Introduction to High Performance Computers

Richard Gerber
NERSC User Services
To use HPC systems well, you need to understand the basics and conceptual design
 – Otherwise, too many things are mysterious

Programming for HPC systems is hard
 – To get your code to work properly
 – To make it run efficiently (performance)

You want to efficiently configure the way your job runs

The technology is just cool!
Outline

• Terminology
• 5 main parts of an HPC system
 • CPUs
 • Nodes
 • Interconnect
 • Data Storage
 • HPC Systems
What are the main parts of a computer?

Boy Scouts of America Offer a Computers Merit Badge

Merit Badge Requirements

4. Explain the following to your counselor:

 a. The five major parts of a computer.

 ...
What are the “5 major parts”?

The Five Main Parts of a Computer | eHow.com
May 5, 2010 ... The Five Main Parts of a Computer. Computers may look very different, but the components installed are standard. The major difference among ...
www.ehow.com › ... › Install a Hard Drive - Cached

Answers.com - What are five parts of the computer system
Computers question: What are five parts of the computer system? The five parts of the computer are CPU, Monitor, Printer, Mouse and Keyboard.
wiki.answers.com › ... › Categories › Technology › Computers - Cached - Similar

Answers.com - What are the main parts of computers
What are five main parts of a computer? ram cpu hard disk drive optical ...
wiki.answers.com › ... › Technology › Computers › Computer Hardware - Cached

What are the main parts of a computer?
What are the main component parts of a computer? ... a processor, and inputs and outputs. Most computers could be represented with these five “components”.
Five Major Parts

<table>
<thead>
<tr>
<th>eHow.com</th>
<th>Answers.com</th>
<th>Fluther.com</th>
<th>Yahoo!</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>CPU</td>
<td>CPU</td>
<td>CPU</td>
<td>Motherboard</td>
</tr>
<tr>
<td>RAM</td>
<td>Monitor</td>
<td>RAM</td>
<td>RAM</td>
<td>Power Supply</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>Printer</td>
<td>Storage</td>
<td>Power Supply</td>
<td>Removable Media</td>
</tr>
<tr>
<td>Video Card</td>
<td>Mouse</td>
<td>Keyboard/ Mouse</td>
<td>Video Card</td>
<td>Secondary Storage</td>
</tr>
<tr>
<td>Motherboard</td>
<td>Keyboard</td>
<td>Motherboard</td>
<td>Motherboard</td>
<td>Sound Card</td>
</tr>
</tbody>
</table>

- **IO Peripherals**
• What is a computer?
 – It depends what you are interested in.
 • CPU, memory, video card, motherboard, ...
 • Monitor, mouse, keyboard, speakers, camera, ...
• We’ll take the perspective of an application programmer or a scientist running a code on an HPC system
• What features of an HPC system are important for you to know about?
5 Major Parts of an HPC System

1. CPUs
2. Memory (volatile)
3. Nodes
4. Inter-node network
5. Non-volatile storage (disks, tape)
Definitions & Terminology

- **HPC**
 - High Performance Computing
 - Scientific computing at scale

- **CPU**
 - Central Processing Unit
 - Now ambiguous terminology
 - Generic for “some unit that computes”
 - Context-sensitive meaning

- **Core (Intel has this reversed with CPU)**
 - Hardware unit that performs arithmetic operations
 - A CPU may have more than one core

- **Die**
 - An integrated circuit manufactured as a unit
 - Many cores may be included on a die

- **Socket**
 - A physical package that connects to a computer board
 - A socket package may be composed of multiple dies
• **FLOP:** Floating Point Operation
 – e.g., a+b, a*b+c
 – FLOPs/sec is a common performance metric
• **SMP**
 – Defn: Symmetric Multiprocessing
 – Common usage: Collection of processors that have (approx equal) access to a shared pool of memory in a single memory address space
• **FORTRAN**
 – Programming language popular with scientists, esp. in HPC
 – Unpopular with Computer Scientists (who may make fun of you)
• **MPP**
 – Massively parallel processing
 – You must be running an MPP code on an MPP computer to be considered doing HPC
• **Interconnect**
 – A high-performance data network that connects nodes to each other and possibly other devices
• **Memory**
 – Volatile storage of data or computer instructions

• **Bandwidth**
 – The rate at which data is transferred between destinations (typically GB/s)

• **Latency**
 – The time needed to initialize a data transfer (ranges from 10^{-9} to 10^{-6} secs or more)

• **SRAM: Static RAM (random access memory)**
 – Fast
 – 6 transistors store a bit
 • Expensive
 • Limits storage density

• **DRAM: Dynamic RAM (random access memory)**
 – Slower
 – 1 transistor, 1 capacitor stores a bit
 • Higher density, cheaper
 – Capacitor voltage needs to be refreshed
 • Additional power
A distributed-memory HPC system

Interconnect

Node

Main Memory

CPU CPU

Node

Main Memory

CPU CPU
A distributed-memory HPC system

Interconnect

Node
- Main Memory
 - CPU
 - CPU

Node
- Main Memory
 - CPU
 - CPU
A distributed-memory HPC system
1. CPUs
2. Memory (volatile)
3. Nodes
4. Inter-node network
5. Non-volatile storage (disks, tape)
• Modern computers are “stored program computers”
 – Conceived by Turing in 1936
 – Implemented in 1949 (EDVAC)
• Instructions are stored as data in memory
 – Read and executed by control units
• Arithmetic and logic
 – Performed by functional units separate from instruction control units
CPU (1 core)

Simplified View

- Shift
- INT
- FMA
- FP add
- FP mult
CPU (1 core)

Simplified View

FP Registers
- FMA
- FP add
- FP mult

INT Registers
- Shift
- INT

23
CPU (1 core)

Simplified View

Main Memory (Instructions & Data)

Memory Interface

L2 Cache

L1 Data Cache

L1 Instr. Cache

ST

LD

INT Registers

Shift

INT

FP Registers

FMA

FP add

FP mult

U.S. DEPARTMENT OF
Office of
Science

NERSC

28
There’s a lot more on the CPU than shown previously, e.g.

- L3 cache (~10 MB)
- SQRT/Divide/Trig FP unit
- “TLB” to cache memory addresses
- Instruction decode
- ...
Chip designers have added lots of complexity to increase performance

- **Instruction Parallelism**
 - Pipelined functional units (e.g. FPU)
 - Superscalar processors

- **Data Parallelism**
 - SIMD

- **Out of order & speculative execution**
Example: Pipeline Stages in an FPU

- Separate mantissa / exponent
- Multiply mantissas
- Add exponents
- Normalize result
- Insert sign
Pipelining

Dave Patterson’s Laundry example: 4 people doing laundry wash (30 min) + dry (40 min) + fold (20 min) = 90 min

- In this example:
 - Sequential execution takes 4 * 90min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.5 hours
- Bandwidth = loads/hour
 - BW = 4/6 l/h w/o pipelining
 - BW = 4/3.5 l/h w pipelining
 - BW <= 1.5 l/h w pipelining, more total loads
- Pipelining helps bandwidth but not latency (90 min)
- Bandwidth limited by slowest pipeline stage
- Potential speedup = Number pipe stages
Superscalar processors can execute more than one instruction per clock cycle

Example
- 2 FMAs
- 2 integer ops
- Multiple LOAD & STORE
Special registers can hold multiple words of data
A single instruction (e.g. floating point multiply) is applied to all the data at once
“SSE[2-4]” : Streaming SIMD Extension instruction set for x86
aka “Vectorization”
Latencies

- Main Memory (Instructions & Data): 100 ns
- Memory Interface
- L2 Cache: 10 ns
- L1 Data Cache
- L1 Instr. Cache
- ST
- LD
- INT Registers
- FP Registers
- FMA
- FP add
- FP mult

Simplified View
Modern HPC CPUs can achieve ~5 Gflop/sec per compute core
- 2 8-byte data words per operation
- 80 GB/sec of data needed to keep CPU busy

Memory interfaces provide a few GB/sec per core from main memory

Memory latency – the startup time to begin fetching data from memory – is even worse
Memory Bottleneck

1333 MHz
2 GB/sec

2 GHz
100 GB/sec

Simplified View

L1 Data Cache
L1 Instr. Cache
L2 Cache
ST
LD
FP Registers
FP add
FP mult
INT Registers
Shift
INT

Memory Interface
Main Memory (Instructions & Data)
• There are no more single-core CPUs (processors) as just described
• All CPUs (processors) now consist of multiple compute “cores” on a single “chip” or “die” with possibly multiple chips per “socket” (the unit that plugs into the motherboard)
• May not be “symmetric” wrt cores and functional units
• Increased complexity
• The trend is for ever-more cores per die
Moore’s Law

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”
Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra
Power Density Limits Serial Performance

- Concurrent systems are more power efficient
 - Dynamic power is proportional to V^2fC
 - Increasing frequency (f) also increases supply voltage (V) → cubic effect
 - Increasing cores increases capacitance (C) but only linearly
 - Save power by lowering clock speed
- High performance serial processors waste power
 - Speculation, dynamic dependence checking, etc. burn power
 - Implicit parallelism discovery
- More transistors, but not faster serial processors
Revolution in Processors

- Chip density is continuing increase ~2x every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Power is under control, no longer growing
Moore’s Law reinterpreted

- Number of cores per chip will double every two years
- Clock speed will not increase (possibly decrease)
- Need to deal with systems with millions of concurrent threads
- Need to deal with inter-chip parallelism as well as intra-chip parallelism
Example HPC CPU (4 core)
5 Major Parts of an HPC System

1. CPUs
2. Memory (volatile)
3. **Nodes**
4. Inter-node network
5. Non-volatile storage (disks, tape)
A “node” is a (physical) collection of CPUs, memory, and interfaces to other nodes and devices.

- Single memory address space
- Shared memory pool
- Memory access “on-node” is significantly faster than “off-node” memory access
- Often called an “SMP node” for “Shared Memory Processing”

- Not necessarily “symmetric” memory access as in “Symmetric Multi-Processing”
SMP Node – Each core has equal access to memory and cache

Example SMP Node
NUMA Node – Non-Uniform Memory Access

Single address space

Example NUMA Node

- L3
- L2
- L1

Main Memory (Instructions & Data)

Network Interface(s)

Compute

Compute

Compute
Example NUMA Node

NUMA Node – Non-Uniform Memory Access

Single address space
NUMA node (4 dies, 2 sockets)
5 Major Parts of an HPC System

1. CPUs
2. Memory (volatile)
3. Nodes
4. Inter-node network
5. Non-volatile storage (disks, tape)
• Most HPC systems are “distributed memory”
 – Many nodes, each with its own local memory and distinct memory space
 – Nodes communicate over a specialized high-speed, low-latency network
 – SPMD (Single Program Multiple Data) is the most common model
 • Multiple copies of a single program (tasks) execute on different processors, but compute with different data
 • Explicit programming methods (MPI) are used to move data among different tasks
• **Latency**
 – The startup-time needed to initiate a data transfer between nodes (time to send a zero-byte message)
 – Latencies between different nodes may be different
 – Typically ~ a few \(\mu \text{sec} \)

• **Bandwidth**
 – Data transfer rate between nodes
 – May be quoted as uni- or bi-directional
 – Typically ~ a few GB/sec in/out of a node

• **Bisection Bandwidth**
 – If a network is divided into two equal parts, the bandwidth between them is the bisection bandwidth
<table>
<thead>
<tr>
<th>Network</th>
<th>Bandwidth (GB/s)</th>
<th>Latency (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arista 10GbE (stated)</td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td>BLADE 10GbE (measured)</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Cray SeaStar2+ (measured)</td>
<td>6.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Cray Gemini (measured)</td>
<td>6.1</td>
<td>1.0</td>
</tr>
<tr>
<td>IBM (Infiniband) (measured)</td>
<td>1.2</td>
<td>4.5</td>
</tr>
<tr>
<td>SGI NumaLink 5 (measured)</td>
<td>5.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Infiniband (measured)</td>
<td>1.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Infinipath (measured)</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Myrinet 10-G (measured)</td>
<td>1.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>
• **Switched**
 – Network switches connect and route network traffic over the interconnect

• **Mesh**
 – Each node sends and receives its own data, and also relays data from other nodes
 – Messages hop from one node to another until they reach their destination (must deal with routing around down nodes)
Fat Tree Switched Network

Network bandwidth increases

Network Switches

Compute Nodes
Implementation Can Be Complex

128-way fat tree
Mesh network topologies can be complex

Grids
Cubes
Hypercubes
Tori
4-D Hypercube
5 Major Parts of an HPC System

1. CPUs
2. Memory (volatile)
3. Nodes
4. Inter-node network
5. Non-volatile storage (disks, tape)
Data is getting bigger all the time

- User I/O needs growing each year in scientific community
- For our largest users I/O parallelism is mandatory
- I/O remains a bottleneck for many users
- Early 2011 – Hopper: 2 PB /scratch (we thought that was huge!)
- New systems at TACC and NCAR have ~ 18 PB / scratch!!!!
File storage is the slowest level in the data memory hierarchy

- But it’s permanent
- Not uncommon for checkpoints / memory dumps to be taking a large fraction of total run time (>50%?)
- NERSC users say they want no more than 10% of time to be IO

FLASH

- Non-volatile solid-state memory
- Fast
- Expensive
- Some experimental systems use FLASH for fast IO
Latencies

- **Node Interconnect**: 1,000 ns
- **Main Memory (Instructions & Data)**: 100 ns
- **Memory Interface**: 10 ns
- **L2 Cache**: 1 ns
- **L1 Data Cache**: 1,000,000 ns
- **INT Registers**: 1,000,000 ns
- **FP Registers**: FM, A, FP add, FP mul
- **LD**: Load
- **ST**: Store

Disk Storage: 1,000,000 ns

CPU
Local vs. Global File Systems

• “Local” – Access from one system
 – Disk attached to node motherboard (PCI): rare in HPC
 – Network attached TB+ file systems
 • Via high-speed internal network (e.g. IB)
 • Direct from node via high-speed custom network (e.g. FibreChannel)
 • Ethernet
 • Activity by other users can impact performance

• “Global” – Access from multiple systems
 – Networked file system
 – Activity on other systems can impact performance
 – Useful for avoiding data replication, movement among systems
Archival Storage

- **Large, Permanent Storage**
 - Many PBs
 - Often tape storage fronted by a disk cache
 - HSM
 - Some systems may have Hierarchical Storage Management in place
 - Data automatically migrated to slower, larger storage via some policy
 - Often accessed via ftp, grid tools, and/or custom clients (e.g. hsi for HPSS)
HPC Operating Systems

- Most HPC OSs are Linux-Based
 - IBM AIX on POWER (also offers Linux)
- “Generic” Cluster Systems
 - Full Linux OS on each node
- Specialized HPC Systems (e.g., Cray XT series, IBM Blue Gene)
 - Full Linux OS on login, “services” nodes
 - Lightweight kernel on compute nodes
 - Helps performance
 - May hinder functionality (DLLs, dynamic process creation, some system calls may not be supported.)
HPC Systems
Outline

• Terminology
• 5 main parts of an HPC system
• CPUs
• Nodes
• Interconnect
• Data Storage
• HPC Systems
• **Listing the 500 most powerful computers in the world**

• **Yardstick: Rmax of Linpack**
 – Solve $Ax=b$, dense problem, matrix is random
 – Dominated by dense matrix-matrix multiply

• **Update twice a year:**
 – ISC’xy in June in Germany
 – SCxy in November in the U.S.

• **All information available from the TOP500 web site at:** www.top500.org
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIKEN</td>
<td>Fujitsu</td>
<td>K Computer</td>
<td>Japan</td>
<td>548,352</td>
<td>8,162</td>
<td>9.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPARC 64 2GHz, Tofu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>National SuperComputer Center in Tianjin</td>
<td>NUDT</td>
<td>Tianhe-1A</td>
<td>China</td>
<td>186,368</td>
<td>2,566</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NUDT TH MPP, Xeon 6C, NVidia, FT-1000 8C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Oak Ridge National Laboratory</td>
<td>Cray</td>
<td>Jaguar</td>
<td>USA</td>
<td>224,162</td>
<td>1,759</td>
<td>6.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cray XT5, HC 2.6 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>National Supercomputing Centre in Shenzhen</td>
<td>Dawning</td>
<td>Nebulosa</td>
<td>China</td>
<td>120,640</td>
<td>1,271</td>
<td>2.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GSIC, Tokyo Inst of Tech</td>
<td>NEC/HP</td>
<td>TSUBAME 3</td>
<td>Japan</td>
<td>73,278</td>
<td>1,192</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HP ProLiant, Xeon 6C, NVidia, Linux/Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DOE/NNSA/LANL/SN</td>
<td>Cray</td>
<td>Cielo</td>
<td>USA</td>
<td>142,272</td>
<td>1,100</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cray XE6, 8C 2.1 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NASA / Ames</td>
<td>SGI</td>
<td>Pleiades</td>
<td>USA</td>
<td>111,104</td>
<td>1,088</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SGI Altix ICE, Xenon 2.9 GHz, IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DOE/SC/LBNL/NERSC</td>
<td>Cray</td>
<td>Hopper</td>
<td>USA</td>
<td>153,408</td>
<td>1,054</td>
<td>2.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cray XE6, 12C 2.1 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Commissariat a l'Energie Atomique (CEA)</td>
<td>Bull</td>
<td>Tera 100</td>
<td>France</td>
<td>138,368</td>
<td>1,050</td>
<td>4.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bull bullix super-node S6010/S6030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DOE/NNSA/LANL</td>
<td>IBM</td>
<td>Roadrunner</td>
<td>USA</td>
<td>122,400</td>
<td>1,042</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BladeCenter QS22/LS21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 of top 5 are GPU-accelerated systems
“Graphics Processing Units” are composed of 100s of simple “cores” that increase data-level on-chip parallelism
Yet more low-level complexity to consider
 – Another interface with the socket (or on socket?)
 – Limited, private memory (for now?)
Programmability is currently poor
Legacy codes may have to be rewritten to minimize data movement
Not all algorithms map well to GPUs
What is their future in HPC??????