Quick Introduction to HPSS at NERSC

Nick Balthaser
NERSC Storage Systems Group
nabalthaser@lbl.gov

Joint Genome Institute, Walnut Creek, CA
Feb 10, 2011
NERSC Archive Technologies Overview
Use Cases for the Archive
Hands-on:
 – Authentication
 – Client Usage and Examples
Client Installation
• Current data volume: 12PB in 100M files written to 26k tapes (user system)
• Permanent storage is magnetic tape, disk cache is transient
 – All data written to HPSS goes through the disk cache
 – Disk to tape migration occurs every 30 minutes
 – Data retained on disk approximately one week, on average
• Tapes and tape drives are contained in robotic libraries
 – Cartridges are loaded/unloaded into tape drives by sophisticated library robotics
• 110 tape drives in user (archive) system
 – 3 cartridge and drive technologies in use: Oracle T10KB/T10KC (1TB/5TB, high capacity) and 9840D (fast access, 80GB)
Front-ending the Tape Subsystem is 240TB Fast-access disk

- Disk cache hardware: Data Direct Networks 9550 FC and 9900 SAS disk arrays
- User system has 13 server nodes, IBM p4/p5/p7 running AIX
 - 12 IO nodes called data movers: read/write to network, disk and tape devices
 - 1 core server: coordinates system activity and serves metadata
- HPSS storage application is under active development by IBM, LBNL, LLNL, LANL, SNL, and ORNL.
 - NERSC has 2 full-time HPSS developers on staff
 - New features, stability improvements, and bug fixes are continually being developed.
NERSC has 4 dedicated DTN nodes for high-speed transfers
 – Transfer rates over 1GB/sec are possible
• HPSS clients can emulate file system qualities
 – FTP-like interfaces can be deceiving: the archive is backed by tape, robotics, and a single DB2 database instance for metadata
 – Operations that would be slow on a file system, e.g. lots of random IO, can be impractical on the archive

• HPSS does not stop users from making mistakes
 – It is possible to store data in such a way as to make it difficult to retrieve
 • Tape storage systems do not work well with small files
 – The archive has no batch system. Inefficient use affects others.
Use Cases for the Archive

• Typical use case: long-term storage and retrieval of very large raw data sets
 – Good for incremental processing
• Long-term storage of result data
• Data migration between compute platforms
• Backups (/project and system/server backups)
NERSC storage uses a token-based authentication method

- User places encrypted authentication token in ~/.netrc file at the top level of the home directory on the compute platform
- Token information is verified in the NERSC LDAP user database
- All NERSC HPSS clients can use the same token
- Tokens are username and IP specific—must generate a different token for use offsite
Authentication tokens can be generated in 2 ways:

- Automatic – NERSC auth service (recommended):
 - Log into any NERSC compute platform
 - Type “hsi”
 - Enter NERSC password

 - Under “Actions” dropdown, select “Generate HPSS Token”
 - Copy/paste content into ~/.netrc
 - chmod 600 ~/.netrc

- Use NIM website to generate token for alternate IP address
machine archive.nersc.gov
login joeuser
password 02UPMUEzYJ/Urc7ypflk7M8KHLITsoGN6ZIcfOBdBZBxn+BViShg==

machine ftp.nersc.gov
login anonymous
password joeuser@nersc.gov

• **Check permissions on this file**
 – Should be rw for user only
HPSS Client Overview

- **Parallel, threaded, high performance:**
 - HSI
 - Unix shell-like interface
 - HTAR
 - Like Unix tar, for aggregation of small files
 - PFTP
 - Parallel FTP

- **Non-parallel:**
 - FTP
 - Ubiquitous, many free scripting utilities and APIs

- **GridFTP interface (garchive)**
 - Connect to other grid-enabled storage systems
Hands-on Examples: HSI

• Most flexibility, many features and options
• Can cause problems if not used correctly (supports recursive transfers of small files/directories)

• Features:
 – Parallel, high speed transfers
 – Interactive and non-interactive modes
 – Common shell commands: chown, chmod, ls, rm, etc.
 – Recursion
 – Command-line editing and history
 – Wildcards

• Connecting to the archive: type “hsi”

bash-4.0$ hsi
[Authenticating]
A:/home/j/joeuser->
Interactive HSI

- **Transfer**
 A:/home/j/joeuser-> put myfile
 put 'myfile' : '/home/j/joeuser/myfile' (2097152 bytes, 31445.8 KBS (cos=4))

- **Retrieve**
 A:/home/j/joeuser-> get myfile
 get 'myfile' : '/home/j/joeuser/myfile' (2010/12/19 10:26:49 2097152 bytes, 46436.2 KBS)

- **Full pathname or rename**
 A:/home/j/joeuser-> put local_file : hpss_file
 A:/home/j/joeuser-> get local_file : hpss_file

- **Wildcards**
 A:/home/j/joeuser-> prompt
 prompting turned off
 A:/home/j/joeuser-> mput .bash*
Non-interactive HSI

- **One-line mode**

  ```bash
  bash-4.0$ hsi "mkdir mydir; cd mydir; put myfile; ls -l"
  ```

- **Command File**

  ```bash
  bash-4.0$ cat mycommands.txt
  put myfile
  ls -l
  quit
  bash-4.0$ hsi "in mycommands.txt"
  ```

- **Here Document**

  ```bash
  bash-4.0$ hsi <<EOF
  put myfile
  ls -l
  quit
  EOF
  ```

- **Standard Input**

  ```bash
  bash-4.0$ echo 'mkdir mydir; cd mydir; put myfile; ls -l; quit' | hsi
  ```
Hands-on Examples: HTAR

• Similar to Unix tar
• Parallel, high speed transfers, like HSI
• Recommended utility for archiving small files
 – Faster/safer than running Unix tar via pipeline
 – Creates index for fast file retrieval
• HTAR traverses subdirectories to create tar-compatible aggregate file in HPSS
• No staging space required
• Limitations:
 – Aggregate file can be any size, recommend 500GB max
 – Aggregates limited to 5M member files
 – Individual HTAR member files max size 64GB
 – 155/100 character prefix/filename limitation
• **Create archive**

  ```bash
  bash-4.0$ htar –cvf /home/n/nickb/mytarfile.tar ./
  HTAR: a ./mydir/
  HTAR: a ./mydir/foofile
  HTAR: a /scratch/scratchdirs/nickb/HTAR_CF_CHK_50212_1297706778
  HTAR Create complete for /home/n/nickb/mytarfile.tar. 2,621,442,560 bytes
  written for 1 member files, max threads: 3 Transfer time: 11.885 seconds
  (220.566 MB/s)
  ```

• **List archive**

  ```bash
  bash-4.0$ htar –tvf /home/n/nickb/mytarfile.tar
  ```

• **Extract member file(s)**

  ```bash
  bash-4.0$ htar –xvf /home/n/nickb/mytarfile.tar ./mydir/foofile
  ```
• **PFTP**
 – Standard FTP-like interface distributed with HPSS
 – Implements parallel transfers for performance
 – FTP-compatible syntax
 – Scriptable with some effort (Here doc or command file)
 – NERSC compute platforms only

 bash-4.0$ pftp –i < cmds.txt

• **FTP**
 – Available everywhere, but non-parallel, low performance
 – Free utilities such as ncftp, curl, and Perl Net::FTP add flexibility for scripting

• Both interfaces implement **ALLO64 <filesize>** for writing files to the correct COS
• GridFTP uses a certificate based authentication method—not ~/.netrc
 – Users can use grid credentials to transfer data between other grid-enabled sites

• GridFTP is the server
 – Clients include uberftp and globus-url-copy

• Clients often support user-tunable parameters for WAN transfer
HPSS Client Download and Installation

• HPSS clients are provided on NERSC systems (hopper, franklin, etc.) No download/installation necessary
 – HSI and HTAR are now installed on JGI system phoebe

• HSI and HTAR are licensed for binary download for NERSC users (workstations, servers, offsite platforms)
 – Go to the NERSC software download page
 – Select appropriate version for your hardware/OS (NERSC username/password required)
 • Minor OS version differences may be Ok

• FTP client is usually available on most operating systems
 – Lower performance on high-speed networks
 – Problems with authentication on Windows7
NERSC Staff: Contact Storage Systems
- Email ssg@nersc.gov
- 24x7 NERSC Operations: 510-486-6821

NERSC Users: Contact NERSC Consulting
- Toll-free 800-666-3772
- 510-486-8611, #3
- Email consult@nersc.gov.
Further Reading

• NERSC Website

• NERSC Grid documentation
 – http://www.nersc.gov/users/software/grid/data-transfer/

• HSI, HTAR, PFTP man pages should be installed on NERSC compute platforms

• Gleicher Enterprises Online Documentation (HSI, HTAR)
 – http://www.mgleicher.us/GEL/

• “HSI Best Practices for NERSC Users” – LBNL Report #LBNL-4745E