Tips to Compile Materials Science
and Chemistry Codes at NERSC

Zhengji Zhao
NERSC user Services Group
April 5, 2011

Office of

L e, U.S. DEPARTMENT OF
) Y
ENERG Science

~
A
rrrrrrr ""|
Lawrence Berkeley

a
(I National Laborator: y

National Energy Research
Scientific Computing Center

Outline

Available compilers at NERSC
« Compiler flags

Libraries

— Where to find them

* A couple of common compilation errors
A loading error and LD_LIBRARY_PATH
 Summary

Office of

f*’"‘"ﬁ,“ U.S. DEPARTMENT OF
ENERG I Science

Lawrence Berkeley
HS{(IEAN. M National Laboratory

Available compilers at NERSC b

e Where we start

— We will address codes that work at least with one
compiler and on one archietecture (third party
software application packages)

— The authors have provided with makefiles or
configure scripts, we just need to work out the system
dependent part of the makefiles

Office of
Science

Lawrence Berkeley
BERKELEY LAB National Lab oooooo y

Available compilers

Codes | Hopper | Franklin | Carver | default _
PGI v v/ 4 yes

GNU v v v
INTEL v
Pathscale v o/
Cray v v/

« Default on all major computing platforms at
NERSC are pgi compilers

 Access through modules

* Programming environments
 Module PrgEnv-pgi
 Module pgi openmpi

. DEPARTMENT OF Offlce Of

NERGY Science

Lawrence Berkeley
HS{(IEAN. M National Laboratory

NERSC Comments

Compiler Choices — Relative Strengths e

...from Cray’s Perspective

e PGI - Very good Fortran, okay C and C++

* Good vectorization
Good functional correctness with optimization enabled

Good manual and automatic prefetch capabilities
Very interested in the Linux HPC market, although that is not their only focus

Excellent working relationship with Cray, good bug responsiveness

e Pathscale - Good Fortran, C, probably good C++
» Qutstanding scalar optimization for loops that do not vectorize
* Fortran front end uses an older version of the CCE Fortran front end
* OpenMP uses a non-pthreads approach
» Scalar benefits will not get as much mileage with longer vectors

o (Not NERSC supported) Intel - Good Fortran, excellent C and C++ (if you
|gnore vectorization)
Automatic vectorization capabilities are modest, compared to PGl and CCE

Use of inline assembly is encouraged
Focus is more on best speed for scalar, non-scaling apps
Tuned for Intel architectures, but actually works well for some applications on

AMD

Comments

Compiler Choices — Relative Strengths e

...from Cray’s Perspective

® GNU so-so Fortran, outstanding C and C++ (if you ignore vectorization)

Obviously, the best for gcc compatability

Scalar optimizer was recently rewritten and is very good

Vectorization capabilities focus mostly on inline assembly

Note the last three releases have been incompatible with each other (4.3, 4.4,
and 4.5) and required recompilation of Fortran modules

e CCE - Outstanding Fortran, very good C, and okay C++

Very good vectorization

Very good Fortran language support; only real choice for Coarrays

C support is quite good, with UPC support

Very good scalar optimization and automatic parallelization

Clean implementation of OpenMP 3.0, with tasks

Sole delivery focus is on Linux-based Cray hardware systems

Best bug turnaround time (if it isn’t, let us know!)

Cleanest integration with other Cray tools (performance tools, debuggers,
upcoming productivity tools)

No inline assembly support

Cray Inc. Preliminary and Propnetary 6

Available compilers

 From user perspective, compilation is no
more than finding the paths to the needed
header files and libraries, and provide them
to the compile line and/or link line.

 Native compiler and compiler wrappers
— Use compiler wrappers to compile
— Ftn,cc,CC on Hopper
— Mpif90,mpicc, mpiCC on Carver
 Dynamic and static linking
— Carver dynamic
— Hopper static, Hopper support dynamic linking too

Office of
Science

Lawrence Berkeley
BERKELEY LAB National Lab oooooo y

-fast

-mp=nonuma

-Mfixed

-Mfree

-Ofast

_mp

-fixedform

-freeform

-dumpversion

Compiler flags

PGI_____| Pathscale :am-

-Oomp

-f fixed

-f free

<

-fopenmp

-ffixed-form

-ffree-form

--version

Produce high level of
optimization

Activate OpenMP
directives and
pragmas in the code

Process Fortran
source using fixed
form specifications.

Process Fortran

source using free
form specifications.

Show version
number of the
compiler.

W National Laboratory

Libraries

 Modules

— module avall
 How to find the paths to the header files
and library files?

— Use Module show command

— Compiler wrapper verbose outputs
« mpif90 —v hello.f
 ftn —v hello.f

R, U.S. DEPARTMENT OF

Office of

ER S
\\‘J ENERGY Science

Lawrence Berkeley
HS{(IEAN. M National Laboratory

Libraries

 On hopper:
— Different builds for different compilers
— Cray supports many software packages

— Programming environment can selectively pick the
matching libraries to load

 On Carver
— You are on your own

— Itis your job to find the matching libraries among
many available software and different builds

Office of
Science

Lawrence Berkeley
HS{(IEAN. M National Laboratory

Libraries

LAPACK/ScalLAPCK libraries
— Libsci, acml, mkl

FFT libraries

— FFTW 2,3, acml, mkl

 Quantum Espresso makefile
— Make.sys

« VASP makefile

« Where do libraries and other software
reside? (MODULEPATH)
— /opt —Cray directories

— /usr/common/usg
ZZRR, U.S. DEPARTMENT OF Office of

é. ENERGY Science

Law

e Berkeley

BERKELEY LAB National Lab oooooo y

A couple common errors

« Syntax errors
— due different compiler behaviors

* Library linking order
— Missing standard libraries, mixed fortran/C/C++
compilation

— undefined symbols, try -WI, --start-group, ..., -WI, --
end-group

— -WI,-z muldefs —allow multiple defined symbols, use
the first one.

* Loading error (Carver)
— Provide the LD _LIBRARY_ PATH
— Setenv OMP_NUM_ THREADS to the number of

© ENERB9ags:for hybrid execution

Lawrence Berkeley
BERKELEY LAB National Lab oooooo y

Good practice

 Use compiler wrappers

 Use the system provided libraries
whenever applicable for a better performance

« Start with the compilers that vendor/
authors used, to minimize the chance to hit
the compiler and code bugs, then try different
compilers if you care the performance.

« Validity check after compilation
— Run tests and check with the references if provided
— Debug version to check the validity

Office of
Science

Lawrence Berkeley
BERKELEY LAB National Lab oooooo y

« Recommended readings:
— NERSC website, especially

 http://www.nersc.gov/nusers/systems/carver/
programming/index.php

 http://newweb.nersc.gov/users/computational-systems/
hopper/programming/

* man pages:
 Pgf90,pgcc,pgCC
Other compilers

=2 U.S. DEPARTMENT OF ‘ Offlce Of

ENERGY science

Lawrence Berkeley
(I AW National Laboratory

Dynamic Shared Objects and
Libraries (DSL) on Hopper

 Using system provided dynamic shared
libraries

1. Link codes with -dynamic
2. Set runtime env, CRAY_ROOTFS=DSL

hopper01> ftn -dynamic mpi test.f90
hopper01> gsub -I -V -1 mppwidth=2 -gq debug
gsub: waiting for job 141142.sdb to start
gsub: job 141142.sdb ready

nid05430> cd $PBS O WORKDIR
nid05430> export CRAY ROOTFS=DSL
nid05430> aprun -n 2 a.out
Hello World, I am process 0
Hello World, I am process 1
Application 536003 resources: utime ~0s,
stime ~0s

G

AT
£)
57 4 A
Bl 2
s i g

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science

= A
reeeree] M
1 5 Lawrence Berkeley

HS{(IEAN. M National Laboratory

Dynamic Shared Objects and
Libraries (DSL) on Hopper

« Using user defined dynamic shared libraries

1. Build shared libraries:
a) Compile with —shared —fPIC
b) Create dynamic shared libraries with cc —shared

2. Set runtime env, CRAY ROOTFS=DSL, LD LIBRARY PATH

Continued...

nid05430> ftn -shared -fPIC -c callC.f
nid05430> cc -shared -o libflib.so callC.o
nid05430> cc -dynamic callF.c -L./ -1flib
nid05430> export LD LIBRARY PATH=${LD LIBRARY PATH}:./
nid05430> aprun -n 2 a.out
reached Fortran

the Long int is 12345678901
Application 536015 exit codes: 28
Application 536015 resources: utime ~0s, stime ~0s

=
U.S. DEPARTMENT OF ; A
Science Lawrence Berkeley

HS{(IEAN. M National Laboratory

£ e
2 4
i g

