Using the Cray Compiler at NERSC

- Usability and Performance

Zhengji Zhao, Megan Bowling and Jack Deslippe
NERSC User Services
Cray Quarterly, July 25, 2012

#“‘/"\"""1,} U.S. DEPARTMENT OF 1
(%)); E N ERGY Oﬁlce of National Energy Research
N Science Scientific Computing Center

Lawrence Berkeley
SN (SIA AW National Laboratory

Motivation and outline

* Provide feedback to Cray about how Cray compiler is
used at NERSC, focusing on its usability and
performance

* Report issues encountered with compilation,
execution, validity check and performance, using a
set of materials and chemistry application codes
Instead of using the standard N6 application
benchmark codes

Number of links

120000

100000

80000

60000

40000

20000

0

Total links: 224459

Cray Intel GNU PGI
Compilers

Compiler usage on H
(2012-05-15 - 2012-07

100%

- 90%
- 80%
- 70%
- 60%

50%

- 40%
- 30%
- 20%
- 10%

0%

1. Automatic Library Tracking Database
(ALTD, developed by NICS) tracks the
library usage both at compile and
run time by intercepting the “Id” and
“aprun” commands, respectively.

2. 6/21/2012 in production on Hopper

Among the 224459 successful links, only 9% of them used
the Cray compiler

Compiler usage
(2012-05-15 — 2012-07-

450 100%
400 - 90%
otal users: - 80% .
g o0 [e s 9% of unique users who
é - 60% .
5 250 oo compiled codes on Hopper
2 200 L % .
£ 150 o used Cray compiler.
100 - 20%
50 - - 10%
o Cray Intel | GNU | PGI o
Compilers
12000 100%
- 90%
10000 T Total codes: 12515 - 80%
£ 000 \ 4% of unique binaries were
5 oo / \ s compiled with Cray compiler.
/ b
2000 ; h ig:f
0 T T T 0%

Cray Intel GNU PGI
Compilers

Difficulties encountered when
compiling codes using Cray compiler

Many application codes do not support the Cray
compiler in their configure script — configure fails

Cray compiler often fails to compile the codes that all
other compilers, PGI, GNU, Intel, compile fine.

— Pros: good for new code development, less buggy codes;
can help finding bugs in the codes .

— Cons: difficult to use with existing codes

Atomics operation is not supported in Cray compiler

Compilation exa

diff -r vasp.5.2/aedens.F ../orig/vasp.5.2/aedens.F
< TYPE (grid_3d), TARGET :: GRID_SOFT,GRIDC_,GRIDUS

o) Failed with Cray
> TYPE (grld_3d) GR|D_SOFT,GR|DC_,GR|DUS compiler —works with

all others on Hopper

diff -r vasp.5.2/dfast.F ../orig/vasp.5.2/dfast.F
< USE dfast,only : NBLK

Failed with Cray
USE dfast compiler — works with
all others on Hopper

Compilation example:

diff -r vasp.5.2/hamil.F ../orig/vasp.5.2/hamil.F
< SUBROUTINE PW_CHARGE_TRACE(WDES1, CHARGE, CR1, CR2)

> SUBROUTINE PW_CHARGE_TRACE(WDES1, CHARGE, NDIM, CR1, CR2

Cray compiler

diff -r vasp.5.2/subrot_Ir.F ../orig/vasp.5.2/subrot_Ir.F

< WO%CW(:,:,NK,ISP), WO%CPROJ(:,:,NK,ISP), DEG_CLUSTER(NK,ISP)
%DEG_CLUSTER, .FALSE., .FALSE.)

> WO0%CW(1,1,NK,ISP), WO%CPROJ(1,1,NK,ISP), DEG_CLUSTER(NK,ISP)
%DEG_CLUSTER, .FALSE., .FALSE.)

Failed with Cray
compiler — works with

all others on Hopper

3500
3000
2500

2 2000 -
[}

£ 1500

1000 -
500 A

1200

1000

800

600

Time (s)

400

200

VASP (Fortran) Compalation Time

Cray

Intel GNU PGl
Compilers

LAMMPS (C++) Compilation Time

Ipal

Cray

PGI

Intel GNU
Compilers

Cray compiler take
compil

Compile options

Cray
Intel
GNU
PGI

Default; -O —ipa0
-03, -fast

-03, -ffast-math
-fastsse, -03, -Mvect

Intel compiler takes longest
time to compile

Cray compiler ge

VASP Executable Size

800

_. 700
[24]
S 600 -
& 500 -
(7]
2 400 -
Q0
£ 300 -
=]

¢ 200 -
w
100 | .
0 T T T T 1
PGl

Cray Intel GNU
Compilers

LAMMPS Executable Size

160
140

[uny
N
o

100
80
60
40
20

Executable Size (MB)

Cray Intel GNU PGI
Compilers

Run time and validity issues

* VASP failed validity check

— Failed to run for 2 of the test cases (out of 3)

— If remove all compiler optimizations, then code ran fine

— “Randomly” lowered the optimization levels for the “relevant
routines, and then the code passed the other two test cases.

* Quantum Espresso generated wrong results similarly
— Had to lower a specific routine’s compiler optimization levels.

e NWChem failed to run

— Error

MA internal error: MAi_inform_base: invalid datatype:
307307478419244017

MA internal fatal error: MA_sizeof: unable to set sizes of FORTRAN
datatypes

”

VASP (5.2.12)

* Program Description
— VASP is a Fortran code that performs atomic scale materials
modeling.
* Options explored

— Compilers and optimization flags used
* PGI: -fastsse, -03, -Mvect
* |ntel: -O3, -fast
* GNU: -03, -ffast-math
* Cray: -O—ipa0

e Tested with 3 test cases

— Algorithms: DIIS-RMM, Davidson, Hybrid
— Concurrencies: 48, 96, 144; 384,768; 48,72

400
350
RMM-DIIS iteration scheme
300 -
= 250 -
> H PGl
200 -
§ H |ntel
= 150 -
HGNU
100 -
B Cray

50 A

48 Cores 96 Cores 144 Cores
Number of cores

Test case 1:
— NERSC user provided test case:
— A 155 atom system

— The time to complete first 20
electronic steps were measured

Cray compiler out
compilers with mediu

600

Davidson iteration scheme

. 400

")

:’— H PGl
300

g H |ntel

[
200 B GNU
100 B Cray

48 Cores 96 Cores 144 Cores

Number of cores

Compiler | Performance gain relative
to PGI compiler (%)

Intel -12%

GNU -6% ~ +1%
PGl default
Cray 5.8%

VASP runs faster by 5.8% when switching to Cray compiler.

800
RMM-DIIS +Davidson
700 - . .
iteration scheme
~— 600
e
5 500
b} H PGl
& 400
H ntel
Ec.’ 300 nte
£ HGNU
= 200 -
B Cray
100
0 -
384 768
Number of cores
Test case 2

— NERSC user provided
— A 660 atom system

— Time for first 4 electronic steps

Cray compiler ou
compilers for lar

Compiler

Intel
PGI
GNU

Cray

Faster than the default
compiler by (%)

-5%
default
4%

11%

VASP with Cray compiler runs faster by up to 11% for the larger

test case.
13

1200

1000 -
— 800 -
< PGl
@ 600 -
g H Intel
|—

400 - HGNU

200 - H Cray

0 -
48 72 96
Number of cores
Test case 3

— Provided by NERSC users
— Hybrid calculation for a 105 atom system

Compiler performanc
on jobt

Compiler Faster than PGI
compiler by (%)

Intel -6%

Cray, GNU 0%

PGI default

VASP with Cray compiler runs at the same speed as PGl compiler

for the hybrid jobs

14

Performance increase c

VASP 0% -12% ~-5% -6% "~ 4% 0%~ 11% Cray
QE 0% 2% -1% -7% Intel
NAMD 0% 14% 18% Failed GNU
LAMMPS* 0% 5%~ 17% -5% ~ 9% -6% ~ 4% Intel
BerkeleyGW 0% 0% -13% -8% PGl/Intel
NWChem 0% 12% ~34% -9% ~ 28% Failed Intel

oGl 11.9.0 Blue: max performance increase

Red: max performance decrease

GNU 4.6.2

Intel 12.1.2.273 *) LAMMPS data updated with newer versions of compilers,

Cray cce/8.0.1 pgi/12.4.0, intel/12.1.4.319, cce/8.0.5, gcc/4.6.3

15

Summary

* Cray compilerisin low usage on Hopper

e Cray compiler is proven to be difficult to use for
existing third party application codes.

* The performance varies, a good performance is
observed with VASP (Fortran code), but not for other
codes.

* We do not recommend changing the compiler
default on Hopper to Cray compiler at any time soon
until the usability issues are resolved or reduced to

some extent.

zz217@hopperl2:~> gsub -l -| mppwidth=24 -q debug -V
gsub: waiting for job 1975244 .sdb to start
gsub: job 1975244.sdb ready

ModuleCmd_Switch.c(172):ERROR:152: Module 'PrgEnv-cray' is currently not loaded
22217 @nid04755:~>

