Workshop Goals & Process

Richard Gerber
NERSC User Services

March 19, 2013
Overview

• **We’re holding this review to ensure that**
 – you have the HPC resources you need to be successful in your research
 – NERSC can fulfill its mission to accelerate scientific discovery within the Office of Science

• **Your input helps NERSC**
 – create science-based justification for acquiring needed resources
 – focus on delivering the services that are important to you
 – make technology decisions

• **Result: NERSC can better provide what you need for your work**

• **This exercise benefits the Office of Science, FES, ASCR, NERSC, & you**
Process

• Collect and refine requirements for 2017
 – Case study worksheets
 – Discussions at this meeting
 – Post-meeting refinement of case studies

• NERSC editors (Richard & Harvey)
 – Check case studies for internal consistency and compare against historical trends
 – Aggregate requirements and summarize
 – Create draft report for you & FES to review

• Send final draft to DOE FES office for final approval
• Publish final report
Key Strategy

• Key is to tie computational, storage, and services needs to achievement of scientific goals – as specifically as possible.
 – Science -> codes & algorithms -> computation parameters
 -> resources needed
Quantitative Method

• **Quantitative requirements are very important**
 – Hours needed
 – Archival data storage needed
 – Disk storage needed

• **For hours and archival storage**
 – Requirements from this review are summed
 – Scaled to full FES need by the fraction of 2012 FES usage represented by case studies
 – Important: Associate each case study with 2012 NERSC repo or repos
 – New projects’ requirements added in separately

• **Like to do the same for Scratch and Permanent Disk**
 – Please state 2012 usage and 2017 need so we can create a ratio
• The unit of “Hour” is defined as 1 Hopper core hour.
• Please state your requirements in these units
 – How much computing will you need in multiples of a Hopper hour?
 – For this exercise, ignore the architecture – we will normalize this when future systems arrive, based on average application performance
• Give your best estimate for 2017 specifically
 – Remember that each year’s usage has historically been 2X the previous year’s
Data Storage Requirements

- **Archival storage estimate for 2017**
 - This is an aggregate number: Σ all years
 - Historical trend: 1.5-1.7 X / year

- **Scratch (temporary)**
 - What is the maximum you will need at any given time during 2017?
 - Not just what you will need for a single run

- **Permanent disk space**
 - What will you need for source code, data files or executables that will be constantly accessed and/or shared, etc.
Archival Storage

![Graph showing archival storage trends]

- FES Usage
- All NERSC
- All NERSC Trend
- FES Trend
- Round 1 Need
- All Round 1 Need

Data Stored (TB)

- 23 PB Used
- 700 TB Used
- 1.8 PB need
- 79 PB need
- 168 PB trend
- 4.1 PB trend
Logistics: Schedule

- Agenda on workshop web page
 - http://www.nersc.gov/science/requirements/FES
- Mid-morning / afternoon break, lunch
- Today: Case study presentations & discussions
- Self-organization for dinner
- Wednesday: overview, review, and reach agreement on key findings
- Report: FES Intro + PI case studies + NERSC summary
 - Final Case Studies due May 1
 - Richard / Harvey review
 - PI/DOE draft review June 15b
 - Final: August 1 (?)
- Final reports from 2009-2011 workshops (Target: 2014) on web
 - http://www.nersc.gov/science/requirements
Logistics: Presentation to Remote Participants

• We need your view graphs in advance
 – Email
 – Web download
 – USB stick

• The laptop at the front is sharing its screen with remote participants
 – We’ll load your presentations onto it
Questions?
National Energy Research Scientific Computing Center
Terms

• “Memory”
 – Volatile or “RAM”
 – Each “node” has a pool of RAM shared among all cores on the node
 – “Global memory requirement” means the sum of all the RAM on the nodes on which your job is running

• “Many Core”
 – “Processors” with 100s+ of “light-weight” cores
 – Slower clock speeds (energy efficient)
 – Not self-hosted; need a master CPU (today)
 – Special ways needed to write programs
 – GPUs and Intel Phi
Storage Terms

• **“Scratch storage”**
 – Temporary, purged after ~6 weeks
 – Fast: 10s – 100s of GB/sec
 – Not backed up
 – Access from a single system (at least at high performance)
 – Default quotas: ~ 10s TB + today

• **“Permanent storage”**
 – Not purged
 – Usually backed up (feasible into the future?)
 – Somewhat less performant
 – Maybe sharable
 – Center-wide access
 – Default quotas: ~10s GB (Home) to ~10-100 TB (Project) today

• **“Archival Storage”**
 – Permanent & long term
 – Much slower access time
 – No quotas: up to 10 PB today