Using The Batch System: Univa Grid Engine (UGE) at The JGI

JGI Training
February 10, 2012

Ilya Malinov, Katie Antypas, Jay Srinivasan
Consolidated Computation Cluster

Benefits:

- Surge to higher core count
- Better utilization
- Easier maintenance
CRIUS: HARDWARE

- 450 “commodity” nodes:
 - SGI, 8 CPU Cores, 48GB RAM
- 46 “commodity” nodes:
 - Supermicro, 8 CPU Cores, 48GB RAM
- 20 “high memory” nodes:
 - SUN, 8 CPU Cores, 144GB RAM
- 8 “high memory” nodes:
 - SGI, 24 CPU Cores, 254GB RAM
- 4 “high memory” nodes:
 - SUN, 32 CPU Cores, 512GB RAM
- 1 “high memory” node:
 - DELL, 32 CPU Cores, 1024GB RAM
- 1 “high memory” node:
 - DELL, 48 CPU Cores, 256GB RAM
- 2 “high memory nodes:
 - IBM, 1024GB RAM
Using UGE (Univa Grid Engine)

- Jobs run in queues
- Queues have instances on compute nodes
- Each queue instance has slots on compute nodes
- Currently the following queues are available:
 - bg.q
 - debug.q
 - normal.q
 - short.q
 - system.q
 - timelogic.q

- Source the environment: /opt/uge/crius/uge/crius/common/settings.(c)sh
Queue Structure

<table>
<thead>
<tr>
<th>Queue Name</th>
<th>Purpose</th>
<th>Node Limit</th>
<th>Memory Limit</th>
<th>Wall Clock Limit</th>
<th>Job Limit</th>
<th>Slot Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug.q</td>
<td>Fast turnaround for debugging purposes</td>
<td>3</td>
<td>48GB</td>
<td>8 h</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>normal.q</td>
<td>Production workflows</td>
<td>-</td>
<td>-</td>
<td><= 12h*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><= 12h*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 12h</td>
<td>-</td>
</tr>
<tr>
<td>short.q</td>
<td>Short and light jobs</td>
<td>Comm. nodes</td>
<td>8GB</td>
<td>1h</td>
<td>-</td>
<td>1/node</td>
</tr>
<tr>
<td>bg.q</td>
<td>Long, low priority jobs</td>
<td>-</td>
<td>8GB</td>
<td>-</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>timelogic.q</td>
<td>Gives access to Timelogic accelerated blast nodes</td>
<td>Comm. nodes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/node</td>
</tr>
</tbody>
</table>

* - Default is 12 hours.
** - 150 “commodity” nodes and all high memory nodes.
Requesting a Queue

Queues are requested via resources:

- bg.c --> bg.q
- debug.c --> debug.q
- normal.c --> normal.q
- short.c --> short.q
- timelogic.c --> timelogic.q

normal.q is now the default queue, *i.e.*, it does not to be explicitly requested.

The following resources will be deprecated: long.c, crius_bg.c, crius_high.c, crius_normal.c, galaxy_bg.c, galaxy_high.c, galaxy_normal.c, medium.c,

Example: `qsub -l debug.c <...>`
Support for Parallel And Multi-CPU Jobs

Available parallel environments:
- pe_1
- pe_2
- pe_3
- pe_4
- pe_5
- pe_6
- pe_7
- pe_8
- pe_16
- pe_fill
- pe_rrobin
- pe_slots

Nomenclature:
- pe_<N>, where N is either an integer number of processes per host to use, or a special word:
 - “fill” - all available slots on an node are allocated before dispatching to the next host.
 - “rrobin” - a single slot per node is allocated on all available nodes. If more slots required, allocation starts with the first node again.
 - “slots” - all processes will be allocated on a single node

Usage: pe_<N> <xN>, where xN – number of total processes requested.

Example: qsub -pe pe_8 32 <...>
Array Jobs

- Array Job is an array of identical tasks being differentiated only by an index number. The index numbers are exported to the job tasks via the environment variable `SGE_TASK_ID`.
- Usage of array jobs is highly encouraged, as it allows to schedule hundreds of tasks with minimal load on the scheduler.
- To specify array jobs, a '-t' option should be passed to `qsub` in the form of `-t x[–y[:z]]`, i.e., task index range may be a single number, a simple range of the form x-y or a range with a step size x-y:z.

Example: `qsub -t 2-10:2 <...>`
“Fair Share”, or Share-based scheduling, insures each project receives its allocated share of CPU time over a period of time.

Shares are adjusted for each scheduling interval.

The default project for new users is jgi.p.

If a user is allowed to use more than one project, s/he can specify a desired project during job submission.

Example: `qsub -P gbp.p <...>`

<table>
<thead>
<tr>
<th>Project</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotation.p</td>
<td>7.8</td>
</tr>
<tr>
<td>comparative.p</td>
<td>11.9</td>
</tr>
<tr>
<td>gbp.p</td>
<td>16.9</td>
</tr>
<tr>
<td>img.p</td>
<td>13.6</td>
</tr>
<tr>
<td>jgi.p</td>
<td>7.8</td>
</tr>
<tr>
<td>mep.p</td>
<td>1.7</td>
</tr>
<tr>
<td>pi.p</td>
<td>3.1</td>
</tr>
<tr>
<td>plant.p</td>
<td>27.1</td>
</tr>
<tr>
<td>rnd.p</td>
<td>10.1</td>
</tr>
</tbody>
</table>
Other Useful Options for `qsub`

- `r {y|n}` – indicates if this job should be re-scheduled in case of node crash. The default on crius' queues is 'yes'. If this job was re-scheduled, an environment variable `RESTARTED` is set.
- `R {y|n}` – indicates whether a reservation for this job should be done. Default: 'no'.
- `j {y|n}` – indicates whether to combine STDERR and STDOUT of this job in one file. Default: 'no'.
- `b {y|n}` – indicates whether the job being submitted is a binary file. Default: 'no'.
- `V` – specifies that all environment variables active within the `qsub` utility be exported to the context of the job.
- `v <variable>[=value][,...]` – defines or redefines the environment variable(s) to be exported to the execution context of the job.
- `w {e|w|n|p|v}` – specifies a validation level applied to the job to be submitted: e[error], w[arning], n[one], p[oke], v[erify]. Default: 'none'
Requestable Resources (Complexes)

- `<queue-type>.c`: If not specified, normal.q queue is assumed.
- `ram.c`: If not specified, 5G per slot is assumed. Will be deprecated in favor of `h_vmem`.
- `h_vmem` – specifies maximum amount of memory all job's processes are allowed to use. This job will be killed if attempted to exceed.
- `s_vmem` – same as `h_vmem`, but will send USR1 signal.
- `h_rt` – specifies execution time hard limit. Currently, default is 12 hours. If runtime is exceeded, the job is killed. The shorter the requested time, the more chances there will be for the job to be dispatched sooner by means of the backfilling mechanism.
- `s_rt` – specifies execution time soft limit. USR1 signal is sent. Can be trapped with a script to log necessary information.
- `hostname (h)` – specifies a compute node on which this job should run
Useful Commands

- `qsub` – submit a job
- `qalter` – modify parameters of an already submitted job, which is not yet running
- `qdel` – delete a job
- `qmod` – modify a job: suspend, clear error, re-schedule, etc.
- `qhold` – put/remove hold on a job
- `qlogin` – submit an interactive login session (currently not available on crius)
- `qhost` – show information about execution nodes
- `qstat` – show various runtime information about the cluster, queues, jobs, etc.
- `qconf` – show cluster configuration
Additional Information

- Manual pages (man):
 - qsub, qlogin, qalter
 - qdel
 - qhost
 - qmod
 - qconf
 - qhold
 - qstat
 - sge_intro
 - sge_pe
 - complex

- Documentation
 - http://docs.jgi-psf.org/UGE
 - Coming soon: http://www.nersc.gov/users/computational_systems/phoebe-crius
Mailing List

All information regarding the clusters, i.e., updates, changes, maintenance, etc., is distributed via the mailing list:

sg@lists.jgi-psf.org

Self-subscription service is at http://lists.jgi-psf.org
Queue Wait Times (All jobs)

Late-Dec – Early Feb

Number of Jobs

<table>
<thead>
<tr>
<th>Wait Time</th>
<th>Number of Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1Hr</td>
<td>4,000,810,000</td>
</tr>
<tr>
<td>1-2Hrs</td>
<td>485,837</td>
</tr>
<tr>
<td>2-4Hrs</td>
<td>725,314</td>
</tr>
<tr>
<td>4-8Hrs</td>
<td>921,622</td>
</tr>
<tr>
<td>8-16Hrs</td>
<td>1,034,560,000</td>
</tr>
<tr>
<td>16+Hrs</td>
<td>1,407,630,000</td>
</tr>
</tbody>
</table>
Queue Wait Times (By Project)

Late-Dec – Early Feb
Queue Wait Times (Array jobs)

Late-Dec – Early Feb

<table>
<thead>
<tr>
<th>Wait Time</th>
<th>Number of Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1Hr</td>
<td>1.61811e+06</td>
</tr>
<tr>
<td>1-2Hrs</td>
<td>443432</td>
</tr>
<tr>
<td>2-4Hrs</td>
<td>687164</td>
</tr>
<tr>
<td>4-8Hrs</td>
<td>897171</td>
</tr>
<tr>
<td>8-16Hrs</td>
<td>1.00498e+06</td>
</tr>
<tr>
<td>16+Hrs</td>
<td>1.38841e+06</td>
</tr>
</tbody>
</table>
Queue Wait Times (Single jobs)

Late-Dec – Early Feb
System and Share Utilization

- We collect metrics that track system utilization, share usage and queue wait-times
- We are finalizing the web display of these graphs, and they will be accessible to all users from the NERSC webpages
Share Utilization

Daily Share by Group

Generated 02/10/2012 09:39:06
- mep: 0.07 (avg 0.07)
- rnd: 0.05 (avg 0.05)
- comparative: 0.00 (avg 0.00)
- gbp: 0.03 (avg 0.02)
- annotation: 0.00 (avg 0.00)
- img: 0.18 (avg 0.18)
- jgi: 0.66 (avg 0.67)
- plant: 0.00 (avg 0.00)

Weekly Share by Group

Generated 02/10/2012 09:39:56
- mep: 0.07 (avg 0.09)
- rnd: 0.05 (avg 0.08)
- comparative: 0.00 (avg 0.00)
- gbp: 0.03 (avg 0.03)
- annotation: 0.00 (avg 0.00)
- img: 0.18 (avg 0.22)
- jgi: 0.66 (avg 0.59)
- plant: 0.00 (avg 0.00)