Optimizing a Lattice Boltzmann
Code for the Xeon Phi

Carlos Rosales and Kent Milfeld
{milfeld,carlos}@tacc.utexas.edu

1TRCC TEXAS ADVANCED COMPUTING CENTER

LBM:

v

Collision

v

PostCollision

v

Stream

v

PostStream

Code Structure

Local calculation. Most of the math takes place here.
Boundary corrections for outward f values
Move collision data along velocity directions

Boundary corrections for inward fand g

1TRCC

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Original Code

 Multiphase LBM based on Free Energy
formulation

e Single 4D array for f and single 4D array for g
* Double-buffered to avoid issues in Stream
* Parallelized using MPI

* Some common optimizations present
— Fused collision-stream step for g
— Neighbors calculated instead of read from array
— Bidirectional MPI exchanges used

1TRCC TEXAS ADVANCED COMPUTING CENTER

Setting Expectations

e Performance ratios between one mic and two
E5-2680 sockets:

— In FP Ops : 1074 / 345 = 3.1x
— In Memory BW (approx) : 180 / 80 = 2.2x

* So, the best acceleration | can expect is:

— 3.1x for fp bound code
— 2.2x for memory bw bound code

* And most likely | will get something in between
these two results.

1TRCC TEXAS ADVANCED COMPUTING CENTER

Code Port

e Parallelized outermost loop (in z direction)
— Innermost loop not broken — vectorization
— Must be careful with number of threads

* When using multiple threads per core, if zmax /
OMP_NUM _THREADS not a multiple of the number of
cores performance will be degraded

e Performance was lacklustre:
— 1 Phi~ 1.25 E5-2680 sockets (SNB)

1TRCC TEXAS ADVANCED COMPUTING CENTER

VTUNE Bandwidth Reports

* OK, | cheated. | know the algorithm, so | know it is BW heavy...

 And | checked with Vtune using one of the predefined collections: knc-
bandwidth

* The code was using a total of 74.4 GB/s
* Thatis 46.5% or the 160 GB/s achievable by us, mere mortals, on a SE10P

* That is not particularly good. An algorithm like this should be using more
bandwidth that that (in the host Sandy Bridge CPUs the code achieves
over 97% of the available node memory BW)

* The memory access pattern of the code must be terribly inefficient

— This could be in part due to all the effort the compiler is putting into
vectorizing operations that are likely pulling data from non-contiguous
locations in memory — lots of gather operation.

* A change to SOA may improve things

1TRCC TEXAS ADVANCED COMPUTING CENTER

Why Change to SOA?

 Having two 5D arrays to store the data is inefficient in
terms of data reads because each time an element of
the array is accessed most of the additional cache line
data read is discarded

 The hope is that by having individual velocity arrays we
will throw away less data each time we execute a read

* And also that the compiler will be able to vectorize the
main loops with a smaller setup overhead

1TRCC TEXAS ADVANCED COMPUTING CENTER

From AOS to SOA

g(,j,k,vel,buf)— g,(m),g,(m),...,gs(m) m=i+NX-(j+NY -k)+offset

fa, j,k,vel,buf) — f,(m), fi(m),....fs(m) m=i+NX-(j+NY - k)+offset

* This maintains a doubly-buffered array but in a much
simpler form

* New code uses higher BW: 105.2 GB/s (~41% higher)

* Phi performance increases by 2x
* Phiis now 2.5x FASTER than a dual socket CPU node

* Does all this improved performance come from the
increased BW? Unlikely. More later...

1TRCC TEXAS ADVANCED COMPUTING CENTER

AQOS to SOA Pain

* | made all changes manually

* The process is prone to errors because of the 5D nature of the original
arrays, particular when applying boundary conditions.

* Long and tedious, multiple mistakes had to be corrected along the way
e Later on, still more mistakes had to be addressed for the hybrid version

 Worth it? Yes — The code is now setup to take advantage of the next
generation of processors.

e Alternatives: While | have not used it, the Kokkos library claims that the
whole AOS/SOA issue can be avoided. For an alternative point of view:

https://github.com/kokkos/

1TRCC TEXAS ADVANCED COMPUTING CENTER

Vectorization Efficiency

112 MLUPS 26 MLUPS
57 MLUPS 24 MLUPS

Intel 15 gives estimates between 3 and 5 speedup for vectorization of the main
loops in the code

* Excellent agreement between measured and predicted improvement

* Reported ratio is across whole program execution, and some sections are certainly
not vectorizable due to dependencies.

e Some sections are not vectorized at all for the AOS version

* |In this case SOA allows for additional vectorization and reduces overhead
MLUPS=M-Lattice update/s

1TRCC TEXAS ADVANCED COMPUTING CENTER

Latency Sensitivity Study

* Using Vtune Amplifier XE 2013 Update 7

8.142 105.2
8.373 74.4

 So we may have moved our issue from a problem with achieving a significant
fraction of the available BW to a more latency-bound problem!

* One of the main issues affecting the performance of this code is that in either SOA
or AOS there are over 50 independent memory streams in flight

 The sheer number of memory streams prevents effective prefetching and

e Solutions to this problem involve a significant refactoring of the code, which we
are reticent to make right now

1TRCC TEXAS ADVANCED COMPUTING CENTER

