

CHOS in Production Multiple Linux Environments on PDSF at NERSC

Larry Pezzaglia

National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory

April 2012

National Energy Research Scientific Computing Center

PDSF at NERSC

- A commodity Linux cluster at NERSC serving HEP and NS projects
- IGbE and 10GbE interconnect
- In continuous operation since 1996
- ~1500 compute cores on ~200 nodes
- Over 750 TB shared GPFS storage in 17 filesystems
- Over 650 TB of XRootD storage
- Supports SL5 and SL6 environments
- Projects "buy in" to PDSF and the UGE share tree is adjusted accordingly

- PDSF has a broad user base (including non-CERN and non-LHC projects)
- Current projects include ALICE, ATLAS, CUORE, Daya Bay, IceCube, KamLAND, Majorana, and STAR
- Prior projects include BaBaR, CDF, Planck, SNO, and SNFactory

The Challenge

- PDSF must support multiple applications for multiple projects
 - Many are only tested or certified on one Linux distribution release
- Projects have their own communities with different requirements and recommendations
- Simultaneously satisfying the certification constraints of all these projects is challenging
 - We need a way to provide customized environments for each project
 - Our answer is CHOS

What is CHOS?

- CHOS ("CHroot OS") is a software package which provides a mechanism for simultaneously supporting multiple Linux environments on a single Linux system
- Users choose the tree (e.g., SL 6, SL 5, Debian 6) best suited to their application
- CHOS was written by Shane Canon and has been in use on PDSF since 2004.

Other solutions

Nersc Dynamic Provisioning

Dynamic Provisioning

- Reboot nodes into an appropriate bare-metal OS prior to each job
- We must maintain multiple bare-metal boot environments
- Jobs requiring different environments can't share a node

Boot Environments

- Maintaining multiple boot environments is a non-trivial undertaking
- We must keep configuration in accordance with site policy
 - Install security patches
 - Maintain configuration and packages for all services (e.g., shared filesystems, batch system, monitoring)
- Nodes will be leaving and joining shared services (including parallel filesystems) with each reboot

Full Virtualization

Full virtualization (e.g., KVM)

- Jobs requiring different environments can now share a node
- We still must maintain multiple boot environments
- If we run one job per core on a 100-node cluster with 24 cores per node, we will have 2400 VMs to manage
 - Each VM mounts and unmounts parallel filesystems
 - Each VM will be joining and leaving shared services with each reboot
 - Shared services (including filesystems) must maintain state for all these VMs

Containers

Containers (e.g., OpenVZ, LXC)

- Jobs requiring different environments can share a node
- We still must maintain multiple boot environments
- 2400 containers are almost as hard to manage as 2400 VMs
- http://openvz.org/
- http://lxc.sf.net/

chroot

What about a simple "chroot"?

- Minimal overhead
- No support daemons
- Serious usability issues
 - chroot is a privileged operation
- Poor scalability
 - We must maintain access to all shared filesystems within each chroot
 - Maintaining many environments requires many mounts or a symlink farm

The CHOS Solution

CHOS provides the simplicity of the chroot solution, but adds important features.

- Users can manually change environments
 - This is as simple as running "env CHOS=debian5 chos"
- PAM integration
 - CHOSes a user into the correct environment upon login
- Batch system integration
 - Tested with SGE/UGE and TORQUE+Moab/Maui
- Only one chroot directory is needed

The CHOS solution

- CHOS fulfills most of the use cases for virtualization in HPC with minimal administrative overhead and negligible performance impact
- Users do not interact directly with the "base" OS
- CHOS provides a seamless user experience
 - Users manipulate only one file (\$HOME/.chos), and the desired environment is automatically activated for all interactive and batch work

- Consider an application written and tested for Debian 5 that we want to run on a Scientific Linux 6 HPC system
- We could recompile and test for SL6
- Or, we could run inside a Debian 5 CHOS environment
 - From the application's point of view, we are running a Debian 5 userland on an SL6 kernel

User Benefits

- We can support software requiring invasive changes (e.g., swapping stock EL RPMs for customized versions)
- We can support software which only runs on (or is only certified on) Enterprise Linux X.y
- We can provide persistent software stacks
- We can provide reproducible environments for repeatable production runs
 - This allows us to validate prior computations.
 - This is a strong selling point for VMs. CHOS provides similar flexibility with less overhead.

Sysadmin Benefits

The base OS is sysadmin-friendly

- It can be updated at will.
- We can maintain a minimalist design methodology.
- The PDSF base OS image is less than 300 MB
 - This includes support for GPFS, CVMFS, and monitoring daemons
- No support daemons are required for CHOS

Sysadmin Benefits

- No privileged processes need to run in CHOS
 - No setuid bits are required
 - CHOS is exclusively for user applications
- CHOS environments can live on shared filesystems
- CHOS environments share the same kernel
 - User applications rarely care which kernel version is under the hood
 - Most kernel interfaces have remained been stable enough for our needs
- Small and understandable codebase
 - ~2000 lines (excluding build system)

Requirements

- Must arrange for access to required privileged functionality
 - Setuid binaries are generally unavailable in CHOS
- Must port to new kernels as needed
- Must provide user documentation and training

Under the Hood

- CHOS creates a symbolic link at /proc/chos/link with a contextual target
- The CHOS kernel module maps PIDs to CHOS link targets
- New processes inherit the CHOS target from parents

Under the Hood

The "chos" utility triggers an environment switch:

- 1. The requested environment name is written to /proc/chos/setchos
- 2. /proc/chos/link is mapped to the desired environment path
- 3. The user is chrooted into /chos/
- /chos/ contains shared directories, and multiple links pointing through /proc/chos/link

/chos/

/chos/ when CHOS is not set:

- /chos/bin -
- \rightarrow /proc/chos/link/bin \rightarrow /bin/
- /chos/etc \rightarrow /proc/chos/link/etc \rightarrow /etc/
- /chos/lib \rightarrow /proc/chos/link/lib \rightarrow /lib/
- /chos/usr \rightarrow /proc/chos/link/usr \rightarrow /usr/
- /chos/proc \rightarrow /local/proc/
- /chos/tmp \rightarrow /local/tmp/
- /chos/var \rightarrow /local/var/
- /chos/dev/ # Common device nodes
- /chos/local/ # Mountpoint for the real root tree

/chos/

/chos/ when CHOS is sl6:

- /chos/bin
- \rightarrow /proc/chos/link/bin \rightarrow /os/sl6/bin/
- /chos/etc
- \rightarrow /proc/chos/link/etc \rightarrow /os/sl6/etc/
- /chos/lib \rightarrow /proc/chos/link/lib \rightarrow /os/sl6/lib/
- /chos/usr \rightarrow /proc/chos/link/usr \rightarrow /os/sl6/usr/
- /chos/proc \rightarrow /local/proc/
- /chos/tmp \rightarrow /local/tmp/
- /chos/var \rightarrow /local/var/
- /chos/dev/ # Common device nodes
- /chos/local/ # Mountpoint for the real root tree

/chos/

/chos/ when CHOS is deb5:

- /chos/bin
- \rightarrow /proc/chos/link/bin \rightarrow /os/deb5/bin/
- /chos/etc
- \rightarrow /proc/chos/link/etc \rightarrow /os/deb5/etc/
- /chos/lib \rightarrow /proc/chos/link/lib \rightarrow /os/deb5/lib/
- /chos/usr \rightarrow /proc/chos/link/usr \rightarrow /os/deb5/usr/
- /chos/proc \rightarrow /local/proc/
- /chos/tmp \rightarrow /local/tmp/
- /chos/var \rightarrow /local/var/
- /chos/dev/ # Common device nodes
- /chos/local/ # Mountpoint for the real root tree

CHOS on PDSF

- CHOS has been in production on PDSF since 2004. Current environments are:
 - SL 5.3
 - SL 6.2
- In the past, we supported:
 - SL 4.4 (32-bit and 64-bit)
 - SL 3.0.2
 - Fedora Core 2
 - Red Hat 9
 - Red Hat 8
 - Red Hat 7.3
 - Red Hat 7.2
 - Red Hat 6.2

Nersc Active Development

- CHOS is an active project distributed under a modified BSD license
- Want to use CHOS on your system or for a project? We can help.
- The code is publicly available on GitHub:
 - Contributions and collaborations are welcome
 - https://github.com/scanon/chos/

Future plans

- Build a secure mechanism for users to provide their own CHOS environments
- Provide scripts to help prepare a filesystem hierarchy for use with CHOS
- Simplify the build, deployment, and configuration process
- Explore and possibly adapt techniques used by LXC

A Future Use Case

- User configures workstation to properly run an application
- 2. User runs CHOS helper scripts to transform the workstation's file tree into a CHOS environment
- 3. User transfers this CHOS environment to an HPC system
- 4. User selects that environment to launch the application in production

A Future Use Case

- This would allow user communities to support their own computing environments
- Sysadmins focus on the base OS, core services, filesystems, monitoring, and batch system

Summary

- CHOS enables us to concurrently support multiple Linux environments on a single Linux system
 - Rich computing environments for users
 - Lean, maintainable base OS for sysadmins
 - PAM and batch system integration provide a seamless user experience
- CHOS has been in production on PDSF for over eight years
- CHOS is under active development, with new features on the horizon
- Alternatives to virtualization exist, and CHOS is one of them

Original CHOS paper:

http://indico.cern.ch/getFile.py/access?contribId=476

&sessionId=10&resId=1&materialId=paper&confId=0

PDSF CHOS User documentation:

http://www.nersc.gov/users/computational-systems/ pdsf/software-and-tools/chos/

Questions?

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory