
10/15/2004  Y.He                                            1 

MPH: a Library for Coupling Multi-Component    
 Models on Distributed Memory Architectures   
                  and its Applications  

      Yun (Helen) He and Chris Ding   
  CRD Division 

Lawrence Berkeley National Laboratory 



10/15/2004  Y.He                                            2 



10/15/2004  Y.He                                            3 

           Motivation 

n  Application problems grow in scale & complexity 
n  Effective organization of simulation software 

system that is maintainable, reusable, sharable, 
and efficient è a major issue 

n  Community Climate System Model (CCSM) 
development 

n  Software lasts much longer than a computer! 



10/15/2004  Y.He                                            4 

  Multi-Component Approach 

n  Build from (semi-)independent programs  
n  Coupled Climate System = Atmosphere + Ocean + 

Sea-Ice + Land-Surface + Flux-Coupler  
n  Components developed by different groups at 

different institutions 
n  Maximum flexibility and independence 
n  Algorithm, implementation depends on individual groups, 

practicality, time-to-completion, etc. 

n  Components communicate through well-defined 
interface data structure. 



10/15/2004  Y.He                                            5 

     Distributed Components on HPC Systems 

n  Use MPI for high performance 
n  MPH: Multiple Program-Component Handshaking 

n  MPI Communicator for each component 
n  Component name registration 
n  Resource allocation for each component 
n  Support different job execution modes 
n  Stand-out / stand-in redirect 
n  Complete flexibility 



10/15/2004  Y.He                                            6 

      A climate simulation system consists of  
   many independently-developed components 
on distributed memory multi-processor computer 

n  Single-component executable: 
n  Each component is a stand-alone executable 

n  Multi-component executable: 
n  Several components compiled into an executable 

n  Different model integration modes:  
n  Single-Component executable Single-Executable system (SCSE)  
n  Multi-Component executable Single-Executable system (MCSE)  
n  Single-Component executable Multi-Executable system (SCME) 
n  Multi-Component executable Multi-Executable system (MCME)  
n  Multi-Instance executable Multi-Executable system (MIME)  



10/15/2004  Y.He                                            7 

 Component Integration / Job Execution Modes 

n  Multi-Component exec. Single-Executable system 
(MCSE): 
n  Each component is a module 
n  All components compiled into a single executable 
n  Many issues: name conflict, static allocations, etc. 
n  Data input/output 
n  Stand-alone component 
n  Easy to understand and coordinate 



10/15/2004  Y.He                                            8 

 Component Integration / Job Execution Modes 

n  Single-Component exec. Multi-Executable system 
(SCME): 
n  Each component is an independent executable image 
n  Components run on separate subsets of SMP nodes 
n  Max flexibility in language, data structures, etc. 
n  Industry standard approach 
n  Job launching not straightforward 



10/15/2004  Y.He                                            9 

 Component Integration / Job Execution Modes 

n  Multi-Component exec. Multi-executable system 
(MCME): 
n  Several components compiled into one executable 
n  Multiple executables form a single system 
n  Different executables run on different processors 
n  Different components within same executable could run on 

separate/overlap subsets of processors 
n  Maximum flexibility 
n  Includes MCSE and SCME as special cases 



10/15/2004  Y.He                                            10 

 Component Integration / Job Execution Modes 

n  Multi-Instance exec. Multi-executable system 
(MIME): 
n  Same executable replicated multiple times on different 

processor subsets 
n  Run multiple ensembles simultaneously as a single job 
n  Ensemble statistics able to run on the fly  
n  Dynamic control of future simulation 
n  Efficient usage of computer resource 



10/15/2004  Y.He                                            11 

   Multi_Instance Ensembles Example 

n  Multi-instance exec: 100 CCM ensembles 
n  Embarrassingly parallel 

n  Multi-instance exec: 4 ocean ensembles           
one single-comp exec: statistics. 

n  Multi-instance exec: 3 atm ensembles                      
one single-comp exec: ocn   

  



10/15/2004  Y.He                                            12 

Multi-Component Single-Executable (MCSE) 
  master.F:      PCM  
  mph_exe_world = MPH_components_setup (name1=‘atmosphere’,    
&                                              name2=‘ocean’,  name3=‘coupler’)     
 
 if (Proc_in_component (‘ocean’, comm)) call ocean_v1 (comm) 
 if (Proc_in_component (‘atmosphere’, comm)) call atmosphere (comm) 
 if (Proc_in_component (‘coupler’, comm)) call coupler_v2 (comm) 
 
 Component registration file: 
              BEGIN 
              Multi_Comp_Start 
             atmosphere       0     7 
             ocean               8    13 
             coupler            14   15 
              Multi_Comp_End 
              END 



10/15/2004  Y.He                                            13 

Single-Component Multi-Executable (SCME) 

      CCSM  
Coupled System = Atmosphere + Ocean + Flux-Coupler  
  
 atm.F:       atm_world = MPH_components_setup (“atmosphere”) 
 ocean.F:    ocn_world = MPH_components_setup (“ocean”) 
 coupler.F:  cpl_world  = MPH_components_setup (“coupler”) 
 
Component Registration File:  
         BEGIN 
         atmosphere       
         ocean                
         coupler 
         END 



10/15/2004  Y.He                                            14 

Multi-Component Multi-Executable (MCME) 
                             Most Flexible  

   exe1_world = MPH_components_setup (name1=‘ocean’, 
name2=‘ice’)  
   exe2_world = MPH_components_setup (name1=‘atmosphere’,         
 &                                                name2=‘land’, name3=‘chemistry’)  
 Component Registration File: 
           BEGIN 
           coupler                             ! a single-component executable 
          Multi_Comp_Start              ! first multi-component executable  
          ocean     0    15 
          ice         16   31 
          Multi_Comp_End     
          Multi_Comp_Start              ! second multi-component executable 
          atmosphere    0   15     
          land               0  15 
          chemistry      16  31 
          Multi_Comp_End  
           END 



10/15/2004  Y.He                                            15 

  Multi-Instance Multi-Executable (MIME) 
            Ensemble Simulations  

       Ocean_world = MPH_multi_instance (“Ocean”)  
  
  Component Registration File: 
        BEGIN 
       Multi_Instance_Start         ! a multi-instance executable     
       Ocean1      0     15      infile_1  outfile_1  logfile_1  alpha=3 debug=off    
       Ocean2     16    31      infile_2  outfile_2  beta=4.5  debug=on 
       Ocean3     32    47      infile_3  dynamics=finite_volume 
       Multi_Instance_End     
       statistics                          ! a single-component executable 
       END 
          
 Up to 5 strings in each line could be appended for passing parameters: 
         call MPH_get_argument (“alpha”, alpha) 
         call MPH_get_argument(field_num=2, field_val=output_file) 



10/15/2004  Y.He                                            16 

              Joining two components 

n  MPH_comm_join (“atmosphere”, “ocean”, comm_new) 
n  comm_new contains all procs in “atmosphere”, “ocean”.    
n  “atmosphere” procs rank 0~7                                 
n  “ocean” procs rank 8~11 

n  MPH_comm_join (“ocean”, “atmosphere”, comm_new) 
n  “ocean” procs rank 0~3                                    
n  “atmosphere” procs rank 4~11  

n  Afterwards, data remapping with “comm_new”   
 



10/15/2004  Y.He                                            17 

  
Inter-Component communications  

  
 

atmosphere sends message to ocean local_id= 3: 
MPI_send (…, MPH_global_id (“ocean”, 3), MPH_Global_World,…) 

  



10/15/2004  Y.He                                            18 

              MPH Inquiry Functions 

n  MPH_global_id() 
n  MPH_comp_name() 
n  MPH_total_components() 
n  MPH_exe_world() 
n  MPH_num_ensemble() 
n  MPH_get_strings() 
n  MPH_get_argument() 
n  … 

  
 



10/15/2004  Y.He                                            19 

           Multi-Channel Output 
n  Normal standard out 

n   print *, write(*,*), write(6,*) 

n  Need each component writes to own file 
n  Some parallel file system has “log” mode  
n  MPH resolves standard out redirect with the help of 

system function "getenv" or "pxfgetenv"   
n  setenv ocn_out_env ocn.log  
n  call MPH_redirect_output (comp_name) 

 



10/15/2004  Y.He                                            20 

          Sample Job Script 
#! /usr/bin/csh -f  
# @ output = poe.stdout.$(jobid).$(stepid)  
# @ error = poe.stderr.$(jobid).$(stepid)  
# @ wall_clock_limit = 1800  
# @ class = debug  
# @ job_type = parallel 
# @ node = 1  
# @ total_tasks=14  
# @ network.MPI = csss, shared, us  
# @ queue  
 
setenv MP_PGMMODEL mpmd  
setenv MP_CMDFILE tasklist  
setenv MP_STDOUTMODE ordered  
setenv MP_INFOLEVEL 2  
 
setenv ice_out_env ice.log  
setenv ocn_out_env ocn.log  
setenv atm_out_env atm.log  
setenv land_out_env land.log  
setenv cpl_out_env cpl.log  
 
poe  

Contents of file 
“tasklist”: 
 
  ice   
  ice  
  ocn  
  ocn   
  ocn 
  ocn 
  land 
  land 
  atm 
  atm 
  atm 
  atm 
  cpl  
  cpl 

    



10/15/2004  Y.He                                            21 

      Algorithms and Implementation 

n  Why do we call initial setup process “component 
handshaking”, instead of  “executable handshaking”? 

n  Create unique MPI communicator for each 
component: local_comp_world 

n  Trivial overhead 



10/15/2004  Y.He                                            22 

 Single-Component Executable Handshaking 

n  Root proc reads registration file, then broadcast 
n  Every proc knows total # of exes, and is assigned a 

unique exe_id 
n  Use exe_id as color, call MPI_comm_split to create 

local exe_world 
n  Local comp_world = local exe_world 



10/15/2004  Y.He                                            23 

 Multi-Component Executable Handshaking 

n  Use unique exe_id as color, call MPI_comm_split to 
create local exe_world 

n  Components non-overlapping 
n  each comp has unique comp_id 
n  use comp_id as color to call MPI_comm_split 

n  Components overlapping 
n  loop through all comps in each executable  
n  set color=1 for this comp, color=0 for others 
n  Repeatedly call MPI_comm_split, creating one local 

communicator for one comp at a time 
n  Order of total # of comps 



10/15/2004  Y.He                                            24 

              Status  

n  Completed MPH1, MPH2, MPH3, MPH4 
n  Software available free online: 

http://hpcrd.lbl.gov/SCG/acpi/MPH 
n  Complete users manual 

n  MPH runs on  
n  IBM SP 
n  SGI Origin  
n  HP Compaq clusters 
n  PC Linux clusters 



10/15/2004  Y.He                                            25 

         MPH Users 
n  MPH users 

n  NCAR CCSM 
n  CSU geodesic grid coupled climate model 
n  NCAR/WRF, for coupled models 

n  People expressed clear interests in using MPH 
n  SGI/NASA, Irene Carpenter / Jim Taft, on SGI for coupled 

models 
n  UK ECMWF, for ensemble simulations 
n  Germany, Johannes Diemer, for coupled model on HP 

clusters 
n  NOAA, for coupling models over grids 



10/15/2004  Y.He                                            26 

        Future Work 

n  Flexible way to handle SMP nodes for MPI tasks 
n  Dynamic component model processor allocation 

or migration 
n  Extension to do model integration over grids 
n  A C/C++ version 
n  Multi-instance runs for multi-component, multi-

executable applications 
n  Single-executable CCSM development 



10/15/2004  Y.He                                            27 

            Related Work 
n  Software industry 

n  Visual Basic, CORBA, COM, Enterprise JavaBeans 

n  HPC: Common Component Architecture (CCA) 
n  CCAFFEINE, Unitah, GrACE, CCAT, XCAT 

n  Domain-specific Frameworks 
n  Earth System Model Framework (ESMF) 
n  PETSc, POOMA, Overture, Hypre, CACTUS 

n  Problem Solving Environment (PSE) 
n  Purdue PSEs, ASCI PSE, Jaco3, JULIUS, NWChem 



10/15/2004  Y.He                                            28 

             Summary 

n  Multi-Component Approach for large & complex 
application software 

n  MPH glues together distributed components 
n  Main Functionality: 

n  flexible component name registration  
n  run-time resource allocation 
n  inter-component communication 
n  query multi-component environment 

n  Five Execution Modes: SCSE, SCME, MCSE, MCME, MIME 
n  Easily switch between different modes 



10/15/2004  Y.He                                            29 

Status of Single-Executable  
     CCSM Development 



10/15/2004  Y.He                                            30 

                             
                         First Step 

n  Re-designed top level CCSM structure. 
n  Initial version completed (perform essential 

functions of Tony Craig’s test code).  
n  All tested functions reproduced bit-to-bit agreement 

on NERSC IBM SP. 



10/15/2004  Y.He                                            31 

               Resolved Issues (1)  

n  Co-existing with multi-executable code 
n  Flexible switching among different model options: 

real model, data model, dead (mock) model 
 
 



10/15/2004  Y.He                                            32 

               Master.F 

     master_World = MPH_components_setup (name1="atm",   
   &                                   name2="ice",  name3="lnd",               
   &                                   name4="ocn", name5="cpl") 
 
     if (Proc_in_component(“atm", comm)) call ccsm_atm()  
     if (Proc_in_component(“ice", comm))  call ccsm_ice() 
     if (Proc_in_component(“lnd", comm))  call ccsm_lnd()  
     if (Proc_in_component("ocn", comm)) call ccsm_ocn()  
     if (Proc_in_component(“cpl", comm))  call ccsm_cpl()  



10/15/2004  Y.He                                            33 

   Subroutinized Program Structure 

       #ifdef SINGLE_EXEC  
       subroutine ccsm_atm()  
#else  
       program ccsm_atm  
#endif  
 
       if (model_option = dead)  call dead("atm")    

             if (model_option = data)  call data()  
       if (model_option = real)   call cam2()  
 
#ifdef SINGLE_EXEC  
       end subroutine  
#else  
       end program  
#endif  



10/15/2004  Y.He                                            34 

          Resolved Issues (2)  
n  Allow MPI_tasks_per_node set differently on 

different components. 
n  Schematically resolved (using task geometry and MPMD 

command file). Tested on IBM 
n  Writing convenient way to specify this using MPH 

n  Allow OpenMP-threads set to different number on 
different components 
n  Easily done for multi-executable 
n  For single-exec, set from each component dynamically at 

runtime (instead of environmental variables). Tested on 
IBM 

 



10/15/2004  Y.He                                            35 

            OpenMP_threads 

n  Multi-exec: specified as environment variable  
n  Single-exec: need to be model dependent, 

dynamically adjustable variables:  

        call MPH_get_argument("THREADS", nthreads))  

         call OMP_SET_NUM_THREADS(nthreads)  

 
   processors_map.in: 

        atm 0 2   THREADS=4  file_1= xyz alpha=3.0  ...  
   ocn 3 5   THREADS=2  



10/15/2004  Y.He                                            36 

          Resolved Issues (3)  

n  Resolved name conflict issue 
n  Propose module-based approach 



10/15/2004  Y.He                                            37 

    Name Conflict in Single-Exec CCSM 

n  Different component models have subroutines with 
same name but different contents.  

n  Each subroutine name becomes a global symbol 
name 

n  Compiler generates a warning for multiple matches 
and always uses the 1st match 



10/15/2004  Y.He                                            38 

Two Probable Solutions 

n  One solution: rename in source codes 
n  Renaming all functions, subroutines, interfaces, variables 

by adding a prefix 
n  Substantial rework 

n  A module-based approach: 
n  Key idea: Localization of global symbols 
n  Using wrapper module with “include” 
n  “Use Module Only” renaming  

n  Minimal renaming 
n  Only when different component modules appear in same file 

n  less-tedious solution 



10/15/2004  Y.He                                            39 

 ocn_main.F 
 ocn1_mod.F 
 xyz2.F 

 atm_main.F 
 atm1_mod.F 
 xyz2.F 

================================ 

   ocn_wrapper.F: 
                     module ocn_wrapper 
                     use ocn1_mod 
                     contains 
         # include “xyz1.F” 
         # include “xyz2.F”   ! Local symbol 
         # include “xyz3.F” 
                    end module  
================================ 
 ocn_main.F: use ocn_wrapper 

    Example 

conflict 



10/15/2004  Y.He                                            40 

Public Variables, Functions, Interfaces 

They are still global symbols and cause 
conflicts between component models. 

 Renaming conflict names on the fly: 
 Suppose dead() is defined in both ocn_mod and atm_mod 
 use ocn_mod, only: ocn_dead è dead 
 use atm_mod, only: atm_dead è dead 
 if (proc_in_ocn) call ocn_dead()     ! instead of dead 
 if (proc_in_atm) call atm_dead()    ! Instead of dead 

This also works for variables and interfaces. 
Concrete examples see http://hpcrd.lbl.gov/SCG/acpi/SE 



10/15/2004  Y.He                                            41 

       Immediate Plan 

n  Implement module-based approach for solving 
naming conflict in single-exec CCSM for data models 
and real models on IBM SP. 

n  Implement module-based approach in single-exec 
CCSM on other architectures. 



10/15/2004  Y.He                                            42 

             Acknowledgement 

n  Collaborators 
n  NCAR: Tony Craig, Brian Kauffman,         

 Vince Wayland, Tom Bettge  

n  Argonne National Lab: Rob Jacobs, Jay Larson  
n  Resources 

n  DOE SciDAC Climate Project  
n  NERSC Program 

 


