I/O Requirements for Exascale

Author: Jason Hick, NERSC Storage Systems Group Lead, LBNL
Date: 4 April 2011
Science is Driving Exascale: Carbon Cycle Research

Solar: Materials for solar panels and other applications.

Storage, production: Catalysis for fuel cells and batteries

Combustion: New algorithms (AMR) coupled to experiments

Fusion: Simulations of ITER scale devices

Climate modeling: High resolution, clouds, ice sheet, abrupt change, historical validation.

Carbon Capture & Sequestration: Chemistry, dissolution-diffusion-convection processes in aquifers.

Biology: Data analysis for gene genomics.
Science is Driving Exascale: Nuclear Uncertainty Quantification

- Want to go from an ability to describe natural phenomena with simulations towards a **predictive capability**
 - But nature is messy: need to understand sensitivity to perturbation
 - Numerical simulation answers whether a design is sufficient, but does not quantify the uncertainty of the answer.
 - This is NOT V&V *(can only do UQ if you trust your simulation)*
 - Example Application: rapid qualification of new nuclear power plant design, or many engineering problems

- Example Approach: **Polynomial Chaos**
 - Run many simulations with input perturbations *(task sched/mgmt)*
 - Statistical summarization across simulation datasets to understand sensitivity to design parameters *(huge data management issues)*

- Requires workflow tools integrated with transport infrastructure
 - Need task farming to prevent batch system from being overwhelmed *(need task management & data management)*
 - Need coordination with network infrastructure, I/O, and compute
 - No pretty graphical tools *(get over that now!)*
Science is Driving Exascale: Next Generation Light Source

• Computational requirements JUST for orientation reconstruction
 – Input Data Rate: 10^5 images/second at 10^6 pixels imaging rate (4TB/sec)
 – 10^5 of images of diffraction patterns representing 2D projection of the sample in random orientation
 – Best available orientation algorithms require $\sim N^6$ flops (N=1000 for NGLS detector)
 – Total performance required is 10^{18} FLOP/s for pulse rate of 10^5 images/second

• Similar requirements for shot planning
 Both data processing and shot planning will require exascale computing for analysis and terabit networking for data movement
Current Exascale Approaches

• Collaboration and competition
 – DOE NNSA and DOE OS labs collaborations
 • ACES – OLCF/LANL/Sandia
 • ABEL – ALCF/LBNL/LLNL
 – Each aiming for a pre-exascale system (300TF) in 2015 timeframe and exascale system in 2018-2022

• Co-Design
 – Software + Hardware + Applications design collaborations ongoing

• Revolutionary vs. Evolutionary
 – Both approaches are needed due to 100-1000X improvement required in every facet of the system to deliver something useable to science
 – Moving from Petascale to Exascale likely to be as disruptive to users as moving from Vector to Distributed systems
Exascale I/O Approaches

• Collaboration and competition
 – Learn from what I/O systems are working and what aren’t at each DOE lab

• Co-Design
 – Data management middleware working with file system/archive developers

• Revolutionary vs. Evolutionary
 – Hardware improvements
 • Need disk spindle reliability improvements
 • Need disk performance improvements
 • Need tape capacity improvements
 – Power efficiency solutions
 – Data management and analysis solutions
IO Requirements Today

• In general, performance needed is achievable
 – Work with users/applications to achieve given hardware/software configuration

• Designs focus on ratios aimed at balancing storage resource capabilities
 – Correlation to amount of memory and network rate

• Time spent ensuring continual data movement up and down the storage hierarchy
The amount of system memory plays a role in the speed and size of the storage systems at HPC centers.
Network (Ethernet) Rate and Data Stored

Network speed plays a role in determining the amount of archived data per year.
The Major System Components of Exascale

• Computational System
 – Motherboards: Heterogeneous
 – Chips: On-board NICs/PCIe
 – Memory: Stacked

• Software: Handled through Co-Design
 – Applications
 – Middleware
 – Compilers

• Networking
 – Interconnect (NDR IB): Between nodes
 – Intra-center resources (100Gb - 400Gb Ethernet): Between systems
 – Inter-center resources (100Gb - 400Gb Ethernet): Between Centers

• IO
 – Off computational system (file system)
 – Long-term storage (archive)
 – WAN data movement (between Centers)
The Major System Components of Exascale

- **Computational System**
 - Motherboards: Heterogeneous
 - Chips: On-board NICs/PCIe
 - Memory: Stacked

- **Software**: Handled through Co-Design
 - Applications
 - Middleware
 - Compilers

- **Networking**
 - Interconnect (NDR IB): Between nodes
 - Intra-center resources (100Gb - 400Gb Ethernet): Between systems
 - Inter-center resources (100Gb - 400Gb Ethernet): Between Centers

- **IO**
 - Off computational system (file system)
 - Long-term storage (archive)
 - WAN data movement (between Centers)
Exascale I/O: Interconnect Requirements

• Power efficiency gains of 10x over present
 – Optics present on the node possibly on the chip (50% power reduction), especially important for 100Gb+ devices
• Scalability to handle O(100,000) to O(1B) nodes
• Performance improvements
 – 200-400GB/sec inter-node BW
• Resiliency improvements
 – Congestion
• Enable convergence of HPC networks within the center
 – Fiber channel reliability, with IB latency/bandwidth, with ethernet routing/features/manageability
Exascale I/O: File System Requirements

- **Usability**
 - Features to support data management and data analysis, more than just open/read/write
 - Aid in understanding hardware layout and software configuration to optimize performance

- **Power efficiency**
 - Enable spin-down of disks, use of flash (4096 byte devices), or other power saving storage
 - If none, expect IO subsystem to require up to 2.5 of 20MW of power

- **Resiliency**
 - Management/debug features to handle O(20,000) components
 - Software failover, tolerant of errors
 - Software to complement hardware RAID rebuilds/size of disks

- **Scalability**
 - Need to handle O(20,000) devices and O(100,000-1M) clients

- **Performance**
 - Target is 1TB/sec

- **Metadata**
 - Need multiple metadata servers in software
 - Likely using memory for speed-up (FS cache, or DRAM SSD devices)
 - Backups (mostly about a tree-walk) need to be feasible in some number of days

- **Cost**
 - Need more % of system cost for adequate BW/capacity IO subsystem (high estimate is $60M)
Exascale I/O: Archival Storage Requirements

- **Usability**
 - Features to support data management and data analysis, more than just open/read/write
 - Aid in understanding hardware layout and software configuration to optimize performance
- **Power efficiency**
 - Enable spin-down of disks, use of flash (4096 byte devices), or other power saving storage
 - If none, expect IO subsystem to require up to 2.5 of 20MW of power
- **Resiliency**
 - Management/debug features to handle O(20,000) components
 - Software failover, tolerant of errors
 - Software to complement hardware RAID rebuilds/size of disks
- **Scalability**
 - Need to handle O(20,000) devices and O(100,000-1M) clients
- **Performance**
 - Target is 1TB/sec
- **Metadata**
 - Need multiple metadata servers in software
 - Likely using memory for speed-up (FS cache, or DRAM SSD devices)
 - Backups (mostly about a tree-walk) need to be feasible in some number of days
- **Cost**
 - Need more % of system cost for adequate BW/capacity IO subsystem (high estimate is $60M)
Exascale I/O: WAN Data Movement Requirements

- PB data sets will be common and will need to move between facilities. We are already moving data sets in the 10’s of TBs between facilities monthly.
- Human time scales are important
- Mounting of other Center’s file systems unlikely to support science
 - Federation of accounting/users (authentication and authorization), very difficult
 - Additional security for devices on someone else’s network
 - Changes to enable high-latency operations as the norm
- Explicit data transfers
 - High throughput network configured to optimize data transfers
 - ESnet SDN
 - Software to aid in unattended data movement between facilities
 - Third-party data transfer services GlobusOnline.org
 - Storage resource managers (BeSTMan)
 - Dedicated servers close to site’s border with Center’s storage resources available to it
 - Data transfer nodes, parallel file systems, archival storage
Archival Storage

• Extreme Scale Workshop July 2009
 – “HPSS in the Extreme Scale Era” report
 – Surveyed six DOE sites for data trends and stats
 – Performed a market survey of archival storage software
 – Provided roadmaps for disk & tape through 2022
 – Gathered archival storage requirements from other Exascale reports
Exascale Archival Storage Scalability Requirements

- Storage capacity
 - Annual growth $O(10PB)$
 - Amount of data stored in single system will be 1-10EB in 1-10B files
- Ingest Bandwidth
 - 10% of Scratch File System speed, $O(100GB/s)$ peak and $O(10GB/s)$ sustained
- Metadata speed
 - PB sized, file operations 10% of file system capabilities
 - Multiple metadata servers (PureScale DB2 interesting)
- Network between systems/storage
 - Network capable of 100GB/s

DOE Sites between 1 & 10 EB of archived data by 2022
Exascale Archival Storage
Data Management Requirements

• Data discovery
 – Middleware challenge

• Data mining
 – Middleware challenge

• Data set operations
 – GPFS and HPSS have a start on this
Exascale Archival Storage
System Management Requirements

- Usability of system management interface
 - Managing $O(1,000)$ software processes in single metadata server
 - Managing multiple metadata servers (like distinct systems)

- Logging subsystem scaling to $O(1,000)$ software processes (100’s of threads each) logging in real-time to central source

- Continue scaling real-time monitoring of a very large complex system
Exascale Archive Storage

Hardware Requirements

- **Affordability at scale**
 - O(90,000) tapes with 80TB tape to retain one year of IO to archive from Exascale system. This is $27M in annual tape budget with today’s tape cost

- **Performance at scale**
 - Each tape drive 600MB/s
Final Thoughts

- I/O is a major part of the Exascale system design
- Networking initiatives and research underway
- Co-design proposals being awarded
- Storage requires evolutionary
 - Exascale capable file systems and archival storage to continue improvements
- Revolutionary storage could help with
 - Performance improvements over current rates
 - Reliability improvements over existing systems
 - Power efficiency improvements over existing
 - Moving analysis closer to storage