Introduction to Archival Storage at NERSC

Nick Balthaser
Storage Systems Group

February 15, 2013
Agenda

• Objectives
 – Describe the role of archival storage in a tiered storage strategy
 – Log into the NERSC archive
 – Store and retrieve files from the archive
 – Avoid common problems

• Archive Basics
 – What is an archive?
 – Why should I use one?
 – Features of the NERSC archive

• Using the NERSC Archive
 Note: Unix/Linux command-line familiarity required
 – How to log in
 – Storing and retrieving files with HSI
 – Storing and retrieving directories with HTAR
 – Avoiding common mistakes

• Questions, Problems, Further Reading
• Hands-on Examples
Archive Basics
What is an archive?

• **Long-term storage of permanent records and information**
 – Often data that is no longer modified or regularly accessed
 – Storage time frame is indefinite or as long as possible
 – Archive data typically has, or may have, long-term value to the organization

• **An archive is not a backup**
 – A backup is a copy of production data
 – Value and retention of backup data is short-term

• **A backup is a copy of data. An archive *is* the data.**
Why should I use an archive?

• **Data growth is exponential**

 Cumulative Storage by Month and System

 - **File system space is finite**
 - 80% of stored data is never accessed after 90 days
 - The cost of storing infrequently accessed data on spinning disk is prohibitive
 - Important, but less frequently accessed data should be stored in an archive to free faster disk for processing workload
Why should I use an archive (continued)?

- **Archives are an important component of a tiered data management strategy**
 - Align value and access patterns of data with media on which it is stored:
 - Flash: IO intensive workloads
 - Disk: primary storage
 - Tape: backup, long-term storage (archive)

- **Tape still the lowest cost/GB**
 - 30 year shelf life
 - Energy savings over disk
 - Lower admin costs
 - Lower bit error rate (BER)

- **Typical use cases at NERSC include:**
 - Long-term storage of very large raw data sets
 - Good for incremental processing
 - Long-term storage of result/processed data
 - Backups (e.g. global scratch purges)
Features of the NERSC archive

• **NERSC implements an “active archive”**
 – NERSC archive supports parallel high-speed transfer and fast data access
 • Data is transferred over parallel connections to the NERSC internal 10Gb network
 • Access to first byte in seconds or minutes as opposed to hours or days
 • The system is architected and optimized for ingest

• **The archive uses tiered storage internally to facilitate high speed data access**
 – Initial data ingest to high-performance FC disk cache
 – Data migrated to enterprise tape system and managed by HSM software (HPSS) based on age and usage

• **The NERSC archive is a shared multi-user system**
 – Shared resource, no batch system. Inefficient use affects others.
 – Session limits are enforced
The NERSC archive is a Hierarchical Storage Management system (HSM)

- Highest performance requirements and access characteristics at top level
- Lowest cost, greatest capacity at lower levels
- Migration between levels is automatic, based on policies
Using the NERSC Archive
How to Log In

- **The NERSC archive uses an encrypted key for authentication**
 - Key placed in `~/.netrc` file at the top level of the user’s home directory on the compute platform
 - All NERSC HPSS clients use the same `.netrc` file
 - The key is IP specific. Must generate a new key for use outside the NERSC network.

- **Archive keys can be generated in two ways**
 - Automatic: NERSC auth service
 - Log into any NERSC compute platform using ssh
 - Type “hsi”
 - Enter NERSC password
 - Manual: https://nim.nersc.gov/ web site
 - Under “Actions” drop down, select “Generate HPSS Token”
 - Copy/paste content into `~/.netrc`
 - `chmod 600 ~/.netrc`
Storing and Retrieving Files with HSI

- HSI provides a Unix-like command line interface for navigating archive files and directories
 - Standard Unix commands such as `ls`, `mkdir`, `mv`, `rm`, `chown`, `chmod`, `find`, etc. are supported

- FTP-like interface for storing and retrieving files from the archive (put/get)
 - Store from file system to archive:
 - `bash-3.2$ hsi
 A:/home/n/nickb-> put myfile
 put 'myfile' : '/home/n/nickb/myfile' (2097152 bytes, 31445.8 KBS (cos=4))`
 - Retrieve file from archive to file system:
 - `A:/home/n/nickb-> get myfile
 get 'myfile' : '/home/n/nickb/myfile' (2010/12/19 10:26:49 2097152 bytes, 46436.2 KBS)`
 - Full pathname or rename file during transfer:
 - `A:/home/n/nickb-> put local_file : hpss_file`
 - `A:/home/n/nickb-> get local_file : hpss_file`
Storing and Retrieving Directories with HTAR

• HTAR stores a Unix tar-compatible bundle of files (aggregate) in the archive
 – Traverses subdirectories like tar
 – No local staging space required--aggregate stored directly into the archive

• Recommended utility for storing small files

• Some limitations
 – 5M member files
 – 64GB max member file size
 – 155/100 path/filename character limitation
 – Max archive file size* currently 10TB

• Syntax: `htar [options] <archive file> <local file|dir>`
 – Store
 - `bash-3.2$ htar -cvf /home/n/nickb/mydir.tar ./mydir`
 – List
 - `bash-3.2$ htar -tvf /home/n/nickb/mydir.tar`
 – Retrieve
 - `bash-3.2$ htar -xvf /home/n/nickb/mydir.tar [file...]`

* By configuration, not an HPSS limitation
Avoiding Common Mistakes
Small Files

• Tape storage systems do not work well with large numbers of small files
 – Tape is sequential media—tapes must be mounted in drives and positioned to specific locations for IO to occur
• Mounting and positioning tapes are the slowest system activities
 – Small file retrieval incurs delays due to high volume of tape mounts and tape positioning
 – Small files stored periodically over long periods of time can be written to hundreds of tapes—especially problematic for retrieval
• Use HTAR when possible to optimize small file storage and retrieval
• Recommend file sizes in the 10s – 100s of GB
Large Directories

- Each HPSS system is backed by a single metadata server
 - Metadata is stored in a single SQL database instance
 - Every user interaction causes database activity

- Metadata-intensive operations incur delays
 - Recursive operations such as "chown –R ./*" may take longer than expected
 - Directories containing more than a few thousand files may become difficult to work with interactively

-bash-3.2$ time hsi -q ‘ls -l /home/n/nickb/tmp/testing/80k-files/’ > /dev/null 2>&1

real 20m59.374s
user 0m7.156s
sys 0m7.548s
Large Directories, continued

- hsi “ls –l” exponential delay:
Long-running Transfers

• Failure prone for a variety of reasons
 – Transient network issues, planned/unplanned maintenance, etc.
• Many clients do not have capability to resume interrupted transfers
• Can affect archive internal data management (migration) performance
• Recommend keeping transfers to 24hrs or less if possible
Session Limits

- 15 concurrent session/user enforced
- Can be administratively reduced if a user is negatively affecting system usability for others
Questions, Problems, Further Reading
Asking Questions, Reporting Problems

• Contact NERSC Consulting
 – Toll-free 800-666-3772
 – 510-486-8611, #3
 – Email consult@nersc.gov.
Further Reading

- NERSC Website

- HSI and HTAR man pages are installed on NERSC compute platforms

- Gleicher Enterprises Online Documentation (HSI, HTAR)
 - http://www.mgleicher.us/index.html/htar/

Hands-on Examples
Logging into archive: Hands-on

• Using ssh, log into any NERSC compute platform

 -bash-3.2$ ssh dtn01.nersc.gov

• Start HPSS storage client “hsi”

 -bash-3.2$ hsi

• Enter NERSC password at prompt (first time only)

 Generating .netrc entry...
 nickb@auth2.nersc.gov's password:

• You should now be logged into your archive home directory

 Username: nickb UID: 33065 Acct: 33065(33065) Copies: 1 Firewall: off [hsi.3.4.5 Wed Jul 6 16:14:55 PDT 2011][V3.4.5_2010_01_27.01]
 A:/home/n/nickb-> quit

• Subsequent logins are now automated
Using HSI: Hands-on

- Using ssh, log into any NERSC compute platform
 -bash-3.2$ ssh dtn01.nersc.gov

- Create a file in your home directory
 -bash-3.2$ echo foo > abc.txt

- Start HPSS storage client “hsi”
 -bash-3.2$ hsi

- Store file in archive
 A:/home/n/nickb-> put abc.txt

- Retrieve file and rename
 A:/home/n/nickb-> get abc_1.txt : abc.txt
 A:/home/n/nickb-> quit

- Compare files*
 -bash-3.2$ sha1sum abc.txt abc_1.txt
 f1d2d2f924e986ac86fd736b36c94bdf32beec15 abc.txt
 f1d2d2f924e986ac86fd736c94bdf32beec15 abc_1.txt

* Note: checksums supported in the next HSI release with: ‘hsi ‘put –c on local_file : remote_file’
Using HTAR: Hands-on

• Using ssh, log into any NERSC compute platform
 -bash-3.2$ ssh dtn01.nersc.gov

• Create a subdirectory in your home directory
 -bash-3.2$ mkdir mydir

• Create a few files in the subdirectory
 -bash-3.2$ echo foo > ./mydir/a.txt
 -bash-3.2$ echo bar > ./mydir/b.txt

• Store subdirectory in archive as “mydir.tar” with HTAR
 -bash-3.2$ htar –cvf mydir.tar ./mydir

• List newly created aggregate in archive
 -bash-3.2$ htar –tvf mydir.tar

• Remove local directory and contents
 -bash-3.2$ rm –rf ./mydir

• Extract directory and files from archive
 -bash-3.2$ htar –xvf mydir.tar
Section Title