 32 shows the main window of the x| snon GUI which shows an icon for each
host in the cluster. Each host is labelled with its status. Hosts change colour as their
status changes.

Figure 32. xlsmon GUI Main Window

o CusterMomitor [

File ¥iew Options Help
Y
&ok gbusy gok glockw gok
haosta hosth hoste haostd hoste
@ok ‘@ok ,@Ok @unavajl &busy
hostt hostg hosth hosti hostj
&ok &unavaﬂ gbusy &ok
hostk hostm hosto hostq
Fi
] I~
Dec 2 1&:57:20: <hostc> status changed from <unavail= to <ok =
Dec 2 16:57:20: <host= status changed fram <unavail> to <bu
Dec & 16:57:22: <hostk> status changed from <unavail= to0 <ok
Dec 2 16:57:22: <hostg> status changed from <unavail= to <o
Dec & 1&:57:22: <hosth= status changed from <unavail= to <ok
Dec 218:57:22: <hosto= status changed from <unavail= to <bi J
7
|B] (=

You can choose other displays by selecting them from the View menu.

LSF JobScheduler User’'s Guide 119

6 Managing Jobs and Schedules

To view the detailed load on each machine, choose View | Detailed Load. This brings
up a bar chart window as shown in Figure 33, giving load indices for each host.

Figure 33. Detailed Host Load Window
= DetadledHostload 0[]

File Views Options Help

15-sec CPU queue length

hosta
hosth
hostc
hostf
hosth
hostj
hostk
hosto

223
248

Availahle swap space

hosta
hostb
hostc
hostf
hosth

hostj 208M

36214

=

I~ 1

You can select which load indices and which hosts to display by choosing options from
the View menu.

The same information can be displayed in text format by running the | sl oad
command, or continuously monitored and displayed by running | snon command.

120

6

You can customize the view of the detailed load window by selecting options from the
View menu.

x| snon also allows you to view host load history over time, as shown in Figure 34. As
with the detailed host load window, you can select which hosts and which load indices
to display by choosing options from the View menu.

Figure 34. Load History Window

R)

== B E=.
LFEE SEREN = S

B L G
ﬂn = =T

r=e=m — "

Sometimes you may want to know your cluster configuration information, e.g.,
number of CPUs available on a machine. x| snon provides a configuration view that
gives you this information, as shown in Figure 35. This window can be accessed by

choosing View | Cluster Configuration. This same information can be displayed
using the | shost s command.

LSF JobScheduler User’'s Guide 121

6 Managing Jobs and Schedules

Figure 35. Configuration Information Window

Fin Vaw Cpbem el
[
HOST HAME - maadal oput memmem | mump | wover | B
barin BUEEL Gurfgws | 130 rbaH 184 e
Rtk HFALD EFR | o e e Y '
hogir ALPTA ecam | sn T M ea :
1], HF'AP |t} 140 E= 1] 13T e
Baste HFR S EFFIS | W40 M 1260 Yeu B
Regt NEC EWs | #0 M 125 Yt I
Badyp =G SFIRDIEDE 120 M o i E
Py ELIH41 SPARCELE | 50 L5H 15 Yeu I
Begi SUNECL Bufewe | 120 . . Yei il
B] =

122

/. Exception Handling and
Alarms

When managing critical jobs it is important to ensure that the jobs run properly. When
problems arise with the scheduling and execution of a job, it is necessary that some
actions be taken to fix the problem. An alarm specifies how a notification should be
sent in the event of such a problem.

LSF JobScheduler provides flexible ways to handle failures and exceptions so that you
can define what to do when certain exceptions happens. Failures of job processing are
defined in terms of exceptions and handling of these failures are defined in terms of
exception handlers. An alarm is triggered as a result of the exception handler

alarn().

Exceptions

LSF JobScheduler monitors exceptions as defined by exception functions. Each
exception function has a name and possibly parameters that allow users to further
customize exceptions on a per job basis.

The exception functions are used when creating a job to tell LSF JobScheduler what
exceptions to watch for for this particular job. You need to understand the behaviour
of your application properly to determine what is considered an exception for your job.
The following are the exception functions supported by LSF JobScheduler:

m ssched()
The job has a time event associated with it, and the job was not able to start
while the time event was in active status. This function has no parameter
associated with it.

LSF JobScheduler User’s Guide 123

7

Exception Handling and Alarms

There can be many different reasons why your job can miss its schedule. For
example, you may have specified a resource requirement for your job that was
not satisfied while the time event was active. Or the duration of the time event
is too short to find a host that can process the job. It is also possible that you
have specified other dependency conditions for the job that were not satisfied
while the time event was active.

To minimize such exceptions, you should carefully examine your schedule
and conditions, and make sure that in most cases the conditions will be met
when the time event is active.

abend(ecl, ec2, ...)

The job has exited with one of the given exit codes. The list of parameters is a
list of exit codes in the range of -128 to 127. Each parameter can be either one
exit code, or a range of codes in the form of c1-c2.

Most applications, when finishing successfully, should exit with exit code 0.
However, some applications are not programmed to handle exit codes
properly. For example, some applications exit with a non-zero value even if it
finishes successfully. You should carefully check your application and
determine the behaviour of your job, and define your own job-specific
abnormal termination accordingly. Sometimes you may have to wrap your
application with a script to make its exit code reflect success or failure.

overrun(max_ti ne)

The job has run for too long. The parameter specifies the maximum allowed

run time in minutes. This function can be used to detect a situation where a job
runs away, or when a job hangs. For example, if your job should finish in less
than 10 minutes, then if the job has run for 2 hours, something must be wrong.

underrun(mn_tine)

The job has finished too soon. The parameter specifies the minimum required
run time in minutes. This function is used to detect situations where a job
finishes prematurely.

startfail ()

124

A problem in starting the job has occurred and thus the job was unable to start.
This function has no parameter.

Typical reasons for this exception include lack of system resources, e.g.
process table full on the execution host, or file system not mounted properly
thus the execution host cannot set up the execution environment for the job.

hostfail ()
The host on which a job was started went down. This function has no
parameter.

cantrun()
System detects that it is impossible to run the job because various
dependencies cannot be satisfied. This exception also happens if
startfail () exception occurs 20 times in a row.

A typical example of a job that triggers cant r un() exception is a job that
depends on an job event, but that job has been deleted from the system so that
the job event never happens.

Exception Handlers

For each exception condition of a job, a corrective action can be associated with the job
which is automatically invoked when the specified exception happens. Such an action
is called an exception handler in LSF JobScheduler. The handler can try to resolve the
problem automatically or inform the user/administrator that the problem was
detected. The currently available handlers are:

rerun()
Rerun the job. In many situations, re-running the job will fix the problem. This
handler is only relevant for exception conditions under r un() and abend() .
It is possible that the job will be re-run on a different host depending on the
dynamic resource availability and the job’s resource requirement.

al arn{severity, alarm nane)
Raise an alarm with the given severity. The alarm name identifies which alarm
should be triggered. The valid alarm names are configured by your LSF
administrator and can be viewed by bal ar nrs command. See ‘Alarms’ on
page 130 for details of alarms.

Kill()

- This action causes the current execution of the job to be terminated. This
action can only be specified for the over run() exception.

LSF JobScheduler User’'s Guide 125

7] Exception Handling and Alarms

set except (event _nane)
Set the exception event identified by event _nane to active. The parameter
event _nane is the name of an event that is created by another job as an
exception event dependency condition. See ‘Job Exception Event Dependency’ on
page 89 for details.

This handler is an interface for external exception handlers. All other exception
handlers are built-in handlers. By defining jobs that respond to the job

exception event, arbitrary actions can be invoked to handle the exception. This
is useful when none of the built-in handlers can handle your particular error.

Using Exception Handlers

With the exception handling mechanism provided in LSF JobScheduler, you can tune
your schedules so that all failures are taken care of automatically, and minimum
human intervention is necessary. This section goes through some typical steps of
implementing error handling measures for your schedules.

Handling Failures with Built-in Exception Handlers

When you create a job, you can specify what exceptions you want LSF JobScheduler to
watch for, and how you want to handle the exceptions when they happen. Click on the
“Exception Handler” button in the job submission window, as shown in Figure 11 on
page 64, to display the exception handler window, as shown in Figure 36.

You can specify any number of exceptions, each with a handler.

In the example in Figure 36, three exceptions for the job have been defined, each with a
different built-in exception handler. The first exception isover r un(120) which tells
LSF JobScheduler that this job is not to run for more than 120 minutes. If this happens,
the job should be killed, as indicated by the handler ki I | () . The second exception is
under run(1) which tells LSF JobScheduler that this job should not run for less than
1 minute. If this happens, the job should be re-run, as specified by the handler
rerun() . The last exception iscant r un() , which tells LSF JobScheduler to raise the
alarm named “FAIL” with severity 5 if the job is impossible to schedule.

126

For details on raising an alarm handler, see ‘Alarms’ on page 130.

Figure 36. Exception Handler Definition Window

2 Exception Handler

Exceptions and Actions:

1 owerrun(120) : :kill
2 underrunil) ::rerun

3 cantruni) ::alacm (b, FAIL)

If the job cannot he scheduled =t |

hen _ rerun the job

4 ftrigger alarm I.?.FML with severity |I5

- et an exception event

| Heplace' Add Hemwe'

Ok | Cancell

Handling Failures with Recovery Jobs

If none of the built-in handlers serve your purpose, you can set up your job so that
external exception handlers or recovery jobs can be automatically invoked to correct
the error. In order to achieve this, an exception event must be defined together with the
recovery job. Multiple error recovery jobs can be defined to respond to the same job
exception event.

First, you define the main job using the job submission window and define

“set except () ” to be the exception handler, as shown in Figure 37. By defining the
exception handler as set except (), the job exception event “t oo_| at e” is set to
active status as soon as the exception “m ssched() ” is detected for the current job.

LSF JobScheduler User’'s Guide 127

7] Exception Handling and Alarms

The status change of event “t oo_| at e” can then trigger all recovery jobs that depend
on the “t oo_| at e” job exception event.

Figure 37. Setting an Exception Event to Trigger Recovery Jobs

¥ Exception Handler

Exceptions and Actions:

1 missched()::setexceptitoo_late)

Ifthe jok misses schedule = I

e ~ rerun the joh

~ trigger alarm

4 set an exception event I'E'tm‘late
sepiaos | add | e |

oK | Cancell

To define an error recovery job that responds to the job exception event, click on the
“Conditions” button in the job submission window as shown in Figure 11 on page 64,
and then click on the “Exception” tab. This brings up the exception condition window
as shown in Figure 38. Enter the name of the job exception event in the window to make
this job respond to the event.

As soon as you define a job that depends on the named exception event, the event is
created inside LSF JobScheduler which then starts to monitor the status of the event.
Whenever the exception happens, the event will be set to ACTIVE as a result of the
set except () handler of the main job, thus triggering the recovery job to run.

Note that you can define more than one recovery job to respond to the same exception.

On the other hand, you can also have one recovery job to be the handler for many main
jobs, as long as they all trigger the same exception event.

128

Itis possible to set your job such that some exceptions are handled by built-in exception
handlers while others handled by recovery jobs. As shown in Figure 36, you can have
a different exception handler for each exception condition.

Figure 38. Setting a Job to Respond to an Exception Event

2 Conditions

Job Dependency l Event l Exception l

This job is considered for dispatch if the exception event: I too_latd

is setin another job.

OE | Cancell

Setting Exception Handlers Using Command Line Interface

Although you can use the graphical tools for all exception handling, LSF JobScheduler
also allows you to define exception handling from the command line using the bsub
command.

To specify an exception handler for a job, use the “- X" option of the bsub command.
The format of the -X option is:

exception_cond([parans])::action
where except i on_cond is one of the exception functions discussed in ‘Exceptions’ on
page 123, par ans are possible parameters associated with the exception function, and

“act i on” is one of the exception handlers discussed in ‘Exception Handlers’ on
page 125.

LSF JobScheduler User’s Guide 129

7] Exception Handling and Alarms

The following example sets an exception handler for ajob which will result in an alarm
being triggered if the job exits with an exit code of 10:

%bsub -X “abend(10)::alarm(5, pageadmin)” [other options] myjob
Multiple handlers can be specified by repeating the -X option:

% bsub -X “abend(10)::alarm(5, pageadmin)” -X /
“abend(1)::rerun” [other options] myjob

To define a job that responds to a job exception event, use the - woption of the bsub
command. The following example defines two jobs. The first job is the main job and the
second job isarecovery job that is triggered when the first job has failed to finish within
60 minutes after starting.

%bsub -X “overrun(60)::setexcept(too_long)” [other options] realJob
%bsub -w “exception(too_long)” [other options] recoveryJob

Alarms

An alarm specifies how a notification should be sent in the event of an exception. An
alarm is triggered as a result of the exception handler al ar n() . If you want to trigger
an alarm as a result of a job failure, you must specify an alarm name and a severity
number using the al ar m() exception handler.

How Are Alarms Generated

When the al ar n() handler is called, LSF JobScheduler invokes a site-installable
executable that must be named r ai seal ar m This executable is a reporter which
raises the specified alarm. LSF JobScheduler invokes ther ai seal ar mexecutable with
four arguments: alarm name, severity, source, and context. The source argument is the

130

name of the job that has triggered the alarm. The context tells the detail of the alarm,
for example,

overrun Job[1529] User[user1l] Queue[nornal]

LSF JobScheduler comes with a default r ai seal ar mexecutable that will do a few
things when an alarm is triggered. It first logs a record for the alarm incident in a log
file. It then initiates a notification method defined in the alarm configuration. LSF
JobScheduler also re-sends the natification if an open alarm has not been
acknowledged within a given time.

The r ai seal ar mexecutable bundled with LSF JobScheduler can be configured to
send a notification via email, or invoke a site-replaceable notification executable.

If your site is using the r ai seal ar mexecutable bundled with LSF JobScheduler, your
LSF administrator can define alarms through a configuration file. To see what alarms
are currently configured by your LSF administrator, run the bal ar ns command with
the def option. For example:

% bal arns def
ALARM pageadm n
-- Page the admi ni strator

NOTI FI CATI O\
METHCD: CMOJ /usr/ |l ocal /bin/ pageadm n]
RETRI ES: Every 30 minutes. Maxinumof 10 retries

EXPI RATI ON:
Incident autonatically expires after 6000 m nutes

ALARM Mai | Admi n
-- Informadm n of mnor problens

NOT1 FI CATI ON:

METHCOD: EMAI L[admi n]
RETRI ES: Every 30mi nutes. Maximumb5 retries

LSF JobScheduler User’'s Guide 131

7 Exception Handling and Alarms

EXPI RATI ON:
I nci dent autonatically expires after 3000 ninutes

Each alarm has a name and a notification method defined. LSF JobScheduler supports
notification through email or using a configured command which can be used to send
a notification via a pager, consoles, etc. The administrator can configure an alarm to
periodically resend the notification if the alarm is not acknowledged. You can also
view alarm configuration from the xbal ar ns GUI.

Manipulating Alarms

Each time an alarm is triggered, a new alarm record is added to a log file. The alarm
record contains the name of the alarm, when it was triggered, the job that has triggered
the alarm, and some additional details.

You can view and manipulate alarms by using the bal ar ns command or the
xbal ar ns GUI. Figure 39 shows a sample listing of outstanding alarm incidents using

the xbal ar ns8 GUI.

Figure 39. Alarm Monitoring Window

B Ain dee Dwin g
S D Sdarrn Fdarma Llar Slslun Siarra T Ecarca
! ke Userl pesdlvsl Wion D | IRIZEE Jobiiesikagi]
H DA Ere LarZ rasabad Vo Dae 1 11315 Jab Dy
] R IBH3 peadbesl bOn Dea 1 1ECIA3R i e |
L o]y T Ly razabad Woni Dac | 1E153% Jobf-imariin]
B Fiebeailoam LG kW e | TECTRET bl ey
E Vros M, [cpn Kan D 116188 Jabh gt Inife]
¥ Fre [0 ik Won Dea 1 1ECIAE bl g o |
B r [cpan Kan D 1161592 Jesbiwy Jabhd]
B R [[SR Jobirwy kv]
10 Fira L k. Won Dac | 1E2] 06 Jobjrira)
| i1 DEFud UbuE open Hon Deo 1 IGS6 b e 1
Lpclaineg dora Updetad 162158

The possible states of an alarm are;

open
The alarm is triggered, but has not been acknowledged.

132

ack
The alarm is acknowledged by some user, which should indicate that the user
has processed the alarm situation.

resolved

The alarm situation has been resolved. This means that this alarm has been
handled and no longer needs attention.

You can view the details of each alarm by double-clicking on the selected alarm. This
will bring up a popup window with alarm details, which allows you to see alarm
configuration, alarm status, and alarm history. Figure 40 is an example of the alarm
history window of the x| sbal ar ns GUI.

To acknowledge or resolve an alarm, select the alarm and choose the appropriate
action from the “Action” menu. This will bring up a window prompting you for a
resolving or acknowledging message. The message you enter will be logged so that
other people will be able to see your solutions in the alarm detail window.

Figure 40. Alarm History Window
e -

General | History | Definition |

HAME USER ID STATUS ALARM_TIME SOURCE £
Fire Userd 3 resolved Dec 1 16:14 Job[verilog]

Fire UserS 7 ack Dec 1 16:19 Job[myJoki]

Fire UserS & open Dec 11619 Job[myJob2]

Fire UserS 9 open Dec 11620 Job[myJokb3]

Fire User2 10 ack Dec 1 16:21 Job[simu]

¥

| P

The above alarm system interface is valid if your site is using the bundled
r ai seal ar mexecutable of LSF JobScheduler. Your site may choose to handle alarms
generated by JobScheduler jobs through another alarm management module which

LSF JobScheduler User’'s Guide 133

7 Exception Handling and Alarms

may interpret the severity field differently. In that case, you should refer to local
documentation for alarm management.

134

Index

A
address (Platform) xi
alarmreporter.................... 130
Alarms 130
aliases for resource names. 52
B
batch jobs
resource reservation............ 55
bcadd 12
bcadd................ 12
bcal 14, 83
bdel 16, 107
bgadd 77
bkill ..o o 110
brodify 105
boolean resources.................. 51
bparams................ 70
bparans 70
bresume, 111
bstop........... ... 111
bsub............. ... 15, 63
built-inevent...................... 21
built-in exception handler.......... 126
C
calendars 5
adding........................ 12
associatingjobs 15
displaying..................... 14
removingjobs 16

LSF JobScheduler User’s Guide

contacting Platform Computing. xi
CPUfactor 50
cpuf staticresource 50
currentjobgroup.................. 78
D
defaultqueue..................... 69
default resource requirement 71
dependency keyword
done............... 85
ended 85
exit .. 85
fileo i 86
documentation..................... X
E
effective run queue length.......... 49
ELIM (External Load Information
Manager) 47
environment variable
LSB_DEFAULTQUEUE 70
BVENTS ..ot 4
built-inevent. 21
externalevent................. 27
fileevent 27
priorjobevent 23
status 22
userevent 28
exception. 123
exception function................ 123
exceptionhandler 125
execution priority 50
externalevent..................... 27
135

Index

external exception handler 126, 127
external load index................. 47
F
fax numbers (Platform) xi
fileevent.......................... 27
file event function
A0C .. 28
arrival 27, 88
exist 27, 88
Size i 28, 88
filetransfer........................ 73
G
guides.o i X
H
help......... o X, Xi
hnane static resources.............. 50
hostgroup........................ 68
host preference 69

host selection, see resource requirements
host status

lOoCKW. ... 49
hosttypes...............ovin... 50
|
inputandoutput 65
J
job control messages 109
jobcontrolsignals................. 109
jobgroup 75,76

136

jobgrouppath................. 60, 75
job spanning, see resource requirements
job state
PSUSPccooiuin 63
SSUSP ... 63
USUSP ...t 63
JobStatus 60
jobs. .. 4
associating with calendars 15
attributes
joblD........ ... L 60
jobName 60
execution history 99
inputandoutput 65
inter-job dependencies 83
modification 104
numeric job names............. 86
pre-execution commands 72
removing from calendars . .. 16, 107
submitting.................... 63
suspending and resuming 111
L
load index
rasm.........oooiiiii. 49
FrA5sS. .. 49
FAM. 49
SV et 49
tMp . 49
load indices
built-in....................... 47
external 47
| ockWhoststatus 49
LSF Enterprise Edition.............. X
LSF Standard Edition X
LSF Suite documentation............ X
LSF Suite products iX
Isf.taskfile.................... 57
Isftask............ooiiiiii 57

Isinfo i, 47
| sl oad
-Eoption 49
-Noption 49
Isrtasksco il 57
M
mailing address (Platform).......... xi
maxnemstatic resource 50
maxswp static resource 50
maxt np static resource 50
messages, job control 109
nodel staticresource............... 50
N
ncpus static resource. 50
ndi sks staticresource 50
normalized run queue length. 49
o
online documentation Xi

order string, see resource requirements

P
parallel jobs

locality. 55
phone numbers (Platform) xi
Platform Computing Corporation. ... Xi
pre-executioncommand 72
pre-execution commands 72
priorjobevent..................... 23
PSUSPjobstate.................... 63

LSF JobScheduler User’'s Guide

QUEUES. . ottt 5
choosing...................... 70
R
ri5mloadindex 49
ris5sloadindex 49
rimloadindex.................... 49
raisealarm....................... 130
remote jobs
execution priority.............. 50
remote task list, see task lists
resource name aliases.............. 52
resource requirement 71
resource requirements
format........................ 51
orderinghosts.............. 52, 54
parallel job locality............. 55
resource reservation 55
resource usage 52,55
selectinghosts. 52
resource usage, see resource
requirements
resources
boolean 51
static.......... 50
rexpri staticresource............. 50
run queue
effective...................... 49
normalized 49

rusage, see resource requirements
S

selection string, see resource
requirements
server staticresource............. 50

137

Index

signals, jobcontrol 109
SSUSPjobstate.................... 63
static resource
hname 50
staticresources 49,50
cpuf ... 50
MBXIMBM. ..o 50
MBXSWD « v ee et e e 50
MeXtmp ..o 50
model 50
o o 11 - 50
Ndisks..................o.t. 50
L= <q o 50
SEIrVer ..o 50
type ..o 50
SUPPOIt. ..o xi
swploadindex 49
T
tasklists.......................... 57
files 57
remote.............. ... 57
technical assistance................. xi
telephone numbers (Platform) xi
tnploadindex 49
t ype staticresource................ 50
U
userevent............... ... 28
USUSPjobstate.................... 63
w
workinggroup 79

138

	Preface
	Audience
	LSF Suite 3.2
	Related Documents
	Technical Assistance

	1. Introduction
	What is LSF JobScheduler?
	Structure of LSF JobScheduler
	LSF Cluster
	Jobs
	Job Groups
	Events
	Calendars
	Exceptions and Alarms
	Queues
	Inter-job Dependency
	Command Set and GUI Tools
	Job History

	2. Getting Started
	Getting to Know Your Cluster
	Displaying the Job Queues
	Displaying Host Load and Resource Information
	Displaying LSF JobScheduler Server Information

	Submitting a Job
	Creating a Calendar
	Creating a Calendar from the Command Line
	Creating a Calendar Using the LSF JobScheduler - C...

	Displaying Calendars
	Displaying Calendars from the Command Line
	Displaying Calendars Using the LSF JobScheduler - ...

	Associating Jobs with Calendars
	Associating Jobs with Calendars from the Command L...
	Associating Jobs with Calendars Using the LSF JobS...

	Deleting Jobs
	Associating Jobs with Other Jobs
	Associating Jobs with File Events
	Tracking Jobs
	Using LSF JobScheduler GUI Tools

	3. Events and Calendars
	How Are Events Created?
	Event Status
	Built-in Events
	Time Events
	Job Events
	Job Group Events
	Job Exception Events

	External Events
	File Events
	User Events

	Viewing Events
	Examples

	Calendars and Time Events
	What is a Calendar?
	Built-in Calendars and Reserved Names for Calendar...
	System Calendars
	Using the LSF JobScheduler - Calendar GUI
	Creating Calendars

	Calendar Expressions and the Command Line Interfac...
	Simple Calendar Expressions
	Command Line Interface for Defining Calendars
	Complex Calendars

	Manipulating Calendars Using the Command Line Inte...
	Time Events
	Time Expressions and the Command Line Interface

	4. Resources
	Introduction to Resources
	Classification by Availability
	Classification by the Way Values Change
	Classification by Types of Values
	Classification by Definition
	Classification by Location
	Load Indices
	Static Resources
	Shared Resources

	Resource Requirement Strings
	Selection String
	Order String
	Resource Usage String
	Job Resource Requirement Specification Examples
	Example 1
	Example 2
	Example 3

	Configuring Resource Requirements
	Remote Task List File
	Managing Your Task List

	5. Defining Jobs
	Types of Jobs
	Job Attributes
	Job Status
	Creating a Simple Job
	Input and Output
	Host Selection
	Host Groups
	Host Preference

	Queue Selection
	Specifying the Default Queue
	Choosing a Queue

	Resource Requirements
	Pre-execution Commands
	File Transfer
	Grouping Jobs
	Job Group Status
	Creating a Job Group
	Submitting a Job under a Job Group

	Specifying Dependency Conditions
	Time Event Dependency
	Time Specification

	Inter-job Dependencies
	File Event Dependency
	Job Exception Event Dependency
	User Event Dependency
	Combining Dependency Conditions
	Synchronizing Dependent Jobs

	Other Job Parameters
	Number of Processors for Parallel Jobs
	Start Time and Termination time
	Exclusive Job
	Ad-hoc Jobs
	Exception Handlers

	6. Managing Jobs and Schedules
	Viewing Details of a Job or Job Group
	Viewing Job History
	Peeking at Job Output
	Modifying a Job
	Modifying a Job Group
	Deleting a Job or Job Group
	Deleting Jobs
	Deleting Job Groups
	Delayed Deletion of a Job

	Job Controls
	Terminating a Job
	Terminating a Group of Jobs
	Sending Arbitrary Signals to Jobs
	Suspending and Resuming Jobs
	Forcing a Job to Run

	Job Group Control
	Managing Schedules of Jobs
	System Status Monitoring
	Event View
	Host View
	Queue View
	Load View

	7. Exception Handling and Alarms
	Exceptions
	Exception Handlers
	Using Exception Handlers
	Handling Failures with Built-in Exception Handlers...
	Handling Failures with Recovery Jobs
	Setting Exception Handlers Using Command Line Inte...

	Alarms
	How Are Alarms Generated
	Manipulating Alarms

	Index

