Outline

• What is NERSC?
• Who runs at NERSC?
• Can you use/do you need High Performance Computing and Data Services?
What is NERSC?
NERSC is the High Performance Production Computing Center for the DOE Office of Science

NERSC’s focus is on enabling scientific productivity
- 1,500 refereed publications per year
- ~10 major journal covers per year
- Key contributor to 2 Nobel Prizes (2007 & 2011)
- Data services contributed to 2 of Science Magazine’s Top 10 breakthroughs of 2012

Large and varied user community
- 5,500 users, 600 projects
- From 48 states; 65% from universities
- Hundreds of users each day

Science-driven systems and services
- World-class computers, storage systems, & networks based on needs of scientific applications
- Services designed to optimize science
Current NERSC Systems

World-Class Supercomputers

Hopper: Cray XE6
- 6,384 compute nodes, 153,216 cores
- 144 Tflop/s on applications; 1.3 Pflop/s peak

Edison: Cray XC30 (Cascade)
- Phase I (10K processors), Phase II in 2013 (~120K)
- Over 200 Tflop/s on applications, 2 Pflop/s peak

Midrange
140 Tflops total

Carver
- IBM iDataplex cluster
- 9884 cores; 106TF

PDSF (HEP/NP)
- ~2K core cluster

GenePool (JGI Genomics)
- ~5K core cluster
- 2.1 PB Isilon File System

NERSC Global Filesystem (NGF)
- Uses IBM’s GPFS
 - 8.5 PB capacity
 - 15 GB/s of bandwidth

HPSS Archival Storage
- 240 PB capacity
- 5 Tape libraries
- 200 TB disk cache

Analytics & Testbeds

Dirac 48 Fermi GPU nodes
NERSC PDSF

- Funded and used by High Energy Physics, Nuclear Physics
- Networked distributed commodity Linux cluster in continuous operations since 1996
- Detector simulation & data analysis
- Data intensive, high throughput workflows
- Grid Support
 - OSG, WLCG stacks
 - Compute and storage elements for OSG, ALICE
 - Storage elements for ATLAS

PDSF Quick Facts
- 2300 cores
- 1 PB globally accessible disk
- Interconnect 1GigE, 10 GigE, IB
- SGE batch system
PDSF Usage

• PDSF is an essential resource for a number of groups such as STAR (Tier 1), KamLAND, ATLAS (Tier 3), ALICE (Tier 2), DayaBay (Tier 1), IceCube, CUORE, etc.

• Groups such as SNO, SNFactory, CDF, BaBar, LUMI, Planck have used PDSF in the past.
NERSC Ecosystem

Hopper: 1.3PF, 212 TB RAM
Cray XE6, 150,000 Cores

Edison: >2PF, 333 TB RAM
Cray XC30

Production Clusters
Carver, PDSF, JGI, KBASE, HEP, BES
14x QDR, 2GB/s, 15 TB

Ethernet & IB Fabric
Science Friendly Security
Production Monitoring
Power Efficiency
WAN

1.1 PB
5 x DDN9900

3.8 PB
4 x DDN9900
NexSAN

250 TB
2 x NetApp 5460

40 PB stored, 240
PB capacity, 30
years of community data

Global Scratch

/project

/home

HPSS

2 x 10 Gb

1 x 100 Gb

Software Defined Networking

Vis & Analytics
Data Transfer Nodes
Adv. Arch. Testbeds
Science Gateways

U.S. DEPARTMENT OF
Office of Energy Science
Nevada National Laboratory

NERSC
Computing & Storage History and Trends
Computational Hours

NERSC and HEP Computational Hours

- HEP Trend
- Round 1 Review: HEP
- Round 1 Review: Total
- Round 2 Review: HEP
- NERSC Trend
- HEP Usage
- All NERSC

- 181 M used
- 2.4 B need
- 15.7 B need
- 34 B need
- 86 B trend
- 2.08 X / year
- 1.96 X / year
- 9 B trend

Year

NERSC MPP Hours

Millions

High Energy Physics (HEP) and All NERSC Archival Storage

- HEP Usage
- All NERSC
- All NERSC Trend
- HEP Trend
- Round 1 Need
- All Round 1 Need

Year

Data Stored (TB)
10,000 100,000 1,000,000

- 23 PB Used
- 4 PB Used
- 7.5 PB need
- 79 PB need
- 168 PB trend
- 24 PB trend
NERSC is Planning for Future Growth

New Berkeley Lab Facility

Collaborative space for 300

Unique energy-efficient design

Space and power for staff and 2 exascale systems
Extreme Data Strategy

- Partner with DOE experimental facilities to identify requirements and create early success
 - NERSC pilot projects have shown great success with automated data pipelining, indexing, searching, archiving, sharing, and distributing end users via the web
- Develop and deploy new data resources and capabilities
 - Accelerate NERSC’s traditional storage growth rate to meet rapidly increasing requirements for capacity and bandwidth.
 - We are proposing to enhance the data processing capabilities of Edison in 2014 by adding large memory visualization/analysis nodes, adding a flash-based burst buffer or node local storage, and deploying a throughput partition for fast turnaround of jobs.
- Provide the expertise required to run data-intensive workloads
 - Develop sophisticated web-based gateways to interact with and leverage data
 - Support database-driven workflows and storage
 - Use scalable structured and unstructured object stores
 - Provide search and analysis software for massive data
 - Provide comprehensive scientific data curation
- Partner with ESnet for advanced networking capabilities
Who runs at NERSC?
Discovery of \(\theta_{13} \) weak mixing angle

- The last and most elusive piece of a longstanding puzzle: How can neutrinos appear to vanish as they travel?
- The answer – a new, large type of neutrino oscillation
 - Affords new understanding of fundamental physics
 - May help solve the riddle of matter-antimatter asymmetry in the universe.

Experiment Could Not Have Been Done Without NERSC and ESNet

- PDSF for simulation and analysis
- HPSS for archiving and ingesting data
- ESNet for data transfer into NERSC
- NERSC Global File System & Science Gateways for distributing results
- NERSC is the only US site where all raw, simulated, and derived data are analyzed and archived
Accelerating Expansion of the Universe Subject of 2011 Prize

Type Ia supernovae are used as “standard candles” to measure the distance to remote galaxies.

Simulations run at NERSC modeled how Type Ia supernovae should appear from Earth.

This provided the crucial calibration needed to enable the Nobel Prize-winning discovery.

Berkeley Lab’s Saul Perlmutter was awarded the 2011 Nobel Prize in Physics along with two others for their discovery.

It implies the existence of so-called dark energy, a mysterious force that acts to oppose gravity.

The nature of dark energy is unknown and has been termed the most important problem facing 21st century physics.

When NERSC moved to Berkeley 1996, this project’s work was one of the first funded in a new computational science program created to encourage collaborations between physical and computer scientists.
NERSC Supports DOE Open Science

- Scientists from all Office of Science offices rely on NERSC
- Universities (54%), DOE Labs (39%)
- U.S. and International
- Individuals, teams of all sizes
NERSC Supports Jobs of all Kinds and Sizes

High Throughput: Statistics, Systematics, Analysis, UQ

Larger Physical Systems, Higher Fidelity

<table>
<thead>
<tr>
<th>Core-Hours Used (Millions)</th>
<th>Number of Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-31</td>
<td>675,233</td>
</tr>
<tr>
<td>32-63</td>
<td>30,991</td>
</tr>
<tr>
<td>64-511</td>
<td>123,776</td>
</tr>
<tr>
<td>512-1K</td>
<td>15,672</td>
</tr>
<tr>
<td>1K-4K</td>
<td>14,618</td>
</tr>
<tr>
<td>4K-8K</td>
<td>1,604</td>
</tr>
<tr>
<td>8K-16K</td>
<td>826</td>
</tr>
<tr>
<td>16K-32K</td>
<td>667</td>
</tr>
<tr>
<td>32K-64K</td>
<td>202</td>
</tr>
<tr>
<td>65-128K</td>
<td>56</td>
</tr>
<tr>
<td>128K+</td>
<td>15</td>
</tr>
</tbody>
</table>

- 21 -
Global shared filesystems (aka NGF)
- Connected to all NERSC computational systems
- Large, fast, permanent data storage
- Intended for data sharing within and among projects
- Many PBs
- Default quotas ~ 5-10 TB, but often increased

Hopper and Edison have dedicated “local” scratch systems
- 2 PB & 6.4 PB, respectively

Archival storage system
- HPSS tape-backed storage
- Permanent, many 10s of PB
- No quotas per se, current 240 PB capacity

Grid enabled for fast and easy transfers

Dedicated data transfer nodes
HPSS resources

• **User Archive System**
 - As of Feb 2012, contains 24 PB of scientific data:
 - Dating back to 1979
 - Largest file is 38 TB
 - 240 TB disk cache
 - More 5TB enterprise tape drives to improve ingest and read capability

• **Backup System**
 - Contains 14 PB of various backup data
 - ~50% is NGF/GPFS file system backups
 - 60 TB disk cache
 - 4TB enterprise tape drives to handle increase in backup/restore demand
 - Perform a user requested restore operation every other week (single file to several TBs)
Do you need High Performance Computing (and Data)?
Some Advantages

• Access to large, high performing computing and data systems
• Access to consulting, well-maintained and secure software environment
• Ability to complete simulations and/or analysis thousands up to 100s of thousands times faster than with a single processor
• Ability to run bigger simulations
• Ability to easily share data and codes
• Easy to use account management tools
• Access to huge, permanent archival data storage
• Ability to build web-based science gateways
Why You Need Parallel Computing: The End of Moore’s Law?

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra
Power Density Limits Serial Performance

- Concurrent systems are more power efficient
 - Dynamic power is proportional to V^2fC
 - Increasing frequency (f) also increases supply voltage (V) → cubic effect
 - Increasing cores increases capacitance (C) but only linearly
 - Save power by lowering clock speed

- High performance serial processors waste power
 - Speculation, dynamic dependence checking, etc. burn power
 - Implicit parallelism discovery

- More transistors, but not faster serial processors
Revolution in Processors

- Chip density is continuing increase ~2x every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Power is under control, no longer growing
Moore’s Law Reinterpreted

• Number of cores per chip will increase
• Clock speed will not increase (possibly decrease)
• Need to deal with systems with millions of concurrent threads
• Need to deal with inter-chip parallelism (OpenMP threads) as well as intra-chip parallelism (MPI)
• Any performance gains are going to be the result of increased parallelism, not faster processors
Serial Processing = Left Behind

Microprocessor Performance

Expectation Gap

Year of Introduction

10 100 1,000 10,000 100,000 1,000,000
Can Accelerators The Answer?

• **GPUs show promise for some applications**
 – Many small, energy-efficient cores (GPUs)
 – Accelerators are theoretically very fast
 – Much better theoretical Flop/Watt

• **Challenges are considerable**
 – GPU have private memory space
 – Attached to motherboard via PCI interface currently
 – Need one fat core (at least) for running the OS
 – Data movement from main memory to GPU memory kills performance
 – Programmability is very poor
 – Most codes will require extensive overhauls
My Personal Opinion

• “Many core” is here to stay
• You will have to find fine-grained parallelism in your code or you will be left behind
• OpenMP or a similar threading model is the most likely viable long-term (5-10 years) programming model
• GPU accelerators have a lot of momentum in the short term and can be useful for certain applications
• Simulation and data analysis will become even more intertwined and will need to share close data spaces
NERSC Is the Place for Integration of Data, Large Simulation, & High Throughput Computing

Big Data
From Experiments and Simulation
NERSC ingests, stores and analyzes data from Telescopes, Sequencers, Light sources, Particle Accelerators (LHC), climate, and environment

Large Scale
Capability Simulations
Petascale systems run simulations in Physics, Chemistry, Biology, Materials, Environment and Energy at NERSC

High Volume
Job Throughput
NERSC computer, storage and web systems support complex workflows that run thousands of simulations to screen materials ("Materials Genome"), proteins, structures and more; the results are shared with academics and industry through a web interface

NERSC
Petascale Computing, Petabyte Storage, and Expert Scientific Consulting

NERSC Ingests, Stores and Analyzes Data from

- Experiments
- Big Data
- Light
- Genomics
- Climate
- Many Sources
- Significant Peak
- LHC Sources
- Energy

Data Explosion is Occurring Everywhere in DOE

- Petascale
- Data
- Volumes
- Data
- Produces
- Data
- Challenges
- Decreasing
- Over
- 3x
- Years
- Climate

- Experiments
- Moore's Law
- Decreasing
- In
- 5x
- Over
- 10x
- Data
- Curve
- Decreasing
- 12x
- A
- 3x
- Volume
- Petabytes
- Moore's Curve
- Petabytes

Moore's Law on a logarithmic scale shows the exponential increase in computing power. The curve relates the doubling of computer power every 18-24 months to the decreasing cost of computing. The number of transistors on a microchip has doubled about every 2 years, roughly following the exponential function $y = a e^{kx}$, where y is the number of transistors, a is the initial number of transistors, k is a constant, and x is the number of years. This trend has been observed since the 1960s and continues to be a driving force in the semiconductor industry.

- Sources
- Increase
- In
- Experiments
- Decline
- In
- Cost
- Increase
- Time

The data explosion, as described in the image, refers to the rapid increase in the volume of data generated by various scientific experiments and simulations. This trend is expected to continue, with exponential growth anticipated in the coming years. The challenges associated with managing and analyzing this data are significant, and NERSC is positioned to handle these challenges through its advanced computing capabilities and expertise in data management and analysis.