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1 Introduction

Modeling based on Arbitrary Lagrange Eulerian
(ALE) hydrodynamics has a long track record of pro-
viding valuable insights through simulation for exper-
imental programs. For instance hydrocodes have been
used extensively at the National Ignition Facility (NIF)
to model ignition target behavior during [1] and af-
ter the delivery of laser power [2,3]. Over the years,
the complexity of these codes has grown as model-
ing of additional physics packages has been introduced.
The computational cost of running these simulations
has also grown significantly in recent years as users
of these codes run more problems in 2D/3D with in-
creased resolutions. Many hydrocode developers are
introducing Adaptive Mesh Refinement (AMR) to their
ALE codes [4°7]. This feature has a significantly bene-
ficial impact on the computational cost of many simu-
lations by enabling the user to put increased resolution
where it really matters without refining the entire do-
main. However, AMR increases the complexity of the
hydro implementation and complicates the introduction
of physics packages. In particular most hydrocodes in-
clude physics packages modeling heat conduction and
radiation transport with the diÆusion equation. To use
AMR for simulations that include these physics pack-
ages, a diÆusion solver capable of supporting AMR is
needed.

Researchers have studied a variety of diÆerent ap-
proaches to solving the diÆusion equation in the context
of an AMR mesh with both orthogonal [8] and non-
orthogonal zones [9]. Each of these approaches has a

distinct set of advantages and disadvantages that merit
consideration for their suitability in particular simula-
tions. For instance a finite volume approach has been
proposed that has a discretization in line with what is
used by many hydrocodes, but only yields 1st order ac-
curacy [10]. A level based approach which solves the
diÆusion equations on each level and corrects the so-
lution with a sync solve has been studied as well, but
only yields 1st order accuracy as well with “zig-zag”
errors at the coarse fine boundary [11]. A support op-
erator method has been proposed that shows 2nd order
accuracy in convergence studies, but has significantly
angularly dependent error oscillations which may pose
problems for simulations that require high symmetry
specifications [12].

In this paper we present an approach to adding new
physical models using a finite element interface. To en-
able this approach, we solve various problems unique
to working with an ALE and AMR capable code [13].
One such issue is that finite element methods need a
global mesh with connectivity information to operate.
Typical AMR capable ALE hydrocodes are built on a
structured AMR approaches which represent all of the
field variables on a level based hierarchy of data with-
out global connectivity. Our method constructs a map-
ping between a level based representation and a flat-
tened composite mesh representation in order to bridge
this gap. All finite element matrix assembly operations
can be performed on a virtual composite mesh through
this mapping. Another issue unique to this application
is the presence of arbitrary coarse-fine interfaces intro-
duced by the AMR. Cells at these interfaces are treated
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with a transition element approach that maintains con-
tinuity across the hanging nodes, edges and faces [14].

To test these approaches we implement a nodal finite
element based diÆusion solver for ALE-AMR [15]. As
the name suggests, ALE-AMR is an AMR capable ALE
hydrocode built on SAMRAI (Structured AMR Ap-
plication Infrastructure) [16]. Physical models for heat
conduction and radiation transport are built upon this
diÆusion solver. These models introduce additional dif-
ficulties as temperature and energy in ALE hydrocodes
are typically represented as piecewise constant values
across the cell, and the quantities in our FEM solver
are represented as piecewise nodal bi/trilinear values
across the cell. However, good mappings between cell
centered and node centered temperatures exist in the
literature [17] and are used to resolve these di±culties.

The complexity of this approach necessitates rigor-
ous verification and validation eÆorts to ensure accu-
rate results. We apply a suite of unit tests to verify
the correctness of many finite element cases encoun-
tered at coarse fine boundaries. We also present an
L

2

error analysis of the solver which displays 2nd or-
der convergence. Additionally, we use the 2D dynamic
Barenblatt [18] solution to validate the heat conduction
module, and the Su-Olsen [19] solution to validate the
radiation module, again yielding 2nd order convergence
in the L

2

norm.

2 An ALE-AMR capable finite
element method

2.1 Transition elements

In addition to the translation between field represen-
tations, a family of finite elements is required to account
for all of the cases found in the composite mesh. Stan-
dard bilinear quads in 2D and trilinear hexes in 3D are

used for elements that are not at a coarse-fine bound-
ary. However, every possible permutation of face refine-
ments at coarse-fine boundaries requires a special tran-
sition element. For these elements we use a construc-
tion approach similar to the work found in Ref. [14].
The extra nodes on the faces due to the transition have
basis functions on that face with the value reaching 1
at that node and 0 at the other nodes on the face. In
the dimension not on a transition face the basis func-
tion simply varies linearly. The corner basis functions
in our transition elements are the standard linear func-
tions with fractions of the new transition basis functions
subtracted out in order to ensure that all basis func-
tions are 0 at all the transition nodes. This method of
construction yields a set of basis functions that satisfies
the interpolation property and also enforces continuity
across all the element faces. For example a 2D tran-
sition element with the top and right sides refined 3:1
would yield the following basis and basis gradients (see
Fig. 1)

Fig.1 An example of an element with 3:1 refinement tran-

sitions on the top and right sides. The numbers identify the

locations where the corresponding basis functions in the fol-

lowing basis take on a value of 1.0 and all other basis func-

tions take on a value of 0.0
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ALE-AMR typically employs a 3:1 refinement ratio
for all AMR operations. Odd refinement ratios are cho-
sen to make it possible to set up an n

d: correspondence
between nodes in fine and coarse representation. This
allows exact inversion of refinement by coarsening [4].
For a given refinement ratio there are 16 and 64 varia-
tions of transition elements in 2D and 3D respectively.
Each of these transition elements is constructed in the
manner above providing a representation for every pos-
sible combination of refined element faces.

2.2 Quadrature rules

The FEM requires quadrature rules to approximate
integrals of basis functions and their derivatives over
the elements. There are many standard quadratures
for linear quad and hex elements including Gauss-
Legendre quadratures and mass lumping quadratures.
However, such standard options are not readily avail-
able for the transition elements required for AMR sup-
port. The work on transition elements in Ref. [14] de-
scribes a compound Gauss-Legendre quadrature rule
that divides the element into sub-elements and applies
the standard Gauss-Legendre quadrature to each sub-
element. This provides the same integration accuracy
for the transition elements as the usual Gauss-Legendre
quadrature on a standard element.

Additionally, it is desirable to have an analogue to
the standard mass lumping quadrature for the tran-
sition elements. Mass lumping quadratures place the
integration points coincident with the nodes of an ele-
ment. This approach has a lower order of integration
accuracy, however, the mass matrices computed are di-
agonal which is useful in many situations. We construct
mass lumping quadrature rules for the family of tran-
sition elements by aligning the integration points with
the element nodes and then constraining the weights to
provide first order integration accuracy and maintain
the same symmetry in the weights as the element it-
self. For example a 2D transition element with the left
side refined would have 6 quadrature points coincident
with the 6 nodes in the element. Enforcement of the
following equation ensures first order accuracy

P
6

i=1

wif(qi) =
R

1

0

R
1

0

f(ª, ¥)dªd¥

f(ª, ¥) = aª + b¥ + cª¥ + d,

(9)

where each wi is a quadrature weight, each qi is a
quadrature point, and a through d are arbitrary con-
stants. Additionally we ensure that the weights that
are simply reflections of each other across the bottom
top symmetry line are equal. These constraints yield 6
equations too, but this linear system is only rank 5 leav-
ing 1 dimension of potential solutions to choose from.
We choose a sensible result that simplifies the book-
keeping for generating these weights. Applying this
process to the 2D family of 16 transition elements for
a refinement ratio of 3:1 results in the weights found in
Fig. 2.

Fig.2 The family of 3:1 transition elements in 2D. Circles

are placed at the locations of the element nodes, squares are

placed at the integration locations of the compound Gauss-

Legendre quadrature rules, and triangles are placed at the

integration locations of the transition element mass lump-

ing rules. The fractions indicate the weights associated with

the nearby quadrature points.

Fig.3 An example of blurred quadrature rule for the 3:1

transition element with the top and right sides refined. The

dotted lines are locations where the transition basis func-

tions have undefined derivatives. Mass lumping quadrature

would normally place points on the cut lines, so instead the

blurred quadrature splits them into 2 points placed on either

side of the cut.

These mass lumping quadrature rules are su±cient
to compute mass matrices, however, they cannot be
used to compute the stiÆness matrices. This deficiency
arises from the undefined derivatives at the node loca-
tions on the transition face of an element. This problem
can be overcome by averaging the results of the deriva-
tives taken in the limit from all directions within the
element. The piecewise definitions of the transition ba-
sis functions form distinct regions in the derivatives of
those functions separated by cut lines where no deriva-
tive exists. This allows the average limit to be com-
puted by averaging 2 derivative evaluations in 2D and
up to 4 derivative evaluations in 3D. Thus the quadra-
ture points on the transition side can be split into a
distinct number of quadrature points at the same loca-
tion with the derivatives evaluated in diÆerent distinct
regions adjoining that point. These “blurred” quadra-

111



Plasma Science and Technology, Vol.17, No.2, Feb. 2015

ture rules require a little extra bookkeeping in order to
decide which regions are adjoining and must be sam-
pled, but are otherwise the same as the usual transition
element mass lumping quadrature rules (see Fig. 3).

3 An AMR capable FEM diÆu-
sion solver

Using the composite mesh mapping and family of
transition elements outlined above it is possible to ap-
ply the FEM within the framework of ALE-AMR. We
now turn our attention to the solution of the following
diÆusion equation.

r · ±ru + æu = f. (10)

We employ the standard Galerkin approach and mul-
tiply it by a test function v and integrate over the the
domain ≠.

R
≠

(r · ±ru + æu)v d≠ =
R
≠

fv d≠. (11)

Continuing this approach we apply integration by parts
to transform the equation to the weak form and rear-
range some terms to yield the following.

Z

≠

(æuv ° ±ru ·rv) d≠ +
Z

@≠

±ru · nv dS

=
Z

≠

fv d≠. (12)

Now we can approximate u and v with the basis func-
tion constructed using standard 1st order nodal shape
functions and the transition shape functions described
in the preceding section. By assuming an insulating
boundary conditions the boundary term is identically 0
and we have the following

u =
X

j

uj¡j

v = ¡i
Z

≠

(æ
X

j

uj¡j¡i ° ±r
X

j

uj¡j ·r¡i) d≠ =
Z

≠

f¡i d≠,

(13)
where each uj is a degree of freedom and each ¡j is a
basis function that varies in space with local support.
Finally, linearity in the integral and diÆerential opera-
tors allows us to factor the

P
j uj coe±cients outside

the integrals and transform it to a matrix representa-
tion

Au = f
A = Mæ °K±

(MÆ)ij =
R
≠

Æ¡i¡j d≠
(KÆ)ij =

R
≠

Ær¡i ·r¡j d≠,

(14)

where M is the mass matrix, K is the stiÆness matrix.
A set of quadrature rules is needed to approximate the
integrals and construct the matrices. For the genera-
tion of mass and stiÆness matrices on standard quads

and hexes we use basic mass lumping integration rules.
These quadrature rules generate an elemental A matri-
ces that are inverse positive. For the transition elements
the transition mass lumping quadrature and the blurred
transition mass lumping quadrature rules are used for
the computation of M and K respectively, which also
yields inverse positive A matrices. Inverse positivity
is an important property for physical models such as
heat conduction since temperatures are expected to
stay above absolute zero. The element mass and stiÆ-
ness matrices are assembled into their global counter-
parts, forming a linear system that approximates the
diÆusion equation. That linear system is solved using
the HYPRE [20] GMRES solver with the Euclid [21] pre-
conditioner.

4 Heat conduction and radiation
transport modeling

Now that we have a diÆusion equation solver, both
heat conduction and radiation transport can be mod-
eled with relative ease. Heat conduction can be mod-
eled with the dynamic diÆusion equation

C

v

dT

dt

= r · D(rT )° ÆT,

(15)

where C

v

is the specific heat, T is temperature, D is
the heat conductivity, and Æ is the absorptivity of the
medium. This equation is time evolved implicitly, yield-
ing

C

v

T n+1°T n

¢t = r · DnrT

n+1 ° ÆT

n+1

± = D

n

æ = °Æ° Cv
¢t

f = °Cv
¢tT

n
,

(16)

where ±, æ, and f are the static diÆusion equation pa-
rameters from Eq. (10). This allows us to compute the
solution to T

n+1 from T

n on an AMR hexahedral mesh
by applying diÆusion solver constructed above to set up
and solve a matrix equation.

Similarly radiation transport can be modeled in the
diÆusion approximation as follows

dE

R

dt

= r · ∏( c
∑r

)rE

R

+ ∑

p

c(B ° E

R

)

C

v

dT

dt

= °∑

p

c(B ° E

R

),

(17)

where E

R

is the radiation energy represented at the
nodes, ∏ is a function used to impose flux limiting on
the diÆusion approximation, c is the speed of light, ∑

r

is the Rosseland opacity, ∑

p

is the Planck opacity, and
B is the blackbody intensity. These equations are im-
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plicitly time evolved, yielding

En+1
R °En

R
¢t = r · ∏( c

∑r
)rE

n+1

R

+ ∑̃

p

c(Bn ° E

n+1

R

)

C

v

T n+1°T n

¢t = °∑̃

p

c(Bn ° E

n+1

R

)
± = ∏( c

∑r
)

æ = °∑̃

p

c° 1

¢t

f = °En
R

¢t ° ∑̃

p

cB

n
,

(18)
where ∑̃

p

is a modification to Planck opacity which is
used to linearize the equation similar to that found in
Ref. [22] (see section 6). Again this allows us to time
advance both E

R

and T on an AMR mesh by using the
FEM diÆusion solver described above.

After E

R

and T are evolved through the above equa-
tions, the material temperatures and energies must be
updated to reflect the changes. However, in ALE-AMR
as in many hydrocodes the material temperatures and
energies are represented at the cell centers instead of
the nodal locations where they are being updated via
these heat conduction and radiation transport models.
Thus, to couple these physics modules into ALE-AMR
we need a method to map variables from nodes to cell
centers and back. We utilize the method described by
Ref. [17] in which changes in temperature are mapped
between nodes and cells. This approach defines projec-
tion integrals that map cell centered fields to nodes and
node centered fields to cells as follows

Ui = F

cell!node

(U
cells

) =
P

c Uc

R
≠c

¡idV

Uc = F

node!cell

(U
nodes

) =
R
≠c

P
i Ui¡idV

R
≠c

dV,

(19)
where i and c are the node and cell indices respectively
for the generic field quantity U . At the end of the hydro
step the diÆerence in cell temperatures is computed.

¢Tc = T

n+1

c ° F

node!cell

(Tn
i ). (20)

Using this temperature cell diÆerence and specific heat
capacity obtained from an EOS C

v,c an energy diÆer-
ence and specific heat on the nodes is computed

¢ei = F

cell!node

(ΩC

v,c¢Tc)
C

v,i = F

cell!node

(ΩC

v,c),
(21)

which are used to update the nodal temperature to the
post hydro step time.

T

§
i = T

n
i + ¢ei/C

vi. (22)

In some cases this process can create unphysically ex-
treme temperatures that are to be filtered out using
the minimum and maximum temperature values found
in the surrounding pre-mapped nodes. This filtering
procedure does not upset energy conservation because
it only aÆects the pre-diÆusion nodal temperatures and
only the post-diÆusion diÆerences are captured for map-
ping to cells [17].

T

§
i = max[Ti,min

,min(Ti,max

, T

§
i )]. (23)

The heat conduction and radiation transport models
are then applied to update T

§ and E

R

to the n + 1

time. Finally, the changes in the nodal temperature
must be mapped back to the cells and used to update
the internal energy of the cells as follows.

¢T

0
c = F

node!cell

(Tn+1

i ° T

§
i ), en+1

c = e

§
c + C

v,c¢T

0
c.

(24)
These diÆerence mappings make it possible to trans-
fer energy between nodes and cells without introducing
large amounts of artificial diÆusion. Applying the map-
pings to the transition elements at coarse fine bound-
aries is straightforward. The extra nodes in the transi-
tion elements simply add extra values and basis func-
tions to sum over in Eq. (19). The integrals are eval-
uated using the Gauss-Legendre quadratures and their
compound extensions previously discussed.

It should be noted that these solutions are implicit
in nature and have no convergence limits on time step.
However, non-linearities introduced into the diÆusion
coe±cient due to temperature dependence in the equa-
tions of state can cause the accuracy of the method
to plummet if time steps are too large and cause large
changes of temperature in a single step. We limit our
time steps based on the maximal expected change in
energy in a single time step. We only allow time steps
large enough to change energy by some fraction, usually
within 0.05-0.1.

5 Verification and validation

5.1 Unit testing

There are many variations of transition elements and
quadrature rules used in this method. This significantly
complicates the development of the code to represent
them and increases the chance of introducing errors.
Given such issues, we believe it prudent to do verifica-
tion work to provide confidence in this new code. The
approach we take is to provide a suite of unit tests that
ensure various properties known about our finite ele-
ments and their quadrature rules for every element type
in the family of transition elements. For the transition
elements we test the interpolation property and the val-
ues of the basis function gradients at the center of the
cell. We also ensure that the quadrature rules have all
positive weights and that the sum of the weights of each
quadrature rule is 1. Also, we test the transition ele-
ments together with the quadrature rules by forming el-
ement mass matrices on random elements and ensuring
that they are all diagonal. Finally, we test the inverse
positivity of the dynamic diÆusion operator ÆM + K

by forming these element matrices on high aspect ratio
zones and ensuring that the operator is an M -matrix.
Executing these unit tests gives us confidence that the
transition element code that we have constructed oper-
ates as expected from design. The unit tests are also
very useful when changes are made to the code, as they
catch errors that cause one or more of the tests to fail
and provide clues about the problem.
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5.2 Static diÆusion error convergence

The static diÆusion solver introduced in section 3 re-
lies on some unique approaches with untested accuracy.
As such, it is important to measure the convergence rate
of the solver to make sure it is in line with the 2nd order
convergence expected from a linear FEM solution of the
diÆusion equation. We measure the convergence rate of
this solution using a standard L

2

error convergence test
on the following Laplace equation.

r2

u = 0 on ≠ = {0 ∑ (x, y) ∑ 1}
u(x, 0) = x

u(x, 1) = 1° x

u(0, y) = y

u(1, y) = 1° y.

(25)

A random mesh is generated with the right side re-
fined using a ratio of 3:1 in order to test the transition
elements (see Fig. 4). The entire random mesh is then
refined 3 more times yielding a total of 4 meshes. Each
of these meshes is used to approximate the solution to
the simple Poisson problem defined above. These ap-
proximations are then compared to the analytical result
to obtain the L

2

norm of the error. The slope of 2 in
the error norms, as shown in Fig. 4, indicates that the
method has 2nd order convergence. This is in line with
the convergence rates of the other methods in ALE-
AMR.

Fig.4 Convergence test of a Poisson problem on a random-

ized mesh with transition elements. The meshes displayed

are the first two meshes used in the convergence test. The

asterisks on the plot indicate the L2 errors of the Poisson

solution on each of the 4 successive meshes. The line fit

has a slope of 1.95, indicating 2nd order convergence to the

exact solution

5.3 Dynamic heat conduction results

The integration of the heat conduction into ALE-
AMR relies on another new technique. The cell/node
mapping approach mentioned above has been utilized

before, but not in combination with the transition ele-
ments and quadrature rules outlined previously in this
paper. It is also useful to examine the behavior of the
solver with non-linearities introduced into the diÆusion
coe±cient. For these reasons we present validation for
the Barenblatt problem [18] in 2D. This problem begins
with a non-zero energy inserted into a single point in a
background of zero-energy. The material is an ideal gas
with constant specific heat and a conductivity model of
the following form

D = d

0

Ω

a
T

b
, (26)

where d

0

, a, and b are parameters of the model. In the
simulation we insert the non-zero energy into the bot-
tom left cell of the domain and avoid reflections oÆ the
top and right boundaries by using a large domain. In
particular we use an 81£ 81 uniform mesh to model a
3 cm£3 cm domain. The boundary conditions are all
Neumann type which introduces quarter plane symme-
try at the lower left corner. Aside from the aforemen-
tioned hot spot, the field begins with a uniform tem-
perature of 0 K and a density of 1 g/cm3. The energy
in the hot spot is allowed to diÆuse through heat con-
duction for 1 µs and the results of such simulations are
compared to the exact results found in Ref. [18]. For
these simulations we set the conductivity parameters to
the following constants: d

0

= 1.0, a = 1, and b = 1 or 3.
We limit the time step by a maximum energy change
fraction in any cell which we vary from 0.05 to 0.8 in
numerous simulations. The results of these simulations
are given in Fig. 5.

Fig.5 The results of the ALE-AMR simulation of the

Barenblatt problem with b = 3 and an energy change limit

of 0.8 (top). The simulated results are quite well converged

to the exact solution. The L2 errors for the results on the

mesh lines and diagonally across the zones are 0.0078 and

0.0084 respectively. The relative L2 error measurements for

the b = 1 and b = 3 cases as a function of the fractional

energy change limit for ¢t (bottom). Even with a large

energy change limit of 0.8 the relative error is less than 3%
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Additionally, we are interested in the AMR perfor-
mance of the heat conduction module. We run simula-
tions of the Barenblatt problem similar to those above
in order to measure the AMR performance. These sim-
ulations use the same 3 cm square domain, and at the
finest level the mesh has 243£243 elements. In one case
we add a coarser level and allow the AMR to coarsen the
mesh in places where the second diÆerences of the cell
energies are low, and in the other case we maintain the
fine zones throughout the mesh. This process occurs at
every time step so the mesh is coarsened and refined
based on our energy criterion. We set the conductivity
parameters to d

0

= 1, a = 1, and b = 3, and we use the
large energy change limit of 0.8. The relative L

2

error
is computed for each simulation and the wall clock sim-
ulation time is recorded. We report the results of this
procedure in the following table. The recorded values
show that enabling a second AMR level yields a 2.5x

performance improvement in this case with small loss
in solution accuracy. The results of all the Barenblatt
simulations indicate that the diÆusion solver has rea-
sonable levels of accuracy for large time steps and good
AMR performance. As such, this heat conduction im-
plementation is a good choice for use in ALE-AMR and
other ALE hydrocodes like it.

Table 1. AMR performance for the Barenblatt problem.
Enabling a second AMR level in the problem reduces the
wall clock time by a factor of 2.5 while maintaining similar
error levels

Num. levels Rel. L2 err. Wall clock time (s)
1 0.008 1840
2 0.009 755

5.4 Dynamic radiation results

We are also interested in modeling radiation trans-
port with the diÆusion equation. As is the case with the
heat conduction modeling, the radiation diÆusion im-
plementation also requires cell/node mapping of tem-
peratures. Additionally, this implementation intro-
duces radiation energy as a new nodal field variable.
Since this radiation energy is a per volume quantity,
special care must be taken to update the nodal val-
ues during the Lagrange and remap ALE steps. Time
steps are set to limit the maximum fractional energy
change, but they also must be limited in order to avoid
overstepping the radiation/thermal temperature equi-
librium Eq. (17) represent. Finally, many radiation
diÆusion problems require mixed boundary conditions
which are treated with special boundary elements in
our diÆusion solver.

We test the implementations of these unique at-
tributes with the classic Su-Olsen solution [19] to the
Marshak diÆusion problem. A pseudo-1D simulation is
enabled by using a 2D domain and applying Neumann
boundaries at the top and bottom. In particular we
use a 5 cm domain with uniformly sized elements rang-
ing from 0.025 cm to 0.1 cm in 4 diÆerent simulations.

The simulations are run with the retardation parameter
" = 1 and terminated at the dimensionless time ø = 1.
The results of these simulations are compared with the
benchmark results listed in tables found in Ref. [19] and
a refinement study is included in the following Fig. 6.
The slope of the line in the refinement study indicates
2nd order convergence as expected.

Fig.6 The results of ALE-AMR simulations of the Su-

Olsen problem with " = 1, ø = 1, and 2 diÆerent resolu-

tions (top). The circles on the plot represent the analytical

values obtained from the Su-Olsen paper. The L2 error as

a function of resolution (bottom). The asterisks represent

the L2 error values obtained with simulations on succes-

sively refined meshes, and the line represents the best fit to

these points. The line fit slope of 2.19 indicates 2nd order

convergence

6 Conclusions and future work

We have presented and implemented an approach to
adding heat conduction and radiation transport physics
packages to an AMR capable ALE hydrocode. These
capabilities are built on an AMR enabled FEM diÆu-
sion solver that we designed for this purpose. This dif-
fusion solver was shown to have 2nd order convergence.
Also, we ran test problems with the heat conduction
and radiation transport modules. The performance in
these test problems indicated 2nd order convergence to
analytic solutions. Finally our implementation showed
significantly improved performance with AMR enabled.

There are two avenues of future research that we
believe would be particularly fruitful. The first, and
more straightforward, of the avenues would be to use
the existing transition element and composite mesh
FEM framework to solve other equations that repre-
sent interesting physics. For instance building a bihar-
monic equation solver on this framework would be a
reasonable approach for modeling of surface tension ef-
fects in an ALE code with AMR. The second, more
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fundamental, avenue of research would be to broaden
the family of transition elements to include edge-based
and face-based basis function. This would open up a
path to AMR for finite element based models that use
edge-based and face-based basis functions such as those
found in computational electromagnetics.

Appendix

Linearization of blackbody intensity

The equations representing diÆusion based radiation
transport have a nonlinearity in the matter-radiation
energy coupling terms that require special attention.
This is easily seen with the 4th order dependence in
the following temperature update equation.

C

v

(Tn+1 ° T

n) = °¢tc∑

p

(Bn+1 ° E

n+1

R

)

B

n+1 =
4æ

SB

c

(Tn+1)4.
(27)

The equations in Eq. (18) include the following lin-
earization of the blackbody intensity which eliminates
the need for nonlinear iterations. The fundamental ap-
proximation in this procedure is to hold the derivative
of the blackbody intensity with respect to temperature
constant over the course of the time step, thus:

dB

n+1

dT

º dB

n

dT

=
16æ

SB

c

(Tn)3

B

n+1 º 1

4

dBn

dT T

n+1

.

(28)

By applying this approximation to Eq. (27) and solving
for T

n+1 the following results.

T

n+1 º CvT n
+¢tc∑pEn+1

R
Cv+

1
4

dBn
dT ¢tc∑p

B

n+1 º 4CvBn
+

±Bn

±T ¢tc∑pEn+1
R

4Cv+

dBn
dT ¢tc,∑p

.

(29)

Finally, we can use this approximation for blackbody
intensity to write the linearized form of the radiation-
matter coupling term.

¢tc∑

p

(Bn+1 ° E

n+1

R

) º ¢tc∑̃

p

(Bn ° E

n+1

R

)

∑̃

p

= 4Cv∑p

4Cv+

dBn
dT ¢tc∑p

.

(30)
By applying this procedure we have removed the 4th
order dependence on the current temperature and elim-
inated the need for a computationally expensive nonlin-
ear iteration. It is also worth noting that by using this
approach in the limit of large ¢t, the matter and radia-
tion energies approach equilibrium with B

n+1 = E

n+1.
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