
Use Cases of Roofline Analysis
Charlene Yang @NERSC

Use Case 1: BerkeleyGW

Material Science/Chemistry at Exascale

Mat. Sci & Chem apps like VASP, Quantum ESPRESSO, NWChem, GAMESS, QMCPACK,
BerkeleyGW, and CP2K are some of the most heavily used apps at DOE facilities.

They are being used to design and understand the fundamental components of Quantum
Computers, Solar Cells, OLEDs, Batteries, Catalysts, Bio-Energy, Semiconductors,
Sensors, Hydrogen Storage, Carbon Sequestration

BerkeleyGW

• A massively parallel package
for GW calculations

• Sits on top of DFT codes
• Studies Excited-State

properties of materials
– Photovoltaics
– LEDs
– Quantum Computers
– Junctions / Interfaces
– Defect Energy Levels
– ….

Sigma-GPP

do n1 = 1, nbands n’ e.g. 2763
do igp = 1, ngpown G’ e.g. 6633

do ig = 1, ncouls G e.g. 26529
do iw = 1, nw E e.g. 3

compute: 1. mixed data types
e.g. complex double, double, integer

2. various memory access patterns
e.g. (ig,igp)(ig,n1)(igp,n1)(iw,n1)(n1)

3. complex number divisions
4. nw is very small, will be unrolled

reduction: 1. complex numbers
2. all top 3 loops, billions of iterations

Pseudo Code

Optimization Path
9 Steps:

1. Collapse n’, G’, and G loops
2. Bring n’ loop in; collapse only G’ and G
3. Adjust threadblock size
4. Reduce branching; pull iw loop outside
5. Swap indices to suite parallelisation
6. Simplify code
7. Replace div. with rcp. and mul.
8. Replace abs with power of 2
9. Cache blocking

!$ACC PARALLEL LOOP REDUCTION(+:)
do n1 = 1, nbands

do igp = 1, ngpown
do ig = 1, ncouls

do iw = 1, nw
compute and reduction

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27

v9.block 2.00 0.57 3.50

3x !!

V1. Naïve Implementation

• Collapse the first 3 loops to gain parallelism

TFLOPs Time (sec) TFLOP/s
v1.collapse3 3.71 1.63 2.27

!$ACC PARALLEL LOOP COLLAPSE(3) REDUCTION(+:)
do n1 = 1, nbands

do igp = 1, ngpown
do ig = 1, ncouls

do iw = 1, nw #unrolled
compute and reduction

V2. More Compute Per Thread

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27
v2.collapse2 3.71 1.73 2.15

!$ACC PARALLEL LOOP COLLAPSE(2) REDUCTION(+:)
do igp = 1, ngpown

do ig = 1, ncouls
do n1 = 1, nbands #unrolled too!

do iw = 1, nw #unrolled
compute and reduction

• Move n’ loop in, and collapse the first 2 loops

• L2/HBM AI increases!

• Very low occupancy
– 8 warps per SM
– Register count at 186

• Need more warps to hide latency!

V2. More Compute Per Thread

V3. Increase Threadblock Size

• Force threadblock size to be 512, instead of the default 128

• Register spills but performance may not be bad!

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 186 registers, 624 bytes cmem[0], 32 bytes cmem[2]

104 bytes stack frame, 188 bytes spill stores, 168 bytes spill loads

ptxas info : Used 128 registers, 624 bytes cmem[0], 32 bytes cmem[2]

!$ACC PARALLEL LOOP COLLAPSE(2) VECTOR_LENGTH(512) REDUCTION(+:)

V3. Increase Threadblock Size

• More bandwidth bound now but
latency hiding is successful!

TFLOPs Time TFLOP/s

v2.collapse2 3.71 1.73 2.15

v3.vector512 3.71 1.40 2.65

V4. Reduce Branching

• Bring iw loop outside of the kernel

• Fewer variables to be reduced -> lower register pressure
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 122 registers, 600 bytes cmem[0], 32 bytes cmem[2]

do iw = 1, nw #reduce branching
!$ACC PARALLEL LOOP COLLAPSE(2) VECTOR_LENGTH(512) REDUCTION(+:)
do igp = 1, ngpown

do ig = 1, ncouls
do n1 = 1, nbands #unrolled

compute and reduction

V4. Reduce Branching

• Aggregated data for all kernels

• BRA instruction count
14,278,897,053
5,975,051,812 x 2

TFLOPs Time TFLOP/s

v3.vector512 3.71 1.40 2.65

v4.iwoutside 3.52 1.17 3.00

16%

V5. Swap Indices

TFLOPs Time TFLOP/s

v4.iwoutside 3.52 1.17 3.00

v5.swapindices 3.52 1.16 3.03

do iw = 1, nw
!$ACC PARALLEL LOOP
do igp = 1, ngpown

do ig = 1, ncouls
do n1 = 1, nbands
wx_array(iw,n1) to (n1,iw)

V6. Simplify Code

• Fewer instructions -> less work
– Pull repeated instructions outside the loop
– Use temporary variables to hold intermediate values for reuse

• Less branches -> better programming
– 3 branches is more than 1 branch

worse than 2 branches!

TFLOPs Time TFLOP/s

v5.swapindices 3.52 1.16 3.03

v6.simplify 3.30 1.10 3.00

V7. Replace Divides

• Replace (complex) div. with (double) rcp. and (complex) mul.
• Lower instruction count: 40%

• More bandwidth bound now!

TFLOPs Time TFLOP/s

v6.simplify 3.30 1.10 3.00

v7.divs 2.09 0.66 3.18

• Can be confirmed by Nsight Compute profiles

V7. Replace Divides

V8. Replace abs(x) with x**2

• 𝒙𝟐 + 𝒚𝟐� < 𝒛 𝒙𝟐 + 𝒚𝟐 < 	𝒛𝟐

• sqrt(complex) vs power of 2
• Causing pipeline to wait

TFLOPs Time TFLOP/s

v7.divs 2.09 0.66 3.18

v8.abs 1.99 0.62 3.23

complex(DP) ssx
if (abs(ssx) .le. ssxcutoff) then

real(DP) ssxpower
if (ssxpower .le. ssxcutoff **2) then

V8. Replace abs(x) with x**2

Before:
– Wait: warp stalled waiting on a fixed latency execution dependency

V8. Replace abs(x) with x**2

After:
– Wait: 46.6% -> 23.7%

V9. Cache Blocking
• Non-coalesced memory access for aqsntemp
• Causing Long Scoreboard Warp State

– Warp stalled waiting for L1TEX (local, global, surface, tex) memory operation

V9. Cache Blocking

• Break loops into chunks and reuse data across threadblocks
• Increase L2 hit rate

TFLOPs Time TFLOP/s

v8.abs 1.99 0.62 3.23

v9.block 2.00 0.57 3.50

!$ACC LOOP GANG VECTOR
do ig_blk = 1, ig_blksize
!$ACC LOOP SEQ
do ig = ig_blk, ncouls, ig_blksize

V9. Cache Blocking

• Less Long Scoreboard samples and higher L2/L1 hit rate

Summary
9 Steps to Optimize Sigma-GPP

1. Collapse n’, G’, and G loops
2. Bring n’ loop in; collapse only G’ and G
3. Adjust threadblock size
4. Reduce branching; pull iw loop outside
5. Swap indices to suite parallelisation
6. Simplify code
7. Replace div. with rcp. and mul.
8. Replace abs with power of 2
9. Cache blocking

!$ACC PARALLEL LOOP REDUCTION(+:)
do n1 = 1, nbands

do igp = 1, ngpown
do ig = 1, ncouls

do iw = 1, nw
compute and reduction

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27

v9.block 2.00 0.57 3.50

3x !!

Summary

• Code is still bandwidth and latency bound
– shared memory
– lower register count
– improve FMA ratio

• Together with profilers,
Roofline provides the
complete solution for your
performance analysis and
optimization needs!

Use Case 2:
conv2d from TensorFlow

conv2d from TensorFlow

• Kernel tf.nn.conv2d

https://www.tensorflow.org

conv2d from TensorFlow

exec_op:
• forward pass -- conv in 2D
• backward pass -- conv + derivative
• calibrate -- tensor generation

#generate random input tensor
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)
#create network
output_result = conv2d(input_image, ’NHWC’, kernel_size, stride_size, dtype)

#choose operation depending on pass
if pass=="forward":

with tf.device(gpu_dev):
exec_op = output_result

elif pass=="backward":
with tf.device(gpu_dev):
opt = tf.train.Gradient\

DescentOptimizer(0.5)
exec_op = opt.compute\

_gradients(output_result)
elif pass=="calibrate":

with tf.device(gpu_dev):
exec_op = input_image

conv2d from TensorFlow

• TensorFlow autotuning mechanism

• Split the loop into ‘warm-up’ and ‘measurement’
– 5 iters and 20 iters

• pyc.driver from PyCUDA
– need to launch nvprof with

--profile-from-start off

with tf.Session(config=...) as sess:
...

#warm-up
for i in range(n_warm):
result = sess.run(exec_op)

#measurement
pyc.driver.start_profiler()
for i in range(n_iter):

result = sess.run(exec_op)
pyc.driver.stop_profiler()

conv2d from TensorFlow

• Each TensorFlow kernel translates to a series of subkernels
– padding, shuffling, data conversion, etc

• TensorFlow based on heuristics decides what subkernels to call

• cuDNN also has some algorithm selection mechanism

• We INCLUDE the housekeeping subkernels in our measurements,
but EXCLUDE the autotuning subkernels

conv2d from TensorFlow

• Our FLOP count comes from
flop_count_sp, flop_count_hp, tensor_precision_fu_utilization

• Byte count and run time are the sum of these quantities across all subkernels

CAVEATS:
• Housekeeping subkernels may run in FP32 even when input is FP16
• TensorFlow may execute computation in FP32 even when input is FP16
• Very coarse quantization for tensor_precision_fu_utilization

– 0-10 integer range, 0 maps to 0 TFLOP/s and 10 maps to 125 TFLOP/s

!

conv2d Analysis

• Batch Size 16, 32 and 64, forward pass

• Same underlying algorithm
à should be same performance

• But, housekeeping kernels
are mostly bandwidth bound

• One reason TF applications
are not reaching peak

conv2d Analysis

• Batch Size 16, 32 and 64, backward pass

• Similar trend as forward pass

• But algorithm changes for
FP32 at batch size 64,
leading to slightly better
performance

conv2d Analysis

• Number of Output Filters 64, 128, 256 and 512, forward pass

• Increasing intensity and
performance

• Good L1 locality
• cuDNN uses shared mem

conv2d Analysis

• Number of Output Filters 64, 128, 256 and 512, backward pass

• Similar trend as forward pass

• Almost reaching TC peak
and FP32 FMA peak

conv2d Analysis

• Kernel Size 3x3, 7x7 and 9x9, forward pass

• Increasing intensity and
performance

• Algorithm change at 9x9
– wgrad to FFT
– may not be efficient

use of FFT kernels
– More robust autotuning

conv2d Analysis

• Kernel Size 3x3, 7x7 and 9x9, backward pass

• TF decides to run in FP32
even though both input and
output are in FP16; Data
needs to be converted
back and forth

• Comply with dimension
requirements

Summary

Summary
• We presented an effective methodology to collect machine and

application data, and construct hierarchical Roofline on NVIDIA
GPUs.

• Two use cases demonstrated the value of this methodology and
showed its ability to readily understand various aspects of
performance and performance bottlenecks on NVIDIA GPUs.

– GPP from BerkeleyGW, and conv2d from TensorFlow!

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

Thank You
Charlene Yang, cjyang@lbl.gov

Sam Williams, swwilliams@lbl.gov
Yunsong Wang, yunsongwang@lbl.gov

