Multi-Material Plasma Modeling on HPC Platforms

A. Koniges¹, W. Lui¹, Y. He¹, D. Eder², A. Fisher², N. Masters², and R. W. Anderson²

¹Lawrence Berkeley National Laboratory ²Lawrence Livermore National Laboratory

23rd International Conference on Numerical Simulation of Plasmas

> Beijing, China September 16, 2013

What this talk is NOT about*

- Advanced hybrid techniques to overlap communication and computation in GTS (Princeton Gyrokinetic PIC) using OpenMP tasking and the use of PGAS co-array Fortran for significantly improved performance on 160,000 cores
- Development of asynchronous algorithms in PIC codes in contrast to standard lock-step programming approaches
- Multicore-partitioned pseudo-spectral methods that take advantage of finite speed of light to allow the use of local FFTs

*But see me if you wish more information

Outline

- Modeling for a range of experimental facilities
- Summary of multiphysics code ALE-AMR
 - ALE Arbitrary Lagrangian Eulerian
 - AMR Adaptive Mesh Refinement
- New surface tension model in ALE-AMR
- Sample of modeling results for different facilities
- Performance on new HPC platforms, e.g., Edison at NERSC

Multiphysics simulation code, ALE-AMR, is used to model experiments at a large range of facilities

Neutralized Drift Compression Experiment (NDCX-II)

National Ignition Facility (NIF) - USA

CYMER EUV Lithography System

Laser Mega Joule (LMJ) - France

NDCX-II user facility at LBNL accelerates Li ions for warm dense matter experiments

Optimized for volumetric heating of micron-thick samples to eV temperatures within hydrodynamic expansion times

<text>

A user facility for studies of:

- physics of ion-heated matter
- heavy-ion-driven ICF target physics
- space-charge-dominated beams

The Cymer extreme UV lithography experiment uses laser heated molten metal droplets

Large laser facilities, e.g., NIF and LMJ, require modeling to protect optics and diagnostics

Science

A wide range of targets require detailed simulations for debris and shrapnel assessments/mitigations

Modeling of complex experimental configurations provided by the multiphysics ALE-AMR code

- 3D ALE hydrodynamics
- AMR (use 3X refinement)
 - With 6 levels, vol ratio 10⁷ to 1
- Material interface reconstruction
- Anisotropic stress tensor
- Material failure with history
- Ion/laser deposition
- Thermal conduction
- Radiation diffusion
- Surface tension

ALE-AMR is an open science code and has no export control restrictions

Multimateral ALE + AMR; including anisotropic stress tensor

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \bullet (\rho \vec{v}) &= 0 \\ \rho \frac{\partial \vec{v}}{\partial t} &= \nabla p + \nabla \bullet \Sigma' + \rho \vec{b} \\ \rho \frac{\partial e}{\partial t} &= \nabla p + \nabla \bullet \vec{v} = 0 \\ \sum^{n+1} &= f(\Sigma^n, \rho, e, \vec{v}, p, T, \vec{h}) \end{aligned}$$
Continuity equation
Equations
of motion
$$\begin{aligned} PdV \text{ work} \\ \text{Material Stress Update} \end{aligned}$$

$$p = p(\rho, e)$$

$$T = T(\rho, e)$$
•EOS tables
•Various gas laws

Radiation Diffusion added via an operator splitting method

We model both heat conduction and radiation transport based on the diffusion approximation

Diffusion equation

$$\nabla \bullet \alpha \nabla u + \beta u = f$$

Heat Conduction

$$C_{v} \frac{T^{n+1} - T^{n}}{\Delta t} = \nabla \bullet D^{n} \nabla T^{n+1} - \sigma T^{n+1}$$
$$\alpha = D^{n}$$
$$\beta = -\sigma - \frac{C_{v}}{\Delta t}$$
$$f = -\frac{C_{v}}{\Delta t} T^{n}$$

Radiation Diffusion

$$\frac{E_R^{n+1} - E_R^n}{\Delta t} = \nabla \bullet \lambda \left(\frac{c}{\kappa_R}\right) \nabla E_R^{n+1} + \widetilde{\kappa}_P (B^n - cE_R^{n+1})$$

$$C_v \frac{T^{n+1} - T^n}{\Delta t} = -\widetilde{\kappa}_P (B^n - cE_R^{n+1})$$

$$\alpha = \lambda \left(\frac{c}{\kappa_R}\right)$$

$$\beta = -\widetilde{\kappa}_P c - \frac{1}{\Delta t}$$

$$f = -\frac{1}{\Delta t} - \widetilde{\kappa}_P B^n$$

The diffusion equations are solved using Finite Element Methods accounting for AMR issues

- We map the level representation to an equivalent composite mesh
- Special nodal basis functions are constructed to handle the C-F interface

The staggered mesh Lagrange+Remap built on a structured adaptive mesh refinement framework (SAMRAI)

Code has a flexible framework with a new surface tension model active during the Lagrange step

Mixed cells

- Mixed cells have more than one material in them
- Volume fractions of each material in a mixed cell are tracked
- Interfaces are constructed using the volume fractions of nearby cells
- Cell based quantities are tracked for each material in the cell
- An average of each quantity is computed for hydro step

ERKELEY LA

Solid fragmentation obtained using a void insertion model plus interface reconstruction

Fragmentation modeling validated against expanding ring experiment

- . 15mm radius 1x1mm cross-section
- . Magnetic field induces current
- . Current heats and expands the ring
- . Fragments are collected and counted

ALE-AMR simulations

- . Use 5x5 elements by 600 elements
- . Temperature from resistive heating
- . Body force provides acceleration
- . 6000 time steps to reach 45us

Number of calculated fragments in good agreement with data

M. Altynova, X. Hu, and G. Daehn: Increased Ductility in High Velocity Electromagnetic Ring Expansion, Metall. Material Trans. A, 27A, p1837-1844, (1996)

Benchmarking using other codes and test problems

Surface tension calculation is adopted from the height function method using volume fractions

Force $f = \gamma \kappa \vec{n}$, where γ is the surface tension coefficient, κ is the curvature, and \vec{n} is normal

Calculate volume fraction of liquid in each zone and then calculate resulting height function

In 2D, we do a quadratic fit using 3 points $y = h_1 x^2 + h^2 x + h_3$ and $\kappa = 2h_1 (1 + h_2^2)^{-1.5}$

The curvature and normal are calculated in cells but the force like velocity are nodal so cell curvature is averaged to get node value

"Estimating curvature from volume fractions," S. J. Cummins, M. M. Francois, and D. B. Kothe, Computers and Structures **83**, 425 (2005)

We have validated the surface tension model using different test cases with analytic solutions

Ellipsoid oscillation

We are exploring different ways to define the liquid vapor interface in the simulations

Without surface tension

With surface tension

user: bobbyliu Fri Aug 203:03:212013

-6

-4

-2

0

X-Axis (x10^-3)

2

DB: summary.samrai

Time:0

Cycle: 0

-5.396

- 3.598

- 1.799

9.0

8.0 -

7.0-

5.0

4.0 3.0

2.0

1.0

-8

m 6.0-

(x10,

Max: 7.195 Min: 1.000e-06

Pseudocolor Var: density_0 - 7,195

These simulations use a simple density criteria to define interface

BERKELEY LAB

ALE-AMR being used to design future NDCX II experiments with sub ns high-energy pulses

- 2D simulation of thin (1 micron) foil at end of heating pulse (left) and at 2X the pulse duration (right)
- The longitudinal scale is exaggerated relative to the transverse
- The radius of the simulated target is 1 mm
- Simulations confirm heating within hydrodynamic expansion times

Proposed experiments on NDCX II can study a wide range of warm dense matter regimes

- Diagnostics could measure properties of hot expanding matter including droplet size, droplet rate formation, homogeneity of temperature, hydrodynamics instabilities growth rate, etc.
- New modeling techniques will allow the design and analysis of these experiments, which can include both solid and foam targets

Problem: Traditional ALE codes (like Hydra) complicated mesh and tangled for late-time

Traditional ALE

Newly Designed ALE-AMR

ALE-AMR was developed initially for late-time whole-target (not just hohlraum) NIF simulations

D. C. Eder, A. C. Fisher, A. E. Koniges, and N. D. Masters, "Modeling Debris and Shrapnel Generation in ICF Experiments," to appear in Nuclear Fusion (2013)

The use of AMR with six levels of refinement is critical to model plasma plume expansion

Sample NIF target where fragmentation modeling is needed for protection of optics and diagnostics

Code instrumental in redesign of several experimental configurations to meet safety/performance standards

- Early experiments observed reflect of 1w light towards other beamlines
- Proposed modification was to replace flat Si supports with two Al rods
- Curved surface of rods would disperse the reflected laser light

ALE-AMR simulations of Al rods driven by plasma debris wind predicted optical damage

Simulations showed that x-ray loading in initial design damaged thin samples and tilted redesign protects samples from x-rays and fast debris wind from target

A redesign based on ALE-AMR simulations reduces material directed towards optics

Code recently ported to new Edison

- Cray XC30
- 2.4 Pflops peak
- 124,800 compute cores
- 332 TB memory
- Ivy Bridge Processor at 2.4GHz
- Cray Aries interconnect (8 GB/s MPI bandwidth)
- ~2X faster/core than Hopper

Additional information and scaling results under NDA

Sample MAP performance analysis on Edison

0 0 0 X	/scratch1/scratchdirs/yunhe/aleamr/cymer_compare/cymer_SAMRAI3/Edison.CC.2d-opt.cymer-2d.64p_2013-09-11_22-57.map - Allinea MAP 4.1-32296			
File View Search Window Help				
Profiled: f.map.exe on 64 processes	Started: Wed Sep 11 22:57:11 2013 Runtime: 112s Time in MPI: 57%	Hide Metrics		
Memory usage (M)		<u> </u>		
7.8 - 74.1 (55.5 avg) 50.7 - 66.2 (56.1 avg)				
MPI call duration (ms)				
0 - 189.9 (2.2 avg) 0 - 55.5 (1.9 avg)	<u> </u>	l		
0 - 16,543 (1,643.8 avg) 0 - 11,656 (1,603 avg)	, and the second and the second s	marticle		
CPU memory access (%) 0 - 100 (16.8 avg) 0 - 700 (76 avg)	en en feren en e			
CPU floating-point (%) 0 - 100 (1.5 avg) 0 - 700 (7 avg)	the state of the second state of the	alii tik		
22.58.06-22.58.29 (range 23.469s,	21.0% of total). Mean Memory usage 56.1 M; Mean MPI call duration 1.9 ms; Mean MPI collectives 1,604.0 /s; Mean CPU memory access 16.5 %; Mean CPU floating point 1.6 %;	Metrics, Reset		
🖷 main.C 🔝 🔤 AleLevelIntegral	tor. C 🔀 🛛 🦉 TimeRefinementintegrator. C 📧			
	7 months ago 1055 const tbox::Pointer <hier::patchhierarchy> hierarchy = base_hierarchy;</hier::patchhierarchy>	×		
	/ months ago 1855			
	7 months ago 1057 // ALE stos to postone mesh entanalement			
	<pre>7 months ago 1859 if (d_skip_relax_interval>0) evalSkipRelax();</pre>			
	7 months ago 1860			
	7 months ago 1861 tbox::Array <double> old_times(finest_level -coarsest_level +1);</double>			
	7 months ago 1002 m for (int l=coarsest_level; 1 <= finest_level; 1++) {}	-		
	7 months ago 1866 standardievelSvochronization(bierarchy coarsest level finest level			
60.8%	7 months ago 1067 sync time, old times):			
	7 months ago 1868			
	7 months ago 1869			
	7 months ago 1878 //			
	7 months ago 1871 // The level synchronization algorithm is used after a level and all			
	7 months ago 1072 // coarser tevets have been advanced to the same point in time. The	-		
Input/Output Project Files Par Project Files	allel Stack View	8×		
Search (CtrI+K)		٩		
Self Time V	File	<u> </u>		
99.6%	🗄 🥌 scratchdirs			
99.6%				
83.4%	E Terrer dens			
83.4%	😑 🛁 edison-local			
81.9%	🕀 🧧 Jannai 43.3.2			
81.9%	the SAMKAI			
0.7%		-1		
4° ··· '		تر .		
Showing data from 13440 samples taken over 64 processes (210 per process)				

Screen capture of MAP window with memory usage, MPI calls, etc. as a function of time shown along the top

- Large multiphysics codes like ALE-AMR have complex make/build scripts to load a significant number of supporting libraries
- It is important that performance analysis tools can work in this environment and can be accessed in a relatively painless manner
- MAP developed by Allinea is available on Edison

Sample MAP performance analysis on Edison

OO Noratch1/scratchdrs/yunhe/aleamr/cymer_compare/cymer_SAMRA3/Edison.CC.2d-opt.cymer-2d.64p_2013-09-11_22-57.map - Allinea MAP 4.1-32296 Elle Vew Search Wintow Heb				
Hide Ators.	Memory usage (M)			
23 7.43 (55 avg) // WF1at (winner) 0 1 0 1803 (22 avg) 10 1602 (21 avg) 11 1602 (21 avg) 12 1602 (21 avg) 11 1602 (21 avg) 12 1602 (21 avg) 13 1602 (21 avg) 14 1602 (21 avg) 15 1602 (21 avg)	7.8 - 74.1 (55.5 50.7 - 66.2 (56.1			
0 - 100 (7 mg) L 210 of 21 mg 21 405, 21 0% of the Theorem Mummy usage \$11 M. Mean MPI cale duration 1.8 mg. Mean MPI cale stress 1.844.0 mg. Mean CPU that ng point 1.6 %.	MPI call duration (ms)			
<pre>7 months ago 1855 7 months ago 1855 7 months ago 1857 7 months ago 1857 7 months ago 1857 7 months ago 1857 7 months ago 1859 7 months ago 1859 7 months ago 1859 7 months ago 1859 7 months ago 1850 7 months ago 1850 80.0%</pre>	0 - 189.9 (2.2 0 - 55.5 (1.9			
/ months ago 1088 } 7 months ago 1070 // 7 months ago 1070 // 7 months ago 1071 // The level synchronization algorithm is used after a level and all 7 months ago 1072 // corsers levels have been advanced to the same point in time. The 7 months ago 1072 // synchronization process consists of reads inc coarse data which is	MPI collectives (/s)			
ImputOutput Project Files Parallel Stack View 0 x Project Files 0 x 0 x Second (SHV) 0 x 0 x	0 - 16.543 (1.643.)			
SatTime SatTime 29 0% 0	0 - 11,656 (1,60.			
81 0 % 0 % 6 % 6 mm 20 2 2 0 %	CPU memory access (%			
	0 - 100 (16.8)			
For a particular time interval Δt	0 - 100 (16;			
one can evaluate code behavior	CPU floating-point (%)			
	0 - 100 (1.5 a			
	0 - 100 (1a			

Sample MAP performance analysis on Edison

0 0 0 X	/scratch1/scratchdirs/yunhe/aleamr/cymer_compare/cymer_SAMRAI3/Edison.CC.2d-opt.cymer-2d.64p_2013-09-11_22-57.map - Allinea MAP 4.1-32296	
Profiled: f.map.exe on 64 processes	Started Wed Sep 11 22:57.11 2013 Runtime 112s Time in MPI: 57%	Hide Metrics
Memory usage (M) 7.8 - 74.1 (55.5 avg) 50.7 - 66.2 (56.1 avg) MP1 call duration (ms) 0 - 189.9 (22.2 avg) 0 - 55.5 (1.9 avg) - 55.5		
MPI collectives (/s) 0 - 16543 (1,643.8 avg) 0 - 17,656 (1,603.3 avg) CPU memory access (%) 0 - 100 (16.8 avg) 0 - 700 (7.6 avg)	ander en	
CPU floating-point (%) 0 - 100 (1.5 avg) 0 - 100 (1 avg)		<u>ainisi the</u>
main C	<pre>Wurd manual and the set of t</pre>	
nput/Output Project Files Pa oject Files earch (Ctri+K)	alei Stack View	8>
air Time V 29 6 % 29 6 % 29 6 % 29 6 % 29 6 % 20 4 % 20	Fee	Alinea IMAP 4 1:3226

The source code associated with the the majority of communication or computation also can be displayed

🍯 AleLevelIntegrator. C 🔀 🛛 🦉	TimeRefinementInt	egrator. C 🖂
7 months	ago 1055	<pre>const tbox::Pointer<hier::patchhierarchy> hierarchy = base_hierarchy;</hier::patchhierarchy></pre>
7 months	ago 1056	
7 months	ago 1057	<pre>// d_skip_relax_interval is the number of Eulerian steps to do in between</pre>
7 months	ago 1058	<pre>// ALE steps to postpone mesh entanglement</pre>
7 months	ago 1059	if (d_skip_relax_interval>0)
7 months	ago 1060	
7 months	ago 1061	<pre>tbox::Array<double> old_times(finest_level -coarsest_level +1);</double></pre>
7 months	ago 1062 ⊞	for (int i=coarsest_level; i <= finest_level; i++) { [}
7 months	ago 1065	
7 months	ago 1066	standardLevelSynchronization(hierarchy, coarsest_level, finest_level,
ndimunitation and 7 months	ago 1067	svnc time, old times):

Code performance, e.g., time spent in communication, is problem dependent for multiphysics applications

- Decreasing domain size in strong scaling studies with increasing number of cores is common cause for increased communication
- Code performance/behavior can also depend on problem type
 - Cymer problem with tabular EOS has a 2X difference in ratio of communication to computation compared to shock physics problem
- Integration of multiple physics packages makes code optimization difficult
- However, doing "full physics" with same code/grid/domain, etc., generally gives much higher accuracy than code coupling

Summary

- Advanced multi-material rad/hydro/materials code developed for NIF is continuing use on a variety of problems
 - NIF Optics and Diagnostics
 - LMJ (France) new experiments
 - NDCX Warm Dense Matter
 - Cymer Laser-heated droplets
- Uses combination of ALE with AMR unlike traditional ICF simulation codes
- New models for surface tension are being integrated/studied
- Code runs on variety of HPC platforms, currently being optimized for NERSC Edison (Cray Cascade)

