
Linaro Forge
Forge Training For Debugging and Profiling

Rudy Shand - Field Application Engineer

Agenda
• 09:00am Welcome
• 09:10am Ensuring Program Correctness with Linaro DDT
• 10:10am Break
• 10:20am Performance Engineering with Linaro Performance Tools
• 11:20am Wrap up

HPC Development Solutions from Linaro
Best in class commercially supported tools for Linux and
high-performance computing (HPC)

Debug
Linaro DDT

Profile
Linaro MAP

Analyse
Linaro

Performance Reports

Linaro Forge

Performance Engineering for any architecture, at any scale

Linaro Forge

The de-facto standard for HPC development
● Most widely-used debugging and profiling suite in HPC
● Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities
● Powerful and in-depth error detection mechanisms (including memory debugging)
● Sampling-based profiler to identify and understand bottlenecks
● Available at any scale (from serial to exascale applications)

Easy to use by everyone
● Unique capabilities to simplify remote interactive sessions
● Innovative approach to present quintessential information to users

An interoperable toolkit for debugging and profiling

DistromacOS Windows

Supported Platforms

Arm (AArch64)AMD/Intel (x86-64) Power8 (ppc64le)

RHEL 7+ SLES 15 Ubuntu 20.04+

Open MPI MPICH IBM Spectrum MPIHPE MPIIntel MPI …

CPU Architecture

AMD ROCm NVIDIA CUDA GPU Accelerator

GCCACfLCCE NVHPC IBM XLIntel Compiler ROCm Compiler

MPISlurm PALS

Python

Linaro DDT Debugger Highlights

The scalable print alternative Stop on variable change Static analysis warnings on
code errors

Detect read/write beyond array
bounds

Detect stale memory
allocations

GPU Debugging
● Support both AMD and Nvidia GPUs
● Debug simultaneously on GPU and CPU

● Look and feel exactly the same
● Main Features work in GPU  

● Key (additional) GPU features:
● Kernel Progress View
● GPU thread in parallel stack view
● GPU Thread Selector
● GPU Device Pane

● For NVIDIA’s nvcc compiler, kernels must be
compiled with the -g -G flags

● Module load PrgEnv-nvidia
● Run GPU examples in a GPU batch job

Python Debugging
• Debug Features

• Sparklines for Python variables
• Tracepoints
• MDA viewer
• Mixed language support 

• Improved Evaluations:
• Matrix objects
• Array objects
• Pandas DataFrame
• Series objects 

• Python Specific:
• Stop on uncaught Python exception
• Show F-string variables in “Current Line” display
• Mpi4py, NumPy, SciPy

ddt --connect srun -n 8 python3
%allinea_python_debug% ./mmult.py

The Forge GUI and where to run it

mydesktop mycluster-login

Compute Nodes

SSH

qsub

DDT provides a powerful GUIs that can be run in a variety of configurations.

Hands on Setup
Remote System
Host perlmutter
 Hostname perlmutter.nersc.gov
 user <username>

linaro-forge-training.tar.gz
 
module load forge  

Local Machine
Install Forge https://www.linaroforge.com/downloadForge 

Forge userguide
 

https://www.linaroforge.com/downloadForge
https://docs.linaroforge.com/23.1/html/forge/forge/index.html

Hands on session
System Info
https://docs.nersc.gov/systems/perlmutter
Perlmutter:

• AMD EPYC 7763 CPUs
• NVIDIA A100 GPUs

https://docs.nersc.gov/systems/perlmutter/running-jobs/
 Interactive Session:

• salloc --nodes 1 --qos interactive --time 00:30:00 --constraint cpu --account=ntrain7 --reservation=forge_cpu
• salloc --nodes 1 --qos interactive --time 00:30:00 --constraint gpu --account=ntrain7 --reservation=forge_gpu

Scripting:
• <linaro-forge-training>/scripts

https://docs.nersc.gov/systems/perlmutter
https://docs.nersc.gov/systems/perlmutter/running-jobs/

Remote connection to Perlmutter

Hands on session

Build and run debug examples
Use default Perlmutter modules

build deadlock, simple and split programs 
cd <linaro-forge-training>/correctness/debug
make  

run simple example with ddt
ddt --connect srun -n 4 ./simple
 
offline-debugging 
sbatch <linaro-forge-training>/scripts/submit-job.sh

Linaro Performance tools

Gather a rich set of data
● Analyses metric around CPU, memory, IO, hardware counters, etc.
● Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
● Analyses data and reports the information that matters to users
● Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
● Define application behaviour and performance expectations
● Integrate outputs to various systems for validation (eg. continuous integration)
● Can be automated completely (no user intervention)

Characterize and understand the performance of HPC application runs

Relevant advice  
to avoid pitfalls

Accurate and
Astute insight

Commercially supported
by Linaro

Linaro Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency
System
usage

Bugs
Correct application

Analyze before you optimize
Measure all performance aspects.
You can’t fix what you can’t see.
Prefer real workloads over artificial tests.

I/O
Discover lines of code
spending a long time in I/O.
Trace and debug slow access
patterns.

Workloads
Detect issues with balance.
Slow communication calls and
processes.
Dive into partitioning code.

Communication
Track communication performance.

Discover which communication calls
are slow and why.

Memory
Reveal lines of code bottlenecked by
memory access times.
Trace allocation and use of hot data
structure

Cores
Discover synchronization
overhead and core utilization
Synchronization-heavy code and
implicit barriers are revealed

Vectorization
Understand numerical intensity
and vectorization level.
Hot loops, unvectorized code and
GPU performance reveleaed

Verification
Validate corrections and
optimal performance

The Performance Roadmap
Optimizing high performance applications

Improving the efficiency of your parallel
software holds the key to solving more
complex research problems faster.

This pragmatic, 9 Step best practice guide,
will help you identify and focus on
application readiness, bottlenecks and
optimizations one step at a time.

Key : Linaro Forge  
Linaro Performance Reports

Performance Improvement

© 2008–2018 by the MIT 6.172 Lecturers

i, j, k
i, j, k

i, k, j
i, k, j

MAP Capabilities
MAP is a sampling based scalable profiler
● Built on same framework as DDT
● Parallel support for MPI, OpenMP, CUDA
● Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
● Stack traces
● Augmented with performance metrics

Adaptive sampling rate
● Throws data away - 1,000 samples per process
● Low overhead, scalable and small file size

Linaro MAP Source Code Profiler Highlights

Find the peak memory use Fix an MPI imbalance Remove I?O bottleneck

Improve memory access Restructure for vectorizationMake sure OpenMP regions
make sense

GPU Profiling
Profile
● Supports both AMD and Nvidia GPUs
● Able to bring up metadata of the profile
● Mixed CPU [green] / GPU [purple] application
● CPU time waiting for GPU Kernels [purple]
● GPU Kernels graph indicating Kernel activity

 
GUI information
● GUI is consistent across platforms
● Zoom into main thread activity
● Ranked by highest contributors to app time

Python Profiling
19.0 adds support for Python
● Call stacks
● Time in interpreter

Works with MPI4PY
● Usual MAP metrics

Source code view
● Mixed language support

map --profile srun -n 2 python3 ./diffusion-fv-2d.py

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

Matrix Multiplication example

Build and run matrix multiplication example
 
https://docs.linaroforge.com/23.1.1/html/forge/worked_examples_appendix/mmult/analyze.html
 
Build / Debug C and Fortran Examples
make -f mmult.makefile DEBUG=1

 ddt --connect srun -n 8 ./mmult_c
 ddt --connect srun -n 8 ./mmult_f
 
Build / Debug Python Examples
module load python  
make -f mmult_py.makefile

 ddt --connect python3 %allinea_python_debug% ./mmult.py -s 3072
 
Offline profile
sbatch <linaro-forge-training>/scripts/submit-job.sh

https://docs.linaroforge.com/23.1.1/html/forge/worked_examples_appendix/mmult/analyze.html

~

Thank you
rudy.shand@linaro.org

mailto:rudy.shand@linaro.org

