
Tips to Compile Materials Science
and Chemistry Codes at NERSC

Zhengji Zhao
NERSC user Services Group

April 5, 2011

•  Available compilers at NERSC
•  Compiler flags
•  Libraries

–  Where to find them
•  A couple of common compilation errors
•  A loading error and LD_LIBRARY_PATH
•  Summary

Outline

•  Where we start
–  We will address codes that work at least with one
compiler and on one archietecture (third party
software application packages)
–  The authors have provided with makefiles or
configure scripts, we just need to work out the system
dependent part of the makefiles

Available compilers at NERSC

Available compilers

Codes Hopper Franklin Carver default
PGI ! ! ! yes
GNU ! ! !
INTEL !
Pathscale ! !
Cray ! !

•  Default on all major computing platforms at
NERSC are pgi compilers

•  Access through modules
•  Programming environments

•  Module PrgEnv-pgi
•  Module pgi openmpi

5

Comments from Cray

6

Comments from Cray

•  From user perspective, compilation is no
more than finding the paths to the needed
header files and libraries, and provide them
to the compile line and/or link line.
•  Native compiler and compiler wrappers

–  Use compiler wrappers to compile
–  Ftn,cc,CC on Hopper
–  Mpif90,mpicc, mpiCC on Carver

•  Dynamic and static linking
–  Carver dynamic
–  Hopper static, Hopper support dynamic linking too

Available compilers

PGI Pathscale Cray GNU Description
-fast -Ofast -O3 -O3 Produce high level of

optimization
-mp=nonuma -mp -Oomp -fopenmp Activate OpenMP

directives and
pragmas in the code

-Mfixed -fixedform -f fixed -ffixed-form Process Fortran
source using fixed
form specifications.

-Mfree -freeform -f free -ffree-form Process Fortran
source using free
form specifications.

-V -dumpversion -V --version Show version
number of the
compiler.

-v

Compiler flags

•  Modules
–  module avail

•  How to find the paths to the header files
and library files?

–  Use Module show command
–  Compiler wrapper verbose outputs

•  mpif90 –v hello.f
•  ftn –v hello.f

Libraries

•  On hopper:
–  Different builds for different compilers
–  Cray supports many software packages
–  Programming environment can selectively pick the
matching libraries to load

•  On Carver
–  You are on your own
–  It is your job to find the matching libraries among
many available software and different builds

Libraries

•  LAPACK/ScaLAPCK libraries
–  Libsci, acml, mkl

•  FFT libraries
–  FFTW 2,3, acml, mkl

•  Quantum Espresso makefile
–  Make.sys

•  VASP makefile
•  Where do libraries and other software
reside? (MODULEPATH)

–  /opt –Cray directories
–  /usr/common/usg

Libraries

•  Syntax errors
–  due different compiler behaviors

•  Library linking order
–  Missing standard libraries, mixed fortran/C/C++
compilation
–  undefined symbols, try -Wl, --start-group, …, -Wl, --
end-group
–  -Wl,-z muldefs –allow multiple defined symbols, use
the first one.

•  Loading error (Carver)
–  Provide the LD_LIBRARY_PATH
–  Set env OMP_NUM_THREADS to the number of
threads for hybrid execution

A couple common errors

•  Use compiler wrappers
•  Use the system provided libraries
whenever applicable for a better performance
•  Start with the compilers that vendor/
authors used, to minimize the chance to hit
the compiler and code bugs, then try different
compilers if you care the performance.
•  Validity check after compilation

–  Run tests and check with the references if provided
–  Debug version to check the validity

Good practice

•  Recommended readings:
–  NERSC website, especially

•  http://www.nersc.gov/nusers/systems/carver/
programming/index.php
•  http://newweb.nersc.gov/users/computational-systems/
hopper/programming/
•  man pages:
•  Pgf90,pgcc,pgCC
•  Other compilers

15

Dynamic Shared Objects and
Libraries (DSL) on Hopper

•  Using system provided dynamic shared
libraries
1.  Link codes with -dynamic
2.  Set runtime env, CRAY_ROOTFS=DSL

hopper01> ftn -dynamic mpi_test.f90!
hopper01> qsub -I -V -l mppwidth=2 -q debug!
qsub: waiting for job 141142.sdb to start!
qsub: job 141142.sdb ready!

nid05430> cd $PBS_O_WORKDIR!
nid05430> export CRAY_ROOTFS=DSL!
nid05430> aprun -n 2 a.out!
 Hello World, I am process 0!
 Hello World, I am process 1!
Application 536003 resources: utime ~0s,
stime ~0s!

Dynamic Shared Objects and
Libraries (DSL) on Hopper

•  Using user defined dynamic shared libraries
1.  Build shared libraries:

a)  Compile with –shared –fPIC
b)   Create dynamic shared libraries with cc –shared

2.  Set runtime env, CRAY_ROOTFS=DSL , LD_LIBRARY_PATH

nid05430> ftn -shared -fPIC -c callC.f!
nid05430> cc -shared -o libflib.so callC.o!
nid05430> cc -dynamic callF.c -L./ -lflib!
nid05430> export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:./!
nid05430> aprun -n 2 a.out!
 reached Fortran!
 …!
the Long int is 12345678901!
Application 536015 exit codes: 28!
Application 536015 resources: utime ~0s, stime ~0s!

Continued…

