Multimaterial Multiphysics Modeling of Complex Experimental Configurations

Alice E. Koniges

Lawrence Berkeley National Laboratory

Center for Beam Physics Seminar

February 14, 2014
Acknowledgements

- LLNL: ALE-AMR Development and NIF Modeling
 - Robert Anderson, David Eder, Aaron Fisher, Nathan Masters
- UCLA: Surface Tension
 - Andrea Bertozzi
- UCSD: Fragmentation
 - David Benson
- LBL/LLNL: NDCX-II and Surface Tension
 - John Barnard, Alex Friedman, Wangyi Liu
- LBL/LLNL: PIC
 - Tony Drummond, David Grote, Robert Preissl, Jean-Luc Vay
- Indiana University and LSU: Asynchronous Computations
 - Hartmut Kaiser, Thomas Sterling
Outline

- Modeling for a range of experimental facilities
- Summary of multiphysics code ALE-AMR
 - ALE - Arbitrary Lagrangian Eulerian
 - AMR - Adaptive Mesh Refinement
- New surface tension model in ALE-AMR
- Sample of modeling capabilities
 - EUV Lithography
 - NDCX-II
 - National Ignition Facility
- New directions: exascale and more multiphysics
 - Coupling fluid with PIC
 - PIC challenges for exascale
 - Coupling to meso/micro scale
Multiphysics simulation code, ALE-AMR, is used to model experiments at a large range of facilities.
NDCX-II facility at LBNL accelerates Li ions for warm dense matter experiments
The Cymer extreme UV lithography experiment uses laser heated molten metal droplets

- Technique uses a prepulse to flatten droplet prior to main pulse
- Modeling critical to optimize process
- Surface tension affect droplet dynamics

Diagram:
- Tin Droplets
- CO2 Laser
- Multilayer Mirror
- Wafer

Density

- **t = 150 ns**
- **t = 350 ns**
- **t = 550 ns**

CO2 Laser

U.S. Department of Energy

Office of Science

Berkeley Lab
Large laser facilities, e.g., NIF and LMJ, require modeling to protect optics and diagnostics.

The entire target, e.g., Si cooling rings and Al casing, must be modeled.
Wide range of targets require detailed simulations for debris and shrapnel assessments/mitigations.
Modeling of complex experimental configurations provided by the multiphysics ALE-AMR code

- 3D ALE hydrodynamics
- AMR (use 3X refinement)
 - With 6 levels, vol ratio 10^7 to 1
- Material interface reconstruction
- Anisotropic stress tensor
- Material failure with history
- Ion/laser deposition
- Thermal conduction
- Radiation diffusion
- Surface tension

ALE - Arbitrary Lagrangian Eulerian
AMR - Adaptive Mesh Refinement

ALE-AMR is an open science code and has no export control restrictions
Multimaterial ALE + AMR; including anisotropic stress tensor, surface tension, and sources

\[
\frac{D\rho}{Dt} = -\rho \nabla \cdot \vec{U} = -\rho U_{i,i}
\]

\[
\frac{D\vec{U}}{Dt} = \frac{1}{\rho} \nabla \cdot \sigma = \frac{1}{\rho} \sigma_{ij,j}
\]

\[
\frac{De}{Dt} = \frac{1}{\rho} V s : \ddot{\epsilon} - P \dot{\nabla} + \frac{1}{\rho} W_{\text{sources}} = \frac{1}{\rho} V (s_{ij} \ddot{\epsilon}_{ij}) - P \dot{\nabla} + \frac{1}{\rho} W_{\text{sources}}
\]

\[
W_{\text{sources}} = W_{\text{laser}} + W_{\text{ion}} + W_{\text{conduction}} + W_{\text{radiation}}
\]

\(\sigma\) is the total stress tensor (surface tension enters here), \(s\) is the deviatoric stress, and \(\dot{\epsilon}\) is the strain rate tensor with

\[
s_{ij} = \sigma_{ij} + P \delta_{ij} \quad \text{and} \quad \dot{\epsilon}_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right).
\]

We model both heat conduction and radiation transport based on the diffusion approximation.

Diffusion equation
\[\nabla \cdot \alpha \nabla u + \beta u = f \]

Heat Conduction
\[C_v \frac{T^{n+1} - T^n}{\Delta t} = \nabla \cdot D^n \nabla T^{n+1} - \sigma T^{n+1} \]
\[\alpha = D^n \]
\[\beta = -\sigma - \frac{C_v}{\Delta t} \]
\[f = -\frac{C_v}{\Delta t} T^n \]

Radiation Diffusion
\[\frac{E_R^{n+1} - E_R^n}{\Delta t} = \nabla \cdot \left(\frac{c}{\kappa_R} \right) \nabla E_R^{n+1} + \tilde{K}_p (B^n - cE_R^{n+1}) \]
\[C_v \frac{T^{n+1} - T^n}{\Delta t} = -\tilde{K}_p (B^n - cE_R^{n+1}) \]
\[\alpha = \lambda \left(\frac{c}{\kappa_R} \right) \]
\[\beta = -\tilde{K}_p c - \frac{1}{\Delta t} \]
\[f = -\frac{1}{\Delta t} - \tilde{K}_p B^n \]

The diffusion equations are solved using Finite Element Methods accounting for AMR issues

- We map the level representation to an equivalent composite mesh
- Special nodal basis functions are constructed to handle the C-F interface
Staggered mesh Lagrange+Remap built on a structured adaptive mesh refinement framework (SAMRAI)

Node Centered:
- Position
- Velocity

Cell Centered:
- Density
- Internal Energy
- Deviatoric Stress
- Plastic Strain
- History Variables
- Material
- Volume Fractions

Initial Configuration → Lagrange Step → Mesh Relaxation

Advection → Remapped → Reconstruction

AMR Coarsening/Refinement
Code has a flexible framework with a new surface tension model active during the Lagrange step.

Lagrange Step

Post-Lagrange Material Update

Relax/Remap Split Physics
Mixed cells

- Mixed cells have more than one material in them
- Volume fractions of each material in a mixed cell are tracked
- Interfaces are constructed using the volume fractions of nearby cells
- Cell based quantities are tracked for each material in the cell
- An average of each quantity is computed for hydro step

Density 1
Internal Energy 1
Temperature 1
Pressure 1
Strain 1
Stress 1

Density Average
Internal Energy Average
Temperature Average
Pressure 1 Average
Strain 1 Average
Stress 1 Average

Density 2
Internal Energy 2
Temperature 2
Pressure 2
Strain 2
Stress 2

Density 2
Internal Energy 2
Temperature 2
Pressure 2
Strain 2
Stress 2
Solid fragmentation obtained using a void insertion model plus interface reconstruction

Upon failure a small volume fraction of void is introduced into the cell

If the cell continues to grow the void enlarges to meet that growth

Volume fraction interface reconstruction allows voids to coalesce to form cracks
Fragmentation modeling validated against expanding ring experiment

- 15mm radius 1x1mm cross-section
- Magnetic field induces current
- Current heats and expands the ring
- Fragments are collected and counted

ALE-AMR simulations
- Use 5x5 elements by 600 elements
- Temperature from resistive heating
- Body force provides acceleration
- 6000 time steps to reach 45us

Number of calculated fragments in good agreement with data

ALE-AMR fragmentation validation experiments were conducted at the Jupiter Laser Facility (Janus laser).

Fragments in flight

Collection on glass

To measure the size and velocity of spalled fragments used low density aerogel in our Janus experiments.
Benchmarking using other codes and test problems

- 4-mm ring made of Al6061 surrounded by void
- Johnson-Cook strength and damage models

ALE-AMR

LS-DYNA

Plastic strain comparison
To model experiments on NDCX-II an ion deposition model was added to the code.

The Bethe-Block formulation for ion deposition in ALE-AMR is

\[- \frac{dE}{dx} = \left[\frac{4\pi e^2}{m_e c^2} \right] \left[\frac{N_0 \rho_T}{A_T} \right] \left[\frac{Z_{\text{eff}}^2}{\beta^2} \right] \left[(Z_T - \bar{Z})(\log \Lambda_B + R) + \bar{Z}G(\beta/\beta_e)(\log \Lambda_F + R/2) \right],\]

where \(\rho_T, A_T, Z_T, \) and \(\bar{Z} \) are the target density, target atomic weight, target atomic number, and target ionization state, respectively, and

\[\Lambda_B = 2m_e c^2 \beta^2 / \bar{I} \]
\[\Lambda_F = m_e c^2 \beta^2 / \hbar \omega_p \]
\[G(x) = \text{erf}(x) - x \text{d}[\text{erf}(x)]/\text{dx} \]
\[R = 2(\log \gamma) - \beta^2 \]
The ALE-AMR ion beam simulations are in excellent agreement with results from Hydra.

Density and temperature profiles at the completion of the 1 ns, 2.8 MeV, Li ion heating pulse along the radial center of an Al foil. Fluence of 20 J/cm².

The Hydra source is not open, which limits the ability to add new packages, e.g., AMR, surface tension, fragmentation models, and new multiphysics.

Diffuse interface models for surface tension can be coupled through diffusion solver framework

Droplet break-up using Cahn-Hilliard and divergent velocity field

Alternative surface tension methodology using volume fractions and height function

Force $f = \gamma \kappa \vec{n}$, where γ is the surface tension coefficient, κ is the curvature, and \vec{n} is normal

Calculate volume fraction of liquid in each zone and then calculate resulting height function

In 2D, we do a quadratic fit using 3 points $y = h_1 x^2 + h_2 x + h_3$ and $\kappa = 2h_1 (1 + h_2^2)^{-1.5}$

The curvature and normal are calculated in cells but the force like velocity are nodal so cell curvature is averaged to get node value

We have validated the surface tension model using different test cases with analytic solutions.

Ellipsoid oscillation

Rayleigh instability

Level of damping depends on the surrounding material.
We are exploring different ways to define the liquid vapor interface in the simulations.

Without surface tension

With surface tension

These simulations use a density criteria to define interface
ALE-AMR can be used to design future NDCX II experiments with sub ns high-energy pulses

- 2D simulation of thin (1 micron) foil at end of heating pulse (left) and at 2X the pulse duration (right)
- The longitudinal scale is exaggerated relative to the transverse
- The radius of the simulated target is 1 mm
- Simulations confirm heating within hydrodynamic expansion times

Proposed experiments on NDCX II can study a wide range of warm dense matter regimes

- Diagnostics could measure properties of hot expanding matter including droplet size, droplet rate formation, homogeneity of temperature, hydrodynamics instabilities growth rate, etc.
- New modeling techniques will allow the design and analysis of these experiments, which can include both solid and foam targets

Historical development of ALE-AMR: Traditional ALE (like Hydra) inappropriate for late-time

Traditional ALE

Newly Designed ALE-AMR
ALE-AMR was developed initially for late-time whole-target (not just hohlraum) NIF simulations.

The use of AMR with six levels of refinement is critical to model plasma plume expansion during laser heating.

Time = 220 ns
Sample NIF target where fragmentation modeling is needed for protection of optics/diagnostics

Simulation of NIF experiment using 1% of full laser energy with majority of target not vaporized

Time = 750 ns
Laser Pulse = 4 ns
Code instrumental in redesign of several experimental configurations to meet safety/performance standards

- Early experiments observed reflect of 1w light towards other beamlines
- Proposed modification was to replace flat Si supports with two Al rods
- Curved surface of rods would disperse the reflected laser light
ALE-AMR simulations of Al rods driven by plasma debris wind predicted optical damage

A redesigned using waffled Al foils covering Si surfaces was developed

~3 mm in 3 μs or ~1 km/s
Simulations showed that x-ray loading in initial design damaged thin samples and tilted redesign protects samples from x-rays and fast debris wind from target.

![Diagram showing x-ray and debris wind over time and density levels.]

- X-rays 6 J/cm²
- Prefilter and Sample
- Density (g/cm³)
- Prefilter and Sample
- Redesigned Sample Holder

- X-rays & Debris wind at ~30 km/s
- ~300 m/s
A redesign based on ALE-AMR simulations reduces material directed towards optics
Outline

• Modeling for a range of experimental facilities
• Summary of multiphysics code ALE-AMR
 – ALE - Arbitrary Lagrangian Eulerian
 – AMR - Adaptive Mesh Refinement
• New surface tension model in ALE-AMR
• Sample of modeling capabilities
 – EUV Lithography
 – NDCX-II
 – National Ignition Facility
• New directions: exascale and more multiphysics
 – Coupling fluid with PIC
 – PIC challenges for exascale
 – Coupling to meso/micro scale
Coupling ALE-AMR to a PIC code allows additional physics to be added to simulations

- For short-pulse wakefield experiments, e.g., BELLA, the plasma formation using capillary discharges or lasers could be modeled with ALE-AMR with results coupled to a PIC code
 - Foot on the short pulse can also cause hydro effects
- We have explored the idea of coupling ALE-AMR to a PIC code in a quasi continuous mode to model CO$_2$ pulse chains
 - Have 5-10 3 ps pulses with 10 ps spacing interacting with a gas jet
 - PIC to calculate hot electrons, energy deposition, etc. for 1$^{\text{st}}$ pulse
 - Couple PIC results to ALE-AMR to calculate hydro for next pulse

Note: PIC code Zuma coupled to Hydra for fast ignition studies
New PIC algorithm using MPI, OpenMP, and CAF gives performance improvement on 130K cores

(a) Classical hybrid MPI/OpenMP
(b) Extension – MPI thread teams for work distribution and collective MPI function calls
(c) Hybrid PGAS (CAF) / OpenMP allows ALL OpenMP threads per team to make communication calls to the thread-safe PGAS communication layer

Incorporated into GTS (Princeton Gyrokinetic PIC)
Parallel asynchronous event-driven simulations are a promising path to exascale for certain regimes

- Key for PIC: connect continuum to naturally event-driven particles
 - Continuum to discrete events can be enabled through multicore-partitioned pseudo-spectral methods using local FFTs
- ParalleX execution model (funded through the XPRESS project) is an excellent framework for this work using the Futures construct

As shown by Jean Luc at NUG 2014: Warp with new pseudo-spectral solver gives excellent strong scaling

Joint AFRD/CRD/NERSC LDRD on new spectral solver decomposition

- Near linear scaling up-to 65,636 cores on Hopper, 32,768 on Edison.
- Prototype FFT Maxwell solver implemented with numpy & pyMPI.
- Optimized implementation underway; 3-D to follow (T. Drummond, CRD).
AMR allows coupling to meso/micro scale

Hierarchical Material Model (HMM) Connects the various scales

Macro (mm - cm+)

Analytical Flow-Stress Models

Polycrystal Models: Texture evolution and Moderate Number of Grains/Zone

HMM Model Application: AMR Spatial Resolution from Grain to Sub-Grain

Single-Crystal Plasticity (May include phase transformations)

Meso (100µm)

Micro (µm)

Coupling to finer scales allows modeling of additional physics regimes

• In magnetic fusion devices understanding the plasma evolution and surface erosion dynamics following a plasma transient is critical
 – NDCX-II can be used to fusion wall materials
• High power impulse magnetron sputtering experiments
 – May include B field effects (either self-generated or external) in same fashion as other ALE codes

Summary

• Advanced multi-material rad/hydro/materials code ALE-AMR simulates complex experimental configurations such as
 – NIF optics and diagnostics
 – LMJ (France) new experiments
 – NDCX-II warm dense matter
 – Cymer laser-heated droplets
• Exascale and more multiphysics gives new opportunities
 – Coupling ALE-AMR with PIC, e.g., for BELLA
 – Programming models: overlap communication and computation
 – Development of asynchronous event-driven simulations
 • Continuum to discrete events can be enabled through multicore-partitioned pseudo-spectral methods
 – Coupling to meso/micro scale for new applications such as
 • Fusion wall material modeling
 • Modeling of magnetron sputtering